Sample records for young scientist program

  1. New Program Aims $300-Million at Young Biomedical Researchers

    ERIC Educational Resources Information Center

    Goodall, Hurley

    2008-01-01

    Medical scientists just starting at universities have been, more and more often, left empty-handed when the federal government awards grants. To offset this, the Howard Hughes Medical Institute, a nonprofit organization dedicated to medical research, announced a new program that will award $300-million to as many as 70 young scientists. The Early…

  2. [Applications and spproved projects of general program, young scientist fund and fund for less developed region of national natural science funds in discipline of Chinese materia medica, NSFC in 2011].

    PubMed

    Han, Liwei; Wang, Yueyun; He, Wenbin; Zhang, Junjie; Bi, Minggang; Shang, Hongcai; Shang, Deyang; Wang, Chang'en

    2012-03-01

    The applications accepted and approved by general program, young scientist fund and fund for less developed region of national natural science funds in the discipline of Chinese materia medica, NSFC in 2011 have been introduced. The character and problems in these applications have been analyzed to give a reference to the scientists in the field of Chinese material medica.

  3. [Applications and approved projectsof general program, young scientist fund and fund for less developedregion of national natural science funds in discipline of Chinese materia medica, NSFC in 2012].

    PubMed

    Huang, Ming-Qing; Han, Li-Wei; Wu, Xiu-Hong; Bi, Ming-Gang; Shang, Hong-Cai; Liu, Yun-Fang; He, Wei-Ming; Li, Dan-Dan; Dong, Yan; Wang, Chang-En

    2013-01-01

    The applications accepted and approved by general program, young scientist fund and fund for less developed region of national natural science funds in the discipline of Chinese materia medica, NSFC in 2012 have been introduced. The research contents of the funded projects in the popular research areas have been summarized and the problems in the applications have been analyzed to give a reference to the scientists in the field of Chinese materia medica.

  4. SCUBAnauts International: Exploration and Discovery in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Moses, C. S.; Palandro, D.; Coble, P.; Hu, C.

    2007-12-01

    The SCUBAnauts International program originated in 2001, as a 501(c)(3) non-profit organization designed to increase the attraction to science and technology careers in today's youth. SCUBAnauts International (SNI) consists of a diverse group of 12 to 18 year-old young men and women mentored by academic, federal, and state research scientists in an informal education environment. The program's mission is to promote interest in science and technology topics and careers by involving secondary education students as young explorers in the marine sciences and research activities, such as special environmental and undersea conservation projects that educate, promote active citizenship, and develop effective leadership skills. With help from mentors, SNI students collect and interpret research-quality data to meet the needs of ocean scientists, maintaining direct interaction between the scientists and the young men and women in the program. The science component of the program includes collection of benthic habitat, water quality, optics, and coral reef health data. During the school year, the SCUBAnauts are tasked with sharing their experiences to raise the environmental awareness of a larger audience by providing education outreach in formal and informal venues. Here we highlight results from recent SNI activities including data collection and program methodologies, and discuss future plans for the program.

  5. 115-year-old society knows how to reach young scientists: ASM Young Ambassador Program.

    PubMed

    Karczewska-Golec, Joanna

    2015-12-25

    With around 40,000 members in more than 150 countries, American Society for Microbiology (ASM) faces the challenge of meeting very diverse needs of its increasingly international members base. The newly launched ASM Young Ambassador Program seeks to aid the Society in this effort. Equipped with ASM conceptual support and financing, Young Ambassadors (YAs) design and pursue country-tailored approaches to strengthen the Society's ties with local microbiological communities. In a trans-national setting, the active presence of YAs at important scientific events, such as 16th European Congress on Biotechnology, forges new interactions between ASM and sister societies. The paper presents an overview of the Young Ambassadors-driven initiatives at both global and country levels, and explores the topic of how early-career scientists can contribute to science diplomacy and international relations. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Workforce Challenges and Retention Success Stories

    NASA Technical Reports Server (NTRS)

    Donohue, John T.

    2008-01-01

    This viewgraph document discusses the current and future challenges in building and retaining the required workforce of scientist and engineers for NASA. Specifically, the talk reviews the current situation at the Goddard Space Flight Center in Greenbelt, Maryland. Several programs at NASA for high school and college students to assist in inspiring the next generation of scientist and engineers are reviewed. The issue of retention of the best of the young scientists and engineers is also reviewed, with a brief review of several young engineers and their success with and for NASA.

  7. Fellowship Available: 2005 IIASA Young Scientists Summer Program

    NASA Astrophysics Data System (ADS)

    2004-12-01

    The International Institute for Applied Systems Analysis (IIASA) near Vienna, Austria, will host its annual Young Scientists's Summer Program (YSSP) for a selected group of graduate students from around the world. These students, primarily doctoral, will work closely with IIASA's senior scientists on projects within the institute's theme areas: natural resources and environment (e.g., transboundary air pollution and greenhouse gas initiative), population and society (e.g., risk, modeling, and society, and sustainable rural development), and energy and technology (e.g., transitions to new technologies and dynamic systems). Applicants must be advanced graduate students at a U.S. university; have comparable experience with ongoing research at IIASA; students who would benefit from interactions with scientists worldwide; and be interested in investigating the policy implications of his/her work.The U.S. Committee for IIASA provides airfare and a living allowance for those selected to participate in the fellowship.

  8. Resident research associateships, postdoctoral research awards 1989: opportunities for research at the U.S. Geological Survey, U.S. Department of the Interior

    USGS Publications Warehouse

    ,; ,

    1989-01-01

    The scientists of the U.S. Geological Survey are engaged in a wide range of geologic, geophysical, geochemical, hydrologic, and cartographic programs, including the application of computer science to them. These programs offer exciting possibilities for scientific achievement and professional growth to young scientists through participation as Research Associates.

  9. Education and Outreach: Advice to Young Scientists

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  10. Roadmap to MaRIE May 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    Los Alamos National Laboratory (LANL) hosted the Stewardship Science Academic Programs Symposium, which is designed to foster relationships among young scientists, sponsors and the National Nuclear Security Administration national laboratories. The event highlights much of the work done by prominent scientists and allows attendees to view the multiple on site facilities at LANL.

  11. Basic instincts

    NASA Astrophysics Data System (ADS)

    Hutson, Matthew

    2018-05-01

    In their adaptability, young children demonstrate common sense, a kind of intelligence that, so far, computer scientists have struggled to reproduce. Gary Marcus, a developmental cognitive scientist at New York University in New York City, believes the field of artificial intelligence (AI) would do well to learn lessons from young thinkers. Researchers in machine learning argue that computers trained on mountains of data can learn just about anything—including common sense—with few, if any, programmed rules. But Marcus says computer scientists are ignoring decades of work in the cognitive sciences and developmental psychology showing that humans have innate abilities—programmed instincts that appear at birth or in early childhood—that help us think abstractly and flexibly. He believes AI researchers ought to include such instincts in their programs. Yet many computer scientists, riding high on the successes of machine learning, are eagerly exploring the limits of what a naïve AI can do. Computer scientists appreciate simplicity and have an aversion to debugging complex code. Furthermore, big companies such as Facebook and Google are pushing AI in this direction. These companies are most interested in narrowly defined, near-term problems, such as web search and facial recognition, in which blank-slate AI systems can be trained on vast data sets and work remarkably well. But in the longer term, computer scientists expect AIs to take on much tougher tasks that require flexibility and common sense. They want to create chatbots that explain the news, autonomous taxis that can handle chaotic city traffic, and robots that nurse the elderly. Some computer scientists are already trying. Such efforts, researchers hope, will result in AIs that sit somewhere between pure machine learning and pure instinct. They will boot up following some embedded rules, but will also learn as they go.

  12. Life science research in space - risks and chances for young scientists

    NASA Astrophysics Data System (ADS)

    Horn, Eberhard R.

    2007-09-01

    Research in Space is well established in most fields of Life Science, and the number of scientific publications in highly ranked journals increases steadily. However, this kind of research, in particular, fundamental research is coming more and more under pressure, funding decreases, and the discussion about its benefit for men increases continuously. The question is whether these conditions are favorable to the young generation of scientists who are not only interested in this field of research but who is urgently needed for a successful continuation of Life Science research in Space. There are pros and cons that are related to science specific factors as well as to factors specific for space research and space technologies. A young scientist also faces obstacles such as the ever- coming questions about the benefit/cost relation and the sustainability of fundamental research in Space. Continuation of a successful Life Science research in Space with a high level of competitive power should be based on three columns, (1) high- ranked state- of- art experiments, (2) motivated young scientists, and (3) scientific security after completion of projects to avoid loss of knowledge. This aim has to be supported by politicians who express clearly (political) support of Space exploration programs, by universities and private research institutions including industry. Establishment of a European FALL- BACK PLAN (FBP) for situations when flight opportunities are lacking is a way to support young Space scientists in their efforts to regain competitiveness with respect to normal scientists on the basis of first rate peer reviewed research projects that will stand on its own, i.e., transiently with no competition with ground- researchers.

  13. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  14. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  15. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  16. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  17. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  18. Training young scientists across empirical and modeling approaches

    NASA Astrophysics Data System (ADS)

    Moore, D. J.

    2014-12-01

    The "fluxcourse," is a two-week program of study on Flux Measurements and Advanced Modeling (www.fluxcourse.org). Since 2007, this course has trained early career scientists to use both empirical observations and models to tackle terrestrial ecological questions. The fluxcourse seeks to cross train young scientists in measurement techniques and advanced modeling approaches for quantifying carbon and water fluxes between the atmosphere and the biosphere. We invited between ten and twenty volunteer instructors depending on the year ranging in experience and expertise, including representatives from industry, university professors and research specialists. The course combines online learning, lecture and discussion with hands on activities that range from measuring photosynthesis and installing an eddy covariance system to wrangling data and carrying out modeling experiments. Attendees are asked to develop and present two different group projects throughout the course. The overall goal is provide the next generation of scientists with the tools to tackle complex problems that require collaboration.

  19. Howard Young Brings Light to the Serious Side of Science | Poster

    Cancer.gov

    You know what they say about all work and no play. And without a doubt, science requires constant hard work. But the NCI at Frederick has an antidote to the serious side of science: Howard Young. Young, Ph.D., Senior Investigator, Cancer and Inflammation Program, is a serious scientist in his own right. He was part of the team that characterized and cloned the RAS oncogene, he

  20. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  1. Helping Young People Engage with Scientists

    ERIC Educational Resources Information Center

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  2. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  3. Solar University-National Lab Ultra-Effective Program | Photovoltaic

    Science.gov Websites

    Lab Ultra-Effective Program Solar University-National lab Ultra-effective Program (SUN UP) was created scientists arise out of long-standing collaborations. SUN UP was created to facilitate these interactions of a young man working in a laboratory setting with equipment. The goal of SUN UP is to increase the

  4. Activities of the Student Forum of the Geoinformation Forum Japan

    NASA Astrophysics Data System (ADS)

    Oba, A.; Miyazaki, H.

    2012-07-01

    This reports a history and future prospects of the activities by the Student Forum of the Geoinformation Forum Japan. For growths of academic fields, active communications among students and young scientists are indispensable. Several academic communities in geoinformation fields are established by youths and play important roles of building networks over schools and institutes. The networks are expected to be innovative cooperation after the youths achieve their professions. Although academic communities are getting fixed growth particularly in Japan, youths had gotten little opportunities to make contacts with youths themselves. To promote gotten youth activities among geoinformation fields, in 1998, we started a series of programs that named the Student Forum of the Geoinformation Forum Japan involving students and young scientists within the annual conferences, Geoinformation Forum Japan. The programs have provided opportunities to do presentation their studies by posters, some events, and motivations to create networks among students and young scientists. From 2009, some members of our activities set additional conference in west area of Japan. Thus our activities are spread within Japan. As a result of these achievements, the number of youth dedicating to the programs keeps growing. From 2009, it's getting international gradually, however, almost all the participants are still Japanese. To keep and expand the network, we are planning to make some nodes with some Asian youth organizations in the field of geoinformation. This paper is concluded with proposals and future prospects on the Student Forum of the Geoinformation Forum Japan.

  5. Young Investigator Perspectives. Teaching and the postdoctoral experience: impact on transition to faculty positions.

    PubMed

    Uno, Jennifer; Walton, Kristen L W

    2014-05-01

    This editorial continues with our Young Investigator Perspectives series. Drs. Uno and Walton are young investigators who hold faculty positions. They completed a K12 postdoctoral program through the IRACDA (Individual Research and Career Development Award) program sponsored through the NIGMS institute at NIH. IRACDA programs exist at multiple institutions in the USA to combine postdoctoral training with formal training in academic skills and teaching at partner institutions. I thank Drs. Walton and Uno for a thoughtful perspective on how this experience shaped their career goals to combine teaching and research and inspire undergraduates to science careers. Given the current national dialog on broadening career paths and outcomes for PhD scientists, this is a timely perspective. -P. Kay Lund.

  6. Middle/High School Students in the Research Laboratory: A Summer Internship Program Emphasizing the Interdisciplinary Nature of Biology

    ERIC Educational Resources Information Center

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.

    2006-01-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…

  7. Effect of multiple rescattering processes on harmonic emission in spatially inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Zhang, Cai-Ping; Xia, Chang-Long; Jia, Xiang-Fu; Miao, Xiang-Yang

    2018-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11404204, 11274215, and 11504221), the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2015021023), Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province, China, and Innovation Project for Postgraduates of Shanxi Province, China (Grant No. 2017BY085).

  8. Influence of Total Ionizing Dose Irradiation on Low-Frequency Noise Responses in Partially Depleted SOI nMOSFETs

    NASA Astrophysics Data System (ADS)

    Peng, Chao; En, Yun-Fei; Lei, Zhi-Feng; Chen, Yi-Qiang; Liu, Yuan; Li, Bin

    2017-11-01

    Not Available Supported by the National Postdoctoral Program for Innovative Talents under Grant No BX201600037, the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090901048 and 2015B090912002, and the Distinguished Young Scientist Program of Guangdong Province under Grant No 2015A030306002.

  9. AAAS Mass Media Science and Engineering Fellowship Program: Building Communication Skills in Young Scientists

    NASA Astrophysics Data System (ADS)

    Pasco, S.

    2006-12-01

    The AAAS Mass Media Science &Engineering Fellowship program has succeeded in training scientists to become more effective communicators for more than 30 years. The program places advanced science, engineering and mathematics students at media sites to work as science reporters for ten weeks each summer. AAAS places between 15 to 20 students a year at newspapers, magazines and radio stations. Our goal is to create better science communicators who understand their role in fostering the public's understanding of science. Fellows leave the program with a greater awareness of how to communicate complex issues by making the connection as to why people should be interested in certain developments, and more specifically, how they will impact their communities. 2004 AGU Fellow Rei Ueyama put her lessons learned to good use during her Fellowship at the Sacramento Bee. "In a regional paper like The Bee, a (story) also had to have a local touch. I needed to show why people in Sacramento (or California) should bother to read the story. One example is the story I wrote about seeding the ocean with iron particles to fight global warming. Since ocean fertilization is a global issue, I had to clearly specify the reason why The Bee and not The New York Times was running the story. The local angle I chose was to point out that the core group of scientists involved in this study was from Monterey Bay, Calif." Many alumni tell us the program has been an integral force in shaping the course of their career. Similarly, sites often report that having a scientist on staff is an invaluable resource that allows them to cover additional science stories as well as report some technical stories in more depth. The American Geophysical Union has sponsored a Mass Media Fellow since 1997. Sponsorship allows affiliate program partners to establish connections with young professionals in their field. They are then also able to take advantage of the communication skills resident in their alumni base. The OS28 Communicating Broadly: Perspectives and Tools for Ocean, Earth and Atmospheric Scientists Session would provide an ideal platform for Fellowship management to share lessons learned about science communication and to offer insight as to the challenges scientists face when communicating with the general public or media.

  10. The Longitudinal STEM Identity Trajectories of Middle School Girls who Participated in a Single-Sex Informal STEM Education Program

    NASA Astrophysics Data System (ADS)

    Hughes, Roxanne

    2014-03-01

    This study examined the longitudinal effects of participation in an all-girls STEM summer camp on young women's interest in STEM fields and motivation to pursue these fields. The SciGirls camp has been in existence since 2006, with its goal of providing a safe space for young women to explore STEM careers and strengthen their interest in these careers. Over 166 middle school age girls have participated in the program since it began in 2006. Of those participants, 60 responded to at least one of the follow up surveys that are sent every three years - 2009 and 2012. The surveys attempt to determine participants' level of interest in STEM. The survey was qualitative in nature and asked open ended questions. Results indicated that the camp had a positive effect on participants' perceptions of scientists and their work. This study adds to the literature that looks at the longitudinal impacts of informal STEM educational programs that expose young women to female scientist role models and mentors. This study supports the research that claims that exposing young women at an early age to science role models can positively alter their perception of science careers which can eventually increase the number of women who pursue these careers. This increase is important at a time when men still outnumber women in many science and engineering fields. This study was funded in part by the National Science Foundation Division of Materials Research through DMR 0654118.

  11. Science for the People: High School Students Investigate Community Air Quality

    ERIC Educational Resources Information Center

    Marks-Block, Tony

    2011-01-01

    Over a year, a small group of high school students risked their afternoons and summer to participate in a science program that was "much different from science class." This was one of several after-school programs in Oakland and Richmond that the author was leading as an instructor with the East Bay Academy for Young Scientists (EBAYS). Students…

  12. The International Proteomics Tutorial Programme--reaching out to the next generation proteome scientists.

    PubMed

    James, Peter; Marko-Varga, György A

    2011-08-05

    One of the most critical functions of the various Proteomics organizations is the training of young scientists and the dissemination of information to the general scientific community. The education committees of the Human Proteome Organisation (HUPO) and the European Proteomics Association (EuPA) together with the other local proteomics associations are therefore launching a joint Tutorial Program to meet these needs. The level is aimed at Masters/PhD level students with good basic training in biology, biochemistry, mathematics and statistics. The Tutorials will consist of a review/teaching article with an accompanying talk slide presentation for classroom teaching. The Tutorial Program will cover core techniques and basics as an introduction to scientists new to the field. The entire series of articles and slides will be made freely available for teaching use at the Journals and Organizations homepages.

  13. Cassini Scientist for a Day: Encouraging Science Research and Writing for Students on National and International Scales

    NASA Astrophysics Data System (ADS)

    Zimmerman Brachman, R.; Piazza, E.

    2010-12-01

    The Cassini Outreach Group for the Cassini mission to Saturn at NASA’s Jet Propulsion Laboratory runs an international essay contest called “Cassini Scientist for a Day.” Students write essays about Saturn and its rings and moons. The program has been run nine times, increasing in scope with each contest. Students in grades 5-12 gain skills in critical thinking, decision-making, researching, asking good questions, and communicating their ideas to scientists. Winners and their classes participate in teleconferencing question and answer sessions with Cassini scientists so students can ask questions to professional scientists. Videos of young Cassini scientists are included in the contest reference materials to provide role models for the students. Thousands of students in 27 countries on 6 continents have participated in the essay contest. Volunteers run the international contests outside of the United States, with their own rules, languages, and prizes.

  14. Cassini Scientist for a Day: Encouraging Science Research and Writing for Students on National and International Scales

    NASA Astrophysics Data System (ADS)

    Zimmerman Brachman, R.; Wessen, A.; Piazza, E.

    2011-10-01

    The outreach team for the Cassini mission to Saturn at NASA's Jet Propulsion Laboratory (JPL) runs an international essay contest called "Cassini Scientist for a Day." Students write essays about Saturn and its rings and moons. The program has been run nine times, increasing in scope with each contest. Students in grades 5 to 12 (ages 10 to 18) gain skills in critical thinking, decision-making, researching, asking good questions, and communicating their ideas to scientists. Winners and their classes participate in teleconferencing question-and-answer sessions with Cassini scientists so students can ask questions to professional scientists. Videos of young Cassini scientists are included in the contest reference materials to provide role models for the students. Thousands of students in 50 countries on 6 continents have participated in the essay contest. Volunteers run the international contests outside of the United States, with their own rules, languages, and prizes.

  15. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    NASA Astrophysics Data System (ADS)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  16. Global Cooperation in the Science of Sun-Earth Connection

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Davila, Joseph

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the International Space Weather Initiative (ISWI), the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Living with a Star (ILWS) program. These programs have brought scientists together to tackle the scientific issues related to short and long term variability of the Sun and the consequences in the heliosphere. The ISWI program is a continuation of the successful International Heliophysical Year (IHY) 2007 program in focusing on science, observatory deployment, and outreach. The IHY/ISWI observatory deployment has not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. The ISWI schools and UN workshops are the primary venues for interaction and information exchange among scientists from developing and developed countries that lead to collaborative efforts in space weather. This paper presents a summary of ISWI activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  17. To Boldly Go: Practical Career Advice for Young Scientists

    NASA Astrophysics Data System (ADS)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  18. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine; Anderson, Terry; Johnson, Courtrina; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of Central Maryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  19. How to succeed in science: a concise guide for young biomedical scientists. Part II: making discoveries

    PubMed Central

    Yewdell, Jonathan W.

    2009-01-01

    Making discoveries is the most important part of being a scientist, and also the most fun. Young scientists need to develop the experimental and mental skill sets that enable them to make discoveries, including how to recognize and exploit serendipity when it strikes. Here, I provide practical advice to young scientists on choosing a research topic, designing, performing and interpreting experiments and, last but not least, on maintaining your sanity in the process. PMID:18401347

  20. How to succeed in science: a concise guide for young biomedical scientists. Part II: making discoveries.

    PubMed

    Yewdell, Jonathan W

    2008-06-01

    Making discoveries is the most important part of being a scientist, and also the most fun. Young scientists need to develop the experimental and mental skill sets that enable them to make discoveries, including how to recognize and exploit serendipity when it strikes. Here, I provide practical advice to young scientists on choosing a research topic, designing, performing and interpreting experiments and, last but not least, on maintaining your sanity in the process.

  1. Research &Discover: A Pipeline of the Next Generation of Earth System Scientists

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Einaudi, F.; Moore, B.; Salomonson, V.; Campbell, J.

    2006-12-01

    In 2002, the University of New Hampshire (UNH) and NASA Goddard Space Flight Center (GSFC) started the educational initiative Research &Discover with the goals to: (i) recruit outstanding young scientists into research careers in Earth science and Earth remote sensing (broadly defined), and (ii) support Earth science graduate students enrolled at UNH through a program of collaborative partnerships with GSFC scientists and UNH faculty. To meet these goals, the program consists of a linked set of educational opportunities that begins with a paid summer research internship at UNH for students following their Junior year of college, and is followed by a second paid summer internship at GSFC for students following their Senior year of college. These summer internships are then followed by two-year fellowship opportunities at UNH for graduate studies jointly supervised by UNH faculty and GSFC scientists. After 5 years of implementation, the program has awarded summer research internships to 22 students, and graduate research fellowships to 6 students. These students have produced more than 78 scientific research presentations, 5 undergraduate theses, 2 Masters theses, and 4 peer-reviewed publications. More than 80% of alums are actively pursuing careers in Earth sciences now. In the process, the program has engaged 19 faculty from UNH and 15 scientists from GSFC as advisors/mentors. New collaborations between these scientists have resulted in new joint research proposals, and the development, delivery, and assessment of a new course in Earth System Science at UNH. Research &Discover represents an educational model of collaboration between a national lab and university to create a pipeline of the next generation of Earth system scientists.

  2. Quark Matter 2017: Young Scientist Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evdokimov, Olga

    Quark Matter conference series are amongst the major scientific events for the Relativistic Heavy Ion community. With over 30 year long history, the meetings are held about every 1½ years to showcase the progress made in theoretical and experimental studies of nuclear matter under extreme conditions. The 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2017) was held at the Hyatt Regency Hotel in downtown Chicago from Sunday, February 5th through Saturday, February 11th, 2017. The conference featured about 180 plenary and parallel presentations of the most significant recent results in the field, a poster session for additional presentations,more » and an evening public lecture. Following the tradition of previous Quark Matter meetings, the first day of the conference was dedicated entirely to a special program for young scientists (graduate students and postdoctoral researchers). This grant will provided financial support for 235 young physicists facilitating their attendance of the conference.« less

  3. The Permafrost Young Researchers Network (PYRN): Contribution to IPY's "Thermal State of Permafrost"

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lantuit, H.; Frauenfeld, O. W.

    2007-12-01

    The Permafrost Young Researchers Network (PYRN, www.pyrn.org) is a unique resource for students, young scientists, and engineers studying permafrost. It is an international organization fostering innovative collaboration, seeking to recruit, retain, and promote future generations of permafrost scientists and engineers. Initiated for and during IPY, PYRN directs the multi-disciplinary talents of its membership toward global awareness, knowledge, and response to permafrost-related challenges in a changing climate. Created as an education and outreach component of the International Permafrost Association (IPA), PYRN is a central database of permafrost information and science for more than 350 young researchers from 33 countries. PYRN distributes a newsletter, recognizes outstanding permafrost research by its members through an annual awards program, organizes training workshops (2007 in Abisko, Sweden and St. Petersburg, Russia), and contributes to the growth and future of the permafrost community. While networking forms the basis of PYRN's activities, the organization also seeks to establish itself as a driver of permafrost research for the IPY and beyond. We recently launched a series of initiatives on several continents aimed at providing young scientists and engineers with the means to conduct ground temperature monitoring in under-investigated permafrost regions. Focusing on sites not currently covered by the IPA's "Thermal State of Permafrost" project, the young investigators of PYRN will provide and use lightweight drills and temperature sensors to instrument shallow boreholes in those regions. The data and results will be incorporated in the global database on permafrost temperatures and made freely available to the scientific community, thereby contributing to the advance of permafrost science and the strengthening of the next generation of permafrost researchers.

  4. Beyond the Dualism between Lifelong Employment and Job Insecurity: Some New Career Promises for Young Scientists

    ERIC Educational Resources Information Center

    Dany, F.; Mangematin, Vincent

    2004-01-01

    This article analyses the early careers of young scientists in France. Since training and early career management are designed to cater almost exclusively for an academic career, a substantial proportion of PhDs lack support to design their training in relation to the job they will look for after graduation. Even if most young scientists manage to…

  5. Involving scientists in public and pre-college education at Princeton University

    NASA Astrophysics Data System (ADS)

    Steinberg, D. J.

    2011-12-01

    The Princeton Center for Complex Materials (PCCM) is a National Science Foundation (NSF) funded Materials Research Science and Engineering Center (MRSEC). As a MRSEC, it is part of the PCCM's mission to inspire and educate school children, teachers and the public about STEM and materials science. Research shows that it is critical to excite students at a young age and maintain that excitement, and without that these students are two to three times less likely to have any interest in science and engineering and pursue science careers as adults. We conduct over a dozen different education programs at Princeton University, in which scientists and engineers are directly involved with students, teachers and the public. As an ongoing MRSEC education and outreach program, we have developed many successful educational partnerships to increase our impact. The scientists and engineers who participate in our programs are leading experts in their research field and excellent communicators to their peers. They are not experts in precollege pedagogy or in communication to the public. Scientists often require some preparation in order to have the greatest chance of success. The amount and type of professional development required for these scientists to succeed in education programs depends on many factors. These include the age of the audience, the type of interaction, and the time involved. Also different researchers require different amount of help, advice, and training. Multiple education programs that involve Princeton University researchers will be discussed here. We will focus on what has worked best when preparing scientists and engineers for involvement in education programs. The Princeton University Materials Academy (PUMA) is a three week total immersion in science for minority high school students involving many faculty and their research groups. Our Making Stuff day reaches 100's of middle school students in which faculty interact directly with students and teachers at activity tables give auditorium presentations. Teacher development programs and holiday lectures will be highlighted as well.

  6. Geoscience communication in Namibia: YES Network Namibia spreading the message to young scientists

    NASA Astrophysics Data System (ADS)

    Mhopjeni, Kombada

    2015-04-01

    The Young Earth Scientists (YES) Network is an international association for early-career geoscientists under the age of 35 years that was formed as a result of the International Year of Planet Earth (IYPE) in 2007. YES Network aims to establish an interdisciplinary global network of early-career geoscientists to solve societal issues/challenges using geosciences, promote scientific research and interdisciplinary networking, and support professional development of early-career geoscientists. The Network has several National Chapters including one in Namibia. YES Network Namibia (YNN) was formed in 2009, at the closing ceremony of IYPE in Portugal and YNN was consolidated in 2013 with the current set-up. YNN supports the activities and goals of the main YES Network at national level providing a platform for young Namibian scientists with a passion to network, information on geoscience opportunities and promoting earth sciences. Currently most of the members are geoscientists from the Geological Survey of Namibia (GSN) and University of Namibia. In 2015, YNN plans to carry out two workshops on career guidance, establish a mentorship program involving alumni and experienced industry experts, and increase involvement in outreach activities, mainly targeting high school pupils. Network members will participate in a range of educational activities such as school career and science fairs communicating geoscience to the general public, learners and students. The community outreach programmes are carried out to increase awareness of the role geosciences play in society. In addition, YNN will continue to promote interactive collaboration between the University of Namibia, Geological Survey of Namibia (GSN) and Geological Society of Namibia. Despite the numerous potential opportunities YNN offers young scientists in Namibia and its presence on all major social media platforms, the Network faces several challenges. One notable challenge the Network faces is indifference among early-career geoscientists in the industry and university students to geoscience activities outside the confines of academia and the industry such as networking and outreach activities. This is compounded by the Network's perceived lack of relevance and appeal among young Namibian scientists. To become more 'popular' YNN needs to solve the issue of indifference among early-career geoscientists in the industry and University students by listening to their needs and actively engaging them in the process. Good communication skills are essential and YNN has to reformulate the way it reaches out to its audiences by developing more active ways to communicate geosciences. With this in mind, YNN plans to implement best practice methods to engage more young scientists in YNN and provide support and guidance on geoscience opportunities.

  7. Working with and promoting early career scientists within a larger community

    NASA Astrophysics Data System (ADS)

    Pratt, K.

    2017-12-01

    For many scientific communities, engaging early career researchers is critical for success. These young scientists (graduate students, postdocs, and newly appointed professors) are actively forming collaborations and instigating new research programs. They also stand to benefit hugely from being part of a scientific community, gaining access to career development activities, becoming part of strong collaborator networks, and achieving recognition in their field of study — all of which will help their professional development. There are many ways community leaders can work proactively to support and engage early career scientists, and it it is often a community manager's job to work with leadership to implement such activities. In this presentation, I will outline ways of engaging early career scientists at events and tailored workshops, of promoting development of their leadership skills, and of creating opportunities for recognizing early career scientists within larger scientific communities. In this talk, I will draw from my experience working with the Deep Carbon Observatory Early Career Scientist Network, supported by the Alfred P. Sloan Foundation.

  8. Global Cooperation in the Science of Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Space Weather Initiative (ISWI). The ISWI program is a continuation of the successful International Heliophysical Year (IHY) program. These programs have brought scientists together to tackle the scientific issues behind space weather. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and ISWI activities that promote space weather science via complementary approaches in international scientific collaborations. capacity building. and public outreach.

  9. NASA Symposium 76. [opportunities for minorities and women in NASA programs

    NASA Technical Reports Server (NTRS)

    1976-01-01

    New Mexico State University and the National Aeronautics and Space Administration hosted a symposium to promote NASA's efforts to increase the available pool of minority and women scientists and engineers to meet affirmative hiring goals. The conferences also provided an opportunity for key NASA officials to meet with appropriate officials of participating institutions to stimulate greater academic interest (among professors and students) in NASA's research and development programs. Minority aerospace scientists and engineers had opportunity to interact with the minority community, particulary with young people at the junior high, high school, and college levels. One aim was to raise minority community's level of understanding regarding NASA's Regional Distribution System for storage and retrieval of scientific and technical information.

  10. Retaining clinician-scientists: nature versus nurture.

    PubMed

    Culican, Susan M; Rupp, Jason D; Margolis, Todd P

    2014-05-27

    In their IOVS article "Rejuvenating Clinician-Scientist Training" (published March 28, 2014), Balamurali Ambati and Judd Cahoon rightly point out the dearth of new clinician-scientists in ophthalmology. Within the context of their suggestions for increasing the number of successful clinician-scientists, they claim that the traditional MD-PhD training programs and K awards have failed to produce individuals who will carry on the important work of clinically relevant research that will improve patients' lives and sight. In this response we present data, including information on the career paths of graduates of the Washington University ophthalmology residency, that call into question the presumed failure of MD-PhD and K award programs and show that, in fact, graduates of these programs are more likely to succeed as clinician-scientists than are their peers who have not trained in such scientifically rigorous environments. We propose that, rather than a failure of early training programs, it may be obstacles that arise later in training and among junior faculty that prevent promising careers from reaching maturity. Funding, one rather large obstacle, takes the form of imbalanced start-up monies, less National Institutes of Health (NIH) funding awarded to young investigators, and study section composition that may work against those with clinically driven questions. We also explore the challenges faced in the culture surrounding residency and fellowship training. We agree with Ambati and Cahoon that there needs to be more innovation in the way training programs are structured, but we believe that the evidence supports supplementing the current model rather than scrapping it and starting over with unproven initiatives. The data on training programs supports the contention that those who have already made substantial investment and commitment to the clinician-scientist pathway through participation in MSTP or K training programs are the most likely to succeed on this career trajectory. To muffle the siren song of private practice and retain those best prepared for the clinician-scientist pathway requires additional investment as their careers mature through protected research time, mentorship, and advocacy. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  11. Next Generation Scientists - Creating opportunities for high school students through astronomical research

    NASA Astrophysics Data System (ADS)

    Kelly, Madeline; Cebulla, Hannah; Powers, Lynn

    2015-01-01

    Through various opportunities and experiences with extracurricular scientific research, primarily astronomical research with programs like NASA/IPAC Teacher Archive Research Project (NITARP), and the Mars Exploration Student Data Teams (MESDT), we have noticed a change in our learning style, career path, and general outlook on the scientific community that we strongly believe could also be added to the lives of many other high school students given similar opportunities. The purpose of our poster is to emphasize the importance of granting high school students opportunities to explore different styles and methods of learning. We believe that although crucial, a basic high school education is not enough to expose young adults to the scientific community and create enough interest for a career path. As a result, we wish to show that more of these programs and opportunities should be offered to a greater number of students of all ages, allowing them to explore their passions, develop their understanding of different fields, and determine the paths best suited to their interests. Within our poster, we will emphasize how these programs have specifically impacted our lives, what we hope to see in the future, and how we hope to attain the growth of such opportunities. We include such proposals as; increasing outreach programs, expanding the exposure of young students to the sciences, both in the classroom and out, allowing high school students to participate in active scientific research, and involving students in hands-on activities/experiments within school clubs, the classroom, at home, or at local events. Spreading these opportunities to directly interact with the sciences in similar manners as that of professional scientists will allow students to discover their interests, realize what being a scientist truly entails, and allow them to take the first steps into following their career paths.

  12. Young Investigator Research Program (YIP)

    NASA Astrophysics Data System (ADS)

    Robinson, Ellen

    The Air Force YIP supports scientists and engineers who have received Ph.D. or equivalent degrees in the last five years and show exceptional ability and promise for conducting basic research. The objective of this program is to foster creative basic research in science and engineering; enhance early career development of outstanding young investigators; and increase opportunities for the young investigator to recognize the Air Force mission and related challenges in science and engineering. Individual awards will be made to U.S. institutions of higher education, industrial laboratories or non-profit research organizations where the principal investigator is a U.S. citizen, national or permanent resident; employed on a full-time basis and hold a regular position. Researchers working at the Federally Funded Research and Development Centers and DoD Laboratories will not be considered for the YIP competition. Each award will be funded at the 120K level for three years. Exceptional proposals will be considered individually for higher funding levels and longer duration. http://www.wpafb.af.mil/Welcome/Fact-Sheets/Display/Article/842100#anchor2 I will brief Air Force Office Of Scientific Research Young Investigator Research Program.

  13. Using "The Big Bang Theory's" World in Young High-Potentials Education

    NASA Astrophysics Data System (ADS)

    Leitner, J. J.; Taubner, R.-S.; Firneis, M. G.; Hitzenberger, R.

    2014-04-01

    One of the corner stones of the Research Platform: ExoLife, University of Vienna, Austria, is public outreach and education with respect to astrobology, exoplanets, and planetary sciences. Since 2009, several initiatives have been started by the Research Platform to concentrate the interest of students inside and outside the University onto natural sciences. Additionally, there are two special programs - one in adult education and one in training/education of young high-potentials. In these programs, astrobiology (and within this context also planetary sciences) as a very interdisciplinary scientific discipline, which fascinates youngsters and junior scientists, is utilized to direct their thirst for knowledge and their curiosity to natural science topics (see [1, 2]).

  14. Science/Engineering: Open Doors

    NASA Technical Reports Server (NTRS)

    White, Susan; Arnold, James O. (Technical Monitor)

    1999-01-01

    Trends in American society are changing the role of women in science and engineering, but all the elements in our society change at different rates. Women, like men, must choose during their teenage years to continue their training in math or science, or they close the door that can lead them to futures in the interesting and satisfying fields of science and engineering. The key is to keep girls involved in the hard sciences through the adolescent crisis. Many mentoring and outreach programs exist to help young women cross this threshold. These programs include hands-on science experiences, mentoring or putting young women in contact with women scientists and engineers, and internships, Viewpoints and histories of contemporary women engineers are discussed.

  15. Howard Young Brings Light to the Serious Side of Science | Poster

    Cancer.gov

    You know what they say about all work and no play. And without a doubt, science requires constant hard work. But the NCI at Frederick has an antidote to the serious side of science: Howard Young. Young, Ph.D., Senior Investigator, Cancer and Inflammation Program, is a serious scientist in his own right. He was part of the team that characterized and cloned the RAS oncogene, he developed a mouse model of lupus, and he was the first to show a clear sex bias, similar to that seen in patients, in what has been called the best mouse model for primary biliary cholangitis.

  16. How Middle Schoolers Draw Engineers and Scientists

    ERIC Educational Resources Information Center

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  17. GGD NSU: Tips to Teach Students as Young Scientists

    NASA Astrophysics Data System (ADS)

    Rakhmenkulova, I. F.; Zhitova, L.

    2013-12-01

    Novosibirsk State University (NSU) is different from other universities in Russia. The campus is located in Academgorodok, a unique place where more than 30 scientific institutes and Academpark (Technopark) are located. The students are involved in scientific research from the third year of their study (some try to work part-time in scientific institutions even from their first year). All the university professors are highly-qualified scientists working full-time in scientific institutions. Geology and Geophysics Department (GGD) of NSU is currently reforming the education system and policy. The reform involves the following steps: 1. New scientific programs and courses on modern science have been introduced; the priority should be given to courses in English, as the international language. 2. A special annual conference for students and young scientists was organized in August 2013 in Shira (a place where GGD students have their field trips). 3. International scientists are invited to give seminars and teach on a regular basis. 4. International students are welcomed to study at GGD NSU. 5. GGD stuff is creating a new scientific laboratory within the university. All the above-mentioned steps should ';launch' GGD NSU into a new ';orbit': improve the study process and help the university to be integrated into the world's community.

  18. Global Science Share: Connecting young scientists from developing countries with science writing mentors to strengthen and widen the international science community

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.

    2012-12-01

    Collaborative science in which scientists are able to form research questions based on the current body of scientific knowledge and get feedback from colleagues on their ideas and work is essential for pushing science forward. However, not all scientists are able to fully participate in the international science community. Scientists from developing countries can face barriers to communicating with the international community due to, among other issues: fewer scientists in their home country, difficulty in getting language-specific science writing training, fewer established pre-existing international collaborations and networks, and sometimes geographic isolation. These barriers not only result in keeping individual scientists from contributing their ideas, but they also slow down the progress of the scientific enterprise for everyone. Global Science Share (http://globalscienceshare.org/) is a new project, entering its pilot phase in Fall 2012, which will work to reduce this disparity by connecting young scientists and engineers from developing countries seeking to improve their technical writing with other scientists and engineers around the world via online collaborations. Scientist-volunteers act as mentors and are paired up with mentees according to their academic field and writing needs. The mentors give feedback and constructive technical and editorial criticisms on mentees' submitted pieces of writing through a four-step email discussion. Mentees gain technical writing skills, as well as make international connections with other scientists and engineers in fields related to their own. Mentors also benefit by gaining new international scientific colleagues and honing their own writing skills through their critiques. The Global Science Share project will begin its pilot phase by first inviting Mongolian science students to apply as mentees this fall. This abstract will introduce the Global Science Share program, present a progress report from its first semester, and inform members of the geoscience community about this unique outreach opportunity to help strengthen and widen the international science community that can be done in the comfort of one's office or home.

  19. Leo Szilard Lecturship Award: How can physicists help the public make better decisions about science and technology?

    NASA Astrophysics Data System (ADS)

    Primack, Joel

    2016-03-01

    For more than 40 years the APS has worked to improve governmental decision-making, mainly through the Congressional Science and Technology Fellowship program and through occasional studies of important science and technology issues. How productive have these been? How can the APS and other professional societies more effectively combat anti-science propaganda and help the public develop better-informed views about science and technology? How can individual scientists communicate scientific concepts in a more understandable and engaging way? How can we encourage young scientists and students to participate in creating a scientifically responsible future?

  20. Strengthening Self-efficacy through Supportive Mentoring

    NASA Astrophysics Data System (ADS)

    Haacker, R.

    2015-12-01

    The geosciences have had a chronic problem of underrepresentation of students from diverse ethnic, cultural, gender and socio-economic backgrounds. As a community we need to strengthen our support of young scientists from all backgrounds to sustain their enthusiasm and ensure their success in our field. Investing in mentoring programs that empower students and young professionals is one of the best ways to do so. The Significant Opportunities in Atmospheric Research and Science (SOARS) program, now entering its 20th year, has successfully developed and tested several mentoring models. The personalized, caring and consistent support is one of the key elements of the program's success; since its inception, 90% of SOARS participants have entered graduate school, research or science related careers after graduation. Many of our alumni who are now faculty apply the same mentoring strategies to build self-esteem and perseverance in their students. This presentation will cover the design and implementation of our four mentoring strategies, and provide insights on potential challenges, training aspects and impact assessment. The mentoring strategies include: 1) Multi-faceted, long-term mentoring of undergraduate and graduate students from diverse backgrounds. 2) Empowering advanced students to serve as peer mentors and role models. 3) Training faculty and professional scientists from all backgrounds to become mentors who are aware of diversity issues. 4) Providing mentor training for partner programs and laboratories. All four strategies have contributed to the creation of a mentoring culture in the geosciences.

  1. The Salience of the Subtle Aspects of Parental Involvement and Encouraging that Involvement: Implications for School-Based Programs

    ERIC Educational Resources Information Center

    Jeynes, William H.

    2010-01-01

    Background/Context: For many years, educators, parents, and social scientists have conceptualized engaged parents as those who help their children with their homework, frequently attend school functions, and maintain household rules that dictate when their young engage in schoolwork and leisure. Recent meta-analyses on parental involvement confirm…

  2. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Lin, C.; Clarac, T.

    2004-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 12 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  3. National Heart, Lung, and Blood Institute Workshop Summary: Enhancing Opportunities for Training and Retention of a Diverse Biomedical Workforce.

    PubMed

    Duncan, Gregg A; Lockett, Angelia; Villegas, Leah R; Almodovar, Sharilyn; Gomez, Jose L; Flores, Sonia C; Wilkes, David S; Tigno, Xenia T

    2016-04-01

    Committed to its mission of conducting and supporting research that addresses the health needs of all sectors of the nation's population, the Division of Lung Diseases, National Heart, Lung, and Blood Institute of the National Institutes of Health (NHLBI/NIH) seeks to identify issues that impact the training and retention of underrepresented individuals in the biomedical research workforce. Early-stage investigators who received grant support through the NIH Research Supplements to Promote Diversity in Health Related Research Program were invited to a workshop held in Bethesda, Maryland in June, 2015, in order to (1) assess the effectiveness of the current NHLBI diversity program, (2) improve its strategies towards achieving its goal, and (3) provide guidance to assist the transition of diversity supplement recipients to independent NIH grant support. Workshop participants participated in five independent focus groups to discuss specific topics affecting underrepresented individuals in the biomedical sciences: (1) Socioeconomic barriers to success for diverse research scientists; (2) role of the academic research community in promoting diversity; (3) life beyond a research project grant: non-primary investigator career paths in research; (4) facilitating career development of diverse independent research scientists through NHLBI diversity programs; and (5) effectiveness of current NHLBI programs for promoting diversity of the biomedical workforce. Several key issues experienced by young, underrepresented biomedical scientists were identified, and solutions were proposed to improve on training and career development for diverse students, from the high school to postdoctoral trainee level, and address limitations of currently available diversity programs. Although some of the challenges mentioned, such as cost of living, limited parental leave, and insecure extramural funding, are also likely faced by nonminority scientists, these issues are magnified among diversity scientists and are complicated by unique circumstances in this group, such as limited exposure to science at a young age, absence of role models and mentors from underrepresented backgrounds, and social norms that relegate their career endeavors, particularly among women, to being subordinate to their expected cultural role. The factors influencing the participation of underrepresented minorities in the biomedical workforce are complex and span several continuous or overlapping stages in the professional development of scientists from these groups. Therefore, a multipronged approach is needed to enable the professional development and retention of underrepresented minorities in biomedical research. This approach should address both individual and social factors and should involve funding agencies, academic institutions, mentoring teams, professional societies, and peer collaboration. Implementation of some of the recommendations, such as access to child care, institutional support and health benefits for trainees, teaching and entrepreneurial opportunities, grant-writing webinars, and pre-NIH career development (Pre-K) pilot programs would not only benefit biomedical scientists from underrepresented groups but also improve the situation of nondiverse junior scientists. However, other issues, such as opportunities for early exposure to science of disadvantaged/minority groups, and identifying mentors/life coaches/peer mentors who come from similar cultural backgrounds and vantage points, are unique to this group.

  4. National Heart, Lung, and Blood Institute Workshop Summary: Enhancing Opportunities for Training and Retention of a Diverse Biomedical Workforce

    PubMed Central

    Duncan, Gregg A.; Lockett, Angelia; Villegas, Leah R.; Almodovar, Sharilyn; Gomez, Jose L.; Flores, Sonia C.; Tigno, Xenia T.

    2016-01-01

    Rationale: Committed to its mission of conducting and supporting research that addresses the health needs of all sectors of the nation's population, the Division of Lung Diseases, National Heart, Lung, and Blood Institute of the National Institutes of Health (NHLBI/NIH) seeks to identify issues that impact the training and retention of underrepresented individuals in the biomedical research workforce. Objectives: Early-stage investigators who received grant support through the NIH Research Supplements to Promote Diversity in Health Related Research Program were invited to a workshop held in Bethesda, Maryland in June, 2015, in order to (1) assess the effectiveness of the current NHLBI diversity program, (2) improve its strategies towards achieving its goal, and (3) provide guidance to assist the transition of diversity supplement recipients to independent NIH grant support. Methods: Workshop participants participated in five independent focus groups to discuss specific topics affecting underrepresented individuals in the biomedical sciences: (1) Socioeconomic barriers to success for diverse research scientists; (2) role of the academic research community in promoting diversity; (3) life beyond a research project grant: non–primary investigator career paths in research; (4) facilitating career development of diverse independent research scientists through NHLBI diversity programs; and (5) effectiveness of current NHLBI programs for promoting diversity of the biomedical workforce. Measurements and Main Results: Several key issues experienced by young, underrepresented biomedical scientists were identified, and solutions were proposed to improve on training and career development for diverse students, from the high school to postdoctoral trainee level, and address limitations of currently available diversity programs. Although some of the challenges mentioned, such as cost of living, limited parental leave, and insecure extramural funding, are also likely faced by nonminority scientists, these issues are magnified among diversity scientists and are complicated by unique circumstances in this group, such as limited exposure to science at a young age, absence of role models and mentors from underrepresented backgrounds, and social norms that relegate their career endeavors, particularly among women, to being subordinate to their expected cultural role. Conclusions: The factors influencing the participation of underrepresented minorities in the biomedical workforce are complex and span several continuous or overlapping stages in the professional development of scientists from these groups. Therefore, a multipronged approach is needed to enable the professional development and retention of underrepresented minorities in biomedical research. This approach should address both individual and social factors and should involve funding agencies, academic institutions, mentoring teams, professional societies, and peer collaboration. Implementation of some of the recommendations, such as access to child care, institutional support and health benefits for trainees, teaching and entrepreneurial opportunities, grant-writing webinars, and pre-NIH career development (Pre-K) pilot programs would not only benefit biomedical scientists from underrepresented groups but also improve the situation of nondiverse junior scientists. However, other issues, such as opportunities for early exposure to science of disadvantaged/minority groups, and identifying mentors/life coaches/peer mentors who come from similar cultural backgrounds and vantage points, are unique to this group. PMID:27058184

  5. Obstacles facing Africa's young climate scientists

    NASA Astrophysics Data System (ADS)

    Dike, Victor Nnamdi; Addi, Martin; Andang'o, Hezron Awiti; Attig, Bahar Faten; Barimalala, Rondrotiana; Diasso, Ulrich Jacques; Du Plessis, Marcel; Lamine, Salim; Mongwe, Precious N.; Zaroug, Modathir; Ochanda, Valentine Khasenye

    2018-06-01

    Current and future climate change poses a substantial threat to the African continent. Young scientists are needed to advance Earth systems science on the continent, but they face significant challenges.

  6. Young Children's Conceptions of Science and Scientists

    ERIC Educational Resources Information Center

    Lee, Tiffany R.

