Sample records for young scientists explore

  1. How Middle Schoolers Draw Engineers and Scientists

    ERIC Educational Resources Information Center

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  2. Young Children's Conceptions of Science and Scientists

    ERIC Educational Resources Information Center

    Lee, Tiffany R.

    2010-01-01

    This study explores young children's images of science and scientists, their sources for scientific knowledge, and the nature of their science-related experiences. A cross-sectional design was used to study how students' ideas differ over the first three years of elementary school. A modified version of the Draw-a-Scientist Test (DAST) and a…

  3. Explorers

    Science.gov Websites

    Atmosphere Explorers Patrick Megonigal Melissa McCormick Dennis Whigham Curator and Soil Ecologist Soil Scientist Brigham Young University Sophomore Waiakea High School Hilo, Hawaii Graduate Student USDA/NRCS St. Croix Field Office National Leader for World Soil Resources USDA/NRCS Soil Scientist USDA

  4. Young Scientists Explore the World Around Them. Book 1--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of scientists. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  5. Nurturing the Child Scientist

    ERIC Educational Resources Information Center

    Rodgers, Lisa; Basca, Belinda

    2011-01-01

    The natural world fascinates young children. Treasured leaves, shells, stones, and twigs always find their way into the kindergarten classroom. A kindergarten study of collections channels and deepens children's innate impulse to explore and collect. It also lays the foundation for understanding how scientists approach the study of objects in…

  6. Education and Outreach: Advice to Young Scientists

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  7. "I'm Good, but Not That Good": Digitally-Skilled Young People's Identity in Computing

    ERIC Educational Resources Information Center

    Wong, Billy

    2017-01-01

    Computers and information technology are fast becoming a part of young people's everyday life. However, there remains a difference between the majority who can use computers and the minority who are computer scientists or professionals. Drawing on 32 semi-structured interviews with digitally skilled young people (aged 13-19), we explore their…

  8. Young Scientists Explore the Sun, Moon and Stars. Book 9 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities specifically focus on space science and allow the children to view themselves as future space scientists. Section one contains…

  9. Exploring Women Community College Natural Scientists' Personal Experience Narratives through a Subjectivist Lens

    ERIC Educational Resources Information Center

    Woods, Nancy Anne

    2010-01-01

    The thrust in education today is to encourage young women to enter nontraditional fields of study such as chemistry, physics, and biology. In order to better prepare the next generation of women scientists, then, we should examine the experiences of women participants already working within these areas. We can learn from their experiences. What…

  10. How Middle Schoolers Draw Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-02-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.

  11. 115-year-old society knows how to reach young scientists: ASM Young Ambassador Program.

    PubMed

    Karczewska-Golec, Joanna

    2015-12-25

    With around 40,000 members in more than 150 countries, American Society for Microbiology (ASM) faces the challenge of meeting very diverse needs of its increasingly international members base. The newly launched ASM Young Ambassador Program seeks to aid the Society in this effort. Equipped with ASM conceptual support and financing, Young Ambassadors (YAs) design and pursue country-tailored approaches to strengthen the Society's ties with local microbiological communities. In a trans-national setting, the active presence of YAs at important scientific events, such as 16th European Congress on Biotechnology, forges new interactions between ASM and sister societies. The paper presents an overview of the Young Ambassadors-driven initiatives at both global and country levels, and explores the topic of how early-career scientists can contribute to science diplomacy and international relations. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Life science research in space - risks and chances for young scientists

    NASA Astrophysics Data System (ADS)

    Horn, Eberhard R.

    2007-09-01

    Research in Space is well established in most fields of Life Science, and the number of scientific publications in highly ranked journals increases steadily. However, this kind of research, in particular, fundamental research is coming more and more under pressure, funding decreases, and the discussion about its benefit for men increases continuously. The question is whether these conditions are favorable to the young generation of scientists who are not only interested in this field of research but who is urgently needed for a successful continuation of Life Science research in Space. There are pros and cons that are related to science specific factors as well as to factors specific for space research and space technologies. A young scientist also faces obstacles such as the ever- coming questions about the benefit/cost relation and the sustainability of fundamental research in Space. Continuation of a successful Life Science research in Space with a high level of competitive power should be based on three columns, (1) high- ranked state- of- art experiments, (2) motivated young scientists, and (3) scientific security after completion of projects to avoid loss of knowledge. This aim has to be supported by politicians who express clearly (political) support of Space exploration programs, by universities and private research institutions including industry. Establishment of a European FALL- BACK PLAN (FBP) for situations when flight opportunities are lacking is a way to support young Space scientists in their efforts to regain competitiveness with respect to normal scientists on the basis of first rate peer reviewed research projects that will stand on its own, i.e., transiently with no competition with ground- researchers.

  13. Unleashing the Power of Science in Early Childhood: A Foundation for High-Quality Interactions and Learning

    ERIC Educational Resources Information Center

    Greenfield, Daryl B.; Alexander, Alexandra; Frechette, Elizabeth

    2017-01-01

    When science is integrated into early childhood learning experiences, it becomes a critical area supporting young children's development. Young children are natural scientists, curious about their world, and they engage in scientific practices to learn about and explore their world. This article describes how the K-12 Framework for Science…

  14. Media and the making of scientists

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Moira

    This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the unknown. Advocates of informal science learning initiatives suggest that media can be used as a tool for teaching science content. The potential of entertainment media to provide a sense of wonder is a powerful aspect of its potential to inspire the next generation of scientists.

  15. SCUBAnauts International: Exploration and Discovery in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Moses, C. S.; Palandro, D.; Coble, P.; Hu, C.

    2007-12-01

    The SCUBAnauts International program originated in 2001, as a 501(c)(3) non-profit organization designed to increase the attraction to science and technology careers in today's youth. SCUBAnauts International (SNI) consists of a diverse group of 12 to 18 year-old young men and women mentored by academic, federal, and state research scientists in an informal education environment. The program's mission is to promote interest in science and technology topics and careers by involving secondary education students as young explorers in the marine sciences and research activities, such as special environmental and undersea conservation projects that educate, promote active citizenship, and develop effective leadership skills. With help from mentors, SNI students collect and interpret research-quality data to meet the needs of ocean scientists, maintaining direct interaction between the scientists and the young men and women in the program. The science component of the program includes collection of benthic habitat, water quality, optics, and coral reef health data. During the school year, the SCUBAnauts are tasked with sharing their experiences to raise the environmental awareness of a larger audience by providing education outreach in formal and informal venues. Here we highlight results from recent SNI activities including data collection and program methodologies, and discuss future plans for the program.

  16. Young Scientists Explore Animals. Book 2--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of animals. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  17. Young Scientists Explore the Weather. Book 5--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the weather. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student.…

  18. Young Scientists Explore Nature. Book 10--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of nature. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  19. Young Scientists Explore Inner & Outer Space. Book 6--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of space (inner and outer). Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for…

  20. Young Scientists Explore Light & Color. Book 12--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of light and color. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  1. Original Research by Young Twinkle Students (ORBYTS): When Can Students Start Performing Original Research?

    ERIC Educational Resources Information Center

    Sousa-Silva, Clara; McKemmish, Laura K.; Chubb, Katy L.; Gorman, Marie N.; Baker, Jack S.; Barton, Emma J.; Rivlin, Tom; Tennyson, Jonathan

    2018-01-01

    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students…

  2. Science Learning for ALL Young Scientists: Exploring, Investigating, Learning, and Growing Together with Ramps and Pathways in Diverse Settings

    ERIC Educational Resources Information Center

    Counsell, Shelly L.; Wright, Brian L.

    2016-01-01

    Physical science activities provide multiple and varied opportunities for young children to actively observe, engage in, interact with, and interpret experiences in the physical world within diverse, inclusive settings. If all learners are to gain access to, fully participate in, and achieve maximum profit from early science opportunities,…

  3. Young Scientists Explore the Moon. Book 3--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the moon. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  4. Young Scientists Explore Electricity & Magnetism. Book 7--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of electricity and magnetism. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for…

  5. Young Scientists Explore the Five Senses. Book 4--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the five senses. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  6. Young Scientists Explore the World of Water. Book 9--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of water. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  7. Young Scientists Explore Rocks & Minerals. Book 11--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of rocks and minerals. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  8. Scientists not Sponges: STEM Interest and Inquiry in Early Childhood

    NASA Astrophysics Data System (ADS)

    Jipson, J. L.; Callanan, M. A.; Schultz, G.; Hurst, A.

    2014-07-01

    Young children are fascinated by the natural world. They explore endlessly, with both a sense of wonder and determination, usually in self-directed investigations or informal interactions with peers and adults. Capitalizing on this early period of spontaneous interest and inquiry is critical to efforts to promote lifelong STEM literacy. To inform education and public outreach efforts, it is important to consider common assumptions about how children of this age learn and consider how such assumptions influence the ways we support children's learning. Four metaphors for children learning are investigated in this paper: the young child as sponge, the young child as unlit match, the young child as scientist, and the young child as apprentice. As we critically evaluate these views on learning, we share research findings from developmental psychology that demonstrate that children's engagement with STEM begins well before kindergarten, that children between three and five years of age develop surprisingly sophisticated scientific reasoning capacities and conceptual knowledge, and that parents play an important role in structuring and supporting preschool children's learning.

  9. Young Scientists Explore Wild Plants and Animals. Book 12 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. This activity book explores easily recognized animals, along with a few not-so-well-known plants. The theme of the first section is fall…

  10. Young Scientists Explore an Encyclopedia of Energy Activities. Book 8--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of energy. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  11. Helping Young People Engage with Scientists

    ERIC Educational Resources Information Center

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  12. The Last 50 Years: Mismeasurement and Mismanagement Are Impeding Scientific Research

    PubMed Central

    Lawrence, Peter A.

    2016-01-01

    In the last 50 years, there have been many changes to the substance, conduct, and style of research. Many of these changes have proved disastrous to the life of scientists and to science itself. As a consequence, the near-romantic spirit of adventure and exploration that inspired young scientists of my own and earlier generations has become tarnished. Now, many of us feel beleaguered by bureaucrats and by politicians: they affect our lives profoundly, apparently without an understanding of the way discoveries are made or of the nature of science itself. The core purposes of universities, teaching and research, are being eroded by excessive administration. The number and locations of our publications are counted up like beans and the outcomes are used to rank us, one against another; a process of evaluation that has recast the purposes of publication. Applying for grants takes far too much time from a young scientist's life. PMID:26970645

  13. Recent activities of the Seismology Division Early Career Representative(s)

    NASA Astrophysics Data System (ADS)

    Agius, Matthew; Van Noten, Koen; Ermert, Laura; Mai, P. Martin; Krawczyk, CharLotte

    2016-04-01

    The European Geosciences Union is a bottom-up-organisation, in which its members are represented by their respective scientific divisions, committees and council. In recent years, EGU has embarked on a mission to reach out for its numerous 'younger' members by giving awards to outstanding young scientists and the setting up of Early Career Scientists (ECS) representatives. The division representative's role is to engage in discussions that concern students and early career scientists. Several meetings between all the division representatives are held throughout the year to discuss ideas and Union-wide issues. One important impact ECS representatives have had on EGU is the increased number of short courses and workshops run by ECS during the annual General Assembly. Another important contribution of ECS representatives was redefining 'Young Scientist' to 'Early Career Scientist', which avoids discrimination due to age. Since 2014, the Seismology Division has its own ECS representative. In an effort to more effectively reach out for young seismologists, a blog and a social media page dedicated to seismology have been set up online. With this dedicated blog, we'd like to give more depth to the average browsing experience by enabling young researchers to explore various seismology topics in one place while making the field more exciting and accessible to the broader community. These pages are used to promote the latest research especially of young seismologists and to share interesting seismo-news. Over the months the pages proved to be popular, with hundreds of views every week and an increased number of followers. An online survey was conducted to learn more about the activities and needs of early career seismologists. We present the results from this survey, and the work that has been carried out over the last two years, including detail of what has been achieved so far, and what we would like the ECS representation for Seismology to achieve. Young seismologists are continuously encouraged to voice their ideas and contribute to the Seismology Division.

  14. Try This: Magnify Me

    ERIC Educational Resources Information Center

    Preston, Christine

    2018-01-01

    Magnifying objects can foster wonder in young children because they can make new observations of familiar things. This activity helps children explore common substances and familiar materials using a magnifying glass. Magnification can help people observe living things more closely providing a link to the work of scientists and the magnifying…

  15. REFLECTIONS ON PHYSICAL CHEMISTRY: Science and Scientists

    NASA Astrophysics Data System (ADS)

    Jortner, Joshua

    2006-05-01

    This is the story of a young person who grew up in Tel-Aviv during the period of the establishment of the State of Israel and was inspired to become a physical chemist by the cultural environment, by the excellent high-school education, and by having been trained by some outstanding scientists at the Hebrew University of Jerusalem and, subsequently, by the intellectual environment and high-quality scientific endeavor at the University of Chicago. Since serving as the first chairman of the Chemistry Department of the newly formed Tel-Aviv University he has been immersed in research, in the training of young scientists, and in intensive and extensive international scientific collaboration. Together with the members of his "scientific family" he has explored the phenomena of energy acquisition, storage and disposal and structure-dynamics-function relations in large molecules, condensed phase, clusters and biomolecules, and is looking forward to many future adventures in physical chemistry. "What to leave out and what to put in? That's the problem." Hugh Lofting, Doctor Dolittle's Zoo, 1925

  16. The Last 50 Years: Mismeasurement and Mismanagement Are Impeding Scientific Research.

    PubMed

    Lawrence, Peter A

    2016-01-01

    In the last 50 years, there have been many changes to the substance, conduct, and style of research. Many of these changes have proved disastrous to the life of scientists and to science itself. As a consequence, the near-romantic spirit of adventure and exploration that inspired young scientists of my own and earlier generations has become tarnished. Now, many of us feel beleaguered by bureaucrats and by politicians: they affect our lives profoundly, apparently without an understanding of the way discoveries are made or of the nature of science itself. The core purposes of universities, teaching and research, are being eroded by excessive administration. The number and locations of our publications are counted up like beans and the outcomes are used to rank us, one against another; a process of evaluation that has recast the purposes of publication. Applying for grants takes far too much time from a young scientist's life. © 2016 Elsevier Inc. All rights reserved.

  17. Air: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains simple experiments through which students explore air and its properties. Some of the topics discussed include alternative energy, bacteria, carbon dioxide, motion, weather, and flight. Experiments include: blowing a balloon up in a bottle; seeing air in water; making a lunch-bag kite, weather vanes, and paper glider;…

  18. What is a Post-Doc

    NASA Astrophysics Data System (ADS)

    Baha Balantekin, A.

    2006-04-01

    It is commonplace for physics Ph.D.'s spend a number of years at universities, government laboratories, and research institutes as postdoctoral associates before they assume permanent positions. In this talk the expectations and the responsibilities of this career stage will be explored from both the young scientists' and employer's perspectives.

  19. Young Scientists Explore Insects. Book 2 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains suggestions for students to investigate the natural world and numerous black and white illustrations. The activities focus on nine easily recognized insects: bees, beetles, lady bugs, lightning bugs, ants, mosquitoes,…

  20. Writing about Science for Publication

    ERIC Educational Resources Information Center

    Astin, Christina; Harvey, Clare; Janusz, Stefan

    2015-01-01

    Can school students get their science research published? Here, we report on an exciting partnership between The Royal Society and "Young Scientists Journal" ("YSJ"), which is written and edited entirely by students aged 12-20. As background, we explore the history and importance of science publishing and the origin of YSJ. The…

  1. Young Scientists Explore Butterflies and Moths. Book 4 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on butterflies and moths and their stages of development. The first section contains exercises on recognizing insect body…

  2. Try This: Draw Like a Scientist

    ERIC Educational Resources Information Center

    Preston, Christine

    2016-01-01

    Young children love to draw, and should be encouraged to explore drawing as a communication tool. Drawing is a means by which children can express their thoughts, interests and feelings, long before they learn to write. We know that: "children's drawings are vehicles for expression and communication" (Chang, 2012, p. 187). This form of…

  3. The Poisoning of Young Minds: Learning in an Age of Neurotoxins

    ERIC Educational Resources Information Center

    Steingraber, Sandra

    2013-01-01

    This article is an excerpt from "Raising Elijah: Protecting Our Children in an Age of Environmental Crisis" (2011), by Sandra Steingraber. As a scientist, mother, and concerned citizen, Steingraber explores herein the damaging effects of the myriad and ubiquitous environmental pollutants--in homes, schools, and communities--on the lives…

  4. Helping Young Students to Better Pose an Environmental Problem

    ERIC Educational Resources Information Center

    Pruneau, Diane; Freiman, Viktor; Barbier, Pierre-Yves; Langis, Joanne

    2009-01-01

    Grade 3 students were asked to solve a sedimentation problem in a local river. With scientists, students explored many aspects of the problem and proposed solutions. Graphic representation tools were used to help students to better pose the problem. Using questionnaires and interviews, researchers observed students' capacity to pose the problem…

  5. Young Scientists Explore Seasons. Book 5 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on signs of the four seasons. Materials are included for assembling a season activity booklet and guidelines are given for…

  6. Knowledge Building Expertise: Nanomodellers' Education as an Example

    ERIC Educational Resources Information Center

    Tala, Suvi

    2013-01-01

    The content of the expertise which young natural scientists try to gain by doing science in research groups is a relatively little-explored subject. What makes learning in such settings challenging is that a central part of the expertise is tacit. This study employs empirical methods together with a contextualized approach and interdisciplinary…

  7. Young Scientists Explore the Kingdom of Plants. Book 7 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on plants with an emphasis on pollens and seeds. The first section, entitled "Pollen, Plants and People,"…

  8. A Picture is Worth a Thousand Words

    ERIC Educational Resources Information Center

    Davison, Sarah

    2009-01-01

    Lions, tigers, and bears, oh my! Digital cameras, young inquisitive scientists, give it a try! In this project, students create an open-ended question for investigation, capture and record their observations--data--with digital cameras, and create a digital story to share their findings. The project follows a 5E learning cycle--Engage, Explore,…

  9. Young Scientists Explore Animal Friends. Book 6 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on animals that can be cared for as pets, both at home and in the classroom. An introductory section contains a song, pet…

  10. Young Scientists Explore Parks and Playgrounds. Book 10 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The setting of parks and play grounds forms the basis of the activities in this guide. The activities unfold in a seasonal format, and examine…

  11. Young Scientists Explore the Human Body. Book 11 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities specifically focus on the human body and encourage a positive self-concept. The theme of the first section is air--the breath of…

  12. To Boldly Go: Practical Career Advice for Young Scientists

    NASA Astrophysics Data System (ADS)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  13. The Nautilus Exploration Program: Utilizing Live Ocean Exploration as a Platform for STEM Education and Outreach

    NASA Astrophysics Data System (ADS)

    Fundis, A.; Cook, M.; Sutton, K.; Garson, S.; Poulton, S.; Munro, S.

    2016-02-01

    By sparking interest in scientific inquiry and engineering design at a young age through exposure to ocean exploration and innovative technologies, and building on that interest throughout students' educational careers, the Ocean Exploration Trust (OET) aims to motivate more students to be lifelong learners and pursue careers in STEM fields. Utilizing research conducted aboard Exploration Vessel Nautilus, the ship's associated technologies, and shore-based facilities at the University of Rhode Island — including the Graduate School of Oceanography and the Inner Space Center — we guide students to early career professionals through a series of educational programs focused on STEM disciplines and vocational skills. OET also raises public awareness of ocean exploration and research through a growing online presence, live streaming video, and interactions with the team aboard the ship 24 hours a day via the Nautilus Live website (www.nautiluslive.org). Annually, our outreach efforts bring research launched from Nautilus to tens of millions worldwide and allow the public, students, and scientists to participate in expeditions virtually from shore. We share the Nautilus Exploration Program's strategies, successes, and lessons learned for a variety of our education and outreach efforts including: 1) enabling global audiences access to live ocean exploration online and via social media; 2) engaging onshore audiences in live and interactive conversations with scientists and engineers on board; 3) engaging young K-12 learners in current oceanographic research via newly developed lessons and curricula; 4) onshore and offshore professional development opportunities for formal and informal educators; 5) programs and authentic research opportunities for high school, undergraduate, and graduate students onshore and aboard Nautilus; and 6) collaborative opportunities for early career and seasoned researchers to participate virtually in telepresence-enabled, interdisciplinary expeditions.

  14. How to succeed in science: a concise guide for young biomedical scientists. Part II: making discoveries

    PubMed Central

    Yewdell, Jonathan W.

    2009-01-01

    Making discoveries is the most important part of being a scientist, and also the most fun. Young scientists need to develop the experimental and mental skill sets that enable them to make discoveries, including how to recognize and exploit serendipity when it strikes. Here, I provide practical advice to young scientists on choosing a research topic, designing, performing and interpreting experiments and, last but not least, on maintaining your sanity in the process. PMID:18401347

  15. How to succeed in science: a concise guide for young biomedical scientists. Part II: making discoveries.

    PubMed

    Yewdell, Jonathan W

    2008-06-01

    Making discoveries is the most important part of being a scientist, and also the most fun. Young scientists need to develop the experimental and mental skill sets that enable them to make discoveries, including how to recognize and exploit serendipity when it strikes. Here, I provide practical advice to young scientists on choosing a research topic, designing, performing and interpreting experiments and, last but not least, on maintaining your sanity in the process.

  16. Okeanos Explorer 2014 Gulf of Mexico Expedition: engaging and connecting with diverse and geographically dispersed audiences

    NASA Astrophysics Data System (ADS)

    Russell, C. W.; Elliott, K.; Lobecker, E.; McKenna, L.; Haynes, S.; Crum, E.; Gorell, F.

    2014-12-01

    From February to May 2014, NOAA Ship Okeanos Explorer conducted a telepresence-enabled ocean exploration expedition addressing NOAA and National deepwater priorities in the U.S. Gulf of Mexico. The community-driven expedition connected diverse and geographically dispersed audiences including scientists from industry, academia, and government, and educators, students, and the general public. Expedition planning included input from the ocean science and management community, and was executed with more than 70 scientists and students from 14 U.S. states participating from shore in real time. Training the next generation permeated operations: a mapping internship program trained undergraduate and graduate students; an ROV mentorship program trained young engineers to design, build and operate the system; and undergraduate through doctoral students around the country collaborated with expedition scientists via telepresence. Online coverage of the expedition included background materials, daily updates, and mission logs that received more than 100,000 visits by the public. Live video feeds of operations received more than 700,000 views online. Additionally, professional development workshops hosted in multiple locations throughout the spring introduced educators to the Okeanos Explorer Educational Materials Collection and the live expedition, and taught them how to use the website and education resources in their classrooms. Social media furthered the reach of the expedition to new audiences, garnered thousands of new followers and provided another medium for real-time interactions with the general public. Outreach continued through live interactions with museums and aquariums, Exploration Command Center tours, outreach conducted by partners, and media coverage in more than 190 outlets in the U.S. and Europe. Ship tours were conducted when the ship came in to port to engage local scientists, ocean managers, and educators. After the expedition, data and products were archived and quickly shared with ocean managers and scientists working in the region, providing a baseline of publicly available data and stimulating follow-on exploration, research and management activities within a few months of expedition completion.

  17. The NASA Solar System Exploration Virtual Institute: International Efforts in Advancing Lunar Science with Prospects for the Future

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.

    2014-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI), originally chartered in 2008 as the NASA Lunar Science Institute (NLSI), is chartered to advance both the scientific goals needed to enable human space exploration, as well as the science enabled by such exploration. NLSI and SSERVI have in succession been "institutes without walls," fostering collaboration between domestic teams (7 teams for NLSI, 9 for SSERVI) as well as between these teams and the institutes' international partners, resulting in a greater global endeavor. SSERVI teams and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists and bringing the scientific results and excitement of exploration to the public. The domestic teams also respond to NASA's strategic needs, providing community-based responses to NASA needs in partnership with NASA's Analysis Groups. Through the many partnerships enabled by NLSI and SSERVI, scientific results have well exceeded initial projections based on the original PI proposals, proving the validity of the virtual institute model. NLSI and SSERVI have endeavored to represent not just the selected and funded domestic teams, but rather the entire relevant scientific community; this has been done through many means such as the annual Lunar Science Forum (now re-named Exploration Science Forum), community-based grass roots Focus Groups on a wide range of topics, and groups chartered to further the careers of young scientists. Additionally, NLSI and SSERVI have co-founded international efforts such as the pan-European lunar science consortium, with an overall goal of raising the tide of lunar science (and now more broadly exploration science) across the world.

  18. Exploring Plants, Insects, and Animals: Opportunities for Cultivating Empathy in Children

    ERIC Educational Resources Information Center

    Belz, Paul

    2012-01-01

    Imagine what a child can learn by slithering across the ground like a worm or snail! Children learn many things from their connections with beautiful living things such as flowers and rabbits. Many adults are surprised when young scientists identify with "yucky" animals and plants. A child who connects with creatures ranging from the cuddly to the…

  19. An Arduino Investigation of Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Galeriu, Calin; Edwards, Scott; Esper, Geoffrey

    2014-01-01

    We cannot hope for a new generation of scientists and engineers if we don't let our young students take ownership of their scientific and engineering explorations, if we don't let them enjoy the hands-on cycle of design and production, and if we don't let them implant their creativity into a technologically friendly environment.…

  20. STEM Starts Early: Grounding Science, Technology, Engineering, and Math Education in Early Childhood

    ERIC Educational Resources Information Center

    McClure, Elisabeth R.; Guernsey, Lisa; Clements, Douglas H.; Bales, Susan Nall; Nichols, Jennifer; Kendall-Taylor, Nat; Levine, Michael H.

    2017-01-01

    Tomorrow's inventors and scientists are today's curious young children--as long as those children are given ample chances to explore and are guided by adults equipped to support them. "STEM Starts Early" is the culmination of a deep inquiry by the Joan Ganz Cooney Center at Sesame Workshop and New America embarked on an exploratory…

  1. You Can't Start Young Enough: Even a Kindergartner Can Be a Scientist!

    ERIC Educational Resources Information Center

    Young, Terrence E., Jr.

    2011-01-01

    From the time they are born, children have a natural curiosity toward the world around them. Even though they can't speak, one can still observe that they are skilled at discovery. Science fair projects can nurture this natural curiosity and give elementary students the opportunity to explore their interests in a rewarding way. Participation in a…

  2. STEM Starts Early: Grounding Science, Technology, Engineering, and Math Education in Early Childhood. Executive Summary

    ERIC Educational Resources Information Center

    McClure, Elisabeth R.; Guernsey, Lisa; Clements, Douglas H.; Bales, Susan Nall; Nichols, Jennifer; Kendall-Taylor, Nat; Levine, Michael H.

    2017-01-01

    Tomorrow's inventors and scientists are today's curious young children--as long as those children are given ample chances to explore and are guided by adults equipped to support them. "STEM Starts Early" is the culmination of a deep inquiry by the Joan Ganz Cooney Center at Sesame Workshop and New America embarked on an exploratory…

  3. Original Research By Young Twinkle Students(ORBYTS): When can students start performingoriginal research?

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; ORBYTS, Twinkle Space Mission, ExoMol

    2018-01-01

    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students feeling engaged in modern science and the scientific method. As part of the Twinkle Space Mission’s educational programme, EduTwinkle, students between the ages of 15 and 18 have been performing original research associated with the exploration of space since January 2016. The student groups have each been led by junior researchers - PhD student and post-doctoral scientists - who themselves benefit substantially from the opportunity to supervise and manage a research project. This research aims to meet a standard for publication in peer-reviewed journals. At present the research of one ORBYTS team has been published in the Astrophysical Journal Supplement Series and another submitted to JQSRT; we expect more papers to follow. Here we outline the necessary steps for a productive scientific collaboration with school children, generalising from the successes and downfalls of the pilot ORBYTS projects.

  4. Next Generation Scientists - Creating opportunities for high school students through astronomical research

    NASA Astrophysics Data System (ADS)

    Kelly, Madeline; Cebulla, Hannah; Powers, Lynn

    2015-01-01

    Through various opportunities and experiences with extracurricular scientific research, primarily astronomical research with programs like NASA/IPAC Teacher Archive Research Project (NITARP), and the Mars Exploration Student Data Teams (MESDT), we have noticed a change in our learning style, career path, and general outlook on the scientific community that we strongly believe could also be added to the lives of many other high school students given similar opportunities. The purpose of our poster is to emphasize the importance of granting high school students opportunities to explore different styles and methods of learning. We believe that although crucial, a basic high school education is not enough to expose young adults to the scientific community and create enough interest for a career path. As a result, we wish to show that more of these programs and opportunities should be offered to a greater number of students of all ages, allowing them to explore their passions, develop their understanding of different fields, and determine the paths best suited to their interests. Within our poster, we will emphasize how these programs have specifically impacted our lives, what we hope to see in the future, and how we hope to attain the growth of such opportunities. We include such proposals as; increasing outreach programs, expanding the exposure of young students to the sciences, both in the classroom and out, allowing high school students to participate in active scientific research, and involving students in hands-on activities/experiments within school clubs, the classroom, at home, or at local events. Spreading these opportunities to directly interact with the sciences in similar manners as that of professional scientists will allow students to discover their interests, realize what being a scientist truly entails, and allow them to take the first steps into following their career paths.

  5. Beyond the Dualism between Lifelong Employment and Job Insecurity: Some New Career Promises for Young Scientists

    ERIC Educational Resources Information Center

    Dany, F.; Mangematin, Vincent

    2004-01-01

    This article analyses the early careers of young scientists in France. Since training and early career management are designed to cater almost exclusively for an academic career, a substantial proportion of PhDs lack support to design their training in relation to the job they will look for after graduation. Even if most young scientists manage to…

  6. Basic instincts

    NASA Astrophysics Data System (ADS)

    Hutson, Matthew

    2018-05-01

    In their adaptability, young children demonstrate common sense, a kind of intelligence that, so far, computer scientists have struggled to reproduce. Gary Marcus, a developmental cognitive scientist at New York University in New York City, believes the field of artificial intelligence (AI) would do well to learn lessons from young thinkers. Researchers in machine learning argue that computers trained on mountains of data can learn just about anything—including common sense—with few, if any, programmed rules. But Marcus says computer scientists are ignoring decades of work in the cognitive sciences and developmental psychology showing that humans have innate abilities—programmed instincts that appear at birth or in early childhood—that help us think abstractly and flexibly. He believes AI researchers ought to include such instincts in their programs. Yet many computer scientists, riding high on the successes of machine learning, are eagerly exploring the limits of what a naïve AI can do. Computer scientists appreciate simplicity and have an aversion to debugging complex code. Furthermore, big companies such as Facebook and Google are pushing AI in this direction. These companies are most interested in narrowly defined, near-term problems, such as web search and facial recognition, in which blank-slate AI systems can be trained on vast data sets and work remarkably well. But in the longer term, computer scientists expect AIs to take on much tougher tasks that require flexibility and common sense. They want to create chatbots that explain the news, autonomous taxis that can handle chaotic city traffic, and robots that nurse the elderly. Some computer scientists are already trying. Such efforts, researchers hope, will result in AIs that sit somewhere between pure machine learning and pure instinct. They will boot up following some embedded rules, but will also learn as they go.

  7. Exporting English Pronunciation from China: The Communication Needs of Young Chinese Scientists as Teachers in Higher Education Abroad

    ERIC Educational Resources Information Center

    Gorsuch, Greta

    2011-01-01

    China has become an exporter of material goods to the world, particularly to the United States. It is time for the exploration of a mutually beneficial relationship in a strikingly different realm, that of human capital in higher education and its contributions to the quality of university teaching. To faculty members and students at U.S.…

  8. Obstacles facing Africa's young climate scientists

    NASA Astrophysics Data System (ADS)

    Dike, Victor Nnamdi; Addi, Martin; Andang'o, Hezron Awiti; Attig, Bahar Faten; Barimalala, Rondrotiana; Diasso, Ulrich Jacques; Du Plessis, Marcel; Lamine, Salim; Mongwe, Precious N.; Zaroug, Modathir; Ochanda, Valentine Khasenye

    2018-06-01

    Current and future climate change poses a substantial threat to the African continent. Young scientists are needed to advance Earth systems science on the continent, but they face significant challenges.

  9. Exploration Science Opportunities for Students within Higher Education

    NASA Astrophysics Data System (ADS)

    Bailey, Brad; Minafra, Joseph; Schmidt, Gregory

    2016-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on exploration science related to near-term human exploration targets, training the next generation of lunar scientists, and education and public outreach. As part of the SSERVI mission, we act as a hub for opportunities that engage the public through education and outreach efforts in addition to forming new interdisciplinary, scientific collaborations.SSERVI provides opportunities for students to bridge the scientific and generational gap currently existing in the planetary exploration field. This bridge is essential to the continued international success of scientific, as well as human and robotic, exploration.The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.

  10. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    ERIC Educational Resources Information Center

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  11. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    NASA Astrophysics Data System (ADS)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  12. 20th International Conference for Students and Young Scientists: Modern Techniques and Technologies (MTT'2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    The active involvement of young researchers in scientific processes and the acquisition of scientific experience by gifted youth currently have a great value for the development of science. One of the research activities of National Research Tomsk Polytechnic University, aimed at the preparing and formation of the next generation of scientists, is the International Conference of Students and Young Scientists ''Modern Techniques and Technologies'', which was held in 2014 for the twentieth time. Great experience in the organization of scientific events has been acquired through years of carrying the conference. There are all the necessary resources for this: a team of organizers - employees of Tomsk Polytechnic University, premises provided with modern office equipment and equipment for demonstration, and leading scientists - professors of TPU, as well as the status of the university as a leading research university in Russia. This way the conference is able to attract world leading scientists for the collaboration. For the previous years the conference proved itself as a major scientific event at international level, which attracts more than 600 students and young scientists from Russia, CIS and other countries. The conference provides oral plenary and section reports. The conference is organized around lectures, where leading Russian and foreign scientists deliver plenary presentations to young audiences. An important indicator of this scientific event is the magnitude of the coverage of scientific fields: energy, heat and power, instrument making, engineering, systems and devices for medical purposes, electromechanics, material science, computer science and control in technical systems, nanotechnologies and nanomaterials, physical methods in science and technology, control and quality management, design and technology of artistic materials processing. The main issues considered by young researchers at the conference were related to the analysis of contemporary problems using new techniques and application of new technologies.

  13. 'I'm good, but not that good': digitally-skilled young people's identity in computing

    NASA Astrophysics Data System (ADS)

    Wong, Billy

    2016-12-01

    Computers and information technology are fast becoming a part of young people's everyday life. However, there remains a difference between the majority who can use computers and the minority who are computer scientists or professionals. Drawing on 32 semi-structured interviews with digitally skilled young people (aged 13-19), we explore their views and aspirations in computing, with a focus on the identities and discourses that these youngsters articulate in relation to this field. Our findings suggest that, even among digitally skilled young people, traditional identities of computing as people who are clever but antisocial still prevail, which can be unattractive for youths, especially girls. Digitally skilled youths identify with computing in different ways and for different reasons. Most enjoy doing computing but few aspired to being a computer person. Implications of our findings for computing education are discussed especially the continued need to broaden identities in computing, even for the digitally skilled.

  14. Personal and Social Interactions between Young Girls and Scientists: Examining Critical Aspects for Identity Construction

    ERIC Educational Resources Information Center

    Farland-Smith, Donna

    2012-01-01

    At a 5-day summer camp designed for middle-school girls (N = 50), fifth through ninth-grade students were able to identify with individual scientists and learn more about the science field. Data from the girls' journals, pictorial representations, and field notes demonstrated that these young women related to scientists who actively engaged them…

  15. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. Pictured here, the galaxy NGC598 known as M33. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars farther away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, and dust rich in organic molecules burns red. This image is a 3-band composite including far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11998

  16. Spiderman and science: How students' perceptions of scientists are shaped by popular media.

    PubMed

    Tan, Aik-Ling; Jocz, Jennifer Ann; Zhai, Junqing

    2017-07-01

    This study addresses the influence of popular media on how young children perceive science and the work of scientists. Using an adapted version of the Draw-A-Scientist Test, 15 classes of fourth graders (9-10 years old) at three different schools in Singapore were sampled ( n =  266). The students' drawings as well as their identification of three sources from which they obtained inspiration for their drawings were analyzed. Our results showed a strong relationship between students' drawings of scientists and their reported sources of inspiration. The results suggest that popular media play a large role in shaping how young children view scientists.

  17. Toward an essential ethic for teaching science in the new millennium

    NASA Astrophysics Data System (ADS)

    Hays, Irene De La Bretonne

    The purpose of this study was to identify and explore values and views that might underlie an essential ethic for teaching science in the new millennium. With such an ethic, teachers may be better able to prepare young people to form and fully participate in communities that restore and sustain Earth. Reviewed in the literature for this study were changing philosophies and theories from early indigenous cultures to the present on the nature of nature, the value of nature, and the human relationship with nature. These philosophies and theories were found to influence values that today underlie the work scientists do and the ways young people are educated in science. In the study, two groups of participants--Nature Writers and scientists--revealed the essence and meaning of their relationship with nature. A two-stage, modified Delphi method was used for collecting data. Stage One comprised the first "round" of the Delphi and involved content analysis of writings by a select group of U.S. Nature Writers from the early 1800s to the present. In Stage Two, comprising three rounds of the modified Delphi, perspectives of Nature Writers were imbedded in questionnaires and presented for response to a select group of scientists connected with research and education at National Laboratories across the country. Finally, results from each participant group were brought together in a recursive process, one with the other, to determine findings. Strong Earth-care values, including receptivity, responsibility, interdependence, respect, cooperation, love, and care, were found to be held in common by the Nature Writers and scientists in this study and could form the foundation for an essential ethic for teaching science. The strongest dissonance between Nature Writers and scientists was evident in emotional and spiritual domains--despite that many scientists revealed emotional and spiritual elements in stories told of their experiences with nature. Contrary to what might have been expected from scientists based on theories of science and practices of science education represented in the literature, few scientists revealed negative, utilitarian, or dominionistic affiliations with nature. In contrast, no Nature Writers revealed such affiliations.

  18. Advice to young behavioral and cognitive scientists.

    PubMed

    Weisman, Ronald G

    2008-02-01

    Modeled on Medawar's Advice to a Young Scientist [Medawar, P.B., 1979. Advice to a Young Scientist. Basic Books, New York], this article provides advice to behavioral and cognitive scientists. An important guiding principle is that the study of comparative cognition and behavior are natural sciences tasked with explaining nature. The author advises young scientists to begin with a natural phenomenon and then bring it into the laboratory, rather than beginning in the laboratory and hoping for an application in nature. He suggests collaboration as a way to include research outside the scientist's normal competence. He then discusses several guides to good science. These guides include Tinbergen's [Tinbergen, N., 1963. On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410-433. This journal was renamed Ethology in 1986. Also reprinted in Anim. Biol. 55, 297-321, 2005] four "why" questions, Platt's [Platt, J.R., 1964. Strong inference. Science 146, 347-353, (http://weber.ucsd.edu/~jmoore/courses/Platt1964.pdf)] notion of strong inference using multiple alternative hypotheses, and the idea that positive controls help scientists to follow Popper's [Popper, K.R., 1959. The Logic of Scientific Discovery. Basic Books, New York, p. 41] advice about disproving hypotheses. The author also recommends Strunk and White's [Strunk, W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New York] rules for sound writing, and he provides his personal advice on how to use the anticipation of peer review to improve research and how to decode editors' and reviewers' comments about submitted articles.

  19. The Longitudinal STEM Identity Trajectories of Middle School Girls who Participated in a Single-Sex Informal STEM Education Program

    NASA Astrophysics Data System (ADS)

    Hughes, Roxanne

    2014-03-01

    This study examined the longitudinal effects of participation in an all-girls STEM summer camp on young women's interest in STEM fields and motivation to pursue these fields. The SciGirls camp has been in existence since 2006, with its goal of providing a safe space for young women to explore STEM careers and strengthen their interest in these careers. Over 166 middle school age girls have participated in the program since it began in 2006. Of those participants, 60 responded to at least one of the follow up surveys that are sent every three years - 2009 and 2012. The surveys attempt to determine participants' level of interest in STEM. The survey was qualitative in nature and asked open ended questions. Results indicated that the camp had a positive effect on participants' perceptions of scientists and their work. This study adds to the literature that looks at the longitudinal impacts of informal STEM educational programs that expose young women to female scientist role models and mentors. This study supports the research that claims that exposing young women at an early age to science role models can positively alter their perception of science careers which can eventually increase the number of women who pursue these careers. This increase is important at a time when men still outnumber women in many science and engineering fields. This study was funded in part by the National Science Foundation Division of Materials Research through DMR 0654118.

  20. The EuroSprite2005 Observational Campaign: an example of training and outreach opportunities for CAL young scientists

    NASA Astrophysics Data System (ADS)

    Chanrion, O.; Crosby, N. B.; Arnone, E.; Boberg, F.; van der Velde, O.; Odzimek, A.; Mika, Á.; Enell, C.-F.; Berg, P.; Ignaccolo, M.; Steiner, R. J.; Laursen, S.; Neubert, T.