    2010-01-01

    This study explores young children's images of science and scientists, their sources for scientific knowledge, and the nature of their science-related experiences. A cross-sectional design was used to study how students' ideas differ over the first three years of elementary school. A modified version of the Draw-a-Scientist Test (DAST) and a…

  7. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    ERIC Educational Resources Information Center

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  8. Permafrost Young Researchers Get Their Hands Dirty: The PYRN-Thermal State of Permafrost IPY Project

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lantuit, H.

    2009-04-01

    The Permafrost Young Researchers Network (PYRN) (www.pyrn.org) is a unique resource for students and young scientists and engineers studying permafrost. It is an international organization fostering innovative collaboration, seeking to recruit, retain, and promote future generations of permafrost scientists and engineers. Initiated for and during IPY, PYRN directs the multi-disciplinary talents of its membership toward global awareness, knowledge, and response to permafrost-related challenges in a changing climate. Created as an education and outreach component of the International Permafrost Association (IPA), PYRN is a central database of permafrost information and science for more than 500 young researchers from over 40 countries. PYRN distributes a newsletter, recognizes outstanding permafrost research by its members through an annual awards program, organizes training workshops (2007 in Abisko, Sweden and St. Petersburg, Russia, 2008 in Fairbanks, Alaska and St. Petersburg, Russia), and contributes to the growth and future of the permafrost community. While networking forms the basis of PYRN's activities, the organization also seeks to establish itself as a driver of permafrost research for the IPY and beyond. We recently launched a series of initiatives on several continents aimed at providing young scientists and engineers with the means to conduct ground temperature monitoring in under investigated permafrost regions. Focusing on sites not currently covered by the IPA's "Thermal State of Permafrost" project, the young investigators of PYRN successfully launched and funded the PYRN-TSP project. They use lightweight drills and temperature sensors to instrument shallow boreholes in those regions. The first phase of the project was started in the spring of 2008 at Scandinavian sites. The data and results will be incorporated in the global database on permafrost temperatures and made freely available to the scientific community, thereby contributing to the advance of permafrost science and the strengthening of the next generation of permafrost researchers.

  9. The Use of Photo Elicitation Interviews in Summer Science Programs to Determine Children's Perceptions of Being a Scientist

    ERIC Educational Resources Information Center

    Scott, Catherine Marie

    2014-01-01

    Reform-based science education emphasizes the need for engagement in authentic science, that is, work that resembles real-life scientific practices. However, few studies address the notion of authenticity from the participants' perspectives. As such, this study addresses the following: What events do young participants view as scientific? To what…

  10. 20th International Conference for Students and Young Scientists: Modern Techniques and Technologies (MTT'2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    The active involvement of young researchers in scientific processes and the acquisition of scientific experience by gifted youth currently have a great value for the development of science. One of the research activities of National Research Tomsk Polytechnic University, aimed at the preparing and formation of the next generation of scientists, is the International Conference of Students and Young Scientists ''Modern Techniques and Technologies'', which was held in 2014 for the twentieth time. Great experience in the organization of scientific events has been acquired through years of carrying the conference. There are all the necessary resources for this: a team of organizers - employees of Tomsk Polytechnic University, premises provided with modern office equipment and equipment for demonstration, and leading scientists - professors of TPU, as well as the status of the university as a leading research university in Russia. This way the conference is able to attract world leading scientists for the collaboration. For the previous years the conference proved itself as a major scientific event at international level, which attracts more than 600 students and young scientists from Russia, CIS and other countries. The conference provides oral plenary and section reports. The conference is organized around lectures, where leading Russian and foreign scientists deliver plenary presentations to young audiences. An important indicator of this scientific event is the magnitude of the coverage of scientific fields: energy, heat and power, instrument making, engineering, systems and devices for medical purposes, electromechanics, material science, computer science and control in technical systems, nanotechnologies and nanomaterials, physical methods in science and technology, control and quality management, design and technology of artistic materials processing. The main issues considered by young researchers at the conference were related to the analysis of contemporary problems using new techniques and application of new technologies.

  11. Young Engineers and Scientists: a Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Wuest, Martin; Marilyn, Koch B.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world research experiences in physical sciences and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college several have worked for SwRI and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  12. Personal and Social Interactions between Young Girls and Scientists: Examining Critical Aspects for Identity Construction

    ERIC Educational Resources Information Center

    Farland-Smith, Donna

    2012-01-01

    At a 5-day summer camp designed for middle-school girls (N = 50), fifth through ninth-grade students were able to identify with individual scientists and learn more about the science field. Data from the girls' journals, pictorial representations, and field notes demonstrated that these young women related to scientists who actively engaged them…

  13. PREFACE: 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Dear Colleagues, 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures was held on March 25 - 27, 2014 at St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were: Mikhail Glazov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir Dubrovskii (Saint Petersburg Academic University RAS, Russia) Alexey Kavokin (University of Southampton, United Kingdom and St. Petersburg State University, Russia) Vladimir Korenev (Ioffe Physico-Technical Institute RAS, Russia) Sergey Kukushkin (Institute of Problems of Mechanical Engineering RAS, Russia) Nikita Pikhtin (Ioffe Physico-Technical Institute RAS, Russia and "Elfolum" Ltd., Russia) Dmitry Firsov (Saint Petersburg State Polytechnical University, Russia) During the poster session all undergraduate and graduate students attending the conference presented their works. Sufficiently large number of participants with more than 160 student attendees from all over the world allowed the Conference to provide a fertile ground for the fruitful discussions between the young scientists as well as to become a perfect platform for the valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year's School and Conference is supported by SPIE (The International Society for Optics and Photonics), OSA (The Optical Society), St. Petersburg State Polytechnical University and by Skolkovo Foundation. It is a continuation of the annual schools and seminars for youth on topical problems of physics and technology that is organized by the Academic University since 2009. We invite all the students and young scientists to attend "Saint Petersburg OPEN" in 2015! Please, find details at http://spbopen2015.spbau.com/ With best wishes, Editorial Board, Program and Organizing Committees

  14. The Cooperative Forest Ecosystem Research Program

    USGS Publications Warehouse

    ,

    2002-01-01

    Changes in priorities for forest management on federal and state lands in the Pacific Northwest have raised many questions about the best ways to manage young-forest stands, riparian areas, and forest landscapes. The Cooperative Forest Ecosystem Research (CFER) Program draws together scientists and managers from the U.S. Geological Survey, Bureau of Land Management, Oregon Department of Forestry, and Oregon State University to find science-based answers to these questions. Managers, researchers, and decisionmakers, working within the CFER program, are helping develop and disseminate the knowledge needed to carry out ecosystem-based management successfully in the Pacific Northwest.

  15. Training Young Astronomers in EPO: An Update on the AAS Astronomy Ambassadors Program

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.; Fienberg, R. T.; Gurton, S.; Schmitt, A. H.; Schatz, D.; Prather, E. E.

    2014-07-01

    The American Astronomical Society, with organizations active in EPO, has launched professional-development workshops and a community of practice to help improve early-career astronomers' ability to communicate effectively. Called “Astronomy Ambassadors,” the program provides mentoring and training for participants, from advanced undergraduates to beginning faculty. By learning to implement effective EPO strategies, Ambassadors become better teachers, meeting presenters, and representatives of our science to the public and government. Because young astronomers are a more diverse group than those who now do most outreach, they help the astronomy community present a more multicultural and gender-balanced face to the public, enabling underserved groups to see themselves as scientists. Ambassadors are given a library of outreach activities and materials, including many developed by cooperating organizations such as the ASP, plus some that have been created by Andrew Fraknoi specifically for this program.

  16. International Digestive Endoscopy Network 2014: Turnpike to the Future

    PubMed Central

    Kim, Eun Young; Kwon, Kwang An; Choi, Il Ju; Ryu, Ji Kon

    2014-01-01

    Social networks are useful in the study of relationships between individuals or entire populations, and the ties through which any given social unit connects. Those represent the convergence of the various social contacts of that unit. Consequently, the term "social networking service" (SNS) became extremely familiar. Similar to familiar SNSs, International Digestive Endoscopy Network (IDEN) 2014 was based on an international network composed of an impressive 2-day scientific program dealing with a variety of topics for gastrointestinal (GI) diseases, which connects physicians and researchers from all over the world. The scientific programs included live endoscopic demonstrations and provided cutting-edge information and practice tips as well as the latest advances concerning upper GI, lower GI, and pancreatobiliary endoscopy. IDEN 2014 featured American Society for Gastrointestinal Endoscopy-Korean Society of Gastrointestinal Endoscopy (ASGE-KSGE)-joint sessions prepared through cooperation between ASGE and KSGE. Furthermore, IDEN 2014 provided a special program for young scientists called the 'Asian Young Endoscopist Award Forum' to foster networks, with many young endoscopists from Asian countries taking an active interest and participation. PMID:25324994

  17. International digestive endoscopy network 2014: turnpike to the future.

    PubMed

    Kim, Eun Young; Kwon, Kwang An; Choi, Il Ju; Ryu, Ji Kon; Hahm, Ki Baik

    2014-09-01

    Social networks are useful in the study of relationships between individuals or entire populations, and the ties through which any given social unit connects. Those represent the convergence of the various social contacts of that unit. Consequently, the term "social networking service" (SNS) became extremely familiar. Similar to familiar SNSs, International Digestive Endoscopy Network (IDEN) 2014 was based on an international network composed of an impressive 2-day scientific program dealing with a variety of topics for gastrointestinal (GI) diseases, which connects physicians and researchers from all over the world. The scientific programs included live endoscopic demonstrations and provided cutting-edge information and practice tips as well as the latest advances concerning upper GI, lower GI, and pancreatobiliary endoscopy. IDEN 2014 featured American Society for Gastrointestinal Endoscopy-Korean Society of Gastrointestinal Endoscopy (ASGE-KSGE)-joint sessions prepared through cooperation between ASGE and KSGE. Furthermore, IDEN 2014 provided a special program for young scientists called the 'Asian Young Endoscopist Award Forum' to foster networks, with many young endoscopists from Asian countries taking an active interest and participation.

  18. The Young Engineers and Scientists (YES) Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.; Lin, C.

    2004-11-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  19. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Jahn, J.; Hummel, P.

    2003-12-01

    The Young Engineers and Scientists (YES) Program is a ommunity partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We gratefully acknowledge partial funding for the YES Program from a NASA EPO grant.

  20. Integrated Cancer Research in Five Thematic Areas in Interest

    DTIC Science & Technology

    2005-07-01

    Professor of Urology (on-going RSU), Howard Crawford, PhD, Assistant Professor of Pharmacological Sciences (on-going RSU), Marjana Maletic- Savatic ...young scientists. Drs. Adler, Crawford, Maletic- Savatic received base support from this mechanism as they further develop their research programs...Mirjana Maletic- Savatic , MD-PhD, Assistant Professor Neurology: Human Neural Stem Cells - In Vivo Models for Cerebral Carcinoma The study of human

  1. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    NASA Astrophysics Data System (ADS)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking, conference presentations, peer instruction, and mentoring among young hydrologic researchers. Furthermore, we have provided guidance in research ethics, in presentations to technical audiences and the general public, and in writing research proposals and publications via an online professional practice course. Outreach and sustainability (A3) has been accomplished through outreach programs that communicate research findings on water use, conservation, and pollution prevention to schools and communities. The ARCHES program has now trained over 30 students and young professionals from four countries (Morocco, Egypt, Turkey, and Indonesia), with each participant providing 40 hours of outreach. The program provides access to teaching and outreach materials, instructional videos, facilitates scientific exchange (e.g., LinkedIn database), and fosters collaboration (e.g., Facebook working groups).

  2. Spiderman and science: How students' perceptions of scientists are shaped by popular media.

    PubMed

    Tan, Aik-Ling; Jocz, Jennifer Ann; Zhai, Junqing

    2017-07-01

    This study addresses the influence of popular media on how young children perceive science and the work of scientists. Using an adapted version of the Draw-A-Scientist Test, 15 classes of fourth graders (9-10 years old) at three different schools in Singapore were sampled ( n =  266). The students' drawings as well as their identification of three sources from which they obtained inspiration for their drawings were analyzed. Our results showed a strong relationship between students' drawings of scientists and their reported sources of inspiration. The results suggest that popular media play a large role in shaping how young children view scientists.

  3. SCOSTEP: Understanding the Climate and Weather of the Sun-Earth System

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    The international solar-terrestrial physics community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The CAWSES program is the current major scientific program of SCOSTEP that will continue until the end of the year 2013. The CAWSES program has brought scientists from all over the world together to tackle the scientific issues behind the Sun-Earth connected system and explore ways of helping the human society. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and other SCOSTEP activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  4. 1998 Gordon Research Conference on Gravitational Effects on Living Systems

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1998-01-01

    The Gordon Research Conference (GRC) on GRAVITATIONAL EFFECTS ON LIVING SYSTEMS was held at COLBY SAYWER 2 from 7/12/98 thru 7/17/98. The Conference was well-attended with 94 participants. The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. A copy of the formal schedule and speaker program and the poster program is included. In addition to these formal interactions, "free time" was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  5. Training scientists as future industry leaders: teaching translational science from an industry executive's perspective.

    PubMed

    Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, "Biotechnology Industry: Structure and Strategy" was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students' knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists' training and inspire them to become innovative leaders in the discovery and development of therapeutics.

  6. Building Effective Pipelines to Increase Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Snow, E.; Robinson, C. R.; Neal-Mujahid, R.

    2017-12-01

    The U.S. Geological Survey (USGS) recognizes and understands the importance of a diverse workforce in advancing our science. Valuing Differences is one of the guiding principles of the USGS, and is the critical basis of the collaboration among the Youth and Education in Science (YES) program in the USGS Office of Science, Quality, and Integrity (OSQI), the Office of Diversity and Equal Opportunity (ODEO), and USGS science centers to build pipeline programs targeting diverse young scientists. Pipeline programs are robust, sustained relationships between two entities that provide a pathway from one to the other, in this case, from minority serving institutions to the USGS. The USGS has benefited from pipeline programs for many years. Our longest running program, with University of Puerto Rico Mayaguez (UPR), is a targeted outreach and internship program that has been managed by USGS scientists in Florida since the mid-1980's Originally begun as the Minority Participation in the Earth Sciences (MPES ) Program, it has evolved over the years, and in its several forms has brought dozens of interns to the USGS. Based in part on that success, in 2006 USGS scientists in Woods Hole MA worked with their Florida counterparts to build a pipeline program with City College of New York (CCNY). In this program, USGS scientists visit CCNY monthly, giving a symposium and meeting with students and faculty. The talks are so successful that the college created a course around them. In 2017, the CCNY and UPR programs brought 12 students to the USGS for summer internships. The CCNY model has been so successful that USGS is exploring creating similar pipeline programs. The YES office is coordinating with ODEO and USGS science centers to identify partner universities and build relationships that will lead to robust partnership where USGS scientists will visit regularly to engage with faculty and students and recruit students for USGS internships. The ideal partner universities will have a high population of underserved students, strong support for minority and first-generation students, proximity to a USGS office, and faculty and/or majors in several of the fields most important to USGS science: geology, geochemistry, energy, biology, ecology, environmental health, hydrology, climate science, GIS, high-capacity computing, and remote sensing.

  7. Advice to young behavioral and cognitive scientists.

    PubMed

    Weisman, Ronald G

    2008-02-01

    Modeled on Medawar's Advice to a Young Scientist [Medawar, P.B., 1979. Advice to a Young Scientist. Basic Books, New York], this article provides advice to behavioral and cognitive scientists. An important guiding principle is that the study of comparative cognition and behavior are natural sciences tasked with explaining nature. The author advises young scientists to begin with a natural phenomenon and then bring it into the laboratory, rather than beginning in the laboratory and hoping for an application in nature. He suggests collaboration as a way to include research outside the scientist's normal competence. He then discusses several guides to good science. These guides include Tinbergen's [Tinbergen, N., 1963. On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410-433. This journal was renamed Ethology in 1986. Also reprinted in Anim. Biol. 55, 297-321, 2005] four "why" questions, Platt's [Platt, J.R., 1964. Strong inference. Science 146, 347-353, (http://weber.ucsd.edu/~jmoore/courses/Platt1964.pdf)] notion of strong inference using multiple alternative hypotheses, and the idea that positive controls help scientists to follow Popper's [Popper, K.R., 1959. The Logic of Scientific Discovery. Basic Books, New York, p. 41] advice about disproving hypotheses. The author also recommends Strunk and White's [Strunk, W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New York] rules for sound writing, and he provides his personal advice on how to use the anticipation of peer review to improve research and how to decode editors' and reviewers' comments about submitted articles.

  8. E224G Regulation of the PIP2-Induced Gating Kinetics of Kir2.1 Channels

    NASA Astrophysics Data System (ADS)

    Ren, Shu-Xi; Li, Jun-Wei; Zhang, Su-Hua; Logothetis, D. E.; An, Hai-Long; Zhan, Yong

    2017-01-01

    Not Available Supported by the National Natural Science Foundation for Distinguished Young Scholars of Hebei Province under Grant Nos C2015202340 and C2013202244, the Foundation for Outstanding Talents of Hebei Province under Grant No C201400305, the National Natural Science Foundation of China under Grant Nos 11247010, 11175055, 11475053, 11347017, 31400711 and 11647121, the NIH R01 under Grant No HL059949-18, the Foundation for the Science and Technology Program of Higher Education Institutions of Hebei Province under Grant No QN2016113, and the Scientific Innovation Fund for Excellent Young Scientists of Hebei University of Technology under Grant No 2015010.

  9. The Young Engineers and Scientists (YES) mentorship program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  10. Improving adolescent and young adult health - training the next generation of physician scientists in transdisciplinary research.

    PubMed

    Emans, S Jean; Austin, S Bryn; Goodman, Elizabeth; Orr, Donald P; Freeman, Robert; Stoff, David; Litt, Iris F; Schuster, Mark A; Haggerty, Robert; Granger, Robert; Irwin, Charles E

    2010-02-01

    To address the critical shortage of physician scientists in the field of adolescent medicine, a conference of academic leaders and representatives from foundations, National Institutes of Health, Maternal and Child Health Bureau, and the American Board of Pediatrics was convened to discuss training in transdisciplinary research, facilitators and barriers of successful career trajectories, models of training, and mentorship. The following eight recommendations were made to improve training and career development: incorporate more teaching and mentoring on adolescent health research in medical schools; explore opportunities and electives to enhance clinical and research training of residents in adolescent health; broaden educational goals for Adolescent Medicine fellowship research training and develop an intensive transdisciplinary research track; redesign the career pathway for the development of faculty physician scientists transitioning from fellowship to faculty positions; expand formal collaborations between Leadership Education in Adolescent Health/other Adolescent Medicine Fellowship Programs and federal, foundation, and institutional programs; develop research forums at national meetings and opportunities for critical feedback and mentoring across programs; educate Institutional Review Boards about special requirements for high quality adolescent health research; and address the trainee and faculty career development issues specific to women and minorities to enhance opportunities for academic success. Copyright 2010 Society for Adolescent Medicine. All rights reserved.

  11. The EuroSprite2005 Observational Campaign: an example of training and outreach opportunities for CAL young scientists

    NASA Astrophysics Data System (ADS)

    Chanrion, O.; Crosby, N. B.; Arnone, E.; Boberg, F.; van der Velde, O.; Odzimek, A.; Mika, Á.; Enell, C.-F.; Berg, P.; Ignaccolo, M.; Steiner, R. J.; Laursen, S.; Neubert, T.

    2007-07-01

    The four year "Coupling of Atmospheric Layers (CAL)" EU FP5 Research Training Network project studied unanswered questions related to transient luminous events (sprites, jets and elves) in the upper atmosphere. Consisting of ten scientific work-packages CAL also included intensive training and outreach programmes for the young scientists hired. Educational activities were based on the following elements: national PhD programmes, activities at CAL and other meetings, a dedicated summer school, and two European sprite observational campaigns. The young scientists were strongly involved in the latter and, as an example, the "EuroSprite2005" observational campaign is presented in detail. Some of the young scientists participated in the instrument set-up, others in the campaign logistics, some coordinated the observations, and others gathered the results to build a catalogue. During the four-month duration of this campaign, all of them took turns in operating the system and making their own night observations. The ongoing campaign activities were constantly advertised and communicated via an Internet blog. In summary the campaign required all the CAL young scientists to embark on experimental work, to develop their organisational skills, and to enhance their ability to communicate their activities. The campaign was a unique opportunity to train and strengthen skills that will be an asset to their future careers and, overall, was most successful.

  12. Interfacial nanobubbles produced by long-time preserved cold water

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Min; Wang, Shuo; Qiu, Jie; Wang, Lei; Wang, Xing-Ya; Li, Bin; Zhang, Li-Juan; Hu, Jun

    2017-09-01

    Not Available Project supported by the Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, the Open Research Project of the Large Scientific Facility of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11079050, 11290165, 11305252, 11575281, and U1532260), the National Key Basic Research Program of China (Grant Nos. 2012CB825705 and 2013CB932801), the National Natural Science Foundation for Outstanding Young Scientists, China (Grant No. 11225527), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-W09 and QYZDJ-SSW-SLH019)

  13. Scientists want more children.

    PubMed

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  14. Planck's Principle.

    ERIC Educational Resources Information Center

    Hull, David L.; And Others

    1978-01-01

    Examines two views about acceptance of Darwin's theory by scientists in Great Britain; that all scientists had accepted it within ten years after the publication of "Origin of Species," and that young scientists accepted the theory faster than old scientists. Concludes that both views are not accurate. (GA)

  15. YES 2K6: A mentorship program for young engineers and scientists

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    The Young Engineers and Scientists 2006 YES 2K6 Program is a community partnership between Southwest Research Institute SwRI and local high schools in San Antonio Texas USA YES has been highly successful during the past 14 years and YES 2K6 continues this trend This program provides talented high school juniors and seniors a bridge between classroom instruction and real world research experiences in physical sciences including space science and astronomy and engineering YES 2K6 consists of two parts 1 an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics and select individual research projects to be completed during the academic year and 2 a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers YES 2K6 developed a website for the Magnetospheric Multiscale Mission MMS from the perspective of high school students Over the past 14 years all YES graduates have entered college several have worked for SwRI and three scientific publications have resulted Student evaluations indicate the effectiveness of YES on

  16. Undergraduates study climate change science, philosophy, and public policy

    NASA Astrophysics Data System (ADS)

    Bullock, Mark A.; Frodeman, Robert L.

    The National Science Foundation's (NSF) Research Experience for Undergraduates (REU) program provides undergraduate students with the opportunity to participate in ongoing scientific research. Existing either as stand-alone summer programs or as supplementary components to existing NSF research grants, the REU program focuses on introducing aspiring young scientists to the delights and complexities of science. Global Climate Change and Society (GCCS) is an intensive, 8-week REU program that began a 3-year run in the summer of 2001.Developed by a philosopher at the Colorado School of Mines, and a planetary scientist at Southwest Research Institute in Boulder, Colrado, GCCS is a unique experiment in research and pedagogy that introduces students to science by using a distinctive approach. Choosing as its topic the questions surrounding global climate change, the program explores the interwoven scientific, philosophical, and public policy issues that make the climate change debate such a volatile topic in contemporary society. Last summer, the program selected 12 undergraduates through a nationally advertised competition. Student interns came from diverse academic and cultural backgrounds and included physics, philosophy and public policy majors from elite liberal arts schools, major research institutions, and mainstream state universities. The program was held at the University of Colorado and the National Center for Atmospheric Research (NCAR), in Boulder, Colorado (Figure 1).

  17. Girls on Ice: Using Immersion to Teach Fluency in Science

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Mortenson, C.; Stiles, K.; Coryell-Martin, M.; Long, L.

    2010-12-01

    Young women choose not to pursue science careers for several reasons; two important ones are that they more often lack the confidence in their own ability to succeed or they perceive many science jobs as isolated (working alone in a lab) or lacking in altruistic values of helping other people or communities. We developed an immersion-science program, Girls on Ice, to provide young women with strong, female role models; with an opportunity to see what a career in the Earth sciences is like; with one-on-one interactions with scientists; with facilitated discussions on the value of Earth science in societal issues such as climate change; and with challenges that will build their self-confidence in multiple ways. Girls on Ice is field-based program for teenage young women with the theme of Glaciers, Climate, and the Alpine Landscape. The concepts we cover range from glacier dynamics to alpine plant ecology to mountain weather. The educational goals are 1. to increase young women's self-efficacy and interest in pursuing science as a career, 2. to create life-long advocates for the scientific process and its role in public policy 3. to teach critical thinking skills which will be important for all of their future pursuits 4. to enhance their leadership self-confidence so that they have a higher likelihood of becoming community leaders in the future. The educational philosophy of Girls on Ice consists of three core values: that teaching the whole process of science gives students ownership of the science; that teaching to the whole student puts the science in context; and that diversity inspires new ideas, new approaches, and better science in the end. We use a field-based immersion format -- the science equivalent of language-immersion course - in order to achieve the goals listed above in a setting that emphasizes this educational philosophy. The immersion-style course creates a deep connection between science and daily life for these young women. Combined with climate change content, this style of teaching guides these young women toward becoming scientifically-literate leaders and decision makers and strengthens the connection between scientists and decision makers, educators, and communicators in regard to modern society-science issues.

  18. The UK-Japan Young Scientist Workshop Programme...

    ERIC Educational Resources Information Center

    Albone, Eric; Okano, Toru

    2012-01-01

    The authors have been running UK-Japan Young Scientist Workshops at universities in Britain and Japan since 2001: for the past three years in England with Cambridge University and, last year, also with Kyoto University and Kyoto University of Education. For many years they have worked jointly with colleagues in a group of Super Science High…

  19. "We Cross Night": Some Reflections on the Role of the ESKOM Expo for Young Scientists as a Means of Accommodating Disadvantaged Learners into the Field of Science and Technology

    ERIC Educational Resources Information Center

    Alant, Busisiwe P.

    2010-01-01

    This article critiques the role of the ESKOM Expo for Young Scientists as a particularly salient node in the constitution of young learners' identity as prospective participants in the field of science and technology. The ESKOM Expo is seen as a particularly exciting means of providing access to the niche area of science and technology. Yet this…

  20. Training scientists as future industry leaders: teaching translational science from an industry executive’s perspective

    PubMed Central

    Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, “Biotechnology Industry: Structure and Strategy” was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students’ knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists’ training and inspire them to become innovative leaders in the discovery and development of therapeutics. PMID:29657853

  1. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    NASA Technical Reports Server (NTRS)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwier, Timothy S.

    The Gordon Research Conference on ATOMIC & MOLECULAR INTERACTIONS was held at Stonehill College Easton, Massachusetts, July 15-20, 2012. The Conference was well-attended with 121 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Of the 121 attendees, 64 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of the 64 respondents, 11% were Minorities – 2% Hispanic, 9% Asian and 0% African American. Approximately 20% of the participants at the 2012more » meeting were women. The Gordon Research SEMINAR on ATOMIC & MOLECULAR INTERACTIONS was held at Stonehill College Easton, Massachusetts, July 14 - 15, 2012. The Conference was well-attended with 42 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Of the 42 attendees, 20 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of the 20 respondents, 10% were Minorities – 0% Hispanic, 10% Asian and 0% African American. Approximately 29% of the participants at the 2012 meeting were women. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, "free time" was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.« less

  3. All Scientists Meeting

    ScienceCinema

    Pier Oddone and Young-Kee Kim

    2018-04-17

    Pier Oddone and Young-Kee Kim of Fermi National Accelerator Laboratory lead an all-scientists meeting to discuss current and future work, scope of research, budget and funding information, and other information relating to the lab and its scientists.

  4. Engaging with science: High school students in summer lab internships

    NASA Astrophysics Data System (ADS)

    Bequette, Marjorie Bullitt

    Years of research and rhetoric have suggested that students should be given the opportunity to work with practicing scientists as a way to develop more sophisticated ideas about the nature of science, yet little research about these experiences exists. This project uses a case study approach to examine the experience of eight high school students working part-time during one summer as research assistants in biomedical laboratories. The students completed small research studies under the supervision of scientist-mentors. This dissertation explores questions related to how these students learned to work in a lab, in what ways they grew to understand this scientific context, and how their own relationships with science changed. The goal of looking at these young adults' summer experiences in science labs is to make suggestions for three settings: programs like this one, where high school students work closely with scientists in lab settings; other programs where scientists and students work together; and science education more generally. Analysis of pre- and post-interviews with students, and extensive observations of their laboratory work, suggests that students develop new ideas about the culture of science and the day-to-day workings of the labs. These ideas hold potential power for the students, and other participants in both similar and different educational settings, as they prepare for lives as scientifically engaged adults.

  5. Partnership with informal education learning centers to develop hands-on activities for research outreach efforts

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Haynes, R.; DeFrancis, G.; Koh, S.; Ringelberg, D.

    2012-12-01

    Outreach informed by scientific research plays an important role in fostering interest in science by making science and scientists accessible, fun, and interesting. Developing an interest in science in young, elementary-aged students through outreach is a rewarding endeavor for researchers, in that audiences are usually receptive, requirements for broader impacts are met, and bonds are formed between researchers and members of their local and surrounding communities. Promoting such interest among young students is imperative not only for an individual researcher's own self interest, but also for the strength of American science and innovation moving forward, and is the responsibility of the current generation of scientists. Developing genuine and successful inquiry-based, hands-on activities for elementary-aged students is outside the expertise of many researchers. Partnering with an informal education learning center (i.e. science museum or after-school program) provides researchers with the expertise they might be lacking in such endeavors. Here, we present a series of polar-, engineering- and microbiology-themed hands-on activities that have been developed by researchers at a government lab in partnership with a local science museum. Through a series of workshops, the science education staff at the museum provided researchers with background and instruction on inquiry and hands-on activities, and then collaborated with the researchers to develop activities which were later demonstrated at the museum to museum-goers. Education staff provided feedback about the presentation of the activities for further refinement. The program provided an opportunity for researchers to develop fun, on-target and age-appropriate science activities for elementary-aged students, an audience for outreach, and enabled general public audiences the chance to interact with researchers and scientists in an informal setting.

  6. Rescuing the physician-scientist workforce: the time for action is now.

    PubMed

    Milewicz, Dianna M; Lorenz, Robin G; Dermody, Terence S; Brass, Lawrence F

    2015-10-01

    The 2014 NIH Physician-Scientist Workforce (PSW) Working Group report identified distressing trends among the small proportion of physicians who consider research to be their primary occupation. If unchecked, these trends will lead to a steep decline in the size of the workforce. They include high rates of attrition among young investigators, failure to maintain a robust and diverse pipeline, and a marked increase in the average age of physician-scientists, as older investigators have chosen to continue working and too few younger investigators have entered the workforce to replace them when they eventually retire. While the policy debates continue, here we propose four actions that can be implemented now. These include applying lessons from the MD-PhD training experience to postgraduate training, shortening the time to independence by at least 5 years, achieving greater diversity and numbers in training programs, and establishing Physician-Scientist Career Development offices at medical centers and universities. Rather than waiting for the federal government to solve our problems, we urge the academic community to address these goals by partnering with the NIH and national clinical specialty and medical organizations.

  7. Frontier Scientists' project probes audience science interests with website, social media, TV broadcast, game, and pop-up book

    NASA Astrophysics Data System (ADS)

    O'Connell, E. A.

    2017-12-01

    The Frontier Scientists National Science Foundation project titled Science in Alaska: Using Multimedia to Support Science Education produced research products in several formats: videos short and long, blogs, social media, a computer game, and a pop-up book. These formats reached distinctly different audiences. Internet users, public TV viewers, gamers, schools, and parents & young children were drawn to Frontier Scientists' research in direct and indirect ways. The analytics (our big data) derived from this media broadcast has given us insight into what works, what doesn't, next steps. We have evidence for what is needed to present science as an interesting, vital, and a necessary component for the general public's daily information diet and as an important tool for scientists to publicize research and to thrive in their careers. Collaborations with scientists at several Universities, USGS, Native organizations, tourism organizations, and Alaska Museums promoted accuracy of videos and increased viewing. For example, Erin Marbarger, at Anchorage Museum, edited, and provided Spark!Lab to test parents & child's interest in the pop-up book titled: The Adventures of Apun the Arctic Fox. Without a marketing budget Frontier Scientist's minimum publicity, during the three year project, still drew an audience. Frontier Scientists was awarded Best Website 2016 by the Alaska Press Club, and won a number of awards for short videos and TV programs.

  8. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    NASA Astrophysics Data System (ADS)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  9. On the problem of making science attractive for women and minorities: An annotated bibliography

    NASA Astrophysics Data System (ADS)

    Yarrison-Rice, Jan M.

    1995-03-01

    How can educators assess and address the lack of interest exhibited by underrepresented youth in science? What strategies can be employed to recruit and retain these young people? Along with a bibliography, the author provides the reader with a brief summary of 20 notable works in the field of recruitment and retention of underrepresented students in math and science. Although highlighted retention and intervention programs reported herein are targeted at young women in particular, many of the suggested strategies are applicable to all students regardless of race, gender, or socio-economic background. It provides scientists who have an interest in science education with basic literature addressing this topic.

  10. Why so few young women in mathematics, science, and technology classes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, K.J.

    Many factors influence the success of women in scientific and technical careers. Women represent over 50% of the U.S. population, yet less than 16% of women are employed in scientific and technical careers. Research over the last decade makes it clear that disparities exist in the participation, achievement, and attitudes of young men and young women in science classes. Young women are as interested in science experiences as young men up until age nine. After that age, the number of young women interested in science, mathematics, and technology classes drops. Not enrolling in science and mathematics classes in high schoolmore » limits career options for young women, and their chance to succeed in a scientific or technical field becomes remote. Why is this happening? What can we, as educators, scientists, and parents do to address this problem? The literature identifies three principal factors that relate to the lack of female involvement in science classes: culture, attitude, and education. This paper reviews these factors and provides examples of programs that Pacific Northwest Laboratory (PNL) and others have developed to increase the number of young women entering college ready and wanting to pursue a career in a scientific or technical field.« less

  11. 2006 Electrochemistry Gordon Research Conference - February 12-17-2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abruna, Hector D.

    The Gordon Research Conference (GRC) on Electrochemistry was held at Santa Ynez Valley Marriott, Buellton California from February 12-17, 2006. The Conference was well-attended with 113 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time formore » formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, "free time" was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.« less

  12. From Students to Scientists

    ERIC Educational Resources Information Center

    Ho-Shing, Olivia

    2017-01-01

    In his book "Letters to a Young Scientist," renowned biologist Edward O. Wilson recounted his own coming-of-age story as a scientist, and distilled the motivating qualities of science down to curiosity and creativity. Individuals become scientists when they are curious about a phenomenon in the world around them and ask about the real…

  13. Biography Today: Profiles of People of Interest to Young Readers. Scientists & Inventors Series.

    ERIC Educational Resources Information Center

    Abbey, Cherie D., Ed.

    2002-01-01

    This volume on "Scientists and Inventors" was created to appeal to young readers in a format they can enjoy reading and can readily understand. Each volume contains alphabetically arranged sketches of outstanding people. Each entry provides at least one picture of the individual profiled, and bold-faced rubrics lead the reader to…

  14. The Association of Polar Early Career Scientists (APECS): A Model for the Professional Development of Scientists (Invited)

    NASA Astrophysics Data System (ADS)

    Baeseman, J. L.; Apecs Leadership Team

    2010-12-01

    Efforts like the International Polar Year 2007-2008 (IPY) have helped to increase research efforts as well as enhancing the integration of education and outreach into research projects and developing the next generation of researchers. One of the major legacies of the IPY was the creation of the Association of Polar Early Career Scientists (APECS), which was developed in 2006 by young researchers and focuses on helping each other develop the skills needed for successful careers in research by working with senior mentors. APECS is an international and interdisciplinary organization of over 2000 early career researchers and educators with interests in the Polar Regions and the wider cryosphere from 45 countries. APECS aims to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. This is achieved by - Facilitating international and interdisciplinary networking opportunities to share ideas and experiences and to develop new research directions and collaborations, - Providing opportunities for professional career development for both academic and alternative research professions, and - Promoting education and outreach as an integral component of polar research and to stimulate future generations of polar researchers. Since its inception, APECS has strived to develop a strong network of partnerships with senior international organizations and scientific bodies to provide career development opportunities for young researchers. These partnerships have led to early-career representation on science planning bodies at an international level, the mandate of early career researchers serving as co-chairs at science conferences, the development of a mentorship program, field schools and techniques workshops, mentor panel discussions at conferences and increased funding for young researchers to attend conferences. APECS has also worked with an international teachers network to develop “Polar Science and Global Climate: An International Resource Guide for Teachers and Researchers” which includes tips and tricks for scientists in communicating their research effectively. Because of its international membership, APECS used the internet as an effective tool to develop skills through a career development webinar series, literature discussion forum, and a virtual poster session where researchers can continue to present their research long after a conference poster session ends. These programs not only serve as ways for young researchers to develop their research, they also serve to provide leadership training to the many individuals who plan these activities and creates a strong sense of community across disciplinary and national boarders. The tools APECS has developed can be used to train the next generation of researchers in any field. But perhaps what is more important are the lessons learned from nurturing the organization to create a strong community of early career and senior researchers helping and motivating each other to improve and stay connected to research careers. This presentation will demonstrate how a young researcher driven effort can become an important and crucial component of any field of research on both the national and international level.

  15. Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration

    NASA Astrophysics Data System (ADS)

    Wu, Xueke; Li, Huidong; Wang, Zhanhui; Feng, Hao; Zhou, Yulin

    2017-06-01

    Not Available Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 11605143), the Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province, China (Grant No. 05020732), the National Natural Science Foundation of China (Grant No. 11575055), the Fund from the Department of Education in Sichuan Province of China (Grant No. 15ZB0129), the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001), the National ITER Program of China (Contract No. 2014GB113000), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).

  16. The enduring effect of scientific interest on trust in climate scientists in the United States

    NASA Astrophysics Data System (ADS)

    Motta, Matthew

    2018-06-01

    People who distrust scientists are more likely to reject scientific consensus, and are more likely to support politicians who are sceptical of scientific research1. Consequently, boosting Americans' trust in scientists is a central goal of science communication2. However, while previous research has identified several correlates of distrust in climate scientists3 and scientists more broadly4, far less is known about potential long-term influences taking root in young adulthood. This omission is notable, as previous research suggests that attitudes towards science formulated in pre-teenage years play a key role in shaping attitudes in adulthood5. Using data from the Longitudinal Study of American Youth, I find that interest in science at age 12-14 years is associated with increased trust in climate scientists in adulthood (mid thirties), irrespective of Americans' political ideology. The enduring and bipartisan effects of scientific interest at young ages suggest a potential direction for future efforts to boost mass trust in climate scientists.

  17. The History of Winter: teachers as scientists

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned veterans in the field, is a unique experience for many of the teachers. Here we present lessons learned throughout the lifetime of the program, including successes and improvements made, and present our vision for the future of HOW.

  18. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    NASA Astrophysics Data System (ADS)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal science programs, urban girls, self-efficacy, cooperative learning, peer learning, female adolescents, and after-school urban education This dissertation study was funded by two grants, the 2013 spring dissertation grant from the University of Missouri St. Louis and a philanthropic grant from Dr. Courtney Crim.

  19. The Nautilus Exploration Program: Utilizing Live Ocean Exploration as a Platform for STEM Education and Outreach

    NASA Astrophysics Data System (ADS)

    Fundis, A.; Cook, M.; Sutton, K.; Garson, S.; Poulton, S.; Munro, S.

    2016-02-01

    By sparking interest in scientific inquiry and engineering design at a young age through exposure to ocean exploration and innovative technologies, and building on that interest throughout students' educational careers, the Ocean Exploration Trust (OET) aims to motivate more students to be lifelong learners and pursue careers in STEM fields. Utilizing research conducted aboard Exploration Vessel Nautilus, the ship's associated technologies, and shore-based facilities at the University of Rhode Island — including the Graduate School of Oceanography and the Inner Space Center — we guide students to early career professionals through a series of educational programs focused on STEM disciplines and vocational skills. OET also raises public awareness of ocean exploration and research through a growing online presence, live streaming video, and interactions with the team aboard the ship 24 hours a day via the Nautilus Live website (www.nautiluslive.org). Annually, our outreach efforts bring research launched from Nautilus to tens of millions worldwide and allow the public, students, and scientists to participate in expeditions virtually from shore. We share the Nautilus Exploration Program's strategies, successes, and lessons learned for a variety of our education and outreach efforts including: 1) enabling global audiences access to live ocean exploration online and via social media; 2) engaging onshore audiences in live and interactive conversations with scientists and engineers on board; 3) engaging young K-12 learners in current oceanographic research via newly developed lessons and curricula; 4) onshore and offshore professional development opportunities for formal and informal educators; 5) programs and authentic research opportunities for high school, undergraduate, and graduate students onshore and aboard Nautilus; and 6) collaborative opportunities for early career and seasoned researchers to participate virtually in telepresence-enabled, interdisciplinary expeditions.

  20. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  1. Some Methodological Issues with "Draw a Scientist Tests" among Young Children

    ERIC Educational Resources Information Center

    Losh, Susan C.; Wilke, Ryan; Pop, Margareta

    2008-01-01

    Children's stereotypes about scientists have been postulated to affect student science identity and interest in science. Findings from prior studies using "Draw a Scientist Test" methods suggest that students see scientists as largely white, often unattractive, men; one consequence may be that girls and minority students feel a science career is…

  2. Identity Matching to Scientists: Differences That Make a Difference?

    ERIC Educational Resources Information Center

    Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva

    2014-01-01

    Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists.…

  3. Biography Today: Profiles of People of Interest to Young Readers. Scientists & Inventors Series, Volume 5.

    ERIC Educational Resources Information Center

    Abbey, Cherie D., Ed.

    This book, a special volume focusing on computer-related scientists and inventors, provides 12 biographical profiles of interest to readers ages 9 and above. The Biography Today series was created to appeal to young readers in a format they can enjoy reading and readily understand. Each entry provides at least one picture of the individual…

  4. Young Scientists Explore the World Around Them. Book 1--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of scientists. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  5. MS PHD'S: Bridging the Gap of Academic and Career Success Through Educational and Professional Development for Minorities

    NASA Astrophysics Data System (ADS)

    Brown, D.; Vargas, W.; Padilla, E.; Strickland, J.; Echols, E.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Ricciardi, L.; Johnson, A.; Braxton, L.

    2011-12-01

    Historically, there has been a lack of ethnic and gender diversity in the geo-sciences. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Professional Development Program provides a bridge to young scientists of diverse backgrounds who in turn will impact many. In a process of 3 phases, the program introduces the students to the scientific community through participation in professional and society meetings and networking with scientists and personnel within federal agencies, academic institutions and STEM-based industries. The program builds confidence, offers role models for professional development and provides students support during their education. Upon completion, students achieve a high level of self-actualization and self-esteem combined with individual growth. They become part of a community that continuously provides support and security to each other. This support is tangible through the mentor/mentee relationships which will help with individual growth throughout the mentoring cycle. Having role models and familiar faces to whom mentees can relate to will encourage our students to succeed in the STEM's field. To date, 159 students have participated in the program: 26 have successfully completed their PhD and 56 are currently enrolled in the PhD programs nationwide. The MS PHD'S Program creates a forum of diverse peoples by diverse peoples with diverse interest and strength, where the ongoing goal is to continually raise the bar for each individual. MS PHD'S establishes a nurturing goal-oriented environment for the geo scientist of the future who in turn will make profound contributions on a local, national and global scale. To conclude, MSPHD'S not only bridges the gap of unrepresented minorities in STEM careers, but also generates educational approaches to make the earth system sciences available to more, impacting all.

  6. Fifty years of Cosmic Era: Real and Virtual Studies of the Sky

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Malkov, O. Yu.; Samus, N. N.

    2012-05-01

    The book presents the Proceedings of the Conference of Young Scientists of CIS countries held on 21-25 November 2011 at the Armenian National Academy of Sciences in Yerevan and dedicated to the 50th anniversary of Yuri Gagarin's flight into Space. The main goal of the Conference was to gather young scientists from CIS countries to familiarize them with the latest developments of Astrophysics and Space Physics, including the use of the latest technology and techniques. Among the participants of the conference there were 47 young scientists and researchers from Armenia, Latvia, Lithuania, Russia, Tajikistan and Ukraine, as well as 5 invited lecturers from Armenia, France and Russia, who gave 5 lectures and 2 different practical exercises (tutorials). The young scientists presented 38 talks on various topics of astrophysics related to their research work or PhD/MSc studies. The book is divided into 5 parts, Invited Lectures and 4 sections by subjects: Solar System and Exoplanets, Stars and Nebulae, Galaxies and Cosmology, Real and Virtual Observatories. It also includes a preface by the editors, the list of participants of the conference, and author index at the end.

  7. YES 2K5: Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2005-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 13 years, and YES 2K5 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K5 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K5 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of a high school student. Over the past 13 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from the NASA MMS Mission, the NASA E/PO program, and local charitable foundations.

  8. A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design

    PubMed Central

    Alford, Rebecca F.; Dolan, Erin L.

    2017-01-01

    Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology. PMID:29216185

  9. A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design.

    PubMed

    Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J

    2017-12-01

    Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.

  10. International Conferences and Young Scientists Schools on Computational Information Technologies for Environmental Sciences (CITES) as a professional growth instrument

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Lykosov, V. N.; Genina, E. Yu; Gordova, Yu E.

    2017-11-01

    The paper describes a regular events CITES consisting of young scientists school and international conference as a tool for training and professional growth. The events address the most pressing issues of application of information-computational technologies in environmental sciences and young scientists’ training, diminishing a gap between university graduates’ skill and concurrent challenges. The viability of the approach to the CITES organization is proved by the fact that single event organized in 2001 turned into a series, quite a few young participants successfully defended their PhD thesis and a number of researchers became Doctors of Science during these years. Young researchers from Russia and foreign countries show undiminishing interest to these events.

  11. Ice Stories: An Educational Collaboration between the Exploratorium and IPY Scientists.

    NASA Astrophysics Data System (ADS)

    Mary, M. K.

    2007-12-01

    The Exploratorium, a renowned interactive science museum in San Francisco, has launched a major NSF-funded public education project to highlight research in the Arctic and Antarctic during the International Polar Year. "Ice Stories" will partner museum media and web producers with polar scientists working in the field to bring their research to the Internet and museum audiences via live Webcasts, video clips, blogs, podcasts, and other media platforms. To prepare scientists for their role as field correspondents, the Exploratoirum will train a cohort of 20- 30 young investigators in media collection, production and narrative story telling during an intensive one-week workshop in San Francisco. The museum will curate the polar field reports, and other IPY news and education events, into a continuously updated Web portal on the Exploratorium's award-winning Website and highlight the ongoing research in museum programming, floor demonstrations, and exhibits. These unique collaborations between formal and informal science can serve as a model for other partnerships during major scientific endeavors beyond the International Polar Year.

  12. Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology

    PubMed Central

    Mishra, Bud

    2009-01-01

    Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723

  13. NASA's Student Airborne Research Program as a model for effective professional development experience in Oceanography

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Kudela, R. M.; Clinton, N. E.; Atkins, N.; Austerberry, D.; Johnson, M.; McGonigle, J.; McIntosh, K.; O'Shea, J. J.; Shirshikova, Z.; Singer, N.; Snow, A.; Woods, R.; Schaller, E.; Shetter, R. E.

    2011-12-01

    With over half of the current earth and space science workforce expected to retire within the next 15 years, NASA has responded by cultivating young minds through programs such as the Student Airborne Research Program (SARP). SARP is a competitive internship that introduces upper-level undergraduates and early graduate students to Earth System Science research and NASA's Airborne Science Program. The program serves as a model for recruitment of very high caliber students into the scientific workforce. Its uniqueness derives from total vertical integration of hands-on experience at every stage of airborne science: aircraft instrumentation, flight planning, mission participation, field-work, analysis, and reporting of results in a competitive environment. At the conclusion of the program, students presented their work to NASA administrators, faculty, mentors, and the other participants with the incentive of being selected as best talk and earning a trip to the fall AGU meeting to present their work at the NASA booth. We hope lessons learned can inform the decisions of scientists at the highest levels seeking to broaden the appeal of research. In 2011, SARP was divided into three disciplinary themes: Oceanography, Land Use, and Atmospheric Chemistry. Each research group was mentored by an upper-level graduate student who was supervised by an expert faculty member. A coordinator managed the program and was supervised by a senior research scientist/administrator. The program is a model of knowledge transfer among the several levels of research: agency administration to the program coordinator, established scientific experts to the research mentors, and the research mentors to the pre-career student participants. The outcomes from this program include mission planning and institutional knowledge transfer from administrators and expert scientists to the coordinator and research mentors; personnel and project management from the coordinator and expert scientists to the research mentors; and scholarship and training in specific analytical techniques for Earth Science research from the mentors to the student participants. Across every level, the program allowed for networking and career advice to help students gain entry to future job or graduate school opportunities. This poster details "engaging the next generation" by highlighting specific research questions proposed and developed by the students in the Oceanography group.

  14. Biography Today: Scientists & Inventors Series. Profiles of People of Interest to Young Readers. Vol. 1, 1996.

    ERIC Educational Resources Information Center

    Harris, Laurie Lanzen, Ed.; Abbey, Cherie D., Ed.

    This issue of "Biography Today" looks at scientists and inventors and is created to appeal to young readers in a format they can and enjoy and easily understand. Each entry provides at least one picture of the individual profiled, and bold-faced rubrics lead the reader to information on birth, youth, early memories, education, first jobs, marriage…

  15. NSF GK-12 Fellows as Mentors for K-12 Teachers Participating in Field Research Experiences

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Perry, E.