    2007-07-01

    The four year "Coupling of Atmospheric Layers (CAL)" EU FP5 Research Training Network project studied unanswered questions related to transient luminous events (sprites, jets and elves) in the upper atmosphere. Consisting of ten scientific work-packages CAL also included intensive training and outreach programmes for the young scientists hired. Educational activities were based on the following elements: national PhD programmes, activities at CAL and other meetings, a dedicated summer school, and two European sprite observational campaigns. The young scientists were strongly involved in the latter and, as an example, the "EuroSprite2005" observational campaign is presented in detail. Some of the young scientists participated in the instrument set-up, others in the campaign logistics, some coordinated the observations, and others gathered the results to build a catalogue. During the four-month duration of this campaign, all of them took turns in operating the system and making their own night observations. The ongoing campaign activities were constantly advertised and communicated via an Internet blog. In summary the campaign required all the CAL young scientists to embark on experimental work, to develop their organisational skills, and to enhance their ability to communicate their activities. The campaign was a unique opportunity to train and strengthen skills that will be an asset to their future careers and, overall, was most successful.

  1. Inherit Space

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.; Jenks, K. C.

    1997-01-01

    The objective of the proposed research was to begin development of a unique educational tool targeted at educating and inspiring young people 12-16 years old about NASA and the Space Program. Since these young people are the future engineers, scientists and space pioneers, the nurturing of their enthusiasm and interest is of critical importance to the Nation. This summer the basic infrastructure of the tool was developed in the context of an educational game paradigm. The game paradigm has achieved remarkable success in maintaining the interest of young people in a self-paced, student-directed learning environment. This type of environment encourages student exploration and curiosity which are exactly the traits that future space pioneers need to develop to prepare for the unexpected. The Inherit Space Educational Tool is an open-ended learning environment consisting of a finite-state machine classic adventure game paradigm. As the young person explores this world, different obstacles must be overcome. Rewards will be offered such as using the flight simulator to fly around and explore Titan. This simulator was modeled on conventional Earth flight simulators but has been considerably enhanced to add texture mapping of Titan's atmosphere utilizing the latest information from the NASA Galileo Space Probe. Additional scenery was added to provide color VGA graphics of a futuristic research station on Titan as well as an interesting story to keep the youngster's attention. This summer the game infrastructure has been developed as well as the Titan Flight Simulator. A number of other enhancements are planned.

  2. OSIRIS-REx "Uncovering the Secrets of Asteroids" Briefing

    NASA Image and Video Library

    2016-09-07

    In a panel discussion in the Kennedy Space Center’s Operations Support Building II, social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. The discussion took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Panelists for this conversation are, from the left, Ellen Stofan, NASA chief scientist; Michelle Thaller, deputy director of science communications for NASA’s Science Mission Directorate; Felicia Chou, NASA Communications; Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Lindley Johnson, director of the Planetary Defense Coordination Office in NASA’s Science Mission Directorate.

  3. Exploring women community college natural scientists' personal experience narratives through a subjectivist lens

    NASA Astrophysics Data System (ADS)

    Woods, Nancy Anne

    The thrust in education today is to encourage young women to enter nontraditional fields of study such as chemistry, physics, and biology. In order to better prepare the next generation of women scientists, then, we should examine the experiences of women participants already working within these areas. We can learn from their experiences. What motivated them toward science? What influenced them to become teachers? What brought them to the community college? If the premise is that we want more women involved in science, then one way to understand how to entice women into science would be to research those who are already there. This research project has two important findings, (1) women community college natural science instructors can experience issues of identity between their roles as scientists and teachers; (2) women community college natural science instructors value a different community structure compared to many of their male counterparts. This research lists several recommendations for future practice as well as recommendations for future research.

  4. Between forwarding and mentoring: a qualitative study of recommending medical doctors for international postdoctoral research positions.

    PubMed

    Sambunjak, Dario; Marušić, Matko

    2011-06-09

    Young scientists rarely have extensive international connections that could facilitate their mobility. They often rely on their doctoral supervisors and other senior academics, who use their networks to generate opportunities for young scientists to gain international experience and provide the initial trigger for an outward move. To explore the process of informal recommending of young physicians from a small country for postdoctoral research positions in foreign countries, we conducted in-depth interviews with eight senior academics who acted as recommenders and eight physicians who, based on the recommendations of senior academics, spent at least a year working in a laboratory abroad. Interviews were transcribed and analyzed by using the framework approach. The findings showed that recommending can take four distinct forms: 1) forwarding information, 2) passive recommending, 3) active recommending, and 4) mentor recommending. These forms differ in their level of commitment and mutual trust among actors, and possible control over the success of the process. Two groups of recommendees--'naive' and 'experienced'--can be distinguished based on their previous scientific experience and research collaboration with the recommender. Crucial for the success of the process is an adequate preparation of recommendees' stay abroad, as well as their return and reintegration. The benefits of recommending extend beyond the individual participants to the scientific community and broader society of the sending country. With a sufficient level of commitment by the actors, informal recommending can be a part of or grow into an all-encompassing developmental relationship equal to mentoring. The importance of senior academics' informal contacts and recommendations in promoting junior scientists' mobility should be acknowledged and encouraged by the research institutions and universities, particularly in developing countries.

  5. Planck's Principle.

    ERIC Educational Resources Information Center

    Hull, David L.; And Others

    1978-01-01

    Examines two views about acceptance of Darwin's theory by scientists in Great Britain; that all scientists had accepted it within ten years after the publication of "Origin of Species," and that young scientists accepted the theory faster than old scientists. Concludes that both views are not accurate. (GA)

  6. [Applications and spproved projects of general program, young scientist fund and fund for less developed region of national natural science funds in discipline of Chinese materia medica, NSFC in 2011].

    PubMed

    Han, Liwei; Wang, Yueyun; He, Wenbin; Zhang, Junjie; Bi, Minggang; Shang, Hongcai; Shang, Deyang; Wang, Chang'en

    2012-03-01

    The applications accepted and approved by general program, young scientist fund and fund for less developed region of national natural science funds in the discipline of Chinese materia medica, NSFC in 2011 have been introduced. The character and problems in these applications have been analyzed to give a reference to the scientists in the field of Chinese material medica.

  7. The UK-Japan Young Scientist Workshop Programme...

    ERIC Educational Resources Information Center

    Albone, Eric; Okano, Toru

    2012-01-01

    The authors have been running UK-Japan Young Scientist Workshops at universities in Britain and Japan since 2001: for the past three years in England with Cambridge University and, last year, also with Kyoto University and Kyoto University of Education. For many years they have worked jointly with colleagues in a group of Super Science High…

  8. New Program Aims $300-Million at Young Biomedical Researchers

    ERIC Educational Resources Information Center

    Goodall, Hurley

    2008-01-01

    Medical scientists just starting at universities have been, more and more often, left empty-handed when the federal government awards grants. To offset this, the Howard Hughes Medical Institute, a nonprofit organization dedicated to medical research, announced a new program that will award $300-million to as many as 70 young scientists. The Early…

  9. Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes

    NASA Astrophysics Data System (ADS)

    Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.

    2014-12-01

    Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.

  10. The use of selected community groups to elicit and understand the values underlying attitudes towards biotechnology.

    PubMed

    Gamble, Joanna; Kassardjian, Elsa

    2008-04-01

    Focus groups were used to examine the social, cultural and spiritual dimensions of biotechnology through an analysis of five selected community groups (total n = 68): scientists, Buddhists, business people, mothers with young children and the environmentally active. Participants from all groups were united in their perspective on three of the value spheres explored: health and welfare of family/society; maintaining/preserving the environment; and ethical considerations (e.g. welfare of animals, sanctity of life). However, values regarding science and business differentiated scientists and business people from the remaining community segments. Business people were more likely to adhere to "productionism," resulting in a greater acceptance of biotechnology, since business people did not hold the same resentment toward the business sphere held by other community segments. Scientists were far more accepting of the norms and values inherent in the sphere of science, believing science to be more predictable and controllable than general public perceptions. The disparity in worldviews for this value sphere meant scientists and laypeople did not communicate at the same level, in spite of having the same concerns for health and the environment. This resulted in feelings of frustration and powerlessness on the part of the layperson and the scientist.

  11. "We Cross Night": Some Reflections on the Role of the ESKOM Expo for Young Scientists as a Means of Accommodating Disadvantaged Learners into the Field of Science and Technology

    ERIC Educational Resources Information Center

    Alant, Busisiwe P.

    2010-01-01

    This article critiques the role of the ESKOM Expo for Young Scientists as a particularly salient node in the constitution of young learners' identity as prospective participants in the field of science and technology. The ESKOM Expo is seen as a particularly exciting means of providing access to the niche area of science and technology. Yet this…

  12. Expedition Earthscope: A Television Film and DVD

    NASA Astrophysics Data System (ADS)

    Prose, D.; Lamacchia, D.

    2005-12-01

    Independent filmmakers are producing a public television documentary that explores the goals and aspirations of the Earthscope project in the context of what is known and not known about the geology of North America. The unfolding story captures the excitement of the early stages of an historic expedition undertaken by a diverse group of scientists, students, and volunteers, employing the most advanced earth exploration techniques to answer persistent geologic questions about the North American continent. The film documents the efforts of Earthscope scientists as participants in one of the largest coordinated geologic experiments ever, one that promises to deepen our knowledge of the processes, including seismic and volcanic, that have formed the continent and its spectacular landforms. Interspersed with scenes of scientists beginning new Earthscope experiments is archival footage of past experiments, as well as dramatic scenes of earthquakes, volcanic eruptions, landscapes, and cultural activities filmed throughout the US. The film's liberal use of 3D animations helps explain the geologic story and the techniques employed by Earthscope scientists. The purpose of the documentary is to introduce Earthscope and basic earth science concepts to a nationwide audience via PBS broadcasts and distribution to schools, libraries, science centers, and museums. For Earthscope staff, scientists, and educators, the film will be a tool to help educate the public about Earthscope and recruit a diverse mix of young people to take part in the effort. To enhance the usefulness of the film, a companion DVD is also being produced that will include printable ancillary educational resources for use in classrooms and materials that explain the Earthscope project in detail. Pre-release clips from the film will be shown and distribution plans discussed.

  13. All Scientists Meeting

    ScienceCinema

    Pier Oddone and Young-Kee Kim

    2018-04-17

    Pier Oddone and Young-Kee Kim of Fermi National Accelerator Laboratory lead an all-scientists meeting to discuss current and future work, scope of research, budget and funding information, and other information relating to the lab and its scientists.

  14. Taking the Scientist's Perspective. The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    NASA Astrophysics Data System (ADS)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  15. From Students to Scientists

    ERIC Educational Resources Information Center

    Ho-Shing, Olivia

    2017-01-01

    In his book "Letters to a Young Scientist," renowned biologist Edward O. Wilson recounted his own coming-of-age story as a scientist, and distilled the motivating qualities of science down to curiosity and creativity. Individuals become scientists when they are curious about a phenomenon in the world around them and ask about the real…

  16. Biography Today: Profiles of People of Interest to Young Readers. Scientists & Inventors Series.

    ERIC Educational Resources Information Center

    Abbey, Cherie D., Ed.

    2002-01-01

    This volume on "Scientists and Inventors" was created to appeal to young readers in a format they can enjoy reading and can readily understand. Each volume contains alphabetically arranged sketches of outstanding people. Each entry provides at least one picture of the individual profiled, and bold-faced rubrics lead the reader to…

  17. Annual report

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The overall goal of the Tuskegee University Center for Food Production, Processing and Waste Management in Controlled Ecological Life Support Systems (CELSS) is to provide tested information and technologies applicable to bioregenerative food production systems for life support on long-term manned space mission. Specifically, the center is developing information, computer simulated models, methodologies and technology for sweetpotato and peanut biomass production and processing, inclusive of waste management and recycling of these crops selected by NASA for CELSS. The Center is organized into interdisciplinary teams of life scientists and engineers that work together on specific objectives and long-term goals. Integral to the goal of the Center is the development of both basic and applied research information and the training of young scientists and engineers, especially underrepresented minorities that will increase the professional pool in these disciplines and contribute to the advancement of space sciences and exploration.

  18. OSIRIS-REx "Uncovering the Secrets of Asteroids" Briefing

    NASA Image and Video Library

    2016-09-07

    In a panel discussion in the Kennedy Space Center’s Operations Support Building II, social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. The discussion took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Panelists in view are, from the left, Felicia Chou, NASA Communications; Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and Lindley Johnson, director of the Planetary Defense Coordination Office in NASA’s Science Mission Directorate. Also participating in the panel discussion are Ellen Stofan, NASA chief scientist and Michelle Thaller, deputy director of science communications for NASA’s Science Mission Directorate.

  19. Workforce Challenges and Retention Success Stories

    NASA Technical Reports Server (NTRS)

    Donohue, John T.

    2008-01-01

    This viewgraph document discusses the current and future challenges in building and retaining the required workforce of scientist and engineers for NASA. Specifically, the talk reviews the current situation at the Goddard Space Flight Center in Greenbelt, Maryland. Several programs at NASA for high school and college students to assist in inspiring the next generation of scientist and engineers are reviewed. The issue of retention of the best of the young scientists and engineers is also reviewed, with a brief review of several young engineers and their success with and for NASA.

  20. [Applications and approved projectsof general program, young scientist fund and fund for less developedregion of national natural science funds in discipline of Chinese materia medica, NSFC in 2012].

    PubMed

    Huang, Ming-Qing; Han, Li-Wei; Wu, Xiu-Hong; Bi, Ming-Gang; Shang, Hong-Cai; Liu, Yun-Fang; He, Wei-Ming; Li, Dan-Dan; Dong, Yan; Wang, Chang-En

    2013-01-01

    The applications accepted and approved by general program, young scientist fund and fund for less developed region of national natural science funds in the discipline of Chinese materia medica, NSFC in 2012 have been introduced. The research contents of the funded projects in the popular research areas have been summarized and the problems in the applications have been analyzed to give a reference to the scientists in the field of Chinese materia medica.

  1. The enduring effect of scientific interest on trust in climate scientists in the United States

    NASA Astrophysics Data System (ADS)

    Motta, Matthew

    2018-06-01

    People who distrust scientists are more likely to reject scientific consensus, and are more likely to support politicians who are sceptical of scientific research1. Consequently, boosting Americans' trust in scientists is a central goal of science communication2. However, while previous research has identified several correlates of distrust in climate scientists3 and scientists more broadly4, far less is known about potential long-term influences taking root in young adulthood. This omission is notable, as previous research suggests that attitudes towards science formulated in pre-teenage years play a key role in shaping attitudes in adulthood5. Using data from the Longitudinal Study of American Youth, I find that interest in science at age 12-14 years is associated with increased trust in climate scientists in adulthood (mid thirties), irrespective of Americans' political ideology. The enduring and bipartisan effects of scientific interest at young ages suggest a potential direction for future efforts to boost mass trust in climate scientists.

  2. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars further away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, near-infrared light from old stars burns yellow and orange, and dust rich in organic molecules burns red. The small blue flecks outside the spiral disk of M33 are most likely distant background galaxies. This image is a four-band composite that, in addition to the two ultraviolet bands, includes near infrared as yellow/orange and far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11999

  3. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  4. Some Methodological Issues with "Draw a Scientist Tests" among Young Children

    ERIC Educational Resources Information Center

    Losh, Susan C.; Wilke, Ryan; Pop, Margareta

    2008-01-01

    Children's stereotypes about scientists have been postulated to affect student science identity and interest in science. Findings from prior studies using "Draw a Scientist Test" methods suggest that students see scientists as largely white, often unattractive, men; one consequence may be that girls and minority students feel a science career is…

  5. Identity Matching to Scientists: Differences That Make a Difference?

    ERIC Educational Resources Information Center

    Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva

    2014-01-01

    Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists.…

  6. Biography Today: Profiles of People of Interest to Young Readers. Scientists & Inventors Series, Volume 5.

    ERIC Educational Resources Information Center

    Abbey, Cherie D., Ed.

    This book, a special volume focusing on computer-related scientists and inventors, provides 12 biographical profiles of interest to readers ages 9 and above. The Biography Today series was created to appeal to young readers in a format they can enjoy reading and readily understand. Each entry provides at least one picture of the individual…

  7. Fifty years of Cosmic Era: Real and Virtual Studies of the Sky

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Malkov, O. Yu.; Samus, N. N.

    2012-05-01

    The book presents the Proceedings of the Conference of Young Scientists of CIS countries held on 21-25 November 2011 at the Armenian National Academy of Sciences in Yerevan and dedicated to the 50th anniversary of Yuri Gagarin's flight into Space. The main goal of the Conference was to gather young scientists from CIS countries to familiarize them with the latest developments of Astrophysics and Space Physics, including the use of the latest technology and techniques. Among the participants of the conference there were 47 young scientists and researchers from Armenia, Latvia, Lithuania, Russia, Tajikistan and Ukraine, as well as 5 invited lecturers from Armenia, France and Russia, who gave 5 lectures and 2 different practical exercises (tutorials). The young scientists presented 38 talks on various topics of astrophysics related to their research work or PhD/MSc studies. The book is divided into 5 parts, Invited Lectures and 4 sections by subjects: Solar System and Exoplanets, Stars and Nebulae, Galaxies and Cosmology, Real and Virtual Observatories. It also includes a preface by the editors, the list of participants of the conference, and author index at the end.

  8. International Conferences and Young Scientists Schools on Computational Information Technologies for Environmental Sciences (CITES) as a professional growth instrument

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Lykosov, V. N.; Genina, E. Yu; Gordova, Yu E.

    2017-11-01

    The paper describes a regular events CITES consisting of young scientists school and international conference as a tool for training and professional growth. The events address the most pressing issues of application of information-computational technologies in environmental sciences and young scientists’ training, diminishing a gap between university graduates’ skill and concurrent challenges. The viability of the approach to the CITES organization is proved by the fact that single event organized in 2001 turned into a series, quite a few young participants successfully defended their PhD thesis and a number of researchers became Doctors of Science during these years. Young researchers from Russia and foreign countries show undiminishing interest to these events.

  9. The Scarcity of Orthopaedic Physician Scientists.

    PubMed

    Buckwalter, Joseph A; Elkins, Jacob M

    2017-01-01

    Breakthrough advances in medicine almost uniformly result from the translation of new basic scientific knowledge into clinical practice, rather than from assessment, modification or refinement of current methods of diagnosis and treatment. However, as is intuitively understood, those most responsible for scientific conception and creation-scientists - are generally not the ones applying these advances at the patient's bedside or the operating room, and vice versa. Recognition of the scarcity of clinicians with a background that prepares them to develop new basic knowledge, and to critically evaluate the underlying scientific basis of methods of diagnosis and treatment, has led to initiatives including federally funded Physician-Scientist programs, whereby young, motivated scholars begin a rigorous training, which encompasses education and mentorship within both medical and scientific fields, culminating in the conferment of both MD and PhD degrees. Graduates have demonstrated success in integrating science into their academic medical careers. However, for unknown reasons, orthopaedic surgery, more than other specialties, has struggled to recruit and retain physician-scientists, who possess a skill set evermore rare in today's increasingly complicated medical and scientific landscape. While the reasons for this shortfall have yet to be completely elucidated, one thing is clear: If orthopaedics is to make significant advances in the diagnosis and treatment of musculoskeletal diseases and injuries, recruitment of the very best and brightest physician-scientists to orthopaedics must become a priority. This commentary explores potential explanations for current low-recruitment success regarding future orthopaedic surgeon-scientists, and discusses avenues for resolution.

  10. `Am I Like a Scientist?': Primary children's images of doing science in school

    NASA Astrophysics Data System (ADS)

    Zhai, Junqing; Jocz, Jennifer Ann; Tan, Aik-Ling

    2014-03-01

    A considerable body of evidence highlights how inquiry-based science can enhance students' epistemic and conceptual understanding of scientific concepts, principles, and theories. However, little is known about how students view themselves as learners of science. In this paper, we explore primary children's images of doing science in school and how they compare themselves with 'real' scientists. Data were collected through the use of a questionnaire, drawing activity, and interviews from 161 Grade 4 (ages 9-10) students in Singapore. Results indicate that 'doing science as conducting hands-on investigations', 'doing science as learning from the teacher', 'doing science as completing the workbook', and 'doing science as a social process' are the images of learning science in school that most of the students held. In addition, students reported that they need to be well behaved first and foremost, while scientists are more likely to work alone and do things that are dangerous. Moreover, students often viewed themselves as 'acting like a scientist' in class, especially when they were doing experiments. Nevertheless, some students reported that they were unlike a scientist because they believed that scientists work alone with dangerous experiments and do not need to listen to the teacher and complete the workbook. These research findings further confirm the earlier argument that young children can make distinctions between school science and 'real' science. This study suggests that the teaching of science as inquiry and by inquiry will shape how students view their classroom experiences and their attitudes towards science.

  11. Biography Today: Scientists & Inventors Series. Profiles of People of Interest to Young Readers. Vol. 1, 1996.

    ERIC Educational Resources Information Center

    Harris, Laurie Lanzen, Ed.; Abbey, Cherie D., Ed.

    This issue of "Biography Today" looks at scientists and inventors and is created to appeal to young readers in a format they can and enjoy and easily understand. Each entry provides at least one picture of the individual profiled, and bold-faced rubrics lead the reader to information on birth, youth, early memories, education, first jobs, marriage…

  12. On-the-job, real-time professional development for graduate students and early career scientists at the University of Hawaii

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Guannel, M.; Wood-Charlson, E.; Choy, A.; Wren, J.; Chang, C.; Alegado, R.; Leon Soon, S.; Needham, H.; Wiener, C.

    2015-12-01

    Here we present an overview of inter-related programs designed to promote leadership and professional development among graduate students and early career scientists. In a very short time, these young scientists have developed into an impressive cohort of leaders. Proposal Writing. The EDventures model combines proposal-writing training with the incentive of seed money. Rather than providing training a priori, the EDventures model encourages students and post-docs to write a proposal based on guidelines provided. Training occurs during a two-stage review stage: proposers respond to panel reviews and resubmit their proposal within a single review cycle. EDventures alumni self-report statistically significant confidence gains on all questions posed. Their subsequent proposal success is envious: of the 12 proposals submitted by program alumni to NSF, 50% were funded. (Wood Charlson & Bruno, in press; cmore.soest.hawaii.edu/education/edventures.htm)Mentoring. The C-MORE Scholars and SOEST Maile Mentoring Bridgeprograms give graduate students the opportunity to serve as research mentors and non-research mentors, respectively, to undergraduates. Both programs aim to develop a "majority-minority" scientist network, where Native Hawaiians and other underrepresented students receive professional development training and personal support through one-on-one mentoring relationships (Gibson and Bruno, 2012; http://cmore.soest.hawaii.edu/scholars; http://maile.soest.hawaii.edu).Outreach & Science Communication. Ocean FEST (Families Exploring Science Together), Ocean TECH (Technology Explores Career Horizons) and the Kapiolani Community College summer bridge program provide opportunities for graduate students and post-docs to design and deliver outreach activities, lead field trips, communicate their research, and organize events (Wiener et al, 2011, Bruno & Wren, 2014; http://oceanfest.soest.hawaii.edu; http://oceantech.soest.hawaii.edu)Professional Development Course. In this career-focused graduate seminar, students and post-docs explore a range of career paths, identify and build skills, prepare application materials, and develop a class project around their professional development interests (Guannel et al, 2014).

  13. Imagine a universe with 85% down quarks: Mentoring for inclusive excellence in nuclear science

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry J.

    2017-09-01

    If nature created six down quarks for every up quark the world might be a bit more strange. The US population is made up of over 50% women. Hispanic Americans and African Americans make up over 30% of the US population. The processes by which we foster curiosity, educate our youth, encourage people into science, recruit and retain people into physics and welcome them as members of our nuclear physics community results in a much different demographic in the membership of the DNP. Enabling the development of an identity as a scientist or nuclear scientist is a crucial part of mentoring young people to successful careers in nuclear science. Research experiences for students can play a critical role in that identity development. Since 2004, over 170 students have explored nuclear science through the Research Experiences for Undergraduates program Texas A&M University Cyclotron Institute.

  14. Young Solid Earth Researchers of the World Unite!

    NASA Astrophysics Data System (ADS)

    Simons, Frederik J.; Becker, Thorsten W.; Kellogg, James B.; Billen, Magali; Hardebeck, Jeanne; Lee, Cin-Ty A.; Montési, Laurent G. J.; Panero, Wendy; Zhong, Shijie

    2004-04-01

    In early January 2004, one of us attended a workshop on ``science priorities and educational opportunities that can be addressed using ocean observatories.'' The attendees constituted a broad group-men and women, scientists, engineers, educators, representatives from the private and public sector-but lacked diversity in at least one important aspect: age. A well-known marine geophysicist (with a published record stretching over 30 years) came to me at the ice-breaker party and said (and I paraphrase): ``I'm glad you're here: you're young, you might actually see this project flourish before you retire. There're not enough young people here.`` At some point or another, every young scientist may have a similar experience.

  15. Young Children's Perceptions of Scientists: A Preliminary Study

    ERIC Educational Resources Information Center

    Buldu, Mehmet

    2006-01-01

    Background: Since the 1950s, there has been a growing body of research dealing with perceptions children have of scientists. Typically, research studies in this area have utilized children's drawings in an effort to discern what those perceptions are. Studies assessing perceptions children have of scientists have shown that children have…

  16. Sandscape - engaging people in Met Office science through sand sculpture

    NASA Astrophysics Data System (ADS)

    Liggins, Felicity; Dowell, Ellen; Wardley, Jamie; Jamieson, Claire

    2017-04-01

    In 2015, the Met Office's award-winning outreach programme, designed to inspire the next generation of scientists and engineers, delivered one of its most ambitious and creative activities to date. It explored how scientists and artists can come together to create an engaging experience for young people and families. This activity was called Sandscape. Sandscape is an interactive sand sculpture workshop exploring how weather and climate affect our health. Budding sand sculptors are shown how to fashion elaborate structures from sand and water - creating a landscape with bridges, skyscrapers, forests and factories. As they work, participants are encouraged by the scientists delivering the activity to reflect on what makes a healthy city, considering how the natural and built environments influence air quality and circulation and how this impacts our health. Topics discussed include urban heat islands, air pollution and dispersion modelling, pollen forecasting and predicting the wind-borne spread of animal diseases. Each hour long workshop culminates in a dramatic demonstration that uses dry ice to represent clean air circulating from mountains, along rivers and into cities. Here we present an overview of Sandscape, identify the strengths and challenges of such a collaborative, innovative and playful approach to public engagement and share the results of our evaluation. Sandscape was originally supported by the Met Office and the Wellcome Trust, and produced by Einstein's Garden in collaboration with the Met Office, scientists from the University of Exeter and sand sculptors from Sand in Your Eye. It was first presented in Einstein's Garden at Green Man festival 2015, an independent music and arts festival held annually in Wales, and has since been invited to run at the 2015 Bournemouth Arts By the Sea Festival and Teignmouth's TRAIL Sculpture Festival in the summer of 2016.

  17. Moving beyond the Lone Scientist: Helping 1st-Grade Students Appreciate the Social Context of Scientific Work Using Stories about Scientists

    ERIC Educational Resources Information Center

    Sharkawy, Azza

    2009-01-01

    While several studies have documented young children's (K-2) stereotypic views of scientists and scientific work, few have examined students' views of the social nature of scientific work and the strategies effective in broadening these views. The purpose of this study is to examine how stories about scientists influence 1st-grade students' views…

  18. Young Children's Aspirations in Science: The unequivocal, the uncertain and the unthinkable

    NASA Astrophysics Data System (ADS)

    DeWitt, Jennifer; Osborne, Jonathan; Archer, Louise; Dillon, Justin; Willis, Beatrice; Wong, Billy

    2013-04-01

    Students' lack of interest in studying science and in science-related careers is a concern in the UK and worldwide. Yet there is limited data, particularly longitudinal, on the sources and development of science-related aspirations. In response, the ASPIRES (Science Aspirations and Career Choice: Age 10-14) longitudinal study is investigating the development of students' educational and occupational aspirations over time. In the first phase of the project, a questionnaire exploring science-related aspirations and interests was completed by over 9,000 primary school students across England. This survey allowed us to explore possible associations between attitudes and aspirations, links which have not been investigated in previous attitudinal studies of this scope. Overall, students expressed positive attitudes to science, reported positive parental attitudes to science and held very positive images of scientists. Multilevel modelling analyses revealed that aspirations in science were most strongly related to parental attitudes to science, attitudes to school science and self-concept in science, and are also associated with students' gender, ethnicity and cultural capital. However, the images students held of scientists were not as closely related to aspirations. These factors are discussed in more detail within the paper, alongside a consideration of possible school-related effects.

  19. Adolescents and Young Adults with Cancer

    MedlinePlus

    ... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...

  20. Birth of prominent scientists.

    PubMed

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  1. Birth of prominent scientists

    PubMed Central

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  2. Engaging with primary schools: Supporting the delivery of the new curriculum in evolution and inheritance.

    PubMed

    Kover, Paula X; Hogge, Emily S

    2017-10-01

    The official school regulator in England (OFSTED) recently reported that the delivery of science lessons has been significantly diminished in many primary schools. There is concern that the lack of good quality science in school can reduce the recruitment of young scientists, and the level of science literacy among the general public. We believe university scientists and undergraduate students can have a significant impact in the delivery of science in primary schools. However, a relatively small proportion of scientists engage with young children to improve curricular primary school science education. Here, we argue that long term engagement with primary schools can produce significant impact for the scientist's research, schools, and society. As an example, we describe our experience developing teaching materials for the topic of "Evolution and inheritance"; highlighting possible pitfalls and perceived benefits, in hope of encouraging and facilitating other scientists to engage with primary schools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  4. The first Latin American workshop on professional skills for young female scientists

    NASA Astrophysics Data System (ADS)

    Ávila, A.; Meza-Montes, Lilia; Ponce-Dawson, Silvina

    2015-12-01

    To effectively build capacity for research and training in science, technology, engineering, and mathematics (STEM) across Latin America and the Caribbean, a gender perspective must be factored in. Working from an awareness of the gender situation as well as of the multiple personal challenges experienced due to gender disparity, a group of Latin American female scientists organized a workshop with the goal of empowering young female scientists and assessing the challenges they face. In this paper we summarize the outcomes of the workshop, highlighting the barriers that are common in the region. Among other aspects, the workshop stressed the need for resource platforms for finding technical and professional networks, jobs, and scholarships.

  5. The hospital and the hospital: Infrastructure, human tissue, labour and the scientific production of relational value.

    PubMed

    Street, Alice

    2016-12-01

    How does science make a home for itself in a public hospital? This article explores how scientists working in 'resource poor' contexts of global health negotiate relationships with their hosts, in this case the doctors, nurses and patients who already inhabit a provincial-level hospital. Taking its lead from recent works on science, ethics and development, this article seeks to 'provincialize the laboratory' by focussing on the scientific tropics as a space of productive encounter and engagement. A view from the hospital reveals the tenuous process of 'setting up' a place for science, in a world that does not immediately recognize its value. The article examines the material exchanges of infrastructure, bodily tissues and labour that enable one young scientist to establish a scientific life for himself. The success of those transactions, it argues, ultimately derives from their objectification of scientific vulnerability and their enactment of relationships of mutual recognition. As opposed to asking how scientific knowledge is produced in the tropics, the view from the hospital challenges us to focus on the establishment of relationships between scientists and their hosts as a productive endeavour in its own right.

  6. Graduating College Students' Orientations toward Scientific Research Activity

    ERIC Educational Resources Information Center

    Zubova, L. G.; Andreeva, O. N.; Antropova, O. A.

    2009-01-01

    The population of scientists in Russia is aging, and it is difficult to attract young graduates to enter the profession. Greater efforts need to be made to change the condition of work for scientists in order to make it attractive to those who will become the next generation of Russian scientists. Creating the conditions favorable to the…

  7. New Treatment Option for Young Women with Hormone-Sensitive Breast Cancer

    MedlinePlus

    ... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...

  8. Training young scientists across empirical and modeling approaches

    NASA Astrophysics Data System (ADS)

    Moore, D. J.

    2014-12-01

    The "fluxcourse," is a two-week program of study on Flux Measurements and Advanced Modeling (www.fluxcourse.org). Since 2007, this course has trained early career scientists to use both empirical observations and models to tackle terrestrial ecological questions. The fluxcourse seeks to cross train young scientists in measurement techniques and advanced modeling approaches for quantifying carbon and water fluxes between the atmosphere and the biosphere. We invited between ten and twenty volunteer instructors depending on the year ranging in experience and expertise, including representatives from industry, university professors and research specialists. The course combines online learning, lecture and discussion with hands on activities that range from measuring photosynthesis and installing an eddy covariance system to wrangling data and carrying out modeling experiments. Attendees are asked to develop and present two different group projects throughout the course. The overall goal is provide the next generation of scientists with the tools to tackle complex problems that require collaboration.

  9. Fellowship Available: 2005 IIASA Young Scientists Summer Program

    NASA Astrophysics Data System (ADS)

    2004-12-01

    The International Institute for Applied Systems Analysis (IIASA) near Vienna, Austria, will host its annual Young Scientists's Summer Program (YSSP) for a selected group of graduate students from around the world. These students, primarily doctoral, will work closely with IIASA's senior scientists on projects within the institute's theme areas: natural resources and environment (e.g., transboundary air pollution and greenhouse gas initiative), population and society (e.g., risk, modeling, and society, and sustainable rural development), and energy and technology (e.g., transitions to new technologies and dynamic systems). Applicants must be advanced graduate students at a U.S. university; have comparable experience with ongoing research at IIASA; students who would benefit from interactions with scientists worldwide; and be interested in investigating the policy implications of his/her work.The U.S. Committee for IIASA provides airfare and a living allowance for those selected to participate in the fellowship.

  10. Engaging with science: High school students in summer lab internships

    NASA Astrophysics Data System (ADS)

    Bequette, Marjorie Bullitt

    Years of research and rhetoric have suggested that students should be given the opportunity to work with practicing scientists as a way to develop more sophisticated ideas about the nature of science, yet little research about these experiences exists. This project uses a case study approach to examine the experience of eight high school students working part-time during one summer as research assistants in biomedical laboratories. The students completed small research studies under the supervision of scientist-mentors. This dissertation explores questions related to how these students learned to work in a lab, in what ways they grew to understand this scientific context, and how their own relationships with science changed. The goal of looking at these young adults' summer experiences in science labs is to make suggestions for three settings: programs like this one, where high school students work closely with scientists in lab settings; other programs where scientists and students work together; and science education more generally. Analysis of pre- and post-interviews with students, and extensive observations of their laboratory work, suggests that students develop new ideas about the culture of science and the day-to-day workings of the labs. These ideas hold potential power for the students, and other participants in both similar and different educational settings, as they prepare for lives as scientifically engaged adults.

  11. Support for 33rd International Symposium on Free Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Continetti, Robert

    2015-05-15

    Support for the participation of graduate students, postdoctoral fellows and young faculty in the 33rd International Symposium on Free Radicals was provided to ensure broad participation of young scientists.

  12. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  13. Funding research in the twenty-first century: current opinions and future directions.

    PubMed

    Squitieri, Lee; Chung, Kevin C

    2014-08-01

    For all academic biomedical researchers, the process of submitting grants and securing research funding is a critical part of advancing one's career. In the current era of decreasing new grant awards and renewals leading to significantly worse success rates, it is hard for young aspiring physician-scientists to remain optimistic regarding their future in academic medicine. It is important that today's young surgeon-scientists prepare for and adapt to the inevitably changing climate of research funding. This article provides a primer on developing a successful career as a funded surgeon-scientist and pathways for building a robust research platform worthy of extramural National Institutes of Health funding in the twenty-first century. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. SCOSTEP: Understanding the Climate and Weather of the Sun-Earth System

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    The international solar-terrestrial physics community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The CAWSES program is the current major scientific program of SCOSTEP that will continue until the end of the year 2013. The CAWSES program has brought scientists from all over the world together to tackle the scientific issues behind the Sun-Earth connected system and explore ways of helping the human society. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and other SCOSTEP activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  15. An exploration of bioactive peptides: My collaboration with Ervin G. Erdös.

    PubMed

    Igić, Rajko

    2018-05-25

    This paper provides a brief historical sketch of the science of biologically active peptides. It also offers the story of how Ervin G. Erdös, a pioneer in the study of metabolism of various peptides, influenced me through collaborations that span many years. I worked in Dr. Erdös's research laboratories in Oklahoma City, Dallas, and Chicago, and we shared research interests through visits across the Atlantic between the former Yugoslavia and the United States. Among other findings, we discovered angiotensin-converting enzyme in the retina, which opened up a new research direction for many scientists interested in serious ocular diseases. This tribute to my mentor paints a portrait of a man who, in addition to his dedication to science and his seminal discoveries about the metabolism of peptides, took the time to invest in training many young scientists. His fine personal qualities explain why all of those who worked with him hold him in such high regard. © 2018 Igić.

  16. Original Research By Young Twinkle Students (ORBYTS): when can students start performing original research?

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; McKemmish, Laura K.; Chubb, Katy L.; Gorman, Maire N.; Baker, Jack S.; Barton, Emma J.; Rivlin, Tom; Tennyson, Jonathan

    2018-01-01

    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students feeling engaged in modern science and the scientific method. As part of the Twinkle Space Mission’s educational programme, EduTwinkle, students between the ages of 15 and 18 have been performing original research associated with the exploration of space since January 2016. The student groups have each been led by junior researchers—PhD and post-doctoral scientists—who themselves benefit substantially from the opportunity to supervise and manage a research project. This research aims to meet a standard for publication in peer-reviewed journals. At present the research of two ORBYTS teams have been published, one in the Astrophysical Journal Supplement Series and another in JQSRT; we expect more papers to follow. Here we outline the necessary steps for a productive scientific collaboration with school children, generalising from the successes and downfalls of the pilot ORBYTS projects.

  17. Geoscience communication in Namibia: YES Network Namibia spreading the message to young scientists

    NASA Astrophysics Data System (ADS)

    Mhopjeni, Kombada

    2015-04-01

    The Young Earth Scientists (YES) Network is an international association for early-career geoscientists under the age of 35 years that was formed as a result of the International Year of Planet Earth (IYPE) in 2007. YES Network aims to establish an interdisciplinary global network of early-career geoscientists to solve societal issues/challenges using geosciences, promote scientific research and interdisciplinary networking, and support professional development of early-career geoscientists. The Network has several National Chapters including one in Namibia. YES Network Namibia (YNN) was formed in 2009, at the closing ceremony of IYPE in Portugal and YNN was consolidated in 2013 with the current set-up. YNN supports the activities and goals of the main YES Network at national level providing a platform for young Namibian scientists with a passion to network, information on geoscience opportunities and promoting earth sciences. Currently most of the members are geoscientists from the Geological Survey of Namibia (GSN) and University of Namibia. In 2015, YNN plans to carry out two workshops on career guidance, establish a mentorship program involving alumni and experienced industry experts, and increase involvement in outreach activities, mainly targeting high school pupils. Network members will participate in a range of educational activities such as school career and science fairs communicating geoscience to the general public, learners and students. The community outreach programmes are carried out to increase awareness of the role geosciences play in society. In addition, YNN will continue to promote interactive collaboration between the University of Namibia, Geological Survey of Namibia (GSN) and Geological Society of Namibia. Despite the numerous potential opportunities YNN offers young scientists in Namibia and its presence on all major social media platforms, the Network faces several challenges. One notable challenge the Network faces is indifference among early-career geoscientists in the industry and university students to geoscience activities outside the confines of academia and the industry such as networking and outreach activities. This is compounded by the Network's perceived lack of relevance and appeal among young Namibian scientists. To become more 'popular' YNN needs to solve the issue of indifference among early-career geoscientists in the industry and University students by listening to their needs and actively engaging them in the process. Good communication skills are essential and YNN has to reformulate the way it reaches out to its audiences by developing more active ways to communicate geosciences. With this in mind, YNN plans to implement best practice methods to engage more young scientists in YNN and provide support and guidance on geoscience opportunities.

  18. PREFACE: XVIII International Scientific Symposium in Honour of Academician M. A. Usov: Problems of Geology and Subsurface Development

    NASA Astrophysics Data System (ADS)

    2014-08-01

    XVIII International Scientific Symposium in honor of Academician M.A. Usov ''Problems of Geology and Subsurface Development'' (for students and young scientists) was organized under the guidance of the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research. Being one of the oldest technical higher education institutions which trains specialists who contribute to scientific research in geosciences, The Institute of Natural Resources of National Research Tomsk Polytechnic University (TPU INR) was chosen to hold the symposium. In 2014 The Institute of Natural Resources celebrated its 113th anniversary. It was founded in 1901 by V.A. Obruchev, the first geologist in Siberia, member of USSR Academy of Sciences, Hero of Socialist Labor, and the first Laureate of the Lenin Prize. He was recognized all over the world as a prominent scientist in the area of geology. INR is the first institute of geological education and geosciences in the Asian part of Russia. Siberian Mining and Geological Schola, established by V.A. Obruchev and M.A. Usov, has been retaining its significance for discovery, exploration and development of mineral resources not only in Siberia, in the Far East and North-East of the country, but also in Central Asia. There are a lot of outstanding scientists, engineers and manufacturers among alumni of The Institute of Natural Resources. The institute is proud of M.A. Usov, the student and first postgraduate of V.A. Obruchev, first professor and academician in Siberia, whose name is associated with the development of the mining industry in Siberia; Academician K.I. Satpaev, the founder and first president of the Academy of Sciences of Kazakhstan; Professor N.N. Urvantsev, the discoverer of the unique Norilsk ore deposits in the north of East Siberia and Professor M.K. Korovin, who considered West Siberia deposits to be prospective for oil-gas exploration. There are over 35 000 graduates of the institute and more than 450 of them became explorers of mineral deposits including one Nobel laureate, 50 laureates of the Lenin and State Prizes, more than 250 researchers with DSc and PhD, 15 academicians and corresponding members of the USSR Academy of Sciences and five Heroes of Socialist Labor. Within the scope of the symposium there were 21 panels and workshop, being held over four days. The symposium was unique because it covered all scientific fields of geology and subsurface development: methods of prospecting and exploration for minerals and hydrocarbons, including space geological research and geoinformation systems in geology, as well as the ecological problems and integrated use of mineral resources, land management, natural resource law and economics. The students and young scientists of Russia, foreign and CIS countries participated in the symposium. The investigations presented at the symposium shed light on the latest achievements made by means of modern techniques and original methods of interpretation; the results of experimental studies and computer technologies in geology, oil and gas production and geoecology; the analysis of theoretical and experimental studies on various geological problems and environmental protection. The reports consider the vital issues and the latest achievements of stratigraphy, paleontology, tectonics, historical and regional geology, mineralogy, geochemistry, petrography, lithology, metallogeny, hydrogeology and engineering geology, geophysics, petroleum geology, oil and gas field development and processing of hydrocarbon and mineral resources, geoinformation systems (GIS) in geology, space geological research, oilfield equipment upgrading, modern techniques of mineral exploration, production, transportation and storage of oil and gas, drilling, mining engineering, geoecology, hydrogeoecology, environmental protection engineering, integrated use of mineral resources, land management, mining and natural resources law, and economical problems of mineral resources sectors in Russia and CIS countries. There is a special panel for those who make reports in English and German. The scientific significance of the reports is explained by new concepts and original ideas suggested by the authors. A number of studies introduce fundamentally new discoveries. The findings of the young scientists' investigations, in both fundamental sciences and experimental studies are significant for practical application, and further investigation might lead to writing a thesis for scientific degree. The authors of some reports gained patents and licenses for their discoveries. Within the scope of XVIII International Scientific Symposium there were 970 reports (including poster presentations) made by 1195 authors, among whom 293 and 90 came from other cities and foreign countries respectively. 90 participants from foreign countries and 293 of those who came from different cities of Russia. There were 1195 students and young scientists from Russia, CIS and foreign countries, who applied for the symposium with 970 reports, including 293 applications sent from other cities. Numbers of foreign participants equaled to 32, made up by representatives of 16 higher education institutions, scientific centres and industrial enterprises of 12 different cities. CIS countries were represented by 58 participants from 30 higher education institutions, scientific centres and industrial enterprises of 20 cities. The total number of Russian participants equaled to 206, who represented 78 higher education institutions, scientific centres and industrial companies of 48 cities. There were 677 reports made by students and researchers from Tomsk, including 647 declared by those of TPU. 73 participants presented their reports in English and German. 970 reports made within the scope of 21 panels and the round table embraced 827 presented by the speakers (including 677 by those from TPU) and 143 poster presentations analyzed by the experts. Nonresidents took an active part in the symposium having presented 150 reports. The reports of the symposium were made by students (655 participants), post-graduate students (180), researchers (82), engineers (30), young teachers (18) and schoolchildren (5). The organizations represented by the participants were higher education institutions (607), Russian Academy of Sciences (22), National Academy of Sciences (8), Research Institutes (18), industrial enterprises (10) and schools (5). The speakers who made 827 reports were students of bachelor and master degree programs (547, including 490 from TPU), post-graduate students and young researchers (130, including 80 from TPU) and five schoolchildren. The amount of those who attended different panels over the four days of the symposium consisted of 2010 people. Nine foreign countries (except for CIS) were represented by 32 reports made by participants from Germany, France, China, Italy, Poland, Ecuador, Iraq, Vietnam and Mongolia. Nine CIS countries were represented by 58 reports made by participants from National Academies of Sciences and Universities of Ukraine, Belarus, Kazakhstan, Latvia, Azerbaijan, Armenia, Uzbekistan, Kyrgyzstan and Tajikistan. Russian participants came from various areas of the country: in the east from Sakhalin, Petropavlovsk-Kamchatsky, Yuzhno-Sakhalinsk, Vladivostok, Blagoveshchensk, Krasnoyarsk, Chita, Irkutsk to Barnaul, Kemerovo, Novokuznetsk, and etc.; in the north from Mirny, Yakutsk, Neryungri, Magadan, Nizhnevartovsk, Khanty-Mansiysk, Nefteugansk to Tyumen, Ulan-Ude, Syktyvkar, and etc.; in the west from Minsk, Kiev, Moscow, St. Petersburg, Yekaterinburg to Samara, Kazan, Ufa, Perm, Novosibirsk; in the south from the cities of the Central Asian republics to Ivano-Frankovsk, Odessa, Novocherkassk, Simferopol, Novorossiysk, Vladikavkaz, Voronezh, Stavropol, Astrakhan, and etc. A great number of young people from Urals, Western and Eastern Siberia took an active part in the Symposium. CIS countries were presented by participants from Uzbekistan (Tashkent), Tajikistan (Dushanbe), Azerbaijan (Baku), Kazakhstan (Almaty, Semipalatinsk, Karaganda, Pavlodar), Belarus (Minsk, Gomel), Armenia (Yerevan, Gyumri), Ukraine (Kiev, Odessa, Ivano-Frankovsk, Dnepropetrovsk, Donetsk, etc.), Kyrgyzstan (Bishkek), Moldova (Chisinau). The students and young scientists from Tomsk representing Tomsk Polytechnic University, Tomsk State University, the Institute of Petroleum Geology and Geophysics (SB RAS) and other organizations and institutions took an active part in the symposium. The scientific results of the symposium were reflected in a special edition consisting of two volumes and available at (www.portal.tpu.ru/science/konf/pgon) The editorial board of the symposium and this volume of IOP Conference Series: Earth and Environmental Science consider the materials of the symposium to be interesting for researchers and young scientists of universities, research and academic institutes, academies of sciences and their branches, engineering and technical staff of ministries and government departments - for anyone who explores and develops the Earth subsurface. The editors of this volume acknowledge the administration of the Institute of Physics and its publishing house for the publication of the issue and administration of National Research Tomsk Polytechnic University, represented by the rector, professor P.S. Chubik. Executive Editor XVIII International Symposium ''Problems of Geology and Subsurface Development'' - 2014, PhD in Geology and Mineralogy, Associate Professor G.M. Ivanova

  19. The Current Situation of Female Scientists in Argentina

    NASA Astrophysics Data System (ADS)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  20. NASA Discovery Program Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of the workshop was to review concepts for Discover-class missions that would follow the first two missions (MESUR-Pathfinder and NEAR) of this new program. The concepts had been generated by scientists involved in NASA's Solar System Exploration Program to carry out scientifically important investigations within strict guidelines -- $150 million cap on development cost and 3 year cap on development schedule. Like the Astrophysics Small Explorers (SMEX), such 'faster and cheaper' missions could provide vitality to solar system exploration research by returning high quality data more frequently and regularly and by involving many more young researchers than normally participate directly in larger missions. An announcement of opportunity (AO) to propose a Discovery mission to NASA is expected to be released in about two years time. One purpose of the workshop was to assist Code SL in deciding how to allocate its advanced programs resources. A second, complimentary purpose was to provide the concept proposers with feedback to allow them to better prepare for the AO.

  1. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  2. Oscillations and Analogies: Thomas Young, MD, FRS, Genius.

    ERIC Educational Resources Information Center

    Martindale, Colin

    2001-01-01

    Thomas Young was a renowned genius in his time who did important work in many scientific disciplines. In today's specialized environment, scientists in each discipline do not appreciate his work. Despite his current obscurity, Young exemplifies traits found in a first-order genius (analogical thinking, high intelligence, hard work, wide interests,…

  3. PREFACE: 21th International Conference for Students and Young Scientists: Modern Technique and Technologies (MTT'2015)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    Involving young researchers in the scientific process, and allowing them to gain scientific experience, are important issues for scientific development. The International Conference for Students and Young Scientists ''Modern Technique and Technologies'' is one of a number of scientific events, held at National Research Tomsk Polytechnic University aimed at training and forming the scientific elite. During previous years the conference established itself as a serious scientific event at an international level, attracting members which annually number about 400 students and young scientists from Russia and near and far abroad. An important indicator of this scientific event is the large number of scientific areas covered, such as power engineering, heat power engineering, electronic devices for monitoring and diagnostics, instrumentation, materials and technologies of new generations, methods of research and diagnostics of materials, automatic control and system engineering, physical methods science and engineering, design and artistic aspects of engineering, social and humanitarian aspects of engineering. The main issues, which are discussed at the conference by young researchers, are connected with analysis of contemporary problems, application of new techniques and technologies, and consideration of their relationship. Over the years, the conference committee has gained a lot of experience in organizing scientific meetings. There are all the necessary conditions: the staff of organizers includes employees of Tomsk Polytechnic University; the auditoriums are equipped with modern demonstration and office equipment; leading scientists are TPU professors; the status of the Tomsk Polytechnic University as a leading research university in Russia also plays an important role. All this allows collaboration between leading scientists from all around the world, who are annually invited to give lectures at the conference. The editorial board expresses gratitude to the Administration of Tomsk Polytechnic University (TPU Rector, Professor P.S. Chubik and Vice Rector for Research and Innovation, Professor A.N. Dyachenko) for financial support of the conference. Also, we heartily thank both chairmen of the conference sections and the organizing committee's members for the great, effective, creative work in organizing and developing the conference as well as a significant contribution to the safeguarding and replenishment of the intellectual potential of Russia.

  4. Challenges facing young African scientists in their research careers: A qualitative exploratory study.

    PubMed

    Kumwenda, Save; Niang, El Hadji A; Orondo, Pauline W; William, Pote; Oyinlola, Lateefah; Bongo, Gedeon N; Chiwona, Bernadette

    2017-03-01

    Africa accounts for 14% of world's population, and the economies of most African countries are considered to be growing, but this is not reflected in the amount of research published by Africans. This study aimed at identifying the challenges that young African scientists face in their career development. This was a qualitative exploratory study involving young researchers who attended the Teaching and Research in Natural Sciences for Development (TReND) in Africa scientific writing and communication workshop, which was held in Malawi in September 2015. A semi-structured questionnaire was sent to all workshop participants who consented to taking part in the survey. In total, 28 questionnaires were sent via email and 15 were returned, representing a response rate of 53.6%. Data were analysed using thematic analysis. Young Africans develop their research interests various ways. The most common career-promoting factors identified by the study participants included formal classroom learning, aspirations to attain academic qualifications, work satisfaction, and the desire to fulfill parents' dreams. Challenges cited by survey respondents included a lack of mentorship, funds, and research and writing skills. Lack of interest in research by policymakers, lack of motivation by peers, and heavy workload (leaving little time for research) were also reported as challenges. Respondents suggested that grants specifically targeting young scientists would be beneficial. Participants also urged for the establishment of mentorship programmes, increasing motivation for research, and more frequent training opportunities. There is need for improved funding for institutional and research network strengthening in Africa, with particular attention given to expanding opportunities for young researchers.

  5. Improving adolescent and young adult health - training the next generation of physician scientists in transdisciplinary research.

    PubMed

    Emans, S Jean; Austin, S Bryn; Goodman, Elizabeth; Orr, Donald P; Freeman, Robert; Stoff, David; Litt, Iris F; Schuster, Mark A; Haggerty, Robert; Granger, Robert; Irwin, Charles E

    2010-02-01

    To address the critical shortage of physician scientists in the field of adolescent medicine, a conference of academic leaders and representatives from foundations, National Institutes of Health, Maternal and Child Health Bureau, and the American Board of Pediatrics was convened to discuss training in transdisciplinary research, facilitators and barriers of successful career trajectories, models of training, and mentorship. The following eight recommendations were made to improve training and career development: incorporate more teaching and mentoring on adolescent health research in medical schools; explore opportunities and electives to enhance clinical and research training of residents in adolescent health; broaden educational goals for Adolescent Medicine fellowship research training and develop an intensive transdisciplinary research track; redesign the career pathway for the development of faculty physician scientists transitioning from fellowship to faculty positions; expand formal collaborations between Leadership Education in Adolescent Health/other Adolescent Medicine Fellowship Programs and federal, foundation, and institutional programs; develop research forums at national meetings and opportunities for critical feedback and mentoring across programs; educate Institutional Review Boards about special requirements for high quality adolescent health research; and address the trainee and faculty career development issues specific to women and minorities to enhance opportunities for academic success. Copyright 2010 Society for Adolescent Medicine. All rights reserved.

  6. Calls for Canada to support basic research

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-08-01

    Canada’s decade-long shift of financial support from fundamental studies towards applied research is dismantling the nation’s funding of basic science, according to a report by the Global Young Academy (GYA) - an international society of young scientists.

  7. Reading about Real Scientists

    ERIC Educational Resources Information Center

    Cummins, Sunday

    2015-01-01

    Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…

  8. ARC Accomplishments and Collaborations Pursuing Challenges with Vision and Focus

    DTIC Science & Technology

    2010-05-10

    Navistar Defense LLC – Dr. Joe Lin, Eaton – Dr. Young Jae Kim, GM Hybrid Powertrain Eng. – Dr. Bin Wu, Mercedes - Benz Hybrid LLC – Dr. Vasilios Tsourapas...Fellows: 3 SAE, 4 ASME, 1 AAAS,1 IACM, 3 IEEE • 8 external Research and Educational Awards • 8 University Awards • 2 Young Scientists/Young Innovator

  9. Exploring Native American Students' Perceptions of Scientists

    ERIC Educational Resources Information Center

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-01-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation…

  10. Ahead of the Curve; Hidden breakthroughs in the biosciences

    NASA Astrophysics Data System (ADS)

    Levin, Michael; Adams, Dany Spencer

    2016-12-01

    This unique book is a compendium of carefully curated published papers in the biosciences, which have (or will) precipitate a profound change in prevailing paradigms and research programs. A mix of new and classic papers, it shows the limitations of current thought or identifies novel vistas for investigations that have not yet been explored. The purpose of the book is to highlight scientific gems, most unrecognized, that suggest revisions to key pillars of thought in the biological sciences and further the education of young scientists. This will be achieved by including reprints of papers that demonstrate counter-paradigm, novel directions for future research featuring commentary from current, notable researchers in a variety of areas.

  11. Communication and Shared Practices are Bringing NASA STEM Resources to Camp Youth

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shaner, A.; Shipp, S.; Garst, B.; Bialeschki, M. D.; Netting, R.; Erickson, K.

    2015-11-01

    In 2012, NASA and the American Camp Association (ACA) entered into an alliance to further both organizations' goals and objectives with regard to science, technology, engineering, and mathematics (STEM) education. This alliance is providing camp staff—and their young audiences—access to NASA's resources. NASA disseminates resources (e.g., pathways for requesting guest presenters, informal learning lesson plans), conducts ACA professional development (online and at ACA conferences), and coordinates efforts around key events (e.g., spacecraft launches). ACA promotes awareness of NASA resources through their communications and services. Together, the organizations are working to inspire a new generation of scientists, engineers, explorers, educators, and innovators to pursue STEM careers.

  12. XII Recontres De Blois

    NASA Technical Reports Server (NTRS)

    Kaluzienski, Louis (Technical Monitor); Forman, William

    2004-01-01

    In the initial awarding of the grant, we had difficulty phasing our proposed support of graduate students, postdoctoral fellows and young US scientists with the meeting schedule and the grant cycle. Initially, the grant arrived too late to support the meeting. The following year, a combination of the renewal process and the meeting announcement prevented us from announcing the support opportunity sufficiently in advance to allow us to make awards and provide support. As described in the initial proposal, the Moriond and Blois meetings are a unique opportunity for younger researchers to make oral presentations of their work at an international venue. As noted above, the phasing of meetings combined with the difficulty of arranging foreign travel for scientists at other institutions precluded the possibility of supporting the proposed meetings and providing young US scientists and post-doctoral fellows support to attend these meetings.

  13. Exploring Seafloor Volcanoes in Cyberspace: NOAA's "Ocean Explorer" Inspires Inquiry

    ERIC Educational Resources Information Center

    Hjelm, Elizabeth

    2011-01-01

    Seafloor exploration being done by scientists is an ideal way to introduce students to technology as a tool for inquiry. The same technology that allows scientists to share data in near real time can also provide students the tools to become researchers. NOAA's Ocean Explorer Explorations website is a rich research data bank that can be used by…

  14. Biographies of Women Scientists for Young Readers.

    ERIC Educational Resources Information Center

    Bettis, Catherine; Smith, Walter S.

    The participation of women in the physical sciences and engineering woefully lags behind that of men. One significant vehicle by which students learn to identify with various adult roles is through the literature they read. This annotated bibliography lists and describes biographies on women scientists primarily focusing on publications after…

  15. Roadmap to MaRIE May 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    Los Alamos National Laboratory (LANL) hosted the Stewardship Science Academic Programs Symposium, which is designed to foster relationships among young scientists, sponsors and the National Nuclear Security Administration national laboratories. The event highlights much of the work done by prominent scientists and allows attendees to view the multiple on site facilities at LANL.

  16. Young Children's Understanding of "More" and Discrimination of Number and Surface Area

    ERIC Educational Resources Information Center

    Odic, Darko; Pietroski, Paul; Hunter, Tim; Lidz, Jeffrey; Halberda, Justin

    2013-01-01

    The psychology supporting the use of quantifier words (e.g., "some," "most," "more") is of interest to both scientists studying quantity representation (e.g., number, area) and to scientists and linguists studying the syntax and semantics of these terms. Understanding quantifiers requires both a mastery of the…

  17. Chemical and Isotopic Exploration: A Tale of Two Telepresence-Enabled Cruises

    NASA Astrophysics Data System (ADS)

    Wankel, S. D.; Michel, A.

    2016-02-01

    Ocean exploration has traditionally required a large team of shipboard scientists for quick decision-making as well as for sample handling and processing tasks. However, with the development of new field-going in situ sensors for chemical oceanography, comes the capability of making measurements in the deep ocean without the need for sample collection, processing and laboratory analysis. Through our participation in two cruises aboard the E/V Nautilus, we tested a new model for ocean exploration using Telepresence technology for making chemical analyses in the deep ocean with a laser spectrometer designed for in situ analyses of methane and carbon dioxide. In 2014, we used the E/V Nautilus and ROV Hercules to explore the chemical and isotopic composition of fluids and bubbles in the crater of the Kick `Em Jenny volcano ( 180m depth) just northwest off the island of Grenada. In 2015, we carried out exploration of a mud volcano/brine pool in the western Gulf of Mexico ( 1300m depth). For our focused chemical explorations in 2014, one scientist was shipboard while two were ashore at the Inner Space Center at the University of Rhode Island. Decisions concerning instrument parameters, sampling strategies and data collection and management were all carried out through this two-way remote operation scheme, while the shipboard scientist was responsible for all deployments, maintenance, and troubleshooting technical issues with instrumentation. In comparison, in 2015, two scientists were shipboard. Here we compare the successes and challenges of using Telepresence for chemical exploration. In addition, we detail our interactions with scientists, educators, and interested citizens ashore. The use of Telepresence enhanced both science communication, by enabling direct scientist-to-scientist interactions and decision-making, and science education, through broad participation of a global audience. As in situ chemical sensing advances, telepresence promises to increase engagement of a broader team of scientists ashore.

  18. PREFACE: XIX International Scientific Symposium in honor of Academician M.A. Usov ''Problems of Geology and Subsurface Development''

    NASA Astrophysics Data System (ADS)

    Ivanova, G. M.

    2015-11-01

    XIX International Scientific Symposium in honor of Academician M.A. Usov ''Problems of Geology and Subsurface Development'' (for students and young scientists) was organized under the guidance of the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Fundamental Research within the National Research Tomsk Polytechnic University (NR TPU). TPU is one of the oldest technical higher education institutions in Russia, training specialists in the domain of geoscience and enhancing their further research in this area. The Institute of Natural Resources, National Research Tomsk Polytechnic University (INR TPU) was chosen to hold the International Scientific Symposium. In 2015 the Institute of Natural Resources celebrated its 114th anniversary. It was founded by V.A. Obruchev in 1901, first Siberian geologist, member of USSR Academy of Sciences, Hero of Socialist Labor, and first Laureate of the Lenin Prize. He was recognized as a prominent scientist in the area of geology all over the world. INR is the first institute of geological education and geosciences in Asian Russia. Even today the Siberian Mining and Geological School, established by V.A. Obruchev and M.A. Usov, has retained its significance in the discovery, exploration and development of mineral resources not only in Siberia, the Far East and North-East of Russia, but also in Central Asia. There are numerous outstanding scientists and engineers among alumni of The Institute of Natural Resources. The institute is proud of such outstanding people as: M.A. Usov, student and first postgraduate of V.A. Obruchev, first professor and academician in Siberia, whose name is associated with the mining industry in Siberia; Academician K.I. Satpaev, founder and first president of the Academy of Sciences of Kazakhstan; Professor N.N. Urvantsev, discoverer of the unique Norilsk ore deposits in the North of East Siberia and Professor M.K. Korovin, who, in the 30s of the 20th century, considered West Siberia deposits to be prospective in hydrocarbons. There are over 35,000 graduates of the institute, 450 of whom became explorers of mineral deposits including one Nobel laureate, 50 laureates of Lenin and State Prizes, more than 250 doctors (DSc) and 1600 associate professors (PhD), 15 academicians and corresponding members of the USSR Academy of Sciences and five Heroes of Socialist Labor. Within the framework of the XIX International Scientific Symposium, there were 21 panels and workshops in four days. The Symposium was unique in the fact that it embraced all scientific fields of geology and subsurface development, including mineral and hydrocarbon prospecting and exploration methods, space geological research and geoinformation systems, as well as ecological problems of the planet and humanity, rational utilization of mineral resources, land management, natural resource law and economics. Another important issue was technology application in mineral resource exploitation. The participants were students, post graduates, Master degree students and young scientists from Russia, foreign and CIS countries. The research issues presented at the Symposium highlighted the latest achievements via modern technology and comprehensive interpretation methods; revealed the experimental research results and computer technology in geology and geoecology; provided the analysis of theoretical and experimental research on various geological and environmental protection problems. The reports embraced the vital issues and latest scientific achievements in stratigraphy, paleontology, tectonics, historical and regional geology, mineralogy, geochemistry, petrography, lithology, metallogeny, hydrogeology and engineering geology, geophysics, petroleum geology, oil and gas field development and processing of hydrocarbon and mineral resources, geoinformation systems (GIS) in geology, geospace research, oilfield equipment upgrading; modern technological achievements in mineral exploration, oil and gas production, transportation and storage, drilling, mining engineering, geoecology, hydrogeoecology, environmental protection engineering, rational utilization of mineral resources, land management, mining and natural resources law, and economical problems of mineral resource sectors in Russia and CIS countries. There was a special panel for those who wanted to present reports in English and / or German. The presented reports were of scientific importance due to the fact that new concepts and original ideas were suggested by the authors. A number of research topics introduced fundamentally new discoveries. There is also a practical aspect: the findings of the young scientists' research, both fundamental and experimental, could result in DSc and PhD theses. Some authors were granted patents and licenses for their significant discoveries. Within the framework of the XIX International Scientific Symposium, 1020 reports were presented (including poster presentations), including 262 non-residents from other cities and 52 from foreign countries (22- non-CIS countries and 30-CIS countries, correspondingly). All in all, 1250 students and young scientists from Russia, CIS countries and foreign countries (52 to be exact) participated in this Symposium. More than 262 submission applications were sent from other cities. The number of participants was diverse and numerous: non-CIS countries (12 cities), 22 from 16 universities, R&D organizations; CIS countries (15 cities)- 30 from 30 universities, R&D organizations; Russia (48 cities) - 968, including 210 non-residents from 78 universities, R&D organizations; and Tomsk 758 of which 710 were from TPU. It should be mentioned that 54 participants presented their reports in English and German. Within the 21 different panels and RT 810 reports were presented (including 690 from TPU) of 1020 submitted reports, as well as 210 poster presentations. Nonresidents actively participated in the Symposium - 110 reports. The status of the participants was: students -694, post-graduates- 190, researchers - 80, engineers - 32, young teachers- 20, and 4 school-students. The representatives of different organizations were as follows: higher education institutions - 954, Russian Academy of Science - 24, National Academy of Science -7, R&D Institutes - 20, industrial enterprises -11 and schools -4. Of the 810 presented reports (690 -TPU) there were: 646 students and master degree students (including 608 from TPU), 160 post-graduates and young researchers (including 82 from TPU) and 4 school students. During the 4-day Symposium more than 1900 people attended 21 different panels. Twelve non-CIS countries presented 22 reports: Germany, Great Britain, Netherlands, Switzerland, Mexico, France, China, Italy, Vietnam, Mongolia, New Zealand and Nigeria. Seven CIS countries presented 30 reports: National Academies of Sciences and Universities of Belarus, Kazakhstan, Latvia, Armenia, Uzbekistan, Kyrgyzstan and Tajikistan. Russian participants came from various areas of the country: in the east from Sakhalin, Petropavlovsk- Kamchatsky, Yuzhno-Sakhalinsk, Vladivostok, Blagoveshchensk, Krasnoyarsk, Chita, Irkutsk to Barnaul, Kemerovo, Novokuznetsk, and etc.; in the north from Mirny, Yakutsk, Neryungri, Magadan, Nizhnevartovsk, Khanty-Mansiysk, Nefteugansk to Tyumen, Ulan-Ude, Syktyvkar, and etc.; in the west from Minsk, Kiev, Moscow, St. Petersburg, Yekaterinburg to Samara, Kazan, Ufa, Perm, Novosibirsk;in the south from the cities of the Central Asian republics to Ivano-Frankovsk, Odessa, Novocherkassk, Simferopol, Novorossiysk, Vladikavkaz, Voronezh, Stavropol, Astrakhan, and etc. A great number of young people from Urals, Western and Eastern Siberia took an active part in the Symposium. CIS countries were presented by participants from Uzbekistan (Tashkent), Tajikistan (Dushanbe), Azerbaijan (Baku), Kazakhstan (Almaty, Semipalatinsk, Karaganda, Pavlodar), Belarus (Minsk, Gomel), Armenia (Yerevan, Gyumri), Ukraine (Kiev, Odessa, Ivano-Frankovsk, Dnepropetrovsk, Donetsk, etc.), Kyrgyzstan (Bishkek), Moldova (Chisinau). The students and young scientists from Tomsk representing Tomsk Polytechnic University, Tomsk State University, the Institute of Petroleum Geology and Geophysics (SB RAS) and other organizations and institutions took an active part in the symposium. The research results of the Symposium can be found in a two-volume edition which is available at http://portal.tpu.ru/science/konf/usovma/eng and /or www.usovma.tpu.ru The Editorial Boards of this Symposium and IOP Conference Series: Earth and Environmental Science consider that the articles would be of great interest for university researchers and young scientists, research and academic institutes, academies of sciences and their branches, engineering and technical staff of ministries and government departments - for those who explore and develop the Earth subsurface. Many people have contributed in a variety of ways in the preparation of this edition. We would like to thank the administration of the Institute of Physics and Professor P.S. Chubik, Rector of National Research Tomsk Polytechnic University.

  19. Inhibitory Effects of Megakaryocytes in Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2010-04-01

    meeting, Feb. 2010, Seattle, WA) 3. Inhibitory effects of megakaryocytes in prostate cancer bone metastasis. (Oral presentation and Young ...cancer bone metastasis. (Oral presentation and ASBMR-Harold M. Frost Young Investigator Award, Aug. 2009, Sun Valley, ID) 5. Career development...valuable new scientific information and also provided critical career development support for an a spiring young scientist. References Please refer

  20. Young Children's Explorations: Young Children's Research?

    ERIC Educational Resources Information Center

    Murray, Jane

    2012-01-01

    "Exploration" is recognised as research behaviour; anecdotally, as an early years' teacher, I witnessed many young children exploring. However, young children's self-initiated explorations are rarely regarded as research by adult researchers and policy-makers. The exclusion of young children's autonomous explorations from recognition as…

  1. Creationism at the grass roots: A study of a local creationist institution

    NASA Astrophysics Data System (ADS)

    Wendel, Paul J.

    Relying on the book of Genesis as a source text, young-earth creationists or "creation scientists" claim to find physical evidence that the earth was created in six 24-hour periods less than ten thousand years ago and that most of the geologic column was laid down in a year-long worldwide flood. Unsurprisingly, these claims lead to a boundary dispute over the definition of science, in which mainstream scientists impugn the validity of creation science and creation scientists respond in kind. Although young-earth creationism is a growing movement, little is known about it. In particular, little is known about how creationists view the relationship between creationism and science or how the rhetoric of moral, cultural, environmental, and/or biological decline informs creationist practice. In order to investigate these issues, I studied the Fossil Museum (pseudonym), a local young-earth creationist institution, through a combination of naturalistic inquiry and visitor interviews. With respect to the rhetoric of decline, I found that cultural, environmental, and biological decline appear to function independently of one another in Fossil Museum rhetoric. With respect to views of the relationship between creationism and science, I found that despite having limited training or experience in science and despite committing numerous scientific errors, Fossil Museum associates respect and emulate science. Believing that physical evidence mediated by honest science will vindicate young-earth creationism, Fossil Museum associates speak of science in highly Baconian terms, invoking the ideal of assumption-free data and privileging observation over inference. They also accept the notion that science should be falsifiable and they suggest that on this criterion, mainstream science is not scientific. Yet because of their belief that physical evidence can vindicate their position, they openly discuss counterevidence to young-earth creationism, regarding such counterevidence as anomalies for future resolution rather than occasions for crisis. I conclude that because of Fossil Museum associates' honest approach to physical data and their belief that science can resolve disputes, productive dialogue is possible and desirable between mainstream scientists and some young-earth creationists, but such dialogue will be useful only if it is aimed at mutual understanding rather than mutual conversion.

  2. The Permafrost Young Researchers Network (PYRN): Contribution to IPY's "Thermal State of Permafrost"

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lantuit, H.; Frauenfeld, O. W.

    2007-12-01

    The Permafrost Young Researchers Network (PYRN, www.pyrn.org) is a unique resource for students, young scientists, and engineers studying permafrost. It is an international organization fostering innovative collaboration, seeking to recruit, retain, and promote future generations of permafrost scientists and engineers. Initiated for and during IPY, PYRN directs the multi-disciplinary talents of its membership toward global awareness, knowledge, and response to permafrost-related challenges in a changing climate. Created as an education and outreach component of the International Permafrost Association (IPA), PYRN is a central database of permafrost information and science for more than 350 young researchers from 33 countries. PYRN distributes a newsletter, recognizes outstanding permafrost research by its members through an annual awards program, organizes training workshops (2007 in Abisko, Sweden and St. Petersburg, Russia), and contributes to the growth and future of the permafrost community. While networking forms the basis of PYRN's activities, the organization also seeks to establish itself as a driver of permafrost research for the IPY and beyond. We recently launched a series of initiatives on several continents aimed at providing young scientists and engineers with the means to conduct ground temperature monitoring in under-investigated permafrost regions. Focusing on sites not currently covered by the IPA's "Thermal State of Permafrost" project, the young investigators of PYRN will provide and use lightweight drills and temperature sensors to instrument shallow boreholes in those regions. The data and results will be incorporated in the global database on permafrost temperatures and made freely available to the scientific community, thereby contributing to the advance of permafrost science and the strengthening of the next generation of permafrost researchers.

  3. Modeling the data systems role of the scientist (for the NEEDS Command and Control Task)

    NASA Technical Reports Server (NTRS)

    Hei, D. J., Jr.; Winter, W. J., Jr.; Brookes, R.; Locke, M.

    1981-01-01

    Research was conducted into the command and control activities of the scientists for five space missions: International Ultraviolet Explorer, Solar Maximum Mission, International Sun-Earth Explorer, High-Energy Astronomy Observatory 1, and Atmospheric Explorer 5. A basis for developing a generalized description of the scientists' activities was obtained. Because of this characteristic, it was decided that a series of flowcharts would be used. This set of flowcharts constitutes a model of the scientists' activities within the total data system. The model was developed through three levels of detail. The first is general and provides a conceptual framework for discussing the system. The second identifies major functions and should provide a fundamental understanding of the scientists' command and control activities. The third level expands the major functions into a more detailed description.

  4. BENNU’S JOURNEY - Early Earth

    NASA Image and Video Library

    2017-12-08

    This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Mobility and International Collaboration: Case of the Mexican Scientific Diaspora.

    PubMed

    Marmolejo-Leyva, Rafael; Perez-Angon, Miguel Angel; Russell, Jane M

    2015-01-01

    We use a data set of Mexican researchers working abroad that are included in the Mexican National System of Researchers (SNI). Our diaspora sample includes 479 researchers, most of them holding postdoctoral positions in mainly seven countries: USA, Great Britain, Germany, France, Spain, Canada and Brazil. Their research output and impact is explored in order to determine their patterns of production, mobility and scientific collaboration as compared with previous studies of the SNI researchers in the periods 1991-2001 and 2003-2009. Our findings confirm that mobility has a strong impact on their international scientific collaboration. We found no substantial influence among the researchers that got their PhD degrees abroad from those trained in Mexican universities. There are significant differences among the areas of knowledge studied: biological sciences, physics and engineering have better production and impact rates than mathematics, geosciences, medicine, agrosciences, chemistry, social sciences and humanities. We found a slight gender difference in research production but Mexican female scientists are underrepresented in our diaspora sample. These findings would have policy implications for the recently established program that will open new academic positions for young Mexican scientists.

  6. Mammals, milk, molecules, and micelles.

    PubMed

    Fox, P F

    2011-01-01

    After a brief description of my family background and school days, my professional career as a dairy scientist is described under three headings: research, teaching, and writing. My research activities fall into four areas: biochemistry of cheese, fractionation and characterization of milk proteins, heat stability of milk, and dairy enzymology. Finally, I offer some advice to young scientists.

  7. Explaining Scientists' Plans for International Mobility from a Life Course Perspective

    ERIC Educational Resources Information Center

    Netz, Nicolai; Jaksztat, Steffen

    2017-01-01

    We identify factors influencing young scientists' plans for research stays abroad by embedding theories of social inequality, educational decision making, and migration into a life course framework. We test the developed model of international academic mobility by calculating a structural equation model using data from an online survey of…

  8. Developing the Next Generation of Inspired and Enthusiastic Young African Scientists: Insights from the First Ten Years of AfricaArray

    NASA Astrophysics Data System (ADS)

    Manzi, M. S.; Webb, S. J.; Durrheim, R. J.; Gibson, R.

    2016-12-01

    The African continent is endowed with a wealth of resources that are the focus of vigorous exploration by international mining companies. However, it is unfortunate that many African countries have been unable to capitalize on resource development due to a lack of expertise in research, exploration, resource management and develop their mineral deposits. The capacity to develop natural resources in Africa is, inextricably linked to the ability to fully develop intellectual capacity. Thus, training young African geoscientists to investigate and manage Africa's natural resources, and developing scientific programs about Africa resources, their settings, controls and origins, should lie at the heart of all African universities. Ten years in to the AfricaArray program, it is worth reviewing some of the insights and successes we have gained. In Africa, there is a lack of knowledge of what a "scientist" is and University is often viewed as a continuation of high school. With no real exposure to research, students don't understand the huge difference between high school and university, and they treat the university as a high school. One way to mitigate this may be to include undergraduate research opportunities in the summer break but funding is difficult to allocate. This observation highlights the need to critically review our approach to research, teaching and learning, and social engagement at school level. At University level a key focus has been the development of capacity through international collaborative research and training. The School of Geosciences, at Wits University, is already the leading institution in Africa for its breadth of geosciences research and training, and the applied nature of its research, being ranked in the top 1% of institutions worldwide in its field. It is currently a lead partner in flagship international research geophysics programme focused on Africa - the AfricaArray Field School and AfricaArray Programme. Field school has spawned other developing field schools throughout Africa.

  9. Bringing Female Scientists into the Elementary Classroom: Confronting the Strength of Elementary Students' Stereotypical Images of Scientists.

    ERIC Educational Resources Information Center

    Buck, Gayle A.; Leslie-Pelecky, Diandra; Kirby, Susan K.

    2002-01-01

    Explores the effectiveness of bringing female scientists into elementary classrooms to promote change in the stereotypical images of scientists. Indicates that despite the efforts of the scientists to encourage students to question their image of a scientist, students held onto stereotypical images. Uses both qualitative and quantitative methods…

  10. Infrared astronomy in science and education

    NASA Astrophysics Data System (ADS)

    Mayeur, Paul Anthony

    This dissertation looks at the effects of an educator-scientist partnership on the creation of an inquiry based science lesson for the middle school classroom. The lesson was initially created by a scientist following their science research, but changed as the scientist began working with teachers. The changes in the lesson show that scientists and educators may not agree on what is considered appropriate for a science lesson because of time commitment and grade level. However, by working together the partnership is able to reach a compromise of the lesson that allows for the students to get the best possible outcome. This dissertation also shows that science research is a method of inquiry, which can be brought to the classroom through inquiry education. The science research the lesson followed looks at the interstellar dust cloud DC 314.8-5.1, which is unique because of the cloud's proximity to a B-type star with no known association. This thesis did a survey of the area looking for background sources that can be used for future spectroscopical studies. Further, the survey led to the discovery of two possible young stellar objects. In order to fuel educator-scientist interaction and to bring inquiry education into the middle school classroom a scientist created a web-based science lesson that incorporated real NASA data into the middle-school classroom. This lesson was based on the scientist's research in infrared astronomy within the broader context of astrobiology. The lesson includes students plotting real data; in the process the students learn about infrared radiation, star color, and the wavelength/temperature relationship. These are all topics that were studied in the scientist's research, which led the scientist to the idea of creating a lesson for the middle-school classroom. This lesson is based on the principles of inquiry-based learning. Inquiry lessons can bring together these ideas into one place and hopefully inspire new generations to explore the world and universe through science. The scientist then worked with five teachers to edit the lesson for each teacher's classroom. For four of five teachers the lesson changed from an online based lesson that used Excel to a PowerPoint presentation and paper graphing. It is shown here that partnerships between scientists and educators are beneficial for both parties as it allows scientists to understand how to communicate their scientific findings to the general public, while allowing teachers to stay updated with the most advanced science research.

  11. Young Scientists Discuss Recent Advances, Future Challenges.

    ERIC Educational Resources Information Center

    Baum, Rudy M.

    1989-01-01

    Discusses a National Academy of Science forum at which a group of outstanding young researchers in astronomy, molecular and developmental biology, physics, chemistry, mathematics, atmospheric science, and materials science met for three days of formal presentations and informal conversations. Provides a short synopsis of major speakers. (MVL)

  12. It's Time for an Adventure

    NASA Astrophysics Data System (ADS)

    Eldam Pommer, R.

    2017-12-01

    In recent years, studies have repeatedly illustrated the significance of children seeing themselves reflected in careers and cultures that they may not typically identify with. The current lack of diversity in accessible media, however, limits the potential for self-reflection from children of different socioeconomic, racial, and gender identity backgrounds. This isolates substantial sections of our population from experiencing these moments of recognition and inspiration. As scientists in a rapidly evolving field that requires diversity in perspective and ideas, it is incumbent upon us to innovate new ways to engage with these future generations in the pursuit of inspiring future earth scientists. Inspired by the work of others (e.g. Doc McStuffins, The Sandwich Swap) and through a successful crowdfunding campaign, I was able to develop a project which integrates children's love of adventure with foundational critical thinking skills. That project is MD and Finn. MD and Finn is a self-written/published children's book series which was developed to address the lack of diversity in children's literature. MD is a little girl who continuously explores, discovers, and builds the world around her with her best friend, Finn the fox. They encourage one another to ask questions, brainstorm, make mistakes, and learn from absolutely everything. While the primary goal of the series is to create a character in which young girls can see themselves solving problems, learning from mistakes, and enjoying the little pieces of science in daily life, as the project progresses, characters from different races, ethnicities, gender identities, religions, and disabilities are purposefully introduced. In bringing these books to life, I have been given the unique opportunity to regularly engage with classrooms and families who may be meeting an actual scientist for the very first time. For a few young girls, they may also finally be seeing just a little bit of themselves - in a lab coat. To learn more, please visit www.MDandFinn.com.

  13. Mind-to-paper is an effective method for scientific writing.

    PubMed

    Rosenberg, Jacob; Burcharth, Jakob; Pommergaard, Hans Christian; Danielsen, Anne Kjærgaard

    2013-03-01

    The problem of initiating the writing process is a well-known phenomenon, especially for young and inexperienced scientists. The purpose of this paper is to present an effective method to overcome this problem and increase writing efficiency among inexperienced scientists. Twelve young scientists within the medical/surgical fields were introduced to the mind-to-paper concept. The first and last article drafts produced by each of the scientists were scored for language complexity (LIX number, Flesch Reading Ease Scale and Gunning Fog), flow, structure, length and use of references; and the results were compared. All participants produced one full article draft during each of the three dictation days. When comparing the first and last article draft regarding time used, no significant difference was detected. In general, the manuscripts were of high quality on all evaluated parameters, but language complexity had increased in the final manuscript. Mind-to-paper dictation for scientific writing is an effective method for production of scientific papers of good initial quality, even when used for the first time by inexperienced scientists. We conclude that practicing this concept produces papers of an adequate language complexity, and that dictation as a writing tool allows for fast transfer of ideas and thoughts to written text. not relevant. not relevant.