    2005-12-01

    The University of Texas Institute for Geophysics (UTIG) recognizes the value of providing educational opportunities to K-12 teachers who play a critical role in shaping the minds of young people who are the future of our science. To that end, UTIG established the "Texas Teachers in the Field" program in 2000 to formalize the participation of K-12 teachers in field programs that included UTIG scientists. In 2002, "Texas Teachers in the Field" evolved through UTIG's involvement in a University of Texas at Austin GK-12 project led by the Environmental Sciences Institute, which enabled UTIG to partner a subset of GK-12 Fellows with teachers participating in geophysical field programs. During the three years of the GK-12 project, UTIG successfully partnered four GK-12 Fellows with five K-12 teachers. The Fellows served as mentors to the teachers, as liaisons between UTIG scientists leading field programs and teachers and their students, and as resources in science, mathematics, and technology instruction. Specifically, Fellows prepared teachers and their students for the field investigations, supervised the design of individual Teacher Research Experience (TRE) projects, and helped teachers to develop standards-aligned curriculum resources related to the field program for use in their own classrooms, as well as broader distribution. Although all but one TRE occurred during the school year, Texas school districts and principals were willing to release teachers to participate because the experience and destinations were so extraordinary (i.e., a land-based program in Tierra del Fuego, Argentina; and research cruises to the Southeast Caribbean Sea and Hess Deep in the Pacific Ocean) and carried opportunities to work with scientists from around the world. This exceptional collaboration of GK-12 Fellows, K-12 teachers and research scientists enriches K-12 student learning and promotes greater enthusiasm for science. The level of mentoring, preparation and follow-up provided by the GK-12 Fellows was important in helping teachers transfer components of a challenging field research experience to their students. Participating research scientists were able to convey the importance of their science to a wider audience. NSF GK-12 Fellows gained valuable experience in communicating scientific knowledge and field skills to K-12 teachers and students, became more knowledgeable about K-12 science education and were exposed to advances in pedagogy.

  16. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  17. How Middle Schoolers Draw Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-02-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.

  18. Young Solid Earth Researchers of the World Unite!

    NASA Astrophysics Data System (ADS)

    Simons, Frederik J.; Becker, Thorsten W.; Kellogg, James B.; Billen, Magali; Hardebeck, Jeanne; Lee, Cin-Ty A.; Montési, Laurent G. J.; Panero, Wendy; Zhong, Shijie

    2004-04-01

    In early January 2004, one of us attended a workshop on ``science priorities and educational opportunities that can be addressed using ocean observatories.'' The attendees constituted a broad group-men and women, scientists, engineers, educators, representatives from the private and public sector-but lacked diversity in at least one important aspect: age. A well-known marine geophysicist (with a published record stretching over 30 years) came to me at the ice-breaker party and said (and I paraphrase): ``I'm glad you're here: you're young, you might actually see this project flourish before you retire. There're not enough young people here.`` At some point or another, every young scientist may have a similar experience.

  19. Recent activities of the Seismology Division Early Career Representative(s)

    NASA Astrophysics Data System (ADS)

    Agius, Matthew; Van Noten, Koen; Ermert, Laura; Mai, P. Martin; Krawczyk, CharLotte

    2016-04-01

    The European Geosciences Union is a bottom-up-organisation, in which its members are represented by their respective scientific divisions, committees and council. In recent years, EGU has embarked on a mission to reach out for its numerous 'younger' members by giving awards to outstanding young scientists and the setting up of Early Career Scientists (ECS) representatives. The division representative's role is to engage in discussions that concern students and early career scientists. Several meetings between all the division representatives are held throughout the year to discuss ideas and Union-wide issues. One important impact ECS representatives have had on EGU is the increased number of short courses and workshops run by ECS during the annual General Assembly. Another important contribution of ECS representatives was redefining 'Young Scientist' to 'Early Career Scientist', which avoids discrimination due to age. Since 2014, the Seismology Division has its own ECS representative. In an effort to more effectively reach out for young seismologists, a blog and a social media page dedicated to seismology have been set up online. With this dedicated blog, we'd like to give more depth to the average browsing experience by enabling young researchers to explore various seismology topics in one place while making the field more exciting and accessible to the broader community. These pages are used to promote the latest research especially of young seismologists and to share interesting seismo-news. Over the months the pages proved to be popular, with hundreds of views every week and an increased number of followers. An online survey was conducted to learn more about the activities and needs of early career seismologists. We present the results from this survey, and the work that has been carried out over the last two years, including detail of what has been achieved so far, and what we would like the ECS representation for Seismology to achieve. Young seismologists are continuously encouraged to voice their ideas and contribute to the Seismology Division.

  20. Global Change science in Latin America: How can we get more scientists doing it at home?

    NASA Astrophysics Data System (ADS)

    Jobbagy, E. G.; Pineiro, G.

    2007-05-01

    The need for a stronger research community in Latin America (LA) is increasingly acknowledged by most countries in the region. Tools to cope with natural and social shifts as well as novel scientific knowledge of international value are being demanded. What are the main challenges and opportunities to feel these needs? Although funding is traditionally pointed out as the main barrier for (global change) science development in LA, we propose that some aspects of the prevailing scientific culture are also of fundamental importance. We define them as a) "inferiority complex", yielding low expectation on the potential impact of LA science at the international level, pushing researchers seeking success to look for it outside LA, and making many home-based researchers to create a self-defensive attitude against returning colleagues; b) "disciplinary and hierarchical focus" shaping national agencies, universities, and scientific unions along structured traditional fields that make the acceptance and development of cross-cutting Earth System science difficult; and c) "academic isolation", stemming from a mutual distrust between scientist and policy makers. The often overlooked opportunities of global change science in LA include d) a "complementary perspective" on global change issues in LA among southern and northern researchers, derived from their different cultural context, e) a "complementary global change laboratory" in LA hosting a dynamic and often unique set of land use changes; f) "highly efficient research systems" capable of training student and publish paper at very low costs. We argue that creative capacity building programs should tackle a-b-c and take advantage of d-e-f by propitiating teams that develop effective North-South and regional links to train new young scientist doing global change research in their own countries. In addition, capacity building in the continent needs to go beyond formal training and deal with the process of young scientist insertion at home. Financial support programs that foster their international connection and their start-up process have already demonstrated a strong potential to overcome the scientific constrains of the region.

  1. Youth Engagement through Science (YES!) - Engaging Underrepresented Minorities in Science through High School Internships at the National Museum of Natural History

    NASA Astrophysics Data System (ADS)

    Robertson, G.; Cruz, E.; Selvans, M. M.

    2014-12-01

    The Smithsonian's Youth Engagement through Science (YES!) program at the National Museum of Natural History gives young people from the Washington, D.C. area the opportunity to engage in science out of school through 16-week internships. We will present the program's successful strategies and lessons learned around recruiting and engaging young people from underserved communities, and maintaining relationships that help to support their pursuit of STEM and other career paths. The YES! program connects Smithsonian collections, experts, and training with local DC youth from communities traditionally underrepresented in science careers. YES! is now in its fifth year and has directly served 122 students; demographics of alumni are 67% female, and 51% Latino, 31% African-American, 7% Asian, 5% Caucasian and 6% other. The program immerses students in science research by giving them the opportunity to work side-by-side with scientists and staff from the Smithsonian's National Museum of Natural History, Air and Space Museum, Smithsonian Gardens, and National Zoo. In addition to working on a research project, students have college preparatory courses, are trained in science communication, and apply their skills by interacting with the public on the exhibit floor.

  2. 1998 Gordon Research Conference on Gravitational Effects on Living Systems

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1998-01-01

    The Gordon Research Conference (GRC) on GRAVITATIONAL EFFECTS ON LIVING SYSTEMS was held at COLBY SAYWER 2 from 7/12/98 thru 7/17/98. The Conference was well-attended with 94 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, "free time" was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. As you know, in the interest of promoting the presentation of unpublished and frontier-breaking research, Gordon Research Conferences does not permit publication of meeting proceedings.

  3. Thermodynamics of de Sitter Black Holes in Massive Gravity

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Bo; Zhang, Si-Xuan; Wu, Yan; Ma, Li; Cao, Shuo

    2018-05-01

    In this paper, by taking de Sitter space-time as a thermodynamic system, we study the effective thermodynamic quantities of de Sitter black holes in massive gravity, and furthermore obtain the effective thermodynamic quantities of the space-time. Our results show that the entropy of this type of space-time takes the same form as that in Reissner-Nordström-de Sitter space-time, which lays a solid foundation for deeply understanding the universal thermodynamic characteristics of de Sitter space-time in the future. Moreover, our analysis indicates that the effective thermodynamic quantities and relevant parameters play a very important role in the investigation of the stability and evolution of de Sitter space-time. Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant Nos. 11605107 and 11503001, the National Natural Science Foundation of China under Grant No. 11475108, Program for the Innovative Talents of Higher Learning Institutions of Shanxi, the Natural Science Foundation of Shanxi Province under Grant No. 201601D102004, the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No. 201601D021022, and the Natural Science Foundation of Datong City under Grant No. 20150110

  4. Young Children's Perceptions of Scientists: A Preliminary Study

    ERIC Educational Resources Information Center

    Buldu, Mehmet

    2006-01-01

    Background: Since the 1950s, there has been a growing body of research dealing with perceptions children have of scientists. Typically, research studies in this area have utilized children's drawings in an effort to discern what those perceptions are. Studies assessing perceptions children have of scientists have shown that children have…

  5. On-the-job, real-time professional development for graduate students and early career scientists at the University of Hawaii

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Guannel, M.; Wood-Charlson, E.; Choy, A.; Wren, J.; Chang, C.; Alegado, R.; Leon Soon, S.; Needham, H.; Wiener, C.

    2015-12-01

    Here we present an overview of inter-related programs designed to promote leadership and professional development among graduate students and early career scientists. In a very short time, these young scientists have developed into an impressive cohort of leaders. Proposal Writing. The EDventures model combines proposal-writing training with the incentive of seed money. Rather than providing training a priori, the EDventures model encourages students and post-docs to write a proposal based on guidelines provided. Training occurs during a two-stage review stage: proposers respond to panel reviews and resubmit their proposal within a single review cycle. EDventures alumni self-report statistically significant confidence gains on all questions posed. Their subsequent proposal success is envious: of the 12 proposals submitted by program alumni to NSF, 50% were funded. (Wood Charlson & Bruno, in press; cmore.soest.hawaii.edu/education/edventures.htm)Mentoring. The C-MORE Scholars and SOEST Maile Mentoring Bridgeprograms give graduate students the opportunity to serve as research mentors and non-research mentors, respectively, to undergraduates. Both programs aim to develop a "majority-minority" scientist network, where Native Hawaiians and other underrepresented students receive professional development training and personal support through one-on-one mentoring relationships (Gibson and Bruno, 2012; http://cmore.soest.hawaii.edu/scholars; http://maile.soest.hawaii.edu).Outreach & Science Communication. Ocean FEST (Families Exploring Science Together), Ocean TECH (Technology Explores Career Horizons) and the Kapiolani Community College summer bridge program provide opportunities for graduate students and post-docs to design and deliver outreach activities, lead field trips, communicate their research, and organize events (Wiener et al, 2011, Bruno & Wren, 2014; http://oceanfest.soest.hawaii.edu; http://oceantech.soest.hawaii.edu)Professional Development Course. In this career-focused graduate seminar, students and post-docs explore a range of career paths, identify and build skills, prepare application materials, and develop a class project around their professional development interests (Guannel et al, 2014).

  6. NSF-supported education/outreach program takes young researchers to the Arctic

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Walsh, J. E.; Hock, R.; Kaden, U.; Euskirchen, E. S.; Kholodov, A. L.; Bret-Harte, M. S.; Sparrow, E. B.

    2015-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The newly supported project in 2013 is planning four summer schools (one per year) focused on four themes in four different Arctic locations. It provides the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-20 people consists of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. A specialist from the School of Education at UAF evaluates student's progress during the summer schools. Lessons learned during the 12 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the most recent school, conducted in Fairbanks and LTER Toolik Lake Field Station in 2015 are the focus of this presentation.

  7. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.

    2013-12-01

    It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher preparation in that postdoctoral research scientists are directly involved in the clinical preparation of the teacher candidates7. In this program, professional educators and senior scientists guide and work closely with the postdoctoral scientists in developing lessons and field experiences for the teacher candidates. This exposes the postdoctoral scientists to pedagogical techniques. Furthermore, postdoctoral scientists make regular visits to partner schools and share their research interests with high school science students8. Regular assessments about the quality of the postdoctoral scientist's teaching, in the form of course evaluations and informal discussions with the teacher candidates and professional educators, further augments the postdoctoral scientists teaching skills. These experiences can ultimately improve university level science teaching, should the postdoctoral scientists find positions within a university setting. Here, five postdoctoral researchers present self-studies of changing instructional practice born of their involvement in clinical teacher preparation in the AMNH-MAT program.

  8. PREFACE: FAIRNESS 2013: FAIR NExt generation of ScientistS 2013

    NASA Astrophysics Data System (ADS)

    Petersen, Hannah; Destefanis, Marco; Galatyuk, Tetyana; Montes, Fernando; Nicmorus, Diana; Ratti, Claudia; Tolos, Laura; Vogel, Sascha

    2014-04-01

    FAIRNESS 2013 was the second edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 16-21 September 2013 in Berlin, Germany. The topics of the workshop cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in box to stimulate discussions. Since the physics program of FAIR is very broad, this is reflected in the wide range of topics covered at the Conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics For all of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2013 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the physics of FAIR. February 2014. Organizers of FAIRNESS 2013: Marco Destefanis, Tetyana Galatyuk, Fernando Montes, Diana Nicmorus, Hannah Petersen, Claudia Ratti, Laura Tolos, and Sascha Vogel. Support for holding the conference was provided by: Logos

  9. PREFACE: 2nd International School and Conference Saint-Petersburg OPEN on Optoelectronics, Photonics, Engineering and Nanostructures (SPbOPEN2015)

    NASA Astrophysics Data System (ADS)

    2015-11-01

    The 2nd International School and Conference ''Saint Petersburg OPEN 2015'' on Optoelectronics, Photonics, Engineering and Nanostructures was held on April 6 - 8, 2015 at St. Petersburg Academic University. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were Mikhail V. Maximov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir G. Dubrovskii (St. Petersburg Academic University and St. Petersburg State University, Russia) Anton Yu. Egorov (JSC Connector Optics, Russia) Victor V. Luchinin (St. Petersburg State Electrotechnical University, Russia) Vladislav E. Bugrov (St. Petersburg University of Internet Technologies, Mechanics and Optics, Russia) Vitali A. Schukin (VI Systems, Germany) Yuri P. Svirko (University of Eastern Finland, Finland) During the poster session all undergraduate and graduate students attending the conference presented their works. A sufficiently large number of participants, with more than 170 student attendees from all over the world, allowed the Conference to provide a fertile ground for fruitful discussions between the young scientists as well as to become a perfect platform for valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year ''Saint Petersburg OPEN 2015'' is organized by St. Petersburg Academic University in cooperation with Peter the Great St. Petersburg Polytechnic University. The School and Conference is supported by Russian Science Foundation, SPIE (The International Society for Optics and Photonics), OSA (The Optical Society) and by Skolkovo Foundation. It is a continuation of the annual schools and seminars for youth on topical problems of physics and technology that are organized by the Academic University since 2009. We invite all the students and young scientists to attend ''Saint Petersburg OPEN'' in 2016! Please, find details at http://spbopen.spbau.com/

  10. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    NASA Astrophysics Data System (ADS)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the physics at FAIR. February 2015, Organizers of FAIRNESS 2014: Marco Destefanis, Tetyana Galatyuk, Fernando Montes, Diana Nicmorus, Hannah Petersen, Claudia Ratti, Laura Tolos, and Sascha Vogel. Support for holding the conference was provided by: Conference photograph

  11. PREFACE: FAIRNESS 2012: FAIR NExt Generation of ScientistS 2012

    NASA Astrophysics Data System (ADS)

    Arcones, Almudena; Bleicher, Marcus; Fritsch, Miriam; Galatyuk, Tetyana; Nicmorus, Diana; Petersen, Hannah; Ratti, Claudia; Tolos, Laura

    2013-03-01

    FAIRNESS 2012 was the first in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 3-8 September 2012 in Hersonissos, Greece. The workshop covered a wide range of topics, both theoretical developments and current experimental status, that concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference was to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permament position to present their work and to foster active informal discussions and the build-up of networks. Every participant at the meeting, with the exception of the organizers, gave an oral presentation and all sessions were followed by an hour long discussion period. During the talks questions were collected anonymously in a circulating box to stimulate these discussions. Since the physics program of FAIR is very broad, this was reflected in the wide range of topics covered at the conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron Spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics In each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2012 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the physics of FAIR. February 2013, Organizers of FAIRNESS 2012: Almudena Arcones, Marcus Bleicher, Miriam Fritsch, Tetyana Galatyuk, Diana Nicmorus, Hannah Petersen, Claudia Ratti and Laura Tolos Support for holding the conference was provided by: logos

  12. Moving beyond the Lone Scientist: Helping 1st-Grade Students Appreciate the Social Context of Scientific Work Using Stories about Scientists

    ERIC Educational Resources Information Center

    Sharkawy, Azza

    2009-01-01

    While several studies have documented young children's (K-2) stereotypic views of scientists and scientific work, few have examined students' views of the social nature of scientific work and the strategies effective in broadening these views. The purpose of this study is to examine how stories about scientists influence 1st-grade students' views…

  13. YES 2K7: A Mentorship Program for Young Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P.

    2007-10-01

    The Young Engineers and Scientists 2007 (YES 2K7) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years, with YES 2K7 continuing this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K7 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  14. The DEVELOP National Program: Building Dual Capacity in Decision Makers and Young Professionals Through NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Childs, L. M.; Rogers, L.; Favors, J.; Ruiz, M.

    2012-12-01

    Through the years, NASA has played a distinct/important/vital role in advancing Earth System Science to meet the challenges of environmental management and policy decision making. Within NASA's Earth Science Division's Applied Sciences' Program, the DEVELOP National Program seeks to extend NASA Earth Science for societal benefit. DEVELOP is a capacity building program providing young professionals and students the opportunity to utilize NASA Earth observations and model output to demonstrate practical applications of those resources to society. Under the guidance of science advisors, DEVELOP teams work in alignment with local, regional, national and international partner organizations to identify the widest array of practical uses for NASA data to enhance related management decisions. The program's structure facilitates a two-fold approach to capacity building by fostering an environment of scientific and professional development opportunities for young professionals and students, while also providing end-user organizations enhanced management and decision making tools for issues impacting their communities. With the competitive nature and growing societal role of science and technology in today's global workplace, DEVELOP is building capacity in the next generation of scientists and leaders by fostering a learning and growing environment where young professionals possess an increased understanding of teamwork, personal development, and scientific/professional development and NASA's Earth Observation System. DEVELOP young professionals are partnered with end user organizations to conduct 10 week feasibility studies that demonstrate the use of NASA Earth science data for enhanced decision making. As a result of the partnership, end user organizations are introduced to NASA Earth Science technologies and capabilities, new methods to augment current practices, hands-on training with practical applications of remote sensing and NASA Earth science, improved remote sensing and geographic information science (GIS) capabilities, and opportunities for networking with the NASA and Earth Science community. By engaging young professionals and end user organizations, DEVELOP strives to uniquely build capacity through the extension of NASA Earth Science outcomes to the public through projects that innovatively use NASA Earth observations to address environmental concerns and impact policy and decision making.

  15. LUNAR SAMPLES - APOLLO XVI - JSC

    NASA Image and Video Library

    1975-03-18

    S75-23543 (April 1972) --- This Apollo 16 lunar sample (moon rock) was collected by astronaut John W. Young, commander of the mission, about 15 meters southwest of the landing site. This rock weighs 128 grams when returned to Earth. The sample is a polymict breccia. This rock, like all lunar highland breccias, is very old, about 3,900,000,000 years older than 99.99% of all Earth surface rocks, according to scientists. Scientific research is being conducted on the balance of this sample at NASA's Johnson Space Center and at other research centers in the United States and certain foreign nations under a continuing program of investigation involving lunar samples collected during the Apollo program.

  16. The Scarcity of Orthopaedic Physician Scientists.

    PubMed

    Buckwalter, Joseph A; Elkins, Jacob M

    2017-01-01

    Breakthrough advances in medicine almost uniformly result from the translation of new basic scientific knowledge into clinical practice, rather than from assessment, modification or refinement of current methods of diagnosis and treatment. However, as is intuitively understood, those most responsible for scientific conception and creation-scientists - are generally not the ones applying these advances at the patient's bedside or the operating room, and vice versa. Recognition of the scarcity of clinicians with a background that prepares them to develop new basic knowledge, and to critically evaluate the underlying scientific basis of methods of diagnosis and treatment, has led to initiatives including federally funded Physician-Scientist programs, whereby young, motivated scholars begin a rigorous training, which encompasses education and mentorship within both medical and scientific fields, culminating in the conferment of both MD and PhD degrees. Graduates have demonstrated success in integrating science into their academic medical careers. However, for unknown reasons, orthopaedic surgery, more than other specialties, has struggled to recruit and retain physician-scientists, who possess a skill set evermore rare in today's increasingly complicated medical and scientific landscape. While the reasons for this shortfall have yet to be completely elucidated, one thing is clear: If orthopaedics is to make significant advances in the diagnosis and treatment of musculoskeletal diseases and injuries, recruitment of the very best and brightest physician-scientists to orthopaedics must become a priority. This commentary explores potential explanations for current low-recruitment success regarding future orthopaedic surgeon-scientists, and discusses avenues for resolution.

  17. Adolescents and Young Adults with Cancer

    MedlinePlus

    ... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...

  18. Alaska - Russian Far East connection in volcano research and monitoring

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program is the continuous series of international volcanological field schools organized in partnership with the Kamchatka State University. Each year more than 40 students and young scientists participate in our annual field trips to Katmai, Alaska and Mutnovsky, Kamchatka.

  19. Birth of prominent scientists.

    PubMed

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  20. Birth of prominent scientists

    PubMed Central

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  1. Engaging with primary schools: Supporting the delivery of the new curriculum in evolution and inheritance.

    PubMed

    Kover, Paula X; Hogge, Emily S

    2017-10-01

    The official school regulator in England (OFSTED) recently reported that the delivery of science lessons has been significantly diminished in many primary schools. There is concern that the lack of good quality science in school can reduce the recruitment of young scientists, and the level of science literacy among the general public. We believe university scientists and undergraduate students can have a significant impact in the delivery of science in primary schools. However, a relatively small proportion of scientists engage with young children to improve curricular primary school science education. Here, we argue that long term engagement with primary schools can produce significant impact for the scientist's research, schools, and society. As an example, we describe our experience developing teaching materials for the topic of "Evolution and inheritance"; highlighting possible pitfalls and perceived benefits, in hope of encouraging and facilitating other scientists to engage with primary schools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  3. The first Latin American workshop on professional skills for young female scientists

    NASA Astrophysics Data System (ADS)

    Ávila, A.; Meza-Montes, Lilia; Ponce-Dawson, Silvina

    2015-12-01

    To effectively build capacity for research and training in science, technology, engineering, and mathematics (STEM) across Latin America and the Caribbean, a gender perspective must be factored in. Working from an awareness of the gender situation as well as of the multiple personal challenges experienced due to gender disparity, a group of Latin American female scientists organized a workshop with the goal of empowering young female scientists and assessing the challenges they face. In this paper we summarize the outcomes of the workshop, highlighting the barriers that are common in the region. Among other aspects, the workshop stressed the need for resource platforms for finding technical and professional networks, jobs, and scholarships.

  4. Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"

    NASA Astrophysics Data System (ADS)

    2005-05-01

    New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they form. Specifically, this turbulence can help prevent planets from rapidly migrating towards the young star. "Although these flares may be creating havoc in the disks, they ultimately could do more good than harm," said Feigelson. "These flares may be acting like a planetary protection program." About half of the young suns in Orion show evidence for disks, likely sites for current planet formation, including four lying at the center of proplyds (proto-planetary disks) imaged by Hubble Space Telescope. X-ray flares bombard these planet-forming disks, likely giving them an electric charge. This charge, combined with motion of the disk and the effects of magnetic fields should create turbulence in the disk. handra X-ray Image of Orion Nebula, Full-Field Chandra X-ray Image of Orion Nebula, Full-Field The numerous results from the Chandra Orion Ultradeep Project will appear in a dedicated issue of The Astrophysical Journal Supplement in October, 2005. The team contains 37 scientists from institutions across the world including the US, Italy, France, Germany, Taiwan, Japan and the Netherlands. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  5. Contributions to Public Understanding of Science by the Lamont-Doherty Earth Observatory (I): Programs and Workshops

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Turrin, M.; Kenna, T. C.; Newton, R.; Buckley, B.

    2009-12-01

    The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science through “live” and web-based programs that provide teachers, students, and the other access to new discoveries and updates on key issues. We highlight current activities in paired posters. Part 1 focuses on events held at the Palisades, NY, campus. "Earth2Class (E2C)" is a unique program integrating science content with increased understanding about classroom learning and technology. Monthly workshops allow K-14 participants to combine talks by researchers about cutting-edge investigations with acquisition of background knowledge and classroom-ready applications. E2C has sponsored 100 workshops by more than 60 LDEO scientists for hundreds of teachers. A vast array of resources on includes archived versions of workshops, comprehensive sets of curriculum units, and professional development opportunities. It has been well received by both workshop participants and others who have only accessed the web site. "Hudson River Snapshot Day" celebrates the Hudson River Estuary and educates participants on the uniqueness of our nearby estuary as part of the annual National Estuaries Week. The New York State Department of Environmental Conservation Hudson River Estuary Program and Hudson Basin River Watch coordinate the event. LDEO scientists help coordinate annual data collection by school classes to create a day-in-the-life picture all along the river. LDEO researchers also participate in "River Summer," bringing together participants from a variety of perspectives to look at the Hudson River and foster better understanding of how the same features can appear very differently to artists, writers, political scientists, economists, or scientists. These perspectives aid in recognizing the Hudson’s unique characteristics and history by identifying cross-disciplinary relationships and fostering new connections. LDEO’s Secondary School Field Research Program engages high school teachers and students as science interns. They work with scientists in a 6-week summer program collaborated with the Harlem Childrens' Society and the Columbia Summer Research Program. Participants collect samples of water, soil, air, plants and animals in local wetlands, forests and urban environments. They receive training at LDEO in basic laboratory skills as they measure many of their own samples. Through The Young Women’s Leadership School of East Harlem, students earn Field Science course credits. The Field Research Program also works with teachers to bring inquiry-based, hands-on field and laboratory science into the classroom during the school year. In addition, teachers and students from many other schools in the NYC region have cooperated with LDEO scientists on projects sponsored through NSF-funded Research Experiences, academic year internships, and other formats. The Public Lectures series began in 1999 in celebration of Lamont’s 50th anniversary. Annually since then, selected Lamont researchers give presentations on their current research. LDEO’s efforts to inspire and educate new generations continue to expand each year.

  6. Graduating College Students' Orientations toward Scientific Research Activity

    ERIC Educational Resources Information Center

    Zubova, L. G.; Andreeva, O. N.; Antropova, O. A.

    2009-01-01

    The population of scientists in Russia is aging, and it is difficult to attract young graduates to enter the profession. Greater efforts need to be made to change the condition of work for scientists in order to make it attractive to those who will become the next generation of Russian scientists. Creating the conditions favorable to the…

  7. New Treatment Option for Young Women with Hormone-Sensitive Breast Cancer

    MedlinePlus

    ... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...

  8. Laboratory Directed Research and Development Program Assessment for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within existing mission areas, as well as to develop new research mission areas in response to DOE and National needs. As the largest expense in BNL's LDRD program is the support graduate students, post-docs, and young scientists, LDRD provides base for continually refreshing the research staff as well as the education and training of the next generation of scientists. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockyer, Nigel S.; Smith, AJ Stewart,; et. al.

    In 2004 a team from the University of Pennsylvania, Princeton University, and the Institute for Advanced Study proposed to host the 2008 International Conference on High Energy Physics (ICHEP) on the campus of the University of Pennsylvania in Philadelphia. The proposal was approved later that year by the C-11 committee of the International Union of Pure and Applied Physics. The Co-Chairs were Nigel S. Lockyer (U. Penn/TRIUMF) and A.J. Stewart Smith (Princeton); Joe Kroll of U. Penn served as Deputy Chair from 2007 on. Highlights of the proposal included 1. greatly increased participation of young scientists, women scientists, and graduatemore » students 2. new emphasis on formal theory 3. increased focus on astrophysics and cosmology 4. large informal poster session (170 posters) in prime time 5. convenient, contiguous venues for all sessions and lodging 6. landmark locations for the reception and banquet. The conference program consisted of three days of parallel sessions and three days of plenary talks.« less

  10. Imagine a universe with 85% down quarks: Mentoring for inclusive excellence in nuclear science

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry J.

    2017-09-01

    If nature created six down quarks for every up quark the world might be a bit more strange. The US population is made up of over 50% women. Hispanic Americans and African Americans make up over 30% of the US population. The processes by which we foster curiosity, educate our youth, encourage people into science, recruit and retain people into physics and welcome them as members of our nuclear physics community results in a much different demographic in the membership of the DNP. Enabling the development of an identity as a scientist or nuclear scientist is a crucial part of mentoring young people to successful careers in nuclear science. Research experiences for students can play a critical role in that identity development. Since 2004, over 170 students have explored nuclear science through the Research Experiences for Undergraduates program Texas A&M University Cyclotron Institute.

  11. Education and Outreach Opportunities in New Astronomical Facilities

    NASA Astrophysics Data System (ADS)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating research into the classroom. An example is the Large Synoptic Survey Telescope, which will put within public reach on a weekly basis a digital survey of the changing sky. The Giant Segmented Mirror Telescope is a key ingredient in the search for extrasolar planets and the National Virtual Observatory will allow unprecedented data access using powerful data mining and visualization tools. NOAO scientists and educators are designing educational programs around these new initiatives in order to capitalize on their national and international educational value. Our most significant challenge is to find ways to consolidate and institutionalize successful prototype and experimental astronomy education programs into permanent national resources for the earth and space science educational community. If we are successful, there is an enormous potential for future research discoveries to be made from the classroom and for NOAO educational programs to serve as models for other science research institutions.

  12. In Service to the Nation: The Geology Scientist Emeritus Program

    USGS Publications Warehouse

    Adrian, B.M.; Bybell, L.M.; Brady, S.R.

    2008-01-01

    The Geology Scientist Emeritus Program of the U.S. Geological Survey was established in 1986 as part of the Bureau's Volunteer for Science Program. The purpose of the Scientist Emeritus (SE) Program is to help support retired USGS senior scientists as they volunteer their expertise, intellect, and creativity in efforts that allow them to remain active in the geoscience community, enhance the program activities of the Geology Discipline, and serve the public. The SE Program is open to all scientists and technical experts who have demonstrated leadership qualities and contributed to the goals of the USGS during a productive career. As long as the individual applying has been a scientist or technical expert, he or she may be considered for the SE Program, regardless of their previous position with the USGS.

  13. STEM Careers Are Out of This World--No Need to Fear Science, Technology, Engineering, or Math

    NASA Technical Reports Server (NTRS)

    Griffin, Amanda; Manning, Kelvin

    2012-01-01

    At NASA, we fully support the President's Educate to Innovate Program in the hopes that American students move from the middle of the pack to the top in the next decade; and that we are expanding STEM education and career opportunities for underrepresented groups, including minorities and females. The first goal we have implemented to help accomplish this is to Strengthen NASA and the Nation's future workforce - Many of you in the audience could be our potential workforce, and the co-op and intern program at NASA is helping students like you. The second goal is to Attract and retain students in STEM disciplines-To compete effectively for the minds, imaginations and career ambitions of young people like you, throughout NASA, we regularly send educators and NASA speakers into classrooms to work directly with you, encouraging you to follow in the footsteps of NASA engineers and scientists. The Third goal is to Engage Americans in NASA's mission- To get young people involved in NASA's mission, we have many exciting programs for college students like the Lunabotics Mining Competition and the Cubes Satellites sent to space

  14. Support for 33rd International Symposium on Free Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Continetti, Robert

    2015-05-15

    Support for the participation of graduate students, postdoctoral fellows and young faculty in the 33rd International Symposium on Free Radicals was provided to ensure broad participation of young scientists.

  15. Recruitment of Underrepresented Minority Researchers into HIV Prevention Research: The HIV Prevention Trials Network Scholars Program

    PubMed Central

    Hamilton, Erica L.; Griffith, Sam B.; Jennings, Larissa; Dyer, Typhanye V.; Mayer, Kenneth; Wheeler, Darrell

    2018-01-01

    Abstract Most U.S. investigators in the HIV Prevention Trials Network (HPTN) have been of majority race/ethnicity and sexual orientation. Research participants, in contrast, have been disproportionately from racial/ethnic minorities and men who have sex with men (MSM), reflecting the U.S. epidemic. We initiated and subsequently evaluated the HPTN Scholars Program that mentors early career investigators from underrepresented minority groups. Scholars were affiliated with the HPTN for 12–18 months, mentored by a senior researcher to analyze HPTN study data. Participation in scientific committees, trainings, protocol teams, and advisory groups was facilitated, followed by evaluative exit surveys. Twenty-six trainees have produced 17 peer-reviewed articles to date. Research topics typically explored health disparities and HIV prevention among black and Hispanic MSM and at-risk black women. Most scholars (81% in the first five cohorts) continued HIV research after program completion. Alumni reported program-related career benefits and subsequent funding successes. Their feedback also suggested that we must improve the scholars' abilities to engage new research protocols that are developed within the network. Mentored engagement can nurture the professional development of young researchers from racial/ethnic and sexual minority communities. Minority scientists can benefit from training and mentoring within research consortia, whereas the network research benefits from perspectives of underrepresented minority scientists. PMID:29145745

  16. Lesson Learned From Three SCOSTEP/CAWSES Capacity Building Workshops of Space Science for Young Scientists from Southeast Asian Countries

    NASA Astrophysics Data System (ADS)

    Su, Shin-Yi; Chung Lee, Lou; Lyu, L. H.

    From 2004 to 2008, SCOSTEP (Scientific Committee on Solar-Terrestrial Physics) is promoting a world-wide CAWSES (Climate and Weather of the Sun-Earth System) program activity. One of the CAWSES program themes is Education Outreach. Thus, in past three years (2005-2007), three different capacity building workshops of space science for young scientists from Southeast Asian countries have been organized by CAWSES-AOPR (CAWSES-Asia Oceanic Pacific Rim) Coordinating Office at National Central University in Taiwan with the support from National Science Council of the Republic of China. In each of the three workshops, there are about 30 participants/trainees from Indonesia, Philippine, Vietnam, Thailand, and Malaysia have attended. The workshop lecturers are professors from National Central University in addition to a few invited professors from US, Japan, and Australia. The workshop tutorial materials are based on the scientific data collected by three Taiwanese satellites launched in 1999 (FORMOSAT-1), 2004 (FORMOSAT-2), and 2006 (FORMOSAT-3/COSMIC). To promote scientific collaboration of using these satellite data, one particular Open Symposium was setup on the third workshop (2007) for all participants to present their research works on their respective national and regional activities. However, due to different national and scientific needs of their own countries, there seem different definitions of "space science" presumed by the participants so that large and different backgrounds are noted among the participants as well as their perceptions of attending the workshops. Thoughts of organizing such "space science" workshop in the future will be discussed.

  17. [Sex- and gender-sensitive research in epidemiology and medicine: how can this be achieved? Aims and first results of the network "Sex-/Gender-Sensitive Research in Epidemiology, Neurosciences and Genetics/Cancer Research"].

    PubMed

    Jahn, I; Gansefort, D; Kindler-Röhrborn, A; Pfleiderer, B

    2014-09-01

    It is considered general knowledge among physicians and epidemiologists that biological and social aspects associated with being male or female have a strong influence on health and disease. Integrating these aspects into research is necessary to counteract the problems--including ethical problems--resulting from a different evidence basis for men and women. From January 2011 to June 2014 the Federal Ministry of Education and Research supported the network "Sex-/Gender-Sensitive Research in Epidemiology, Neuroscience and Genetics/Cancer Research" with three subprojects, which aimed to promote gender-sensitive research practices. The concepts and results are presented in this article. The subproject gathered data (literature analyses, questionnaires) and offered programs for young scientists. Experiences and results were collected and generalized, for instance, in the form of definitions of terms. 50 young scientists have taken part in the training program, identifying associations and barriers in sex-/gender-sensitive research. Among others, a working definition for "sex-/gender-sensitive research" was developed, as well as definitions for the terms "sex-specific" (for biological characteristics that are specific to men or women) and "sex-/gender-dependent" or "sex-/gender-associated" (for biological and social factors, for which the extent of occurrence differs between the sexes). The concepts realized by the network are well suited to stimulate further development and discussions. The definition of terms is an important base for a productive and high-yielding interdisciplinary collaboration.

  18. Funding research in the twenty-first century: current opinions and future directions.

    PubMed

    Squitieri, Lee; Chung, Kevin C

    2014-08-01

    For all academic biomedical researchers, the process of submitting grants and securing research funding is a critical part of advancing one's career. In the current era of decreasing new grant awards and renewals leading to significantly worse success rates, it is hard for young aspiring physician-scientists to remain optimistic regarding their future in academic medicine. It is important that today's young surgeon-scientists prepare for and adapt to the inevitably changing climate of research funding. This article provides a primer on developing a successful career as a funded surgeon-scientist and pathways for building a robust research platform worthy of extramural National Institutes of Health funding in the twenty-first century. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III

    2014-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.

  20. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    NASA Astrophysics Data System (ADS)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other institutions are also volunteering to be mentors. Second, each student will participate in the GLOBE-FLEXE pilot program that involves comparing environmental conditions of local environments to those of extreme environments, like hydrothermal vents in the deep sea. This real-world science program is being coordinated through the FLEXE Project Office at Penn State University, and the GLOBE Program Office in Boulder, Co. We will spend 18 class periods collecting local weather data and analyzing meteorological data from around the world, writing scientific reports, and peer reviewing other students reports. The NHMFL is a sponsor of the Communtiy Classroom Consortium in Tallahassee that is has funded a grant for equipment needed to conduct the data collection portion of this process. Finally, the students will share their research with other students, parents, teachers, and scientists at a school science fair in the fall, and a scientific poster session in the spring. The NHMFL will be supplying judges for the two sessions. They will also be offering the use of their facilities at the laboratory in the spring. Scientists from the lab will mingle with the students, discuss their research, and critique and encourage the young scientists at the first annual Middle School Research Symposium in May, 2008.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, Julian I

    The 19th International Conference on Arabidopsis Research was a successful meeting attended by 815 scientists from around the world including 322 from the United States, 146 attendees from Canada, 179 from Europe, 134 from Asia, and 34 from a combination of Australia, South America, Africa and the Middle East. The scientific program was of excellent quality featuring 64 talks, including 41 from invited speakers. The Keynote Lecture, delivered by Chris Somerville (Energy Biosciences Institute/UC Berkeley) was particularly relevant to US agriculture and energy research and was titled The Development of Cellulosic Biofuels. There were also 6 community-organized workshops featuring 30more » additional talks on topics including Frontiers in Plant Systems Biology, Sources and strategies for Gene Structure, Gene Function, and Metabolic Pathway annotation at TAIR and AraCyc, Advanced Bioinformatic Resources for Arabidopsis, Laser Microtechniques and Applications with Arabidopsis, Plant Proteomics- Tools, Approaches, Standards and Breakthroughs in Studying the Proteome, and Phytohormone Biosynthesis and Signal Transduction. Conference organizers arranged a special seminar by Jim Collins (head of the Directorate of Biosciences at NSF) to provide a community discussion forum regarding the future of Arabidopsis research. Approximately 575 posters were presented in topic areas including, among others, Development, Signal Transduction, Cell Walls, Non-Arabidopsis Systems, and Interactions with Biotic and Abiotic Factors. All conference abstracts and the full program are posted at The Arabidopsis Information Resource (TAIR), a publicly-accessibly website (www.arabidopsis.org/news/abstracts.jsp.) A survey completed by approximately 40% of the meeting attendees showed high satisfaction with the quality of the presentations, meeting organization and the city of Montreal. The conference is the largest annual international Arabidopsis venue which allowed the exchange of information at the forefront of Arabidopsis research and facilitated the establishment of new, and the strengthening of old, collaborations and networks. In addition, the conference provides the site for the annual meetings of the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering Committee (NAASC.) Graduate students, postdoctoral researchers, junior faculty, and underrepresented minorities made up half of the oral presentations thereby promoting the training of young scientists and facilitating important career development opportunities for speakers. Several poster sessions provided an opportunity for younger participants to freely meet with more established scientists. The NAASC continued its outreach efforts and again sponsored two special luncheons to encourage personal and professional development of young scientists and underrepresented minorities. The Emerging Scientists Luncheon featured 8 graduate students selected on the basis of scientific excellence of their submitted research abstracts. Also attending were the Keynote Speaker and faculty conference organizers. The Minority Funding Luncheon, featured 7 awardees (2 female graduate students, 2 female faculty, 2 male graduate students and 1 male faculty) selected by the NAASC through a widely-publicized application process. This luncheon was established specifically to provide an opportunity for underrepresented minorities, and/or scientists from Minority-Serving Institutions/Historically Black Colleges and Universities to network with NAASC members and representatives from federal funding agencies in an informal and intimate setting. This luncheon included introductions of each award recipient and discussion of outreach efforts and informal research and career discussions. Staff members from The Arabidopsis Information Resource (TAIR), the public U.S. Arabidopsis bioinformatics resource, led one workshop and participated in another to convey information to the community about Arabidopsis resources. Participation by young researchers was facilitated through DOE-sponsored registration awards to 10 early career applicants from the US including five graduate students, four postdoctoral scholars and one new assistant faculty member.« less

  2. The Current Situation of Female Scientists in Argentina

    NASA Astrophysics Data System (ADS)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  3. NASA's Airborne Astronomy Program - Lessons For SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2007-07-01

    Airborne astronomy was pioneered and has evolved at NASA Ames Research Center near San Francisco, California, since 1965. Nowhere else in the world has a similar program been implemented. Its many unique features deserve description, especially for the benefit of planning the operation of SOFIA, the Stratospheric Observatory for Infrared Astronomy, and in particular since NASA Headquarters’ recent decision to base SOFIA operations at Dryden Flight Research Center at Edwards, California instead of at Ames. The history of Ames’ airborne astronomy program is briefly summarized. Discussed in more detail are the operations and organization of the 21-year Kuiper Airborne Observatory (KAO) program, which provide important lessons for SOFIA. The KAO program is our best prototype for planning effective SOFIA operations. Principal features of the KAO program which should be retained on SOFIA are: unique science, innovative new science instruments and technologies, training of young scientists, an effective education and public outreach program, flexibility, continuous improvement, and efficient operations with a lean, well integrated team. KAO program features which should be improved upon with SOFIA are: (1) a management structure that is dedicated primarily to safely maximizing scientific productivity for the resources available, headed by a scientist who is the observatory director, and (2) stimuli to assure prompt distribution and accessibility of data to the scientific community. These and other recommendations were recorded by the SOFIA Science Working Group in 1995, when the KAO was decommissioned to start work on SOFIA. Further operational and organizational factors contributing to the success of the KAO program are described. Their incorporation into SOFIA operations will help assure the success of this new airborne observatory. SOFIA is supported by NASA in the U.S. and DLR (the German Aerospace Center) in Germany.

  4. Multi-Sensory Approach to Search for Young Stellar Objects in CG4

    NASA Astrophysics Data System (ADS)

    Hoette, Vivian L.; Rebull, L. M.; McCarron, K.; Johnson, C. H.; Gartner, C.; VanDerMolen, J.; Gamble, L.; Matche, L.; McCartney, A.; Doering, M.; Crump, R.; Laorr, A.; Mork, K.; Steinbergs, E.; Wigley, E.; Caruso, S.; Killingstad, N.; McCanna, T.

    2011-01-01

    Individuals with disabilities - specifically individuals who are deaf or hard of hearing (DHH) and/or blind and visually-impaired (BVI) - have traditionally been underrepresented in the fields of Science, Technology, Engineering, and Math (STEM). The low incidence rate of these populations, coupled with geographic isolation, creates limited opportunities for students to work with and receive mentoring by professionals who not only have specialty knowledge in disability areas but also work in STEM fields. Yerkes Observatory scientists, along with educators from the Wisconsin School for the Deaf, the Wisconsin Center for the Blind and Visually Impaired, Breck School, and Oak Park and River Forest High School, are engaged in active research with a Spitzer Science Center (SSC) scientist. Our ultimate goals are threefold; to engage DHH and BVI students with equal success as their sighted and hearing peers, to share our techniques to make astronomy more accessible to DHH and BVI youth, and to generate a life-long interest which will lead our students to STEM careers. This poster tracks our work with an SSC scientist during the spring, summer, and fall of 2010. The group coauthored another AAS poster on finding Young Stellar Objects (YSO) in the CG4 Nebula in Puppis. During the project, the students, scientists and teachers developed a number of techniques for learning the necessary science as well as doing the required data acquisition and analysis. Collaborations were formed between students with disabilities and their non-disabled peers to create multi-media projects. Ultimately, the projects created for our work with NITARP will be disseminated through our professional connections in order to ignite a passion for astronomy in all students - with and without disabilities. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  5. Does one size fit all? A study of beginning science and mathematics teacher induction

    NASA Astrophysics Data System (ADS)

    Kralik, Jeffrey M.

    Over the past few years, many induction programs have been implemented across the country, primarily designed to limit the amount beginning teacher attrition. Few of these programs have focused on improving teacher quality or identifying the specific needs of individual teachers. Research suggests that beginning science and mathematics teachers have specific needs that are not being met by current induction models, possibly resulting in higher rates of attrition. Harry and Janet Knowles created the Knowles Science Teaching Foundation (KSTF) to identify and support young scientists and mathematicians as they dedicate their lives to teaching young people. Through financial, curricular, and emotional support, KSTF encourages new teachers to remain in teaching and become leaders in their schools and districts. This dissertation is a sequential explanatory study, which first establishes national estimates for beginning teacher attrition rates and the reasons for the migration based on subject area taught, with an emphasis on mathematics and science teachers. This study then evaluates the KSTF model through multiple methods---analysis of KSTF survey data and interviews with KSTF participants and stakeholders.

  6. Media and the making of scientists

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Moira

    This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the unknown. Advocates of informal science learning initiatives suggest that media can be used as a tool for teaching science content. The potential of entertainment media to provide a sense of wonder is a powerful aspect of its potential to inspire the next generation of scientists.

  7. A gender gap in the next generation of physician-scientists: medical student interest and participation in research.

    PubMed

    Guelich, Jill M; Singer, Burton H; Castro, Marcia C; Rosenberg, Leon E

    2002-11-01

    For 2 decades, the number of physician-scientists has not kept pace with the overall growth of the medical research community. Concomitantly, the number of women entering medical schools has increased markedly. We have explored the effect of the changing gender composition of medical schools on the present and future pipeline of young physician-scientists. We analyzed data obtained from the Association of American Medical Colleges, the National Institutes of Health, and the Howard Hughes Medical Institute pertaining to the expressed research intentions or research participation of male and female medical students in the United States. A statistically significant decline in the percentage of matriculating and graduating medical students--both men and women-who expressed strong research career intentions occurred during the decade between 1987 and 1997. Moreover, matriculating and graduating women were significantly less likely than men to indicate strong research career intentions. Each of these trends has been observed for medical schools overall and for research-intensive ones. Cohort data obtained by tracking individuals from matriculation to graduation revealed that women who expressed strong research career intentions upon matriculation were more likely than men to decrease their research career intentions during medical school. Medical student participation in research supported the gender gap identified by assessing research intentions. Female medical student participation in the Medical Scientist Training Program and the Howard Hughes Medical Institute/National Institutes of Health-sponsored Cloisters Program has increased but lags far behind the growth in the female population in medical schools. Three worrisome trends in the research career intentions and participation of the nation's medical students (a decade-long decline for both men and women, a large and persistent gender gap, and a negative effect of the medical school experience for women) presage a further decline in the physician-scientist pipeline unless they are reversed promptly and decisively.

  8. Okeanos Explorer 2014 Gulf of Mexico Expedition: engaging and connecting with diverse and geographically dispersed audiences

    NASA Astrophysics Data System (ADS)

    Russell, C. W.; Elliott, K.; Lobecker, E.; McKenna, L.; Haynes, S.; Crum, E.; Gorell, F.

    2014-12-01

    From February to May 2014, NOAA Ship Okeanos Explorer conducted a telepresence-enabled ocean exploration expedition addressing NOAA and National deepwater priorities in the U.S. Gulf of Mexico. The community-driven expedition connected diverse and geographically dispersed audiences including scientists from industry, academia, and government, and educators, students, and the general public. Expedition planning included input from the ocean science and management community, and was executed with more than 70 scientists and students from 14 U.S. states participating from shore in real time. Training the next generation permeated operations: a mapping internship program trained undergraduate and graduate students; an ROV mentorship program trained young engineers to design, build and operate the system; and undergraduate through doctoral students around the country collaborated with expedition scientists via telepresence. Online coverage of the expedition included background materials, daily updates, and mission logs that received more than 100,000 visits by the public. Live video feeds of operations received more than 700,000 views online. Additionally, professional development workshops hosted in multiple locations throughout the spring introduced educators to the Okeanos Explorer Educational Materials Collection and the live expedition, and taught them how to use the website and education resources in their classrooms. Social media furthered the reach of the expedition to new audiences, garnered thousands of new followers and provided another medium for real-time interactions with the general public. Outreach continued through live interactions with museums and aquariums, Exploration Command Center tours, outreach conducted by partners, and media coverage in more than 190 outlets in the U.S. and Europe. Ship tours were conducted when the ship came in to port to engage local scientists, ocean managers, and educators. After the expedition, data and products were archived and quickly shared with ocean managers and scientists working in the region, providing a baseline of publicly available data and stimulating follow-on exploration, research and management activities within a few months of expedition completion.