  14. Careers and people

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Nuclear scientists needed The US is heading for a serious shortage of nuclear forensics experts, according to a new report by the American Physical Society (APS) and the American Association for the Advancement of Science (AAAS). Nuclear forensics involves using sophisticated technology to analyse the nature, use and origin of nuclear materials, and is key to monitoring the illicit trade in and use of nuclear weapons. Currently there are fewer than 50 nuclear forensic scientists working in the US's network of national laboratories - not enough, the report claims, to deal with an emergency - and half of them are expected to retire within the next 15 years. As university programmes in radiochemistry and related subjects have been dwindling, there are not nearly enough young scientists to replenish the expertise pool. The report calls for a new programme to develop nuclear forensic scientists that would involve funding research at universities, launching graduate scholarships and fellowships, as well as setting up internships for young scientists at the labs where this work is carried out. Stimulating industrial support of faculty positions is also deemed important. Indeed, at least three or four new postdocs need to be hired into nuclear forensics every year for the next 10 years, the report says. It also recognizes that more research is needed to develop new lab and field equipment, and to create better numerical-simulation techniques.

  15. Global Science Share: Connecting young scientists from developing countries with science writing mentors to strengthen and widen the international science community

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.

    2012-12-01

    Collaborative science in which scientists are able to form research questions based on the current body of scientific knowledge and get feedback from colleagues on their ideas and work is essential for pushing science forward. However, not all scientists are able to fully participate in the international science community. Scientists from developing countries can face barriers to communicating with the international community due to, among other issues: fewer scientists in their home country, difficulty in getting language-specific science writing training, fewer established pre-existing international collaborations and networks, and sometimes geographic isolation. These barriers not only result in keeping individual scientists from contributing their ideas, but they also slow down the progress of the scientific enterprise for everyone. Global Science Share (http://globalscienceshare.org/) is a new project, entering its pilot phase in Fall 2012, which will work to reduce this disparity by connecting young scientists and engineers from developing countries seeking to improve their technical writing with other scientists and engineers around the world via online collaborations. Scientist-volunteers act as mentors and are paired up with mentees according to their academic field and writing needs. The mentors give feedback and constructive technical and editorial criticisms on mentees' submitted pieces of writing through a four-step email discussion. Mentees gain technical writing skills, as well as make international connections with other scientists and engineers in fields related to their own. Mentors also benefit by gaining new international scientific colleagues and honing their own writing skills through their critiques. The Global Science Share project will begin its pilot phase by first inviting Mongolian science students to apply as mentees this fall. This abstract will introduce the Global Science Share program, present a progress report from its first semester, and inform members of the geoscience community about this unique outreach opportunity to help strengthen and widen the international science community that can be done in the comfort of one's office or home.

  16. Career development for women scientists in Asia.

    PubMed

    Ip, Nancy Y

    2011-06-23

    Previously, challenges faced by women scientists have made it difficult for them to realize their dreams. The remarkable growth of Asian bioscience over the past decade, however, has created opportunities for young women in their home countries. The time is ripe for women in Asia to pursue their scientific aspirations. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Turkish Young Children's Views on Science and Scientists

    ERIC Educational Resources Information Center

    Ozgelen, Sinan

    2012-01-01

    The purpose of the study was to investigate 3rd grade primary students' views on science and scientists. The sample consisted of 254 3rd grade public school students in Mersin. Primary students were asked to answer three basic questions; 1) What is science? 2) Who does science? 3) How is science done? Primary students were requested to give…

  18. The IT in Secondary Science Book. A Compendium of Ideas for Using Computers and Teaching Science.

    ERIC Educational Resources Information Center

    Frost, Roger

    Scientists need to measure and communicate, to handle information, and model ideas. In essence, they need to process information. Young scientists have the same needs. Computers have become a tremendously important addition to the processing of information through database use, graphing and modeling and also in the collection of information…

  19. The Young Artist as Scientist: What Can Leonardo Teach Us?

    ERIC Educational Resources Information Center

    Pollman, Mary Jo

    2017-01-01

    This is the first in-depth look at the important connections between the arts and science specifically for early childhood education (pre-K-3rd grade). Highlighting their many commonalities, such as the processes involved in creative problem solving, the author draws on what we can learn from Leonardo da Vinci as the supreme artist-scientist.…

  20. Using PBL and Interactive Methods in Teaching Subjects in Medical Education

    ERIC Educational Resources Information Center

    Demikhova, Nadiia; Prykhodko, Olga; Loboda, Andrii; Bumeister, Valentina; Smiianov, Vladyslav; Smiianov, Yevgen; Lukianykhin, Vadym; Demikhov, Oleksii

    2016-01-01

    Nowadays information and telecommunication technologies are becoming more and more developed. It especially attracts and captures the young--young scientists, teachers and students. The purpose of the article is to highlight the experience of implementing problem-based learning technology in the traditional system of teaching medical disciplines.…

  1. Scientists and Scientific Thinking: Understanding Scientific Thinking through an Investigation of Scientists Views about Superstitions and Religious Beliefs

    ERIC Educational Resources Information Center

    Coll, Richard K.; Lay, Mark C.; Taylor, Neil

    2008-01-01

    Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…

  2. The contribution of Niels Daan to fisheries science: Changing the perspective from single-species to the ecosystem

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, Adriaan D.; Dekker, Willem; Heessen, Henk J. L.

    We describe the career of Professor Niels Daan at the governmental Netherlands Institute for Fisheries Research (RIVO) and analyse his role in the development of fisheries science, in the Netherlands as well as in the International Council for the Exploration of the Sea (ICES). Major contributions are (i) his research on the interactions between cod and its prey; (ii) the standardization, data base development and quality control of the ICES International Bottom Trawl Survey; (iii) his role as editor-in-chief of the ICES Journal of Marine Science; (iv) his role in stimulating new approaches and critically questioning the science behind the advice; (v) his often silent support to a wide group of young fisheries scientists.

  3. Howard Young Brings Light to the Serious Side of Science | Poster

    Cancer.gov

    You know what they say about all work and no play. And without a doubt, science requires constant hard work. But the NCI at Frederick has an antidote to the serious side of science: Howard Young. Young, Ph.D., Senior Investigator, Cancer and Inflammation Program, is a serious scientist in his own right. He was part of the team that characterized and cloned the RAS oncogene, he

  4. Some Psychological Knowledge for Scientists' Use

    NASA Astrophysics Data System (ADS)

    Miclea, Mircea

    2008-01-01

    Relying on empirical evidences our paper presents the most salient personality traits, developmental factors and cognitive characteristics of the scientists. We claim that a sound exploration of scientists' mind and patterns of behavior could improve public support for science and enhance scientists' mutual understanding.

  5. Exploring Natural and Social Scientists' Views of Nature of Science

    ERIC Educational Resources Information Center

    Bayir, Eylem; Cakici, Yilmaz; Ertas, Ozge

    2014-01-01

    Science education researchers recently turned their attention to exploring views about nature of science (NOS). A large body of research indicates that both students and teachers have many naïve views about the NOS. Unfortunately, less attention has been directed at the issue of exploring the views of the scientists. Also, the little research in…

  6. Retaining clinician-scientists: nature versus nurture.

    PubMed

    Culican, Susan M; Rupp, Jason D; Margolis, Todd P

    2014-05-27

    In their IOVS article "Rejuvenating Clinician-Scientist Training" (published March 28, 2014), Balamurali Ambati and Judd Cahoon rightly point out the dearth of new clinician-scientists in ophthalmology. Within the context of their suggestions for increasing the number of successful clinician-scientists, they claim that the traditional MD-PhD training programs and K awards have failed to produce individuals who will carry on the important work of clinically relevant research that will improve patients' lives and sight. In this response we present data, including information on the career paths of graduates of the Washington University ophthalmology residency, that call into question the presumed failure of MD-PhD and K award programs and show that, in fact, graduates of these programs are more likely to succeed as clinician-scientists than are their peers who have not trained in such scientifically rigorous environments. We propose that, rather than a failure of early training programs, it may be obstacles that arise later in training and among junior faculty that prevent promising careers from reaching maturity. Funding, one rather large obstacle, takes the form of imbalanced start-up monies, less National Institutes of Health (NIH) funding awarded to young investigators, and study section composition that may work against those with clinically driven questions. We also explore the challenges faced in the culture surrounding residency and fellowship training. We agree with Ambati and Cahoon that there needs to be more innovation in the way training programs are structured, but we believe that the evidence supports supplementing the current model rather than scrapping it and starting over with unproven initiatives. The data on training programs supports the contention that those who have already made substantial investment and commitment to the clinician-scientist pathway through participation in MSTP or K training programs are the most likely to succeed on this career trajectory. To muffle the siren song of private practice and retain those best prepared for the clinician-scientist pathway requires additional investment as their careers mature through protected research time, mentorship, and advocacy. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. SSERVI Opportunities for the Next Generation of Planetary Researchers

    NASA Astrophysics Data System (ADS)

    Bailey, B. E.; Day, B. H.; Minafra, J.; Baer, J.

    2015-12-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) was founded as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD). SSERVI consists of a diverse set of domestic teams and (currently) nine international teams, ultimately represented by greater than 75 distinct research institutions and more than 450 individual researchers and EPO specialists. The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.

  8. Invisible Engineers

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  9. Can Experiential Education Strategies Improve Elementary Science Teachers' Perceptions of and Practices in Science Teaching?

    ERIC Educational Resources Information Center

    Sindel, Kasey D.

    2010-01-01

    This study was prompted by the growing amount of research that is in support of science reform and from this researcher's personal experience and concern that science instructions is no longer a top priority in elementary schools nor are young scientists given the opportunities to act as scientists in a real world setting. This study uses…

  10. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  11. Resident research associateships, postdoctoral research awards 1989: opportunities for research at the U.S. Geological Survey, U.S. Department of the Interior

    USGS Publications Warehouse

    ,; ,

    1989-01-01

    The scientists of the U.S. Geological Survey are engaged in a wide range of geologic, geophysical, geochemical, hydrologic, and cartographic programs, including the application of computer science to them. These programs offer exciting possibilities for scientific achievement and professional growth to young scientists through participation as Research Associates.

  12. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  13. The trials, tribulations, and triumphs of black faculty in the math and science pipeline: A life history approach

    NASA Astrophysics Data System (ADS)

    Williams, Lisa D.

    2000-12-01

    This study explores the career progression and life history of black mathematicians and scientists who teach on university faculties in the United States. It investigates the following questions: Why are there so few black mathematicians and scientists in colleges and universities in the United States? What is the experience of black students who express an interest in science and math? What barriers do black scientists and mathematicians face as they move through school towards their career in higher education? What factors facilitate their success? The current literature shows that there are few women and minorities teaching or working in math and science compared to white men, although reasons for this underrepresentation are still not well understood. I explored this phenomenon by conducting two sets of in-depth interviews with twelve black faculty, six women, six men, from both historically black and predominantly white higher educational institutions in the United States. My interviews were based upon a life history approach that identified the participants' perceptions of the barriers and obstacles, as well as the supports and facilitators encountered in their schooling and career progression. The findings from the study show the importance of a strong family, community, and teacher support for the participants throughout their schooling. Support systems continued to be important in their faculty positions. These support systems include extended family members, teachers, community members, supervisors, and classmates, who serve as role models and mentors. The life study interviews provide striking evidence of the discrimination, isolation, and harassment due to race and gender experienced by black male and female mathematicians and scientists. The racial discrimination and the compounding effect of racism and sexism play out differently for the male and female participants in this study. This study suggests directions for future research on the experiences of young black students who are currently in the math and science educational pipeline. It also offers recommendations for ways in which parents, teachers, administrators, faculty, advisors, and government officials can enhance the educational experiences of black students who express interest and have skills in math and science.

  14. Four windows on modern science in flavor and fragrance chemistry at Firmenich.

    PubMed

    Starkenmann, Christian; Wünsche, Laurent

    2012-01-01

    Four young scientists, recently hired by Firmenich, presented lectures at the University of Geneva. The objective was to stimulate young students to choose sciences. The challenges in the discovery, synthesis, or extraction of new molecules were presented, as well as the structure-activity relationships of human odorant receptors.

  15. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  16. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  17. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  18. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  19. 40 CFR 141.85 - Public education and supplemental monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the... or school boards. (2) Women, Infants and Children (WIC) and Head Start programs. (3) Public and... young children. Please read this information closely to see what you can do to reduce lead in your...

  20. Young People's Aggressive Behavior in the Context of the Social Situation

    ERIC Educational Resources Information Center

    Drozdov, A. Iu.

    2005-01-01

    Aggressive behavior by young people is one of the most urgent social problems. Rising violent crime among adolescents is being observed over the entire post-Soviet space. Scientists have singled out a number of groups of factors causing an individual to engage in aggressive behavior--biological, genetic, and individual psychological…

  1. The AGU Hydrology Student Subcommittee (H3S) - fostering the Fall Meeting experience for young hydrologists

    NASA Astrophysics Data System (ADS)

    Claes, N.; Beria, H.; Brown, M. R. M.; Kumar, A.; Goodwell, A. E.; Preziosi-Ribero, A.; Morris, C. K.; Cheng, F. Y.; Gootman, K. S.; Welsh, M.; Khatami, S.; Knoben, W.

    2017-12-01

    The AGU Hydrology Section Student Subcommittee (H3S), the student body of the AGU hydrology section, caters to the needs of students and early career scientists whose research interests contain a hydrological component. The past two years, H3S organized a Student and Early Career Scientist conference addressing both the technical and research needs of young hydrologists. Over the past several years, H3S organized pop-up sessions in Water Sciences and Social Dimensions of Geosciences which allowed young hydrologists to share and learn from their collective experiences. Social events like the early career social mixer, co-organized with CUAHSI, led to increased networking opportunities among peers. Continuous social media engagement led to a general dialogue within the community over varied issues including research productivity, gender equality, etc. Ice-breaker events between junior and senior academics encouraged young hydrologists to talk with their academic crushes and continuously seek out mentorship opportunities. Collating our past experiences, we ponder over our accomplishments, failures, and opportunities to improve representation of early career hydrologists within the community.

  2. Evaluating Career Development Resources: Lessons from the Earth Science Women's Network (ESWN)

    NASA Astrophysics Data System (ADS)

    Kogan, M.; Laursen, S. L.

    2010-12-01

    Retention of geoscientists throughout the professional pipeline is especially challenging in the case of groups that are already underrepresented in science, including racial minorities and women. The Earth Science Women’s Network (ESWN) is a professional network of early-career female geoscientists that provides its members with a variety of career resources, through both informal, online and in-person networking and formal career development workshops. The group’s members are of diverse nationalities and racial/ethnic backgrounds, of various age cohorts and career stages, but primarily graduate students, postdocs, and early-career researchers. With funding from an NSF ADVANCE grant to ESWN, we have conducted a detailed survey of ESWN members as part of an evaluation-with-research study that aims to determine the career needs of young geoscientists. The survey data provide information about members’ personal and professional situations, their professional development needs, and obstacles they face as young women scientists. ESWN members indicated a variety of areas of professional growth that would advance their scientific careers, but at all career stages, members chose expanding their professional networks as among their top career needs. Professional networking has established benefits for retention of people from groups underrepresented in science, including women: it introduces young scientists to career best practices and advancement opportunities, provides access to role models, and creates a sense of community. ESWN members strongly indicate that their professional networks benefited from their involvement with the Network. The community aspect of network-building is especially important for people from underrepresented groups, as they often feel alone due to the lack of role models. The intimate character of the ESWN discussion list greatly contributes to its members’ sense of community. Moreover, personal concerns and professional success are inextricably linked for women scientists, who still perform a disproportionate share of domestic and parenting duties, as our data show. ESWN members of all career stages cited work/life balance as among their top career obstacles. Here the intimate tone of ESWN discussion list proves helpful once again: women feel safe to exchange their experiences and suggestions for handling a variety of work/life dilemmas. Our data offer a snapshot of the population that is not well documented by researchers so far - young women scientists at various early-career stages, ranging from graduate students and postdocs to young faculty. We will offer a glimpse of their career needs and present the strategies that have enabled ESWN to provide them with relevant career resources through establishing a supportive community, as well as suggest future directions for the Network to develop. These lessons learned from ESWN should be helpful to all interested in supporting young scientists through critical career junctures.

  3. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being †

    PubMed Central

    Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio

    2014-01-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”. PMID:25390795

  4. Permafrost Young Researchers Get Their Hands Dirty: The PYRN-Thermal State of Permafrost IPY Project

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lantuit, H.

    2009-04-01

    The Permafrost Young Researchers Network (PYRN) (www.pyrn.org) is a unique resource for students and young scientists and engineers studying permafrost. It is an international organization fostering innovative collaboration, seeking to recruit, retain, and promote future generations of permafrost scientists and engineers. Initiated for and during IPY, PYRN directs the multi-disciplinary talents of its membership toward global awareness, knowledge, and response to permafrost-related challenges in a changing climate. Created as an education and outreach component of the International Permafrost Association (IPA), PYRN is a central database of permafrost information and science for more than 500 young researchers from over 40 countries. PYRN distributes a newsletter, recognizes outstanding permafrost research by its members through an annual awards program, organizes training workshops (2007 in Abisko, Sweden and St. Petersburg, Russia, 2008 in Fairbanks, Alaska and St. Petersburg, Russia), and contributes to the growth and future of the permafrost community. While networking forms the basis of PYRN's activities, the organization also seeks to establish itself as a driver of permafrost research for the IPY and beyond. We recently launched a series of initiatives on several continents aimed at providing young scientists and engineers with the means to conduct ground temperature monitoring in under investigated permafrost regions. Focusing on sites not currently covered by the IPA's "Thermal State of Permafrost" project, the young investigators of PYRN successfully launched and funded the PYRN-TSP project. They use lightweight drills and temperature sensors to instrument shallow boreholes in those regions. The first phase of the project was started in the spring of 2008 at Scandinavian sites. The data and results will be incorporated in the global database on permafrost temperatures and made freely available to the scientific community, thereby contributing to the advance of permafrost science and the strengthening of the next generation of permafrost researchers.

  5. Exploring Middle School Girls' Science Identities: Examining Attitudes and Perceptions of Scientists when Working "Side-by-Side" with Scientists

    ERIC Educational Resources Information Center

    Farland-Smith, Donna

    2009-01-01

    This article is the culmination of an extensive inquiry-focused interactive experience involving female middle school students and five university scientists, which demonstrated that middle school girls' perception of science and scientists can be successfully improved. The study exposed students to adult professional scientists over a period of a…

  6. The Impact of Funding through the RF President’s Grants for Young Scientists (the field – Medicine) on Research Productivity: A Quasi-Experimental Study and a Brief Systematic Review

    PubMed Central

    Saygitov, Ruslan T.

    2014-01-01

    The impact of grants on research productivity has been investigated by a number of retrospective studies. The results of these studies vary considerably. The objective of my study was to investigate the impact of funding through the RF President’s grants for young scientists on the research productivity of awarded applicants. The study compared the number of total articles and citations for awarded and rejected applicants who in 2007 took part in competitions for young candidates of science (CoS’s) and doctors of science (DoS’s) in the scientific field of medicine. The bibliometric analysis was conducted for the period from 2003 to 2012 (five years before and after the competition). The source of bibliometric data is the eLIBRARY.RU database. The impact of grants on the research productivity of Russian young scientists was assessed using the meta-analytical approach based on data from quasi-experimental studies conducted in other countries. The competition featured 149 CoS’s and 41 DoS’s, out of which 24 (16%) and 22 (54%) applicants, respectively, obtained funding. No difference in the number of total articles and citations at baseline, as well as in 2008–2012, for awarded and rejected applicants was found. The combination of data from the Russian study and other quasi-experimental studies (6 studies, 10 competitions) revealed a small treatment effect – an increase in the total number of publications over a 4–5-year period after the competition by 1.23 (95% CI 0.48–1.97). However, the relationship between the number of total publications published by applicants before and after the competition revealed that this treatment effect is an effect of the “maturation” of scientists with a high baseline publication activity – not of grant funding. PMID:24475203

  7. The impact of funding through the RF President's grants for young scientists (the field--medicine) on research productivity: a quasi-experimental study and a brief systematic review.

    PubMed

    Saygitov, Ruslan T

    2014-01-01

    The impact of grants on research productivity has been investigated by a number of retrospective studies. The results of these studies vary considerably. The objective of my study was to investigate the impact of funding through the RF President's grants for young scientists on the research productivity of awarded applicants. The study compared the number of total articles and citations for awarded and rejected applicants who in 2007 took part in competitions for young candidates of science (CoS's) and doctors of science (DoS's) in the scientific field of medicine. The bibliometric analysis was conducted for the period from 2003 to 2012 (five years before and after the competition). The source of bibliometric data is the eLIBRARY.RU database. The impact of grants on the research productivity of Russian young scientists was assessed using the meta-analytical approach based on data from quasi-experimental studies conducted in other countries. The competition featured 149 CoS's and 41 DoS's, out of which 24 (16%) and 22 (54%) applicants, respectively, obtained funding. No difference in the number of total articles and citations at baseline, as well as in 2008-2012, for awarded and rejected applicants was found. The combination of data from the Russian study and other quasi-experimental studies (6 studies, 10 competitions) revealed a small treatment effect--an increase in the total number of publications over a 4-5-year period after the competition by 1.23 (95% CI 0.48-1.97). However, the relationship between the number of total publications published by applicants before and after the competition revealed that this treatment effect is an effect of the "maturation" of scientists with a high baseline publication activity--not of grant funding.

  8. Successful scientist: What's the winning formula?

    PubMed

    Stull, April J; Ciappio, Eric D

    2014-11-01

    What does it take to become a successful scientist? This question is usually asked or thought about at some point in a young scientist's career. The early stages of a scientific career are fraught with many hardships, and achieving success can seem impossible and daunting. After encountering many obstacles, it becomes easy to focus on failures and lose sight of career goals. The journey to success can seem so simple when looked upon from the outside, but even the best scientists have endured many hardships, which are often not communicated. This educational symposium featured a diverse panel of 5 accomplished scientists representing different work environments, such as government, industry, and academia. They discussed tips on how to have a successful career journey and the key qualities of a successful scientist. Also, they revealed the secret to what's in the winning formula for success. © 2014 American Society for Nutrition.

  9. Cassini Scientist for a Day: Encouraging Science Research and Writing for Students on National and International Scales

    NASA Astrophysics Data System (ADS)

    Zimmerman Brachman, R.; Piazza, E.

    2010-12-01

    The Cassini Outreach Group for the Cassini mission to Saturn at NASA’s Jet Propulsion Laboratory runs an international essay contest called “Cassini Scientist for a Day.” Students write essays about Saturn and its rings and moons. The program has been run nine times, increasing in scope with each contest. Students in grades 5-12 gain skills in critical thinking, decision-making, researching, asking good questions, and communicating their ideas to scientists. Winners and their classes participate in teleconferencing question and answer sessions with Cassini scientists so students can ask questions to professional scientists. Videos of young Cassini scientists are included in the contest reference materials to provide role models for the students. Thousands of students in 27 countries on 6 continents have participated in the essay contest. Volunteers run the international contests outside of the United States, with their own rules, languages, and prizes.

  10. Cassini Scientist for a Day: Encouraging Science Research and Writing for Students on National and International Scales

    NASA Astrophysics Data System (ADS)

    Zimmerman Brachman, R.; Wessen, A.; Piazza, E.

    2011-10-01

    The outreach team for the Cassini mission to Saturn at NASA's Jet Propulsion Laboratory (JPL) runs an international essay contest called "Cassini Scientist for a Day." Students write essays about Saturn and its rings and moons. The program has been run nine times, increasing in scope with each contest. Students in grades 5 to 12 (ages 10 to 18) gain skills in critical thinking, decision-making, researching, asking good questions, and communicating their ideas to scientists. Winners and their classes participate in teleconferencing question-and-answer sessions with Cassini scientists so students can ask questions to professional scientists. Videos of young Cassini scientists are included in the contest reference materials to provide role models for the students. Thousands of students in 50 countries on 6 continents have participated in the essay contest. Volunteers run the international contests outside of the United States, with their own rules, languages, and prizes.

  11. The Young Scientist Club of the International Association for Promoting Geoethics - Promoting geoethics among the young geoscientists community

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; De Pascale, Francesco; Gomez Cantero, Jonathan; Hassan, Tharwat; Mukosi, Ndivhuwo Cecilia; O'Brien, Craig

    2016-04-01

    The International Association for Promoting Geoethics (IAPG) is a multidisciplinary, scientific platform for the debate on problems of Ethics applied to the Geosciences. The Young Scientists Club (YSC) of the IAPG represents the interface between the IAPG and the young geoscientists' community, organizations and groups. Its overall goal is to promote the topic of geoethics and the IAPG among its young colleagues. The YSC is considered to be the outpost of the IAPG and one of its greater strengths. It is believed that young people entering the professional world or evolving in academic settings can identify needs and expectations that geosciences can cover. The YSC seeks to give a status update on pertinent geoscience challenges and how geoethical principles can be integrated in tackling these challenges. They can also report new instances from the society and identify the potential innovative contributions that geosciences can provide as a service to the population. The YSC was initiated in the summer 2015. All IAPG members younger than 35 years old are part of the YSC. Its Executive Board is constituted by enthusiastic young geoscientists from various backgrounds and countries. Their tasks are to organize and coordinate the activities of the YSC: manage young geoscientists blog posts on Geoethics, set-up a forum platform to allow discussions about geoethics between young and senior geoscientists, organize IAPG-YSC sessions at international conferences for example to discuss the new values that allow to do research in geosciences and organize working groups on geoethical topics. The YSC eagerly anticipates meeting the young geoscientist community at the upcoming EGU Assembly and discuss all current geoethical issues. We look forward to garnering further support for this exciting initiative.

  12. Canopy in the Clouds: Integrating Science and Media to Inspire a New Generation of Scientists

    NASA Astrophysics Data System (ADS)

    Goldsmith, G. R.; Fulton, A. D.; Witherill, C. D.

    2008-12-01

    Innovative approaches to science education are critical for inspiring a new generation of scientists. In a world where students are inundated with digital media inviting them to explore exciting, emerging disciplines, science often lags behind in using progressive media techniques. Additionally, science education media often neglects to include the scientists conducting research, thereby disconnecting students from the excitement, adventure, and beauty of conducting research in the field. Here we present initial work from a science education media project entitled Canopy in the Clouds. In particular, we address the goals and approach of the project, the logistics associated with generating educational material at a foreign field site, and the challenges associated with effectively integrating science and media. Canopy in the Clouds is designed to engage students in research, motivate a new generation of young scientists, and promote conservation from the perspective of a current research project being conducted in the canopy of a tropical montane cloud forest located in Monteverde, Costa Rica. The project seeks to generate curriculum based on multiple, immersive forms of novel digital media that attract and maintain student attention. By doing so from the perspective of an adventurous research project in a beautiful and highly biodiverse region, we hope to engage students in science and enhance bioliteracy. However, there are considerable logistic considerations associated with such an approach, including safety, travel, permitting, and equipment maintenance. Additionally, the goals of both the scientific research and the educational media project must be balanced in order to meet objectives in a timely fashion. Finally, materials generated in the field must be translated to viable final products and distributed. Work associated with Canopy in the Clouds will thus provide insight into this process and can serve to inform future science education and outreach efforts.

  13. An Analysis of the Impact of Student-Scientist Interaction in a Technology Design Activity, Using the Expectancy-Value Model of Achievement Related Choice

    ERIC Educational Resources Information Center

    Masson, Anne-Lotte; Klop, Tanja; Osseweijer, Patricia

    2016-01-01

    Many education initiatives in science and technology education aim to create enthusiasm among young people to pursue a career in Science, Technology, Engineering, and Mathematics (STEM). Research suggests that personal interaction between secondary school students and scientists could be a success factor, but there is a need for more in-depth…

  14. A PORTRAIT OF THE ARTIST AND THE SCIENTIST AS YOUNG MEN--I. BIOGRAPHICAL CHARACTERISTICS OF AWARD WINNERS IN THE TWO CULTURES.

    ERIC Educational Resources Information Center

    WALBERG, HERBERT J.

    THE PURPOSE OF THIS RESEARCH WAS TO IDENTIFY THE BIOGRAPHICAL CHARACTERISTICS WHICH DISTINGUISH POTENTIALLY CREATIVE SCIENTISTS AND ARTISTS IN THEIR ADOLESCENCE FROM EACH OTHER AND FROM THEIR FELLOW STUDENTS. FROM A SAMPLE OF 442 BRIGHT MALE STUDENTS TAKING A NEW PHYSICS COURSE IN 72 CLASSROOMS IN 17 STATES SCATTERED THROUGHOUT THE COUNTRY, THREE…

  15. Women in physics in Mexico: The question of the female scientist

    NASA Astrophysics Data System (ADS)

    Delgadillo-Holtfort, Isabel; Fernández-Sabido, Silvia; González-Fernández, Belinka; Cárdenas, Ana Laura; Martínez, Amalia; Meza-Montes, Lilia

    2015-12-01

    This report covers the three principal strategies have been implemented over the last three years to promote better conditions for Mexican women in science: organization of events, forming alliances, and supporting young female scientists. Additionally, figures and facts demonstrate changing gender demographics during the last decade of research as well as numbers of men vs. women in physics, mathematics, and earth sciences.

  16. Antoni Quintana-Mari (1907-1998): A Pioneer of the Use of History of Science in Science Education

    ERIC Educational Resources Information Center

    Roca-Rosell, Antoni; Grapi-Vilumara, Pere

    2010-01-01

    In the early 1930s, the young Antoni Quintana-Mari undertook some research on Antoni de Marti i Franques, one of the most prominent Catalan scientists of the Enlightenment. This scientist worked in Tarragona, where Quintana-Mari lived. Quintana-Mari learnt about Marti i Franques from Josep Estalella, his teacher of physics and chemistry at the…

  17. Role Models in Science - An Effective Dissemination Strategy

    NASA Astrophysics Data System (ADS)

    Chatzichristou, Eleni; Daglis, Ioannis A.; Anastasiadis, Anastasios; Balasis, George; Bourdarie, Sebastien; Horne, Richard B.; Khotyaintsev, Yuri; Mann, Ian R.; Santolik, Ondrej; Turner, Drew L.; Giannakis, Omiros; Ropokis, George

    2014-05-01

    We present the outreach efforts of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, intended to provide the general public with simplified information concerning the scientific objectives of the project and its expected outcomes, to strengthen their understanding of space science, as well as to engage and inspire the next generation of scientists. MAARBLE involves monitoring of the geospace environment through space and ground-based observations, in order to understand various aspects of the radiation belts, an important element of the space weather system, which have direct impact on human endeavors in space (spacecraft and astronauts exposure). The public outreach website of MAARBLE, besides instructive text and regular updates with relevant news, also employs a variety of multimedia (image and video galleries) and characteristic sounds of space related to very low and ultra low frequency (VLF/ULF) electromagnetic waves. It also provides links to some of the most interesting relevant educational activities, including those at partner institutions such as the Institute of Geophysics and Planetary Physics at UCLA, the University of Alberta, the Swedish Institute of Space Physics and the Institute of Atmospheric Physics of the Academy of Sciences of the Czech Republic. We will focus on a specific activity: "Interviewing a MAARBLE Scientist", which enriches and broadens the scope of the MAARBLE outreach website. The profile of a MAARBLE scientist appears every month through an inspired interview, the scientists relating to the public their real stories, aspirations and endeavors. The intimacy of this approach is very effective in catching the attention of an otherwise indifferent public, and to inspire young people to pursue science careers by identifying themselves with "real" scientists. We cover one interview per month, featuring either a high-profile scientist from each partner institute, or a young researcher on a successful career path to both act as role model and to show the challenges that young scientists are facing today. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  18. A Staged Reading of the Play: Moving Bodies

    NASA Astrophysics Data System (ADS)

    Schwartz, Brian

    Moving Bodies is about Nobel Prize-winning physicist Richard Feynman as he explores nature, science, sex, anti-Semitism, and the world around him. This epic, comic journey portrays Feynman as an iconoclastic young man, a physicist with the Manhattan Project and confronting the mystery of the Challenger disaster. The Atomic Bomb is central to the play, but it is also very much about human loves and losses. We learn about his (Feynman's) eccentricities: his bongo playing, his penchant for picking locks, and most notably his appreciation for women. Through playwright Arthur Giron's eyes, we see how Feynman became one of the most important scientists of our time. The playwright, Arthur Giron, is the co-playwright of the recent 2015 Broadway Musical, Amazing Grace. The staged reading is performed by the Southern Rep Theatre. http://www.southernrep.com/ The play director and actors as well as a historian-scientist who knew Feynman will be available for a talk-back discussion after the play reading. Produced by Brian Schwartz, CUNY and Gregory Mack, APS. Sponsored by: The Forum on the History of Physics, The Forum on Outreach and Engaging the Public and The Forum on Physics and Society.

  19. Mobility and International Collaboration: Case of the Mexican Scientific Diaspora

    PubMed Central

    Marmolejo-Leyva, Rafael; Perez-Angon, Miguel Angel; Russell, Jane M.

    2015-01-01

    We use a data set of Mexican researchers working abroad that are included in the Mexican National System of Researchers (SNI). Our diaspora sample includes 479 researchers, most of them holding postdoctoral positions in mainly seven countries: USA, Great Britain, Germany, France, Spain, Canada and Brazil. Their research output and impact is explored in order to determine their patterns of production, mobility and scientific collaboration as compared with previous studies of the SNI researchers in the periods 1991–2001 and 2003–2009. Our findings confirm that mobility has a strong impact on their international scientific collaboration. We found no substantial influence among the researchers that got their PhD degrees abroad from those trained in Mexican universities. There are significant differences among the areas of knowledge studied: biological sciences, physics and engineering have better production and impact rates than mathematics, geosciences, medicine, agrosciences, chemistry, social sciences and humanities. We found a slight gender difference in research production but Mexican female scientists are underrepresented in our diaspora sample. These findings would have policy implications for the recently established program that will open new academic positions for young Mexican scientists. PMID:26047501

  20. Tournament of Young Chemists in Ukraine: Engaging Students in Chemistry through a Role-Playing Game-Style Competition

    ERIC Educational Resources Information Center

    Svechkarev, Denis; Grygorovych, Oleksiy V.

    2016-01-01

    With more than 20 years of history, the Tournament of Young Chemists is an innovative, cross-disciplinary competition that promulgates the everyday life of scientists into the classrooms and on the contest stage. Original, open-type problems, unrestricted access to scientific data sources, and personal interaction with researchers from different…

  1. Predicting Young Adult Outcome among More and Less Cognitively Able Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Anderson, Deborah K.; Liang, Jessie W.; Lord, Catherine

    2014-01-01

    Background: The range of outcomes for young adults with Autism Spectrum Disorders (ASD) and the early childhood factors associated with this diversity have implications for clinicians and scientists. Methods: This prospective study provided a unique opportunity to predict outcome 17 years later for a relatively large sample of children diagnosed…

  2. A Measure of Excellence of Young European Research Council Grantees

    ERIC Educational Resources Information Center

    Arevalo, Javier

    2017-01-01

    Bibliometric benchmarking can be an aid to researchers pondering whether to apply for competitive grants. In this paper, the highly prestigious grants offered by the European Research Council to young scientists of any nationality were scrutinized. The analysis of the 2014-2015 data indicates that over 75% of life science grantees in the starting…

  3. The Scientist in the Crib: Minds, Brains, and How Children Learn.

    ERIC Educational Resources Information Center

    Gopnik, Alison; Meltzoff, Andrew N.; Kuhl, Patricia K.

    Arguing that evolution designed us to both teach and learn, this book explains how, and how much, babies and young children know and learn, and how much parents naturally teach them. The chapters are: (1) "Ancient Questions and a Young Science," including the concept of brain as computer, and the developmental science of Piaget and…

  4. A gender gap in the next generation of physician-scientists: medical student interest and participation in research.

    PubMed

    Guelich, Jill M; Singer, Burton H; Castro, Marcia C; Rosenberg, Leon E

    2002-11-01

    For 2 decades, the number of physician-scientists has not kept pace with the overall growth of the medical research community. Concomitantly, the number of women entering medical schools has increased markedly. We have explored the effect of the changing gender composition of medical schools on the present and future pipeline of young physician-scientists. We analyzed data obtained from the Association of American Medical Colleges, the National Institutes of Health, and the Howard Hughes Medical Institute pertaining to the expressed research intentions or research participation of male and female medical students in the United States. A statistically significant decline in the percentage of matriculating and graduating medical students--both men and women-who expressed strong research career intentions occurred during the decade between 1987 and 1997. Moreover, matriculating and graduating women were significantly less likely than men to indicate strong research career intentions. Each of these trends has been observed for medical schools overall and for research-intensive ones. Cohort data obtained by tracking individuals from matriculation to graduation revealed that women who expressed strong research career intentions upon matriculation were more likely than men to decrease their research career intentions during medical school. Medical student participation in research supported the gender gap identified by assessing research intentions. Female medical student participation in the Medical Scientist Training Program and the Howard Hughes Medical Institute/National Institutes of Health-sponsored Cloisters Program has increased but lags far behind the growth in the female population in medical schools. Three worrisome trends in the research career intentions and participation of the nation's medical students (a decade-long decline for both men and women, a large and persistent gender gap, and a negative effect of the medical school experience for women) presage a further decline in the physician-scientist pipeline unless they are reversed promptly and decisively.

  5. Activities of the Japan Society of Applied Physics Committee for Diversity Promotion in Science and Technology (abstract)

    NASA Astrophysics Data System (ADS)

    Nishitani-Gamo, Mikka

    2009-04-01

    Since 2001, the Japan Society of Applied Physics (JSAP) Committee for Diversity Promotion in Science and Technology has worked to promote gender equality, both within and between academic societies, and in society as a whole. Main activities of the Committee are: (1) organizing symposia and informal meetings during domestic JSAP conferences to stimulate discussion and raise awareness; (2) encouraging young researchers in pursuit of their careers through the newly designed "career-explorer mark;" (3) offering childcare at biannual JSAP conferences; and (4) helping future scientists and engineers prepare to lead the fields of science and technology on a global level with the creation of an educational roadmap. In this presentation, recent activities of the JSAP Committee are introduced and reviewed.

  6. Constructing a scientist: expert authority and public images of Rachel Carson.

    PubMed

    Hecht, David K

    2011-01-01

    This article uses the voluminous public discourse around Rachel Carson and her controversial bestseller "Silent Spring" to explore Americans' views on science and scientists. Carson provides a particularly interesting case study because of intense and public debates over whether she was a scientist at all, and therefore whether her book should be granted legitimacy as science. Her career defied easy classification, as she acted variously as writer, activist, and environmentalist in addition to scientist. Defending her work as legitimate science, which many though not all commentators did, therefore became an act of defining what both science and scientists could and should be. This article traces the variety of nonscientific images and narratives readers and writers assigned to Carson, such as 'reluctant crusader' and 'scientist-poet'. It argues that nonscientific attributes were central to legitimating her as both admirable person and admirable scientist. It explores how debates over "Silent Spring" can be usefully read as debates over the desirability of putatively nonscientific attributes in the professional work of a scientist. And it examines the nature of Carson's very democratized image for changing notions of science and scientists in 1960s United States politics and culture.

  7. Social media use among young rheumatologists and basic scientists: results of an international survey by the Emerging EULAR Network (EMEUNET).

    PubMed

    Nikiphorou, Elena; Studenic, Paul; Ammitzbøll, Christian Gytz; Canavan, Mary; Jani, Meghna; Ospelt, Caroline; Berenbaum, Francis

    2017-04-01

    To explore perceptions, barriers and patterns of social media (SM) use among rheumatology fellows and basic scientists. An online survey was disseminated via Twitter, Facebook and by email to members of the Emerging European League Against Rheumatism Network. Questions focused on general demographics, frequency and types of SM use, reasons and barriers to SM use. Of 233 respondents (47 countries), 72% were aged 30-39 years, 66% female. 83% were active users of at least one SM platform and 71% were using SM professionally. The majority used SM for communicating with friends/colleagues (79%), news updates (76%), entertainment (69%), clinical (50%) and research (48%) updates. Facebook was the dominant platform used (91%). SM was reported to be used for information (81%); for expanding professional networks (76%); new resources (59%); learning new skills (47%) and establishing a professional online presence (46%). 30% of non-SM users justified not using SM due to lack of knowledge. There was a substantial use of SM by rheumatologists and basic scientists for social and professional reasons. The survey highlights a need for providing learning resources and increasing awareness of the use of SM. This could enhance communication, participation and collaborative work, enabling its more widespread use in a professional manner. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. NOAA International Polar Year Formal And Informal Education Projects: Climate Change And Exploration At The Poles During The Forth International Polar Year

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Kermond, J.

    2006-12-01

    The Polar Regions play an integral role in how our Earth system operates. However, the Polar Regions are marginally studied in the K-12 classroom in the United States. The International Polar Year's (IPY) coordinated campaign of polar observations, research, and analysis that will be multidisciplinary in scope and international in participation offers a powerful opportunity for K-12 classroom. The IPY's scientific objective to better understand the key roles of the Polar Regions in global processes will allow students a window into the poles and this unique regions role in the Earth system. IPY will produce careful, useful scientific information that will advance our understanding of the Polar Regions and their connections to the rest of the globe. The IPY is an opportunity to inspire the next generation of very young Earth system scientists. This IPY's will education & outreach position paper asks a key question that must guide future educational projects; "Why is the polar regions and polar research important to all people on earth"? In efforts to coordinate educational activities and collaborate with international projects, United States national agencies, NOAA, NASA, USGS and NSF to mention a few, and other educational initiatives, it is the purpose of this session to explore potential partnerships, while primarily recommending a model for educational product development and review. In the context of the 125 year legacy of IPY, this talk will provide an opportunity to discuss the NOAA Arctic programs current arctic research and explorations, projects being planned for this IPY, its education related activities, new and innovative efforts to capture the inherent mystique of polar regions and describe the process of scientific research relating to IPY. In addition, numerous teacher professional development opportunities, newly developed curricula, and other public events will be introduced so scientists, teachers and their students can find ways to explore the changing arctic in-person or through tele-presences venues.