  9. Scientists not Sponges: STEM Interest and Inquiry in Early Childhood

    NASA Astrophysics Data System (ADS)

    Jipson, J. L.; Callanan, M. A.; Schultz, G.; Hurst, A.

    2014-07-01

    Young children are fascinated by the natural world. They explore endlessly, with both a sense of wonder and determination, usually in self-directed investigations or informal interactions with peers and adults. Capitalizing on this early period of spontaneous interest and inquiry is critical to efforts to promote lifelong STEM literacy. To inform education and public outreach efforts, it is important to consider common assumptions about how children of this age learn and consider how such assumptions influence the ways we support children's learning. Four metaphors for children learning are investigated in this paper: the young child as sponge, the young child as unlit match, the young child as scientist, and the young child as apprentice. As we critically evaluate these views on learning, we share research findings from developmental psychology that demonstrate that children's engagement with STEM begins well before kindergarten, that children between three and five years of age develop surprisingly sophisticated scientific reasoning capacities and conceptual knowledge, and that parents play an important role in structuring and supporting preschool children's learning.

  10. Revolutionizing Climate Science: Using Teachers as Communicators

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university faculty in climate science and a PolarTREC alumni teacher the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science with a new generation of scientifically literate students. Additionally, teachers possess the skills to inform young professional scientists on effective outreach and communication beyond peer-reviewed papers and scientific circles.

  11. The Role of Geoethics in Geohazards Mitigation: A YES Network Perspective

    NASA Astrophysics Data System (ADS)

    wang, Meng; Barich, Amel; Peppoloni, Silvia

    2013-04-01

    The YES Network is an international group of early career geoscientists from universities, geosciences organizations and companies, with over 3000 members from 121 countries. It has been founded in 2008 during the International Year of Planet Earth with the vision of "Promoting the Geosciences for Society". Until now, 42 National Chapters have been set up. The YES Network aims to build communication bridges between geologists, Policy makers, and Society in order to develop Geological Projects for sustainable development, international scientific collaborations, to bridge the ages between the geoscientists' generations, promote equity in the professional development of young and early career earth-scientists, etc. Concerning the Geoethics field, recently introduced into the Geosciences domain, the YES Network would like to raise the following ideas: The L'Aquila trial is a case for geoscientists to think about their freedom on research, their responsibility toward the society and their relationship with the public policy and medias. These points are crucial for the professional development of the young and early-career earth-scientists around the world. The YES Network is, therefore, setting up an open forum to collect ideas from all young and early-career scientists around the world on this topic in order to spread awareness among this growing part of the scientific community and help them act like an efficient part of it. There have been for a long time many debates about natural hazards both at regional and global level. It is the duty of the scientific community with the collaboration of policy makers to help mitigate the consequences of the natural disasters around the world. The YES Network is currently developing projects about these issues notably about in coastal Countries including geological mapping, Geohazards Reduction Scenarios, teaching programs for local populations. Earth sciences Education is slowing down in developed countries and growing very fast in some developing areas. In African countries, there is a very strong need for implementing this discipline in the sustainable development process. For this purpose, a balance is needed between Geoethics principles and the implementation of Earth Sciences into the policy making system to help an easier and fair involvement of the Earth-scientists community and promote equity in Earth-Science education and professional development for the YES members around the world.

  12. New European Training Network to Improve Young Scientists' Capabilities in Computational Wave Propagation

    NASA Astrophysics Data System (ADS)

    Igel, Heiner

    2004-07-01

    The European Commission recently funded a Marie-Curie Research Training Network (MCRTN) in the field of computational seismology within the 6th Framework Program. SPICE (Seismic wave Propagation and Imaging in Complex media: a European network) is coordinated by the computational seismology group of the Ludwig-Maximilians-Universität in Munich linking 14 European research institutions in total. The 4-year project will provide funding for 14 Ph.D. students (3-year projects) and 14 postdoctoral positions (2-year projects) within the various fields of computational seismology. These positions have been advertised and are currently being filled.

  13. Nuclear science outreach program for high school girls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  14. News in Brief

    NASA Astrophysics Data System (ADS)

    2012-12-01

    Vice President Shen Wenqing Meets with Ecuadorian Guests For the First Time a Chinese Researcher Gives the Plenary Lecture at the International Symposium on Combustion Vice President Shen Wenqing Meets with NSERC Executive Vice-President Vice President Sun Jiaguang Meets with CONICYT President Ten-Year Anniversary Workshop of NSFC-IIASA Young Scientists Summer Program Held in Beijing Vice President Shen Wenqing Meets Guest from K.T. Li Foundation The 6th ASIAHORCs General Meeting in Beijing President Chen Yiyu Meets with DFG Delegation Vice President Shen Yan Visited International Organizations in Italy and France Vice President Wang Jie Meets with CEO of Academy of Malaysia

  15. News in Brief

    NASA Astrophysics Data System (ADS)

    2011-12-01

    China Accomplishes International Evaluation on Science Funding and Management Performance Panel Meeting of NSFC-NIH Joint Program in Beijing NSFC and CAS's New Round Collaboration for Large Scientific Facilities Vice President Shen Wenqing Meets with President of the Helmholtz Association NSFC Supervision Delegation Visits to Japan and Korea NSFC Strengthens Ties with PIs of the Research Fund for International Young Scientists The 9th ASIAHORCs Meeting Held in Daejoen, Korea NSFC Vice President Meets with ICTP Director First U.S.-China Women Chemists Workshop in Beijing Vice President Attends 5th ASIAHORCs Meeting NSFC Vice President Attended IIASA Council Meeting NSFC Vice President Meets With JST Guests

  16. [Start-up grants for young scientists in German medical universities : Can the clinical scientist be saved?

    PubMed

    Pabst, R; Linke, P B; Neudeck, N B A; Schmiel, M; Ernst, S B

    2016-12-01

    German medical faculties currently have severe financial problems. There is the conflict between financing teaching medical students, inpatient and outpatient costs and supporting basic and applied research. Young postdocs can apply for a grant to start research projects to establish techniques on publishing data as a basis for applying for grants from the German Research Foundation or foundations with a critical review system. Successful applicants from the years 1998-2011 were asked to answer a questionnaire. The annual number of applications ranged from 28 to 96 per year. Within the first period of our analysis ranging from 1998 to 2004, a mean number of 69.5 % ± 14.0 % of submitted grant applications were approved annually in comparison to an average approval of 30.9 % ± 11 % in the years 2006-2001. In total 353 projects were funded with a mean amount of money for a project of approximately 18,640 EUR. The mean amount of external grant money following the start-up period was 7.2 times the money initially spent. That is an excellent return of investment. There were no differences between applicants from the department of surgery or department of internal medicine. In the meantime, 56 % of men and 42 % of women have achieved the academic degree university lecturer (privatdozent). Furthermore, 71 % of the participants evaluated this start-up research as supportive for their postdoctoral qualification (habilitation). The program for initial investment for young postdocs by internal start-up grants is overall successful.

  17. Oscillations and Analogies: Thomas Young, MD, FRS, Genius.

    ERIC Educational Resources Information Center

    Martindale, Colin

    2001-01-01

    Thomas Young was a renowned genius in his time who did important work in many scientific disciplines. In today's specialized environment, scientists in each discipline do not appreciate his work. Despite his current obscurity, Young exemplifies traits found in a first-order genius (analogical thinking, high intelligence, hard work, wide interests,…

  18. Middle/high school students in the research laboratory: A summer internship program emphasizing the interdisciplinary nature of biology.

    PubMed

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M

    2006-03-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For the laboratory-based program, selected students from Baltimore City Schools working in groups of three were teamed with undergraduate research assistants at Morgan State University. Teams were assigned a project that was indirectly related to our laboratory research on the characterization of gene expression in Caenorhabditis elegans. At the end of the program, teams prepared posters detailing their accomplishments, and presented their findings to parents and faculty members during a mini-symposium. The posters were also submitted to the respective schools and the interns were offered a presentation of their research at local high school science fairs. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  19. Explorers

    Science.gov Websites

    Atmosphere Explorers Patrick Megonigal Melissa McCormick Dennis Whigham Curator and Soil Ecologist Soil Scientist Brigham Young University Sophomore Waiakea High School Hilo, Hawaii Graduate Student USDA/NRCS St. Croix Field Office National Leader for World Soil Resources USDA/NRCS Soil Scientist USDA

  20. PREFACE: 21th International Conference for Students and Young Scientists: Modern Technique and Technologies (MTT'2015)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    Involving young researchers in the scientific process, and allowing them to gain scientific experience, are important issues for scientific development. The International Conference for Students and Young Scientists ''Modern Technique and Technologies'' is one of a number of scientific events, held at National Research Tomsk Polytechnic University aimed at training and forming the scientific elite. During previous years the conference established itself as a serious scientific event at an international level, attracting members which annually number about 400 students and young scientists from Russia and near and far abroad. An important indicator of this scientific event is the large number of scientific areas covered, such as power engineering, heat power engineering, electronic devices for monitoring and diagnostics, instrumentation, materials and technologies of new generations, methods of research and diagnostics of materials, automatic control and system engineering, physical methods science and engineering, design and artistic aspects of engineering, social and humanitarian aspects of engineering. The main issues, which are discussed at the conference by young researchers, are connected with analysis of contemporary problems, application of new techniques and technologies, and consideration of their relationship. Over the years, the conference committee has gained a lot of experience in organizing scientific meetings. There are all the necessary conditions: the staff of organizers includes employees of Tomsk Polytechnic University; the auditoriums are equipped with modern demonstration and office equipment; leading scientists are TPU professors; the status of the Tomsk Polytechnic University as a leading research university in Russia also plays an important role. All this allows collaboration between leading scientists from all around the world, who are annually invited to give lectures at the conference. The editorial board expresses gratitude to the Administration of Tomsk Polytechnic University (TPU Rector, Professor P.S. Chubik and Vice Rector for Research and Innovation, Professor A.N. Dyachenko) for financial support of the conference. Also, we heartily thank both chairmen of the conference sections and the organizing committee's members for the great, effective, creative work in organizing and developing the conference as well as a significant contribution to the safeguarding and replenishment of the intellectual potential of Russia.

  1. Retaining STEM women with community-based mentoring

    NASA Astrophysics Data System (ADS)

    Lozier, M.

    2011-12-01

    While women have been graduating from physical oceanography programs in increasing numbers for the past two decades, the number of women occupying senior positions in the field remains relatively low. Thus, the disparity between the percentages of women at various career stages seems to be related to the retention of those completing graduate school in physical oceanography, not in recruiting women to the field. Studies indicate that a positive mentoring experience is strongly correlated with success in science, and as such, MPOWIR (Mentoring Physical Oceanography Women to Increase Retention) provides this essential mentoring to physical oceanographers from late graduate school through their early careers. Our network includes over 400 scientists at 70 institutions participating in a variety of online and face-to-face mentoring opportunities. The MPOWIR website (www.mpowir.org) includes resources for junior scientists, ways to get involved, data and career profiles, and a blog with job postings and relevant information. In October 2011, we will hold the third Pattullo conference to bring mentors and mentees together. The 43 participants at this conference will share their research, attend professional development sessions, and openly discuss issues related to the retention of young scientists in the field.

  2. Challenges facing young African scientists in their research careers: A qualitative exploratory study.

    PubMed

    Kumwenda, Save; Niang, El Hadji A; Orondo, Pauline W; William, Pote; Oyinlola, Lateefah; Bongo, Gedeon N; Chiwona, Bernadette

    2017-03-01

    Africa accounts for 14% of world's population, and the economies of most African countries are considered to be growing, but this is not reflected in the amount of research published by Africans. This study aimed at identifying the challenges that young African scientists face in their career development. This was a qualitative exploratory study involving young researchers who attended the Teaching and Research in Natural Sciences for Development (TReND) in Africa scientific writing and communication workshop, which was held in Malawi in September 2015. A semi-structured questionnaire was sent to all workshop participants who consented to taking part in the survey. In total, 28 questionnaires were sent via email and 15 were returned, representing a response rate of 53.6%. Data were analysed using thematic analysis. Young Africans develop their research interests various ways. The most common career-promoting factors identified by the study participants included formal classroom learning, aspirations to attain academic qualifications, work satisfaction, and the desire to fulfill parents' dreams. Challenges cited by survey respondents included a lack of mentorship, funds, and research and writing skills. Lack of interest in research by policymakers, lack of motivation by peers, and heavy workload (leaving little time for research) were also reported as challenges. Respondents suggested that grants specifically targeting young scientists would be beneficial. Participants also urged for the establishment of mentorship programmes, increasing motivation for research, and more frequent training opportunities. There is need for improved funding for institutional and research network strengthening in Africa, with particular attention given to expanding opportunities for young researchers.

  3. Calls for Canada to support basic research

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-08-01

    Canada’s decade-long shift of financial support from fundamental studies towards applied research is dismantling the nation’s funding of basic science, according to a report by the Global Young Academy (GYA) - an international society of young scientists.

  4. Reading about Real Scientists

    ERIC Educational Resources Information Center

    Cummins, Sunday

    2015-01-01

    Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…

  5. Nurturing the Child Scientist

    ERIC Educational Resources Information Center

    Rodgers, Lisa; Basca, Belinda

    2011-01-01

    The natural world fascinates young children. Treasured leaves, shells, stones, and twigs always find their way into the kindergarten classroom. A kindergarten study of collections channels and deepens children's innate impulse to explore and collect. It also lays the foundation for understanding how scientists approach the study of objects in…

  6. Materials Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In Situ Resource Utilization (ISRU) studies work towards future long duration missions. Biomaterials support materials issues affecting crew health. Nanostructured Materials are currently considered to be maturing new research, and Advanced Materials for Space Transportation has as yet no PIs. PIs are assigned a NASA Technical Monitor to maintain contact, a position considered to be a 5 percent per PI effort. Currently 33 PIs are supported on the 1996 NRA, which is about to expire, and 59 on the 1998 NRA. Two new NRAs, one for Radiation Shielding and one for Materials Science for Advanced Space Propulsion are due to be announced by the 2003 fiscal year. MSFC has a number of facilities supporting materials science. These include the Microgravity Development Laboratory/SD43; Electrostatic Levitator Facility; SCN Purification Facility; Electron Microscope/Microprobe Facility; Static and Rotating Magnetic Field Facility; X-Ray Diffraction Facility; and the Furnace Development Laboratory.

  7. ARC Accomplishments and Collaborations Pursuing Challenges with Vision and Focus

    DTIC Science & Technology

    2010-05-10

    Navistar Defense LLC – Dr. Joe Lin, Eaton – Dr. Young Jae Kim, GM Hybrid Powertrain Eng. – Dr. Bin Wu, Mercedes - Benz Hybrid LLC – Dr. Vasilios Tsourapas...Fellows: 3 SAE, 4 ASME, 1 AAAS,1 IACM, 3 IEEE • 8 external Research and Educational Awards • 8 University Awards • 2 Young Scientists/Young Innovator

  8. "I'm Good, but Not That Good": Digitally-Skilled Young People's Identity in Computing

    ERIC Educational Resources Information Center

    Wong, Billy

    2017-01-01

    Computers and information technology are fast becoming a part of young people's everyday life. However, there remains a difference between the majority who can use computers and the minority who are computer scientists or professionals. Drawing on 32 semi-structured interviews with digitally skilled young people (aged 13-19), we explore their…

  9. Women in science: What keeps them interested?

    NASA Astrophysics Data System (ADS)

    Orloff, Teresa Lynn

    The goal of this study was to investigate the importance of five factors on the interest and persistence of females in science. The five factors were: (1) science teachers; (2) parents; (3) one-on-one mentoring; (4) summer and extracurricular science programs; and (5) the media (television, movies, radio, computers). Data was collected through 201 questionnaires distributed equally to three groups of scientists: (1) science teachers; (2) research faculty; and (3) community professionals. Data analysis consisted of nonparametric statistical tests of significance to determine which of the five factors are the most influential. The results of the data analysis revealed the relative order of importance of the five factors on the interest and persistence of females in science as: (1) Science teachers and (2) parents. (3) Summer/extracurricular science programs. (4) Mentors. (5) Media. Three conclusions were derived from this study. First, females are influenced more by people than programs. Unlike males, females define themselves in relation to other people. The people who have the most influence in young females are those people such as teachers and parents who have the most contact with young girls. Females feel safe in such relationships and with a sense of trust comes a feeling of confidence to pursue desires and interests. Second, females place importance on lasting relationships. The relationships that have the most influence on young females are those where trust and confidence have a chance to form over time. Women in the position of long term relationships with young girls such as teachers and parents, need to become active mentors in helping girls choose careers. Third, elementary teachers are not influential towards the interest and persistence of females in science. Many elementary teachers are not comfortable teaching science and therefore spend little time teaching science to their classes. Stronger emphasis in teacher education programs on science and science content needs to occur.

  10. Best Practices in NASA's Astrophysics Education and Public Outreach Projects

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D.

    2015-11-01

    NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.

  11. NSF-supported education/outreach program takes young researchers to the Arctic

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Walsh, J. E.; Hock, R.; Repina, I.; Kaden, U.; Bartholomew, L.

    2014-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The newly supported project in 2013 is planning four summer schools (one per year) focused on four themes in four different Arctic locations. It provides the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-20 people consists of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. An education/outreach specialist from the Miami Science Museum covers the activities and teaches students the important science communications skills. A specialist from the School of Education at UAF evaluates student's progress during the summer schools. Lessons learned during the 12 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the two most recent schools, one conducted in the Arctic Ocean jointly with the 2013 NABOS expedition and another on an Alaskan glacier in 2014 is another focus of this work.

  12. Young engineers and scientists - a mentorship program emphasizing space education

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  13. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III

    2015-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.

  14. XII Recontres De Blois

    NASA Technical Reports Server (NTRS)

    Kaluzienski, Louis (Technical Monitor); Forman, William

    2004-01-01

    In the initial awarding of the grant, we had difficulty phasing our proposed support of graduate students, postdoctoral fellows and young US scientists with the meeting schedule and the grant cycle. Initially, the grant arrived too late to support the meeting. The following year, a combination of the renewal process and the meeting announcement prevented us from announcing the support opportunity sufficiently in advance to allow us to make awards and provide support. As described in the initial proposal, the Moriond and Blois meetings are a unique opportunity for younger researchers to make oral presentations of their work at an international venue. As noted above, the phasing of meetings combined with the difficulty of arranging foreign travel for scientists at other institutions precluded the possibility of supporting the proposed meetings and providing young US scientists and post-doctoral fellows support to attend these meetings.

  15. Biographies of Women Scientists for Young Readers.

    ERIC Educational Resources Information Center

    Bettis, Catherine; Smith, Walter S.

    The participation of women in the physical sciences and engineering woefully lags behind that of men. One significant vehicle by which students learn to identify with various adult roles is through the literature they read. This annotated bibliography lists and describes biographies on women scientists primarily focusing on publications after…

  16. Young Children's Understanding of "More" and Discrimination of Number and Surface Area

    ERIC Educational Resources Information Center

    Odic, Darko; Pietroski, Paul; Hunter, Tim; Lidz, Jeffrey; Halberda, Justin

    2013-01-01

    The psychology supporting the use of quantifier words (e.g., "some," "most," "more") is of interest to both scientists studying quantity representation (e.g., number, area) and to scientists and linguists studying the syntax and semantics of these terms. Understanding quantifiers requires both a mastery of the…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard F. Shand

    The Gordon Research Conference (GRC) on 2003 Archaea: Ecology, Metabolism and Molecular Biology was held at Proctor Academy, Andover, NH from August 3-8, 2003. The Conference was well-attended with 150 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in themore » field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. I want to personally thank you for your support of this Conference. As you know, in the interest of promoting the presentation of unpublished and frontier-breaking research, Gordon Research Conferences does not permit publication of meeting proceedings. If you wish any further details, please feel free to contact me. Thank you, Dr. Richard F. Shand, 2003 Conference Chair.« less

  18. Helping Students Move from Coding to Publishing - Teaching Scientific Communication to Science Interns

    NASA Astrophysics Data System (ADS)

    Batchelor, R.; Haacker-Santos, R.; Pandya, R. E.

    2012-12-01

    To help young scientists succeed in our field we should not only model scientific methods and inquiry, but also train them in the art of scientific writing - after all, poorly written proposals, reports or journal articles can be a show stopper for any researcher. Research internships are an effective place to provide such training, because they offer a unique opportunity to integrate writing with the process of conducting original research. This presentation will describe how scientific communication is integrated into the SOARS program. Significant Opportunities in Atmospheric Research and Science (SOARS) is an undergraduate-to graduate bridge program that broadens participation in the geosciences. SOARS aims to foster the next generation of leaders in the atmospheric and related sciences by helping students develop investigative expertise complemented by leadership and communication skills. Each summer, interns (called protégés) attend a weekly seminar designed to help them learn scientific writing and communication skills. The workshop is organized around the sections of a scientific paper. Workshop topics include reading and citing scientific literature, writing an introduction, preparing a compelling abstract, discussing results, designing effective figures, and writing illuminating conclusions. In addition, protégés develop the skills required to communicate their research to both scientists and non-scientists through the use of posters, presentations and informal 'elevator' speeches. Writing and communication mentors guide protégés in applying the ideas from the workshop to the protégés' required summer scientific paper, poster and presentation, while a strong peer-review component of the program gives the protégés a taste of analyzing, critiquing and collaborating within a scientific forum. This presentation will provide practical tips and lessons learned from over ten years of scientific communications workshops within the SOARS program, including workshop structure, curriculum development, textbooks, reading materials and online resources, peer review and specialty seminars.

  19. How to attract young people to science? (based on materials of sociological research)

    NASA Astrophysics Data System (ADS)

    Karpov, D. A.; Karpova, A. Yu; Kryuchkov, Yu Yu

    2015-10-01

    Involvement of young people into science at the present time is relevant not only in Russia but as well in countries with big experience in this process. The article states that profession of scientist is considered prestigious in the United States and positioned at 4th place in the rating, wheras in Russia it is only at 19th place in the similar rating. The conclusion is based on the sociological studies conducted in the United States and Russia. The authors speculate that changes in public policy in Russia, aimed at recovering of scientific potential, had an impact on young people's ideas and motivation for scientific work. The article provides an analysis of the sociological study conducted by the National Research Tomsk Polytechnic University (TPU), which aims to determine the willingness and possibility to engage in scientific work. The authors note that TPU entered the federal program “5-100-2020” at 4th place in the ranking of the best universities in Russia and has extensive experience, research base, international training programs, exchanges, and internships with best universities in the United States and Europe. The main conclusions of the study is that master students are ready to engage in scientific work; conditions created at the university are the backbone for the development of scientific career of the students; the highest motivation for students is the satisfaction in their scientific advisors.

  20. How Not to Write for Peer-Reviewed Publications: Talking to Everyone Else

    NASA Astrophysics Data System (ADS)

    Reddy, C. M.; Lippsett, L.

    2012-12-01

    In an era when pressing societal issues demand scientific knowledge, science deniers and deriders are increasing, science education is deteriorating, and science in traditional media is diminishing. Scientists are challenged more than ever to explain their work beyond their peers, but they are not encouraged nor trained to do this. Rather, they can be isolated from society at large and trained to communicate in a prescribe style that the public often finds incomprehensible or can't relate to. We created a voluntary course for graduate students in the MIT/WHOI Joint Program in Oceanography to encourage young scientists to venture beyond their laboratories and add much-needed clear and accurate scientific information to critical issues under public debate. The course is team-taught by a scientist with extensive experience dealing with the media, policymakers, legislators, and benefactors, and a journalist with decades of experience writing about science and working with scientists. Together, we expose students to the cultures, perspectives, motivations, and timelines of various stakeholders with whom they may communicate. With guests that include graphic designers, web gurus, and working journalists, the students learn editorial processes and skills to enhance effective communication with non-scientists, including the use of graphics, illustrations, photography and multimedia. Each student is also connected with a mentor: a working science journalist who volunteers personal attention throughout the student's process of writing an article explaining their research. (e.g. Dick Kerr of /Science/ and Peter Spotts of /The Christian Science Monitor/). In short, the course helps students become comfortable and facile outside the ivory tower.

  1. In Memoriam: Frederick S. Goulding (1925-2013)

    NASA Astrophysics Data System (ADS)

    2013-10-01

    Frederick S. Goulding, passed away on July 2, 2013. A brief biography of F.S. Goulding is given highlighting his professional achievements. In spite of Fred's long and productive research career, his most enduring legacy might well be the generations of young scientists, engineers and technical staff whom he mentored and inspired. Fred was a leader who was quick to share his ideas with others and was committed to the success of those who worked with him. As most good scientists, he was able to communicate his insights to a diverse audience. His creative approach to problem solving served as a model for others to emulate. Many of his protégés remained in the Laboratory community for the duration of their careers, others moved on to success in academia and industry. All carry with them a strong sense of respect and gratitude for Fred's contribution to their careers. He contributed technically to a diverse range of programs that covered most aspects of the scientific mission of the Department of Energy.

  2. Inhibitory Effects of Megakaryocytes in Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2010-04-01

    meeting, Feb. 2010, Seattle, WA) 3. Inhibitory effects of megakaryocytes in prostate cancer bone metastasis. (Oral presentation and Young ...cancer bone metastasis. (Oral presentation and ASBMR-Harold M. Frost Young Investigator Award, Aug. 2009, Sun Valley, ID) 5. Career development...valuable new scientific information and also provided critical career development support for an a spiring young scientist. References Please refer

  3. Creationism at the grass roots: A study of a local creationist institution

    NASA Astrophysics Data System (ADS)

    Wendel, Paul J.

    Relying on the book of Genesis as a source text, young-earth creationists or "creation scientists" claim to find physical evidence that the earth was created in six 24-hour periods less than ten thousand years ago and that most of the geologic column was laid down in a year-long worldwide flood. Unsurprisingly, these claims lead to a boundary dispute over the definition of science, in which mainstream scientists impugn the validity of creation science and creation scientists respond in kind. Although young-earth creationism is a growing movement, little is known about it. In particular, little is known about how creationists view the relationship between creationism and science or how the rhetoric of moral, cultural, environmental, and/or biological decline informs creationist practice. In order to investigate these issues, I studied the Fossil Museum (pseudonym), a local young-earth creationist institution, through a combination of naturalistic inquiry and visitor interviews. With respect to the rhetoric of decline, I found that cultural, environmental, and biological decline appear to function independently of one another in Fossil Museum rhetoric. With respect to views of the relationship between creationism and science, I found that despite having limited training or experience in science and despite committing numerous scientific errors, Fossil Museum associates respect and emulate science. Believing that physical evidence mediated by honest science will vindicate young-earth creationism, Fossil Museum associates speak of science in highly Baconian terms, invoking the ideal of assumption-free data and privileging observation over inference. They also accept the notion that science should be falsifiable and they suggest that on this criterion, mainstream science is not scientific. Yet because of their belief that physical evidence can vindicate their position, they openly discuss counterevidence to young-earth creationism, regarding such counterevidence as anomalies for future resolution rather than occasions for crisis. I conclude that because of Fossil Museum associates' honest approach to physical data and their belief that science can resolve disputes, productive dialogue is possible and desirable between mainstream scientists and some young-earth creationists, but such dialogue will be useful only if it is aimed at mutual understanding rather than mutual conversion.

  4. Physician Scientist Training in the United States: A Survey of the Current Literature.

    PubMed

    Kosik, R O; Tran, D T; Fan, Angela Pei-Chen; Mandell, G A; Tarng, D C; Hsu, H S; Chen, Y S; Su, T P; Wang, S J; Chiu, A W; Lee, C H; Hou, M C; Lee, F Y; Chen, W S; Chen, Q

    2016-03-01

    The declining number of physician scientists is an alarming issue. A systematic review of all existing programs described in the literature was performed, so as to highlight which programs may serve as the best models for the training of successful physician scientists. Multiple databases were searched, and 1,294 articles related to physician scientist training were identified. Preference was given to studies that looked at number of confirmed publications and/or research grants as primary outcomes. Thirteen programs were identified in nine studies. Eighty-three percent of Medical Scientist Training Program (MSTP) graduates, 77% of Clinician Investigator Training Program (CI) graduates, and only 16% of Medical Fellows Program graduates entered a career in academics. Seventy-eight percent of MSTP graduates succeeded in obtaining National Institute of Health (NIH) grants, while only 15% of Mayo Clinic National Research Service Award-T32 graduates obtained NIH grants. MSTP physician scientists who graduated in 1990 had 13.5 ± 12.5 publications, while MSTP physician scientists who graduated in 1975 had 51.2 ± 38.3 publications. Additionally, graduates from the Mayo Clinic's MD-PhD Program, the CI Program, and the NSRA Program had 18.2 ± 20.1, 26.5 ± 24.5, and 17.9 ± 26.3 publications, respectively. MSTP is a successful model for the training of physician scientists in the United States, but training at the postgraduate level also shows promising outcomes. An increase in the number of positions available for training at the postgraduate level should be considered. © The Author(s) 2014.

  5. NASA Discovery Program Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of the workshop was to review concepts for Discover-class missions that would follow the first two missions (MESUR-Pathfinder and NEAR) of this new program. The concepts had been generated by scientists involved in NASA's Solar System Exploration Program to carry out scientifically important investigations within strict guidelines -- $150 million cap on development cost and 3 year cap on development schedule. Like the Astrophysics Small Explorers (SMEX), such 'faster and cheaper' missions could provide vitality to solar system exploration research by returning high quality data more frequently and regularly and by involving many more young researchers than normally participate directly in larger missions. An announcement of opportunity (AO) to propose a Discovery mission to NASA is expected to be released in about two years time. One purpose of the workshop was to assist Code SL in deciding how to allocate its advanced programs resources. A second, complimentary purpose was to provide the concept proposers with feedback to allow them to better prepare for the AO.

  6. Young Researchers Engaged in Educational Outreach to Increase Polar Literacy

    NASA Astrophysics Data System (ADS)

    Raymond, M.; Baeseman, J.; Xavier, J.; Kaiser, B.; Vendrell-Simon, B.

    2008-12-01

    The Association of Polar Early Career Scientists (APECS) grew out of the 4th International Polar Year (IPY-4) 2007-08 and is an international and interdisciplinary organization of over 1200 undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in Polar Regions and the wider cryosphere from more than 40 countries. Our aims are to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. As potentially one of the major legacies of IPY-4, APECS members have been at the forefront of increasing scientific knowledge and public interest in the polar regions, centered around global climate change, and enhancing scientific understanding, media attention, primary and secondary school (K-12) educational programs, undergraduate institutions, and public literacy campaigns. Research and Educational Outreach activities by APECS members during IPY-4 have improved both our understanding and the communication of all aspects of the Polar Regions and the importance of their broader global connections. APECS National Committees have run Polar Contests where young researchers partnered with teachers and students to develop curriculum and activities to share their research, have participated in many field based communication exchanges and are mentoring youth to pursue careers in science, and enhancing the public perception of scientists through photo, video and museum exhibits. In cooperation with the IPY Teachers Network and the IPY IPO, APECS is developing a polar education resource book that will feature education and outreach activities by young researchers, as well as provide examples of classroom activities for teachers to incorporate polar literacy into their curriculum and a How-To guide for researchers interested in conducting education and outreach. As young researchers interactively share their excitement and experiences in deepening our understanding of the polar regions, a new generation of polar literate people emerges and society benefits from more knowledge of the rapidly changing polar regions that have a critical and inherent global connection.

  7. Preventing Sexual Violence in Adolescence: Comparison of a Scientist-Practitioner Program and a Practitioner Program Using a Cluster-Randomized Design.

    PubMed

    Muck, Christoph; Schiller, Eva-Maria; Zimmermann, Maria; Kärtner, Joscha

    2018-02-01

    Numerous school-based prevention programs have been developed by scientists and practitioners to address sexual violence in adolescence. However, such programs struggle with two major challenges. First, the effectiveness of many well-established practitioner programs has not been rigorously evaluated. Second, effective scientific programs may be hard to implement into everyday school practice. Combining the knowledge of scientists and practitioners in a scientist-practitioner program could be a helpful compromise. The aim of the present study is to evaluate the effects of a scientist-practitioner program and a practitioner program using a cluster-randomized experimental design. Twenty-seven school classes were randomly assigned to either one of two programs or a control group. Outcome variables (knowledge, attitudes, behavior, and iatrogenic effects) were assessed at pretest, posttest, and a 6-month follow-up for 453 adolescents (55% female, Mage = 14.18). Short-term effects were found in both programs regarding general knowledge, knowledge of professional help, and victim-blaming attitudes. Long-term effects were found in both programs regarding general knowledge and knowledge of professional help and, in the practitioner program, in a reduction of victimization. No other effects were found on attitudes and behavior. No iatrogenic effects in the form of increased anxiety were found. Both the scientist-practitioner and the practitioner program show promise for the prevention of sexual violence in adolescence; in particular, the practitioner program may be a more cost-effective method.

  8. Young Scientists Explore the Sun, Moon and Stars. Book 9 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities specifically focus on space science and allow the children to view themselves as future space scientists. Section one contains…

  9. Mammals, milk, molecules, and micelles.

    PubMed

    Fox, P F

    2011-01-01

    After a brief description of my family background and school days, my professional career as a dairy scientist is described under three headings: research, teaching, and writing. My research activities fall into four areas: biochemistry of cheese, fractionation and characterization of milk proteins, heat stability of milk, and dairy enzymology. Finally, I offer some advice to young scientists.

  10. Explaining Scientists' Plans for International Mobility from a Life Course Perspective

    ERIC Educational Resources Information Center

    Netz, Nicolai; Jaksztat, Steffen

    2017-01-01

    We identify factors influencing young scientists' plans for research stays abroad by embedding theories of social inequality, educational decision making, and migration into a life course framework. We test the developed model of international academic mobility by calculating a structural equation model using data from an online survey of…

  11. The Last 50 Years: Mismeasurement and Mismanagement Are Impeding Scientific Research

    PubMed Central

    Lawrence, Peter A.

    2016-01-01

    In the last 50 years, there have been many changes to the substance, conduct, and style of research. Many of these changes have proved disastrous to the life of scientists and to science itself. As a consequence, the near-romantic spirit of adventure and exploration that inspired young scientists of my own and earlier generations has become tarnished. Now, many of us feel beleaguered by bureaucrats and by politicians: they affect our lives profoundly, apparently without an understanding of the way discoveries are made or of the nature of science itself. The core purposes of universities, teaching and research, are being eroded by excessive administration. The number and locations of our publications are counted up like beans and the outcomes are used to rank us, one against another; a process of evaluation that has recast the purposes of publication. Applying for grants takes far too much time from a young scientist's life. PMID:26970645

  12. Young Scientists Discuss Recent Advances, Future Challenges.

    ERIC Educational Resources Information Center

    Baum, Rudy M.

    1989-01-01

    Discusses a National Academy of Science forum at which a group of outstanding young researchers in astronomy, molecular and developmental biology, physics, chemistry, mathematics, atmospheric science, and materials science met for three days of formal presentations and informal conversations. Provides a short synopsis of major speakers. (MVL)

  13. Mind-to-paper is an effective method for scientific writing.

    PubMed

    Rosenberg, Jacob; Burcharth, Jakob; Pommergaard, Hans Christian; Danielsen, Anne Kjærgaard

    2013-03-01

    The problem of initiating the writing process is a well-known phenomenon, especially for young and inexperienced scientists. The purpose of this paper is to present an effective method to overcome this problem and increase writing efficiency among inexperienced scientists. Twelve young scientists within the medical/surgical fields were introduced to the mind-to-paper concept. The first and last article drafts produced by each of the scientists were scored for language complexity (LIX number, Flesch Reading Ease Scale and Gunning Fog), flow, structure, length and use of references; and the results were compared. All participants produced one full article draft during each of the three dictation days. When comparing the first and last article draft regarding time used, no significant difference was detected. In general, the manuscripts were of high quality on all evaluated parameters, but language complexity had increased in the final manuscript. Mind-to-paper dictation for scientific writing is an effective method for production of scientific papers of good initial quality, even when used for the first time by inexperienced scientists. We conclude that practicing this concept produces papers of an adequate language complexity, and that dictation as a writing tool allows for fast transfer of ideas and thoughts to written text. not relevant. not relevant.

  14. Careers and people

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Nuclear scientists needed The US is heading for a serious shortage of nuclear forensics experts, according to a new report by the American Physical Society (APS) and the American Association for the Advancement of Science (AAAS). Nuclear forensics involves using sophisticated technology to analyse the nature, use and origin of nuclear materials, and is key to monitoring the illicit trade in and use of nuclear weapons. Currently there are fewer than 50 nuclear forensic scientists working in the US's network of national laboratories - not enough, the report claims, to deal with an emergency - and half of them are expected to retire within the next 15 years. As university programmes in radiochemistry and related subjects have been dwindling, there are not nearly enough young scientists to replenish the expertise pool. The report calls for a new programme to develop nuclear forensic scientists that would involve funding research at universities, launching graduate scholarships and fellowships, as well as setting up internships for young scientists at the labs where this work is carried out. Stimulating industrial support of faculty positions is also deemed important. Indeed, at least three or four new postdocs need to be hired into nuclear forensics every year for the next 10 years, the report says. It also recognizes that more research is needed to develop new lab and field equipment, and to create better numerical-simulation techniques.

  15. Reading, Writing, and Presenting Original Scientific Research: A Nine-Week Course in Scientific Communication for High School Students†

    PubMed Central

    Danka, Elizabeth S.; Malpede, Brian M.

    2015-01-01

    High school students are not often given opportunities to communicate scientific findings to their peers, the general public, and/or people in the scientific community, and therefore they do not develop scientific communication skills. We present a nine-week course that can be used to teach high school students, who may have no previous experience, how to read and write primary scientific articles and how to discuss scientific findings with a broad audience. Various forms of this course have been taught for the past 10 years as part of an intensive summer research program for rising high school seniors that is coordinated by the Young Scientist Program at Washington University in St. Louis. The format presented here includes assessments for efficacy through both rubric-based methods and student self-assessment surveys. PMID:26753027

  16. Future of fundamental discovery in US biomedical research

    PubMed Central

    Levitt, Michael; Levitt, Jonathan M.

    2017-01-01

    Young researchers are crucially important for basic science as they make unexpected, fundamental discoveries. Since 1982, we find a steady drop in the number of grant-eligible basic-science faculty [principal investigators (PIs)] younger than 46. This fall occurred over a 32-y period when inflation-corrected congressional funds for NIH almost tripled. During this time, the PI success ratio (fraction of basic-science PIs who are R01 grantees) dropped for younger PIs (below 46) and increased for older PIs (above 55). This age-related bias seems to have caused the steady drop in the number of young basic-science PIs and could reduce future US discoveries in fundamental biomedical science. The NIH recognized this bias in its 2008 early-stage investigator (ESI) policy to fund young PIs at higher rates. We show this policy is working and recommend that it be enhanced by using better data. Together with the National Institute of General Medical Sciences (NIGMS) Maximizing Investigators’ Research Award (MIRA) program to reward senior PIs with research time in exchange for less funding, this may reverse a decades-long trend of more money going to older PIs. To prepare young scientists for increased demand, additional resources should be devoted to transitional postdoctoral fellowships already offered by NIH. PMID:28584129

  17. Scientist in Residence.

    ERIC Educational Resources Information Center

    Thiel, David V.

    1990-01-01

    Describes a secondary school visitation program by scientists in Australia. The program was designed to increase students' motivation related to science, especially physics. Discusses the effects of the program. (YP)

  18. Perspective: PhD scientists completing medical school in two years: looking at the Miami PhD-to-MD program alumni twenty years later.

    PubMed

    Koniaris, Leonidas G; Cheung, Michael C; Garrison, Gwen; Awad, William M; Zimmers, Teresa A

    2010-04-01

    Producing and retaining physician-scientists remains a major challenge in advancing innovation, knowledge, and patient care across all medical disciplines. Various programs during medical school, including MD-PhD programs, have been instituted to address the need for continued production of physician-scientists. From 1971 through 1989, 508 students with a prior PhD in the sciences, mathematics, or engineering graduated in two years from an accelerated MD program at the University of Miami School of Medicine. The program, designed to address potential clinical physician shortages rather than physician-scientist shortages, quickly attracted many top-notch scientists to medicine. Many program graduates went to top-tier residencies, pursued research careers in academic medicine, and became academic leaders in their respective fields. A retrospective examination of graduates conducted in 2008-2009 demonstrated that approximately 59% took positions in academic university medical departments, 3% worked for governmental agencies, 5% entered industry as researchers or executives, and 33% opted for private practice. Graduates' positions included 85 full professors, 11 university directors or division heads, 14 academic chairs, 2 medical school deans, and 1 astronaut. Overall, 30% of graduates had obtained National Institutes of Health funding after completing the program. These results suggest that accelerated medical training for accomplished scientists can produce a large number of successful physician-scientists and other leaders in medicine. Furthermore, these results suggest that shortening the medical portion of combined MD-PhD programs might also be considered.

  19. Centralized Oversight of Physician–Scientist Faculty Development at Vanderbilt: Early Outcomes

    PubMed Central

    Brown, Abigail M.; Morrow, Jason D.; Limbird, Lee E.; Byrne, Daniel W.; Gabbe, Steven G.; Balser, Jeffrey R.; Brown, Nancy J.

    2013-01-01

    Purpose In 2000, faced with a national concern over the decreasing number of physician–scientists, Vanderbilt School of Medicine established the institutionally funded Vanderbilt Physician–Scientist Development (VPSD) program to provide centralized oversight and financial support for physician–scientist career development. In 2002, Vanderbilt developed the National Institutes of Health (NIH)-funded Vanderbilt Clinical Research Scholars (VCRS) program using a similar model of centralized oversight. The authors evaluate the impact of the VPSD and VCRS programs on early career outcomes of physician–scientists. Method Physician–scientists who entered the VPSD or VCRS programs from 2000 through 2006 were compared with Vanderbilt physician–scientists who received NIH career development funding during the same period without participating in the VPSD or VCRS programs. Results Seventy-five percent of VPSD and 60% of VCRS participants achieved individual career award funding at a younger age than the comparison cohort. This shift to career development award funding at a younger age among VPSD and VCRS scholars was accompanied by a 2.6-fold increase in the number of new K awards funded and a rate of growth in K-award dollars at Vanderbilt that outpaced the national rate of growth in K-award funding. Conclusions Analysis of the early outcomes of the VPSD and VCRS programs suggests that centralized oversight can catalyze growth in the number of funded physician–scientists at an institution. Investment in this model of career development for physician–scientists may have had an additive effect on the recruitment and retention of talented trainees and junior faculty. PMID:18820531

  20. Career development for women scientists in Asia.

    PubMed

    Ip, Nancy Y

    2011-06-23

    Previously, challenges faced by women scientists have made it difficult for them to realize their dreams. The remarkable growth of Asian bioscience over the past decade, however, has created opportunities for young women in their home countries. The time is ripe for women in Asia to pursue their scientific aspirations. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Turkish Young Children's Views on Science and Scientists

    ERIC Educational Resources Information Center

    Ozgelen, Sinan

    2012-01-01

    The purpose of the study was to investigate 3rd grade primary students' views on science and scientists. The sample consisted of 254 3rd grade public school students in Mersin. Primary students were asked to answer three basic questions; 1) What is science? 2) Who does science? 3) How is science done? Primary students were requested to give…

  2. The IT in Secondary Science Book. A Compendium of Ideas for Using Computers and Teaching Science.

    ERIC Educational Resources Information Center

    Frost, Roger

    Scientists need to measure and communicate, to handle information, and model ideas. In essence, they need to process information. Young scientists have the same needs. Computers have become a tremendously important addition to the processing of information through database use, graphing and modeling and also in the collection of information…

  3. Exploring Women Community College Natural Scientists' Personal Experience Narratives through a Subjectivist Lens

    ERIC Educational Resources Information Center

    Woods, Nancy Anne

    2010-01-01

    The thrust in education today is to encourage young women to enter nontraditional fields of study such as chemistry, physics, and biology. In order to better prepare the next generation of women scientists, then, we should examine the experiences of women participants already working within these areas. We can learn from their experiences. What…

  4. The Young Artist as Scientist: What Can Leonardo Teach Us?

    ERIC Educational Resources Information Center

    Pollman, Mary Jo

    2017-01-01

    This is the first in-depth look at the important connections between the arts and science specifically for early childhood education (pre-K-3rd grade). Highlighting their many commonalities, such as the processes involved in creative problem solving, the author draws on what we can learn from Leonardo da Vinci as the supreme artist-scientist.…

  5. Using PBL and Interactive Methods in Teaching Subjects in Medical Education

    ERIC Educational Resources Information Center

    Demikhova, Nadiia; Prykhodko, Olga; Loboda, Andrii; Bumeister, Valentina; Smiianov, Vladyslav; Smiianov, Yevgen; Lukianykhin, Vadym; Demikhov, Oleksii

    2016-01-01

    Nowadays information and telecommunication technologies are becoming more and more developed. It especially attracts and captures the young--young scientists, teachers and students. The purpose of the article is to highlight the experience of implementing problem-based learning technology in the traditional system of teaching medical disciplines.…

  6. Ocean Science in a K-12 setting: Promoting Inquiry Based Science though Graduate Student and Teacher Collaboration

    NASA Astrophysics Data System (ADS)

    Lodico, J. M.; Greely, T.; Lodge, A.; Pyrtle, A.; Ivey, S.; Madeiros, A.; Saleem, S.

    2005-12-01

    The University of South Florida, College of Marine Science Oceans: GK-12 Teaching Fellowship Program is successfully enriching science learning via the oceans. Funded by the National Science Foundation, the program provides a unique opportunity among scientists and K-12 teachers to interact with the intention of bringing ocean science concepts and research to the classroom environment enhance the experience of learning and doing science, and to promote `citizen scientists' for the 21st century. The success of the program relies heavily on the extensive summer training program where graduate students develop teaching skills, create inquiry based science activities for a summer Oceanography Camp for Girls program and build a relationship with their mentor teacher. For the last year and a half, two graduate students from the College of Marine Science have worked in cooperation with teachers from the Pinellas county School District, Southside Fundamental Middle School. Successful lesson plans brought into a 6th grade Earth Science classroom include Weather and climate: Global warming, The Geologic timescale: It's all about time, Density: Layering liquids, and Erosion processes: What moves water and sediment. The school and students have benefited greatly from the program experiencing hands-on inquiry based science and the establishment of an after school science club providing opportunities for students to work on their science fair projects and pursuit other science interests. Students are provided scoring rubrics and their progress is creatively assessed through KWL worksheets, concept maps, surveys, oral one on one and classroom discussions and writing samples. The year culminated with a series of hands on lessons at the nearby beach, where students demonstrated their mastery of skills through practical application. Benefits to the graduate student include improved communication of current science research to a diverse audience, a better understanding of the perspective of teachers and their content knowledge, and experience working with children and youth. The GK-12 teacher mentor benefits include a resource of inquiry based ocean science activities and increased knowledge of current scientific ocean research. The K-12 students gain an opportunity to be engage with young passionate scientists, learn about current ocean science research, and experience inquiry based science activities relating to concepts already being taught in their classroom. This program benefits all involved including the graduate students, the teachers, the K-12 students and the community.

  7. NASA's Suborbital Center of Excellence - reaching young minds and crafting the future

    NASA Astrophysics Data System (ADS)

    Cathey, H.; Hottman, S.; Hansen, K.

    The NASA Suborbital Center of Excellence is charting new territory. From an idea to promote science and engineering education and outreach, the Suborbital Center of Excellence is working toward the objective of increasing numbers of college graduates choosing a career in suborbital programs. Approaches to excite university students to want to pursue these careers through relevant and useful work experiences will be highlighted. Suborbital platforms include balloons, sounding rockets, research aircraft (manned and remotely piloted vehicles) and small satellites. Key components of this are the Suborbital Center of Excellence co-op program and the support of Engineering ``Capstone'' projects. A number of these projects and programs have been supported during the past year. Highlights of these student hands-on learning experiences will be presented. The projects have included diverse projects ranging from work on a power beaming demonstration and autonomous aircraft control logic to the development of light weight pressure vessels for balloon flights based on ULDB spin-off technology, and balloon drop sonde development. Preparing these future Scientists and Engineers involves the investment of time, energy, and resources. The Suborbital Center of Excellence is uniquely positioned to do this. Future programs and initiatives will be presented. The Suborbital Center of Excellence is evolving, meeting the needs to promote science and engineering education and outreach. Educational outreach initiatives for young children to university students will also be presented. These include hands-on experiments, demonstrations, and suborbital educational materials.

  8. Building an early career network through outreach projects: The "mon océan & moi" example

    NASA Astrophysics Data System (ADS)

    Barbieux, M.; Scheurle, C.; Ardyna, M.; Harmel, T.; Ferraris, M.; Jessin, T.; Lacour, L.; Mayot, N.; Organelli, E.; Pasqueron De Fommervault, O.; Penkerc'h, C.; Poteau, A.; Uitz, J.; Ramondec, S.; Sauzède, R.; Velluci, V.; Claustre, H.