  9. Physics of Toys: The Joy of Asking Questions

    NASA Astrophysics Data System (ADS)

    Taylor, Beverley

    2014-03-01

    Children are natural scientists. They ask questions, they observe, they try things to see what happens. Often school-based science does little to nurture the young scientist and, in fact, may do just the opposite with thick textbooks, fact heavy lessons, and too many equations. The exploration of common toys produces deep learning by emphasizing concepts and connections before formal definitions and mathematics. It also connects the classroom to the familiar world outside of school and gets students writing and talking about physics ideas. At the university level, investigating what toys do and how they do it can be a challenging application of undergraduate physics from the introductory course up through senior mechanics. Toys provide an ideal system for the kind of open-ended inquiry that introduces students to what scientists really do. They can pose their own questions, explore the behavior of the system sufficiently to create a hypothesis, use their theoretical knowledge to make a simplified model of the system and predict an outcome, design an experiment, discover that the real world is messy, think about what they haven't taken into account with their simple model and try to improve it. I have spent close to 30 years thinking about how to use toys to enhance physics education from 4th grade through college. In the process I have collected hundreds of toys the majority of which relate to mechanics, but also to sound, light, electricity and magnetism. I will discuss the pedagogical reasons for using toys in physics education and the many different ways to use them from demonstrations to laboratory experiments to discussion starters as well as how it is possible to use the same toy with many different age levels by approaching the analysis differently. I will share a number of my favorite toys, but focus particularly on those related to energy concepts.

  10. Quark Matter 2017: Young Scientist Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evdokimov, Olga

    Quark Matter conference series are amongst the major scientific events for the Relativistic Heavy Ion community. With over 30 year long history, the meetings are held about every 1½ years to showcase the progress made in theoretical and experimental studies of nuclear matter under extreme conditions. The 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2017) was held at the Hyatt Regency Hotel in downtown Chicago from Sunday, February 5th through Saturday, February 11th, 2017. The conference featured about 180 plenary and parallel presentations of the most significant recent results in the field, a poster session for additional presentations,more » and an evening public lecture. Following the tradition of previous Quark Matter meetings, the first day of the conference was dedicated entirely to a special program for young scientists (graduate students and postdoctoral researchers). This grant will provided financial support for 235 young physicists facilitating their attendance of the conference.« less

  11. Young Earth System Scientists (YESS) Community

    NASA Astrophysics Data System (ADS)

    Reed, K. A.; Langendijk, G.; Bahar, F.; Huang-Lachmann, J. T.; Osman, M.; Mirsafa, M.; Sonntag, S.

    2017-12-01

    The Young Earth System Scientists (YESS) community is compiled of early career researchers (including students) coming from a range of scientific backgrounds, spanning both natural and social sciences. YESS unifies young researchers in an influential network to give them a collective voice and leverage within the geosciences community, while supporting career development. The YESS community has used its powerful network to provide a unified perspective on the future of Earth system science (Rauser et al. 2017), to be involved in the organization of international conferences, and to engage with existing international structures that coordinate science. Since its founding in Germany in 2010, the YESS community has grown extensively across the globe, with currently almost 1000 members from over 80 countries, and has become truly interdisciplinary. Recently, the organization has carried elections for Regional Representatives and the Executive Committee as part of its self-sustained governance structure. YESS is ready to continue pioneering crucial areas of research which provide solutions to benefit society for the long-term advancement of Earth system science.

  12. It's a wonderful life: a career as an academic scientist.

    PubMed

    Vale, Ronald D

    2010-01-01

    Many years of training are required to obtain a job as an academic scientist. Is this investment of time and effort worthwhile? My answer is a resounding "yes." Academic scientists enjoy tremendous freedom in choosing their research and career path, experience unusual camaraderie in their lab, school, and international community, and can contribute to and enjoy being part of this historical era of biological discovery. In this essay, I further elaborate by listing my top ten reasons why an academic job is a desirable career for young people who are interested in the life sciences.

  13. Investigation of the Secondary School Students' Images of Scientists

    ERIC Educational Resources Information Center

    Akgün, Abuzer

    2016-01-01

    The overall purpose of this study is to explore secondary school students' images of scientists. In addition to this comprehensive purpose, it is also investigated that if these students' current images of scientists and those in which they see themselves as a scientist in the near future are consistent or not. The study was designed in line with…

  14. Nothing to lose: why early career scientists make ideal entrepreneurs.

    PubMed

    Thon, Jonathan N

    2014-12-01

    An entrepreneurial movement within science strives to invert the classical trajectory of academic research careers by positioning trainees at the apex of burgeoning industries. Young scientists today have nothing to lose and everything to gain by pursuing this 'third road', and academic institutes and established companies only stand to benefit from supporting this emerging movement of discovery research with economic purpose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. GGD NSU: Tips to Teach Students as Young Scientists

    NASA Astrophysics Data System (ADS)

    Rakhmenkulova, I. F.; Zhitova, L.

    2013-12-01

    Novosibirsk State University (NSU) is different from other universities in Russia. The campus is located in Academgorodok, a unique place where more than 30 scientific institutes and Academpark (Technopark) are located. The students are involved in scientific research from the third year of their study (some try to work part-time in scientific institutions even from their first year). All the university professors are highly-qualified scientists working full-time in scientific institutions. Geology and Geophysics Department (GGD) of NSU is currently reforming the education system and policy. The reform involves the following steps: 1. New scientific programs and courses on modern science have been introduced; the priority should be given to courses in English, as the international language. 2. A special annual conference for students and young scientists was organized in August 2013 in Shira (a place where GGD students have their field trips). 3. International scientists are invited to give seminars and teach on a regular basis. 4. International students are welcomed to study at GGD NSU. 5. GGD stuff is creating a new scientific laboratory within the university. All the above-mentioned steps should ';launch' GGD NSU into a new ';orbit': improve the study process and help the university to be integrated into the world's community.

  16. Survey Exploring Views of Scientists on Current Trends in Chemistry Education

    ERIC Educational Resources Information Center

    Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas

    2010-01-01

    A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents' general educational beliefs and…

  17. I'm Madly in Love with Electricity and Other Comments About Their Work by Women in Science and Engineering.

    ERIC Educational Resources Information Center

    Kreinberg, Nancy

    The purpose of this publication is to stimulate interest in science and engineering careers in young women. Questionnaires were mailed to 450 women scientists and engineers in the San Francisco Bay Area, asking their assistance in developing a booklet to encourage young women toward scientific and mathematical studies. One hundred sixty women…

  18. Challenging Gifted Learners: General Principles for Science Educators; and Exemplification in the Context of Teaching Chemistry

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2010-01-01

    There is concern in some counties about the number of able young people entering degree level study and careers in physical science, including chemistry. Too few of the most talented young people are selecting "STEM" subjects to ensure the future supply of scientists, engineers and related professionals. The present paper sets out general…

  19. Cold Facts: Scientists and media in an era of shrinking budgets and growing appetites for Polar news

    NASA Astrophysics Data System (ADS)

    Goldman, J.; West, P.

    2013-12-01

    Scientists, explorers, and everyday people continue to be fascinated about the Arctic and Antarctica. Scientists have been studying every aspect of these regions for years and newspapers and other media outlets have eagerly shared their findings and adventures. Recent economic realities and technological improvements affect how scientists and journalists do their work. As the quickly changing conditions in the Arctic affect the amount of sea ice, change biology, and influence weather in the lower latitudes, the need to share scientific findings is even more important. But limited travel budgets, fewer field studies, and dwindling opportunities for travel aboard a research ship or plane make covering Arctic science a challenge for journalists. The authors - one current and one former Federal media officers -- will explore ways how scientists and journalists can help each other.

  20. G-2008-0819-014

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held on October 6, 2008 at Goddard sponsored by 3M. It gave students opportunity to demonstrate their scientific/engineering skills by participating in live demonstrations.

  1. ARES Biennial Report 2012 Final

    NASA Technical Reports Server (NTRS)

    Stansbery, Eileen

    2014-01-01

    Since the return of the first lunar samples, what is now the Astromaterials Research and Exploration Science (ARES) Directorate has had curatorial responsibility for all NASA-held extraterrestrial materials. Originating during the Apollo Program (1960s), this capability at Johnson Space Center (JSC) included scientists who were responsible for the science planning and training of astronauts for lunar surface activities as well as experts in the analysis and preservation of the precious returned samples. Today, ARES conducts research in basic and applied space and planetary science, and its scientific staff represents a broad diversity of expertise in the physical sciences (physics, chemistry, geology, astronomy), mathematics, and engineering organized into three offices (figure 1): Astromaterials Research (KR), Astromaterials Acquisition and Curation (KT), and Human Exploration Science (KX). Scientists within the Astromaterials Acquisition and Curation Office preserve, protect, document, and distribute samples of the current astromaterials collections. Since the return of the first lunar samples, ARES has been assigned curatorial responsibility for all NASA-held extraterrestrial materials (Apollo lunar samples, Antarctic meteorites - some of which have been confirmed to have originated on the Moon and on Mars - cosmic dust, solar wind samples, comet and interstellar dust particles, and space-exposed hardware). The responsibilities of curation consist not only of the longterm care of the samples, but also the support and planning for future sample collection missions and research and technology to enable new sample types. Curation provides the foundation for research into the samples. The Lunar Sample Facility and other curation clean rooms, the data center, laboratories, and associated instrumentation are unique NASA resources that, together with our staff's fundamental understanding of the entire collection, provide a service to the external research community, which relies on access to the samples. The curation efforts are greatly enhanced by a strong group of planetary scientists who conduct peerreviewed astromaterials research. Astromaterials Research Office scientists conduct peer-reviewed research as Principal or Co-Investigators in planetary science (e. g., cosmochemistry, origins of solar systems, Mars fundamental research, planetary geology and geophysics) and participate as Co-Investigators or Participating Scientists in many of NASA's robotic planetary missions. Since the last report, ARES has achieved several noteworthy milestones, some of which are documented in detail in the sections that follow. Within the Human Exploration Science Office, ARES is a world leader in orbital debris research, modeling and monitoring the debris environment, designing debris shielding, and developing policy to control and mitigate the orbital debris population. ARES has aggressively pursued refinements in knowledge of the debris environment and the hazard it presents to spacecraft. Additionally, the ARES Image Science and Analysis Group has been recognized as world class as a result of the high quality of near-real-time analysis of ascent and on-orbit inspection imagery to identify debris shedding, anomalies, and associated potential damage during Space Shuttle missions. ARES Earth scientists manage and continuously update the database of astronaut photography that is predominantly from Shuttle and ISS missions, but also includes the results of 40 years of human spaceflight. The Crew Earth Observations Web site (http://eol.jsc.nasa.gov/Education/ESS/crew.htm) continues to receive several million hits per month. ARES scientists are also influencing decisions in the development of the next generation of human and robotic spacecraft and missions through laboratory tests on the optical qualities of materials for windows, micrometeoroid/orbital debris shielding technology, and analog activities to assess surface science operations. ARES serves as host to numerous students and visiting scientists as part of the services provided to the research community and conducts a robust education and outreach program. ARES scientists are recognized nationally and internationally by virtue of their success in publishing in peer-reviewed journals and winning competitive research proposals. ARES scientists have won every major award presented by the Meteoritical Society, including the Leonard Medal, the most prestigious award in planetary science and cosmochemistry; the Barringer Medal, recognizing outstanding work in the field of impact cratering; the Nier Prize for outstanding research by a young scientist; and several recipients of the Nininger Meteorite Award. One of our scientists received the Department of Defense (DoD) Joint Meritorious Civilian Service Award (the highest civilian honor given by the DoD). ARES has established numerous partnerships with other NASA Centers, universities, and national laboratories. ARES scientists serve as journal editors, members of advisory panels and review committees, and society officers, and several scientists have been elected as Fellows in their professional societies. This biennial report summarizes a subset of the accomplishments made by each of the ARES offices and highlights participation in ongoing human and robotic missions, development of new missions, and planning for future human and robotic exploration of the solar system beyond low Earth orbit.

  2. KSC-03pd0516

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  3. KSC-03PD-0516

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  4. Self sufficient world

    ERIC Educational Resources Information Center

    George, Lynn

    1974-01-01

    Described the efforts of Sietze Leeflang, a Dutch scientific journalist, and his group of young scientists to take a practical stand on environmental pollution by working their small farm in innovative fashion. (RK)

  5. Working with and promoting early career scientists within a larger community

    NASA Astrophysics Data System (ADS)

    Pratt, K.

    2017-12-01

    For many scientific communities, engaging early career researchers is critical for success. These young scientists (graduate students, postdocs, and newly appointed professors) are actively forming collaborations and instigating new research programs. They also stand to benefit hugely from being part of a scientific community, gaining access to career development activities, becoming part of strong collaborator networks, and achieving recognition in their field of study — all of which will help their professional development. There are many ways community leaders can work proactively to support and engage early career scientists, and it it is often a community manager's job to work with leadership to implement such activities. In this presentation, I will outline ways of engaging early career scientists at events and tailored workshops, of promoting development of their leadership skills, and of creating opportunities for recognizing early career scientists within larger scientific communities. In this talk, I will draw from my experience working with the Deep Carbon Observatory Early Career Scientist Network, supported by the Alfred P. Sloan Foundation.

  6. Creative Little Scientists: Exploring Pedagogical Synergies between Inquiry-Based and Creative Approaches in Early Years Science

    ERIC Educational Resources Information Center

    Cremin, Teresa; Glauert, Esme; Craft, Anna; Compton, Ashley; Stylianidou, Fani

    2015-01-01

    In the light of the European Union's interest in creativity and innovation, this paper, drawing on data from the EU project Creative Little Scientists (2011-2014), explores the teaching and learning of science and creativity in Early Years education. The project's conceptual framework, developed from detailed analysis of relevant literatures,…

  7. The Role of Policy in Constructing the Peripheral Scientist in the Era of Globalization

    ERIC Educational Resources Information Center

    Englander, Karen; Uzuner-Smith, Sedef

    2013-01-01

    This study explores how the logic and values of globalization are manifested in international discourses of higher education in relation to scientific knowledge production and how those values are appropriated in national and institutional policies. This study also explores how this confluence of discourses and policies construct scientists in two…

  8. Recruitment Campaigns as a Tool for Social and Cultural Reproduction of Scientific Communities: A Case Study on How Scientists Invite Young People to Science

    ERIC Educational Resources Information Center

    Andrée, Maria; Hansson, Lena

    2014-01-01

    Young people's interest in pursuing science and science-intense educations has been expressed as a concern in relation to societal, economic and democratic development by various stakeholders (governments, industry and university). From the perspective of the scientific communities, the issues at stake do not necessarily correspond to the overall…

  9. Effect of multiple rescattering processes on harmonic emission in spatially inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Zhang, Cai-Ping; Xia, Chang-Long; Jia, Xiang-Fu; Miao, Xiang-Yang

    2018-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11404204, 11274215, and 11504221), the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2015021023), Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province, China, and Innovation Project for Postgraduates of Shanxi Province, China (Grant No. 2017BY085).

  10. Technology Foresight For Youth: A Project For Science and Technology Education in Sweden

    NASA Astrophysics Data System (ADS)

    Kendal, Anne Louise

    "Technology Foresight for Youth" is a project run by two science museums, two science centres and "Technology Foresight (Sweden)" an organization in which both business and scientists are represented. The project is designed to strengthen young people's interest in ongoing technological work, research and education. It should give them confidence in their own ability both to understand today's techniques including its influence on people's daily lives, and to influence future developments. One part of the project is aimed at school teachers, teacher cooperation groups and students in the age group 12 to 18 years. A second part encourages dialog and meetings by arranging debates, seminars, theatre, science demonstrations in cooperation with business representatives and scientists. A third important part of the project is a special exhibition to be shown at the four cooperating institutions: "To be where I am not - young people's dreams about the future". The exhibition is meant to be sensual, interactive and partly virtual. It will change and grow with time as young people contribute with their thoughts, visions and challenges. Young people in different parts of the country will be able to interact electronically with each other and with the virtual part of the exhibition. The main aim of the project is to develop new interactive pedagogic methods for science and technology based on young people's own visions about the future.

  11. Purposeful Leadership: The Life Calling of Successful Women Scientists

    NASA Astrophysics Data System (ADS)

    West, Ja-Quel April

    The experiences of six women who are successful in the world of science, technology, engineering, and mathematics (STEM) are examined through lenses constructed from self-efficacy, resiliency, social capital, and identity. Each of the women successfully earned a doctorate in STEM, in spite of being the minority in a male-dominated career field. Examination of individual discoveries and experiences provides a platform for enhancing an understanding of what facilitates women scientists' achievements when pursuing meaningful work. All women in this study display, how social networks and personal characteristics have helped women scientists, become leaders and advance in their field. The findings of this research provides a scaffold for young students to will better understand, and appreciate how women scientists overcome many barriers, how women in science gained their strength, and fulfilled their purposeful leadership.

  12. [Science and the scientist: opposing vues on Alfred Granadidier's explorations].

    PubMed

    Monnier, Jehanne-Emmanuelle

    2013-01-01

    This article embraces the different ways a scientist traveller and his fieldworks can be perceived through the case of Alfred Grandidier in South America, in India and in Madagascar (1857-1870). Our aim is to deal with various aspects of historical scientific exploration and to draw a picture of the erudite traveller by crossing various and complementary points of view. Scientific works can be received very differently, depending on the place and the nature of the addresses, whether they are authorities wishing to take advantage of it, native people fearing for their safety or disciples glorifying their idol. The concept of science itself and the status of the scientist raise the question of mutual understanding between the explorer and his contemporaries, in Paris or in a remote place. Alfred Grandidier's example is particularly relevant to reveal different visions of scientist traveller as promoted in the 19th century, as well as the various perceptions that a scientific work can have depending on the public it impacts.

  13. Increasing Shore-based Participation of Scientists & Students in Telepresence-enabled Nautilus Expeditions

    NASA Astrophysics Data System (ADS)

    Bell, K. L. C.; Raineault, N.; Carey, S.; Eberli, G. P.; John, B. E.; Cheadle, M. J.; German, C. R.; Mirmalek, Z.; Pallant, A.

    2016-02-01

    As the US oceanographic research fleet shrinks, reducing seagoing opportunities for scientists and students, remote participation in cruises via telepresence will become increasingly vital. The Nautilus Exploration Program is improving the experience of shoreside participants through the development of new tools and methodologies for connecting them to expeditions in real time increasing accessibility to oceanographic cruises. The Scientist Ashore Program is a network of scientists around the world who participate in Exploration Vessel Nautilus expeditions from their own labs or homes. We have developed a suite of collaboration tools to allow scientists to view video and data in real time, as well as to communicate with ship-based and other shore-based participants to enable remote participation in cruises. Post-cruise, scientists and students may access digital data and biological and geological samples from our partner shore-based repositories: the University of Rhode Island Inner Space Center, Harvard Museum of Comparative Zoology, and URI Marine Geological Samples Lab. We present examples of successful shore-based participation by scientists and students in Nautilus expeditions. In 2013, Drs. Cheadle and John stood watch 24/7 with ten undergraduate and graduate students at the University of Wyoming, recording geologic features and samples, during a cruise to the Cayman Rise. The Straits of Florida & Great Bahama Bank cruise was co-led by Dr. Eberli at the University of Miami in 2014, greatly complementing existing data. That same year, the ISC hosted four early career scientists and their twelve undergraduate students who led dives from shore in collaboration with Dr. Carey, Lead Scientist at sea on the Kick'em Jenny Volcano & the Barbados Mud Volcanoes cruise. In 2015, 12 Scientists Ashore worked in collaboration with the ship-based team on the exploration of Galapagos National Park, and more than 20 are working with OET on post-cruise data & sample analysis.

  14. G-2008-0813-034

    NASA Image and Video Library

    2008-10-05

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students an opportunity to demonstrate their engineering and scientific skills by participating in live demonstrations.

  15. G-2008-0824-009

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations.

  16. Scientific habits of mind: A reform of structure and relationships

    NASA Astrophysics Data System (ADS)

    Mooney, Linda Beth

    This research was designed to broaden current elementary science reform efforts by including the voices of our young scientists. Ten high school students who were defined as possessing both coherent science knowledge and scientific habits of mind were selected for the study. Through a three-part series of in-depth, phenomenological interviews, these students revealed early childhood experiences from birth through age ten to which they attributed their development of science knowledge and scientific habits of mind. Educational connoisseurship and criticism provided the framework through which the experiences were analyzed. The research revealed the overwhelming role of scientific habits of mind in the current success of these young scientists. Scientific habits of mind were developed through the structures and relationships in the home. Parents of the participants provided a non-authoritarian, fun, playful, tolerant atmosphere in which messes and experimentation were the norm. Large blocks of uninterrupted, unstructured time and space that "belonged" to the child allowed these children to follow where curiosity led. Frequently, the parent modeled scientific habits of mind. Good discipline in the minds of these families had nothing to do with punishments, rewards, or rules. The parents gave the children responsibilities, "free rein," and their trust, and the children blossomed in that trust and mutual respect. Parents recognized and supported the uniqueness, autonomy, interests, and emotions of the child. Above all, the young scientists valued the time, freedom, patience, and emotional support provided by their parents. For girls, construction toys, hot wheels, sand boxes, and outdoor experiences were particularly important. Art classes, free access to art media, sewing, music, and physical activity facilitated observational skills and spatial relationship development. The girls knew that doing traditionally masculine and feminine activities were acceptable and celebrated by both parents. The time has come to include scientific habits of mind in science education reform. The time has come for science education reform to espouse fun and playfulness, large blocks of unstructured time, responsibility and trust, emotional support, and caring teacher-child relationships. The time has come to listen to the voices of our young scientists.

  17. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov Websites

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  18. Mentoring, Gender, and Careers of Academic Scientists.

    ERIC Educational Resources Information Center

    Grant, Linda; And Others

    This study explores the dynamics and effects of mentoring relationships, with particular emphasis on the experiences of women and minorities as proteges. It draws upon quantitative and qualitative data gathered from a survey of 587 academic scientists and interviews with 55 academic scientists, in 3 disciplinary areas: physics and astronomy,…

  19. Mentoring of young professionals in the field of rheumatology in Europe: results from an EMerging EUlar NETwork (EMEUNET) survey.

    PubMed

    Frank-Bertoncelj, Mojca; Hatemi, Gulen; Ospelt, Caroline; Ramiro, Sofia; Machado, Pedro; Mandl, Peter; Gossec, Laure; Buch, Maya H

    2014-01-01

    To explore perceptions of, participation in and satisfaction with mentoring programmes among young clinicians and researchers in rheumatology in Europe. To identify mentoring needs and expectations focusing on gender-specific differences. A survey on mentoring in rheumatology was distributed to young clinicians and researchers in rheumatology in Europe through the EMEUNET network. We received 248 responses from 30 European countries. Although 82% of respondents expressed the need for a formal mentoring scheme by EULAR, only 35% participated in mentoring programmes and merely 20% were very satisfied with mentoring. Respondents very satisfied with mentoring were more likely to participate in research, but not clinical mentoring programmes. Career mentoring was perceived as the most beneficial type of mentoring for career development by 46% of respondents, only 35% of respondents, however, declared the existence of career mentoring programmes in their country. There was no gender difference considering participation in mentoring programmes. Women, however, tended to be less satisfied than men with existing mentoring programmes and considered expectations from mentoring as more important for their career development, especially when pertaining to career planning, greater autonomy/responsibility and establishing new networks/collaborations. Career mentoring, especially in the clinical setting, was recognised as a major unmet need of existing mentoring programmes in rheumatology in Europe. Gender-specific differences were identified in the expectations from mentoring. Given this and the importance of mentoring for career prosperity of young physicians and scientists, our survey represents the first step towards developing and refining mentoring programmes in rheumatology in Europe.

  20. Lunar International Science Coordination/Calibration Targets

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Issacson, P.; Petro, N.; Runyon, C.; Ohtake, M.; Foing, B.; Grande, M.

    2007-01-01

    A new era of international lunar exploration has begun and will expand over the next four years with data acquired from at least four sophisticated remote sensing missions: KAGUYA (SELENE) [Japan], Chang'E [China], Chandrayaan-l [India], and LRO [United States]. It is recognized that this combined activity at the Moon with modern sophisticated sensors wi II provide unprecedented new information about the Moon and will dramatically improve our understanding of Earth's nearest neighbor. It is anticipated that the blooming of scientific exploration of the Moon by nations involved in space activities will seed and foster peaceful international coordination and cooperation that will benefit all. Summarized here are eight Lunar International Science Coordination/Calibration Targets (L-ISCT) that are intended to a) allow cross-calibration of diverse multi-national instruments and b) provide a focus for training young scientists about a range of lunar science issues. The targets, discussed at several scientific forums, were selected for coordinated science and instrument calibration of orbital data. All instrument teams are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments.

  1. K-12 Students' Perceptions of Scientists: Finding a Valid Measurement and Exploring Whether Exposure to Scientists Makes an Impact

    ERIC Educational Resources Information Center

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-01-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a…

  2. Who Am I versus Who Can I Become? Exploring Women's Science Identities in STEM Ph.D. Programs

    ERIC Educational Resources Information Center

    Szelényi, Katalin; Bresonis, Kate; Mars, Matthew M.

    2016-01-01

    This article explores the science identities of 21 women STEM Ph.D. students at three research universities in the United States. Following a narrative approach, the findings depict five salient science identities, including those of a) academic, b) entrepreneurial, c) industrial, and d) policy scientist and e) scientist as community educator. Our…

  3. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 34 Bow Shock Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 2 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 47 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Outreach and capacity building activities for engaging youth and public in Exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We report to the COSPAR Panel on Education and relevant community on activities, pilot projects and results relevant for outreach and engagement in exploration. Number of activities were developed in the frame of the International Lunar Exploration Working Group (ILEWG) including the participation of students in lunar symposia, space conferences or ICEUM International Conferences on Exploration and Utilisation of the Moon* ILEWG with support from various space agencies, universities and institutions has organized events for young professionals with a wide background (including scientist, engineers, humanistic, law, art students) a Moon academy, lunar and planetary students work-shops, technical training workshops, international observe the Moon sessions. ILEWG has organised or sponsored participants to a series of field training and research campaigns in Utah desert research station, Eifel volcanic park, Iceland, Rio Tinto, La Reunion island. Education and outreach projects used space missions data (SMART-1 views of the Moon, Earth views from space, Mars views, Mars crowdsourcing games, astronomy data analysis) to engage the public in citizen science and exploration. Artistic and sociological projects (e.g. "social lunar telescope, lunar zen garden, Moon academy, MoonLife, MoonLife concept store, Moon republic, artscience projects, space science in the arts, artists in residence, artists in MoonMars base") were also initiated with artists to engage the wide public in exploration. A number of projects have been developed with support from ITACCUS IAF committee. We shall discuss how these pilot projects could be expanded for the benefit of future space projects, young professionals, the space community and the public. Acknowledgements: we thank collaborators from ILEWG community and partner institutes for the different projects mentioned http://sci.esa.int/ilewg/ http://sci.esa.int/ilewg/47170-gluc-iceum11-beijing-2010lunar-declaration/ Foing B., Stoker C., Ehrenfreund P., Astrobiology field research in Moon/Mars , IJA, 10,Special Issue 03 (2011) https://www.google.nl/?gfe_rd=cr&ei=D4MHU5CMB4ve8gfzl4DQCg#q=ilewg+euromoonmars http://www.aliciaframis.com/Moonlife_Concept.html http://www.artscatalyst.org/experiencelearning/detail/itaccus/

  7. Exploring the potential of using stories about diverse scientists and reflective activities to enrich primary students' images of scientists and scientific work

    NASA Astrophysics Data System (ADS)

    Sharkawy, Azza

    2012-06-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15 -week period. My analysis of pre-and post audio-taped interview transcripts, draw-a-scientist-tests (Chambers 1983), participant observations and student work suggest that the stories about scientists and follow-up reflective activities provided resources for students that helped them: (a) acquire images of scientists from less dominant socio-cultural backgrounds; (b) enrich their views of scientific work from predominantly hands-on/activity-oriented views to ones that includes cognitive and positive affective dimensions. One of the limitations of using stories as a tool to extend students' thinking about science is highlighted in a case study of a student who expresses resistance to some of the counter-stereotypic images presented in the stories. I also present two additional case studies that illustrate how shifts in student' views of the nature of scientific work can change their interest in future participation in scientific work.

  8. Toward inclusive science education: University scientists' views of students,instructional practices, and the nature of science

    NASA Astrophysics Data System (ADS)

    Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.

    2002-01-01

    This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.

  9. Activities of the Student Forum of the Geoinformation Forum Japan

    NASA Astrophysics Data System (ADS)

    Oba, A.; Miyazaki, H.

    2012-07-01

    This reports a history and future prospects of the activities by the Student Forum of the Geoinformation Forum Japan. For growths of academic fields, active communications among students and young scientists are indispensable. Several academic communities in geoinformation fields are established by youths and play important roles of building networks over schools and institutes. The networks are expected to be innovative cooperation after the youths achieve their professions. Although academic communities are getting fixed growth particularly in Japan, youths had gotten little opportunities to make contacts with youths themselves. To promote gotten youth activities among geoinformation fields, in 1998, we started a series of programs that named the Student Forum of the Geoinformation Forum Japan involving students and young scientists within the annual conferences, Geoinformation Forum Japan. The programs have provided opportunities to do presentation their studies by posters, some events, and motivations to create networks among students and young scientists. From 2009, some members of our activities set additional conference in west area of Japan. Thus our activities are spread within Japan. As a result of these achievements, the number of youth dedicating to the programs keeps growing. From 2009, it's getting international gradually, however, almost all the participants are still Japanese. To keep and expand the network, we are planning to make some nodes with some Asian youth organizations in the field of geoinformation. This paper is concluded with proposals and future prospects on the Student Forum of the Geoinformation Forum Japan.

  10. Girls InSpace project: A new space physics outreach initiative.

    NASA Astrophysics Data System (ADS)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space Sciences. The AGU has since challenged the scientific community to act and support gender balance initiatives as crucial path to progress. This project aligns well with AGU's mission and similar-thinking organizations, and aims to educate and promote development of young girls in underrepresented communities.

  11. Communicating science

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2010-03-01

    A dozen young graduate students stand awkwardly in a line on stage. They look around hesitantly as Alan Alda prepares to lead them in an improvisation exercise. The 73-year-old actor, best known for his appearances in hit TV shows such as M*A*S*H and The West Wing, is trying to see if such exercises, more commonly associated with theatrical training, can help young scientists to improve their public-speaking skills.

  12. Sustaining Young Forest Communities: Ecology and Management of Early Successional Habitats in the Central Hardwood Region, USA

    Treesearch

    Cathryn H. Greenberg; Beverly S. Collins; Frank R. Thompson III

    2011-01-01

    There is a rising concern among natural resource scientists and managers about decline of the many plant and animal species associated with early ­successional habitats. There is no concise definition of early successional habitats. However, all have a well developed ground cover or shrub and young tree component, lack a closed, mature tree canopy, and are created or...

  13. Joint AIRAPT-25th and EHPRG-53rd International Conference on High Pressure Science and Technology

    NASA Astrophysics Data System (ADS)

    Syassen, Karl

    2017-10-01

    The AIRAPT arose as a scientific forum for discussions aiming to promote contacts and cooperation between scientists and organizations of different countries, to collect and disseminate of information, having the advancement of science and technology in the field of high pressure as main objective. Nowadays the field has experienced an astonishing growth in an open multidisciplinary environment that rather contributed to the creation of different interdisciplinary teams of excellence, being able to face the important challenges posed by high-pressure research. Great achievements have been possible towards higher pressures, nowadays making possible experiments in the TPa range in our laboratories, the improvement and adaptation of different characterization techniques of matter under extreme conditions of pressure and temperature or the development of efficient ab initio methods with capabilities to explain and eventually predict new physical phenomena and materials design. All decisively contributed to the advance of science and understanding of nature, with high pressure as common leitmotiv. On the 50th Anniversary of the AIRAPT, this talk will is intended to commemorate the enthusiastic and encouraging work of high-pressure pioneers and to motivate young scientists to join us and continue the challenge of exploring compressed matter as a way to unveil new phenomena and materials and a better understanding of our world.

  14. Undergraduates study climate change science, philosophy, and public policy

    NASA Astrophysics Data System (ADS)

    Bullock, Mark A.; Frodeman, Robert L.

    The National Science Foundation's (NSF) Research Experience for Undergraduates (REU) program provides undergraduate students with the opportunity to participate in ongoing scientific research. Existing either as stand-alone summer programs or as supplementary components to existing NSF research grants, the REU program focuses on introducing aspiring young scientists to the delights and complexities of science. Global Climate Change and Society (GCCS) is an intensive, 8-week REU program that began a 3-year run in the summer of 2001.Developed by a philosopher at the Colorado School of Mines, and a planetary scientist at Southwest Research Institute in Boulder, Colrado, GCCS is a unique experiment in research and pedagogy that introduces students to science by using a distinctive approach. Choosing as its topic the questions surrounding global climate change, the program explores the interwoven scientific, philosophical, and public policy issues that make the climate change debate such a volatile topic in contemporary society. Last summer, the program selected 12 undergraduates through a nationally advertised competition. Student interns came from diverse academic and cultural backgrounds and included physics, philosophy and public policy majors from elite liberal arts schools, major research institutions, and mainstream state universities. The program was held at the University of Colorado and the National Center for Atmospheric Research (NCAR), in Boulder, Colorado (Figure 1).

  15. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III

    2014-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.

  16. At the Beginning of the STEM Pipeline: A Case Study Exploring Preadolescent Female Students' Attitudes Toward Science, Perceptions of Scientists, and Developing Career Aspirations

    NASA Astrophysics Data System (ADS)

    Heacock, Lucy Vogel

    The continuous underrepresentation of women in science, technology, engineering, and math (STEM), referred to as the leaky pipeline, has been examined from multiple perspectives internationally, while the attitudes and perceptions of preadolescent girls regarding STEM remain largely ignored. Employing a constructivist paradigm, this qualitative case study explored the perceptions and attitudes of 40 public elementary school female students across three grade levels regarding science, scientists, and career aspirations. Mixed-methods data collections included three survey instruments combined with semi-structured interviews. Self-efficacy, stereotype threat, and career choice theory provided the framework for the overarching research question: What are the attitudes and perceptions of female preadolescent students at the third, fourth, and fifth grade levels regarding science and scientists, and how might these dispositions affect their early development of STEM career aspirations and interests? The Three-Dimensions of Student Attitude Towards Science (TDSAS) instrument informed the exploration of self-efficacy; the modified Draw-A-Scientist Test (mDAST) and Rubric informed the exploration of stereotype threat; and the STEM-Career Interest Survey (CIS) informed the exploration of career aspirations. Semi-structured interviews were conducted with six participants. Results from this study indicated that the majority of the preadolescent girls thought science was an important topic to study and displayed an attitude of self-confident ability to learn science and be successful in science class. They highly enjoyed scientific experimentation and deeply valued problem solving. While they inferred they did not experience gender bias, the girls did engage in stereotyping scientists. Over half the girls expected to use science in their future careers, while a minority had already determined they wanted to be scientists when they grow up. The study concludes with recommendations for education stakeholders and for future research.

  17. Going to School with Madame Curie and Mr. Einstein: Gender Roles in Children's Science Biographies

    ERIC Educational Resources Information Center

    Owens, Trevor

    2009-01-01

    One of the first places children encounter science and scientists is children's literature. Children's books about science and scientists have, however, received limited scholarly attention. By exploring the history of children's biographies of Marie Curie and Albert Einstein, the two most written about scientist in children's literature, this…

  18. Toward an Understanding of the Epistemic Values of Biological Scientists as Expressed in Scholarly Publication

    ERIC Educational Resources Information Center

    Dunn, Kathel

    2010-01-01

    This dissertation develops a deeper understanding of the epistemic values of scientists, specifically exploring the proposed values of community, collaboration, connectivity and credit as part of the scholarly communication system. These values are the essence of scientists actively engaged in conducting science and in communicating their work to…

  19. Using Videoconferencing in a School-Scientist Partnership: Students' Perceptions and Scientists' Challenges

    ERIC Educational Resources Information Center

    Falloon, Garry

    2012-01-01

    This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…

  20. From Scoresby to Nansen to Wegener: The Role of Polar History in Producing the Next Generation of High-Latitude Hydrologic and Cryospheric Scientists

    NASA Astrophysics Data System (ADS)

    Sturm, M.

    2009-05-01

    Many scientists, like myself, were first attracted to the polar regions by tales of heroic explorers. These earlier explorers were also scientists, or more correctly, naturalists. They produced maps, sketches, and studies on atmospheric, cryospheric, biological, and sociological topics alike. For many of us, reading about polar history led directly to our interests in cryospheric and hydrological science. While the age of geographical exploration is long over, replaced by Google Earth, the stories from that by-gone era may still be one of the most powerful recruiting tools for producing passionate and committed polar scientists for the next generation. I would argue for an increased emphasis in teaching our students about the history of exploration and science. If we do so, at a minimum our students will better appreciate modern clothing, transportation, data loggers, communication equipment, and computers. More importantly, it will introduce to the next generation the idea of the naturalist, whose purview is all components of the natural system. Many of the high latitude issues facing us today require a system-science approach that can be difficult to learn or master in an era of disciplinary specialization. The early naturalist-explorers understood this approach and still have much to teach us if we take the time to listen to what went before.

  1. The talent process of successful academic women scientists at elite research universities in New York state

    NASA Astrophysics Data System (ADS)

    Kaenzig, Lisa M.

    The importance of science in our society continues to increase, as the needs of the global culture and the problems of the world's growing populations affect resources internationally (DeLisi, 2008; Fischman, 2007; Park, 2008). The need for qualified and experienced scientists to solve complex problems is important to the future of the United States. Models of success for women in STEM disciplines are important to improve the recruitment and retention of women in academic science. This study serves as an examination of the facilitators and barriers---including external factors and internal characteristics---on the talent development process of successful women academic scientists. Since there are few studies relating specifically to the career experiences of successful women in academic science careers (Ceci & Williams, 2007; Wasserman, 2000; Xie & Shauman, 2003), a literature review was conducted that examined the (1) the gifted literature on women, including the eminence literature; (2) the higher education literature on women faculty and academic science, and (3) the literature related to the internal characteristics and external factors that influence the talent development process. The final section of the literature review includes a literature map (Creswell, 2009) outlining the major studies cited in this chapter. The conclusion, based on a critical analysis of the literature review, outlines the need for this study. The current study utilizes the framework of Gagne's differentiated talent development model for gifted individuals (Gagne, 1985, 1991) to examine the themes cited in multiple studies that influence the talent development process. Through a mixed-design methodology (Creswell, 2009) that incorporates quantitative and qualitative analysis using a survey and follow-up interviews with selected participants, this study seeks to explore the effects of internal characteristics, external influences, significant events, and experiences on the success of women scientists at elite research universities in New York. A criterion sample (n=94) was selected resulting in forty-one successful academic women scientists as the study participants, representing a response rate of 43.6%. Findings include the important roles of parents, teachers, mentors and collaborators on the talent development process of the participants. The perception of the study participants was that there were multiple facilitators to their talent development process, while few barriers were acknowledged. The most important barriers cited by participants were perceptions of institutional culture and sexism. Implications for practice in both gifted and higher education are suggested, based on the findings of the study. For gifted education, these suggestions include the need to provide parental education programs emphasizing the importance of intellectual engagement at home, providing dedicated time for science in primary education, and fostering science and mathematics opportunities, particularly for girls and young women. Stressing the importance of hard work, persistence and intelligent risk-taking are also important for encouraging girls in science. For higher education, the study provides models of success of academic women scientists, outlines the importance of mentors and collaborators, and emphasizes the critical role that institutions and departments play in facilitating or impeding women's career development as academics. The current study suggests several areas for further research to continue the exploration of the talent development influences on academic women scientists. Based on the findings of this study, recommended studies include examining the differences of generational cohorts; probing the roles of collaborators/mentor colleagues; exploring differences for women from various ethnic and racial backgrounds; replicating the current study with larger populations of women scientists; investigating the role of facilitative school environments; examining the patterns of influence of first generation successful academic women, and evaluating matched pairs of male and female successful academics.

  2. American Academy of Forensic Sciences

    MedlinePlus

    ... Academy News PDF Library Proceedings Journal of Forensic Sciences Information for Authors Searchable Index Contact Information Forensic Links ... Dale Stewart Award 2018 Annual Scientific Meeting Registration ... in Forensic Science … Now What? Young Forensic Scientists Forum (YFSF) Annual ...

  3. G-2008-0813-024

    NASA Image and Video Library

    2008-10-05

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations. Jim Garvin explains Mars

  4. The Young Scientist: Sense-sational Sensors!

    ERIC Educational Resources Information Center

    Lewis, Carol

    1991-01-01

    Human and electronic sensors that can indicate the presence of light, sound, temperature, pressure, and movement are discussed. Activities that investigate the human senses are described. Directions for making an electronic touch sensor are provided. (KR)

  5. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  6. Science and Exploration in the Classroom & Beyond: An Interdisciplinary STEAM Curriculum Developed by SSERVI Educators & Scientists

    NASA Astrophysics Data System (ADS)

    Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker

    2017-10-01

    Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.