    2016-02-01

    The ocean plays an important role in the global processes of our planet, from climate change to sea level rise, uptake of carbon dioxide to fisheries stocks. In addition, its scientific importance, extraordinary beauty and public fascination provide perfect ingredients for both education and public outreach. Four years ago, after the launch of the "mon océan & moi" outreach project, an early career network (Ph.D. students and postdocs) has been formed to "promote collaborations/exchanges between the scientific and educational worlds in order to co-elaborate a teaching method for raising the awareness of school children on marine environments". Scientists are pursuing new research yielding improved knowledge and new documentation resources. However, they lack the communication skills to make the subject accessible to the general public. On the other hand, teachers must be informed of recent discoveries and of new resources for educational purposes. To fill this gap, the early career scientists developed, in collaboration with a school authority and an experienced science communicators team, both a trail education program tested directly in middle and high schools and innovative supporting material (i.e., animations, educative video clips and experiments, interactive maps and quizzes). Here we outline a set of guidelines as to how to improve science outreach across a variety of disciplines (e.g., science, technology, engineering) and how this may impact the experience of early career scientists. These tips will be useful for other early career scientists and science outreach projects, large or small, regional, national or international. Such novel outreach initiatives will help educate current and next generations about the importance of ocean environments and the relevance of ocean sciences for the society, and may serve as an example of teamwork for other young scientists.

  9. Dyslexia and Astronomy

    NASA Astrophysics Data System (ADS)

    Schneps, Matthew H.; Greenhill, L. J.; Rose, L. T.

    2007-12-01

    Dyslexia is a hereditary neurological disability that impairs reading. It is believed that anywhere from 5% to 20% of all people in the US may have dyslexia to a greater or lesser degree. Though dyslexia is common, it is a "silent disability" in the sense that it is not easy to tell which individuals suffer from dyslexia and which do not. There is a substantial body of evidence to suggest that people with dyslexia tend to do well in science. For example, Baruj Benacerraf, a Nobel laureate in medicine, is among those whose impairments have been documented and studied. Given that dyslexia was not diagnosed in schools prior to the late 1970's, many established science researchers may have dyslexia and be unaware of their impairment. Therefore, it would not be surprising to find that substantial numbers of scientists working in the fields of astronomy and astrophysics have dyslexia, and yet be unaware of the effects this disability has had on their research. A recently proposed theory by the authors suggests that there may be specific neurological reasons why those with dyslexia may be predisposed to science, and predicts that dyslexia may be associated with enhanced abilities for certain types of visual processing, with special implications for image processing. Our study, funded by the NSF, investigates this hypothesis in the context of astronomy and astrophysics. We expect this work will uncover and document challenges faced by scientists with dyslexia, but perhaps more importantly, lead to an understanding of the strengths these scientists bring to research. The program will serve as a clearing-house of information for scientists and students with dyslexia, and begin to provide mentoring for young people with dyslexia interested in astronomy. Scientists who have reason to believe they may have dyslexia are encouraged to contact the authors.

  10. COSPAR for Dummies: History

    NASA Astrophysics Data System (ADS)

    Viso, Michel

    The committee for Space research was established by the International Council of Scientific Union during the year following the launch of Sputnik 1(October 4th, 1957) which opened the space Era. The committee was the main point of contact in the, then, bipolarized world between scientists from the eastern and western countries. This committee remained the main and sometimes the sole point of contact for the scientists from both parties. During this period, called “cold war” the exchanges were very difficult and language barrier was also a major obstacle in exchanges. Beyond its former, strong political significance, COSPAR aims at promoting the space research, the exchanges of results, information. It was often the starting point of actual scientific cooperation. Even COSPAR has a continuous activity, the focal point for most of the space scientists is the general assembly which was held every year from 1958 up to 1980, then once every other year. The governing body is composed of representatives of various institutions and scientific unions. With the present structure by commissions and sub-commissions, the general assembly are quite big events with numerous scientists working in parallel sessions. The number of oral presentations and poster is continuously increasing. COSPAR is the best and perhaps the unique place for space scientists to exchange and enlarge their vision of space science. While structured in specialized commissions individuals can build up their own interdisciplinary program. Beyond the commissions there are several groups of interests, cross disciplinary and not linked to a single scientific domain: these are the panels. Some are supposed to be transient; some are supposed to be indefinite. The panels can propose advices and recommendations which could be used by the space agencies or other institutions. The officers of the panels are appointed by the COSPAR Bureau. COSPAR is an international cooperative body for scientists. It is the ideal place for young scientist to extend their knowledge not only in their own field but also in other disciplines to prepare their own future and their future research. COSPAR is editing two scientific journals and a bulletin. Just use them!! You are scientists, you are interested in space sciences or science in space; COSPAR is good for you!

  11. Invisible Engineers

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  12. The Canadian clinician-scientist training program must be reinstated.

    PubMed

    Twa, David D W; Squair, Jordan W; Skinnider, Michael A; Ji, Jennifer X

    2015-11-03

    Clinical investigators within the Canadian and international communities were shocked when the Canadian Institutes of Health Research (CIHR) announced that their funding for the MD/PhD program would be terminated after the 2015-2016 academic year. The program has trained Canadian clinician-scientists for more than two decades. The cancellation of the program is at odds with the CIHR's mandate, which stresses the translation of new knowledge into improved health for Canadians, as well as with a series of internal reports that have recommended expanding the program. Although substantial evidence supports the analogous Medical Scientist Training Program in the United States, no parallel analysis of the MD/PhD program has been performed in Canada. Here, we highlight the long-term consequences of the program's cancellation in the context of increased emphasis on translational research. We argue that alternative funding sources cannot ensure continuous support for students in clinician-scientist training programs and that platform funding of the MD/PhD program is necessary to ensure leadership in translational research.

  13. PREFACE: 4th International Hadron Physics Conference (TROIA'14)

    NASA Astrophysics Data System (ADS)

    Dağ, Hüseyin; Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ

    2014-11-01

    The 4th International Conference on Hadron Physics, TROIA'14, was held at Canakkale, Turkey on 1-5 July 2014. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University, Turkish Atomic Energy Authority and HadronPhysics2 Consortium sponsored the conference. It aimed at bringing together the experts and the young scientists working on experimental and theoretical hadron physics. About 50 participants from 10 countries attended the conference. The topics covered included: . Chiral Perturbation Theory . QCD Sum Rules . Effective Field Theory . Exotic Hadrons . Hadron Properties from Lattice QCD . Experimental Results and Future Perspectives . Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and afternoon sessions were devoted to contributed talks. The speakers of the invited talks were: C. Alexandrou, A. Gal, L. Tolos, J.R. Pelaez and M. Schindler. We had also guest speakers D. A. Demir and T. Senger. The conference venue was a resort hotel around Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient Troia town and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to supporting agencies and to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Bora Işıldak, and all other members of the Organizing Committee for their patience and efforts. 30.10.2014 The Editors

  14. Can Experiential Education Strategies Improve Elementary Science Teachers' Perceptions of and Practices in Science Teaching?

    ERIC Educational Resources Information Center

    Sindel, Kasey D.

    2010-01-01

    This study was prompted by the growing amount of research that is in support of science reform and from this researcher's personal experience and concern that science instructions is no longer a top priority in elementary schools nor are young scientists given the opportunities to act as scientists in a real world setting. This study uses…

  15. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  16. LiMPETS: Scientists Contributions to Coastal Protection Program for Youth

    NASA Astrophysics Data System (ADS)

    Saltzman, J.; Osborn, D. A.

    2004-12-01

    In the West Coast National Marine Sanctuaries' LiMPETS (Long-term Monitoring Experiential Training for Students), scientists have partnered with local sanctuaries to develop an educational and scientifically-based monitoring program. With different levels of commitment and interest, scientists have contributed to developing protocols that youth can successfully use to monitor coastal habitats. LiMPETS was developed to address the gap in marine science education for high school students. The team of sanctuary educators together with local scientists collaborate and compromise to develop scientifically accurate and meaningful monitoring projects. By crossing the border between scientists and educators, LiMPETS has become a rich program which provides to teachers professional development, monitoring equipment, an online database, and field support. In the Sandy Beach Monitoring Project, we called on an expert on the sand crab Emerita analoga to help us modify the protocols that she uses to monitor crabs regularly. This scientist brings inspiration to teachers at teacher workshops by explaining how the student monitoring compliments her research. The Rocky Intertidal Monitoring Project was developed by scientists at University of California at Santa Cruz with the intention of passing on this project to an informal learning center. After receiving California Sea Grant funding, the protocols used for over 30 years with undergraduates were modified for middle and high school students. With the help of teachers, classroom activities were developed to train students for fieldwork. The online database was envisioned by the scientists to house the historical data from undergraduate students while growing with new data collected middle and high school students. The support of scientists in this program has been crucial to develop a meaningful program for both youth and resource managers. The hours that a scientist contributes to this program may be minimal, a weeklong workshop or even a part-time job. The framework of resource protection agencies partnering with scientists can be replicated to monitor other natural habitats. Through LiMPETS, scientists are helping to develop scientifically literate youth who are engaged in environmental monitoring.

  17. In Brief: Revitalizing Earth science education

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.

  18. MSFC personnel management tasks: Recruitment and orientation of new employees

    NASA Technical Reports Server (NTRS)

    Brindley, T. A.

    1980-01-01

    In order to encourage highly motivated young students to learn about NASA and consider it for a career, a formal program is to be initiated whereby selected students can work on a voluntary basis at Marshall Space Flight Center (MSFC). The first task was to develop the working plan and procedures for this program, called Student Volunteer Service Program, in the writing of MSFC official guidelines, the Marshall Management Instruction (the MMI) which is a binding document that defines policy and establishes procedures and guidelines. Particular considerations written into the MMI after numerous consultations, interviews, and discussions about a satisfactory policy, include: arrangements to be made between the student, the school authorities, and concerned MSFC employees; management of the work assignments; and procedures for the student's welfare and safety. The second task was the development of a recruitment brochure for the attraction of new employees, especially scientists and engineers. The third task assigned was to develop a plan called Orientation of New Employees.

  19. Clinician-scientist trainee: a German perspective.

    PubMed

    Bossé, Dominick; Milger, Katrin; Morty, Rory E

    2011-12-01

    Clinician-scientists are particularly well positioned to bring basic science findings to the patient's bedside; the ultimate objective of basic research in the health sciences. Concerns have recently been raised about the decreasing workforce of clinician-scientists in both the United States of America and in Canada; however, little is known about clinician-scientists elsewhere around the globe. The purpose of this article is two-fold: 1) to feature clinician-scientist training in Germany; and 2) to provide a comparison with the Canadian system. In a question/answer interview, Rory E. Morty, director of a leading clinician-scientist training program in Germany, and Katrin Milger, a physician and graduate from that program, draw a picture of clinician-scientist training and career opportunities in Germany, outlining the place of clinician-scientists in the German medical system, the advantages and drawbacks of this training, and government initiatives to promote training and career development of clinician-scientists. The interview is followed by a discussion comparing the German and Canadian clinician-scientist development programs, focusing on barriers to trainee recruitment and career progress, and efforts to eliminate the barriers encountered along this very demanding but also very rewarding career path.

  20. Four windows on modern science in flavor and fragrance chemistry at Firmenich.

    PubMed

    Starkenmann, Christian; Wünsche, Laurent

    2012-01-01

    Four young scientists, recently hired by Firmenich, presented lectures at the University of Geneva. The objective was to stimulate young students to choose sciences. The challenges in the discovery, synthesis, or extraction of new molecules were presented, as well as the structure-activity relationships of human odorant receptors.

  1. Young People's Aggressive Behavior in the Context of the Social Situation

    ERIC Educational Resources Information Center

    Drozdov, A. Iu.

    2005-01-01

    Aggressive behavior by young people is one of the most urgent social problems. Rising violent crime among adolescents is being observed over the entire post-Soviet space. Scientists have singled out a number of groups of factors causing an individual to engage in aggressive behavior--biological, genetic, and individual psychological…

  2. The AGU Hydrology Student Subcommittee (H3S) - fostering the Fall Meeting experience for young hydrologists

    NASA Astrophysics Data System (ADS)

    Claes, N.; Beria, H.; Brown, M. R. M.; Kumar, A.; Goodwell, A. E.; Preziosi-Ribero, A.; Morris, C. K.; Cheng, F. Y.; Gootman, K. S.; Welsh, M.; Khatami, S.; Knoben, W.

    2017-12-01

    The AGU Hydrology Section Student Subcommittee (H3S), the student body of the AGU hydrology section, caters to the needs of students and early career scientists whose research interests contain a hydrological component. The past two years, H3S organized a Student and Early Career Scientist conference addressing both the technical and research needs of young hydrologists. Over the past several years, H3S organized pop-up sessions in Water Sciences and Social Dimensions of Geosciences which allowed young hydrologists to share and learn from their collective experiences. Social events like the early career social mixer, co-organized with CUAHSI, led to increased networking opportunities among peers. Continuous social media engagement led to a general dialogue within the community over varied issues including research productivity, gender equality, etc. Ice-breaker events between junior and senior academics encouraged young hydrologists to talk with their academic crushes and continuously seek out mentorship opportunities. Collating our past experiences, we ponder over our accomplishments, failures, and opportunities to improve representation of early career hydrologists within the community.

  3. Ahead of the Curve; Hidden breakthroughs in the biosciences

    NASA Astrophysics Data System (ADS)

    Levin, Michael; Adams, Dany Spencer

    2016-12-01

    This unique book is a compendium of carefully curated published papers in the biosciences, which have (or will) precipitate a profound change in prevailing paradigms and research programs. A mix of new and classic papers, it shows the limitations of current thought or identifies novel vistas for investigations that have not yet been explored. The purpose of the book is to highlight scientific gems, most unrecognized, that suggest revisions to key pillars of thought in the biological sciences and further the education of young scientists. This will be achieved by including reprints of papers that demonstrate counter-paradigm, novel directions for future research featuring commentary from current, notable researchers in a variety of areas.

  4. Bridging the Gap: establishing the necessary infrastructure and knowledge for teaching and research in neuroscience in Africa.

    PubMed

    Yusuf, Sadiq; Baden, Tom; Prieto-Godino, Lucia L

    2014-06-01

    Advances in neuroscience research over the last few decades have increased our understanding of how individual neurons acquire their specific properties and assemble into complex circuits, and how these circuits are affected in disease. One of the important motives driving neuroscience research is the development of new scientific techniques and interdisciplinary cooperation. Compared to developed countries, many countries on the African continent are confronted with poor facilities, lack of funding or career development programs for neuroscientists, all of which deter young scientists from taking up neuroscience as a career choice. This article highlights some steps that are being taken to promote neuroscience education and research in Africa.

  5. Evaluating Career Development Resources: Lessons from the Earth Science Women's Network (ESWN)

    NASA Astrophysics Data System (ADS)

    Kogan, M.; Laursen, S. L.

    2010-12-01

    Retention of geoscientists throughout the professional pipeline is especially challenging in the case of groups that are already underrepresented in science, including racial minorities and women. The Earth Science Women’s Network (ESWN) is a professional network of early-career female geoscientists that provides its members with a variety of career resources, through both informal, online and in-person networking and formal career development workshops. The group’s members are of diverse nationalities and racial/ethnic backgrounds, of various age cohorts and career stages, but primarily graduate students, postdocs, and early-career researchers. With funding from an NSF ADVANCE grant to ESWN, we have conducted a detailed survey of ESWN members as part of an evaluation-with-research study that aims to determine the career needs of young geoscientists. The survey data provide information about members’ personal and professional situations, their professional development needs, and obstacles they face as young women scientists. ESWN members indicated a variety of areas of professional growth that would advance their scientific careers, but at all career stages, members chose expanding their professional networks as among their top career needs. Professional networking has established benefits for retention of people from groups underrepresented in science, including women: it introduces young scientists to career best practices and advancement opportunities, provides access to role models, and creates a sense of community. ESWN members strongly indicate that their professional networks benefited from their involvement with the Network. The community aspect of network-building is especially important for people from underrepresented groups, as they often feel alone due to the lack of role models. The intimate character of the ESWN discussion list greatly contributes to its members’ sense of community. Moreover, personal concerns and professional success are inextricably linked for women scientists, who still perform a disproportionate share of domestic and parenting duties, as our data show. ESWN members of all career stages cited work/life balance as among their top career obstacles. Here the intimate tone of ESWN discussion list proves helpful once again: women feel safe to exchange their experiences and suggestions for handling a variety of work/life dilemmas. Our data offer a snapshot of the population that is not well documented by researchers so far - young women scientists at various early-career stages, ranging from graduate students and postdocs to young faculty. We will offer a glimpse of their career needs and present the strategies that have enabled ESWN to provide them with relevant career resources through establishing a supportive community, as well as suggest future directions for the Network to develop. These lessons learned from ESWN should be helpful to all interested in supporting young scientists through critical career junctures.

  6. The Value of Participating Scientists on NASA Planetary Missions

    NASA Astrophysics Data System (ADS)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  7. Meet EPA Exposure Scientist and National Program Director Dr. Tina Bahadori

    EPA Pesticide Factsheets

    Dr. Tina Bahadori leads EPA's Chemical Safety for Sustainability research program. She is an exposure scientist with extensive expertise developing and managing research programs that integrate exposure with health sciences.

  8. The Community Mentoring REU: A Novel Paradigm for Research Experiences for Undergraduates Programs

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry; Maierhofer, Lara; Kobulnicky, Carol; Dale, Daniel A.

    2018-01-01

    Research Experience for Undergraduates programs were conceived to promote entry of college students into STEM disciplines. Evidence suggests that participating in REUs increases interest in STEM, conveys skills leading to STEM jobs and graduate study, increases science self-efficacy, builds professional networks for young scientists, and cultivates identity as a scientist. Nevertheless, the factors that mediate desired outcomes are still poorly understood, and persistence of negative mentoring experiences among REU participants motivates the design and study of novel approaches to preparing future STEM professionals. During five summers spanning 2012-2016 we implemented a "Community Mentoring" paradigm at the University of Wyoming's 10-week Astronomy REU program. In contrast to "traditional model (TM)" REUs that pair a single senior scientist mentor with a single junior mentee, community mentoring (CM) unites 6-8 undergraduates with 3-5 faculty (perhaps assisted by a graduate student or postdoc) on a collaborative team addressing a single science goal. In CM, students have access to a pool of mentors and a peer group reading the same literature, working in a common location, sharing equipment (in this case the WIRO 2.3 meter telescope), sharing data, and learning the same analysis skills. The community interacts daily, modeling the highly collaborative nature of modern scientific teams. Our study used an electronic survey consisting of 24 questions to compare a cohort of 28 CM students to a national control group of 77 students who conducted REUs elsewhere during the same period, typically under the TM. CM students report a significantly higher level of "learning from their peers", "learning to work on a science team", and "sense of community" compared to the TM cohort. The CM cohort also reports a higher overall level of satisfaction with the REU and a lower level of negative experiences, such as finding it difficult to get time with a mentor. This talk will review other lessons learned in five years of community mentoring as it describes an alternative paradigm for REUs.

  9. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being †

    PubMed Central

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-01-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”. PMID:25390795

  10. Understanding the challenges of integrating scientists and clinical teachers in psychiatry education: findings from an innovative faculty development program.

    PubMed

    Martimianakis, Maria Athina Tina; Hodges, Brian D; Wasylenki, Donald

    2009-01-01

    Medical schools and departments of psychiatry around the world face challenges in integrating science with clinical teaching. This project was designed to identify attitudes toward the integration of science in clinical teaching and address barriers to collaboration between scientists and clinical teachers. The authors explored the interactions of 20 faculty members (10 scientists and 10 clinical teachers) taking part in a 1-year structured faculty development program, based on a partnership model, designed to encourage collaborative interaction between scientists and clinical teachers. Data were collected before, during, and after the program using participant observations, surveys, participant diaries, and focus groups. Qualitative data were analyzed iteratively using the method of meaning condensation, and further informed with descriptive statistics generated from the pre- and postsurveys. Scientists and clinicians were strikingly unfamiliar with each other's worldviews, work experiences, professional expectations, and approaches to teaching. The partnership model appeared to influence integration at a social level, and led to the identification of departmental structural barriers that aggravate the divide between scientists and clinical teachers. Issues related to the integration of social scientists in particular emerged. Creating a formal program to encourage interaction of scientists and clinical teachers provided a forum for identifying some of the barriers associated with the collaboration of scientists and clinical teachers. Our data point to directions for organizational structures and faculty development that support the integration of scientists from a wide range of disciplines with their clinical faculty colleagues.

  11. REFLECTIONS ON PHYSICAL CHEMISTRY: Science and Scientists

    NASA Astrophysics Data System (ADS)

    Jortner, Joshua

    2006-05-01

    This is the story of a young person who grew up in Tel-Aviv during the period of the establishment of the State of Israel and was inspired to become a physical chemist by the cultural environment, by the excellent high-school education, and by having been trained by some outstanding scientists at the Hebrew University of Jerusalem and, subsequently, by the intellectual environment and high-quality scientific endeavor at the University of Chicago. Since serving as the first chairman of the Chemistry Department of the newly formed Tel-Aviv University he has been immersed in research, in the training of young scientists, and in intensive and extensive international scientific collaboration. Together with the members of his "scientific family" he has explored the phenomena of energy acquisition, storage and disposal and structure-dynamics-function relations in large molecules, condensed phase, clusters and biomolecules, and is looking forward to many future adventures in physical chemistry. "What to leave out and what to put in? That's the problem." Hugh Lofting, Doctor Dolittle's Zoo, 1925

  12. The Last 50 Years: Mismeasurement and Mismanagement Are Impeding Scientific Research.

    PubMed

    Lawrence, Peter A

    2016-01-01

    In the last 50 years, there have been many changes to the substance, conduct, and style of research. Many of these changes have proved disastrous to the life of scientists and to science itself. As a consequence, the near-romantic spirit of adventure and exploration that inspired young scientists of my own and earlier generations has become tarnished. Now, many of us feel beleaguered by bureaucrats and by politicians: they affect our lives profoundly, apparently without an understanding of the way discoveries are made or of the nature of science itself. The core purposes of universities, teaching and research, are being eroded by excessive administration. The number and locations of our publications are counted up like beans and the outcomes are used to rank us, one against another; a process of evaluation that has recast the purposes of publication. Applying for grants takes far too much time from a young scientist's life. © 2016 Elsevier Inc. All rights reserved.

  13. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended field programs, which lay the foundation for leadership positions, but which may be difficult for young faculty. The strategy is to use the Earth Institute as a test bed for institutional change, and then expand the successful programs to other Columbia Science and Engineering Departments, as appropriate. Columbia's administration is committed to changing policies and supporting successful programs beyond the completion of the NSF grant. Earth Institute ADVANCE programs include (a) a self study including a climate survey modeled after the 1999 MIT study, (b) a senior faculty working group that will facilitate recruitment and retention by providing support for searches, faculty development, and retention, (c) internal funding competitions designed to recruit and retain women scientists and engineers, and (d) focused workshops and conferences. The ADVANCE program will establish offices both on the Morningside campus in Manhattan and Lamont campus in Palisades, NY.

  14. Spicing up Science: Mini Undergraduate Research Projects in Physics and Chemistry

    NASA Astrophysics Data System (ADS)

    Devendorf, George

    2008-10-01

    Individual student research projects are often small pieces of a larger research program and may or may not provide an interesting and satisfying research experience for a student researcher who only is engaged in the project for a limited time. This researcher describes a variety of research activities conducted with advanced high school students in a high school setting. These research projects are limited by the academic experience of the student, facilities and resources and available time. Such limitations however, have shaped some of the research projects into ``mini-projects'' that form interesting scientific questions which can be addressed within a semester or yearlong project. Several of these research ideas have been inspired from teaching introductory courses and though they may not further a continuing research program or spawn significant publications, they do provide an avenue for teaching and inspiring scientific inquiry in the minds of young potential scientists.

  15. [Jena philosophies of nature around 1800].

    PubMed

    Breidbach, O

    2000-01-01

    This paper describes the situation and the outline of positions in philosophy of nature in Jena about 1800, in focusing on research other than the key figures Schelling and Hegel. In 1789, Schelling introduced philosophy of nature into the course program of Jena University. Already in 1800, two young scientists--a mathematician (Fischer) and a physiologist--reacted, announcing lectures on Schellingian topics. But only in late 1802, younger philosophers offered courses on those topics. From 1802 onwards, lectures were announced by Schad, Krause, Henrici, Hegel, Oken and the botanist Schelver. Apart from the Fisher lecture from 1800, the program of these presentations was based on Schellingian principles. Analyses of the ideas of Schad, Krause and Schelver show that, about 1800, philosophy of nature in Jena conserved basic ideas of the early philosophy of nature of Schelling. Thus, philosophy of nature in this period of Jena University seemed to follow just one line of reasoning.

  16. Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED

    NASA Astrophysics Data System (ADS)

    Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.

    A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.

  17. An Opportunity for Industry-Academia Partnership: Training the Next Generation of Industrial Researchers in Characterizing Higher Order Protein Structure.

    PubMed

    Bain, David L; Brenowitz, Michael; Roberts, Christopher J

    2016-12-01

    Training researchers for positions in the United States biopharmaceutical industry has long been driven by academia. This commentary explores how the changing landscape of academic training will impact the industrial workforce, particularly with regard to the development of protein therapeutics in the area of biophysical and higher order structural characterization. We discuss how to balance future training and employment opportunities, how academic-industrial partnerships can help young scientists acquire the skills needed by their future employer, and how an appropriately trained workforce can facilitate the translation of new technology from academic to industrial laboratories. We also present suggestions to facilitate the coordinated development of industrial-academic educational partnerships to develop new training programs, and the ability of students to locate these programs, through the development of authoritative public resources. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. KSC-99pp0991

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter, Bridget Youngs, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander

  19. KSC-99pp0993

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter Bridget Youngs prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander

  20. STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter Bridget Youngs prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  1. STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter, Bridget Youngs, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  2. The Impact of Funding through the RF President’s Grants for Young Scientists (the field – Medicine) on Research Productivity: A Quasi-Experimental Study and a Brief Systematic Review

    PubMed Central

    Saygitov, Ruslan T.

    2014-01-01

    The impact of grants on research productivity has been investigated by a number of retrospective studies. The results of these studies vary considerably. The objective of my study was to investigate the impact of funding through the RF President’s grants for young scientists on the research productivity of awarded applicants. The study compared the number of total articles and citations for awarded and rejected applicants who in 2007 took part in competitions for young candidates of science (CoS’s) and doctors of science (DoS’s) in the scientific field of medicine. The bibliometric analysis was conducted for the period from 2003 to 2012 (five years before and after the competition). The source of bibliometric data is the eLIBRARY.RU database. The impact of grants on the research productivity of Russian young scientists was assessed using the meta-analytical approach based on data from quasi-experimental studies conducted in other countries. The competition featured 149 CoS’s and 41 DoS’s, out of which 24 (16%) and 22 (54%) applicants, respectively, obtained funding. No difference in the number of total articles and citations at baseline, as well as in 2008–2012, for awarded and rejected applicants was found. The combination of data from the Russian study and other quasi-experimental studies (6 studies, 10 competitions) revealed a small treatment effect – an increase in the total number of publications over a 4–5-year period after the competition by 1.23 (95% CI 0.48–1.97). However, the relationship between the number of total publications published by applicants before and after the competition revealed that this treatment effect is an effect of the “maturation” of scientists with a high baseline publication activity – not of grant funding. PMID:24475203

  3. The impact of funding through the RF President's grants for young scientists (the field--medicine) on research productivity: a quasi-experimental study and a brief systematic review.

    PubMed

    Saygitov, Ruslan T

    2014-01-01

    The impact of grants on research productivity has been investigated by a number of retrospective studies. The results of these studies vary considerably. The objective of my study was to investigate the impact of funding through the RF President's grants for young scientists on the research productivity of awarded applicants. The study compared the number of total articles and citations for awarded and rejected applicants who in 2007 took part in competitions for young candidates of science (CoS's) and doctors of science (DoS's) in the scientific field of medicine. The bibliometric analysis was conducted for the period from 2003 to 2012 (five years before and after the competition). The source of bibliometric data is the eLIBRARY.RU database. The impact of grants on the research productivity of Russian young scientists was assessed using the meta-analytical approach based on data from quasi-experimental studies conducted in other countries. The competition featured 149 CoS's and 41 DoS's, out of which 24 (16%) and 22 (54%) applicants, respectively, obtained funding. No difference in the number of total articles and citations at baseline, as well as in 2008-2012, for awarded and rejected applicants was found. The combination of data from the Russian study and other quasi-experimental studies (6 studies, 10 competitions) revealed a small treatment effect--an increase in the total number of publications over a 4-5-year period after the competition by 1.23 (95% CI 0.48-1.97). However, the relationship between the number of total publications published by applicants before and after the competition revealed that this treatment effect is an effect of the "maturation" of scientists with a high baseline publication activity--not of grant funding.

  4. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine A.

    2017-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  5. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine A.

    2016-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  6. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine

    2015-08-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  7. Introducing Astronomy Allies: We are here to help!

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine A.

    2015-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting will be the first meeting that has Astronomy Allies, and Astronomy Allies will provide a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  8. Successful scientist: What's the winning formula?

    PubMed

    Stull, April J; Ciappio, Eric D

    2014-11-01

    What does it take to become a successful scientist? This question is usually asked or thought about at some point in a young scientist's career. The early stages of a scientific career are fraught with many hardships, and achieving success can seem impossible and daunting. After encountering many obstacles, it becomes easy to focus on failures and lose sight of career goals. The journey to success can seem so simple when looked upon from the outside, but even the best scientists have endured many hardships, which are often not communicated. This educational symposium featured a diverse panel of 5 accomplished scientists representing different work environments, such as government, industry, and academia. They discussed tips on how to have a successful career journey and the key qualities of a successful scientist. Also, they revealed the secret to what's in the winning formula for success. © 2014 American Society for Nutrition.

  9. The Young Scientist Club of the International Association for Promoting Geoethics - Promoting geoethics among the young geoscientists community

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; De Pascale, Francesco; Gomez Cantero, Jonathan; Hassan, Tharwat; Mukosi, Ndivhuwo Cecilia; O'Brien, Craig

    2016-04-01

    The International Association for Promoting Geoethics (IAPG) is a multidisciplinary, scientific platform for the debate on problems of Ethics applied to the Geosciences. The Young Scientists Club (YSC) of the IAPG represents the interface between the IAPG and the young geoscientists' community, organizations and groups. Its overall goal is to promote the topic of geoethics and the IAPG among its young colleagues. The YSC is considered to be the outpost of the IAPG and one of its greater strengths. It is believed that young people entering the professional world or evolving in academic settings can identify needs and expectations that geosciences can cover. The YSC seeks to give a status update on pertinent geoscience challenges and how geoethical principles can be integrated in tackling these challenges. They can also report new instances from the society and identify the potential innovative contributions that geosciences can provide as a service to the population. The YSC was initiated in the summer 2015. All IAPG members younger than 35 years old are part of the YSC. Its Executive Board is constituted by enthusiastic young geoscientists from various backgrounds and countries. Their tasks are to organize and coordinate the activities of the YSC: manage young geoscientists blog posts on Geoethics, set-up a forum platform to allow discussions about geoethics between young and senior geoscientists, organize IAPG-YSC sessions at international conferences for example to discuss the new values that allow to do research in geosciences and organize working groups on geoethical topics. The YSC eagerly anticipates meeting the young geoscientist community at the upcoming EGU Assembly and discuss all current geoethical issues. We look forward to garnering further support for this exciting initiative.

  10. Mobility and International Collaboration: Case of the Mexican Scientific Diaspora.

    PubMed

    Marmolejo-Leyva, Rafael; Perez-Angon, Miguel Angel; Russell, Jane M

    2015-01-01

    We use a data set of Mexican researchers working abroad that are included in the Mexican National System of Researchers (SNI). Our diaspora sample includes 479 researchers, most of them holding postdoctoral positions in mainly seven countries: USA, Great Britain, Germany, France, Spain, Canada and Brazil. Their research output and impact is explored in order to determine their patterns of production, mobility and scientific collaboration as compared with previous studies of the SNI researchers in the periods 1991-2001 and 2003-2009. Our findings confirm that mobility has a strong impact on their international scientific collaboration. We found no substantial influence among the researchers that got their PhD degrees abroad from those trained in Mexican universities. There are significant differences among the areas of knowledge studied: biological sciences, physics and engineering have better production and impact rates than mathematics, geosciences, medicine, agrosciences, chemistry, social sciences and humanities. We found a slight gender difference in research production but Mexican female scientists are underrepresented in our diaspora sample. These findings would have policy implications for the recently established program that will open new academic positions for young Mexican scientists.

  11. Challenges facing physician scientist trainees: a survey of trainees in Canada's largest undergraduate and postgraduate programs in a single centre.

    PubMed

    Ballios, Brian G; Rosenblum, Norman D

    2014-10-04

    A number of indicators suggest that the physician scientist career track is threatened. As such, it is an opportune time to evaluate current training models. Perspectives on physician scientist education and career path were surveyed in trainees at the University of Toronto, home to Canada's longest standing physician scientist training programs. Trainees from the Clinician Investigator Program (CIP) and MD/PhD Program at the University of Toronto were surveyed. Liekert-style closed-ended questions were used to assess future career goals, present and future perspectives and concerns about and beliefs on training. Demographic information was collected regarding year of study, graduate degree program and focus of clinical and health research. Statistical analysis included non-parametric tests for sub-group comparisons. Both groups of trainees were motivated to pursue a career as a physician scientist. While confident in their decision to begin and complete physician scientist training, they expressed concerns about the level of integration between clinical and research training in the current programs. They also expressed concerns about career outlook, including the ability to find stable and sustainable careers in academic medicine. Trainees highlighted a number of factors, including career mentorship, as essential for career success. These findings indicate that while trainees at different stages consistently express career motivation, they identified concerns that are program- and training stage-specific. These concerns mirror those highlighted in the medical education literature regarding threats to the physician scientist career path. Understanding these different and changing perspectives and exploring those differences could form an important basis for trainee program improvements both nationally and internationally.

  12. Role Models for boosting mobility of women scientists in geosciences

    NASA Astrophysics Data System (ADS)

    Avellis, Giovanna; Theodoridou, Magdalini

    2017-04-01

    More and more women today are choosing to study science and undertake scientific careers. Likewise mobility during one's career is increasingly important as research tends to be undertaken via international collaboration, often within networks based on the researchers mobility, especially in geosciences. We have developed an ebook on Role Models for boosting mobility of women scientists to showcase the careers of women scientists who have undertaken mobility during their careers. It is hoped that their stories will provide young women who are just starting out in their science careers with inspirational role models, and that these stories give them realistic information about career opportunities: many of them are women scientists in geosciences. These are not famous scientists, but rather real examples of people who express all the passion of the world of science. It is hoped that reading about successful scientists who have achieved a healthy work-life balance while moving to new locations will be particularly helpful for those individuals considering mobility in their own career. The ebook is available to be used by programs that support the development of systematic approaches to increasing the representation and advancement of women in science, engineering and technology, since mobility plays a key role in these programs. The stories contained herein will be useful to mentoring or advising program focusing on career, networking opportunities, discussion and grants opportunities in conjunction with mobility. There is still a gap between female graduates and the pool of female job applicants - even though the proportion of female graduate students and postdocs in most scientific fields is higher today than it is ever been. Therefore we suggest that focus should be placed on examining the real challenges which women need to overcome, particularly when "mobility" comes into play. Role models who have overcome these challenges will continue to play an important part in moving in the right direction, because it may take some time to achieve true gender equity in science. The MCAA is committed to the promotion of women scientists and is sensitive to gender issues in science, and thus a Women in Science working group has been established, namely the Gender Equality for Mobile researchers in Science (GEMS). The GEMS working group has been active since September 2014 in order to promote mobility among the women scientists community, provide feedback from the European Community on policy issues regarding mobility in particular, and to collaborate with other associations and organizations active in the same fields. The main goal is to find ways to promote the participation of and motivation for women with regard to science and therefore finding and analyzing reasons why women face problems or give up at the high levels of the science field. The WG GEMS has participated in WiS conferences at the European level and outside of it, including Gender Summit, WIRES, MARIE CURIE CONFERENCES, ESOF2016, and are also applying to HORIZON2020 to study different types of researchers' mobility, such as virtual mobility, Intersectoral mobility between industry and academia, interdisciplinary mobility, and others.

  13. An Analysis of the Impact of Student-Scientist Interaction in a Technology Design Activity, Using the Expectancy-Value Model of Achievement Related Choice

    ERIC Educational Resources Information Center

    Masson, Anne-Lotte; Klop, Tanja; Osseweijer, Patricia

    2016-01-01

    Many education initiatives in science and technology education aim to create enthusiasm among young people to pursue a career in Science, Technology, Engineering, and Mathematics (STEM). Research suggests that personal interaction between secondary school students and scientists could be a success factor, but there is a need for more in-depth…

  14. A PORTRAIT OF THE ARTIST AND THE SCIENTIST AS YOUNG MEN--I. BIOGRAPHICAL CHARACTERISTICS OF AWARD WINNERS IN THE TWO CULTURES.

    ERIC Educational Resources Information Center

    WALBERG, HERBERT J.

    THE PURPOSE OF THIS RESEARCH WAS TO IDENTIFY THE BIOGRAPHICAL CHARACTERISTICS WHICH DISTINGUISH POTENTIALLY CREATIVE SCIENTISTS AND ARTISTS IN THEIR ADOLESCENCE FROM EACH OTHER AND FROM THEIR FELLOW STUDENTS. FROM A SAMPLE OF 442 BRIGHT MALE STUDENTS TAKING A NEW PHYSICS COURSE IN 72 CLASSROOMS IN 17 STATES SCATTERED THROUGHOUT THE COUNTRY, THREE…

  15. Women in physics in Mexico: The question of the female scientist

    NASA Astrophysics Data System (ADS)

    Delgadillo-Holtfort, Isabel; Fernández-Sabido, Silvia; González-Fernández, Belinka; Cárdenas, Ana Laura; Martínez, Amalia; Meza-Montes, Lilia

    2015-12-01

    This report covers the three principal strategies have been implemented over the last three years to promote better conditions for Mexican women in science: organization of events, forming alliances, and supporting young female scientists. Additionally, figures and facts demonstrate changing gender demographics during the last decade of research as well as numbers of men vs. women in physics, mathematics, and earth sciences.

  16. Antoni Quintana-Mari (1907-1998): A Pioneer of the Use of History of Science in Science Education

    ERIC Educational Resources Information Center

    Roca-Rosell, Antoni; Grapi-Vilumara, Pere

    2010-01-01

    In the early 1930s, the young Antoni Quintana-Mari undertook some research on Antoni de Marti i Franques, one of the most prominent Catalan scientists of the Enlightenment. This scientist worked in Tarragona, where Quintana-Mari lived. Quintana-Mari learnt about Marti i Franques from Josep Estalella, his teacher of physics and chemistry at the…

  17. Role Models in Science - An Effective Dissemination Strategy

    NASA Astrophysics Data System (ADS)

    Chatzichristou, Eleni; Daglis, Ioannis A.; Anastasiadis, Anastasios; Balasis, George; Bourdarie, Sebastien; Horne, Richard B.; Khotyaintsev, Yuri; Mann, Ian R.; Santolik, Ondrej; Turner, Drew L.; Giannakis, Omiros; Ropokis, George

    2014-05-01

    We present the outreach efforts of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, intended to provide the general public with simplified information concerning the scientific objectives of the project and its expected outcomes, to strengthen their understanding of space science, as well as to engage and inspire the next generation of scientists. MAARBLE involves monitoring of the geospace environment through space and ground-based observations, in order to understand various aspects of the radiation belts, an important element of the space weather system, which have direct impact on human endeavors in space (spacecraft and astronauts exposure). The public outreach website of MAARBLE, besides instructive text and regular updates with relevant news, also employs a variety of multimedia (image and video galleries) and characteristic sounds of space related to very low and ultra low frequency (VLF/ULF) electromagnetic waves. It also provides links to some of the most interesting relevant educational activities, including those at partner institutions such as the Institute of Geophysics and Planetary Physics at UCLA, the University of Alberta, the Swedish Institute of Space Physics and the Institute of Atmospheric Physics of the Academy of Sciences of the Czech Republic. We will focus on a specific activity: "Interviewing a MAARBLE Scientist", which enriches and broadens the scope of the MAARBLE outreach website. The profile of a MAARBLE scientist appears every month through an inspired interview, the scientists relating to the public their real stories, aspirations and endeavors. The intimacy of this approach is very effective in catching the attention of an otherwise indifferent public, and to inspire young people to pursue science careers by identifying themselves with "real" scientists. We cover one interview per month, featuring either a high-profile scientist from each partner institute, or a young researcher on a successful career path to both act as role model and to show the challenges that young scientists are facing today. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  18. Tournament of Young Chemists in Ukraine: Engaging Students in Chemistry through a Role-Playing Game-Style Competition

    ERIC Educational Resources Information Center

    Svechkarev, Denis; Grygorovych, Oleksiy V.

    2016-01-01

    With more than 20 years of history, the Tournament of Young Chemists is an innovative, cross-disciplinary competition that promulgates the everyday life of scientists into the classrooms and on the contest stage. Original, open-type problems, unrestricted access to scientific data sources, and personal interaction with researchers from different…

  19. Predicting Young Adult Outcome among More and Less Cognitively Able Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Anderson, Deborah K.; Liang, Jessie W.; Lord, Catherine

    2014-01-01

    Background: The range of outcomes for young adults with Autism Spectrum Disorders (ASD) and the early childhood factors associated with this diversity have implications for clinicians and scientists. Methods: This prospective study provided a unique opportunity to predict outcome 17 years later for a relatively large sample of children diagnosed…

  20. Unleashing the Power of Science in Early Childhood: A Foundation for High-Quality Interactions and Learning

    ERIC Educational Resources Information Center

    Greenfield, Daryl B.; Alexander, Alexandra; Frechette, Elizabeth

    2017-01-01

    When science is integrated into early childhood learning experiences, it becomes a critical area supporting young children's development. Young children are natural scientists, curious about their world, and they engage in scientific practices to learn about and explore their world. This article describes how the K-12 Framework for Science…

  1. A Measure of Excellence of Young European Research Council Grantees

    ERIC Educational Resources Information Center

    Arevalo, Javier

    2017-01-01

    Bibliometric benchmarking can be an aid to researchers pondering whether to apply for competitive grants. In this paper, the highly prestigious grants offered by the European Research Council to young scientists of any nationality were scrutinized. The analysis of the 2014-2015 data indicates that over 75% of life science grantees in the starting…

  2. The Scientist in the Crib: Minds, Brains, and How Children Learn.

    ERIC Educational Resources Information Center

    Gopnik, Alison; Meltzoff, Andrew N.; Kuhl, Patricia K.

    Arguing that evolution designed us to both teach and learn, this book explains how, and how much, babies and young children know and learn, and how much parents naturally teach them. The chapters are: (1) "Ancient Questions and a Young Science," including the concept of brain as computer, and the developmental science of Piaget and…

  3. An Update on the AAS Astronomy Ambassadors Program

    NASA Astrophysics Data System (ADS)

    Fienberg, Richard T.; Gurton, S.; Fraknoi, A.; Prather, E. E.; Hurst, A.; Schatz, D. L.

    2013-06-01

    The American Astronomical Society, partnering with organizations active in science education and public outreach (EPO), has launched a series of professional-development workshops and a community of practice designed to help improve early-career astronomers’ ability to effectively communicate with students and the public. Called Astronomy Ambassadors, the program provides mentoring and training experiences for young astronomers, from advanced undergraduates to beginning faculty; it also provides access to resources and a network of contacts within the astronomy EPO community. By learning how to implement effective education and outreach strategies, Astronomy Ambassadors become better teachers, better presenters at meetings, and better representatives of our science to the public and to government. And because young astronomers are a more diverse group than those who currently do the majority of outreach, they help the astronomical community present a more multicultural and gender-balanced face to the public, enabling members of underserved groups to see themselves as scientists. Ambassadors are provided with a large library of outreach activities and materials that are suitable for a range of venues and audiences and that will grow with time. For much of this library we are using resources developed by organizations such as the Astronomical Society of the Pacific, the Pacific Science Center, and the Center for Astronomy Education for other outreach programs, though some resources have been created by one of us (AF) specifically for this program. The first Astronomy Ambassadors workshop was held at the 221st meeting of the AAS in January 2013 and served 30 young astronomers chosen from more than 75 applicants. Incorporating feedback from workshop participants and lessons learned from the reports they’ve submitted after conducting their own outreach events, we are now planning the second annual workshop to be held 4-5 January 2014 at the 223rd AAS meeting in National Harbor, Maryland.

  4. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio, Texas). Acknowledgments: We are grateful for support from the NASA MMS Mission E/PO Grant, SwRI, Northside Independent School District, and local charitable foundations.

  5. Developing the Next Generation of Inspired and Enthusiastic Young African Scientists: Insights from the First Ten Years of AfricaArray

    NASA Astrophysics Data System (ADS)

    Manzi, M. S.; Webb, S. J.; Durrheim, R. J.; Gibson, R.

    2016-12-01

    The African continent is endowed with a wealth of resources that are the focus of vigorous exploration by international mining companies. However, it is unfortunate that many African countries have been unable to capitalize on resource development due to a lack of expertise in research, exploration, resource management and develop their mineral deposits. The capacity to develop natural resources in Africa is, inextricably linked to the ability to fully develop intellectual capacity. Thus, training young African geoscientists to investigate and manage Africa's natural resources, and developing scientific programs about Africa resources, their settings, controls and origins, should lie at the heart of all African universities. Ten years in to the AfricaArray program, it is worth reviewing some of the insights and successes we have gained. In Africa, there is a lack of knowledge of what a "scientist" is and University is often viewed as a continuation of high school. With no real exposure to research, students don't understand the huge difference between high school and university, and they treat the university as a high school. One way to mitigate this may be to include undergraduate research opportunities in the summer break but funding is difficult to allocate. This observation highlights the need to critically review our approach to research, teaching and learning, and social engagement at school level. At University level a key focus has been the development of capacity through international collaborative research and training. The School of Geosciences, at Wits University, is already the leading institution in Africa for its breadth of geosciences research and training, and the applied nature of its research, being ranked in the top 1% of institutions worldwide in its field. It is currently a lead partner in flagship international research geophysics programme focused on Africa - the AfricaArray Field School and AfricaArray Programme. Field school has spawned other developing field schools throughout Africa.

  6. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less

  7. Scientist in the Classroom: Highlights of a Plasma Outreach Program

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Lee, R. L.

    2000-10-01

    The General Atomics education program ``Scientist in the Classroom'' now in its third year, uses scientists and engineers to present ``Plasma the fourth state of matter,'' to students in the classroom. A program goal is to make science an enjoyable experience while showing students how plasma plays an important role in their world. A fusion overview is presented, including topics on energy and environment. Using hands-on equipment, students manipulate a plasma discharge using magnets, observe its spectral properties and observe the plasma in a fluorescent tube. In addition, they observe physical properties of liquid nitrogen, and use an infrared camera to observe radiant heat energy. Several program benefits are; it costs less than facility tours, is more flexible in scheduling, and is adaptable for grades 2--adult. The program has doubled in coverage since last year, with over 2200 students at 20 schools visited by 8 scientists. Increased participation by the DIII-D staff in this program has been achieved by enlisting them to bring the program to their children's school.

  8. Young Earth System Scientists (YESS) Community

    NASA Astrophysics Data System (ADS)

    Reed, K. A.; Langendijk, G.; Bahar, F.; Huang-Lachmann, J. T.; Osman, M.; Mirsafa, M.; Sonntag, S.

    2017-12-01

    The Young Earth System Scientists (YESS) community is compiled of early career researchers (including students) coming from a range of scientific backgrounds, spanning both natural and social sciences. YESS unifies young researchers in an influential network to give them a collective voice and leverage within the geosciences community, while supporting career development. The YESS community has used its powerful network to provide a unified perspective on the future of Earth system science (Rauser et al. 2017), to be involved in the organization of international conferences, and to engage with existing international structures that coordinate science. Since its founding in Germany in 2010, the YESS community has grown extensively across the globe, with currently almost 1000 members from over 80 countries, and has become truly interdisciplinary. Recently, the organization has carried elections for Regional Representatives and the Executive Committee as part of its self-sustained governance structure. YESS is ready to continue pioneering crucial areas of research which provide solutions to benefit society for the long-term advancement of Earth system science.

  9. It's a wonderful life: a career as an academic scientist.

    PubMed

    Vale, Ronald D

    2010-01-01

    Many years of training are required to obtain a job as an academic scientist. Is this investment of time and effort worthwhile? My answer is a resounding "yes." Academic scientists enjoy tremendous freedom in choosing their research and career path, experience unusual camaraderie in their lab, school, and international community, and can contribute to and enjoy being part of this historical era of biological discovery. In this essay, I further elaborate by listing my top ten reasons why an academic job is a desirable career for young people who are interested in the life sciences.

  10. A Comprehensive Approach to Partnering Scientists with Education and Outreach Activities at a National Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.

    2002-12-01

    With the establishment of an Office of Education and Outreach (EO) in 2000 and the adoption of a five-year EO strategic plan in 2001, the University Corporation for Atmospheric Research (UCAR) committed to augment the involvement of AGU scientists and their partners in education and public outreach activities that represent the full spectrum of research in the atmospheric and related sciences. In 2002, a comprehensive program is underway which invites scientists from UCAR, the National Center for Atmospheric Research (NCAR), and UCAR Office of Programs (UOP) into partnership with EO through volunteer orientation workshops, program specific training, skill-building in pedagogy, access to classroom resources, and program and instructor evaluation. Scientists contribute in one or several of the following roles: program partners who bridge research to education through collaborative grant proposals; science content advisors for publications, web sites, exhibits, and informal science events; science mentors for high school and undergraduate students; NCAR Mesa Laboratory tour guides; scientists in the schools; science education ambassadors to local and national community events; science speakers for EO programs, conferences, and meetings of local organization; and science wizards offering demonstrations at public events for children and families. This new EO initiative seeks to match the expertise and specific interests of scientists with appropriate activities, while also serving as a communications conduit through which ideas for new activities and resources can be seeded and eventually developed into viable, fully funded programs.

  11. Science Coordination in Support of the US Weather Research Program Office of the Lead Scientist (OLS) and for Coordination with the World Weather Research (WMO) Program

    NASA Technical Reports Server (NTRS)

    Gall, Robert

    2005-01-01

    This document is the final report of the work of the Office of the Lead Scientist (OLS) of the U.S. Weather Research Program (USWRP) and for Coordination of the World Weather Research Program (WWRP). The proposal was for a continuation of the duties and responsibilities described in the proposal of 7 October, 1993 to NSF and NOAA associated with the USWRP Lead Scientist then referred to as the Chief Scientist. The activities of the Office of the Lead Scientist (OLS) ended on January 31, 2005 and this report describes the activities undertaken by the OLS from February 1, 2004 until January 3 1, 2005. The OLS activities were under the cosponsorship of the agencies that are members of the Interagency Working Group (IWG) of the US WRP currently: NOAA, NSF, NASA, and DOD. The scope of the work described includes activities that were necessary to develop, facilitate and implement the research objectives of the USWRP consistent with the overall program goals and specific agency objectives. It included liaison with and promotion of WMO/WWW activities that were consistent with and beneficial to the USWRP programs and objectives. Funds covered several broad categories of activity including meetings convened by the Lead Scientist, OLS travel, partial salary and benefits support, publications, hard-copy dissemination of reports and program announcements and the development and maintenance of the USWRP website. In addition to funding covered by this grant, NCAR program funds provided co-sponsorship of half the salary and benefits resources of the USWRP Lead Scientist (.25 FTE) and the WWRP Chairman/Liaison (.167 FTE). Also covered by the grant were partial salaries for the Science Coordinator for the hurricane portion of the program and partial salary for a THORPEX coordinator.

  12. Nothing to lose: why early career scientists make ideal entrepreneurs.

    PubMed

    Thon, Jonathan N

    2014-12-01

    An entrepreneurial movement within science strives to invert the classical trajectory of academic research careers by positioning trainees at the apex of burgeoning industries. Young scientists today have nothing to lose and everything to gain by pursuing this 'third road', and academic institutes and established companies only stand to benefit from supporting this emerging movement of discovery research with economic purpose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Examining Summer Laboratory Research Apprenticeships for High School Students as a Factor in Entry to MD/PhD Programs at Matriculation.

    PubMed

    Tai, Robert H; Kong, Xiaoqing; Mitchell, Claire E; Dabney, Katherine P; Read, Daniel M; Jeffe, Donna B; Andriole, Dorothy A; Wathington, Heather D

    2017-01-01

    Do summer laboratory research apprenticeships during high school have an impact on entry into MD/PhD programs? Apart from the nearly decade-long span of time between high school and matriculation into an MD/PhD program, young people have many life-shaping experiences that presumably impact their education and career trajectories. This quantitative study ( n = 236,432) examines the connection between early laboratory research apprenticeship experiences at the high school level and matriculation into one of the more rigorous educational programs for scientific research training. The span of time covered by this analysis reaches across more than a decade, examining the potential importance of research experiences during the precollege years in the educational trajectory of young people. Intertwined with this question on research experiences is a second major concern regarding diversity in the life sciences research corps. Diversity in this wide-ranging discipline refers specifically to the underrepresentation of Blacks/African Americans, Hispanics/Latino/as, and American Indians/Alaska Natives among the ranks of research scientists. Thus, this study includes analyses that specifically focus on research apprenticeships of Blacks/African Americans and Hispanics/Latino/as and their entrance into MD/PhD programs. © 2017 R. H. Tai et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. The Impact of Federal Programs and Policies on Manpower Planning for Scientists and Engineers: Problems and Progress.

    ERIC Educational Resources Information Center

    Scientific Manpower Commission, Washington, DC.

    This document reports the results of a workshop held to assess the impact of federal programs and legislation on manpower planning for scientists and engineers. Included are presentations relating to manpower utilization and planning via federal government agencies and professional societies for scientists and engineers. It was concluded that the…

  15. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  16. Preparing the nurse scientist for academia and industry.

    PubMed

    Lewallen, Lynne P; Kohlenberg, Eileen

    2011-01-01

    The number of doctoral programs in nursing has been increasing. However, these programs tend to focus on preparing nurse scientists to conduct research, and many spend little time preparing doctoral students for the educator, clinical researcher, or administrator role. Leaders of doctoral programs have identified the need to prepare doctoral students in the functional roles they will assume upon graduation, in addition to the researcher role. This article describes a two-course (six-credit) sequence of courses within a research-focused PhD in Nursing program that provides didactic and experiential knowledge about the role of the nurse scientist in academia and industry settings. Students are highly satisfied with the courses, and report that the experiences have provided them with important knowledge and skills as they assume the scientist role.

  17. Science Educational Outreach Programs That Benefit Students and Scientists

    PubMed Central

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  18. Young Scientists Explore Animals. Book 2--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of animals. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  19. I'm Madly in Love with Electricity and Other Comments About Their Work by Women in Science and Engineering.

    ERIC Educational Resources Information Center

    Kreinberg, Nancy

    The purpose of this publication is to stimulate interest in science and engineering careers in young women. Questionnaires were mailed to 450 women scientists and engineers in the San Francisco Bay Area, asking their assistance in developing a booklet to encourage young women toward scientific and mathematical studies. One hundred sixty women…

  20. Young Scientists Explore the Weather. Book 5--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the weather. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student.…

  1. Young Scientists Explore Nature. Book 10--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of nature. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  2. Young Scientists Explore Inner & Outer Space. Book 6--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of space (inner and outer). Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for…

  3. Young Scientists Explore Light & Color. Book 12--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of light and color. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  4. Original Research by Young Twinkle Students (ORBYTS): When Can Students Start Performing Original Research?

    ERIC Educational Resources Information Center

    Sousa-Silva, Clara; McKemmish, Laura K.; Chubb, Katy L.; Gorman, Marie N.; Baker, Jack S.; Barton, Emma J.; Rivlin, Tom; Tennyson, Jonathan

    2018-01-01

    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students…

  5. Challenging Gifted Learners: General Principles for Science Educators; and Exemplification in the Context of Teaching Chemistry

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2010-01-01

    There is concern in some counties about the number of able young people entering degree level study and careers in physical science, including chemistry. Too few of the most talented young people are selecting "STEM" subjects to ensure the future supply of scientists, engineers and related professionals. The present paper sets out general…

  6. Science Learning for ALL Young Scientists: Exploring, Investigating, Learning, and Growing Together with Ramps and Pathways in Diverse Settings

    ERIC Educational Resources Information Center

    Counsell, Shelly L.; Wright, Brian L.

    2016-01-01

    Physical science activities provide multiple and varied opportunities for young children to actively observe, engage in, interact with, and interpret experiences in the physical world within diverse, inclusive settings. If all learners are to gain access to, fully participate in, and achieve maximum profit from early science opportunities,…

  7. Young Scientists Explore the Moon. Book 3--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the moon. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  8. Young Scientists Explore Electricity & Magnetism. Book 7--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of electricity and magnetism. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for…

  9. Young Scientists Explore the Five Senses. Book 4--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the five senses. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  10. Young Scientists Explore the World of Water. Book 9--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of water. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  11. Young Scientists Explore Rocks & Minerals. Book 11--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of rocks and minerals. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  12. Providing a Continuum of Leadership in Polar Science - An IPY Legacy

    NASA Astrophysics Data System (ADS)

    Baeseman, J.

    2008-12-01

    The Association of Polar Early Career Scientists (APECS) grew out of the 4th International Polar Year (IPY-4) 2007-08 and is an international and interdisciplinary organization of over 1200 undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in Polar Regions and the wider cryosphere from more than 40 countries. Our aims are to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. As potentially one of the major legacies of IPY-4, APECS members have been at the forefront of increasing scientific knowledge and public interest in the polar regions, centered around global climate change, and enhancing scientific understanding, media attention, primary and secondary school (K-12) educational programs, and public literacy campaigns. Research and Educational Outreach activities by APECS members during IPY-4 have improved both our understanding and the communication of all aspects of the Polar Regions and the importance of their broader global connections. APECS National Committees have run Polar Contests where young researchers partnered with teachers and students to develop curriculum and activities to share their research, have participated in many field based communication exchanges and are mentoring youth to pursue careers in science, and enhancing the public perception of scientists through photo, video and museum exhibits. In cooperation with the IPY Teachers Network and the IPY IPO, APECS is developing a polar education resource book that will feature education and outreach activities by young researchers, as well as provide examples of classroom activities for teachers to incorporate polar literacy into their curriculum and a 'how to' guide for researchers interested in conducting education and outreach. As young researchers share their excitement and experiences in deepening our understanding of the polar regions, a new generation of polar literate people emerges and society benefits from more knowledge of the rapidly changing polar regions that have a critical and inherent global connection.

  13. Promoting Pre-college Science Education

    NASA Astrophysics Data System (ADS)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  14. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  15. G-2008-0819-014

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held on October 6, 2008 at Goddard sponsored by 3M. It gave students opportunity to demonstrate their scientific/engineering skills by participating in live demonstrations.

  16. NanoSPD activity in Ufa and International Cooperation

    NASA Astrophysics Data System (ADS)

    Reshetnikova, N.; Salakhova, M.

    2014-08-01

    This report presents main achievements of R&D activities of the Institute of Physics of Advanced Materials of Ufa State Aviation Technical University (IPAM USATU, Ufa, Russia) with a special attention to innovative potential of nanostructured metals and alloys produced by the severe plastic deformation (SPD) techniques. Several examples of the first promising applications of bulk nanostructured materials (BNM) as well as potential competing technologies are considered and discussed. The authors would like to focus special emphasis on international cooperation in view of numerous emerging projects as well as different conferences and seminars that pave the way to close and fruitful cooperation, working visits and exchange of young scientists. The possibilities of international cooperation through various foundations and programs are considered.

  17. [The brain in stereotaxic coordinates (a textbook for colleges)].

    PubMed

    Budantsev, A Iu; Kisliuk, O S; Shul'govskiĭ, V V; Rykunov, D S; Iarkov, A V

    1993-01-01

    The present textbook is directed forward students of universities and medical colleges, young scientists and practicing doctors dealing with stereotaxic method. The Paxinos and Watson stereotaxic rat brain atlas (1982) is the basis of the textbook. The atlas has been transformed into computer educational program and seven laboratory works: insertion of the electrode into brain, microelectrophoresis, microinjection of drugs into brain, electrolytic destruction in the brain structures, local brain superfusion. The laboratory works are compiled so that they allow not only to study practical use of the stereotaxic method but to model simple problems involving stereotaxic surgery in the deep structures of brain. The textbook is intended for carrying by IBM PC/AT computers. The volume of the textbook is 1.7 Mbytes.

  18. PREFACE: 3rd International Conference on Hadron Physics (TROIA'11)

    NASA Astrophysics Data System (ADS)

    Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ

    2012-03-01

    The 3rd International Conference on Hadron Physics, TROIA'11 was held at Canakkale, Turkey on 22-25 August 2011. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University and HadronPhysics2 Consortium sponsored the conference. Its aim was to bring together the experts and young scientists working on experimental and theoretical hadron physics. About 60 participants from 12 countries attended the conference. The topics covered included: Chiral Perturbation Theory QCD Sum Rules Effective Field Theory Exotic Hadrons Hadron Properties from Lattice QCD Experimental Results and Future Perspectives Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and the afternoon sessions were devoted to contributed talks and poster presentations. The speakers of the invited talks were: D Melikhov, M Nielsen, M Oka, E Oset, S Scherer, T T Takahashi and R Wanke. The conference venue was a resort hotel near Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient town of Troia and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Kadir Utku Can, and all other members of the Organizing Committee for their patience and efforts. 13 February 2012 The Editors Güray Erkol Ayşe Küçükarslan Altuğ Özpineci Conference photograph

  19. Young Engineers and Scientists (YES) - A Science Education Partnership

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2007-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years and YES 2K7 continued this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  20. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  1. CREASE 6.0 Catalog of Resources for Education in Ada and Software Engineering

    DTIC Science & Technology

    1992-02-01

    Programming Software Engineering Strong Typing Tasking Audene . Computer Scientists Terbook(s): Barnes, J. Programming in Ada, 3rd ed. Addison-Wesley...Ada. Concept: Abstract Data Types Management Overview Package Real-Time Programming Tasking Audene Computer Scientists Textbook(s): Barnes, J

  2. Self sufficient world

    ERIC Educational Resources Information Center

    George, Lynn

    1974-01-01

    Described the efforts of Sietze Leeflang, a Dutch scientific journalist, and his group of young scientists to take a practical stand on environmental pollution by working their small farm in innovative fashion. (RK)

  3. 2013 Occupant Protection Risk Standing Review Panel Status Review Comments to the Human Research Program, Chief Scientist

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    On December 17, 2013, the OP Risk SRP, participants from the JSC, HQ, and NRESS participated in a WebEx/teleconference. The purpose of the call was to allow the SRP members to: 1. Receive an update by the Human Research Program (HRP) Chief Scientist or Deputy Chief Scientist on the status of NASA's current and future exploration plans and the impact these will have on the HRP. 2. Receive an update on any changes within the HRP since the 2012 SRP meeting. 3. Receive an update by the Element or Project Scientist(s) on progress since the 2012 SRP meeting. 4. Participate in a discussion with the HRP Chief Scientist, Deputy Chief Scientist, and the Element regarding possible topics to be addressed at the next SRP meeting.

  4. PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)

    NASA Astrophysics Data System (ADS)

    Stoyanov, Chavdar; Dimitrova, Sevdalina

    2014-09-01

    The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in nuclear waste treatment. Nuclear methods for applications. A special session in honor of the late Mario Stoitsov, was also part of the program. Many colleagues of Mario from all over the world came to Varna to pay tribute to this prominent scientist and loyal friend. Several colleagues contributed to the organization of the School. We would like to thank them and especially the Scientific Secretary of the School Dr Elena Stefanova and the members of the Organizing Committee Dr Dimitar Tarpanov and Peter Zivkov for their cordiality and high level assistance. We are also grateful to Dr Jacek Dobaczewski, who reached out to the collaborators of Mario Stoitsov on behalf of the conference. Sofia, 20 March 2014 Co-chair persons of the Organizing Committee Prof Dr Sc Ch Stoyanov Prof Dr Sc S Dimitrova Details of the committees are available in the PDF.

  5. What Matters for Excellence in PhD Programs? Latent Constructs of Doctoral Program Quality Used by Early Career Social Scientists

    ERIC Educational Resources Information Center

    Morrison, Emory; Rudd, Elizabeth; Zumeta, William; Nerad, Maresi

    2011-01-01

    This paper unpacks how social science doctorate-holders come to evaluate overall excellence in their PhD training programs based on their domain-specific assessments of aspects of their programs. Latent class analysis reveals that social scientists 6-10 years beyond their PhD evaluate the quality of their doctoral program with one of two…

  6. Bringing Hands-on Activities and Real Scientists to Students: Bishop Museum's X-treme Science Exhibit, Holoholo Science Program, and Planned Science Learning Center

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Fullerton, K.; Hoddick, C.; Ali, N.; Mosher, M. K.

    2002-12-01

    Bishop Museum developed the "X-treme Science: Exploring Oceans, Volcanoes, and Outer Space" museum exhibit in conjunction with NASA as part of their goal to increase educational outreach. A key element of the exhibit was the inclusion of real scientists describing what they do, and fostering the interaction between scientists and students. Highlights of the exhibit were interviews with local (Hawaii-based) scientists involved in current ocean, volcano, and space research. These interviews were based on questions that students provided, and were available during the exhibit at interactive kiosks. Lesson plans were developed by local teachers and scientists, and provided online to enhance the exhibit. However, one limitation of the museum exhibit was that not all students in the state could visit, or spend enough time with it. To serve more remote schools, and to provide for additional enrichment for those who did attend, the education department at Bishop Museum developed a traveling program with the X-treme Science exhibit as the basis. The Holoholo (Hawaiian for "fun outing") Science program brings a scientist into the classroom with a hands-on scientific inquiry activity. The activity is usually a simplified version of a problem that the scientist actually deals with. The students explore the activity, reach conclusions, and discuss their results. They are then given the opportunity to question the scientist about the activity and about what the scientist does. This allows students to understand that science is not something mystical, but rather something attainable. A key element of Holoholo remains the active participation of real-life scientists in the experience. The scientists who have participated in the program have had overwhelmingly positive experiences. Bishop Museum is developing a science learning center, with the objective of meeting local and national science standards using inquiry based science. The unifying theme of all three of these projects is involving students with active scientists who are accessible to them. AGU scientists are vital to realizing this goal.

  7. Recruitment Campaigns as a Tool for Social and Cultural Reproduction of Scientific Communities: A Case Study on How Scientists Invite Young People to Science

    ERIC Educational Resources Information Center

    Andrée, Maria; Hansson, Lena

    2014-01-01

    Young people's interest in pursuing science and science-intense educations has been expressed as a concern in relation to societal, economic and democratic development by various stakeholders (governments, industry and university). From the perspective of the scientific communities, the issues at stake do not necessarily correspond to the overall…

  8. Young Scientists Explore an Encyclopedia of Energy Activities. Book 8--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of energy. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  9. Technology Foresight For Youth: A Project For Science and Technology Education in Sweden

    NASA Astrophysics Data System (ADS)

    Kendal, Anne Louise

    "Technology Foresight for Youth" is a project run by two science museums, two science centres and "Technology Foresight (Sweden)" an organization in which both business and scientists are represented. The project is designed to strengthen young people's interest in ongoing technological work, research and education. It should give them confidence in their own ability both to understand today's techniques including its influence on people's daily lives, and to influence future developments. One part of the project is aimed at school teachers, teacher cooperation groups and students in the age group 12 to 18 years. A second part encourages dialog and meetings by arranging debates, seminars, theatre, science demonstrations in cooperation with business representatives and scientists. A third important part of the project is a special exhibition to be shown at the four cooperating institutions: "To be where I am not - young people's dreams about the future". The exhibition is meant to be sensual, interactive and partly virtual. It will change and grow with time as young people contribute with their thoughts, visions and challenges. Young people in different parts of the country will be able to interact electronically with each other and with the virtual part of the exhibition. The main aim of the project is to develop new interactive pedagogic methods for science and technology based on young people's own visions about the future.

  10. Science experiences of citizen scientists in entomology research

    NASA Astrophysics Data System (ADS)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.

  11. The West African International Summer School for Young Astronomers

    NASA Astrophysics Data System (ADS)

    Strubbe, Linda; Okere, Bonaventure I.; Chibueze, James; Lepo, Kelly; White, Heidi; Zhang, Jielai; Izuikedinachi Okoh, Daniel; Reid, Michael; Hunter, Lisa; EKEOMA Opara, Fidelis

    2015-08-01

    In October 2013 over 75 undergraduate science students and teachers from Nigeria and Ghana attended the week-long West African International Summer School for Young Astronomers. We expect an even broader audience for the second offering of the school (to be held July 2015), supported by a grant from the OAD (TF1). These schools are organized by a collaboration of astronomers from the University of Toronto, the University of Nigeria, and the Nigerian National Space Research and Development Agency. We design and lead activities that teach astronomy content, promote students' self-identity as scientists, and encourage students to think critically and figure out solutions themselves. Equally important, we design intertwined evaluation strategies to assess the effectiveness of our programs. We will describe the broader context for developing astronomy in West Africa, the inquiry-based and active learning techniques used in the schools, and results from the qualitative and quantitative evaluations of student performance. We will also describe longer-term plans for future schools, supporting our alumni, and building a sustainable partnership between North American and Nigerian universities.

  12. Does Doing Scientific Research in High School Correlate with Students Staying in Science? A Half-Century Retrospective Study

    NASA Astrophysics Data System (ADS)

    Roberts, Lesley F.; Wassersug, Richard J.

    2009-03-01

    The American Association for the Advancement of Science (AAAS) has declared in an advertising campaign that “you can’t start young enough” in science. However, there is no long-term data evaluating the effect of early exposure to original scientific research on producing career scientists. To address this issue, we examined a hands-on summer science research program for high school students that ran from 1958 to 1972. We compared participants in that program with science students that only began their hands-on research experience once in university. Our data indicate that students who are interested in science and have an opportunity to participate in original scientific research while in high school are significantly more likely ( p < .005) to both enter and maintain a career in science compared to students whose first research experience didn’t occur until university. Our data suggest that more hands-on high school science research programs could help increase the number of students entering and maintaining scientific careers, relieving the growing concern that North America is losing its leadership status in the international scientific community.

  13. Purposeful Leadership: The Life Calling of Successful Women Scientists

    NASA Astrophysics Data System (ADS)

    West, Ja-Quel April

    The experiences of six women who are successful in the world of science, technology, engineering, and mathematics (STEM) are examined through lenses constructed from self-efficacy, resiliency, social capital, and identity. Each of the women successfully earned a doctorate in STEM, in spite of being the minority in a male-dominated career field. Examination of individual discoveries and experiences provides a platform for enhancing an understanding of what facilitates women scientists' achievements when pursuing meaningful work. All women in this study display, how social networks and personal characteristics have helped women scientists, become leaders and advance in their field. The findings of this research provides a scaffold for young students to will better understand, and appreciate how women scientists overcome many barriers, how women in science gained their strength, and fulfilled their purposeful leadership.

  14. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  15. Phun Physics 4 Phemales: Physics Camp for High School Girls

    NASA Astrophysics Data System (ADS)

    Kwon, Chuhee; Gu, Jiyeong; Henriquez, Laura

    2014-03-01

    The department of Physics and Astronomy with the department of Science Education at California State University, Long Beach hosted summer program of ``Phun Physics 4 Phemales (PP4P)'' during summer 2012 and summer 2013 with the support from APS public outreach program. PP4P summer camp was hosted along with a two-week summer science camp, Young Scientists Camp, which has been institutionalized for the last 14 years since 1999. More than 2,500 3rd -8th grade students and 250 teachers have participated in the program. PP4P program provided the tools and support that female high school students need to pursue careers in physics and/or science, technology, engineering and math (STEM) field. This girls-only camp created connections among the girls and built confidence. In addition PP4P program introduced students to key principles in physics by a hands-on lab environment and demonstrated the real-world social impact of physics. In summer 2012, high school girls worked on physics experimental project on electronics and in summer 2013 they worked on the mechanics. I would share our experience in this program and the impact on the female high school students. This work was supported by 2012 Public Outreach and Informing the Public Grants from American Physical Society.

  16. G-2008-0813-034

    NASA Image and Video Library

    2008-10-05

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students an opportunity to demonstrate their engineering and scientific skills by participating in live demonstrations.

  17. G-2008-0824-009

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations.

  18. Scientific habits of mind: A reform of structure and relationships

    NASA Astrophysics Data System (ADS)

    Mooney, Linda Beth

    This research was designed to broaden current elementary science reform efforts by including the voices of our young scientists. Ten high school students who were defined as possessing both coherent science knowledge and scientific habits of mind were selected for the study. Through a three-part series of in-depth, phenomenological interviews, these students revealed early childhood experiences from birth through age ten to which they attributed their development of science knowledge and scientific habits of mind. Educational connoisseurship and criticism provided the framework through which the experiences were analyzed. The research revealed the overwhelming role of scientific habits of mind in the current success of these young scientists. Scientific habits of mind were developed through the structures and relationships in the home. Parents of the participants provided a non-authoritarian, fun, playful, tolerant atmosphere in which messes and experimentation were the norm. Large blocks of uninterrupted, unstructured time and space that "belonged" to the child allowed these children to follow where curiosity led. Frequently, the parent modeled scientific habits of mind. Good discipline in the minds of these families had nothing to do with punishments, rewards, or rules. The parents gave the children responsibilities, "free rein," and their trust, and the children blossomed in that trust and mutual respect. Parents recognized and supported the uniqueness, autonomy, interests, and emotions of the child. Above all, the young scientists valued the time, freedom, patience, and emotional support provided by their parents. For girls, construction toys, hot wheels, sand boxes, and outdoor experiences were particularly important. Art classes, free access to art media, sewing, music, and physical activity facilitated observational skills and spatial relationship development. The girls knew that doing traditionally masculine and feminine activities were acceptable and celebrated by both parents. The time has come to include scientific habits of mind in science education reform. The time has come for science education reform to espouse fun and playfulness, large blocks of unstructured time, responsibility and trust, emotional support, and caring teacher-child relationships. The time has come to listen to the voices of our young scientists.

  19. Clinician scientist training program: a proposal for training medical students in clinical research.

    PubMed

    Mark, A L; Kelch, R P

    2001-11-01

    There is national alarm about a decline in the number of clinician scientists. Most of the proposed solutions have focused on housestaff and junior faculty. We propose a new national program for training medical students in clinical research. This program, coined "Clinician Scientist Training Program" (CSTP), would consist of a combined degree program in medicine (MD) and clinical research (eg, masters in translational research or masters in clinical epidemiology). Students could enroll in the program at any stage during medical school. After 3 years of medical school, students would spend at least 2 years in a combined didactic and mentored clinical research training program and then complete medical school. Students could elect to pursue more prolonged clinical research training toward a combined PhD and MD. The CSTP is designed to meet six critical challenges: 1) engage students early in clinical research training; 2) provide a didactic clinical research curriculum; 3) expose students to several years of mentored clinical research training; 4) promote debt prevention by providing tuition payments during medical education and a stipend during clinical research training; 5) facilitate prolonged exposure to a community of peers and mentors in a program with national and institutional identity and respect; and 6) permit enrollment in the program as students enter medical school or at any stage during medical school. If the success of the Medical Scientist Training Program in training medical students in basic research is a guide, the CSTP could become a linchpin for training future generations of clinician scientists.

  20. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    PubMed

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  1. Quality resource networks for young women in science: The role of Internet-facilitated ties

    NASA Astrophysics Data System (ADS)

    Gillette, Shana Cecile

    In communications, a new approach to the study of online interaction has been suggested by social network analysts. Garton, Haythornthwaite, and Wellman (1997) have outlined the importance of using network analysis to study how media are interconnected with other social aspects of a media user's world. As applied here, this approach to communication when combined with recent network studies from the fields of education and rural development, provides a method for looking at the role of Internet-facilitated ties in the development of resource networks in the learning communities of young women from seven rural schools across the state of Washington. Twenty-six young women (ages 14-16) from diverse cultural and ethnic backgrounds (approximately half of the participants are Hispanic or Native American, the other half are White) participated in the research. Participants were selected because they shared a common educational orientation through Rural Girls in Science, a NSF-funded program at the Northwest Center for Research on Women at the University of Washington. As part of the school-based component of the Rural Girls in Science program, all 26 participants designed and conducted year-long, community-based research projects in science. Each school in the program was provided an Internet workstation for communication and research. Through the Internet, students could conceivably maintain distant ties with mentors and research scientists whom they met at summer camp as well as seek additional information resources. Toward the conclusion of the long-term research projects, each student participant was interviewed using a participatory form of network analysis that included a combined qualitative and quantitative approach. Given the small number of participants and schools in the sample, the results from the analysis can not be generalized to a larger population. However the study of the structure and composition of networks among individuals and school groups provided insight into how media are implicated in the development of resource networks, in particular for a subset of students who have been underrepresented in science--young ethnic minority women.

  2. The Chemistry of Early Self-Replicating Systems

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.

    1996-01-01

    The NASA Specialized Center of Research and Training (NSCORT) in Exobiology is a consortium of scientists at the University of California at San Diego (UCSD), The Salk Institute for Biological Studies (Salk) and The Scripps Research Institute (TSRI). All three institutions are located in close geographical proximity in La Jolla, California. The NSCORT/Exobiology is administered through the Scripps Institution of Oceanography. Since its inception in January 1992, the NSCORT in Exobiology has made major contributions with respect to the question of how life began on Earth. The Principal Investigators (PIs) and their associated Fellows have published numerous articles in peer reviewed journals on topics relevant to Exobiology. They have presented papers and sponsored symposia at several meetings of national and international scientific societies. A total of 30 undergraduate, 12 graduate and 15 postdoctoral Fellows have been supported by the NSCORT. The Fellows have met on their own at least once a month to discuss Exobiology topics and research progress. The NSCORT has arranged seminars and evening discussion meetings, and offered an undergraduate class on "Biochemical Evolution" as well as graduate courses dealing with topics in Exobiology. A visiting scientist program has allowed 11 scientists from the U.S. and 4 foreign countries to conduct cooperative research with the various PIs. An active outreach program has been initiated, which includes an Exobiology high school level teaching module and curriculum guide, and an elementary school level booklet about basic atomic structure and formation of the universe, Sun and Earth. A World Wide Web Homepage (http://www-chem.ucsd.edu/-nscort/ NSCORT.html) has been developed, which describes the NSCORT activities, research programs and Fellowship opportunities. The various activities of the NSCORT in Exobiology have received wide-spread coverage in both the scientific and public media. The major function of the NSCORT is the training of young scientists in the field of Exo- biology. Thus, the bulk of the $1,000,000 annual budget is used to support the research and training of undergraduate, graduate and post-doctoral Fellows who are selected on a competitive basis. About five Fellows at each level are supported each year. Our goal is to train scientists whose major research interest is Exobiology, but whose mastery in the classical fields of chemistry, biology and earth science is so strong that they outstanding candidates for either graduate school or academic tenure-track positions in departments at leading national and international Universities. Applicants for these Fellowships are solicited by advertisements in journals such as Science and Nature and in organizational newsletters such as the one published by the International Society for the Study of the Origin of Life (ISSOL), by contacting academic and NASA colleagues working in Exobiology or related fields and by recruiting students who have already been admitted into the various academic programs with which the PIs are affiliated.

  3. One Model for Scientist Involvement in K-12 Education: Teachers Experiencing Antarctica and the Arctic Program

    NASA Astrophysics Data System (ADS)

    Meese, D.; Shipp, S. S.; Porter, M.; Bruccoli, A.

    2002-12-01

    Scientists involved in the NSF-funded Teachers Experiencing Antarctica and the Arctic (TEA) Program integrate a K-12 science teacher into their polar field project. Objectives of the program include: having the science teacher immersed in the experience of research; 2) through the teacher, leveraging the research experience to better inform teaching practices; and 3) sharing the experience with the broader educational and general community. The scientist - or qualified team member - stays involved with the teacher throughout the program as a mentor. Preparation of the teacher involves a week-long orientation presented by the TEA Program, and a two week pre-expedition visit at the scientist's institution. Orientation acquaints teachers with program expectations, logistical information, and an overview of polar science. While at the scientist's institution, the teacher meets the team, prepares for the field, and strengthens content knowledge. In the field, the teacher is a team member and educational liaison, responding to questions from students and colleagues by e-mail, and posting electronic journals describing the research experience. Upon return, the teachers work closely with colleagues to bring the experience of research into classrooms through creation of activities, design of longer-term student investigations, and presentations at scientific, educational, and community meetings. Interaction with the scientific team continues with a visit by the scientist to the teacher's classrooms, collaboration on presentations at scientific meetings, and consultation on classroom activities. In some cases, the teacher may participate in future expeditions. The involvement by scientists in mentor relationships, such as those of the TEA Program, is critical to improving science education. Many teachers of science have not had the opportunity to participate in field research, which offers valuable first-hand experience about the nature of science, as well as about specific content. The value to the scientist lies in deepening the understanding of current science education, increasing exposure to new ways to communicate information, and developing a path to having the research shared with the classroom and community via the TEA teacher's outreach. This long-term interaction between a scientist and a teacher can result in meaningful impact through increasing depth of understanding - not just about science content, but about the process of science. Equipped with this understanding based on experience, the teacher can multiply the impact with colleagues and students.

  4. Inherit Space

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.; Jenks, K. C.

    1997-01-01

    The objective of the proposed research was to begin development of a unique educational tool targeted at educating and inspiring young people 12-16 years old about NASA and the Space Program. Since these young people are the future engineers, scientists and space pioneers, the nurturing of their enthusiasm and interest is of critical importance to the Nation. This summer the basic infrastructure of the tool was developed in the context of an educational game paradigm. The game paradigm has achieved remarkable success in maintaining the interest of young people in a self-paced, student-directed learning environment. This type of environment encourages student exploration and curiosity which are exactly the traits that future space pioneers need to develop to prepare for the unexpected. The Inherit Space Educational Tool is an open-ended learning environment consisting of a finite-state machine classic adventure game paradigm. As the young person explores this world, different obstacles must be overcome. Rewards will be offered such as using the flight simulator to fly around and explore Titan. This simulator was modeled on conventional Earth flight simulators but has been considerably enhanced to add texture mapping of Titan's atmosphere utilizing the latest information from the NASA Galileo Space Probe. Additional scenery was added to provide color VGA graphics of a futuristic research station on Titan as well as an interesting story to keep the youngster's attention. This summer the game infrastructure has been developed as well as the Titan Flight Simulator. A number of other enhancements are planned.

  5. Plate Boundary Observatory Infrastructure and Data Products in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Barbour, K.; Lee, E.

    2005-12-01

    As one of three major components of NSF's EarthScope program, the Plate Boundary Observatory (PBO) encourages the integration of research and education. Informing various communities about the current work of PBO and the scientific discoveries related to the use of this instrumentation has contributed to the success of PBO during the first two years of the EarthScope project. UNAVCO(PBO), IRIS (USArray), and the EarthScope project office work together to integrate Education and Outreach (E&O) opportunities into a program that is greater than the sum of its parts and yet maintains the identity of each organization. Building and maintaining the PBO website, documenting and archiving activities of PBO, providing short courses for professional development of scientists using EarthScope data, and developing higher level data products with an appropriate educational framework are a few of the activities that provide both challenges and opportunities. The internet, particularly the World Wide Web, has become the primary tool for disseminating information to various audiences. The primary goals of the PBO website are to provide current information on the progress of GPS and Strainmeter facility construction; to provide access to different levels of data products; and to facilitate networking with and among scientists. Challenges for the PBO website include publishing current stories on installation projects while coordinating with field engineers on a regular basis; providing near to real time updates and maintaining quality assurance processes; and defining personnel requirements for a maintaining a dynamic website. Currently, archived photographs, web diaries, and numerous web highlights document PBO's success and provide a visual record of PBO's accomplishments and behind-the-scene activities over the last two years. The community charged PBO with increasing the number of scientists using its data. UNAVCO does this by providing short courses for professional development of young scientists and more established scientists broadening their research interests. In addition, collecting, manipulating, and aggregating real scientific data for classroom use is a current priority in science education. Educators want their students to use these data to draw conclusions following the logical processes characteristic of the scientific endeavor. Hence, PBO is a natural source of data for use in the classroom. Staff and community members are designing higher level data products for a variety of audiences in formal education (students and instructors in middle/high school, community colleges, undergraduate science majors and students in general science education, graduate students) and in informal education (museums, park information centers, science centers, and media. PBO is working on a chapter for the Earth Exploration Toolbox (http://serc.carleton.edu/eet/) for undergraduate general science education, and the Jules Verne Voyager will include a user-friendly interface and associated educational materials. Evaluation of the effectiveness of this entire program and of individual projects and products is a major undertaking. The multitude of tasks, integration of these tasks into a coherent program, and identification of resources for evaluation are both opportunities and challenges in helping build a program with measurable impact.

  6. The Impact of a Citizen Science Program on Student Achievement and Motivation: A Social Cognitive Career Perspective

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.

    2012-01-01

    Citizen science programs are joint efforts between hobbyists and professional scientists designed to collect data to support scientific research. Through these programs, biologists study species population trends while citizen scientists improve their content knowledge and science skills. The purpose of the present mixed method quasi-experimental…

  7. Bridging gaps in discovery and development: chemical and biological sciences for affordable health, wellness and sustainability.

    PubMed

    Chauhan, Prem Man Singh

    2011-05-01

    To commemorate 2011 as the International Year of Chemistry, the Indian Society of Chemists and Biologists organized its 15th International Conference on 'Bridging Gaps in Discovery and Development: Chemical and Biological Sciences for Affordable Health, Wellness and Sustainability' at Hotel Grand Bhagwati, in association with Saurashtra University, Rajkot, India. Anamik Shah, President of the Indian Society of Chemists and Biologists, was organizing secretary of the conference. Nicole Moreau, President of the International Union of Pure and Applied Chemistry and Secretary General of the Comité National de la Chimie, National Centre for Scientific Research France, was chief guest of the function. The four-day scientific program included 52 plenary lectures, 24 invited lectures by eminent scientists in the field and 12 oral presentations. A total of 317 posters were presented by young scientists and PhD students in three different poster sessions. Approximately 750 delegates from India, the USA, UK, France, Switzerland, Germany, Austria, Belgium, Sweden, Japan and other countries attended the conference. The majority of the speakers gave presentations related to their current projects and areas of interest and many of the talks covered synthesis, structure-activity relationships, current trends in medicinal chemistry and drug research.

  8. 2010 Gordon Research Conference on Correlated Electron Systems: Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basov, Dmitri N.

    The 2010 Gordon Conference on Correlated Electron Systems will present cutting-edge research on emergent properties arising from strong electronic correlations. The Conference will feature a wide range of topics, such as the role of topology in condensed matter systems, quantum Hall interferometry and non-Abelian statistics, quantum criticality, metal-insulator transition, quantum effects in conductivity, Dirac quasiparticles, and superconductivity in cuprates and pnictides. In addition, we are reserving two sessions for new developments in this field that may arise in the coming year. The Conference will bring together a collection of investigators who are at the forefront of their field, and willmore » provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. We intend to have talks by established leaders in the field and also by young researchers who have made seminal contributions to various aspects of correlated electron physics, The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented.« less

  9. Mobility and International Collaboration: Case of the Mexican Scientific Diaspora

    PubMed Central

    Marmolejo-Leyva, Rafael; Perez-Angon, Miguel Angel; Russell, Jane M.

    2015-01-01

    We use a data set of Mexican researchers working abroad that are included in the Mexican National System of Researchers (SNI). Our diaspora sample includes 479 researchers, most of them holding postdoctoral positions in mainly seven countries: USA, Great Britain, Germany, France, Spain, Canada and Brazil. Their research output and impact is explored in order to determine their patterns of production, mobility and scientific collaboration as compared with previous studies of the SNI researchers in the periods 1991–2001 and 2003–2009. Our findings confirm that mobility has a strong impact on their international scientific collaboration. We found no substantial influence among the researchers that got their PhD degrees abroad from those trained in Mexican universities. There are significant differences among the areas of knowledge studied: biological sciences, physics and engineering have better production and impact rates than mathematics, geosciences, medicine, agrosciences, chemistry, social sciences and humanities. We found a slight gender difference in research production but Mexican female scientists are underrepresented in our diaspora sample. These findings would have policy implications for the recently established program that will open new academic positions for young Mexican scientists. PMID:26047501

  10. Toward an essential ethic for teaching science in the new millennium

    NASA Astrophysics Data System (ADS)

    Hays, Irene De La Bretonne

    The purpose of this study was to identify and explore values and views that might underlie an essential ethic for teaching science in the new millennium. With such an ethic, teachers may be better able to prepare young people to form and fully participate in communities that restore and sustain Earth. Reviewed in the literature for this study were changing philosophies and theories from early indigenous cultures to the present on the nature of nature, the value of nature, and the human relationship with nature. These philosophies and theories were found to influence values that today underlie the work scientists do and the ways young people are educated in science. In the study, two groups of participants--Nature Writers and scientists--revealed the essence and meaning of their relationship with nature. A two-stage, modified Delphi method was used for collecting data. Stage One comprised the first "round" of the Delphi and involved content analysis of writings by a select group of U.S. Nature Writers from the early 1800s to the present. In Stage Two, comprising three rounds of the modified Delphi, perspectives of Nature Writers were imbedded in questionnaires and presented for response to a select group of scientists connected with research and education at National Laboratories across the country. Finally, results from each participant group were brought together in a recursive process, one with the other, to determine findings. Strong Earth-care values, including receptivity, responsibility, interdependence, respect, cooperation, love, and care, were found to be held in common by the Nature Writers and scientists in this study and could form the foundation for an essential ethic for teaching science. The strongest dissonance between Nature Writers and scientists was evident in emotional and spiritual domains--despite that many scientists revealed emotional and spiritual elements in stories told of their experiences with nature. Contrary to what might have been expected from scientists based on theories of science and practices of science education represented in the literature, few scientists revealed negative, utilitarian, or dominionistic affiliations with nature. In contrast, no Nature Writers revealed such affiliations.

  11. Collaborating with Scientists in Education and Public Engagement

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda

    2016-10-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement, such as connecting them to opportunities, creating useful resources, and providing training. The advisory board will assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events.LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves.This poster will share the status and current findings of the scientist advisory board, and the lessons learned regarding planetary scientists' needs, abilities, and interests in participating in education and public engagement programs.

  12. Collaborating with Scientists in Education and Public Engagement

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2016-12-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement (such as connecting them to opportunities, creating useful resources, and providing training). The advisory board will also assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events. LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the status and current findings of the scientist advisory board, and the resulting lessons learned regarding scientists' needs, abilities, and interests in participating in education and public engagement programs.

  13. Wr u txting b4 u crashed?

    PubMed

    Buchanan, Laura; Avtgis, Theodore; Gray, Dana; Channel, Jane; Wilson, Alison

    2013-01-01

    Texting has become popular, particularly among young adults. Texting while driving has been identified as a factor in accidents. Literature is lacking about the overall attitudes and utilization of texting. Understand attitudes and behaviors surrounding texting. A survey to evaluate attitudes and behaviors concerning texting was developed in conjunction with a social scientist. The survey (2009) was administered to university freshmen via an anonymous, web based program. The study was approved by the IRB. 426 university freshmen completed the survey. 67% reported texting was more useful than speaking by phone. 53% report they text more than 50 times per day. 24% report they text more than 100 times per day. 73% report they text while driving, though only 9% responded they do so frequently. 92% believe texting affects their concentration while driving. 84% reported they are passengers when the driver texts and 75% report they do not feel safe in the car when the driver is texting. 77% disagreed with the statement "It is no big deal to text while driving." 53% reported they can not safely text and drive and 60% agreed texting while driving should be illegal. 92% reported texting was less safe then talking on the cell phone while driving. Texting is commonly used by young adults, though many believe texting while driving decreases concentration and is unsafe. A majority report to texting while driving. Injury prevention and awareness programs are needed to decrease this behavior.

  14. 76 FR 7224 - National Institute of Mental Health; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Emphasis Panel; Biobehavioral Research Awards for Innovative New Scientists (BRAINS). Date: March 1, 2011... . (Catalogue of Federal Domestic Assistance Program Nos. 93.242, Mental Health Research Grants; 93.281, Scientist Development Award, Scientist Development Award for Clinicians, and Research Scientist Award; 93...

  15. The LEAPS GK-12 Program

    NASA Astrophysics Data System (ADS)

    Gwinn, Elisabeth; Goodchild, Fiona; Garza, Marilyn

    2005-03-01

    The NSF-funded GK-12 program at UCSB, ``Let's Explore Applied Physical Science'' (LEAPS), awards full fellowships to competitively selected graduate students in the physical sciences and engineering, to support their engagement in local 8th and 9th grade science classrooms. The Fellows' responsibilities to LEAPS total 15 hours per week during the school year. They join consistently in the same classes to collaborate with teachers on delivery of discovery-oriented science instruction. Fellows work in 3-member, interdisciplinary teams. They benefit from this team approach through interaction with colleagues in other disciplines, validation from peers who share enthusiasm for science and mentoring, increased leadership and teaching skills, and a research safety net provided by teammates who can pick up the slack when one Fellow's research requires undivided attention. For teachers, the disciplinary breadth of the Fellow teams is an enormous asset in covering the broad physical science curriculum in CA. Students benefit from hands-on labs and small-group problem-solving exercises enabled by the Fellows' presence and from mentoring by these young scientists.

  16. Resilience to Adversity and the Early Origins of Disease

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Beach, Steven R. H.

    2016-01-01

    For the past quarter century, scientists at the Center for Family Research at the University of Georgia have conducted research designed to promote understanding of normative developmental trajectories among low-SES African American children, youths, and young adults. In this paper, we describe a recent expansion of this research program using longitudinal, epidemiological studies and randomized prevention trials to tests hypotheses about the origins of disease among rural African American youths. The contributions of economic hardship, downward mobility, neighborhood poverty, and racial discrimination to allostatic load and epigenetic aging are illustrated. The health benefits of supportive family relationships in protecting youths from these challenges are also illustrated. A cautionary set of studies is presented showing that some psychosocially resilient youths demonstrate high allostatic loads and accelerated epigenetic aging, suggesting that, for some, “resilience is just skin deep.” Finally, we end on an optimistic note by demonstrating that family-centered prevention programs can have health benefits by reducing inflammation, helping to preserve telomere length, and inhibiting epigenetic aging. PMID:27692007

  17. Resilience to adversity and the early origins of disease.

    PubMed

    Brody, Gene H; Yu, Tianyi; Beach, Steven R H

    2016-11-01

    For the past quarter century, scientists at the Center for Family Research at the University of Georgia have conducted research designed to promote understanding of normative developmental trajectories among low socioeconomic status African American children, youths, and young adults. In this paper, we describe a recent expansion of this research program using longitudinal, epidemiological studies and randomized prevention trials to test hypotheses about the origins of disease among rural African American youths. The contributions of economic hardship, downward mobility, neighborhood poverty, and racial discrimination to allostatic load and epigenetic aging are illustrated. The health benefits of supportive family relationships in protecting youths from these challenges are also illustrated. A cautionary set of studies is presented showing that some psychosocially resilient youths demonstrate high allostatic loads and accelerated epigenetic aging, suggesting that, for some, "resilience is just skin deep." Finally, we end on an optimistic note by demonstrating that family-centered prevention programs can have health benefits by reducing inflammation, helping to preserve telomere length, and inhibiting epigenetic aging.

  18. Engage: The Science Speaker Series - A novel approach to improving science outreach and communication

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; Hilton, Eric; Mitchell, Rachel; Rosenfield, Phil

    2011-10-01

    Communicating the results and significance of basic research to the general public is of critical importance. At present, very few programs exist to allow young scientists the opportunity to practice their public outreach skills. Although the need for science outreach is recognized, graduate programs often fail to provide any training in making science accessible. Engage represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed an interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk about their research. The course incorporates story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This free, public-friendly speaker series is hosted at the University of Washington and has substantial public attendance and participation.

  19. Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis

    NASA Astrophysics Data System (ADS)

    Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus

    2011-05-01

    The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.

  20. ENABLE 2017, the First EUROPEAN PhD and Post-Doc Symposium. Session 3: In Vitro to In Vivo: Modeling Life in 3D.

    PubMed

    Di Mauro, Gianmarco; Dondi, Ambra; Giangreco, Giovanni; Hogrebe, Alexander; Louer, Elja; Magistrati, Elisa; Mullari, Meeli; Turon, Gemma; Verdurmen, Wouter; Cortada, Helena Xicoy; Zivanovic, Sanja

    2018-05-22

    The EUROPEAN ACADEMY FOR BIOMEDICAL SCIENCE (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European research institutes (Institute for Research in Biomedicine-IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences-RIMLS, the Netherlands; Novo Nordisk Foundation Center for Protein Research-NNF CPR, Denmark; European School of Molecular Medicine-SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim to promote biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; outreach activities stimulating the interaction between science and society. The first European PhD and Postdoc Symposium, entitled "Breaking Down Complexity: Innovative models and techniques in biomedicine", was hosted by the vibrant city of Barcelona. The scientific program of the conference was focused on the most recent advances and applications of modern techniques and models in biomedical research and covered a wide range of topics, from synthetic biology to translational medicine. Overall, the event was a great success, with more than 200 attendees from all over Europe actively participating in the symposium by presenting their research and exchanging ideas with their peers and world-renowned scientists.

  1. ENABLE 2017, the First EUROPEAN PhD and Post-Doc Symposium. Session 4: From Discovery to Cure: The Future of Therapeutics.

    PubMed

    Di Mauro, Gianmarco; Dondi, Ambra; Giangreco, Giovanni; Hogrebe, Alexander; Louer, Elja; Magistrati, Elisa; Mullari, Meeli; Turon, Gemma; Verdurmen, Wouter; Xicoy Cortada, Helena; Zivanovic, Sanja

    2018-05-28

    The EUROPEAN ACADEMY FOR BIOMEDICAL SCIENCE (ENABLE) is an initiative funded by the European Union Horizon 2020 program involving four renowned European Research Institutes (Institute for Research in Biomedicine-IRB Barcelona, Spain; Radboud Institute for Molecular Life Sciences-RIMLS, the Netherlands; Novo Nordisk Foundation Center for Protein Research-NNF CPR, Denmark; European School of Molecular Medicine-SEMM, Italy) and an innovative science communication agency (Scienseed). With the aim of promoting biomedical science of excellence in Europe, ENABLE organizes an annual three-day international event. This gathering includes a top-level scientific symposium bringing together leading scientists, PhD students, and post-doctoral fellows; career development activities supporting the progression of young researchers and fostering discussion about opportunities beyond the bench; and outreach activities stimulating the interaction between science and society. The first European PhD and Postdoc Symposium, entitled "Breaking Down Complexity: Innovative Models and Techniques in Biomedicine", was hosted by the vibrant city of Barcelona. The scientific program of the conference was focused on the most recent advances and applications of modern techniques and models in biomedical research and covered a wide range of topics, from synthetic biology to translational medicine. Overall, the event was a great success, with more than 200 attendees from all over Europe actively participating in the symposium by presenting their research and exchanging ideas with their peers and world-renowned scientists.