  7. Bridging the Research-to-Practice Gap: The Role of the Nurse Scientist.

    PubMed

    Brant, Jeannine M

    2015-11-01

    To describe the emerging role of the nurse scientist in health care organizations. Historical perspectives of the role are explored along with the roles of the nurse scientist, facilitators, barriers, and future implications. Relevant literature on evidence-based practice and research in health care organizations; nurse scientist role; interview with University of Colorado nurse scientist. The nurse scientist role is integral for expanding evidence-based decisions and nursing research. A research mentor is considered the most important facilitator for a successful nursing research program. Organizations should consider including the nurse scientist role to facilitate evidence-based practice and expand opportunities for nursing research. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. SunBlock '99: Young Scientists Investigate the Sun

    NASA Astrophysics Data System (ADS)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  9. HRP Chief Scientist's Office: Conducting Research to Enable Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Fogarty, J.; Vega, L.; Cromwell, R. L.; Haven, C. P.; McFather, J. C.; Savelev, I.

    2017-01-01

    The HRP Chief Scientist's Office sets the scientific agenda for the Human Research Program. As NASA plans for deep space exploration, HRP is conducting research to ensure the health of astronauts, and optimize human performance during extended duration missions. To accomplish this research, HRP solicits for proposals within the U.S., collaborates with agencies both domestically and abroad, and makes optimal use of ISS resources in support of human research. This session will expand on these topics and provide an opportunity for questions and discussion with the HRP Chief Scientist. Presentations in this session will include: NRA solicitations - process improvements and focus for future solicitations, Multilateral Human Research Panel for Exploration - future directions (MHRPE 2.0), Extramural liaisons - National Science Foundation (NSF) and Department of Defense (DOD), Standardized Measures for spaceflight, Ground-based Analogs - international collaborations, and International data sharing.

  10. Scientist-teacher interactions: Catalysts for developing transformational classrooms

    NASA Astrophysics Data System (ADS)

    McCarty, Robbie Von

    Professional development leading to standards-based teaching practices in U.S. schools is a remarkably subtle and lengthy process. Research indicates that there are many effective tools for teaching through inquiry available to teachers (Lawson, Abraham, & Renner, 1989), but also that teachers continue to present traditional positivistic views of science (Hashweh, 1985; Maor & Taylor, 1995; Zucker, Young, & Luczak, 1996) and appear to view constructivism as a "method" of teaching rather than a way of thinking about learning (Tobin, Tippins, & Gallard, 1984). Teachers are expected to create enriched environments where students can develop the thinking skills of scientists (Roth & Roychoudhury, 1993) but the majority of teachers have never experienced such environments; the involvement of scientists in science education is encouraged by the NRC, AAAS, and NSTA. Teachers and students are expected to act as coresearchers, where negotiation, debate, consensus, and reflection are key. It is believed that scientist and teachers interacting as co-researchers could assist teachers in developing attitudes of freedom in exploration: the essence of science and a mindset that constructivism is a referent, or tool for critical reflection (Tobin, Tippins & Gallard, 1994). This study seeks to identify aspects of scientist-teacher interactions in the field that could serve as catalysts for developing transformational classrooms. Multiple data sources were collected for this study: audiotapes and transcripts of laboratory interactions and informal interviews, written narratives from applications and funding documents, field notes, and personal communications. Data were simultaneously collected, analyzed and coded as a perpetual review of the literature was conducted as in the grounded theory methodology defined by Glaser (1967) and later by Strauss & Corbin (1990). Findings indicate all four teachers valued field experiences in personal ways, developed new understandings of scientific practice and content, and anticipated using their new knowledge upon returning to their classrooms with excitement. However, the degree of implementation in classrooms varied according to common aspects of laboratory and classroom contexts. Theoretical literature, notably the Personal Construct Theory of George Kelly, coupled with these findings contributed to emergent theory regarding a hypothetical model for a professional development program of research.

  11. Learning Without Boundaries: A NASA - National Guard Bureau Distance Learning Partnership

    NASA Technical Reports Server (NTRS)

    Anderson, Susan H.; Chilelli, Christopher J.; Picard, Stephan

    2003-01-01

    With a variety of high-quality live interactive educational programs originating at the Johnson Space Center in Houston, Texas and other space and research centers, the US space agency NASA (National Aeronautics and Space Administration) has a proud track record of connecting with students throughout the world and stimulating their creativity and collaborative skills by teaching them underlying scientific and technological underpinnings of space exploration. However, NASA desires to expand its outreach capability for this type of interactive instruction. In early 2002, NASA and the National Guard Bureau -- using the Guard's nationwide system of state-ofthe-art classrooms and high bandwidth network -- began a collaboration to extend the reach of NASA content and educational programs to more of America's young people. Already, hundreds of elementary, middle, and high school students have visited Guard e-Learning facilities and participated in interactive NASA learning events. Topics have included experimental flight, satellite imagery-interpretation, and Mars exploration. Through this partnership, NASA and the National Guard are enabling local school systems throughout the United States (and, increasingly, the world) to use the excitement of space flight to encourage their students to become passionate about the possibility of one day serving as scientists, mathematicians, technologists, and engineers. At the 54th International Astronautical Conference MAJ Stephan Picard, the guiding visionary behind the Guard's partnership with NASA, and Chris Chilelli, an educator and senior instructional designer at NASA, will share with attendees background on NASA's educational products and the National Guard's distributed learning network; will discuss the unique opportunity this partnership already has provided students and teachers throughout the United States; will offer insights into the formation by government entities of e-Learning partnerships with one another; and will suggest a possible future for the NASA - National Guard Bureau partnership, one potentially to include live multi-party interaction of hundreds of students in several countries with astronauts, scientists, engineers and designers. To inspire the next generation of explorers as only NASA can!

  12. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  13. KSC-03pd1832

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A science briefing on the Mars Exploration Rover (MER) missions is held for the media at Kennedy Space Center. From left, the participants are Donald Savage, NASA Public Information Officer; Dr. Ed Weiler, Associate Administrator for Space Science, NASA Headquarters; Dr. Jim Garvin, Mars lead scientist, NASA Headquarters; Dr. Cathy Weitz, MER program scientist, NASA Headquarters; Dr. Joy Crisp, MER project scientist, Jet Propulsion Laboratory; and Dr. Steve Squyres, Mer principal investigator, Cornell Univeristy, Ithaca, N.Y. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  14. What Scientists Say: Scientists' Views of Nature of Science and Relation to Science Context

    ERIC Educational Resources Information Center

    Schwartz, Renee; Lederman, Norman

    2008-01-01

    The purpose of this study is to examine practicing scientists' views of nature of science (NOS) and explore possible relationships between these views and science context. Science educators emphasize teaching NOS through inquiry-based learning experiences throughout science disciplines. Yet aspects of NOS that are agreed upon as relevant to…

  15. Living with Internationalization: The Changing Face of the Academic Life of Chinese Social Scientists

    ERIC Educational Resources Information Center

    Xie, Meng

    2018-01-01

    Internationalization is an integral part of the strategies of leading Chinese universities to strive for world-class standing. It has left its marks on the academic life of China's social scientists. This article explores the impact of internationalization on the academic life of Chinese social scientists using Tsinghua University as an example.…

  16. American and Greek Children's Visual Images of Scientists: Enduring or Fading Stereotypes?

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Bonoti, Fotini; Kontopoulou, Argiro

    2016-01-01

    This study explores American and Greek primary pupils' visual images of scientists by means of two nonverbal data collection tasks to identify possible convergences and divergences. Specifically, it aims to investigate whether their images of scientists vary according to the data collection instrument used and to gender. To this end, 91…

  17. A Preliminary Exploration of Operating Models of Second Cycle/Research Led Open Education Involving Industry Collaboration

    ERIC Educational Resources Information Center

    Olsson, Ulf

    2014-01-01

    Scientists from five Swedish universities were interviewed about open second cycle education. Research groups and scientists collaborate closely with industry, and the selection of scientists for the study was made in relation to an interest in developing technology-enhanced open education, indicated by applications for funding from the Knowledge…

  18. Leading US nano-scientists' perceptions about media coverage and the public communication of scientific research findings

    NASA Astrophysics Data System (ADS)

    Corley, Elizabeth A.; Kim, Youngjae; Scheufele, Dietram A.

    2011-12-01

    Despite the significant increase in the use of nanotechnology in academic research and commercial products over the past decade, there have been few studies that have explored scientists' perceptions and attitudes about the technology. In this article, we use survey data from the leading U.S. nano-scientists to explore their perceptions about two issues: the public communication of research findings and media coverage of nanotechnology, which serves as one relatively rapid outlet for public communication. We find that leading U.S. nano-scientists do see an important connection between the public communication of research findings and public attitudes about science. Also, there is a connection between the scientists' perceptions about media coverage and their views on the timing of public communication; scientists with positive attitudes about the media are more likely to support immediate public communication of research findings, while others believe that communication should take place only after research findings have been published through a peer-review process. We also demonstrate that journalists might have a more challenging time getting scientists to talk with them about nanotechnology news stories because nano-scientists tend to view media coverage of nanotechnology as less credible and less accurate than general science media coverage. We conclude that leading U.S. nano-scientists do feel a sense of responsibility for communicating their research findings to the public, but attitudes about the timing and the pathway of that communication vary across the group.

  19. Professional physical scientists display tenacious teleological tendencies: purpose-based reasoning as a cognitive default.

    PubMed

    Kelemen, Deborah; Rottman, Joshua; Seston, Rebecca

    2013-11-01

    Teleological explanations account for objects and events by reference to a functional consequence or purpose. Although they are popular in religion, they are unpopular in science: Physical scientists in particular explicitly reject them when explaining natural phenomena. However, prior research provides reasons to suspect that this explanatory form may represent a default explanatory preference. As a strong test of this hypothesis, we explored whether physical scientists endorse teleological explanations of natural phenomena when their information-processing resources are limited. In Study 1, physical scientists from top-ranked American universities judged explanations as true or false, either at speed or without time restriction. Like undergraduates and age-matched community participants, scientists demonstrated increased acceptance of unwarranted teleological explanations under speed despite maintaining high accuracy on control items. Scientists' overall endorsement of inaccurate teleological explanation was lower than comparison groups, however. In Study 2, we explored this further and found that the teleological tendencies of professional scientists did not differ from those of humanities scholars. Thus, although extended education appears to produce an overall reduction in inaccurate teleological explanation, specialization as a scientist does not, in itself, additionally ameliorate scientifically inaccurate purpose-based theories about the natural world. A religion-consistent default cognitive bias toward teleological explanation tenaciously persists and may have subtle but profound consequences for scientific progress. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. Bridging the Gap Between Preservice Early Childhood Teachers' Cultural Values, Perceptions of Values Held by Scientists, and the Relationships of These Values to Conceptions of Nature of Science

    NASA Astrophysics Data System (ADS)

    Akerson, Valarie L.; Buzzelli, Cary A.; Eastwood, Jennifer L.

    2012-02-01

    This study explored preservice teachers' views of their own cultural values, the cultural values they believed scientists hold, and the relationships of these views to their conceptions of nature of science (NOS). Parallel assignments in a foundations of early childhood education and a science methods course required preservice teachers to explore their own cultural backgrounds and their perceptions of the cultural backgrounds of scientists. The Schwartz Values Inventory was used to measure preservice teachers' personal cultural values and those they perceived of scientists. The Views of Nature of Science version B questionnaire and interviews assessed teachers' conceptions of NOS. Copies of student work were collected and sought for themes indicating how preservice teachers perceived scientists' cultural values and how those perceptions changed over time. We found that from the beginning to the end of the semester, preservice teachers perceived fewer differences between their own cultural values and those they perceived scientists held, though they did not change their own cultural values. We found that preservice teachers' NOS conceptions improved, and that they were related to both their cultural values and those they perceived scientists held. Preservice teachers who indicated the fewest differences between their own cultural values and those they perceived scientists held the most informed conceptions of NOS.

  1. Scientists want more children.

    PubMed

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  2. Cumulative advantages and social capabilities in scientific mobility in the Health Sciences: The Spanish case.

    PubMed

    Aceituno-Aceituno, Pedro; Melchor, Lorenzo; Danvila-Del-Valle, Joaquín; Bousoño-Calzón, Carlos

    2017-01-01

    The big problem in global public health, arising from the international migration of physicians from less-developed to more-developed countries, increases if this migration also affects scientists dedicated to health areas. This article analyzes critical variables in the processes of Spanish scientific mobility in Health Sciences to articulate effective management policies for the benefit of national public health services and the balance between local and global science. This study develops a survey to measure and analyze the following crucial variables: research career, training, funding, working with a world-class team, institutional prestige, wages, facilities/infrastructure, working conditions in the organization of the destination country, fringe benefits in the organization of the destination country and social responsibility in the organization of the departure country. A total of 811 researchers have participated in the survey, of which 293 were from the health sector: Spanish scientists abroad (114), scientists that have returned to Spain (32) and young researchers in Spain (147). The most crucial variables for Spanish scientists and young researchers in Spain in Health Sciences moving abroad are the cumulative advantages (research career, training, funding and institutional prestige) plus wages. On the other hand, the return of Spanish scientists in the Health Sciences is influenced by cumulative variables (working with a world-class team, research career and institutional prestige) and also by other variables related to social factors, such as working conditions and fringe benefits in the destination country. Permanent positions are rare for these groups and their decisions regarding mobility depend to a large extent on job opportunities. Spanish health organizations can influence researchers to return, since these decisions mainly depend on job opportunities. These organizations can complement the cumulative advantages offered by the wealthier countries with the intensification of social factors.

  3. Digital exploration via Skype: connecting your classroom with the experts

    NASA Astrophysics Data System (ADS)

    Hay, Rachel

    2014-05-01

    This presentation describes experiences of using Skype in the classroom to connect learners with scientists and explorers all over the world in order to deepen learners' knowledge and understanding of course material, develop their enquiry skills, and broaden their perspectives on life beyond the classroom walls. In a session organised by the Royal Scottish Geographical Society (RSGS) in partnership with Digital Explorer, twenty-five Perth High School students who were studying coral reefs took part in an exciting live Skype chat with researchers on Australia's Great Barrier Reef. Students spoke to a marine biologist and a geographer who were on-board their research vessel some 15,000km away. They learned about the Catlin Survey's cutting-edge research, which was set up to study conditions on the reef, take 50,000 images, and create a baseline for future comparisons. In addition, the scientists aimed to develop an underwater equivalent of Google Streetview, called Seaview, which will allow people everywhere to engage with this incredible ecosystem. We heard about the divers' encounter with Tiger sharks earlier that same day, and had a tour of the research vessel, as well as asking the experts questions about their research findings and career paths. Feedback from the students was extremely positive, and it was clear that the experience had greatly enhanced their studies. For myself and the other teachers involved, it was an exciting (and surreal!) experience, and helped to update our knowledge of our subjects. Between July and December 2013 I volunteered as Community Manager for Digital Explorer in their partnership with Skype in the classroom. Digital Explorer is an educational social enterprise dedicated to engaging young people in global issues, and preparing them to tackle environmental and technological changes in the 21st century. We offered seventeen lessons as part of Skype in the classroom's Exploring Oceans event in October and November, which aimed to educate and enthuse young people about the world's oceans. It was fascinating to connect with other teachers and with the guest speakers, and there is huge potential for future events on different themes. This presentation will outline what I think are the main benefits of, and challenges to, embedding the use of Skype in more classrooms, and offer some tips for successful Skype lessons. Value is added when Skype lessons are incorporated into a well-planned scheme of work that utilises high-quality, innovative resources, such as those produced by Digital Explorer. The use of this technology in schools increases student engagement in course material, as well as in local and global issues, thus facilitating the development of successful learners and informed global citizens. In addition, it provides opportunities for learners to take responsibility for, and direct, their own learning and skill development. I hope that more teachers will develop their confidence in using Skype with their students, as it offers exciting opportunities for creating interactive lessons and bringing the world into your classroom. Acknowledgements: Jamie Buchanan-Dunlop - Director, Digital Explorer http://digitalexplorer.com @de_updates Charlotte Moore - Made By Many/Skype in the Classroom https://education.skype.com/ @SkypeClassroom Dr Joyce Gilbert - Education Officer, Royal Scottish Geographical Society http://www.rsgs.org/ @RoyalScotGeoSoc

  4. Two Students Win AGU Scholarships

    NASA Astrophysics Data System (ADS)

    Howard, Claire

    2014-10-01

    AGU is pleased to announce the winners of two student scholarships. Caterina Brighi is the recipient of the 2014 David S. Miller Young Scientist Scholarship, which recognizes a student of the Earth sciences whose academic work exhibits interest and promise.

  5. MyMoon: Engaging the “Missing Link” in Lunar Science Exploration through New Media

    NASA Astrophysics Data System (ADS)

    Shaner, A.; Shupla, C.; Shipp, S. S.; Eriksson, A.

    2009-12-01

    NASA’s new scientific exploration of the Moon, coupled with the public’s interest in the Moon and innovative social networking approaches, is being leveraged to engage a fresh adult audience in lunar science and exploration. In July 2009 the Lunar and Planetary Institute (LPI) launched a lunar education new media portal, MyMoon. LPI is collaborating with lunar scientists, educators, artists - and the public - to populate the site with science content, diverse media exhibits, events, and opportunities for involvement. Through MyMoon, the general public interacts with lunar content that informs them about lunar science research and missions, and engages them in future plans for lunar exploration and eventual habitation. MyMoon’s objectives are to: 1) develop a dynamic, new media learning portal that will enable the general public, with a focus on adults ages 18-35; 2) host a growing, active audience that becomes further involved in NASA’s lunar exploration by sharing their ideas about lunar topics, creating their own materials, and participating in events and experiences; 3) build a community of enthusiasts through social networking media; 4) create a model for online engagement of audiences 18 to 35, and provide detailed evaluation data on best practices and strategies for success. Immersive new media technologies are changing the way that people interact, work, learn, and teach. These provide potentially high-impact opportunities for reaching an audience of young adults, age 18 to 35, that largely is not accessed by, or accessing, NASA (Dittmar, 2004). MyMoon strives to engage - and involve - this audience to build a community of enthusiasts for lunar scientific exploration through social networks and current and emerging new media platforms, including posting videos on YouTube, photo contests on Flickr, and sharing events and challenges on Facebook and Twitter. MyMoon features interactive exhibits that are audience driven and added on a quarterly basis. Contests and polls encourage audience involvement. Semi-monthly webcasts allow audience members to interact directly with scientists, authors, and artists. A guest blog encourages audience responses to current lunar events and provocative viewpoints. Evaluation is an integral component to the MyMoon project. Evaluation data are obtained in short bursts through visitor feedback, prompted by a virtual squirrel who dares visitors to share their impressions, ideas, and interests in lunar science and exploration. Based on evaluation data, the current challenge that faces MyMoon is marketing further to the target audience; numerous approaches are being tested and evaluated. Dittmar, M. 2004, “The Market Study for Space Exploration,” (Houston, TX, Dittmar Associates, Inc.)

  6. Possible portrait of Galileo Galilei as a young scientist

    NASA Astrophysics Data System (ADS)

    Molaro, P.

    2012-02-01

    We describe here the possible discovery of a portrait of Galileo Galilei in his youth. The painting is not signed and the identification is mainly physiognomic. In fact, the face reveals clear resemblance to Domenico Tintoretto's portrait and to Giuseppe Calendi's engraving derived from a lost portrait made by Santi di Tito in 1601. Along with the portraits by Tintoretto, Furini, Leoni, Passignano, and Sustermans this could be another portrait of Galileo made al naturale, but, unlike the others, it depicts the scientist before he reached fame. Galileo looks rather young, at age of about 20-25 years. His eyes in the portrait are clear and the expression intense and appealing. From Galileo's correspondence we know of a portrait made by his friend Ludovico Cigoli. Rather interesting, though admittedly quite improbable, is the possibility of a self-portrait whose existence is mentioned in the first biography of Galileo by Salusbury in 1664.

  7. An Opportunity for Industry-Academia Partnership: Training the Next Generation of Industrial Researchers in Characterizing Higher Order Protein Structure.

    PubMed

    Bain, David L; Brenowitz, Michael; Roberts, Christopher J

    2016-12-01

    Training researchers for positions in the United States biopharmaceutical industry has long been driven by academia. This commentary explores how the changing landscape of academic training will impact the industrial workforce, particularly with regard to the development of protein therapeutics in the area of biophysical and higher order structural characterization. We discuss how to balance future training and employment opportunities, how academic-industrial partnerships can help young scientists acquire the skills needed by their future employer, and how an appropriately trained workforce can facilitate the translation of new technology from academic to industrial laboratories. We also present suggestions to facilitate the coordinated development of industrial-academic educational partnerships to develop new training programs, and the ability of students to locate these programs, through the development of authoritative public resources. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Diagnosis and Management of Iliac Artery Endofibrosis: Results of a Delphi Consensus Study.

    PubMed

    2016-07-01

    Iliac endofibrosis is a rare condition that may result in a reduction of blood flow to the lower extremity in young, otherwise healthy individuals. The data to inform everyday clinical management are weak and therefore a Delphi consensus methodology was used to explore areas of consensus and disagreement concerning the diagnosis and management of patients with suspected iliac endofibrosis. A three-round Delphi questionnaire approach was used among vascular surgeons, sports physicians, sports scientists, radiologists, and clinical vascular scientists with experience of treating this condition to explore diagnosis and clinical management issues for patients with suspected iliac artery endofibrosis. Analysis is based on 18 responses to round 2 and 14 responses to round 3, with agreement reported when 70% of respondents were in agreement. Initially there was agreement on the typical symptoms at presentation and the need for an exercise test in the diagnosis. Round 3 clarified that duplex ultrasound was a useful tool in the diagnosis of endofibrosis. There was consensus on the most appropriate type of surgery (endarterectomy and vein patch) and that endovascular interventions were inadvisable. The final round helped to inform aspects of the natural history and post-operative surveillance. Progression of the disease was likely with continued exercise but cessation may prevent progression. Surveillance after surgery is generally recommended yearly with at least a clinical assessment. There is broad agreement about the presenting symptoms and the investigations required to confirm (or exclude) the diagnosis of iliac endofibrosis. There was consensus on the surgical approach to repair. Disagreement existed about the specific diagnostic criteria that should be applied during non-invasive testing and about post-operative care and resumption of exercise. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.

    2006-12-01

    Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth, supporting improved student achievement in science and math, and enhancing environmental awareness. NASA provides the primary source of funding for GLOBE.

  10. Salmon cycles: Influences of a science field study immersion experience with Native American young women

    NASA Astrophysics Data System (ADS)

    Ault, Phyllis Campbell

    Native Americans, and particularly Native women, are not proportionally represented in higher education, or in science, mathematics, technology, and engineering fields. This study examined an out-of-school science education program which combined traditional Native American cultural and ecological knowledge with Western science in conducting authentic field studies. A qualitative, embedded case study approach was used to explore how young Native American women were influenced by an out-of-school program integrating a culturally responsive approach and experiential research projects. Within this context of combined cultures, three significant domains emerged: field study in science, sense of place, and networks of supportive relationships. These domains interacted with the aspirations of the eight Native women in the study. Using interview transcripts, reflective writings, and participant data, the study explored the blending of Indigenous and Western science in "communities of practice" (e.g., fisheries biology, restoration ecology, and forestry). The eight Native women in this study participated as young adolescents and later returned as counselors. Interviews focused on their postsecondary aspirations and choices. Findings validated previous research on the value of infusing Traditional Ecological Knowledge and Western science for Native students. The study found the combination of culturally responsive pedagogy and authentic experiences in "communities-of-practice" held a beneficial influence on postsecondary pathways. The importance of respect and friendships fostered through the program was associated with resilience and perseverance in educational aspirations. Immersion in field study with Native peers as well as Native and non-Native researchers was a catalyst for all the women, in a number of different ways, such as: deeper involvement with the Native community, strengthening cultural and academic identity, inspiration to learn more about their cultural heritage, and interest in pursuing science or science-related careers. Commitments to "giving back" to the community, stewardship, and activism emerged as significant outcomes. The experience created a safe, empowering place to be Native, "crazy, a scientist, and a fish geek"---all at once.

  11. What Is the (ethical) Role of Scientists?

    NASA Astrophysics Data System (ADS)

    Oreskes, N.

    2014-12-01

    Many scientists are reluctant to speak out on issues of broad societal importance for fear that doing so crosses into territory that is not the scientists' domain. Others fear that scientists lose credibility when they address ethical and moral issues. A related concern is that discussing social or ethical questions runs the risk of politicizing science. Yet history shows that in the past, scientists often have spoken out on broad issues of societal concern, often (although not always) effectively. This paper explores the conditions under which scientists may be effective spokesmen and women on ethical and moral choices, and suggests some criteria by which scientists might decide when and whether it is appropriate for them to speak out beyond the circles of other technical experts.

  12. Five scientists at Johns Hopkins in the modern evolution of neuroscience.

    PubMed

    Harrison, T S

    2000-08-01

    Neuroscience's evolution at Johns Hopkins, from neurophysiology to the new field of neurobiology, though unplanned, was rapid and important. Beginning in 1933 when Philip Bard became professor of physiology at Johns Hopkins, members of his department concentrated initially on neuroanatomical control of placing reactions and sexual activity. Vernon Mountcastle, extending available techniques, discovered vertical somato-sensory columns in the 1950's. Stephen Kuffler, who arrived at Hopkins in 1947, was a pioneer in single unit microelectrode recording techniques. He soon attracted scientists from all over the world to his laboratory. Among them, Torsten Wiesel and David Hubel discovered vertical neuronal columns in the visual cortex. During several decades at Johns Hopkins, these five scientists set extremely high scientific standards and established a climate of inquiry in which ideas were shared and young scientists encouraged. They contributed significantly to the emerging discipline of neuroscience.

  13. Exploring Your Universe at UCLA: Steps to Developing and Sustaining a Large STEM Event

    NASA Astrophysics Data System (ADS)

    Curren, I. S.; Vican, L.; Sitarski, B.; Jewitt, D. C.

    2015-12-01

    Public STEM events are an excellent method to implement informal education and for scientists and educators to interact with their community. The benefits of such events are twofold. First and foremost, science enthusiasts and students both young and old, in particular, are exposed to STEM in a way that is accessible, fun, and not as stringent as may be presented in classrooms where testing is an underlying goal. Second, scientists and educators are given the opportunity to engage with the public and share their science to an audience who may not have a scientific background, thereby encouraging scientists to develop good communication practices and skills. In 2009 graduate student members of Astronomy Live!, an outreach organization in the UCLA Department of Physics and Astronomy, started a free and public event on the campus that featured a dozen hands-on outreach activities. The event, though small at the time, was a success and it was decided to make it an annual occurrence. Thus, Exploring Your Universe (EYU) was born. Primarily through word of mouth, the event has grown every year, both in number of attendees and number of volunteers. In 2009, approximately 1000 people attended and 20 students volunteered over the course of an eight-hour day. In 2014, participation was at an all-time high with close to 6000 attendees and over 400 volunteers from all departments in the Division of Physical Sciences (plus many non-divisional departments and institutes, as well as non-UCLA organizations). The event, which is the largest STEM event at UCLA and one of the largest in Los Angeles, now features near 100 hands-on activities that span many STEM fields. EYU has been featured by the UCLA news outlets, Daily Bruin and UCLA Today, and is often lauded as their favorite event of the year by attendees and volunteers alike. The event is entirely student-run, though volunteers include faculty, staff, researchers and students alike. As the event has grown, new systems for managing its many aspects have been adopted. Here, we will present the details of how the event was created and has remained successful, and sustainable.

  14. Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?

    ERIC Educational Resources Information Center

    Milford, Todd M.; Tippett, Christine D.

    2013-01-01

    This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by…

  15. Scientists' Participation in Teacher Professional Development: The Impact on Fourth to Eighth Grade Teachers' Understanding and Implementation of Inquiry Science

    ERIC Educational Resources Information Center

    Morrison, Judith A.

    2014-01-01

    The impact of a professional development experience involving scientists and fourth to eighth grade teachers of science was explored. Teachers attended a summer program at a research facility where they had various experiences such as job shadowing and interviewing scientists. They also participated in authentic inquiry investigations and planned…

  16. Effective Models for Scientists Engaging in Meaningful Education and Outreach

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Gurule, Isaiah; InsightSTEM Teacher-Scientist-Communicator-Learner Team

    2017-01-01

    We present a central paradigm, extending the model of "Teacher-Scientist" partnerships towards a new philosophy of "Scientist-Instructor-Learner-Communicator" Partnerships. In this paradigm modes of, and expertise in, communication, and the learners themselves, are held is as high status as the experts and teachers in the learning setting.We present three distinctive models that rest on this paradigm in different educational settings. First a model in which scientists and teachers work together with a communications-related specialist to design and develop new science exploration tools for the classroom, and gather feedback from learners. Secondly, we present a model which involves an ongoing joint professional development program helping scientists and teachers to be co-communicators of knowledge exploration to their specific audience of learners. And thirdly a model in which scientists remotely support classroom research based on online data, while the teachers and their students learn to become effective communicators of their genuine scientific results.This work was funded in part by the American Association for the Advancement of Science, and by NASA awards NNX16AC68A and NNX16AJ21G. All opinions are those of the authors.

  17. Effective Models for Scientists Engaging in Meaningful Education and Outreach

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; InsightSTEM SILC Partnership Team

    2016-10-01

    We present a central paradigm, extending the model of "Teacher-Scientist" partnerships towards a new philosophy of "Scientist-Instructor-Learner-Communicator" Partnerships. In this paradigm modes of, and expertise in, communication, and the learners themselves, are held is as high status as the experts and teachers in the learning setting.We present three distinctive models that rest on this paradigm in different educational settings. First a model in which scientists and teachers work together with a communications-related specialist to design and develop new science exploration tools for the classroom, and gather feedback from learners. Secondly, we present a model which involves an ongoing joint professional development program helping scientists and teachers to be co-communicators of knowledge exploration to their specific audience of learners. And thirdly a model in which scientists remotely support classroom research based on online data, while the teachers and their students learn to become effective communicators of their genuine scientific results.This work was funded in part by the American Association for the Advancement of Science, and by NASA awards NNX16AC68A and NNX16AJ21G. All opinions are those of the authors.

  18. Education and Outreach Opportunities in New Astronomical Facilities

    NASA Astrophysics Data System (ADS)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating research into the classroom. An example is the Large Synoptic Survey Telescope, which will put within public reach on a weekly basis a digital survey of the changing sky. The Giant Segmented Mirror Telescope is a key ingredient in the search for extrasolar planets and the National Virtual Observatory will allow unprecedented data access using powerful data mining and visualization tools. NOAO scientists and educators are designing educational programs around these new initiatives in order to capitalize on their national and international educational value. Our most significant challenge is to find ways to consolidate and institutionalize successful prototype and experimental astronomy education programs into permanent national resources for the earth and space science educational community. If we are successful, there is an enormous potential for future research discoveries to be made from the classroom and for NOAO educational programs to serve as models for other science research institutions.

  19. G-2008-0821-024

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations. Melissa Rey (Center) was the grand prize winner.

  20. Preface

    NASA Astrophysics Data System (ADS)

    Heinz, Ulrich; Evdokimov, Olga; Jacobs, Peter

    2017-11-01

    The 26th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Quark Matter 2017, was held in the Hyatt Regency hotel in Chicago, USA, on February 5-11, 2017. The conference attracted 716 participants from 32 countries, including a record number of students and young scientists.

  1. 2015 NIEHS/EPA Children's Environmental Health and Disease Prevention Research Centers Annual Meeting

    EPA Pesticide Factsheets

    The meeting will feature the researchers and senior scientists from the Children's Centers, the PEHSUs, scientists from federal agencies and others through interdisciplinary presentations and discussions that explore connections between research findings,

  2. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.

    2012-12-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide opportunities for meaningful connections between scientists and classrooms. To do this, EEAB offers multiple opportunities for scientist involvement. One opportunity involves having scientists work as mentors for student teams conducting research. These student teams, ranging from grades 4 through 12, are able to obtain guidance, suggestions, and input from STEM experts as they conduct a research investigation. Another opportunity for scientist involvement is participation in Classroom Connection Distance Learning (DL) events. These DL events entail interactive and engaging presentations that enable STEM experts to share their expertise with students and teachers (grades 3 through 12) from all across the nation. A third opportunity for scientist involvement involves participation in virtual student team science presentations. Student teams have the opportunity to share their research and results by presenting it to science experts through the use of WebEx, an easy-to-use online conferencing tool. The impact STEM experts have on students in today's classrooms is powerful. They serve as role models to these students, and they open students' eyes to a potential career path they may not have known existed otherwise. The more scientists and STEM experts we can connect with students, the greater the impact we can make as we strive to inspire and prepare our nation's next generation of explorers.

  3. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide opportunities for meaningful connections between scientists and classrooms. To do this, EEAB offers multiple opportunities for scientist involvement. One opportunity involves having scientists work as mentors for student teams conducting research. These student teams, ranging from grades 4 through 12, are able to obtain guidance, suggestions, and input from STEM experts as they conduct a research investigation. Another opportunity for scientist involvement is participation in Classroom Connection Distance Learning (DL) events. These DL events entail interactive and engaging presentations that enable STEM experts to share their expertise with students and teachers (grades 3 through 12) from all across the nation. A third opportunity for scientist involvement involves participation in virtual student team science presentations. Student teams have the opportunity to share their research and results by presenting it to science experts through the use of WebEx, an easy-to-use online conferencing tool. The impact STEM experts have on students in today s classrooms is powerful. They serve as role models to these students, and they open students eyes to a potential career path they may not have known existed otherwise. The more scientists and STEM experts we can connect with students, the greater the impact we can make as we strive to inspire and prepare our nation s next generation of explorers.

  4. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Virtual Planetary Analysis Environment for Remote Science

    NASA Technical Reports Server (NTRS)

    Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David

    2009-01-01

    All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.

  6. Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2013-04-01

    Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students' views of scientists. Sample An urban, fifth-grade, European elementary school classroom defined the context of this study. Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students' initial views of scientists were investigated through a drawing activity, classroom discussions and interviews. Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist. Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school-scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.

  7. I Just Don't Trust Them: The Development and Validation of an Assessment Instrument to Measure Trust in Science and Scientists

    ERIC Educational Resources Information Center

    Nadelson, Louis; Jorcyk, Cheryl; Yang, Dazhi; Jarratt Smith, Mary; Matson, Sam; Cornell, Ken; Husting, Virginia

    2014-01-01

    Trust in science and scientists can greatly influence consideration of scientific developments and activities. Yet, trust is a nebulous construct based on emotions, knowledge, beliefs, and relationships. As we explored the literature regarding trust in science and scientists we discovered that no instruments were available to assess the construct,…

  8. Changing the Face of Astronomy Through Authentic Research Experiences

    NASA Astrophysics Data System (ADS)

    Coble, K. A.; Bell, K'Maja; Jafri, J.; Lyon, G.; Hammergren, M.

    2012-05-01

    Project Exploration is a Chicago-based science outreach organization that works to ensure communities traditionally overlooked by science, particularly minority youth and girls, have access to personalized experiences with science and scientists. 85% of students participating in Project Exploration come from low-income families, primarily African-American and Latino, and 74% are girls. We particularly target students who may not be academically successful. The results of a recent 10-year retrospective study demonstrate that Project Exploration students are significantly more likely than their peers to graduate from high school (95%), go to college (50%), and major in science (60%); and they attribute their persistence in science and education to their Project Exploration experience. Furthermore, Project Exploration works with the scientists involved (including graduate students and post-docs) to help them understand what it means to do effective educational outreach and how to put the interests of the youth at the center of outreach work. In this poster, we describe the details of the Project Exploration model, as well as several projects in astronomy that our students and scientists have carried out. KB and KC are supported by NASA ROSES E/PO Grant #NNX1OAC89G. KC is also supported by the Illinois Space Grant Consortium.

  9. One More Legacy of Paul F. Brandwein: Creating Scientists

    NASA Astrophysics Data System (ADS)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  10. Training scientists as future industry leaders: teaching translational science from an industry executive's perspective.

    PubMed

    Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, "Biotechnology Industry: Structure and Strategy" was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students' knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists' training and inspire them to become innovative leaders in the discovery and development of therapeutics.

  11. Can We Build an Open-Science Model to Fund Young, Risky, Blue-Sky Research? First Insights into Funding Geoscientists Via Thinkable.Org

    NASA Astrophysics Data System (ADS)

    McNeil, B.

    2014-12-01

    Some of the biggest discoveries and advances in geoscience research have come from purely curiosity-driven, blue-sky research. Marine biologist Osamu Shimomura's discovery of Green-Fluorecent Protein (GFP) in the 1960s during his postdoc is just one example, which came about through his interest and pursuit of how certain jellyfish bioluminescence. His discovery would eventually revolutionise medicine, culminating in a Nobel Prize in Chemistry in 2008. Despite the known importance of "blue-sky" research that doesn't have immediate commercial or social applications, it continues to struggle for funding from both government and industry. Success rates for young scientists also continue to decline within the government competitive granting models due to the importance of track records, yet history tells us that young scientists tend to come up with science's greatest discoveries. The digital age however, gives us a new opportunity to create an alternative and sustainable funding model for young, risky, blue-sky science that tends not to be supported by governments and industry anymore. Here I will discuss how new digital platforms empower researchers and organisations to showcase their research using video, allowing wider community engagment and funding that can be used to directly support young, risky, blue-sky research that is so important to the future of science. I will then talk about recent experience with this model from some ocean researchers who used a new platform called thinkable.org to showcase and raise funding via the public.

  12. Developing Research Capabilities in Energy Biosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Donald D.

    2008-01-01

    Scientists founded the Life Sciences Research Foundation (LSRF) in 1983 as a non-profit pass through foundation that awards post doctoral fellowships in all areas of the life sciences. LSRF scientists review hundreds of applications each year from PhDs seeking support. For example this year, our 26th, we received 800 applications and our peer review committee will choose about 50 finalists who are eligible for these awards. We have no endowment so we solicit sponsors each year. The fellowships are sponsored by research oriented companies, foundations, philanthropists, the Howard Hughes Medical Institute, and other organizations who believe in the value ofmore » awarding fellowships to the best and the brightest young scientists. Our web site has a complete listing of all details about LSRF (http://www.lsrf.org/). In the late 1980s the Division of Bioscience in the Office of Basic Energy Science, a granting agency of the Department of Energy, joined this partnership. Bioscience's mandate was to support non-medical microbiology and plant sciences. LSRF received a series of 5 year grants from DOE to award fellowships to our top applicants in these fields of research. We began to support DOE-Energy Bioscience post doctoral fellows in 1989. From 1989 through 2004 when DOE funding ended our partnership awarded 41 DOE-Energy Bioscience Fellows of the Life Sciences Research Foundation. Each of these was a three year fellowship. DOE-Energy Biosciences was well matched with LSRF. Our extensive peer review screened applicants in all areas of the life sciences. Most LSRF sponsors are interested in supporting fellows who work on diseases. At the time that we began our partnership with DOE we had no sponsors willing to support plant biology and non medical microbiology. For 15 years DOE played a major role in the training of the very best young scientists in these important fields of research simply through its support of LSRF post doctoral fellows. Young scientists interested in plant biology knew to apply to LSRF for a chance to receive a post doctoral award. We are enclosing a list of the 41 fellows who were supported through this partnership. The list includes some of the most distinguished plant biologists in the country, and our training partnership has had a profound impact on the field of plant biology.« less

  13. World Ocean Circulation Experiment (WOCE) Young Investigator Workshops

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2004-01-01

    The World Ocean Circulation Experiment (WOCE) Young Investigator Workshops goals and objectives are: a) to familiarize Young Investigators with WOCE models, datasets and estimation procedures; b) to offer intensive hands-on exposure to these models ard methods; c) to build collaborations among junior scientists and more senior WOCE investigators; and finally, d) to generate ideas and projects leading to fundable WOCE synthesis projects. To achieve these goals and objectives, the Workshop will offer a mixture of tutorial lectures on numerical models and estimation procedures, advanced seminars on current WOCE synthesis activities and related projects, and the opportunity to conduct small projects which put into practice the techniques advanced in the lectures.

  14. Howard Young Brings Light to the Serious Side of Science | Poster

    Cancer.gov

    You know what they say about all work and no play. And without a doubt, science requires constant hard work. But the NCI at Frederick has an antidote to the serious side of science: Howard Young. Young, Ph.D., Senior Investigator, Cancer and Inflammation Program, is a serious scientist in his own right. He was part of the team that characterized and cloned the RAS oncogene, he developed a mouse model of lupus, and he was the first to show a clear sex bias, similar to that seen in patients, in what has been called the best mouse model for primary biliary cholangitis.

  15. Reaching out in new Ways: Bridging the gap Between Science and Media Through the National Oceanic and Atmospheric Administration's Office of Ocean Exploration

    NASA Astrophysics Data System (ADS)

    Gorell, F. R.; Martinez, C.