  2. Communicating science

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2010-03-01

    A dozen young graduate students stand awkwardly in a line on stage. They look around hesitantly as Alan Alda prepares to lead them in an improvisation exercise. The 73-year-old actor, best known for his appearances in hit TV shows such as M*A*S*H and The West Wing, is trying to see if such exercises, more commonly associated with theatrical training, can help young scientists to improve their public-speaking skills.

  3. Sustaining Young Forest Communities: Ecology and Management of Early Successional Habitats in the Central Hardwood Region, USA

    Treesearch

    Cathryn H. Greenberg; Beverly S. Collins; Frank R. Thompson III

    2011-01-01

    There is a rising concern among natural resource scientists and managers about decline of the many plant and animal species associated with early ­successional habitats. There is no concise definition of early successional habitats. However, all have a well developed ground cover or shrub and young tree component, lack a closed, mature tree canopy, and are created or...

  4. Salmon cycles: Influences of a science field study immersion experience with Native American young women

    NASA Astrophysics Data System (ADS)

    Ault, Phyllis Campbell

    Native Americans, and particularly Native women, are not proportionally represented in higher education, or in science, mathematics, technology, and engineering fields. This study examined an out-of-school science education program which combined traditional Native American cultural and ecological knowledge with Western science in conducting authentic field studies. A qualitative, embedded case study approach was used to explore how young Native American women were influenced by an out-of-school program integrating a culturally responsive approach and experiential research projects. Within this context of combined cultures, three significant domains emerged: field study in science, sense of place, and networks of supportive relationships. These domains interacted with the aspirations of the eight Native women in the study. Using interview transcripts, reflective writings, and participant data, the study explored the blending of Indigenous and Western science in "communities of practice" (e.g., fisheries biology, restoration ecology, and forestry). The eight Native women in this study participated as young adolescents and later returned as counselors. Interviews focused on their postsecondary aspirations and choices. Findings validated previous research on the value of infusing Traditional Ecological Knowledge and Western science for Native students. The study found the combination of culturally responsive pedagogy and authentic experiences in "communities-of-practice" held a beneficial influence on postsecondary pathways. The importance of respect and friendships fostered through the program was associated with resilience and perseverance in educational aspirations. Immersion in field study with Native peers as well as Native and non-Native researchers was a catalyst for all the women, in a number of different ways, such as: deeper involvement with the Native community, strengthening cultural and academic identity, inspiration to learn more about their cultural heritage, and interest in pursuing science or science-related careers. Commitments to "giving back" to the community, stewardship, and activism emerged as significant outcomes. The experience created a safe, empowering place to be Native, "crazy, a scientist, and a fish geek"---all at once.

  5. Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?

    NASA Astrophysics Data System (ADS)

    Milford, Todd M.; Tippett, Christine D.

    2013-06-01

    This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by preservice teachers reflected the stereotype of a scientist as a man with a wild hairdo who wears a lab coat and glasses while working in a laboratory setting. However, results indicated statistically significant differences in stereotypical components of representations of scientists depending on preservice teachers' program and previous science experiences. Post degree students in secondary science methods courses created images of scientists with fewer stereotypical elements than drawings created by students in the regular elementary program.

  6. Crowd-Sourcing with K-12 citizen scientists: The Continuing Evolution of the GLOBE Program

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Wegner, K.; Andersen, T. J.

    2016-12-01

    Twenty years ago, the Internet was still in its infancy, citizen science was a relatively unknown term, and the idea of a global citizen science database was unheard of. Then the Global Learning and Observations to Benefit the Environment (GLOBE) Program was proposed and this all changed. GLOBE was one of the first K-12 citizen science programs on a global scale. An initial large scale ramp-up of the program was followed by the establishment of a network of partners in countries and within the U.S. Now in the 21st century, the program has over 50 protocols in atmosphere, biosphere, hydrosphere and pedosphere, almost 140 million measurements in the database, a visualization system, collaborations with NASA satellite mission scientists (GPM, SMAP) and other scientists, as well as research projects by GLOBE students. As technology changed over the past two decades, it was integrated into the program's outreach efforts to existing and new members with the result that the program now has a strong social media presence. In 2016, a new app was launched which opened up GLOBE and data entry to citizen scientists of all ages. The app is aimed at fresh audiences, beyond the traditional GLOBE K-12 community. Groups targeted included: scouting organizations, museums, 4H, science learning centers, retirement communities, etc. to broaden participation in the program and increase the number of data available to students and scientists. Through the 20 years of GLOBE, lessons have been learned about changing the management of this type of large-scale program, the use of technology to enhance and improve the experience for members, and increasing community involvement in the program.

  7. Telling Your Story: Ocean Scientists in the K-12 Classroom

    NASA Astrophysics Data System (ADS)

    McWilliams, H.

    2006-12-01

    Most scientists and engineers are accustomed to presenting their research to colleagues or lecturing college or graduate students. But if asked to speak in front of a classroom full of elementary school or junior high school students, many feel less comfortable. TERC, as part of its work with The Center for Ocean Sciences Education Excellence-New England (COSEE-NE) has designed a workshop to help ocean scientists and engineers develop skills for working with K-12 teachers and students. We call this program: Telling Your Story (TYS). TYS has been offered 4 times over 18 months for a total audience of approximately 50 ocean scientists. We will discuss the rationale for the program, the program outline, outcomes, and what we have learned. ne.net/edu_project_3/index.php

  8. Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy

    NASA Astrophysics Data System (ADS)

    Qin, Haiyun; Zhao, Wei; Zhang, Chen; Liu, Yong; Wang, Guiren; Wang, Kaige

    2018-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11672229 and 61378083), International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01), Natural Science Basic Research Program of Shaanxi Province — Major Basic Research Project, China (Grant No. 2016ZDJC-15), Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), and the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ103).

  9. A Teacher-Scientist Partnership as a Vehicle to Incorporate Climate Data in Secondary Science Curriculum

    NASA Astrophysics Data System (ADS)

    Hatheway, B.

    2013-12-01

    After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the teachers and scientists who participated. Lessons learned that will improve this model will also be discussed.

  10. Teaming Up with Scientists.

    ERIC Educational Resources Information Center

    Moreno, Nancy P.; Chang, Kimberly A.; Tharp, Barbara Z.; Denk, James P.; Roberts, J. Kyle; Cutler, Paula H.; Rahmati, Sonia

    2001-01-01

    Introduces the Science Education Leadership Fellows (SELF) program which is an innovative cooperation program between teachers and scientists. Engages teachers in subject areas such as microbiology, molecular biology, immunology, and other professional development activities. Presents an activity in which students observe bacteria cultures and…

  11. Science policy fellowships

    NASA Astrophysics Data System (ADS)

    To encourage scientists to contribute to public policy issues that involve the natural sciences, the Brookings Institution in Washington, D.C., has established a Science Policy Fellowship program, slated to begin with the 1981-1982 academic year. The program will bring senior scientists to Washington for 1 year to work with the Brookings staff on science policy issues.Fellowships will be awarded annually to three scientists from among candidates nominated by an advisory committee, by departments of natural science at universities and private research institutions, and by the public sector. The new program is supported by a 3-year grant from the Sloan Foundation.

  12. PREFACE: IV Nanotechnology International Forum (RUSNANOTECH 2011)

    NASA Astrophysics Data System (ADS)

    Dvurechenskii, Anatoly; Alfimov, Mikhail; Suzdalev, Igor; Osiko, Vyacheslav; Khokhlov, Aleksey; Son, Eduard; Skryabin, Konstantin; Petrov, Rem; Deev, Sergey

    2012-02-01

    Logo The RUSNANOTECH 2011 International Forum on Nanotechnology was held from 26-28 October 2011, in Moscow, Russia. It was the fourth forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into four sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Nanoelectronics and Nanophotonics Nanomaterials Nanotechnology and Green Energy Nanotechnology in Healthcare and Pharma (United business and science & technology section on 'RUSNANOTECH 2011') The scientific program of the forum included more than 50 oral presentations by leading scientists from 15 countries. Among them were world-known specialists such as Professor S Bader (Argonne National Laboratory, USA), Professor O Farokzhad (Harvard Medical School, USA), Professor K Chien (Massachusetts General Hospital, USA), Professor L Liz-Marzan (University of Vigo), A Luque (Polytechnic University of Madrid) and many others. The poster session consisted of over 120 presentations, 90 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of Journal of Physics: Conference Series includes a selection of 47 submissions. Section editors of the proceedings: Nanoelectronics and nanophotonics Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS). Nanomaterials Member of Russian Academy of Sciences, Professor Mikhail Alfimov (Photochemistry Center, RAS), Professor Igor Suzdalev (Semenov Institute of Chemical Physics, RAS), Member of Russian Academy of Science, Professor Vyacheslav Osiko (Prokhorov General Physics Institute, RAS), Member of Russian Academy of Science, Professor Aleksey Khokhlov (Physical department of Moscow State University). Nanotechnology and green energy Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS). Nanotechnology in Healthcare and Pharma Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).

  13. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  14. Mission X in Japan, an Education Outreach Program Featuring Astronautical Specialties and Knowledge

    NASA Astrophysics Data System (ADS)

    Niihori, Maki; Yamada, Shin; Matsuo, Tomoaki; Nakao, Reiko; Nakazawa, Takashi; Kamiyama, Yoshito; Takeoka, Hajime; Matsumoto, Akiko; Ohshima, Hiroshi; Mukai, Chiaki

    In the science field, disseminating new information to the public is becoming increasingly important, since it can aid a deeper understanding of scientific significance and increase the number of future scientists. As part of our activities, we at the Japan Aerospace Exploration Agency (JAXA) Space Biomedical Research Office, started work to focus on education outreach featuring space biomedical research. In 2010, we launched the Mission X education program in Japan, named after “Mission X: Train Like an Astronaut” (hereinafter called “Mission X”), mainly led by NASA and European Space Agency (ESA). Mission X is an international public outreach program designed to encourage proper nutrition and exercise and teaching young people to live and eat like astronauts. We adopted Mission X's standpoint, and modified the program based on the originals to suit Japanese culture and the students' grade. Using astronauts as examples, this mission can motivate and educate students to instill and adopt good nutrition and physical fitness as life-long practices.Here we introduce our pilot mission of the “Mission X in Japan” education program, which was held in early 2011. We are continuing the education/public outreach to promote the public understanding of science and contribute to science education through lectures on astronautical specialties and knowledge.

  15. American Academy of Forensic Sciences

    MedlinePlus

    ... Academy News PDF Library Proceedings Journal of Forensic Sciences Information for Authors Searchable Index Contact Information Forensic Links ... Dale Stewart Award 2018 Annual Scientific Meeting Registration ... in Forensic Science … Now What? Young Forensic Scientists Forum (YFSF) Annual ...

  16. G-2008-0813-024

    NASA Image and Video Library

    2008-10-05

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations. Jim Garvin explains Mars

  17. The Young Scientist: Sense-sational Sensors!

    ERIC Educational Resources Information Center

    Lewis, Carol

    1991-01-01

    Human and electronic sensors that can indicate the presence of light, sound, temperature, pressure, and movement are discussed. Activities that investigate the human senses are described. Directions for making an electronic touch sensor are provided. (KR)

  18. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  19. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    NASA Astrophysics Data System (ADS)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey Samsonov (University of Wisconsin-Madison, USA) demonstrated new image reconstruction methods for accelerated quantitative parameter mapping and magnetic resonance angiography. Finally, we would like to thank the scientific committee, the local organizing committee and the National Research Tomsk State University for giving an opportunity to share scientific ideas and new developments at the conference and the Russian Science Foundation (project № 14-45-00040) for financial support.

  20. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and mathmore » (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)« less

  1. Young Engineers and Scientists (YES 2K6): Independent and Group Mentorship Projects

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2006-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 14 years, and YES 2K6 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences and engineering. YES 2K6 consists of two parts: 1) a three-week summer workshop and 2) a mentorship where students complete individual research projects during their academic year. The intensive workshop is held at SwRI where students experience the research environment first-hand. They also develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. YES 2K6 students developed a website for the Magnetospheric Multiscale (MMS) Mission from the perspective of a high school student. The collegial mentorship takes place during their academic year where students complete individual research projects under the guidance of their mentors and earn honors credit. At the end of the school year, students publicly present and display their work at their schools. This acknowledges their accomplishments and spreads career awareness to other students and teachers. Over the past 14 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the benefits of YES for their academic preparation and choice of college majors. We acknowledge E/PO funding from the NASA MMS Mission and local charitable foundations.

  2. BudBurst Buddies: Introducing Young Citizen Scientists to Plants and Environmental Change

    NASA Astrophysics Data System (ADS)

    Ward, D.; Gardiner, L. S.; Henderson, S.

    2011-12-01

    As part of Project BudBurst, the BudBurst Buddies recently moved to the National Ecological Network (NEON) as part of its Education and Public Engagement efforts. The BudBurst Buddies (www.budburstbuddies.org) were created to engage elementary school age children in the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Hundreds of young students have participated in the inaugural year of BudBurst Buddies. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. The program was recently highlighted by education staff at the New York Hall of Science and numerous classrooms have been implementing this resource as part of their curriculum. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies resources including a new implementation guide and will also share feedback from the first year of implementation.

  3. Young Engineers and Scientists (YES) - Engaging Students and Teachers in Research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Reiff, P.

    2012-10-01

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) for the past 20 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including astronomy), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Twenty-one YES 2012 students developed a website for the Dawn Mission (yesserver.space.swri.edu) and five high school science teachers are developing space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, SwRI, and local charitable foundations.

  4. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    NASA Astrophysics Data System (ADS)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge-based detectors and technology; 2) Ge zone refining and crystal growth; 3) Ge detector development; 4) Ge orientated business and applications; 5) Ge recycling and recovery; 6) introduction to underground sciences for young scientists; and 7) introduction of experimental techniques for low background experiments to young scientists. Sections 1-5 were dedicated to Ge detectors and technology. Each topic was complemented with a panel discussion on challenges, critical measures, and R&D activities. Sections 6-7 provided students and postdocs an opportunity to understand fundamental principles of underground sciences and experimental techniques on low background experiments. To these two sections, well-known scientists in the field were invited to give lectures and allow young scientists to make presentations on their own research activities. Fifty-six invited talks were delivered during the three-day workshop. Many critical questions were addressed not only in the specific talks but also in the panel discussions. Details of the panel discussions, as well as conference photos, the list of committees and the workshop website can be found in the PDF.

  5. SunBlock '99: Young Scientists Investigate the Sun

    NASA Astrophysics Data System (ADS)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  6. Strengthening the network of mentored, underrepresented minority scientists and leaders to reduce HIV-related health disparities.

    PubMed

    Sutton, Madeline Y; Lanier, Yzette A; Willis, Leigh A; Castellanos, Ted; Dominguez, Ken; Fitzpatrick, Lisa; Miller, Kim S

    2013-12-01

    We reviewed data for the Minority HIV/AIDS Research Initiative (MARI), which was established in 2003 to support underrepresented minority scientists performing HIV prevention research in highly affected communities. MARI was established at the Centers for Disease Prevention and Control as a program of competitively awarded, mentored grants for early career researchers conducting HIV prevention research in highly affected racial/ethnic and sexual minority communities. We have described progress from 2003 to 2013. To date, MARI has mentored 27 scientist leaders using low-cost strategies to enhance the development of effective HIV prevention interventions. These scientists have (1) developed research programs in disproportionately affected communities of color, (2) produced first-authored peer-reviewed scientific and programmatic products (including articles and community-level interventions), and (3) obtained larger, subsequent funding awards for research and programmatic work related to HIV prevention and health disparities work. The MARI program demonstrates how to effectively engage minority scientists to conduct HIV prevention research and reduce racial/ethnic investigator disparities and serves as a model for programs to reduce disparities in other public health areas in which communities of color are disproportionately affected.

  7. Strengthening the Network of Mentored, Underrepresented Minority Scientists and Leaders to Reduce HIV-Related Health Disparities

    PubMed Central

    Lanier, Yzette A.; Willis, Leigh A.; Castellanos, Ted; Dominguez, Ken; Fitzpatrick, Lisa; Miller, Kim S.

    2013-01-01

    Objectives. We reviewed data for the Minority HIV/AIDS Research Initiative (MARI), which was established in 2003 to support underrepresented minority scientists performing HIV prevention research in highly affected communities. Methods. MARI was established at the Centers for Disease Prevention and Control as a program of competitively awarded, mentored grants for early career researchers conducting HIV prevention research in highly affected racial/ethnic and sexual minority communities. We have described progress from 2003 to 2013. Results. To date, MARI has mentored 27 scientist leaders using low-cost strategies to enhance the development of effective HIV prevention interventions. These scientists have (1) developed research programs in disproportionately affected communities of color, (2) produced first-authored peer-reviewed scientific and programmatic products (including articles and community-level interventions), and (3) obtained larger, subsequent funding awards for research and programmatic work related to HIV prevention and health disparities work. Conclusions. The MARI program demonstrates how to effectively engage minority scientists to conduct HIV prevention research and reduce racial/ethnic investigator disparities and serves as a model for programs to reduce disparities in other public health areas in which communities of color are disproportionately affected. PMID:24134360

  8. Science, technology and inventions: Children draw their own visions

    NASA Astrophysics Data System (ADS)

    D'Addezio, G.; Rubbia, G.; Marsili, A.

    2013-12-01

    Italian primary schools participated with enthusiasm to the drawing competition 'I'm a scientist too! Science and scientists from the children point of view' organized by the Laboratorio di Didattica e Divulgazione Scientifica of Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. The best drawings were awarded and published in the 2011 school calendar. Children were asked to realize a drawing, choosing among three suggestions: 1) How do you imagine a scientist, and how do you imagine the daily activities of a researcher? 2) What invention do you consider the most important among all those you know? 3) What would you invent? The topic 'invention' (#3) was the most successful. In fact, among the collected 1,000 drawings, 400 drawings depict scientists, nearly 150 depict scientists with their inventions, and other 350 depict inventions alone. A classification scheme was designed in order to synthetically describe this set of images and analyze it. The Draw-A-Scientist scheme, known from literature, was maintained but modified in order to characterize both inventors and inventions. A preliminary analysis about scientists reveals a persistent gender stereotype, since most of depicted persons were male and nearly half of girls draw men scientists. The image of 'mad scientist' is still present but it is mainly related to men. Women scientists are drawn by girls; they are represented as young, not crazy, usually good-looking. There are no particular differences between boys and girls in assigning research fields to scientists. Women scientists are often depicted as assistants, but when alone they are self-confident enough to give their name to an invention or to aspire for Nobel Prize. In this work we present the preliminary analysis performed on drawings containing inventions. What do girls and boys 6 to 11 years old invent? Robots, helping in housekeeping or in doing homework; rockets, space vehicles and time machines, but also fictional machines and hybridized animals, devices helping in human caring or having impact on the environment, for a better quality of life. In general, preferred subjects refer to something useful with respect to things we do in everyday life but also fancy devices, for which imagination runs wild. Inventions can include something useful to individuals or to a community, being something totally new, or already existing, but improved, combined or transformed; being a device or part of the natural environment or of the human body; they can involve several dimensions of living like eating, transporting, entertainment or work. Do girls and boys conceive different inventions? What do they invent with respect to Earth Sciences and natural environment? Which are the relationships with the outreach programs organized and performed by INGV? What arises from children's drawings provides us a direct and unconventional approach to point out how we convey our science - a strategic topic for a suitable future of the humanity - to the players of the world of tomorrow.

  9. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    NASA Astrophysics Data System (ADS)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  10. Meta-analytic Evaluation of a Virtual Field Trip to Connect Middle School Students with University Scientists

    NASA Astrophysics Data System (ADS)

    Adedokun, Omolola A.; Liu, Jia; Parker, Loran Carleton; Burgess, Wilella

    2015-02-01

    Although virtual field trips are becoming popular, there are few empirical studies of their impacts on student outcomes. This study reports on a meta-analytic evaluation of the impact of a virtual field trip on student perceptions of scientists. Specifically, the study examined the summary effect of zipTrips broadcasts on evaluation participants' perceptions of scientists, as well as the moderating effect of program type on program impact. The results showed statistically significant effect of each broadcast, as well as statistically significant summary (combined) effect of zipTrips on evaluation participants' perceptions of scientists. Results of the moderation analysis showed that the effect was greater for the students that participated in the evaluation of the 8th grade broadcasts, providing additional insight into the role of program variation in predicting differential program impact. This study illustrates how meta-analysis, a methodology that should be of interest to STEM education researchers and evaluation practitioners, can be used to summarize the effects of multiple offerings of the same program. Other implications for STEM educators are discussed.

  11. Community-Wide Education Outreach for the Ridge2000 Research Program

    NASA Astrophysics Data System (ADS)

    Goehring, E.

    2004-12-01

    Ridge2000 is a multidisciplinary NSF sponsored research initiative to explore Earth's spreading ridge system as an integrated whole. The Ridge2000 community is comprised of scientists from universities and research institutions across the country. Building on existing exemplary outreach efforts (e.g., REVEL, Dive&Discover, Volcanoes of the Deep Sea IMAX), Ridge2000 education outreach has begun to develop community-wide education offerings - programs to which Ridge2000 scientists and others may contribute. Community-wide efforts offer the advantages of serving larger audiences of scientists as well as educators and students and providing avenues for scientists interested in education outreach but with limited time or experience. Coordination of researchers' educational efforts also better leverages the resources of the funding agency - NSF. Here we discuss an exciting Ridge2000 pilot program called SEAS - Student Experiments At Sea. SEAS is a web-based program for middle and high school students to learn science by doing science. SEAS students study the exciting, relatively unexplored world of hydrothermal vents and learn to ask questions about this environment just as researchers do. SEAS goes beyond "follow-along" outreach by inviting students to participate in research through formal proposal and report competitions. The program was concept-tested during the 2003-2004 academic year, with 14 pilot teachers and approximately 800 students. Five student experiments were conducted at sea, with data posted to the website during the cruise. Student reports as well as scientist comments are posted there as well (http://www.ridge2000.org/SEAS/). It was an exciting year! Over 20 Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement's of NSF's Broader Impacts Criterion. They may help develop curriculum topics, consult on experimental design, review student proposals and final reports, and/or host student experiments during a research cruise. Many contributions require less than a day's effort. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. Even better, the Ridge2000 office assumes responsibility for the program development, funding, evaluation and dissemination. When we work together, the possibilities are endless.

  12. Cumulative advantages and social capabilities in scientific mobility in the Health Sciences: The Spanish case.

    PubMed

    Aceituno-Aceituno, Pedro; Melchor, Lorenzo; Danvila-Del-Valle, Joaquín; Bousoño-Calzón, Carlos

    2017-01-01

    The big problem in global public health, arising from the international migration of physicians from less-developed to more-developed countries, increases if this migration also affects scientists dedicated to health areas. This article analyzes critical variables in the processes of Spanish scientific mobility in Health Sciences to articulate effective management policies for the benefit of national public health services and the balance between local and global science. This study develops a survey to measure and analyze the following crucial variables: research career, training, funding, working with a world-class team, institutional prestige, wages, facilities/infrastructure, working conditions in the organization of the destination country, fringe benefits in the organization of the destination country and social responsibility in the organization of the departure country. A total of 811 researchers have participated in the survey, of which 293 were from the health sector: Spanish scientists abroad (114), scientists that have returned to Spain (32) and young researchers in Spain (147). The most crucial variables for Spanish scientists and young researchers in Spain in Health Sciences moving abroad are the cumulative advantages (research career, training, funding and institutional prestige) plus wages. On the other hand, the return of Spanish scientists in the Health Sciences is influenced by cumulative variables (working with a world-class team, research career and institutional prestige) and also by other variables related to social factors, such as working conditions and fringe benefits in the destination country. Permanent positions are rare for these groups and their decisions regarding mobility depend to a large extent on job opportunities. Spanish health organizations can influence researchers to return, since these decisions mainly depend on job opportunities. These organizations can complement the cumulative advantages offered by the wealthier countries with the intensification of social factors.

  13. The Rehabilitation Medicine Scientist Training Program

    PubMed Central

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  14. Scientists as Correspondents: Exploratorium "Ice Stories" for International Polar Year Project Educational Outreach

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Fall, K. R.; Miller, M.; Higdon, R.; Andrews, M.; O'Donnell, K.

    2008-12-01

    As part of the 2007-2009 International Polar Year (IPY), an educational outreach developed by the Exploratorium science museum of San Francisco builds on prior high latitude programs to: 1) create public awareness of IPY research; 2) increase public understanding of the scientific process; and, 3) stimulate a new relationship between scientists and outreach. Funded by the National Science Foundation, a key "Ice Stories" innovation is to facilitate "scientist correspondents" reporting directly to the public. To achieve this, scientists were furnished multimedia equipment and training to produce material for middle school students to adults. Scientists submitted blogs of text, images, and video from the field which were edited, standardized for format, and uploaded by Exploratorium staff, who coordinated website content and management. Online links to educational partner institutions and programs from prior Exploratorium high latitude programs will extend "Ice Stories" site visits beyond the @250,000 unique in-house users/year to more than 28 million webpage users/year overall. We review relevant technical issues, the variety of scientist participation, and what worked best and recommendations for similar efforts in the future as a legacy for the IPY.

  15. Two Students Win AGU Scholarships

    NASA Astrophysics Data System (ADS)

    Howard, Claire

    2014-10-01

    AGU is pleased to announce the winners of two student scholarships. Caterina Brighi is the recipient of the 2014 David S. Miller Young Scientist Scholarship, which recognizes a student of the Earth sciences whose academic work exhibits interest and promise.

  16. Science in action: An interdisciplinary science education program

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.

  17. Possible portrait of Galileo Galilei as a young scientist

    NASA Astrophysics Data System (ADS)

    Molaro, P.

    2012-02-01

    We describe here the possible discovery of a portrait of Galileo Galilei in his youth. The painting is not signed and the identification is mainly physiognomic. In fact, the face reveals clear resemblance to Domenico Tintoretto's portrait and to Giuseppe Calendi's engraving derived from a lost portrait made by Santi di Tito in 1601. Along with the portraits by Tintoretto, Furini, Leoni, Passignano, and Sustermans this could be another portrait of Galileo made al naturale, but, unlike the others, it depicts the scientist before he reached fame. Galileo looks rather young, at age of about 20-25 years. His eyes in the portrait are clear and the expression intense and appealing. From Galileo's correspondence we know of a portrait made by his friend Ludovico Cigoli. Rather interesting, though admittedly quite improbable, is the possibility of a self-portrait whose existence is mentioned in the first biography of Galileo by Salusbury in 1664.

  18. A visiting scientist program for the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Kerr, Frank J.

    1995-01-01

    During this project, Universities Space Research Association provided program management and the administration for overseeing the performance of the total contractual effort. The program director and administrative staff provided the expertise and experience needed to efficiently manage the program.USRA provided a program coordinator and v visiting scientists to perform scientific research with Burst and Transient Source Experiment (BATSE) data. This research was associated with the primary scientific objectives of BATSE and with the various BATSE collaborations which were formed in response to the Compton Gamma Ray Observatory Guest Investigator Program. USRA provided administration for workshops, colloquia, the preparation of scientific documentation, etc. and also provided flexible program support in order to meet the on-going needs of MSFC's BATSE program. USRA performed tasks associated with the recovery, archiving, and processing of scientific data from BATSE. A bibliography of research in the astrophysics discipline is attached as Appendix 1. Visiting Scientists and Research Associates performed activities on this project, and their technical reports are attached as Appendix 2.

  19. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  20. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements: We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  1. What good is a scientist in the classroom? Participant outcomes and program design features for a short-duration science outreach intervention in K-12 classrooms.

    PubMed

    Laursen, Sandra; Liston, Carrie; Thiry, Heather; Graf, Julie

    2007-01-01

    Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K-12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the "scientist in the classroom," the study examines what benefits may be realized for each participant group and how they are achieved. We find that K-12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices.

  2. Implementing a Workforce Development Pipeline

    NASA Technical Reports Server (NTRS)

    Hix, Billy

    2002-01-01

    Research shows that the number of highly trained scientists and engineers has continued a steady decline during the 1990's. Furthermore, at the high school level, almost 40% of the total high school graduates are seeking technical skills in preparation of entering the workforce directly. The decrease of students in technology and science programs, along with the lack of viable vocational programs, haunts educators and businesses alike. However, MSFC (Marshall Space Flight Center) has the opportunity to become a leading edge model of workforce development by offering a unified program of apprenticeships, workshops, and educational initiatives. These programs will be designed to encourage young people of all backgrounds to pursue the fields of technology and science, to assist research opportunities, and to support teachers in the systemic changes that they are facing. The emphasis of our program based on grade levels will be: Elementary Level: Exposure to the workforce. Middle School: Examine the workforce. High School and beyond: Instruct the workforce. It is proposed that MSFC create a well-integrated Workforce Development Pipeline Program. The program will act to integrate the many and varied programs offered across MSFC directorates and offices. It will offer a clear path of programs for students throughout middle school, high school, technical training, and college and universities. The end result would consist of technicians, bachelors degrees, masters degrees, and PhDs in science and engineering fields entering the nation's workforce, with a focus on NASA's future personnel needs.

  3. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    Progress reports of the Visiting Scientist Program covering the period from 1 Jul. - 30 Sep. 1992 are included. Topics covered include space science and earth science. Other topics covered include cosmic rays, magnetic clouds, solar wind, satellite data, high resolution radiometer, and microwave scattering.

  4. West German Biotech Institute Trains Third World Scientists.

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1987-01-01

    Describes a six-week program designed to give scientists from developing countries advanced training in biotechnology methods. Stresses the need to provide the participants with "hands-on" experiences to enhance their ability to contribute to biotechnology programs in their home countries and to train others locally. (TW)

  5. Helping early career research scientists ascend the professional ladder.

    PubMed

    King, Laina

    2013-08-01

    The Keystone Symposia Early Career Investigator Travel Award initiative is a unique successful research mentoring program tailored for 'end of the pipeline' life and biomedical scientists from academia and industry. Using targeted educational, mentoring, and networking activities, the program benefits early career scientists in solving a specific laboratory-based research question that is limiting their evolving research and could increase their ability to obtain new grants and improve their career progression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Five scientists at Johns Hopkins in the modern evolution of neuroscience.

    PubMed

    Harrison, T S

    2000-08-01

    Neuroscience's evolution at Johns Hopkins, from neurophysiology to the new field of neurobiology, though unplanned, was rapid and important. Beginning in 1933 when Philip Bard became professor of physiology at Johns Hopkins, members of his department concentrated initially on neuroanatomical control of placing reactions and sexual activity. Vernon Mountcastle, extending available techniques, discovered vertical somato-sensory columns in the 1950's. Stephen Kuffler, who arrived at Hopkins in 1947, was a pioneer in single unit microelectrode recording techniques. He soon attracted scientists from all over the world to his laboratory. Among them, Torsten Wiesel and David Hubel discovered vertical neuronal columns in the visual cortex. During several decades at Johns Hopkins, these five scientists set extremely high scientific standards and established a climate of inquiry in which ideas were shared and young scientists encouraged. They contributed significantly to the emerging discipline of neuroscience.

  7. Helping students make meaning of authentic investigations: findings from a student-teacher-scientist partnership

    NASA Astrophysics Data System (ADS)

    Peker, Deniz; Dolan, Erin

    2012-03-01

    As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student-teacher-scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.

  8. Helping students make meaning of authentic investigations: findings from a student-teacher-scientist partnership.

    PubMed

    Peker, Deniz; Dolan, Erin

    2012-03-01

    As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student-teacher-scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.

  9. Helping students make meaning of authentic investigations: findings from a student–teacher–scientist partnership

    PubMed Central

    Dolan, Erin

    2013-01-01

    As student–teacher–scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student–teacher–scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs. PMID:23828722

  10. Building Infectious Disease Research Programs to Promote Security and Enhance Collaborations with Countries of the Former Soviet Union.

    PubMed

    Bartholomew, James C; Pearson, Andrew D; Stenseth, Nils Chr; LeDuc, James W; Hirschberg, David L; Colwell, Rita R

    2015-01-01

    Addressing the threat of infectious diseases, whether natural, the results of a laboratory accident, or a deliberate act of bioterrorism, requires no corner of the world be ignored. The mobility of infectious agents and their rapid adaptability, whether to climate change or socioeconomic drivers or both, demand the science employed to understand these processes be advanced and tailored to a country or a region, but with a global vision. In many parts of the world, largely because of economic struggles, scientific capacity has not kept pace with the need to accomplish this goal and has left these regions and hence the world vulnerable to infectious disease outbreaks. To build scientific capability in a developing region requires cooperation and participation of experienced international scientists who understand the issues and are committed to educate the next generations of young investigators in the region. These efforts need to be coupled with the understanding and resolve of local governments and international agencies to promote an aggressive science agenda. International collaborative scientific investigation of infectious diseases not only adds significantly to scientific knowledge, but it promotes health security, international trust, and long-term economic benefit to the region involved. This premise is based on the observation that the most powerful human inspiration is that which brings peoples together to work on and solve important global challenges. The republics of the former Soviet Union provide a valuable case study for the need to rebuild scientific capacity as they are located at the crossroads where many of the world's great epidemics began. The scientific infrastructure and disease surveillance capabilities of the region suffered significant decline after the breakup of the Soviet Union. The U.S. Cooperative Threat Reduction (CTR) Program, a part of the U.S. Department of Defense, together with partner countries, have worked diligently to improve the capabilities in this region to guard against the potential future risk from especially dangerous pathogens. The dissolution of the Soviet Union left behind many scientists still working to study pathogens using antiquated protocols in unsafe laboratories. To address this situation, the CTR program began improving laboratory infrastructure, establishing biosafety and biosecurity programs, and training scientists in modern techniques, with emphasis on biosurveillance and safe containment of especially dangerous pathogens. In the Republic of Georgia, this effort culminated in the construction of a modern containment laboratory, the Richard G. Lugar Center for Public Health Research in Tbilisi to house both isolated especially dangerous pathogens as well as the research to be conducted on these agents. The need now is to utilize and sustain the investment made by CTR by establishing strong public and animal health science programs in these facilities tailored to the needs of the region and the goals for which this investment was made. A similar effort is ongoing in other former Soviet Republics. Here, we provide the analysis and recommendations of an international panel of expert scientists appointed by the Cooperative Biological Engagement Program of the Defense Threat Reduction Agency to provide advice to the stakeholders on the scientific path for the future. The emphasis is on an implementation strategy for decision makers and scientists to consider providing a sustainable biological science program in support of the One Health initiative. Opportunities, potential barriers, and lessons learned while meeting the needs of the Republic of Georgia and the Caucasus region are discussed. It is hoped that this effort will serve as a model for similar scientific needs in not only the former Soviet Union republics but also other regions challenged by infectious diseases where the CTR program operates.

  11. PIRE Experience Reaches out to the Russian Far East and Augments Graduate Education Abroad

    NASA Astrophysics Data System (ADS)

    Almberg, L. D.; Eichelberger, J. C.; Izbekov, P.; Ushakov, S.; Vesna, E.

    2006-12-01

    NSF's Partners in International Research and Education (PIRE) program seeks to introduce American students to collaborative international science early in their graduate careers. The intent is that the next generation of American scientists will be better prepared to work at the international level. The emphases on partnership and learning about the culture of the host country is a welcome and productive change from the `grab and dash' approach that can characterize `Winter national' projects. Our PIRE project, US-Russia-Japan Partnership in Volcanological Research and Education, is an interdisciplinary investigation of the magma systems at Bezymianny and Shiveluch Volcanoes in Kamchatka, Russia and Mount St Helens in Washington, USA. We wish to understand how massive edifice collapse at all three volcanoes perturbed the magma systems and influenced subsequent and continuing eruptive behavior. Seven American graduate students from the universities of Alaska, Hawaii, Washington, Oregon, and Stanford embarked on a personal and professional development adventure in July and August, 2006. Their experience began in Fairbanks, AK with preparations for remote foreign field work and research planning with mentor scientists. The adventure continued in Petropavlosk-Kamchatsky, Kamchatka, which required circumnavigation of the world as no airlines fly between Anchorage and Petropavlovsk. Faculty at Kamchatka State University provided intensive short courses for two weeks, introducing students to Russian language, culture, geography and history while they adjusted to the new environment and met Russian counterparts at the Institute of Volcanology and Seismology. Afternoon discussions with Russian experts in volcanology, seismology, tectonics and tephrachronology were enlightening and influenced the research plans. Russian graduate and advanced undergraduate students joined the group at the helicopter accessed camp on Bezymianny volcano. Two young Russian scientists headed the field team. Students learned from one another and the accompaning senior scientists. This year of the five-year program was focused on sampling for petrology and geochemistry and establishment of continuous GPS sites. The team conducted the first work on products of the large eruption of May 9, 2006. The experience concluded with a one-week visit to Mount St Helens and the Cascade Volcano Observatory for a workshop with American students and scientists working on the current eruption there. Next year a new team will be fielded on a similar schedule. However, we will keep the 2006 team together with web-based video conferencing as the work progresses through laboratory analysis and interpretation and publication of results.

  12. UCLA's Institute for Planets and Exoplanets: Structuring an Education and Public Outreach Program from the Ground Up

    NASA Astrophysics Data System (ADS)

    Curren, I. S.; Jewitt, D. C.

    2014-12-01

    Geoscience education and public outreach efforts (EPO), both formal and informal, are critical to increasing science literacy amongst members of the public and securing the next generation of geoscientists. At UCLA, the Institute for Planets and Exoplanets (iPLEX) has developed a multifaceted program to administer meaningful and original hands-on education and outreach to the public, teachers/professors, and students. To build the program, we first developed a virtual "home base" using Wordpress. With the needs of our community in mind, we structured the website to serve three categories of individuals: the public, teachers/professors, and volunteers. To serve the public, we have developed a series of informal education events (e.g., Exploring Your Universe) that bring thousands of science enthusiasts to campus. For those unable to participate in hands-on demonstrations or for those who would like to see them again, informational videos were developed and made available on our online Physical Demonstrations Digital Library (PDDL). The PDDL contains a second set of videos that are tutorial in nature and specifically designed with teachers, TAs and professors in mind. In addition, we have produced a publicly available annual newsletter written at the level of the informed public that details exciting and current planetary research at UCLA. Another facet of the program, designed with teachers in mind is our application-based private outreach event system in which teachers may choose to have volunteers come to their school with interactive demos or to come to UCLA to speak with scientists and tour laboratories. The final branch of the iPLEX EPO and education program caters to volunteers and includes an online "hub" where volunteers can register for events, download demonstration information packets, and discuss tips with other volunteers. We have recently developed a "Science Education, Outreach, and Communication" course to be integrated into UCLA's undergraduate geology curriculum that will serve twofold to train new volunteers and educate young scientists on how to communicate their field to the public. Feedback from participants indicates an overall increase in geoscience EPO participation and satisfaction from the public, teachers, and volunteers alike since iPLEX's program was emplaced.

  13. Education: Mutualistic Interactions between Scientists and Children.

    ERIC Educational Resources Information Center

    Condon, Marty

    1991-01-01

    A project that introduced scientists to students and engaged students in creative scientific activities is described. Students were asked to help scientists identify patterns on the wing of a species of fruit fly. A combined research/education program is recommended. (KR)

  14. Stuck in the Middle: Doctoral Education Ranking and Career Outcomes for Life Scientists

    ERIC Educational Resources Information Center

    Smith-Doerr, Laurel

    2006-01-01

    Why do some Ph.D.'s languish in positions with little authority, and what does educational background have to do with it? Hypotheses predicted that life scientists with Ph.D.'s from elite programs would be the most likely, those from middle-ranked programs the next most likely, and those from lower ranked programs the least likely to achieve…

  15. Changing the Culture of Science Communication Training for Junior Scientists

    PubMed Central

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  16. Changing the Culture of Science Communication Training for Junior Scientists.

    PubMed

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  17. G-2008-0821-024

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations. Melissa Rey (Center) was the grand prize winner.

  18. Preface

    NASA Astrophysics Data System (ADS)

    Heinz, Ulrich; Evdokimov, Olga; Jacobs, Peter

    2017-11-01

    The 26th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Quark Matter 2017, was held in the Hyatt Regency hotel in Chicago, USA, on February 5-11, 2017. The conference attracted 716 participants from 32 countries, including a record number of students and young scientists.

  19. The "CSI" Effect: Changing the Face of Science

    ERIC Educational Resources Information Center

    Jones, Richard; Bangert, Arthur

    2006-01-01

    The authors suggest that "CSI," a public mass media product, and other television programming have greatly influenced how students, especially female students, perceive scientists at work. Perhaps the increased airing of television programs focusing on laboratory sciences has caused student perceptions of scientists to shift away from the "mad…

  20. Goddard Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under this Indefinite Delivery Indefinite Quantity (IDIQ) contract, USRA was expected to provide short term (from I day up to I year) personnel as required to provide a Visiting Scientists Program to support the Earth Sciences Directorate (Code 900) at the Goddard Space Flight Center. The Contractor was to have a pool, or have access to a pool, of scientific talent, both domestic and international, at all levels (graduate student to senior scientist), that would support the technical requirements of the following laboratories and divisions within Code 900: 1) Global Change Data Center (902); 2) Laboratory for Atmospheres (Code 910); 3) Laboratory for Terrestrial Physics (Code 920); 4) Space Data and Computing Division (Code 930); 5) Laboratory for Hydrospheric Processes (Code 970). The research activities described below for each organization within Code 900 were intended to comprise the general scope of effort covered under the Visiting Scientist Program.

  1. PREFACE: Hot Quarks 2004

    NASA Astrophysics Data System (ADS)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or his research and we spent an entire week talking physics and having fun from breakfast in the morning until late at night. A symbolic award was instituted for the best presentation at the workshop, dedicated to the memory of Klaus Kinder-Geiger, a sharp and brilliant young theorist who perished in the crash of Swissair Flight 111 on 2 September 1998 off the coast of Nova Scotia. It went to Denesh Molnar from Ohio State University for his outstanding talk on parton coalescence. The organizers wish to extend their gratitude to all participants for the high quality presentations making Hot Quarks 2004 a notable event. We are also very grateful for the superb hospitality of the staff of the Snakedance Inn, in particular Mitch Daniels who worked sheer miracles. Given the success of the first Hot Quarks workshop we decided to organize a second one, possibly even turning Hot Quarks into a series. The next meeting will be held in the late spring of 2006, probably in Italy. We hope it will be as memorable as the first one! Last but not least, we wish to thank all the generous sponsors of the conference: Brookhaven National Laboratory, European Organization for Nuclear Research (CERN), Gesellschaft fA~ 1/4 r Schwerionenforschung (GSI), Institute of Physics Publishing, Los Alamos National Laboratory, National Science Foundation, and Vanderbilt University. We are grateful for their support and are particularly happy that this support came from institutions both in the US and in Europe and from all the main experimental facilities that pursue a prominent heavy-ion program. Their support was essential for the success of a workshop targeting young scientists.

  2. No Limits--READ! Young Adult Reading Club and Programming Manual.

    ERIC Educational Resources Information Center

    Youngblood, Lisa

    This manual provides strategies for developing young adult collections, outlines a reading club designed specifically for young adults, suggests promotional ideas for the young adult reading club and young adult programming in general, and provides age-appropriate ideas for both formal and passive programming. Specific topics covered in the…

  3. Scientists in the Classroom Mentor Model Program - Bringing real time science into the K - 12 classroom

    NASA Astrophysics Data System (ADS)

    Worssam, J. B.

    2017-12-01

    Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.

  4. Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2013-04-01

    Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students' views of scientists. Sample An urban, fifth-grade, European elementary school classroom defined the context of this study. Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students' initial views of scientists were investigated through a drawing activity, classroom discussions and interviews. Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist. Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school-scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.

  5. Fat dogs and coughing horses: K-12 programming for veterinary workforce development.

    PubMed

    San Miguel, Sandra F; Carleton Parker, Loran; Adedokun, Omolola A; Burgess, Wilella D; Cipriani Davis, Kauline S; Blossom, Thaddaeus D; Schneider, Jessica L; Mennonno, Ann M; Ruhl, Joseph D; Veatch, Jennifer H; Wackerly, Amy J; Shin, Soo Yeon; Ratliff, Timothy L

    2013-01-01

    Workforce development strategies to educate, inform, and diversify the veterinary profession of the future must begin with children in elementary school. This article provides a description of the Fat Dogs and Coughing Horses program, which takes a multifaceted approach toward informing young students, beginning in first grade, about the interesting work and career opportunities available in the field of veterinary medicine. The program, a collaboration among Purdue University and Indiana public schools, is supported by a Science Education Partnership Award from the Office of Research Infrastructure Programs, a component of the National Institutes of Health. The overall goal of the program is to provide formal and informal educational opportunities for students, parents, teachers, and the public about the science involved in keeping people and their animals healthy. Examples of health concerns that impact both people and their pets are used to inform and excite children about careers in the health sciences. The program resulted in (1) curricula for students in Grades 1-3, 6, and 9; (2) four children's books and a set of collectible cards which highlight veterinarians, veterinary technicians, and research scientists who work with animals; and (3) four traveling museum-level quality exhibits. Preliminary assessment data has shown that the implementation of the curricula enhanced student science learning and science attitudes and interests. The program provides evidence that partnerships among professionals in veterinary medicine and K-12 education can result in impactful workforce development programs.

  6. Fat Dogs and Coughing Horses: K-12 Programming for Veterinary Workforce Development

    PubMed Central

    San Miguel, Sandra F.; Parker, Loran Carleton; Adedokun, Omolola A.; Burgess, Wilella D.; Cipriani Davis, Kauline S.; Blossom, Thaddaeus D.; Schneider, Jessica L.; Mennonno, Ann M.; Ruhl, Joseph D.; Veatch, Jennifer H.; Wackerly, Amy J.; Shin, Soo Yeon; Ratliff, Timothy L.

    2013-01-01

    Workforce development strategies to educate, inform, and diversify the veterinary profession of the future must begin with children in elementary school. This manuscript provides a description of the Fat Dogs and Coughing Horses program, which takes a multifaceted approach toward informing young students, beginning in first grade, about the interesting work and career opportunities available in the field of veterinary medicine. The program, a collaboration among Purdue University and Indiana public schools, is supported by a Science Education Partnership Award from the Office of Research Infrastructure Programs, a component of the National Institutes of Health. The overall goal of the program is to provide formal and informal educational opportunities for students, parents, teachers, and the public about the science involved in keeping people and their animals healthy. Examples of health concerns that impact both people and their pets are used to inform and excite children about careers in the health sciences. The program resulted in (1) curricula for students in grades 1–3, 6, and 9; (2) four children’s books and a set of collectible cards which highlight veterinarians, veterinary technicians, and research scientists who work with animals; and, (3) four traveling museum-grade exhibits. Preliminary assessment data has shown that the implementation of the curricula enhanced student science learning, and science attitudes and interests. The program provides evidence that partnerships among professionals in veterinary medicine and K-12 education can result in impactful workforce development programs. PMID:24052417

  7. Navigating toward research success in times of uncertainty: funding opportunities for early career investigators in nephrology.

    PubMed

    Ikizler, T Alp; Lovett, David H; Chertow, Glenn M; Mitch, William E; Schiller, Brigitte

    2015-03-01

    There is considerable concern within the nephrology community about recent federal budget cuts and the decreasing availability of funds for research. This is especially difficult for junior investigators who are about to start a career as physician-scientists. Accordingly, it is imperative that resources other than federal funds be made available to these individuals during this most delicate yet crucial transition period. This commentary aims to provide an overview of nonfederal funding resources, focusing on the Norman S. Coplon Extramural Grant Program. This program emphasizes support of investigators at the most fragile period in their development of an academic career; it has provided >$11 million of research funds to more than 80 individuals since 2000. The outcome has been stellar, with more than 130 publications originating from these projects and >90% of awardees staying in academia. We hope these accomplishments will encourage similar activities by other entities and scientific programs in addition to ones that are ongoing. Ultimately, these collective efforts will inspire young researchers to use their knowledge, passion, and dedication to advance research into kidney diseases. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. EarthTrek - helping scientists to get citizens involved in real science. (Invited)

    NASA Astrophysics Data System (ADS)

    Lewis, G.

    2010-12-01

    Citizen science programs are not new and many scientists can report good success at engaging the public in their research. However, many scientists who could really benefit from the collective pool of eager volunteers do not have the time or patience to develop system to track and manage the collective “enthusiasm”. EarthTrek takes on that role and provides scientists with the support for their venture into a citizen science program. EarthTrek manages the people, rewards them for their involvement and provides avenues for scientists to communicate with the participants. Scientists concentrate on developing sounds collection protocols (with EarthTrek’s help if needed) and then provide feedback once the data stars to come in. EarthTrek is about linking people with real research. EarthTrek will work with scientists from every field as long as projects are collecting data for research, are time constrained and the lead scientists agree to a communication schedule for results back to participants. Examples of active science projects include weathering rates on gravestones, invasive plant species and phenology. EarthTrek is a project of the Geological Society of America and partners around the globe. EarthTrekker collecting data for the Gravestone Project

  9. Professional learning opportunities from uncovering cover stories of science and science teaching for a scientist-in-transition

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Kidman, Gillian; Vaughan, Tanya

    2007-01-01

    Members of particular communities produce and reproduce cultural practices. This is an important consideration for those teacher educators who need to prepare appropriate learning experiences and programs for scientists, as they attempt to change careers to science teaching. We know little about the transition of career-changing scientists as they encounter different contexts and professional cultures, and how their changing identities might impact on their teaching practices. In this narrative inquiry of the stories told by and shared between career-changing scientists in a teacher-preparation program, we identify cover stories of science and teaching. More importantly, we show how uncovering these stories became opportunities for one of these scientists to learn about what sorts of stories of science she tells or should tell in science classrooms and how these stories might impact on her identities as a scientist-teacher in transition. We highlight self-identified contradictions and treat these as resources for further professional learning. Suggestions for improving the teacher-education experiences of scientist-teachers are made. In particular, teacher educators might consider the merits of creating opportunities for career-changing scientists to share their stories and for these stories to be retold for different audiences.