    2006-12-01

    NOAA's Office of Ocean Exploration (OE) was created in response to the recommendations of the President's Panel on Ocean Exploration in 2000. With the establishment of OE, NOAA developed a great opportunity to reach out to teachers, students, and the general public to share the excitement of discovery. As exciting expeditions are the core of our NOAA program, outreach efforts are focused around these cruises. Through various initiatives, OE works with the science community to share the excitement of ocean science and discovery with a wide variety of audiences. Initiatives include media events held during port calls, media conference calls arranged with scientists at sea, journalists' participation in expeditions, and select interviews with scientist-explorers. NOAA OE is now poised to initiate a major ongoing satellite-based education and public outreach program from its new dedicated research vessel, the Okeanos Explorer that will become operational in 2008. Through telepresence technology designed by the Institute for Exploration (IFE) in Mystic, CT, expeditions can be managed `virtually' by scientists working from Science Command Centers on land, live education broadcasts can be produced in real-time, and media events can be held through shore-based consoles connected to scientists at sea. Three pilot programs were successfully completed in the past few years demonstrating the potential for this new technology to allow for unlimited access to data, including video, from expeditions, sharing in real-time the excitement of discovery through multiple virtual pathways. News media provide a powerful means to inform and educate the public. In some cases, scientists may believe that interaction with media representatives poses risks unmatched by rewards. While it is important to serve the public's right to know, scientist-explorers on NOAA-sponsored ocean expeditions have a recognized interest in protecting certain data, including images, for a number of legitimate reasons including the potential for further research to gain greater understanding, and the potential for publishing discoveries in scientific journals. At the same time, NOAA has an interest in informing the public in a timely manner about expedition findings, and seeks to do so via Web site coverage, news releases, embarked media, and news conferences ashore and at sea. These sometimes competing interests require advance planning, understandings and agreements, in a delicate balance of cooperation that serves the interests of all. This is especially true in light of the rapidly developing telepresence technology that allows for immediate transmission of information in real-time.

  16. LIB LAB the Library Laboratory: hands-on multimedia science communication

    NASA Astrophysics Data System (ADS)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  17. EEG-based research on brain functional networks in cognition.

    PubMed

    Wang, Niannian; Zhang, Li; Liu, Guozhong

    2015-01-01

    Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.

  18. Preface

    NASA Astrophysics Data System (ADS)

    Stręk, Wiesław; Zych, Eugeniusz; Hreniak, Dariusz

    2017-12-01

    We are pleased and proud to present this Special Issue of the Optical Materials with papers presented at the Sixth Excited States of Transition Elements Conference - ESTE2016 organized by Institute of Low Temperature and Structure Research Polish Academy of Sciences, Faculty of Chemistry University of Wrocław, and Intech Transfer Technology Centre. The conference was held under the honorary auspices of the Minister of Science and Higher Education of Republic of Poland, dr. Jarosław Gowin. The event had also patronage of Polish Academy of Sciences and Patent Office of Republic of Poland. ESTE2016 was held in Hotel Polanica Resort & Spa in Polanica - Zdrój, Poland in August 21-26, 2016. About 130 scientists from Europe, Asia and both Americas participated in the conference. As usually, in ESTE both experienced, world-wide recognized scientists and young researchers presented their new groundbreaking research achievements which were discussed during the lectures, poster sessions and evening informal discussions. A part of the ESTE2016 conference was devoted to presentations of the participants of LUMINET project - European Network on Luminescent Materials supported by Marie Curie Actions - Initial Training Networks. The scientific level of these presentations proved that through a rigorous, well-executed trainings, and a multidisciplinary research programme, LUMINET strategically positioned the EU with respect to new and improved possibilities and young scientists educated for that purpose.

  19. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine; Anderson, Terry; Johnson, Courtrina; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of Central Maryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  20. RNA meets disease in paradise.

    PubMed

    Winter, Julia; Roth, Anna; Diederichs, Sven

    2011-01-01

    Getting off the train in Jena-Paradies, 60 participants joined for the 12 (th) Young Scientist Meeting of the German Society for Cell Biology (DGZ) entitled "RNA & Disease". Excellent speakers from around the world, graduate students, postdocs and young group leaders enjoyed a meeting in a familiar atmosphere to exchange inspiring new data and vibrant scientific discussions about the fascinating history and exciting future of non-coding RNA research including microRNA, piRNA and long non-coding RNA as well as their function in cancer, diabetes and neurodegenerative diseases.

  1. Final report for Conference Support Grant "From Computational Biophysics to Systems Biology - CBSB12"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansmann, Ulrich H.E.

    2012-07-02

    This report summarizes the outcome of the international workshop From Computational Biophysics to Systems Biology (CBSB12) which was held June 3-5, 2012, at the University of Tennessee Conference Center in Knoxville, TN, and supported by DOE through the Conference Support Grant 120174. The purpose of CBSB12 was to provide a forum for the interaction between a data-mining interested systems biology community and a simulation and first-principle oriented computational biophysics/biochemistry community. CBSB12 was the sixth in a series of workshops of the same name organized in recent years, and the second that has been held in the USA. As in previousmore » years, it gave researchers from physics, biology, and computer science an opportunity to acquaint each other with current trends in computational biophysics and systems biology, to explore venues of cooperation, and to establish together a detailed understanding of cells at a molecular level. The conference grant of $10,000 was used to cover registration fees and provide travel fellowships to selected students and postdoctoral scientists. By educating graduate students and providing a forum for young scientists to perform research into the working of cells at a molecular level, the workshop adds to DOE's mission of paving the way to exploit the abilities of living systems to capture, store and utilize energy.« less

  2. Stem cell research and policy in India: current scenario and future perspective.

    PubMed

    Sharma, Alka

    2009-01-01

    Stem cell research is an exciting area of biomedical research, with potential to advance cell biology, and other new modalities of treatment for many untreatable diseases. The potential resides in the ability of these cells to develop into many different cell types in the body. In India, efforts are being made on several fronts to promote this area in an integrated way. The main features of the strategy are: explore the full potential of adult and embryonic stem cells (ESCs) through basic and translational research; generate patient specific human ESC lines; enhance creation of animal models for pre-clinical studies; virtual network of Centres; creation institutions; generation of well trained manpower; build partnership with large companies in path-breaking areas; promote closer interactions amongst basic scientists, clinical researchers and the industry. Newer initiatives include: establishment of a dedicated institute for stem cell science and regenerative medicine with its translational units; GMP and clean room facilities in medical schools; creation of a system for multi-centric clinical studies using autologous adult stem cells; national and international training courses for providing training to the students and the young scientists in the both embryonic and adult stem cells; and formulation of guidelines to conduct stem cell research in a responsible and ethically sensitive manner in the country. The core capacity must be nurtured and built to create the required critical mass to have impact.

  3. Recruitment of Underrepresented Minority Researchers into HIV Prevention Research: The HIV Prevention Trials Network Scholars Program

    PubMed Central

    Hamilton, Erica L.; Griffith, Sam B.; Jennings, Larissa; Dyer, Typhanye V.; Mayer, Kenneth; Wheeler, Darrell

    2018-01-01

    Abstract Most U.S. investigators in the HIV Prevention Trials Network (HPTN) have been of majority race/ethnicity and sexual orientation. Research participants, in contrast, have been disproportionately from racial/ethnic minorities and men who have sex with men (MSM), reflecting the U.S. epidemic. We initiated and subsequently evaluated the HPTN Scholars Program that mentors early career investigators from underrepresented minority groups. Scholars were affiliated with the HPTN for 12–18 months, mentored by a senior researcher to analyze HPTN study data. Participation in scientific committees, trainings, protocol teams, and advisory groups was facilitated, followed by evaluative exit surveys. Twenty-six trainees have produced 17 peer-reviewed articles to date. Research topics typically explored health disparities and HIV prevention among black and Hispanic MSM and at-risk black women. Most scholars (81% in the first five cohorts) continued HIV research after program completion. Alumni reported program-related career benefits and subsequent funding successes. Their feedback also suggested that we must improve the scholars' abilities to engage new research protocols that are developed within the network. Mentored engagement can nurture the professional development of young researchers from racial/ethnic and sexual minority communities. Minority scientists can benefit from training and mentoring within research consortia, whereas the network research benefits from perspectives of underrepresented minority scientists. PMID:29145745

  4. From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential Descriptions About High School Students' Science Internship

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling; Roth, Wolff-Michael

    2010-05-01

    Science educators often suggest that students should learn science in ways and settings that bear family resemblance with “the real thing.” Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about how participants experience a science internship in an “authentic” science setting (i.e., a science laboratory). Our study was designed to understand the nature of participants’ experiences of “authentic science.” Participants included 11 high school students, one high school teacher, five laboratory technicians, and two scientists. High school students practiced science alongside technicians (young scientists) in real ongoing projects of a biology laboratory. Data sources include 19 semi-structured and video-recorded interviews held after the 2-month science internship. Drawing on phenomenographic method, we identified five categories of experiential descriptions: (a) authenticity of university science, (b) channeling and connecting different communities, (c) advanced knowledge required in and lengthy procedures mobilized by university science, (d) self-exploration and reflection, and (e) comprehensive science learning. Each category’s meaning for participants and implications for science education are illustrated and discussed. This study demonstrates positive evidence of the science internship on helping students learn different dimensions of science and reflect their relationship with science. Suggestions on facilitating the partnership between secondary and postsecondary education are provided.

  5. Fast 3D Surface Extraction 2 pages (including abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer; Patchett, John M.; Ahrens, James P.

    Ocean scientists searching for isosurfaces and/or thresholds of interest in high resolution 3D datasets required a tedious and time-consuming interactive exploration experience. PISTON research and development activities are enabling ocean scientists to rapidly and interactively explore isosurfaces and thresholds in their large data sets using a simple slider with real time calculation and visualization of these features. Ocean Scientists can now visualize more features in less time, helping them gain a better understanding of the high resolution data sets they work with on a daily basis. Isosurface timings (512{sup 3} grid): VTK 7.7 s, Parallel VTK (48-core) 1.3 s, PISTONmore » OpenMP (48-core) 0.2 s, PISTON CUDA (Quadro 6000) 0.1 s.« less

  6. A critical evaluation of science outreach via social media: its role and impact on scientists.

    PubMed

    McClain, Craig; Neeley, Liz

    2014-01-01

    The role of scientists in social media and its impact on their careers are not fully explored.  While policies and best practices are still fluid, it is concerning that discourse is often based on little to no data, and some arguments directly contradict the available data.  Here, we consider the relevant but subjective questions about science outreach via social media (SOSM), specifically: (1) Does a public relations nightmare exist for science?; (2) Why (or why aren't) scientists engaging in social media?; (3) Are scientists using social media well?; and (4) Will social media benefit a scientist's career? We call for the scientific community to create tangible plans that value, measure, and help manage scientists' social media engagement.

  7. Math and Science. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue contains six articles on improving math and science education for minority group students, particularly language-minority students. "Accelerating Content Area Gains for English Language Learners" (Laura Chris Green) describes the Young Scientists Acquiring English project, which seeks to improve the content-area…

  8. Exploring Native American Students' Perceptions of Scientists

    NASA Astrophysics Data System (ADS)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p < 0.05). The results suggest that NA students who practise cultural traditions at home are more able to function fluidly between indigenous knowledge and modern western science than their non-practising counterparts. Overall, these NA students do not see themselves as scientists, which may influence their educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  9. Creating food for deep space

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-07-01

    Explorers and scientists have to eat, whether they're on top of a mountain, deep in the sea, or in space. NASA scientists are working to develop a viable food program by 2030 that could feed six crew members for a 3-year mission to Mars.

  10. Bringing the Science of Climate Change to Elementary Students with new Classroom Activities from Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.

    2016-12-01

    To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).

  11. Human computers: the first pioneers of the information age.

    PubMed

    Grier, D A

    2001-03-01

    Before computers were machines, they were people. They were men and women, young and old, well educated and common. They were the workers who convinced scientists that large-scale calculation had value. Long before Presper Eckert and John Mauchly built the ENIAC at the Moore School of Electronics, Philadelphia, or Maurice Wilkes designed the EDSAC for Manchester University, human computers had created the discipline of computation. They developed numerical methodologies and proved them on practical problems. These human computers were not savants or calculating geniuses. Some knew little more than basic arithmetic. A few were near equals of the scientists they served and, in a different time or place, might have become practicing scientists had they not been barred from a scientific career by their class, education, gender or ethnicity.

  12. 2013 Occupant Protection Risk Standing Review Panel Status Review Comments to the Human Research Program, Chief Scientist

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    On December 17, 2013, the OP Risk SRP, participants from the JSC, HQ, and NRESS participated in a WebEx/teleconference. The purpose of the call was to allow the SRP members to: 1. Receive an update by the Human Research Program (HRP) Chief Scientist or Deputy Chief Scientist on the status of NASA's current and future exploration plans and the impact these will have on the HRP. 2. Receive an update on any changes within the HRP since the 2012 SRP meeting. 3. Receive an update by the Element or Project Scientist(s) on progress since the 2012 SRP meeting. 4. Participate in a discussion with the HRP Chief Scientist, Deputy Chief Scientist, and the Element regarding possible topics to be addressed at the next SRP meeting.

  13. "What Do You Say to Them?" Investigating and Supporting the Needs of Lesbian, Gay, Bisexual, Trans, and Questioning (LGBTQ) Young People

    ERIC Educational Resources Information Center

    Sherriff, Nigel S.; Hamilton, Wook E.; Wigmore, Shelby; Giambrone, Broden L. B.

    2011-01-01

    This study explores the experiences and support needs of lesbian, gay, bisexual, transgender and questioning (LGBTQ) young people living in Sussex (UK), and the training needs of practitioners working with LGBTQ young people. The aims were to explore the experiences of young people including bullying, "coming out," social service and…

  14. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy

    NASA Astrophysics Data System (ADS)

    Keener-Chavis, P.

    2004-12-01

    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  15. "NASA's Solar System Exploration Research Virtual Institute" - Expanded Goals and More Partners

    NASA Astrophysics Data System (ADS)

    Daou, D.; Schmidt, G.; Pendleton, Y.; Bailey, B.; Morrison, D.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inceptionas the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the I nstitute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan- European lunar science consortium, which promises both new scientific approaches and mission concepts.International partner membership requires longterm commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner.International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists.This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  16. Star crossings and stone monuments-Field astronomy by the Wheeler Survey in 1870s Colorado

    USGS Publications Warehouse

    Wilson, William E.

    2010-01-01

    The decade of the 1870s was a time of extensive exploration and surveying in the American West. The nation needed knowledge of the cultural features, topography, natural resources, and geology of this land to promote and aid the 'rapid development of an empire.' The need was particularly acute in the region that still was known in the early 1870s as Colorado Territory. There, cities and towns were springing up along the base of the Front Range, railroads were expanding, and in the mountains prospectors and miners were exploring the countryside seeking and extracting the region's abundant mineral resources. Also, recurring conflicts between the newcomers and Native Americans made it desirable to have accurate maps for military purposes. Four major government-sponsored scientific surveys formed the principal organized effort to provide critical knowledge of the land. Civilian scientists led three of these: John Wesley Powell ('Geographical and Topographical Survey of the Colorado River of the West'); Ferdinand V. Hayden ('Geological and Geographical Survey of the Territories'); and Clarence King ('Geological Exploration of the Fortieth Parallel'). Lt. George Montague Wheeler, a young graduate of West Point (Class of 1866) and a member of the U.S. Army Corps of Engineers, led the fourth and most ambitious project ('United States Geographical Surveys West of the One Hundredth Meridian').

  17. NASAs Solar System Exploration Research Virtual Institute- Expanded Goals and More Partners

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.; Daou, D.; Pendleton, Y.; Bailey, B. E.

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  18. "NASA's Solar System Exploration Research Virtual Institute"; - Expanded Goals and New Teams

    NASA Astrophysics Data System (ADS)

    Daou, D.; Schmidt, G. K.; Pendleton, Y.; Bailey, B. E.

    2014-04-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  19. Bringing Hands-on Activities and Real Scientists to Students: Bishop Museum's X-treme Science Exhibit, Holoholo Science Program, and Planned Science Learning Center

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Fullerton, K.; Hoddick, C.; Ali, N.; Mosher, M. K.

    2002-12-01

    Bishop Museum developed the "X-treme Science: Exploring Oceans, Volcanoes, and Outer Space" museum exhibit in conjunction with NASA as part of their goal to increase educational outreach. A key element of the exhibit was the inclusion of real scientists describing what they do, and fostering the interaction between scientists and students. Highlights of the exhibit were interviews with local (Hawaii-based) scientists involved in current ocean, volcano, and space research. These interviews were based on questions that students provided, and were available during the exhibit at interactive kiosks. Lesson plans were developed by local teachers and scientists, and provided online to enhance the exhibit. However, one limitation of the museum exhibit was that not all students in the state could visit, or spend enough time with it. To serve more remote schools, and to provide for additional enrichment for those who did attend, the education department at Bishop Museum developed a traveling program with the X-treme Science exhibit as the basis. The Holoholo (Hawaiian for "fun outing") Science program brings a scientist into the classroom with a hands-on scientific inquiry activity. The activity is usually a simplified version of a problem that the scientist actually deals with. The students explore the activity, reach conclusions, and discuss their results. They are then given the opportunity to question the scientist about the activity and about what the scientist does. This allows students to understand that science is not something mystical, but rather something attainable. A key element of Holoholo remains the active participation of real-life scientists in the experience. The scientists who have participated in the program have had overwhelmingly positive experiences. Bishop Museum is developing a science learning center, with the objective of meeting local and national science standards using inquiry based science. The unifying theme of all three of these projects is involving students with active scientists who are accessible to them. AGU scientists are vital to realizing this goal.

  20. Introduction

    Treesearch

    Robert O. Curtis; David D. Marshall; Dean S. DeBell

    2004-01-01

    Silviculturists of the Olympia Forestry Sciences Laboratory, Pacific Northwest Research Station, have joined with foresters of the Washington State Department of Natural Resources and scientists of University of Washington and University of Idaho to establish a long-term comparison of silvicultural regimes for regeneration and management of young growth Douglas-fir (...

  1. The Wonder of Worms

    ERIC Educational Resources Information Center

    Smith, Cynthia; Landry, Melinda

    2013-01-01

    Kindergarten students have an amazing capacity for wonder and inquisitiveness--two important characteristics for future scientists. Much of what young students "know" about the natural world stems from their daily interactions with peers, adults, the outdoors, and the media. What can be especially challenging to uncover and redirect are…

  2. 2001 Gordon Research Conference on MYOGENESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wold, Barbara

    2001-05-04

    The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  3. Should We Limit the Number of Astronomy Students?

    ERIC Educational Resources Information Center

    Bachmann, Kurt T.; Boyce, Peter B.

    1994-01-01

    Presents two views about the future of astronomy. Explains that government budget cuts and an oversupply of young scientists have decimated the employment prospects. Encourages students to train for a wide variety of careers and to become entrepreneurs who bring technologies to the consumer. (DDR)

  4. Autonomy enables new science missions

    NASA Astrophysics Data System (ADS)

    Doyle, Richard J.; Gor, Victoria; Man, Guy K.; Stolorz, Paul E.; Chapman, Clark; Merline, William J.; Stern, Alan

    1997-01-01

    The challenge of space flight in NASA's future is to enable smaller, more frequent and intensive space exploration at much lower total cost without substantially decreasing mission reliability, capability, or the scientific return on investment. The most effective way to achieve this goal is to build intelligent capabilities into the spacecraft themselves. Our technological vision for meeting the challenge of returning quality science through limited communication bandwidth will actually put scientists in a more direct link with the spacecraft than they have enjoyed to date. Technologies such as pattern recognition and machine learning can place a part of the scientist's awareness onboard the spacecraft to prioritize downlink or to autonomously trigger time-critical follow-up observations-particularly important in flyby missions-without ground interaction. Onboard knowledge discovery methods can be used to include candidate discoveries in each downlink for scientists' scrutiny. Such capabilities will allow scientists to quickly reprioritize missions in a much more intimate and efficient manner than is possible today. Ultimately, new classes of exploration missions will be enabled.

  5. TERRA Education and Public Outreach: Bringing Earth Science Resources to the Public, Students, Educators, and Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Lewis, N.; Thome, K. J.; Bounoua, L.; Owen, T.

    2014-12-01

    Leaping advances in the capability to accurately measure global atmospheric and surficial conditions from space have created an abundance of educationally relevant images, discoveries, and products. In attempt to fully utilize these abundant resources, TERRA has allocated a portion of its mission toward education and public outreach. From highly interactive websites allowing users to view the latest satellite images and discoveries, to partnerships with museums encouraging enhanced primary and secondary scholastic experiences, TERRA has successfully applied a multifaceted range of tools to aid in the furthering of education for students, educators, scientists, and the general public. This presentation aims to increase publicity regarding these many methods of outreach, and to highlight particular outreach success stories. With the increasing emphasis on STEM education in current school systems, the invaluable resources and opportunities that TERRA provides for young scientists have become a necessity and will continue to help inspire the next generation of Earth Scientists.

  6. How the Term "Shock Waves" Came Into Being

    NASA Astrophysics Data System (ADS)

    Fomin, N. A.

    2016-07-01

    The present paper considers the history of works on shock waves beginning from S. D. Poisson's publication in 1808. It expounds on the establishment of the Polytechnic School in Paris and its fellows and teachers — Gaspard Monge, Lazare Carnot, Joseph Louis Gay-Lussac, Simeon Denis Poisson, Henri Navier, Augustin Louis Cauchy, Joseph Liouville, Ademar de Saint-Venant, Henri Regnault, Pierre Dulong, Emile Jouguet, Pierre Duhem, and others. It also describes the participation in the development of the shock wave theory of young scientists from the universities of Cambridge, among which were George Airy, James Challis, Samuel Earnshaw, George Stokes, Lord Rayleigh, Lord Kelvin, and James Maxwell, as well as of scientists from the Göttingen University, Germany — Bernhard Riemann and Ernst Heinrich Weber. The pioneer works on shock waves of the Scottish engineer William Renkin, the French artillerist Pierre-Henri Hugoniot, German scientists August Toepler and Ernst Mach, and a Hungarian scientist Gyözö Zemplén are also considered.

  7. Exploration first

    NASA Astrophysics Data System (ADS)

    2018-04-01

    The proposed NASA budget promotes space exploration over science, and planetary science over astrophysics. This decision has the potential to cause strife between scientists, who have to work together to find a solution.

  8. PREFACE: FAIRNESS 2013: FAIR NExt generation of ScientistS 2013

    NASA Astrophysics Data System (ADS)

    Petersen, Hannah; Destefanis, Marco; Galatyuk, Tetyana; Montes, Fernando; Nicmorus, Diana; Ratti, Claudia; Tolos, Laura; Vogel, Sascha

    2014-04-01

    FAIRNESS 2013 was the second edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 16-21 September 2013 in Berlin, Germany. The topics of the workshop cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in box to stimulate discussions. Since the physics program of FAIR is very broad, this is reflected in the wide range of topics covered at the Conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics For all of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2013 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the physics of FAIR. February 2014. Organizers of FAIRNESS 2013: Marco Destefanis, Tetyana Galatyuk, Fernando Montes, Diana Nicmorus, Hannah Petersen, Claudia Ratti, Laura Tolos, and Sascha Vogel. Support for holding the conference was provided by: Logos

  9. PREFACE: 2nd International School and Conference Saint-Petersburg OPEN on Optoelectronics, Photonics, Engineering and Nanostructures (SPbOPEN2015)

    NASA Astrophysics Data System (ADS)

    2015-11-01

    The 2nd International School and Conference ''Saint Petersburg OPEN 2015'' on Optoelectronics, Photonics, Engineering and Nanostructures was held on April 6 - 8, 2015 at St. Petersburg Academic University. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were Mikhail V. Maximov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir G. Dubrovskii (St. Petersburg Academic University and St. Petersburg State University, Russia) Anton Yu. Egorov (JSC Connector Optics, Russia) Victor V. Luchinin (St. Petersburg State Electrotechnical University, Russia) Vladislav E. Bugrov (St. Petersburg University of Internet Technologies, Mechanics and Optics, Russia) Vitali A. Schukin (VI Systems, Germany) Yuri P. Svirko (University of Eastern Finland, Finland) During the poster session all undergraduate and graduate students attending the conference presented their works. A sufficiently large number of participants, with more than 170 student attendees from all over the world, allowed the Conference to provide a fertile ground for fruitful discussions between the young scientists as well as to become a perfect platform for valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year ''Saint Petersburg OPEN 2015'' is organized by St. Petersburg Academic University in cooperation with Peter the Great St. Petersburg Polytechnic University. The School and Conference is supported by Russian Science Foundation, SPIE (The International Society for Optics and Photonics), OSA (The Optical Society) and by Skolkovo Foundation. It is a continuation of the annual schools and seminars for youth on topical problems of physics and technology that are organized by the Academic University since 2009. We invite all the students and young scientists to attend ''Saint Petersburg OPEN'' in 2016! Please, find details at http://spbopen.spbau.com/

  10. PREFACE: 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Dear Colleagues, 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures was held on March 25 - 27, 2014 at St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were: Mikhail Glazov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir Dubrovskii (Saint Petersburg Academic University RAS, Russia) Alexey Kavokin (University of Southampton, United Kingdom and St. Petersburg State University, Russia) Vladimir Korenev (Ioffe Physico-Technical Institute RAS, Russia) Sergey Kukushkin (Institute of Problems of Mechanical Engineering RAS, Russia) Nikita Pikhtin (Ioffe Physico-Technical Institute RAS, Russia and "Elfolum" Ltd., Russia) Dmitry Firsov (Saint Petersburg State Polytechnical University, Russia) During the poster session all undergraduate and graduate students attending the conference presented their works. Sufficiently large number of participants with more than 160 student attendees from all over the world allowed the Conference to provide a fertile ground for the fruitful discussions between the young scientists as well as to become a perfect platform for the valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year's School and Conference is supported by SPIE (The International Society for Optics and Photonics), OSA (The Optical Society), St. Petersburg State Polytechnical University and by Skolkovo Foundation. It is a continuation of the annual schools and seminars for youth on topical problems of physics and technology that is organized by the Academic University since 2009. We invite all the students and young scientists to attend "Saint Petersburg OPEN" in 2015! Please, find details at http://spbopen2015.spbau.com/ With best wishes, Editorial Board, Program and Organizing Committees

  11. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    NASA Astrophysics Data System (ADS)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the physics at FAIR. February 2015, Organizers of FAIRNESS 2014: Marco Destefanis, Tetyana Galatyuk, Fernando Montes, Diana Nicmorus, Hannah Petersen, Claudia Ratti, Laura Tolos, and Sascha Vogel. Support for holding the conference was provided by: Conference photograph

  12. PREFACE: FAIRNESS 2012: FAIR NExt Generation of ScientistS 2012

    NASA Astrophysics Data System (ADS)

    Arcones, Almudena; Bleicher, Marcus; Fritsch, Miriam; Galatyuk, Tetyana; Nicmorus, Diana; Petersen, Hannah; Ratti, Claudia; Tolos, Laura

    2013-03-01

    FAIRNESS 2012 was the first in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 3-8 September 2012 in Hersonissos, Greece. The workshop covered a wide range of topics, both theoretical developments and current experimental status, that concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference was to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permament position to present their work and to foster active informal discussions and the build-up of networks. Every participant at the meeting, with the exception of the organizers, gave an oral presentation and all sessions were followed by an hour long discussion period. During the talks questions were collected anonymously in a circulating box to stimulate these discussions. Since the physics program of FAIR is very broad, this was reflected in the wide range of topics covered at the conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron Spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics In each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2012 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the physics of FAIR. February 2013, Organizers of FAIRNESS 2012: Almudena Arcones, Marcus Bleicher, Miriam Fritsch, Tetyana Galatyuk, Diana Nicmorus, Hannah Petersen, Claudia Ratti and Laura Tolos Support for holding the conference was provided by: logos

  13. What do primary students know about science, scientists and how they do their work?

    NASA Astrophysics Data System (ADS)

    Bartels, Selina L.

    The teaching of scientific literacy is the primary goal of elementary science education. Scientific literacy is composed of the overall understanding of what science is and how scientific knowledge is developed. The purpose of this study was to see if elementary students' understandings of science, scientists and how scientists do their work changes from grade one to grade five of elementary school. Furthermore, the study attempts to determine whether there is a difference in scientific literacy between students taught using a textbook curriculum versus a kit-based curriculum. The study draws on a sample of 338 students from 18 different classrooms situated in six different schools in both urban and suburban areas of a large Midwestern city. Students' understandings of science, scientists and how they do their work was measured through a valid and reliable oral protocol entitled Young Children's Views of Science (YCVS) (Lederman, J., Bartels, Lederman, & Ganankkan, 2014). The YCVS assesses students' understandings of the aspects of scientific inquiry (SI) and the nature of science (NOS) that young elementary students are able to understand. These aspects are; science, scientists, multiple methods, observation/inference, begins with a question, empirical, subjectivity, tentativeness and creativity. The YCVS was administered orally for grade one students, and a paper-and-pencil version was given to grades three and five. Results indicated that there are very few gains in NOS and SI understandings between grades one and five in the schools included in this study. None of the schools in this study made significant gains for all of the nine aspects measured in this study. Examining curriculum's affect on NOS and SI understandings, understanding of only one aspect was significantly impacted by curriculum differences. Subjectivity understanding was impacted by kit-based instruction. Overall, students' understandings of science, scientists and how they do their work did not significantly change from grade one to grade five regardless of what type of curriculum they followed. This study shows that students' scientific literacy is not being developed throughout elementary school. Therefore, the teaching of scientific literacy in an explicit and reflective manner should be the focus of preservice elementary school education.

  14. Identity Matching to Scientists: Differences that Make a Difference?

    NASA Astrophysics Data System (ADS)

    Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva

    2014-06-01

    Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists. Adolescents' educational choices are important aspects of their identity work, and recent theories link individual choice to the perceived match between self and prototypical persons associated with that choice. In the present study, we have investigated images of scientists among the segment of the upper secondary school students (20 % of the cohort) from which future Danish scientists are recruited. Their images were rather realistic, only including vague and predominantly positive stereotypical ideas. With a particular Science-and-Me (SAM) interview methodology, we inquired into the match between self- and prototypical-scientists ( N = 30). We found high perceived similarity within a core of epistemological characteristics, while dissimilarities typically related to a social domain. However, combining interview data with survey data, we found no significant statistical relation between prototype match and aspirations for tertiary education within science and technology. Importantly, the SAM dialogue revealed how students negotiate perceived differences, and we identified four negotiation patterns that all tend to reduce the impact of mismatches on educational aspirations. Our study raises questions about methodological issues concerning the traditional use of self-to-prototype matching as an explanatory model of educational choice.

  15. Frontier Scientists' project probes audience science interests with website, social media, TV broadcast, game, and pop-up book

    NASA Astrophysics Data System (ADS)

    O'Connell, E. A.

    2017-12-01

    The Frontier Scientists National Science Foundation project titled Science in Alaska: Using Multimedia to Support Science Education produced research products in several formats: videos short and long, blogs, social media, a computer game, and a pop-up book. These formats reached distinctly different audiences. Internet users, public TV viewers, gamers, schools, and parents & young children were drawn to Frontier Scientists' research in direct and indirect ways. The analytics (our big data) derived from this media broadcast has given us insight into what works, what doesn't, next steps. We have evidence for what is needed to present science as an interesting, vital, and a necessary component for the general public's daily information diet and as an important tool for scientists to publicize research and to thrive in their careers. Collaborations with scientists at several Universities, USGS, Native organizations, tourism organizations, and Alaska Museums promoted accuracy of videos and increased viewing. For example, Erin Marbarger, at Anchorage Museum, edited, and provided Spark!Lab to test parents & child's interest in the pop-up book titled: The Adventures of Apun the Arctic Fox. Without a marketing budget Frontier Scientist's minimum publicity, during the three year project, still drew an audience. Frontier Scientists was awarded Best Website 2016 by the Alaska Press Club, and won a number of awards for short videos and TV programs.

  16. Concluding remarks to ICAME2011

    NASA Astrophysics Data System (ADS)

    Campbell, S. J.

    2012-03-01

    An overview of the main aspects of ICAME2011 - tutorial lectures, oral and poster presentations, evening sessions - is presented along with a brief outline of several of the scientific highlights. Among other topics considered are the involvements of young scientists and female scientists, and operation of the oral and poster sessions. Despite the most challenging combinations of circumstances in the lead up to ICAME2011 that resulted in the change of venue at an advanced stage from Tokyo to Kobe, the Committee organised a high quality conference with many positive outcomes for the future. The Mössbauer community acknowledges and appreciates these efforts greatly.

  17. Leo Szilard Lecturship Award: How can physicists help the public make better decisions about science and technology?

    NASA Astrophysics Data System (ADS)

    Primack, Joel

    2016-03-01

    For more than 40 years the APS has worked to improve governmental decision-making, mainly through the Congressional Science and Technology Fellowship program and through occasional studies of important science and technology issues. How productive have these been? How can the APS and other professional societies more effectively combat anti-science propaganda and help the public develop better-informed views about science and technology? How can individual scientists communicate scientific concepts in a more understandable and engaging way? How can we encourage young scientists and students to participate in creating a scientifically responsible future?

  18. Application of advanced computing techniques to the analysis and display of space science measurements

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lapolla, M. V.; Horblit, B.

    1995-01-01

    A prototype system has been developed to aid the experimental space scientist in the display and analysis of spaceborne data acquired from direct measurement sensors in orbit. We explored the implementation of a rule-based environment for semi-automatic generation of visualizations that assist the domain scientist in exploring one's data. The goal has been to enable rapid generation of visualizations which enhance the scientist's ability to thoroughly mine his data. Transferring the task of visualization generation from the human programmer to the computer produced a rapid prototyping environment for visualizations. The visualization and analysis environment has been tested against a set of data obtained from the Hot Plasma Composition Experiment on the AMPTE/CCE satellite creating new visualizations which provided new insight into the data.

  19. Professionals and Emerging Scientists Sharing Science

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Allen, J. S.; Tobola, K.

    2010-01-01

    The Year of the Solar System (YSS) celebration begins in the fall of 2010. As YSS provides a means in which NASA can inspire members of the public about exciting missions to other worlds in our solar system, it is important to remember these missions are about the science being conducted and new discoveries being made. As part of the Year of the Solar System, Astromaterials Research and Exploration Science (ARES) Education, at the NASA Johnson Space Center, will infuse the great YSS celebration within the Expedition Earth and Beyond Program. Expedition Earth and Beyond (EEAB) is an authentic research program for students in grades 5-14 and is a component of ARES Education. Students involved in EEAB have the opportunity to conduct and share their research about Earth and/or planetary comparisons. ARES Education will help celebrate this exciting Year of the Solar System by inviting scientists to share their science. Throughout YSS, each month will highlight a topic related to exploring our solar system. Additionally, special mission events will be highlighted to increase awareness of the exciting missions and exploration milestones. To bring this excitement to classrooms across the nation, the Expedition Earth and Beyond Program and ARES Education will host classroom connection events in which scientists will have an opportunity to share discoveries being made through scientific research that relate to the YSS topic of the month. These interactive presentations will immerse students in some of the realities of exploration and potentially inspire them to conduct their own investigations. Additionally, scientists will share their own story of how they were inspired to pursue a STEM-related career that got them involved in exploration. These career highlights will allow students to understand and relate to the different avenues that scientists have taken to get where they are today. To bring the sharing of science full circle, student groups who conduct research by participating in Expedition Earth and Beyond, will also have the opportunity to virtually share their research. These virtual team presentations will allow these emerging scientists to celebrate their own exploration, and in doing so, contribute to the excitement of the Year of the Solar System. As the public joins NASA in the celebration of YSS, students across the nation will not only be excited by the science and discoveries being made, but will prime themselves with experience to perhaps someday become the new leaders in science, discovery, and NASA.

  20. Arctic summer school onboard an icebreaker

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to Kirkenes on September 23, 2013. In our presentation we will try to convey the spirit of learning and excitement of the students during the expedition and the summer school.

  1. Cumulative advantages and social capabilities in scientific mobility in the Health Sciences: The Spanish case

    PubMed Central

    Melchor, Lorenzo; Danvila-del-Valle, Joaquín; Bousoño-Calzón, Carlos

    2017-01-01

    Background The big problem in global public health, arising from the international migration of physicians from less-developed to more-developed countries, increases if this migration also affects scientists dedicated to health areas. This article analyzes critical variables in the processes of Spanish scientific mobility in Health Sciences to articulate effective management policies for the benefit of national public health services and the balance between local and global science. Methods This study develops a survey to measure and analyze the following crucial variables: research career, training, funding, working with a world-class team, institutional prestige, wages, facilities/infrastructure, working conditions in the organization of the destination country, fringe benefits in the organization of the destination country and social responsibility in the organization of the departure country. A total of 811 researchers have participated in the survey, of which 293 were from the health sector: Spanish scientists abroad (114), scientists that have returned to Spain (32) and young researchers in Spain (147). Results The most crucial variables for Spanish scientists and young researchers in Spain in Health Sciences moving abroad are the cumulative advantages (research career, training, funding and institutional prestige) plus wages. On the other hand, the return of Spanish scientists in the Health Sciences is influenced by cumulative variables (working with a world-class team, research career and institutional prestige) and also by other variables related to social factors, such as working conditions and fringe benefits in the destination country. Permanent positions are rare for these groups and their decisions regarding mobility depend to a large extent on job opportunities. Conclusions Spanish health organizations can influence researchers to return, since these decisions mainly depend on job opportunities. These organizations can complement the cumulative advantages offered by the wealthier countries with the intensification of social factors. PMID:28296901

  2. Science and the Humanities: Stephen Jay Gould's Quest to Join the High Table

    ERIC Educational Resources Information Center

    Ruse, Michael

    2013-01-01

    Stephen Jay Gould was a scientist, a paleobiologist, who was also a professional-level historian of science. This essay explores Gould's work, showing how he used the history of science to further his agenda as a working scientist.

  3. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  4. Planetary Exploration Rebooted! New Ways of Exploring the Moon, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.

    2010-01-01

    In this talk, I will summarize how the NASA Ames Intelligent Robotics Group has been developing and field testing planetary robots for human exploration, creating automated planetary mapping systems, and engaging the public as citizen scientists.

  5. 2013 Pharmacology Risk SRP Status Review Comments to Chief Scientist. The Risk of Clinically Relevant Unpredicted Effects of Medication

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On December 5, 2013, the Pharmacology Risk SRP, participants from the JSC, HQ, the NSBRI, and NRESS participated in a WebEx/teleconference. The purpose of the call (as stated in the Statement of Task) was to allow the SRP members to: 1. Receive an update by the HRP Chief Scientist or Deputy Chief Scientist on the status of NASA's current and future exploration plans and the impact these will have on the HRP. 2. Receive an update on any changes within the HRP since the 2012 SRP meeting. 3. Receive an update by the Element or Project Scientist(s) on progress since the 2012 SRP meeting. 4. Participate in a discussion with the HRP Chief Scientist, Deputy Chief Scientist, and the Element regarding possible topics to be addressed at the next SRP meeting.

  6. Scientists' Prioritization of Communication Objectives for Public Engagement.

    PubMed

    Dudo, Anthony; Besley, John C

    2016-01-01

    Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  7. Building Effective Pipelines to Increase Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Snow, E.; Robinson, C. R.; Neal-Mujahid, R.

    2017-12-01

    The U.S. Geological Survey (USGS) recognizes and understands the importance of a diverse workforce in advancing our science. Valuing Differences is one of the guiding principles of the USGS, and is the critical basis of the collaboration among the Youth and Education in Science (YES) program in the USGS Office of Science, Quality, and Integrity (OSQI), the Office of Diversity and Equal Opportunity (ODEO), and USGS science centers to build pipeline programs targeting diverse young scientists. Pipeline programs are robust, sustained relationships between two entities that provide a pathway from one to the other, in this case, from minority serving institutions to the USGS. The USGS has benefited from pipeline programs for many years. Our longest running program, with University of Puerto Rico Mayaguez (UPR), is a targeted outreach and internship program that has been managed by USGS scientists in Florida since the mid-1980's Originally begun as the Minority Participation in the Earth Sciences (MPES ) Program, it has evolved over the years, and in its several forms has brought dozens of interns to the USGS. Based in part on that success, in 2006 USGS scientists in Woods Hole MA worked with their Florida counterparts to build a pipeline program with City College of New York (CCNY). In this program, USGS scientists visit CCNY monthly, giving a symposium and meeting with students and faculty. The talks are so successful that the college created a course around them. In 2017, the CCNY and UPR programs brought 12 students to the USGS for summer internships. The CCNY model has been so successful that USGS is exploring creating similar pipeline programs. The YES office is coordinating with ODEO and USGS science centers to identify partner universities and build relationships that will lead to robust partnership where USGS scientists will visit regularly to engage with faculty and students and recruit students for USGS internships. The ideal partner universities will have a high population of underserved students, strong support for minority and first-generation students, proximity to a USGS office, and faculty and/or majors in several of the fields most important to USGS science: geology, geochemistry, energy, biology, ecology, environmental health, hydrology, climate science, GIS, high-capacity computing, and remote sensing.

  8. Future perspectives in astronomy and the earth sciences.

    PubMed

    Thompson, J Michael T; Wang, Charles H-T

    2005-12-15

    This article is an overview of the contributions to the Triennial Issue of Phil. Trans. R. Soc. A published in December, 2005, and also plays the role of a Preface. Devoted to the work of young scientists, the issue covers the fields of astronomy and earth science.