  10. An innovative educational approach to professional development of medical laboratory scientists in Botswana.

    PubMed

    Magowe, Mabel Km; Ledikwe, Jenny H; Kasvosve, Ishmael; Martin, Robert; Thankane, Kabo; Semo, Bazghina-Werq

    2014-01-01

    To address the shortage of laboratory scientists in Botswana, an innovative, one-year academic bridging program was initiated at the University of Botswana, to advance diploma-holding laboratory technicians towards becoming laboratory scientists holding Bachelor's degrees. An evaluation was conducted, which described the outcomes of the program and the lessons learned from this novel approach to meeting human resource needs. This was a cross-sectional, mixed-methods evaluation. Qualitative interviews were conducted with graduates of the Bachelor of Science (BSc) Medical Laboratory Sciences (MLS) bridging program, along with the graduates' current supervisors, and key informants who were involved in program development or implementation. The quantitative data collected included a written questionnaire, completed by program graduates, with a retrospective pre-test/post-test survey of graduates' confidence, in terms of key laboratory competencies. The BSc MLS bridging program produced thirty-three laboratory scientists over 3 years. There was a significant increase in confidence among graduates, for specified competencies, after the program (P<0.05). Graduates reported acquiring new skills and, often, accepting new responsibilities at their former workplace, particularly in relationship to leadership and management. Five graduates enrolled in advanced degree programs. Most graduates assumed increased responsibility. However, only two graduates were promoted after completing the training program. The lessons learned include: the importance of stakeholder involvement, the need for data to identify local needs, financial sustainability, catering for the needs of adult learners, and ensuring a technically challenging work environment, conducive to the application of skills learned during training. A strong public health and clinical laboratory system is essential for the rapid detection and control of emerging health threats, and for patient care. However, there is a need to adequately prepare laboratory human resources, to ensure efficient and effective laboratory services. Advancement of laboratory technicians towards becoming laboratory scientists, through a bridging program, can provide the necessary skills within a short time.

  11. Professor James M. Tanner and the sport sciences.

    PubMed

    Malina, Robert M

    2012-09-01

    Although Tanner was not directly involved in physical education or the sport sciences, several of his papers addressed issues related to research in the area. To consider the implications of selected papers and research projects for the sport sciences. PAPERS AND IMPLICATIONS: Several early papers addressed ratio standards, somatotype and total cholesterol, and anthropometric and somatotype changes associated weight training and cessation of training in young adult men. The papers have, respectively, implications for current studies of allometric scaling, physique and risk factors for cardiovascular and metabolic complications, and responses to training. The survey of athletes at the 1960 Rome Olympic Games not only added to the literature but to some extent also set the stage for subsequent surveys of Olympic athletes in 1968, 1972 and 1976. Although not directly involved in the mixed-longitudinal study of Training of Youth Athletes (TOYA) in several sports, it was conducted in his department. Results from TOYA indicated no influence of systematic training for sport on growth in height, young adult height and sexual maturation. Growth at Adolescence was also a fixture in many graduate programs. Though not a sport scientist, Tanner contributed directly and indirectly to the field.

  12. Exploring the Sky: An Exploratory Study on the Effectiveness of Discourse in an Atmospheric Science Outreach Program

    NASA Astrophysics Data System (ADS)

    Boyd, K.; Balgopal, M.; Birner, T.

    2015-12-01

    Educational outreach programs led by scientists or scientific organizations can introduce participants to science content, increase their interest in science, and help them understand the nature of science (NOS). Much of atmospheric science (AS) educational outreach to date has concentrated on teacher professional development programs, but there is still a need to study how students react to classroom programs led by scientists. The purpose of this research project is to examine student engagement with AS and NOS content when presented by a university atmospheric scientist or an Earth system science teacher. The guiding research question was: how do students interact with science experts in their classrooms compared to their teachers when learning about Earth science and NOS? The outreach program was developed by an AS faculty member and was implemented in a local 10th grade Earth Science class. The presenter used historical stories of discoveries to introduce concepts about the middle atmosphere and climate circulations, reinforcing the NOS in his interactive presentations. On a separate day the teacher implemented a lesson on plate tectonics grounded in NOS. A case study analysis is being conducted using videotaped presentations on Earth science and NOS by the teacher and the scientist, pre- and post- questionnaires, and teacher and scientist interviews in order to determine patterns in student-presenter discourse, the levels of presenters' inquiry-based questioning, and the depth of student responses around Earth science content and NOS. Preliminary results from video analysis indicate that the scientist used higher inquiry-based questioning strategies compared to the teacher; however the teacher was able to go into more depth on a topic with the lesson. Scientists must consider whether the trade-offs warrant focusing their outreach efforts on content professional development for teachers or content outreach for K-12 students.

  13. Report to the International Global Atmospheric Chemistry Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisdorf, Jill; Wiedinmyer, Christine

    IGAC’s mission is to facilitate atmospheric chemistry research towards a sustainable world. This is achieved through IGAC’s three focal activities: fostering community, building capacity, and providing leadership. A key component to achieving IGAC’s mission is its developing early career program. These scientists join an international network early in their career that puts the cogs in motion to further facilitate atmospheric chemistry research at an international level for years to come. IGAC’s Science Conference is a primary mechanism for IGAC to build cooperation and disseminate scientific information across its international community. The first IGAC Science Conference was held in 1993 in Eilat,more » Israel. Since then, IGAC has successfully held fourteen science conferences, consistently becoming a biennial conference starting in 2002. The biennial IGAC Science Conference is regarded as THE international conference on atmospheric chemistry and participation in the conference is typically in the range of 350-650 participants. Since 2004, IGAC has included an Early Career Scientists Program as part of the conference to foster the next generation of scientists. IGAC believes, and has seen, that by allowing scientists to form an international network of colleagues early in their career that future international collaborations in atmospheric chemistry are enhanced. The 2016 IGAC Science Conference Early Career Program consisted of numerous events throughout the week giving these scientists the opportunity to not only create a community amongst themselves, but to also engage and build relationships with senior scientists. In order to support the Early Career Scientists Program, IGAC sought funding from international, regional and local organizations to provide Travel Grants to the conference based on an assessment of both need and merit. This conference summary reports on outcomes of the 2016 IGAC Science Conference and the Early Career Program, which included early career travel grants funded by this DOE grant.« less

  14. SIMNET: an insider's perspective

    NASA Astrophysics Data System (ADS)

    Cosby, L. Neale

    1995-04-01

    Simulator Networking (SIMNET) began with a young scientist's idea but has ended up changing an entire industry and the way the military does business. And the story isn't over yet. SIMNET began as an advanced research project aimed at developing a core technology for networking hundreds of affordable simulators worldwide in real time to practice joint collective warfighting skills and to develop better acquisition practices. It was a daring project that proved the Advanced Research Projects Agency (ARPA) mission of doing "what cannot be done." It was a serious threat to the existing simulation industry. As it turned out, the government got what it wanted—a low-cost, high-performance virtual simulation capability that could be proliferated like consumer electronics. This paper provides an insider's view of the program history, identifies some possible lessons for future developers, and opines future growth for SIMNET technology.

  15. The U.S. Geological Survey Astrogeology Science Center

    USGS Publications Warehouse

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  16. Power law of shear viscosity in Einstein-Maxwell-Dilaton-Axion model

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Xian, Zhuoyu; Zhou, Zhenhua

    2017-02-01

    We construct charged black hole solutions with hyperscaling violation in the infrared (IR) region in Einstein-Maxwell-Dilaton-Axion theory and investigate the temperature behavior of the ratio of holographic shear viscosity to the entropy density. When translational symmetry breaking is relevant in the IR, the power law of the ratio is verified numerically at low temperature T, namely, η/s ˜ T κ , where the values of exponent κ coincide with the analytical results. We also find that the exponent κ is not affected by irrelevant current, but is reduced by the relevant current. Supported by National Natural Science Foundation of China (11275208, 11575195), Opening Project of Shanghai Key Laboratory of High Temperature Superconductors (14DZ2260700) and Jiangxi Young Scientists (JingGang Star) Program and 555 Talent Project of Jiangxi Province

  17. Factors that attract veterinarians to or discourage them from research careers: a program director's perspective.

    PubMed

    Atchison, Michael L

    2009-01-01

    There is a nationwide shortage of veterinarian-scientists in the United States. Barriers to recruiting veterinary students into research careers need to be identified, and mechanisms devised to reduce these barriers. Barriers to attracting veterinary students into research careers include ignorance of available research careers and of the training opportunities. Once admitted, students in research training programs often feel isolated, fitting into neither the veterinary environment nor the research environment. To address the above issues, it is necessary to advertise and educate the public about opportunities for veterinarian-scientists. Schools need to develop high-quality training programs that are well structured but retain appropriate flexibility. Sufficient resources are needed to operate these programs so that students do not graduate with significant debt. A community of veterinarian-scientists needs to be developed so that students do not feel isolated but, rather, are part of a large community of like-minded individuals. Because of the complexities of programs that train veterinarian-scientists, it is necessary to provide extensive advising and for faculty to develop a proactive, servant-leadership attitude. Finally, students must be made aware of career options after graduation.

  18. Outreach Opportunities for Early Career Scientists at the Phoenix ComiCon

    NASA Astrophysics Data System (ADS)

    Horodyskyj, L.; Walker, S. I.; Forrester, J. H.

    2014-12-01

    The Phoenix ComiCon (PCC) is a rapidly growing annual four-day pop culture event, featuring guests, costuming, exhibits, and discussion panels for popular sci-fi, fantasy, horror, and anime franchises. In 2013, PCC began experimenting with science discussion panels. The popularity of the science programming resulted in an expansion of the track for 2014, which Horodyskyj was responsible for coordinating. Thirty hours of programming were scheduled, including 25 discussion panels, NASA's FameLab, and a Mars room. Panelists included industry specialists, established scientists, STEM outreach enthusiasts, and early career scientists. The majority of the panelists were early career scientists recruited from planetary sciences and biology departments at ASU and UA. Panel topics included cosmology, biotechnology, artificial intelligence, space exploration, astrobiology, and the cross-linkages of each with pop culture. Formats consisted of Q&A, presentations, and interactive game shows. Although most panels were aimed at the general audience, some panels were more specialized. PCC 2014 attracted 77,818 attendees. The science programming received rave reviews from the audience, the PCC management, and the panelists themselves. Many panel rooms were filled to capacity and required crowd control to limit attendance. We observed the formation of science "groupies" who sought out the science panels exclusively and requested more information on other science public events in the Phoenix area. We distributed surveys to several select sessions to evaluate audience reasons for attending the science panels and their opinion of the scientists they observed. We will present the results of these surveys. As the PCC continues to grow at an exponential rate, the science programming will continue to expand. We will discuss ideas for continued expansion of the PCC science programming both to serve the public and as a unique public outreach opportunity for early career scientists.

  19. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorenstein, David

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayer, Vidya M.; Miguez, Sheila; Toby, Brian H.

    Scientists have been central to the historical development of the computer industry, but the importance of software only continues to grow for all areas of scientific research and in particular for powder diffraction. Knowing how to program a computer is a basic and useful skill for scientists. The article introduces the three types of programming languages and why scripting languages are now preferred for scientists. Of them, the authors assert Python is the most useful and easiest to learn. Python is introduced. Also presented is an overview to a few of the many add-on packages available to extend the capabilitiesmore » of Python, for example, for numerical computations, scientific graphics and graphical user interface programming.« less

  1. 77 FR 58359 - TRICARE, Formerly Known as the Civilian Health and Medical Program of the Uniformed Services...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Medical Program of the Uniformed Services; Calendar Year 2013 TRICARE Young Adult Program Premium Update... Young Adult Premiums for Calendar Year 2013. SUMMARY: This notice provides the updated TRICARE Young... to implement the TRICARE Young Adult (TYA) program as required by Title 10, United States Code...

  2. Oral histories in meteoritics and planetary science—XVI: Donald D. Bogard

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.

    2012-03-01

    Donald D. Bogard (Don, Fig. 1) became interested in meteorites after seeing the Fayetteville meteorite in an undergraduate astronomy class at the University of Arkansas. During his graduate studies with Paul Kuroda at Arkansas, Don helped discover the Xe decay products of 244Pu. After a postdoctoral period at Caltech, where he learned much from Jerry Wasserburg, Peter Eberhardt, Don Burnett, and Sam Epstein, Don became one of a number of young Ph.D. scientists hired by NASA's Manned Spacecraft Center to set up the Lunar Receiving Laboratory (LRL) and to perform a preliminary examination of Apollo samples. In collaboration with Oliver Schaeffer (SUNY), Joseph Zähringer (Max Planck, Heidelberg), and Raymond Davis (Brookhaven National Laboratory), he built a gas analysis laboratory at JSC, and the noble gas portion of this laboratory remained operational until he retired in 2010. At NASA, Don worked on the lunar regolith, performed pioneering work on cosmic ray produced noble gas isotopes and Ar-Ar dating, the latter for important insights into the thermal and shock history of meteorites and lunar samples. During this work, he discovered that the trapped gases in SNC meteorites were very similar to those of the Martian atmosphere and thus established their Martian origin. Among Don's many administrative accomplishments are helping to establish the Antarctic meteorite and cosmic dust processing programs at JSC and serving as a NASA-HQ discipline scientist, where he advanced peer review and helped create new programs. Don is a recipient of NASA's Scientific Achievement and Exceptional Service Medals and the Meteoritical Society's Leonard Medal.

  3. One More Legacy of Paul F. Brandwein: Creating Scientists

    NASA Astrophysics Data System (ADS)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  4. Can We Build an Open-Science Model to Fund Young, Risky, Blue-Sky Research? First Insights into Funding Geoscientists Via Thinkable.Org

    NASA Astrophysics Data System (ADS)

    McNeil, B.

    2014-12-01

    Some of the biggest discoveries and advances in geoscience research have come from purely curiosity-driven, blue-sky research. Marine biologist Osamu Shimomura's discovery of Green-Fluorecent Protein (GFP) in the 1960s during his postdoc is just one example, which came about through his interest and pursuit of how certain jellyfish bioluminescence. His discovery would eventually revolutionise medicine, culminating in a Nobel Prize in Chemistry in 2008. Despite the known importance of "blue-sky" research that doesn't have immediate commercial or social applications, it continues to struggle for funding from both government and industry. Success rates for young scientists also continue to decline within the government competitive granting models due to the importance of track records, yet history tells us that young scientists tend to come up with science's greatest discoveries. The digital age however, gives us a new opportunity to create an alternative and sustainable funding model for young, risky, blue-sky science that tends not to be supported by governments and industry anymore. Here I will discuss how new digital platforms empower researchers and organisations to showcase their research using video, allowing wider community engagment and funding that can be used to directly support young, risky, blue-sky research that is so important to the future of science. I will then talk about recent experience with this model from some ocean researchers who used a new platform called thinkable.org to showcase and raise funding via the public.

  5. Developing Research Capabilities in Energy Biosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Donald D.

    2008-01-01

    Scientists founded the Life Sciences Research Foundation (LSRF) in 1983 as a non-profit pass through foundation that awards post doctoral fellowships in all areas of the life sciences. LSRF scientists review hundreds of applications each year from PhDs seeking support. For example this year, our 26th, we received 800 applications and our peer review committee will choose about 50 finalists who are eligible for these awards. We have no endowment so we solicit sponsors each year. The fellowships are sponsored by research oriented companies, foundations, philanthropists, the Howard Hughes Medical Institute, and other organizations who believe in the value ofmore » awarding fellowships to the best and the brightest young scientists. Our web site has a complete listing of all details about LSRF (http://www.lsrf.org/). In the late 1980s the Division of Bioscience in the Office of Basic Energy Science, a granting agency of the Department of Energy, joined this partnership. Bioscience's mandate was to support non-medical microbiology and plant sciences. LSRF received a series of 5 year grants from DOE to award fellowships to our top applicants in these fields of research. We began to support DOE-Energy Bioscience post doctoral fellows in 1989. From 1989 through 2004 when DOE funding ended our partnership awarded 41 DOE-Energy Bioscience Fellows of the Life Sciences Research Foundation. Each of these was a three year fellowship. DOE-Energy Biosciences was well matched with LSRF. Our extensive peer review screened applicants in all areas of the life sciences. Most LSRF sponsors are interested in supporting fellows who work on diseases. At the time that we began our partnership with DOE we had no sponsors willing to support plant biology and non medical microbiology. For 15 years DOE played a major role in the training of the very best young scientists in these important fields of research simply through its support of LSRF post doctoral fellows. Young scientists interested in plant biology knew to apply to LSRF for a chance to receive a post doctoral award. We are enclosing a list of the 41 fellows who were supported through this partnership. The list includes some of the most distinguished plant biologists in the country, and our training partnership has had a profound impact on the field of plant biology.« less

  6. From ivory tower to prison watchtower: The STEM Ambassador Program promotes exchange outside of traditional venues

    NASA Astrophysics Data System (ADS)

    Nadkarni, N.; Weber, C.

    2017-12-01

    Scientists can be effective in engaging the public, due to their deep content knowledge and passion for their research. However, most training programs prepare scientists to communicate with public groups who seek out informal science education (ISE) activities at science centers and zoos, but not all Americans regularly participate in ISE activities. Opportunities for scientists to exchange information with those who may not seek out science but who hold the potential to contribute novel ideas and generate political support for our discipline can enhance the scientific enterprise. With support of the National Science Foundation (NSF), we created the "STEM Ambassador Program" (STEMAP), a research and public engagement project that aims to bridge science and society by training scientists to engage audiences outside of traditional venues. Activities are based on commonalities between the scientist's research interests and/or personal characteristics, and the interests, professions, and recreational pursuits of community groups. Scientists are encouraged to work with underserved communities (e.g., senior citizens), communities facing barriers to science learning (e.g., incarcerated men and women), and non-academic stakeholders in scientific research (e.g., decision-makers). STEMAP training is derived from three NSF-funded ISE models: Portal to the Public, the Research Ambassador Program, and Design Thinking. In 2016-2017, two cohorts of 20 scientists each, representing 15 departments at the University of Utah, received training. Examples of engagement activities included: An engineer presented his work to develop air quality monitoring devices to a local government council, and invited members to participate in his understanding of regional air quality. A microbiologist provided a microscope view of the microbes that are involved in fermentation with classes at a local cooking school. An urban planning researcher met with inmates in a horticulture training program at the Salt Lake County Jail to discuss waterwise landscaping practices of the horticulture industry. STEMAP researchers and evaluators collect data from Ambassadors and community participants to inform program development. STEMAP is now expanding to offer workshop, cohort, and online formats to institutions nationwide.

  7. World Ocean Circulation Experiment (WOCE) Young Investigator Workshops

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2004-01-01

    The World Ocean Circulation Experiment (WOCE) Young Investigator Workshops goals and objectives are: a) to familiarize Young Investigators with WOCE models, datasets and estimation procedures; b) to offer intensive hands-on exposure to these models ard methods; c) to build collaborations among junior scientists and more senior WOCE investigators; and finally, d) to generate ideas and projects leading to fundable WOCE synthesis projects. To achieve these goals and objectives, the Workshop will offer a mixture of tutorial lectures on numerical models and estimation procedures, advanced seminars on current WOCE synthesis activities and related projects, and the opportunity to conduct small projects which put into practice the techniques advanced in the lectures.

  8. Exploring Student and Scientist Experiences in a Novice-Expert Partnership

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.

    2007-12-01

    The creation of student-scientist partnership (SSP) programs is one response to the call for greater attention to scientific literacy and science inquiry in schools (COSEPUP, 2006; NRC, 1996; NSTA, 2004). SSPs engage students in authentic scientific investigations as they work alongside scientist mentors engaged in research. The scholarly literature suggests outcomes and benefits to participants in terms of enhanced content learning, as well as gains related to motivation and self-efficacy (Abraham, 2002; Lawless and Rock, 1998; Ledley, Haddad, Lockwood, and Brooks, 2003; Markowitz, 2004; Means, 1998, p. 98; Richmond, 1998). Continuing development of and research into these programs is slow, however, in part because SSPs are resource-intensive (requiring access to scientists and laboratories) and difficult to scale up, creating a perception that they are limited in their application. To begin to reach the goal of scaling up, it is necessary to develop a deep understanding of how each aspect of SSPs contributes to student motivation and learning. To this end, this study provides an in-depth analysis of interviews with the student and scientist members of mentoring dyads that participated in NASA's Athena Student Interns Program associated with the Mars Exploration Rover missions. Crafting a picture of how these students and scientists experienced working closely in a science mentoring dyad contributes to the growing body of work focused on understanding the nature, benefits, and challenges of SSPs and provides potential lessons for SSP practitioners. Considering the participants' insights in the context of career and psychosocial mentoring highlights the complex nature of student-scientist relationships and points to the need to address and encourage both types of mentoring in SSPs in order to foster the most successful partnerships. Such knowledge takes an important step toward informing the development of programs that may introduce greater numbers of students to scientific careers and research, while providing similar benefits as those conferred through small-scale student-scientist collaborations.

  9. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology projects, which the students then present at year's end. From the perspective of an active research scientist, such outreach activities take little time & effort (~ 0.05 FTE), but pay large dividends in the long run, in inciting public support for science & inspiring the next generation of scientists & engineers.

  10. The International Proteomics Tutorial Programme (IPTP): a teaching tool box for the proteomics community.

    PubMed

    James, Peter

    2011-09-01

    The most critical functions of the various proteomics organisations are the training of young scientists and the dissemination of information to the general scientific community. The education committees of the Human Proteome Organisation (HUPO) and the European Proteomics Association (EuPA) together with their national counterparts are therefore launching the International Proteomics Tutorial Programme to meet these needs. The programme is being led by Peter James (Sweden), Thierry Rabilloud (France) and Kazuyuki Nakamura (Japan). It involves collaboration between the leading proteomics journals: Journal of Proteome Research, Journal of Proteomics, Molecular and Cellular Proteomics, and Proteomics. The overall level is aimed at Masters/PhD level students who are starting out their research and who would benefit from a solid grounding in the techniques used in modern protein-based research. The tutorial program will cover core techniques and basics as an introduction to scientists new to the field. At a later stage the programme may be expanded with a series of more advanced topics focussing on the application of proteomics techniques to biological problem solving. The entire series of articles and slides will be made freely available for teaching use at the Journals and Organisations homepages and at a special website, www.proteomicstutorials.org. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The 10th anniversary of the Junior Members and Affiliates of the European Academy of Allergy and Clinical Immunology.

    PubMed

    Skevaki, Chrysanthi L; Maggina, Paraskevi; Santos, Alexandra F; Rodrigues-Alves, Rodrigo; Antolin-Amerigo, Dario; Borrego, Luis Miguel; Bretschneider, Isabell; Butiene, Indre; Couto, Mariana; Fassio, Filippo; Gardner, James; Xatzipsalti, Maria; Hovhannisyan, Lilit; Hox, Valerie; Makrinioti, Heidi; O Neil, Serena E; Pala, Gianni; Rudenko, Michael; Santucci, Annalisa; Seys, Sven; Sokolowska, Milena; Whitaker, Paul; Heffler, Enrico

    2011-12-01

    This year is the 10th anniversary of the European Academy of Allergy and Clinical Immunology (EAACI) Junior Members and Affiliates (JMAs). The aim of this review is to highlight the work and activities of EAACI JMAs. To this end, we have summarized all the initiatives taken by JMAs during the last 10 yr. EAACI JMAs are currently a group of over 2380 clinicians and scientists under the age of 35 yr, who support the continuous education of the Academy's younger members. For the past decade, JMAs enjoy a steadily increasing number of benefits such as free online access to the Academy's journals, the possibility to apply for Fellowships and the Mentorship Program, travel grants to attend scientific meetings, and many more. In addition, JMAs have been involved in task forces, cooperation schemes with other scientific bodies, organization of JMA focused sessions during EAACI meetings, and participation in the activities of EAACI communication platforms. EAACI JMA activities represent an ideal example of recruiting, training, and educating young scientists in order for them to thrive as future experts in their field. This model may serve as a prototype for other scientific communities, several of which have already adapted similar policies. © 2011 John Wiley & Sons A/S.

  12. International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials"

    NASA Astrophysics Data System (ADS)

    2015-04-01

    The International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held four times in Tomsk, then in Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), and the island of Cyprus. The tenth conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 14-38-10210 and No. 14-02-20376.

  13. PREFACE: International Scientific Conference on Radiation-Thermal Effects and Processes in Inorganic Materials 2015 (RTEP2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The International Scientific Conference "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held fourfold in Tomsk, Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), the island of Cyprus. The XI conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was also held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 15-02-20616.

  14. What Good Is a Scientist in the Classroom? Participant Outcomes and Program Design Features for a Short-Duration Science Outreach Intervention in K–12 Classrooms

    PubMed Central

    Liston, Carrie; Thiry, Heather; Graf, Julie

    2007-01-01

    Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K–12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the “scientist in the classroom,” the study examines what benefits may be realized for each participant group and how they are achieved. We find that K–12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices. PMID:17339394

  15. SOFIA Education and Public Outreach (EPO): Scientist/Educator Partnerships at 41,000 Feet

    NASA Astrophysics Data System (ADS)

    Backman, D.; Devore, E.; Bennett, M.

    2003-12-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a unique opportunity for education and public outreach (EPO). SOFIA is the first research observatory -- airborne or ground-based -- in which close participation by educators and journalists is being designed into both the physical facility and the administrative structure of the observatory. With the overall goal of contributing to the public's awareness and understanding of science in general and astronomy in particular, the SOFIA EPO program will include formal K-12 and undergraduate educational activities, informal education, public outreach, and media relations. One of the most exciting and unique aspects of the SOFIA EPO program is the observatory's ability to carry up to 10 educators on science flights, enabling those educators to partner with scientists and participate in real research. Some 200 formal and informal educators per year are expected to participate in the SOFIA Airborne Astronomy Ambassadors program once full-scale operation is achieved. Educators who have participated in the Airborne Astronomy Ambassadors program will be encouraged to continue their scientific partnerships and will be supported in their efforts to carry new-found knowledge and enthusiasm to their students, other educators in their communities and the general public. The Airborne Astronomy Ambassadors will be supported as a national network via continued communications and material support from the SOFIA EPO program office, and will constitute a wide-spread outreach cadre for NASA and space sciences based on their experiences with airborne astronomy. Scientists, engineers, and other members of the SOFIA team will be encouraged to partner with local teachers and visit their classrooms as a part of the SOFIA Education Partners Program. Training for scientist-educators will be offered via the Astronomical Society of the Pacific's Project ASTRO network of astronomy education sites around the USA. This program will enable students to interact with scientists and other professionals on a one-to-one basis. Participating educators may fly onboard SOFIA with their scientist partners. Scientists who participate in this program will be able to work with educators and students in their local communities to forge long-lasting science education partnerships. The SOFIA EPO staff is interested in forming collaborations with interested organizations, other NASA missions, and individual astronomers. SOFIA is being developed and will be operated for NASA by USRA. The EPO program is being developed and will be operated jointly by the SETI Institute and the Astronomical Society of the Pacific.

  16. Gifted Elementary Students' Interactions with Female and Male Scientists in a Biochemistry Enrichment Program.

    ERIC Educational Resources Information Center

    She, Candace Hsiao-Ching; Barrow, Lloyd H.

    1997-01-01

    Examines how gender and self-concept relate to gifted elementary students' participation in a biochemistry enrichment program taught by female and male scientists. Students with low self-concepts asked more questions and received more feedback than students with high self-concepts. Student-initiated questions and gender differences in interaction…

  17. Integrating Science and Policy: A Case Study of the Hubbard Brook Research Foundation Science Links Program

    ERIC Educational Resources Information Center

    Driscoll, Charles T.; Lambert, Kathy Fallon; Weathers, Kathleen C.

    2011-01-01

    Scientists, related professionals, and the public have for decades called for greater interaction among scientists, policymakers, and the media to address contemporary environmental challenges. Practical examples of effective "real-world" programs designed to catalyze interactions and provide relevant science are few. Existing successful models…

  18. Cancer Prevention Fellowship Program (CPFP) | Division of Cancer Prevention

    Cancer.gov

    The Cancer Prevention Fellowship provides a strong foundation for scientists and clinicians to train in the field of cancer prevention and control. This structured, multidisciplinary program offers early career scientists from different health disciplines a variety of postdoctoral training opportunities . | Training to form a strong foundation in cancer prevention and control

  19. GOFC-GOLD/LCLUC/START Regional Networking: building capacity for science and decision-making.

    NASA Astrophysics Data System (ADS)

    Justice, C. O.; Vadrevu, K.; Gutman, G.

    2016-12-01

    Over the past 20 years, the international GOFC-GOLD Program and START, with core funding from the NASA LCLUC program and ESA have been developing regional networks of scientists and data users for scientific capacity building and sharing experience in the use and application of Earth Observation data. Regional networks connect scientists from countries with similar environmental and social issues and often with shared water and airsheds. Through periodic regional workshops, regional and national projects are showcased and national priorities and policy drivers are articulated. The workshops encourage both north-south and south-south exchange and collaboration. The workshops are multi-sponsored and each include a training component, targeting early career scientists and data users from the region. The workshops provide an opportunity for regional scientists to publish in peer-reviewed special editions focused on regional issues. Currently, the NASA LCLUC program funded "South and Southeast Asia Regional Initiative (SARI)" team is working closely with the USAID/NASA SERVIR program to implement some capacity building and training activities jointly in south/southeast Asian countries to achieve maximum benefit.

  20. Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program

    NASA Astrophysics Data System (ADS)

    Urquhart, M.; Hairston, M.

    2007-12-01

    We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.

  1. Software Writing Skills for Your Research - Lessons Learned from Workshops in the Geosciences

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin

    2016-04-01

    Findings presented in scientific papers are based on data and software. Once in a while they come along with data - but not commonly with software. However, the software used to gain findings plays a crucial role in the scientific work. Nevertheless, software is rarely seen publishable. Thus researchers may not reproduce the findings without the software which is in conflict with the principle of reproducibility in sciences. For both, the writing of publishable software and the reproducibility issue, the quality of software is of utmost importance. For many programming scientists the treatment of source code, e.g. with code design, version control, documentation, and testing is associated with additional work that is not covered in the primary research task. This includes the adoption of processes following the software development life cycle. However, the adoption of software engineering rules and best practices has to be recognized and accepted as part of the scientific performance. Most scientists have little incentive to improve code and do not publish code because software engineering habits are rarely practised by researchers or students. Software engineering skills are not passed on to followers as for paper writing skill. Thus it is often felt that the software or code produced is not publishable. The quality of software and its source code has a decisive influence on the quality of research results obtained and their traceability. So establishing best practices from software engineering to serve scientific needs is crucial for the success of scientific software. Even though scientists use existing software and code, i.e., from open source software repositories, only few contribute their code back into the repositories. So writing and opening code for Open Science means that subsequent users are able to run the code, e.g. by the provision of sufficient documentation, sample data sets, tests and comments which in turn can be proven by adequate and qualified reviews. This assumes that scientist learn to write and release code and software as they learn to write and publish papers. Having this in mind, software could be valued and assessed as a contribution to science. But this requires the relevant skills that can be passed to colleagues and followers. Therefore, the GFZ German Research Centre for Geosciences performed three workshops in 2015 to address the passing of software writing skills to young scientists, the next generation of researchers in the Earth, planetary and space sciences. Experiences in running these workshops and the lessons learned will be summarized in this presentation. The workshops have received support and funding by Software Carpentry, a volunteer organization whose goal is to make scientists more productive, and their work more reliable, by teaching them basic computing skills, and by FOSTER (Facilitate Open Science Training for European Research), a two-year, EU-Funded (FP7) project, whose goal to produce a European-wide training programme that will help to incorporate Open Access approaches into existing research methodologies and to integrate Open Science principles and practice in the current research workflow by targeting the young researchers and other stakeholders.

  2. Women in Science Fellowships

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The L'Oréal For Women in Science program is calling for women postdoctoral scientists to submit applications for the L'Oréal USA Women in Science Fellowship. Five women scientists in a variety of fields, including life and physical/material sciences, technology, engineering, and mathematics, will receive grants of up to $60,000 each. Since the program began in 1998, more than 2000 women scientists worldwide have been awarded fellowships. Application materials are available at https://lorealfwis.aaas.org/login/indexA.cfm; the deadline to apply is 19 May 2014.

  3. Preface

    NASA Astrophysics Data System (ADS)

    Stręk, Wiesław; Zych, Eugeniusz; Hreniak, Dariusz

    2017-12-01

    We are pleased and proud to present this Special Issue of the Optical Materials with papers presented at the Sixth Excited States of Transition Elements Conference - ESTE2016 organized by Institute of Low Temperature and Structure Research Polish Academy of Sciences, Faculty of Chemistry University of Wrocław, and Intech Transfer Technology Centre. The conference was held under the honorary auspices of the Minister of Science and Higher Education of Republic of Poland, dr. Jarosław Gowin. The event had also patronage of Polish Academy of Sciences and Patent Office of Republic of Poland. ESTE2016 was held in Hotel Polanica Resort & Spa in Polanica - Zdrój, Poland in August 21-26, 2016. About 130 scientists from Europe, Asia and both Americas participated in the conference. As usually, in ESTE both experienced, world-wide recognized scientists and young researchers presented their new groundbreaking research achievements which were discussed during the lectures, poster sessions and evening informal discussions. A part of the ESTE2016 conference was devoted to presentations of the participants of LUMINET project - European Network on Luminescent Materials supported by Marie Curie Actions - Initial Training Networks. The scientific level of these presentations proved that through a rigorous, well-executed trainings, and a multidisciplinary research programme, LUMINET strategically positioned the EU with respect to new and improved possibilities and young scientists educated for that purpose.

  4. The Business Engineering Surgical Technologies (BEST) teaching method: incubating talents for surgical innovation.

    PubMed

    de Ruijter, V; Halvax, P; Dallemagne, B; Swanström, L; Marescaux, J; Perretta, S

    2015-01-01

    Technological innovation in surgical science and healthcare is vital and calls for close collaboration between engineering and surgery. To meet this objective, BEST was designed as a free sustainable innovative teaching method for young professionals, combining surgery, engineering, and business in a multidisciplinary, high-quality, low-cost, and learning-by-doing philosophy. This paper reviews the initial outcomes of the program and discusses lessons learned and future directions of this innovative educational method. BEST educational method is delivered in two parts: the first component consisting of live streaming or pre-recorded online lectures, with an interdisciplinary profile focused on surgery, engineering, and business. The second component is an annual 5-day on-site course, organized at IRCAD-IHU, France. The program includes workshops in engineering, entrepreneurship team projects, and in-depth hands-on experience in laparoscopy, robotic surgery, interventional radiology, and flexible endoscopy with special emphasis on the interdisciplinary aspect of the training. A panel of surgeons, engineers, well-established entrepreneurs, and scientists assessed the team projects for potential patent application. From November 2011 till September 2013, 803 individual and institutional users from 79 different countries attended the online course. In total, 134 young professionals from 32 different countries applied to the onsite course. Sixty participants were selected each year for the onsite course. In addition, five participants were selected for a web-based team. Thirteen provisional patents were filed for the most promising projects. BEST proved to be a global talent incubator connecting students to high-quality education despite institutional and economical boundaries. Viable and innovative ideas arose from this revolutionary approach which is likely to spin-off significant technology transfer and lead the way for future interdisciplinary hybrid surgical education programs and career paths.

  5. Internet Links for Science Education: Student-Scientist Partnerships.

    ERIC Educational Resources Information Center

    Cohen, Karen C., Ed.

    This volume focuses on Student-Scientist Partnerships (SSPs) and illustrates the workings and effectiveness of this new paradigm and growing force in science education. The chapters are: chapter 1, "Student-Scientist Partnerships: Shrewd Maneuvers" (Robert F. Tinker); chapter 2, "The GLOBE Program: A Model for International Environmental…

  6. 75 FR 71133 - National Institute of Mental Health; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... Emphasis Panel; Competitive Revision for Stem Cell Repository Relevant to Mental Disorders. Date: December... Domestic Assistance Program Nos. 93.242, Mental Health Research Grants; 93.281, Scientist Development Award, Scientist Development Award for Clinicians, and Research Scientist Award; 93.282, Mental Health National...

  7. Molecular pathology curriculum for medical laboratory scientists: A report of the association for molecular pathology training and education committee.

    PubMed

    Taylor, Sara; Bennett, Katie M; Deignan, Joshua L; Hendrix, Ericka C; Orton, Susan M; Verma, Shalini; Schutzbank, Ted E

    2014-05-01

    Molecular diagnostics is a rapidly growing specialty in the clinical laboratory assessment of pathology. Educational programs in medical laboratory science and specialized programs in molecular diagnostics must address the training of clinical scientists in molecular diagnostics, but the educational curriculum for this field is not well defined. Moreover, our understanding of underlying genetic contributions to specific diseases and the technologies used in molecular diagnostics laboratories change rapidly, challenging providers of training programs in molecular diagnostics to keep their curriculum current and relevant. In this article, we provide curriculum recommendations to molecular diagnostics training providers at both the baccalaureate and master's level of education. We base our recommendations on several factors. First, we considered National Accrediting Agency for Clinical Laboratory Sciences guidelines for accreditation of molecular diagnostics programs, because educational programs in clinical laboratory science should obtain its accreditation. Second, the guidelines of several of the best known certifying agencies for clinical laboratory scientists were incorporated into our recommendations. Finally, we relied on feedback from current employers of molecular diagnostics scientists, regarding the skills and knowledge that they believe are essential for clinical scientists who will be performing molecular testing in their laboratories. We have compiled these data into recommendations for a molecular diagnostics curriculum at both the baccalaureate and master's level of education. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  8. RNA meets disease in paradise.

    PubMed

    Winter, Julia; Roth, Anna; Diederichs, Sven

    2011-01-01

    Getting off the train in Jena-Paradies, 60 participants joined for the 12 (th) Young Scientist Meeting of the German Society for Cell Biology (DGZ) entitled "RNA & Disease". Excellent speakers from around the world, graduate students, postdocs and young group leaders enjoyed a meeting in a familiar atmosphere to exchange inspiring new data and vibrant scientific discussions about the fascinating history and exciting future of non-coding RNA research including microRNA, piRNA and long non-coding RNA as well as their function in cancer, diabetes and neurodegenerative diseases.

  9. Scientist-teacher interactions: Catalysts for developing transformational classrooms

    NASA Astrophysics Data System (ADS)

    McCarty, Robbie Von

    Professional development leading to standards-based teaching practices in U.S. schools is a remarkably subtle and lengthy process. Research indicates that there are many effective tools for teaching through inquiry available to teachers (Lawson, Abraham, & Renner, 1989), but also that teachers continue to present traditional positivistic views of science (Hashweh, 1985; Maor & Taylor, 1995; Zucker, Young, & Luczak, 1996) and appear to view constructivism as a "method" of teaching rather than a way of thinking about learning (Tobin, Tippins, & Gallard, 1984). Teachers are expected to create enriched environments where students can develop the thinking skills of scientists (Roth & Roychoudhury, 1993) but the majority of teachers have never experienced such environments; the involvement of scientists in science education is encouraged by the NRC, AAAS, and NSTA. Teachers and students are expected to act as coresearchers, where negotiation, debate, consensus, and reflection are key. It is believed that scientist and teachers interacting as co-researchers could assist teachers in developing attitudes of freedom in exploration: the essence of science and a mindset that constructivism is a referent, or tool for critical reflection (Tobin, Tippins & Gallard, 1994). This study seeks to identify aspects of scientist-teacher interactions in the field that could serve as catalysts for developing transformational classrooms. Multiple data sources were collected for this study: audiotapes and transcripts of laboratory interactions and informal interviews, written narratives from applications and funding documents, field notes, and personal communications. Data were simultaneously collected, analyzed and coded as a perpetual review of the literature was conducted as in the grounded theory methodology defined by Glaser (1967) and later by Strauss & Corbin (1990). Findings indicate all four teachers valued field experiences in personal ways, developed new understandings of scientific practice and content, and anticipated using their new knowledge upon returning to their classrooms with excitement. However, the degree of implementation in classrooms varied according to common aspects of laboratory and classroom contexts. Theoretical literature, notably the Personal Construct Theory of George Kelly, coupled with these findings contributed to emergent theory regarding a hypothetical model for a professional development program of research.

  10. "What's A Geoscientist Do?": A Student Recruitment And Education Tool

    NASA Astrophysics Data System (ADS)

    Hughes, C. G.

    2015-12-01

    Student perception of science, particularly the earth sciences, is not based on actual science jobs. Students have difficulty envisioning themselves as scientists, or in understanding the role of science in their lives as a result. Not all students can envision themselves as scientists when first enrolling in college. While student recruitment into geoscience programs starts before college enrollment at many universities, general education science requirements can act as a gateway into these majors as well. By providing students in general education science classes with more accurate insights into the scientific process and what it means to be a scientist, these classes can help students envision themselves as scientists. A short module, to be embedded within lectures, has been developed to improve recruitment from Clarion University's Introductory Earth Science classes entitled "What's A Geoscientist Do?". As this module aims to help students visualize themselves as geoscientists through examples, diversity of the examples is critical to recruiting students from underrepresented groups. Images and subjects within these modules are carefully selected to emphasize the fact that the geosciences are not, and should not be, the exclusive province of the stereotypical older, white, male scientist. Noteworthy individuals (e.g. John Wesley Powell, Roger Arliner Young) may be highlighted, or the discussion may focus on a particular career path (e.g. hydrologist) relevant to that day's material. While some students are initially attracted to the geosciences due to a love of the outdoors, many students have never spent a night outdoors, and do not find this aspect of the geosciences particularly appealing. "What's A Geoscientist Do?" has been designed to expose these students to the breadth of the field, including a number of geoscience jobs focused on laboratory (e.g. geochemistry) or computer (e.g. GIS, remote sensing, scientific illustration) work instead of focusing exclusively on fieldwork. As Clarion University students tend to be very job-oriented, information on careers includes average starting salaries with the hope of improving student's opinions of the position as possible future employment - helping students (and their families) realize they can support themselves in a geoscience career.

  11. Mentoring Women in Physical Oceanography

    NASA Astrophysics Data System (ADS)

    Gerber, Lisa M.; Lozier, M. Susan

    2010-08-01

    MPOWIR Pattullo Conference; Charleston, South Carolina, 23-26 May 2010; Initiated in 2004, Mentoring Physical Oceanography Women to Increase Retention (MPOWIR) is a community-initiated and community-led program aimed at providing mentoring to junior women in physical oceanography to improve their retention in the field. The centerpiece of the MPOWIR program is the Pattullo Conference, a two-and-a-half-day mentoring event held biannually. The second conference was held in South Carolina. The conference is named for June Pattullo, the first woman to receive a Ph.D. in physical oceanography. The goals of the Pattullo Conference are to build community networks among junior and senior scientists, to provide junior scientists with feedback on their current and planned research projects, to provide advice to junior scientists on their career goals, to introduce both senior and junior scientists to aspects of professional development, and to raise awareness of issues confronting junior women among the senior scientist community.

  12. Addressing climate challenges in developing countries

    NASA Astrophysics Data System (ADS)

    Tilmes, Simone; Monaghan, Andrew; Done, James

    2012-04-01

    Advanced Study Program/Early Career Scientist Assembly Workshop on Regional Climate Issues in Developing Countries; Boulder, Colorado, 19-22 October 2011 The Early Career Scientist Assembly (ECSA) and the Advanced Study Program of the National Center for Atmospheric Research (NCAR) invited 35 early-career scientists from nearly 20 countries to attend a 3-day workshop at the NCAR Mesa Laboratory prior to the World Climate Research Programme (WCRP) Open Science Conference in October 2011. The goal of the workshop was to examine a range of regional climate challenges in developing countries. Topics included regional climate modeling, climate impacts, water resources, and air quality. The workshop fostered new ideas and collaborations between early-career scientists from around the world. The discussions underscored the importance of establishing partnerships with scientists located in typically underrepresented countries to understand and account for the local political, economic, and cultural factors on which climate change is superimposed.

  13. HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian Puente

    The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technologymore » a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics.« less

  14. Math and Science. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue contains six articles on improving math and science education for minority group students, particularly language-minority students. "Accelerating Content Area Gains for English Language Learners" (Laura Chris Green) describes the Young Scientists Acquiring English project, which seeks to improve the content-area…

  15. The Need for More Earthquake Science in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Sieh, K.

    2015-12-01

    Many regions within SE Asia have as great a density of active seismic structures as does the western US - Sumatra, Myanmar, Bangladesh, New Guinea and the Philippines come first to mind. Much of Earth's release of seismic energy in the current millennium has, in fact, come from these regions, with great losses of life and livelihoods. Unfortunately, the scientific progress upon which seismic-risk reduction in SE Asia ultimately depends has been and continues to be slow. Last year at AGU, for example, I counted 57 talks about the M6 Napa earthquake. In contrast, I can't recall hearing any talk on a SE Asian M6 earthquake at any venue in the past many years. In fact, even M7+ earthquakes often go unstudied. Not uncommonly, the region's earthquake scientists face high financial and political impediments to conducting earthquake research. Their slow speed in the development of scientific knowledge doesn't bode well for speedy progress in the science of seismic hazards, the sine qua non for substantially reducing seismic risk. There are two basic necessities for the region to evolve significantly from the current state of affairs. Both involve the development of regional infrastructure: 1) Data: Robust and accessible geophysical monitoring systems would need to be installed, maintained and utilized by the region's earth scientists and their results shared internationally. Concomitantly, geological mapping (sensu lato) would need to be undertaken. 2) People: The training, employment, and enduring support of a new, young, international corps of earth scientists would need to accelerate markedly. The United States could play an important role in achieving the goal of significant seismic risk reduction in the most seismically active countries of SE Asia by taking the lead in establishing a coalition to robustly fund a multi-decadal program that supports scientists and their research institutions to work alongside local expertise.

  16. 76 FR 2373 - Science Advisory Board Staff Office; Request for Nominations of Experts to Augment the SAB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Office is requesting public nominations for scientists and engineers to augment the SAB Scientific and... STAA Program was established in 1980 to recognize Agency scientists and engineers who published their... seeking nominations of nationally and internationally recognized scientists and engineers having...

  17. A Rewarding Partnership

    ERIC Educational Resources Information Center

    Abbott, Cheryl; Swanson, Marc

    2006-01-01

    A collaborating scientist--a rewarding addition to any high school science program--can help students collect and analyze data that either replicates or parallels the work of the partnering scientist. This type of partnership is beneficial for both students and scientists, and perhaps there has never been a better time to consider such a…

  18. Environmental Scientists' Perceptions of the Science-Policy Linkage.

    ERIC Educational Resources Information Center

    Alm, Leslie R.; Simon, Marc

    2001-01-01

    Describes the criticisms coming from scientists on the assessment report on acid rain released by the National Acid Preparation Assessment Program (NAPAP) with the purpose of providing relevant information to policy makers about acid rain. Investigates n=129 scientists' point of view on the linkage of science to policy. (YDS)

  19. STOP for Science! A School-Wide Science Enrichment Program

    NASA Astrophysics Data System (ADS)

    Slane, P.; Slane, R.; Arcand, K. K.; Lestition, K.; Watzke, M.

    2012-08-01

    Young students are often natural scientists. They love to poke and prod, and they live to compare and contrast. What is the fastest animal? Where is the tallest mountain on Earth (or in the Solar System)? Where do the colors in a rainbow come from? And why do baseball players choke up on their bats? Educators work hard to harness this energy and enthusiasm in the classroom but, particularly at an early age, science enrichment - exposure outside the formal classroom - is crucial to help expand science awareness and hone science skills. Developed under a grant from NASA's Chandra X-ray Center, "STOP for Science!" is a simple but effective (and extensible) school-wide science enrichment program aimed at raising questions about science topics chosen to capture student interest. Created through the combined efforts of an astrophysicist and an elementary school principal, and strongly recommended by NASA's Earth & Space Science product review, "STOP for Science" combines aesthetic displays of science topics accompanied by level-selected questions and extensive facilitator resources to provide broad exposure to familiar, yet intriguing, science themes.

  20. Recent Science Education Initiatives at the Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Dominguez, Arturo; Gershman, Sophia; Guilbert, Nick; Merali, Aliya; Ortiz, Deedee

    2013-10-01

    An integrated approach to program development and implementation has significantly enhanced a variety of Science Education initiatives for students and teachers. This approach involves combining the efforts of PPPL scientists, educators, research and education fellows, and collaborating non-profit organizations to provide meaningful educational experiences for students and teachers. Our undergraduate internship program continues to have outstanding success, with 72% of our participants going to graduate school and 45% concentrating in plasma physics. New partnerships have allowed us to increase the number of underrepresented students participating in mentored research opportunities. The number of participants in our Young Women's Conference increases significantly each year. Our Plasma Camp workshop, now in its 15th year, recruits outstanding teachers from around the country to create new plasma-centered curricula. Student research in the Science Education Laboratory concentrates on the development of a high-fidelity plasma speaker, a particle dropper for a dusty plasma experiment, microplasmas along liquid surfaces for a variety of applications, an Internet-controlled DC glow discharge source for students, and a Planeterrella for demonstrating the aurora and other space weather phenomenon for the general public.

Top