  9. Science Staff | CTIO

    Science.gov Websites

    since been a NOAO/CTIO post doctoral fellow. His interests include observational cosmology, galaxy Outreach for the Observatory. Cesar Briceño Associate Scientist Research interests and expertise: Star area of interest over the past years has been observational studies of young stellar populations: star

  10. EDITORIAL: Photonica 2011: 3rd International School and Conference on Photonics Photonica 2011: 3rd International School and Conference on Photonics

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Stepić, Milutin; Hadžievski, Ljupčo

    2012-04-01

    Photonics is a rapidly growing discipline of physics that investigates properties of light and its interaction with matter and develops devices based on these properties. Due to both the fundamental and applied nature of photonics research, it pervades many branches of modern technology: quantum mechanics, material science, electronics, telecommunications, biology, medicine, material processing, etc. The borders between these subjects are being erased, generating new research areas such as silicon photonics, biophotonics and quantum photonics. Diverse branches of photonics are united in a common effort to further miniaturize photonic devices, integrate them with existing technologies and develop new technologies. The International School and Conference on Photonics—Photonica—is a biennial forum for the education of young scientists, exchanging new knowledge and ideas, and fostering collaboration between scientists working in photonic science and technology. Conference topics cover a broad range of research activities in optical materials, metamaterials and plasmonics, nonlinear optics, lasers, laser spectroscopy, biophotonics, optoelectronics, optocommunications, photonic crystals, holography, quantum optics and related topics in atomic physics. The aim of the organizers is to provide a platform for discussing new developments, concepts and future trends of various disciplines of photonics by bringing together researchers from academia, government and industrial laboratories. The educational element of Photonica—a series of tutorials and keynote talks—enables students and young researchers to better understand the fundamentals and their use on a route to applications, and informs both young and experienced scientists of new directions of research. The introductory lectures that are directly related to the state-of-the-art are followed by presentations and discussions on recent results during oral and vibrant poster presentations. This Topical Issue is dedicated to Photonica 2011 held on 29 August-2 September 2011 in Belgrade, Serbia. The conference was attended by 144 participants from 27 countries who gave 132 oral and poster presentations and 24 lectures. The accompanying papers were peer reviewed and 82 were selected for publication. We take this opportunity to gratefully acknowledge the contribution of the reviewers to the quality of this issue. The papers are grouped in accordance with the conference topics, each section opening with an invited paper. The issue begins with papers dedicated to ultra-cold atomic systems that display coherent behaviour analogous to that of light. These well-controlled atomic systems are indispensible workhorses for experiments in quantum optics, which is the topic of the next section. Holography as a concept, measurement tool and technique for fabrication of periodic photonic structures is placed accordingly between fundamental and applied photonics. It is followed by reports on various photonic devices, their modelling and nonlinear phenomena. The progress in constructing these devices largely depends on artificial (composites, metamaterials) and natural optical materials and their processing. This Topical Issue is an original snapshot of the current research in photonics and by no means an extensive survey of the field. While the making of the former has been a challenging task, the compilation of the latter would be indomitable due to the rapid advances in and diversification of photonics research. In accordance with the aims of the conference itself, we hope that the results reported in this Topical Issue of Physica Scripta will serve to inform and to spark the imagination of scientists and engineers exploring or using the principles and products of photonics.

  11. A feeling of flow: exploring junior scientists' experiences with dictation of scientific articles.

    PubMed

    Spanager, Lene; Danielsen, Anne Kjaergaard; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2013-08-10

    Science involves publishing results, but many scientists do not master this. We introduced dictation as a method of producing a manuscript draft, participating in writing teams and attending a writing retreat to junior scientists in our department. This study aimed to explore the scientists' experiences with this process. Four focus group interviews were conducted and comprised all participating scientists (n = 14). Each transcript was transcribed verbatim and coded independently by two interviewers. The coding structure was discussed until consensus and from this the emergent themes were identified. Participants were 7 PhD students, 5 scholarship students and 2 clinical research nurses. Three main themes were identified: 'Preparing and then letting go' indicated that dictating worked best when properly prepared. 'The big dictation machine' described benefits of writing teams when junior scientists got feedback on both content and structure of their papers. 'Barriers to and drivers for participation' described flow-like states that participants experienced during the dictation. Motivation and a high level of preparation were pivotal to be able to dictate a full article in one day. The descriptions of flow-like states seemed analogous to the theoretical model of flow which is interesting, as flow is usually deemed a state reserved to skilled experts. Our findings suggest that other academic groups might benefit from using the concept including dictation of manuscripts to encourage participants' confidence in their writing skills.

  12. American and Greek Children's Visual Images of Scientists

    NASA Astrophysics Data System (ADS)

    Christidou, Vasilia; Bonoti, Fotini; Kontopoulou, Argiro

    2016-08-01

    This study explores American and Greek primary pupils' visual images of scientists by means of two nonverbal data collection tasks to identify possible convergences and divergences. Specifically, it aims to investigate whether their images of scientists vary according to the data collection instrument used and to gender. To this end, 91 third-grade American ( N = 46) and Greek ( N = 45) pupils were examined. Data collection was conducted through a drawing task based on Chambers (1983) `Draw-A-Scientist-Test' (DAST) and a picture selection task during which the children selected between 14 pairs of illustrations those that were most probable to represent scientists. Analysis focused on stereotype indicators related with scientists' appearance and work setting. Results showed that the two groups' performance varied significantly across the tasks used to explore their stereotypic perceptions, although the overall stereotypy was not differentiated according to participants' ethnic group. Moreover, boys were found to use more stereotypic indicators than girls, while the picture selection task elicited more stereotypic responses than the drawing task. In general, data collected by the two instruments revealed convergences and divergences concerning the stereotypic indicators preferred. Similarities and differences between national groups point to the influence of a globalized popular culture on the one hand and of the different sociocultural contexts underlying science curricula and their implementation on the other. Implications for science education are discussed.

  13. 2009 ESMD Space Grant Faculty Project Final Report

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William

    2009-01-01

    The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.

  14. Ulrich C. Luft and physiology on Nanga Parbat: the winds of war.

    PubMed

    Rodway, George W

    2009-01-01

    Rodway, George W. Ulrich C. Luft and physiology on Nanga Parbat: the winds of war. High Alt. Med. Biol. 10:89-96, 2009.-Ulrich Cameron Luft (1910-1991) is a significant figure in the annals of high altitude physiology and medicine. He combined a passionate interest in mountaineering with an equally passionate interest in human physiology at a pivotal time in modern history. His involvement in the 1937 and 1938 German Nanga Parbat expeditions as mountaineer and scientist set the stage for his subsequent work in aviation physiology carried out in Germany and then later in America when aerospace medicine was emerging as a specialty. His postwar career as a scientist and educator was equally distinguished by virtue of the large numbers of young scientists he trained and his contributions to aerospace medicine over the course of several decades.

  15. The International Proteomics Tutorial Programme--reaching out to the next generation proteome scientists.

    PubMed

    James, Peter; Marko-Varga, György A

    2011-08-05

    One of the most critical functions of the various Proteomics organizations is the training of young scientists and the dissemination of information to the general scientific community. The education committees of the Human Proteome Organisation (HUPO) and the European Proteomics Association (EuPA) together with the other local proteomics associations are therefore launching a joint Tutorial Program to meet these needs. The level is aimed at Masters/PhD level students with good basic training in biology, biochemistry, mathematics and statistics. The Tutorials will consist of a review/teaching article with an accompanying talk slide presentation for classroom teaching. The Tutorial Program will cover core techniques and basics as an introduction to scientists new to the field. The entire series of articles and slides will be made freely available for teaching use at the Journals and Organizations homepages.

  16. Cajal, Psychologist of Science.

    PubMed

    Anaya-Reig, Nuria; Romo, Manuela

    2017-12-04

    This paper presents abundant empirical evidence to support the view that Santiago Ramón y Cajal was a pioneer of the emerging Psychology of Science discipline. Narrative analysis of his autobiography (Recollections of my Life) and some of his unspecialized works (Advice for a Young Investigator, The World from an Eighty-Year-Old's Point of View, and Café Chats) revealed that the Spanish histologist's interest in the psychology of scientists was part and parcel of a high-level, intellectual self-regulation strategy he applied on his path to success. This research led him to document various psychological conclusions about scientists in writing, so as to encourage, guide, and facilitate the work of junior researchers. Current knowledge of the Psychology of Science has confirmed many of the Nobel laureate's observations about psychosocial aspects of scientists, scientific reasoning, and creativity.

  17. Diversity among Scientists-Inclusive Curriculum-Improved Science: An Upward Spiral.

    ERIC Educational Resources Information Center

    Rosser, Sue V.

    1992-01-01

    Explores how changing curriculum and teaching techniques may lead to different composition of pool of scientists who hold slightly modified theoretical perspective. Presents seven-stage spiral model for transforming mathematics and science teaching, in which each stage fuels change in next stage, moving toward more accessible, varied, and humane…

  18. Student Scientist Partnerships: Shrewd Maneuvers.

    ERIC Educational Resources Information Center

    Tinker, Robert F.

    1997-01-01

    Explores student-scientist partnerships (SSPs) that help students gain a unique understanding of both the content and the process of science. Discusses the potential of SSPs, the range of SSP activities, a strategy for national impact, the educational importance of SSPs, the research importance of SSPs, and technology as a facilitator. (JRH)

  19. Small Groups' Ecological Reasoning While Making an Environmental Management Decision.

    ERIC Educational Resources Information Center

    Hogan, Kathleen

    2002-01-01

    Explores the ideas and reasoning students use to make a collaborative environmental management decision. Compares students' discussions with scientists' guidelines for making environmental management decisions. Finds that whereas across groups students touched on all of the themes that scientists consider to be important for making environmental…

  20. DAEDALUS, SCIENCE AND CULTURE ISSUE, WINTER 1965.

    ERIC Educational Resources Information Center

    GRAUBARD, STEPHEN R.; AND OTHERS

    THE INTERRELATIONS BETWEEN THE HUMANITIES, THE SOCIAL SCIENCES, THE SCIENCES, AND THE ARTS IN CONTEMPORARY CULTURE ARE EXPLORED IN THIS SERIES OF ESSAYS DEVELOPED FOR THE AMERICAN ACADEMY OF ARTS AND SCIENCES. SCHOLARS IN THE HUMANITIES, NATURAL SCIENTISTS, ARTISTS, SOCIAL SCIENTISTS, AND ADMINISTRATORS ADDRESS THEMSELVES TO THE PROBLEMS OF (1)…

  1. Efficacy, metabolism, and toxic responses to chlorate salts in food and laboratory animals

    USDA-ARS?s Scientific Manuscript database

    For over 100 years, scientists have explored uses of sodium chlorate in agricultural applications. Sodium chlorate is a strong oxidizer, and thus can be very hazardous when not handled accordingly. Nevertheless, late 19th century agriculturists and scientists attempted to exploit the chemical proper...

  2. Patterns and Correlates of Research Productivity in Population Scientists.

    ERIC Educational Resources Information Center

    Richards, James M., Jr.

    Although a concern with population issues has gone out of fashion, the problems underlying that concern have not disappeared. Solving these problems would be facilitated by increased knowledge produced by scientists working directly on population issues. A study was conducted to explore patterns and correlates of research productivity of members…

  3. Information Seeking Behaviour of Mathematicians: Scientists and Students

    ERIC Educational Resources Information Center

    Sapa, Remigiusz; Krakowska, Monika; Janiak, Malgorzata

    2014-01-01

    Introduction: The paper presents original research designed to explore and compare selected aspects of the information seeking behaviour of mathematicians (scientists and students) on the Internet. Method: The data were gathered through a questionnaire distributed at the end of 2011 and in January 2012. Twenty-nine professional mathematicians and…

  4. "The Disinterested Scientist": Fact or Fiction?

    ERIC Educational Resources Information Center

    Mitroff, Ian I.

    1973-01-01

    The behavior of scientists who studied the moon rocks from the various Apollo missions was examined over a three year period. Methods of interviews ranging from discussion to written questionnaires were designed to explore issues connected with lunar missions and to focus on specific attitudes towards these issues. The central question emphasized…

  5. [Telescience : Feasibility studies, definition and a fair answer to the scientific brain drain].

    PubMed

    Craemer, E M; Bassa, B; Jacobi, C; Becher, H; Meyding-Lamadé, U

    2017-02-01

    What is telescience? Is it feasible to transfer academic information with the help of telematics to educate and teach young scientists over large distances? The term telescience has so far not been defined but covers a variety of possibilities, which could be successfully implemented worldwide. This article gives examples and highlights the feasibility analysis of telescience. We have carried out feasibility analyses for neurological functional diagnostics, an epidemiological cross-sectional study as well as a laboratory study for detection of thrombocyte function during dengue fever with the help of telemedicine. The basis for all these projects was a telemedical transcontinental cooperation over a distance of 12,000 km. All performed studies demonstrated the feasibility. With the help of telematics the laboratory techniques, planning, conduction and interpretation of results as well as publication skills can be transferred. Telescience is feasible. Our studies showed that telescience is a very promising option to transfer knowledge, which will help to enable professional expertise to be transferred directly to the region/country without a brain drain. All too often young motivated scientists are enticed to move to well-known institutions, which involves the danger of a brain drain. Brain drain can be avoided in favor of local implementation of scientific projects. Our results illustrate that it is feasible to educate and guide scientists with the help of telematics infrastructures.

  6. The 2008 Lindau Nobel Laureate Meeting: Robert Huber, Chemistry 1988. Interview by Klaus J. Korak.

    PubMed

    Huber, Robert

    2008-11-25

    Robert Huber and his colleagues, Johann Deisenhofer and Hartmut Michel, elucidated the three-dimensional structure of the Rhodopseudomonas viridis photosynthetic reaction center. This membrane protein complex is a basic component of photosynthesis - a process fundamental to life on Earth - and for their work, Huber and his colleagues received the 1988 Nobel Prize in Chemistry. Because structural information is central to understanding virtually any biological process, Huber likens their discovery to "switching on the light" for scientists trying to understand photosynthesis. Huber marvels at the growth of structural biology since the time he entered the field, when crystallographers worked with hand-made instruments and primitive computers, and only "a handful" of crystallographers would meet annually in the Bavarian Alps. In the "explosion" of structural biology since his early days of research, Huber looks to the rising generation of scientists to solve the remaining mysteries in the field - such as the mechanisms that underlie protein folding. A strong proponent of science mentorship, Huber delights in meeting young researchers at the annual Nobel Laureate Meetings in Lindau, Germany. He hopes that among these young scientists is an "Einstein of biology" who, he says with a twinkle in his eye, "doesn't know it yet." The interview was conducted by JoVE co-founder Klaus J. Korak at the Lindau Nobel Laureate Meeting 2008 in Lindau, Germany.

  7. The 2008 Lindau Nobel Laureate Meeting: Robert Huber, Chemistry 1988

    PubMed Central

    Huber, Robert

    2008-01-01

    Robert Huber and his colleagues, Johann Deisenhofer and Hartmut Michel, elucidated the three-dimensional structure of the Rhodopseudomonas viridis photosynthetic reaction center. This membrane protein complex is a basic component of photosynthesis – a process fundamental to life on Earth – and for their work, Huber and his colleagues received the 1988 Nobel Prize in Chemistry. Because structural information is central to understanding virtually any biological process, Huber likens their discovery to “switching on the light” for scientists trying to understand photosynthesis. Huber marvels at the growth of structural biology since the time he entered the field, when crystallographers worked with hand-made instruments and primitive computers, and only “a handful” of crystallographers would meet annually in the Bavarian Alps. In the “explosion” of structural biology since his early days of research, Huber looks to the rising generation of scientists to solve the remaining mysteries in the field – such as the mechanisms that underlie protein folding. A strong proponent of science mentorship, Huber delights in meeting young researchers at the annual Nobel Laureate Meetings in Lindau, Germany. He hopes that among these young scientists is an “Einstein of biology” who, he says with a twinkle in his eye, “doesn’t know it yet.” The interview was conducted by JoVE co-founder Klaus J. Korak at the Lindau Nobel Laureate Meeting 2008 in Lindau, Germany. PMID:19066525

  8. Prioritizing environmental issues around the world: opinions from an international Central and Eastern European environmental health conference.

    PubMed

    Craft, Elena S; Donnelly, Kirby C; Neamtiu, Iulia; McCarty, Kathleen M; Bruce, Erica; Surkova, Irina; Kim, David; Uhnakova, Iveta; Gyorffy, Erika; Tesarova, Eva; Anderson, Beth

    2006-12-01

    As the next generation of scientists enters the field of environmental health, it is imperative that they view their contributions in the context of global environmental stewardship. In this commentary, a group of international graduate students facilitated by three experienced environmental health scientists present their views on what they consider to be the global environmental health concerns of today. This group convened initially in October 2004 at an international health conference in Prague, Czech Republic. In this report we identify perceived environmental health concerns that exist around the world, with a focus on Central and Eastern Europe. Additionally, we address these perceived problems and offers some potential solutions. At the meeting, students were invited to participate in two panel discussions. One group of young international scientists identified several significant global environmental health concerns, including air pollution, occupational hazards, and risk factors that may exacerbate current environmental health issues. The second panel determined that communication, education, and regulation were the mechanisms for addressing current environmental challenges. In this commentary we expand on the views presented at the meeting and represent the concerns of young investigators from nine different countries. We provide ideas about and support the exchange of information between developed and developing countries on how to handle the environmental health challenges that face the world today.

  9. Cyborg and Autism: Exploring New Social Articulations via Posthuman Connections

    ERIC Educational Resources Information Center

    Reddington, Sarah; Price, Deborah

    2016-01-01

    This paper explores the connections a young man with autism spectrum (AS) made using cyborg imagery having attended school in Nova Scotia, Canada. Cyborg is applied as a conceptual approach to explore the young man's connections to human and nonhuman elements. We also make use of rhizomes as a methodological framework to support the exploration of…

  10. Hollywood Science: Good for Hollywood, Bad for Science?

    NASA Astrophysics Data System (ADS)

    Perkowitz, Sidney

    2009-03-01

    Like it or not, most science depicted in feature films is in the form of science fiction. This isn't likely to change any time soon, if only because science fiction films are huge moneymakers for Hollywood. But beyond that, these films are a powerful cultural force. They reach millions as they depict scientific ideas from DNA and cloning to space science, whether correctly or incorrectly; reflect contemporary issues of science and society like climate change, nuclear power and biowarfare; inspire young people to become scientists; and provide defining images -- or stereotypes -- of scientists for the majority of people who've never met a real one. Certainly, most scientists feel that screen depictions of science and scientists are badly distorted. Many are, but not always. In this talk, based on my book Hollywood Science [1], I'll show examples of good and bad screen treatments of science, scientists, and their impact on society. I'll also discuss efforts to improve how science is treated in film and ways to use even bad movie science to convey real science. [4pt] [1] Sidney Perkowitz, Hollywood Science: Movies, Science, and the End of the World (Columbia University Press, New York, 2007). ISBN: 978-0231142809

  11. Training scientists as future industry leaders: teaching translational science from an industry executive’s perspective

    PubMed Central

    Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, “Biotechnology Industry: Structure and Strategy” was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students’ knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists’ training and inspire them to become innovative leaders in the discovery and development of therapeutics. PMID:29657853

  12. Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?

    NASA Astrophysics Data System (ADS)

    Milford, Todd M.; Tippett, Christine D.

    2013-06-01

    This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by preservice teachers reflected the stereotype of a scientist as a man with a wild hairdo who wears a lab coat and glasses while working in a laboratory setting. However, results indicated statistically significant differences in stereotypical components of representations of scientists depending on preservice teachers' program and previous science experiences. Post degree students in secondary science methods courses created images of scientists with fewer stereotypical elements than drawings created by students in the regular elementary program.

  13. Women in Physics: Self-Actualization and Perspectives

    NASA Astrophysics Data System (ADS)

    Kunitsyna, E. V.; Murashova, A. V.; Sokolova, Z. N.; Shmidt, N. M.; Vitman, R. F.

    2005-10-01

    The status of women physicists at the Ioffe Institute of the Russian Academy of Sciences is analyzed. In the Ioffe Physico-Technical Institute (PTI), just 20% of the researchers are female. They work in all of the departments: in theoretical groups, 13% in technological laboratories. up to 30%. Women account for 18% among PhDs and about 11% among Doctors of Science. From 1991 to 2001 there was a trend of growth in the fraction of young women at PTI (from 7% up to 20%). For the last 3 years the percentage of women among postgraduate students has held at 20%. There seems to be the following social phenomenon in the sciences in Russia: against a background of the aging of scientists as a whole, the younger the scientists are, the more likely they are to be women. Women scientists of Ioffe Institute take a hand in organizing the conferences, the physics schools, and the Physics of the Solid State and Semiconductors journals. It is very important to note that careful and reliable results of pseudo-routine work of the PTI women are not always published. This fact exposes them to the ``publications gap.'' In spite of their high research levels, the PTI women physicists give talks at conferences and seminars much more seldom than their male colleagues. In the institute and the departments the male staff of the Academic Councils make decisions without taking gender issues into consideration. In addition, women account for only 3% of the laboratory heads. Now Russian young people are free from archaic gender stereotypes. We can say with certainty that the cultural and professional potential of women scientists is a considerable potential for the 21st century.

  14. Reconceptualising Refugee Education: Exploring the Diverse Learning Contexts of Unaccompanied Young Refugees upon Resettlement

    ERIC Educational Resources Information Center

    Pastoor, Lutine de Wal

    2017-01-01

    This article explores unaccompanied young refugees' participation in various learning contexts beyond school. Drawing from a qualitative study based on interviews with unaccompanied young refugees, educators and social workers in Norway, the findings emphasise the need for a holistic approach to refugee education in and across contexts of…

  15. Being Judged, Being Assessed: Young People's Perspective of Assessment in Youth Justice and Education

    ERIC Educational Resources Information Center

    Ellis, Katie; France, Alan

    2012-01-01

    Research from the Economic and Social Research Council programme on Pathways Into and Out of Crime prioritised young people's "voices" in exploring experiences of crime and a range of intervention services. Drawing on data from interviews with 110 young people, this paper explores their perspectives of professional assessment. Embedded…

  16. Exploring Health Priorities for Young People Leaving Care

    ERIC Educational Resources Information Center

    Matthews, Susan; Sykes, Susie

    2012-01-01

    Care-leavers are considered amongst the most vulnerable and disadvantaged group of young people with worse health outcomes than their peers. However, there is limited evidence to suggest how this can be improved, particularly from the perspective of the young people themselves. The aim of this study was to explore the health priorities of young…

  17. Multiple Intelligence Theory for Gifted Education: Criticisms and Implications

    ERIC Educational Resources Information Center

    Calik, Basak; Birgili, Bengi

    2013-01-01

    This paper scrutinizes giftedness and gifted learners under the implications of multiple intelligence theory with regard to coaching young scientists. It is one of the pluralistic theories toward intelligence while supporting to view individuals as active participants during teaching and learning processes which correspond with the applications of…

  18. Intellectual and Moral Differences among Today's College Students

    ERIC Educational Resources Information Center

    Sokolov, A. V.

    2006-01-01

    Post-Soviet young people are said to be "scornful of ordinary, diligent labor, greedy for easy wealth, and massively antipatriotic." Social scientist A. S. Panarin observes that the demoralization and disorientation of the younger generation are not subject to doubt. Proceeding on the assumption that having a trusting and frank dialogue…

  19. Einstein for Everyone

    ScienceCinema

    Piccioni, Robert

    2018-04-25

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  20. Relationships between Lexical and Phonological Development in Young Children

    ERIC Educational Resources Information Center

    Stoel-Gammon, Carol

    2011-01-01

    Our understanding of the relationships between lexical and phonological development has been enhanced in recent years by increased interest in this area from language scientists, psychologists and phonologists. This review article provides a summary of research, highlighting similarities and differences across studies. It is suggested that the…

  1. Postdoctoral Appointments and Disappointments.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Human Resources.

    Detailed findings on a broad range of issues concerning the importance of postdoctorals to the nation's research effort and the value of postdoctoral experience to young scientists and engineers pursuing careers in research are presented. The report, the first comprehensive study of postdoctorals in 10 years, identifies the following issues: (1)…

  2. A YOUNG SCIENTIST'S GUIDE TO GAINFUL EMPLOYMENT: RECENT GRADUATES' EXPERIENCES AND SUCCESSFUL STRATEGIES

    EPA Science Inventory

    Securing a job after completing a graduate degree is among a graduate student's most rewarding (and most stressful) experiences. The job hunting process, from submitting an application to signing a contract, varies greatly among individuals. It is difficult for any applicant to a...

  3. Einstein for Everyone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piccioni, Robert

    2010-10-05

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  4. Gravity: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains 12 simple experiments through which students can learn about gravity and its implications. Some of the topics included are weight, weightlessness, artificial gravity, the pull of gravity on different shapes, center of gravity, the universal law of gravity, and balancing. Experiments include: finding the balancing point; weighing…

  5. Civic Engagement among Young Men and Women

    ERIC Educational Resources Information Center

    Marcelo, Karlo Barrios; Lopez, Mark Hugo; Kirby, Emily Hoban

    2007-01-01

    Political scientists and sociologists have long established significant differences in civic engagement between women and men. Utilizing data from the 2006 Civic and Political Health of the Nation Survey, and several other sources, new information is provided on the civic engagement of youth, confidence in government, and following public affairs…

  6. Choice in Quail Neonates: The Origins of Generalized Matching

    ERIC Educational Resources Information Center

    Schneider, Susan M.; Lickliter, Robert

    2010-01-01

    Although newborns have surprised scientists with their learning skills, proficiency on concurrent schedules of reinforcement requires (in effect) the ability to integrate and compare behavior-consequence relations over time. Can very young animals obey the quantitative relation that applies to such repeated choices, the generalized matching law?…

  7. The Early Years: Blowing Bubbles

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2016-01-01

    Blowing bubbles is not only a favorite summer activity for young children. Studying bubbles that are grouped together, or "foam," is fun for children and fascinating to many real-world scientists. Foam is widely used--from the bedroom (mattresses) to outer space (insulating panels on spacecraft). Bubble foam can provide children a…

  8. Energy: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains simple experiments through which students can learn about the properties of energy. These experiments include making a kitchen "volcano," a soda-pop "cannon," and a puffed-rice "scooter." Topics include: energy and work, fossil fuels, solar energy, kinetic energy, potential energy, mechanical energy, heat energy, sound energy,…

  9. Linkages between USDA-CSRS and the 1890 Institutions.

    ERIC Educational Resources Information Center

    Mayes, McKinley

    The percentage of young Americans preparing for careers in science and engineering has been declining steadily since the early 1980s. The agricultural community has raised questions about the future availability of an adequate supply of scientists. The 1890 historically black land grant institutions should play an important role in supplying…

  10. Normalizing Heterosexuality: Mothers' Assumptions, Talk, and Strategies with Young Children

    ERIC Educational Resources Information Center

    Martin, Karin A.

    2009-01-01

    In recent years, social scientists have identified not just heterosexism and homophobia as social problems, but also heteronormativity--the mundane, everyday ways that heterosexuality is privileged and taken for granted as normal and natural. There is little empirical research, however, on how heterosexuality is reproduced and then normalized for…

  11. Measurement Informs Understanding

    ERIC Educational Resources Information Center

    Schuster, Dwight; Watanabe, Tad

    2010-01-01

    It is common practice for elementary classes to plant seeds so that students have the opportunity to observe them germinate and grow. Beyond introducing plant anatomy, this relatively simple activity has the potential to engage children as young plant scientists who investigate the basic needs and behaviors of plants. In this article, the authors…

  12. Three-Dimensional Approaches to Assembling Negative Index Metamedia

    DTIC Science & Technology

    2012-04-02

    Davanco, K. Maller, T. W. Jarvis , C. H. Wu, D. Korobkin, Y. Urzhumov, X. Q. Li, G. Shvets, and S. R. Forrest, unpublished work. [18 ] R. Merlin...and received the 2004 Genzel Prize, awarded to a young scientist for exceptional contributions to the field of condensed-matter spectroscopy. Steve

  13. Youth Bashing Gets Old

    ERIC Educational Resources Information Center

    Ferguson, Christopher J.

    2008-01-01

    A perennial talking point of politicians and scientists, since the time of the Greeks, is to lament how American youth are sliding into moral decrepitude, lawlessness, and poor mental health. Indeed, to hear some observers talk, particularly in this election year, young people in the United States are being battered by a coarsened culture that…

  14. Michael Faraday's Bicentenary.

    ERIC Educational Resources Information Center

    Williams, L. Pearce; And Others

    1991-01-01

    Six articles discuss the work of Michael Faraday, a chemist whose work revolutionized physics and led directly to both classical field and relativity theory. The scientist as a young man, the electromagnetic experiments of Faraday, his search for the gravelectric effect, his work on optical glass, his laboratory notebooks, and his creative use of…

  15. Air Pollution and Prevalence of Allergic Diseases in Georgian Adolescent Population

    DTIC Science & Technology

    2004-06-01

    During the last few decades, scientists have devoted special attention to environmental pollution and outdoor allergens (e.g., SO2, NO2, phenol...are most sensitive to the influence of environmental pollution . In this paper, the relationship between the frequency of allergic diseases in the young

  16. Why aren't women sticking with science in Taiwan?

    PubMed

    Cheng, Ling-Fang

    2010-06-01

    This paper explores the factors that contribute to the "leaky pipeline" in science, technology and medicine in Taiwan. The term "leaky pipeline" refers to the steady attrition of women throughout their careers in science, technology and medicine-fields in which men constitute the majority. As a result of this attrition, women are under-represented in the top positions. This phenomenon has been well studied in the United States, and based on the available data in the Chinese and English-language literature, this paper focuses on: (1) the social-cultural factors that keep young women away from science and medicine; (2) the difficulties faced by woman scientists when trying to balance work and family responsibilities; and (3) the impact of the pervasive masculine culture on training and promotion in career development. Conclusions include suggestions for improvements for equality between the sexes in science education, family responsive policies, and institutional reform. 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  17. The LEAPS GK-12 Program

    NASA Astrophysics Data System (ADS)

    Gwinn, Elisabeth; Goodchild, Fiona; Garza, Marilyn

    2005-03-01

    The NSF-funded GK-12 program at UCSB, ``Let's Explore Applied Physical Science'' (LEAPS), awards full fellowships to competitively selected graduate students in the physical sciences and engineering, to support their engagement in local 8th and 9th grade science classrooms. The Fellows' responsibilities to LEAPS total 15 hours per week during the school year. They join consistently in the same classes to collaborate with teachers on delivery of discovery-oriented science instruction. Fellows work in 3-member, interdisciplinary teams. They benefit from this team approach through interaction with colleagues in other disciplines, validation from peers who share enthusiasm for science and mentoring, increased leadership and teaching skills, and a research safety net provided by teammates who can pick up the slack when one Fellow's research requires undivided attention. For teachers, the disciplinary breadth of the Fellow teams is an enormous asset in covering the broad physical science curriculum in CA. Students benefit from hands-on labs and small-group problem-solving exercises enabled by the Fellows' presence and from mentoring by these young scientists.

  18. The enhancement of environmental literacy of High School students within the Sparkling Science project "Traisen w3"

    NASA Astrophysics Data System (ADS)

    Poppe, Michaela; Zitek, Andreas; Böck, Kerstin; Scheikl, Sigrid; Heidenreich, Andrea; Kurz-Aigner, Roman; Schrittwieser, Martin; Muhar, Susanne

    2015-04-01

    Environmental literacy is the knowledge necessary to understand the environment as an ecological system. It comprises the insight in the impact of human behaviour on the natural world and the disposition and motivation to apply ones knowledge, skills and insight in order to make environmentally beneficial decisions as rational citizen. The United Nations Environmental Programme states that young people will face major challenges in providing sufficient water and food, generating energy and adapting to climate change in future. Dealing with these challenges will require a major contribution from science and technology. But even more important, it is an issue of education to transfer the required system understanding as a basis to take informed decisions. In this way an education towards environmental literacy contributes significantly to the personal, social, and professional lives of young people, plays therefore a central role in young person`s "preparedness for life", and is a major prerequisite for sustainable development. For the purpose of developing new and engaging forms of learning, "Sparkling Science" projects are funded by the Federal Ministry of Science, Research and Economy in Austria. These projects target at integrating science with school learning by involving young people into scientific research. Within the Sparkling Science Projects "FlussAu:WOW" and" "Traisen.w3" scientists work together with 15-18-year-old students of an Austrian High School over four years. The projects aim to assess and evaluate crucial functions and processes of riverine landscapes particularly considering the floodplain area in near natural and anthropogenically changed landscapes. Within the first project "FlussAu:WOW" (2012-2014), students and scientists elaborated on indicators for assessing and evaluating the ecological functionality of floodplains and rivers. In a case study in the "Traisen.w3" project (2014-2016), scientists and students will focus at the catchment level of the river Traisen in Lower Austria and investigate ecological and cultural ecosystem services in these river landscapes. From the second year on (2014), students are going to develop qualitative causal models on processes in river floodplain systems by means of the learning software "DynaLearn". It is an engaging, interactive, hierarchically structured learning environment that was developed within the EU-FP7 project "DynaLearn" (http://www.dynalearn.eu) to capture and simulate cause-effect relationships across disciplines and scales. Students work in small groups and are forced to think about processes and interactions of hydrological, biological, ecological, spatial and societal elements. Within this setting the collaborative problem solving competency is necessary to develop by sharing knowledge, understanding and different perspectives. The students start with building their own causal models, perform simulations and develop scenarios for the development of the catchment. Thus the students' understanding of environmental processes in river landscapes is advanced. As an important benefit, scientists learn about viewpoints and conceptions young people have on their environment. Formative evaluations of the effectiveness of different methods of collaboration between scientists and students will be conducted during the whole project. The results of the motivation questionnaires and pre- and mid-tests clearly highlighted the potential of the multi-modal collaboration approach to be used to communicate essential knowledge and skills in environmental understanding.

  19. The professional and the scientist in nineteenth-century America.

    PubMed

    Lucier, Paul

    2009-12-01

    In nineteenth-century America, there was no such person as a "professional scientist". There were professionals and there were scientists, but they were very different. Professionals were men of science who engaged in commercial relations with private enterprises and took fees for their services. Scientists were men of science who rejected such commercial work and feared the corrupting influences of cash and capitalism. Professionals portrayed themselves as active and useful members of an entrepreneurial polity, while scientists styled themselves as crusading reformers, promoters of a purer science and a more research-oriented university. It was this new ideology, embodied in these new institutions, that spurred these reformers to adopt a special name for themselves--"scientists". One object of this essay, then, is to explain the peculiar Gilded Age, American origins of that ubiquitous term. A larger goal is to explore the different social roles of the professional and the scientist. By attending to the particular vocabulary employed at the time, this essay tries to make clear why a "professional scientist" would have been a contradiction in terms for both the professional and the scientist in nineteenth-century America.

  20. Scientific risk communication about controversial issues influences public perceptions of scientists' political orientations and credibility.

    PubMed

    Vraga, Emily; Myers, Teresa; Kotcher, John; Beall, Lindsey; Maibach, Ed

    2018-02-01

    Many scientists communicate with the public about risks associated with scientific issues, but such communication may have unintended consequences for how the public views the political orientations and the credibility of the communicating scientist. We explore this possibility using an experiment with a nationally representative sample of Americans in the fall of 2015. We find that risk communication on controversial scientific issues sometimes influences perceptions of the political orientations and credibility of the communicating scientist when the scientist addresses the risks of issues associated with conservative or liberal groups. This relationship is moderated by participant political ideology, with liberals adjusting their perceptions of the scientists' political beliefs more substantially when the scientist addressed the risks of marijuana use when compared with other issues. Conservatives' political perceptions were less impacted by the issue context of the scientific risk communication but indirectly influenced credibility perceptions. Our results support a contextual model of audience interpretation of scientific risk communication. Scientists should be cognizant that audience members may make inferences about the communicating scientist's political orientations and credibility when they engage in risk communication efforts about controversial issues.

  1. Arctic: A Friend Acting Strangely

    Science.gov Websites

    frequent. Explore the Arctic's changing climate. Discover what these changes mean for the Arctic, its warming in the Arctic by exploring how changes have been observed and documented by scientists and polar

  2. Leveraging Virtual Reality for the Benefit of Lunar Exploration

    NASA Astrophysics Data System (ADS)

    McCandless, R. S.; Burke, E. D.; McGinley, V. T.

    2017-10-01

    Virtual reality (VR) and related technologies will assist scientists with lunar exploration and public engagement. We will present the future exponential impact of VR on lunar activities over the coming decades.

  3. Visual Analytics for Heterogeneous Geoscience Data

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.

    2017-12-01

    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We demonstrate with use cases how scientists can combine the query and visualization interfaces to enable a customized workflow facilitating studies using heterogeneous geoscience datasets.

  4. Reducing the Analytical Bottleneck for Domain Scientists: Lessons from a Climate Data Visualization Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Poco, Jorge; Bertini, Enrico

    2016-01-01

    The gap between large-scale data production rate and the rate of generation of data-driven scientific insights has led to an analytical bottleneck in scientific domains like climate, biology, etc. This is primarily due to the lack of innovative analytical tools that can help scientists efficiently analyze and explore alternative hypotheses about the data, and communicate their findings effectively to a broad audience. In this paper, by reflecting on a set of successful collaborative research efforts between with a group of climate scientists and visualization researchers, we introspect how interactive visualization can help reduce the analytical bottleneck for domain scientists.

  5. The Association of Polar Early Career Scientists (APECS): A Model for the Professional Development of Scientists (Invited)

    NASA Astrophysics Data System (ADS)

    Baeseman, J. L.; Apecs Leadership Team

    2010-12-01

    Efforts like the International Polar Year 2007-2008 (IPY) have helped to increase research efforts as well as enhancing the integration of education and outreach into research projects and developing the next generation of researchers. One of the major legacies of the IPY was the creation of the Association of Polar Early Career Scientists (APECS), which was developed in 2006 by young researchers and focuses on helping each other develop the skills needed for successful careers in research by working with senior mentors. APECS is an international and interdisciplinary organization of over 2000 early career researchers and educators with interests in the Polar Regions and the wider cryosphere from 45 countries. APECS aims to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. This is achieved by - Facilitating international and interdisciplinary networking opportunities to share ideas and experiences and to develop new research directions and collaborations, - Providing opportunities for professional career development for both academic and alternative research professions, and - Promoting education and outreach as an integral component of polar research and to stimulate future generations of polar researchers. Since its inception, APECS has strived to develop a strong network of partnerships with senior international organizations and scientific bodies to provide career development opportunities for young researchers. These partnerships have led to early-career representation on science planning bodies at an international level, the mandate of early career researchers serving as co-chairs at science conferences, the development of a mentorship program, field schools and techniques workshops, mentor panel discussions at conferences and increased funding for young researchers to attend conferences. APECS has also worked with an international teachers network to develop “Polar Science and Global Climate: An International Resource Guide for Teachers and Researchers” which includes tips and tricks for scientists in communicating their research effectively. Because of its international membership, APECS used the internet as an effective tool to develop skills through a career development webinar series, literature discussion forum, and a virtual poster session where researchers can continue to present their research long after a conference poster session ends. These programs not only serve as ways for young researchers to develop their research, they also serve to provide leadership training to the many individuals who plan these activities and creates a strong sense of community across disciplinary and national boarders. The tools APECS has developed can be used to train the next generation of researchers in any field. But perhaps what is more important are the lessons learned from nurturing the organization to create a strong community of early career and senior researchers helping and motivating each other to improve and stay connected to research careers. This presentation will demonstrate how a young researcher driven effort can become an important and crucial component of any field of research on both the national and international level.

  6. Re-energizing enquiry among our young professionals

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, ChandraSekhar

    2017-08-01

    Children are born with enquiring mindset. They keep on asking questions to explore, understand and take part in their environment. However, modern educational systems discourage persistent enquiring questions. Most students, graduating from college, can use their enquiring faculties only to solve problems at hand. They accept the theories taught as the final models for the laws of nature. They safely assume that no further deeper enquiry is needed. This is a disturbing collective tendency counter to our continuously evolving nature. We should also consciously train our minds to evolve continuously by persistently asking enquiring questions. Therefore, we suggest that we take pro-active steps to re-energize the enquiring mindset among our young professionals by organizing enquiry forums for students from all international Student Chapters during most of our optical society meetings. Panels of volunteer senior scientists should encourage deep enquiring questions from the students. In this paper, as examples, I will present a set of enquiring questions in the field of optics that we have been underscoring to students. This is one of the three papers by this author for this conference, ETOP 100-43. Since scientific content-wise they complement each other, the readers should consult the others. They are: ETP100-36, "Consequences of repeated discovery and benign neglect of non-interaction of waves" and ETP100-83, and "Demonstration and implications when 50% beam combiners can behave as 0 or 100% reflector/transmitter inside some interferometers."

  7. Staff Workshop: Exploring Science with Young Children

    ERIC Educational Resources Information Center

    Seefeldt, Carol; Rillero, Peter

    2005-01-01

    This article begins with a section entitled, "Involving Parents in Science Discovery" written by Carol Seefeldt. This section discusses staff workshop for exploring discovery science. Here, the author provides the staff workshop instructions. This is followed by a section entitled, "Exploring Science with Young Children" written by Peter Rillero.…

  8. Why so few young women in mathematics, science, and technology classes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, K.J.

    Many factors influence the success of women in scientific and technical careers. Women represent over 50% of the U.S. population, yet less than 16% of women are employed in scientific and technical careers. Research over the last decade makes it clear that disparities exist in the participation, achievement, and attitudes of young men and young women in science classes. Young women are as interested in science experiences as young men up until age nine. After that age, the number of young women interested in science, mathematics, and technology classes drops. Not enrolling in science and mathematics classes in high schoolmore » limits career options for young women, and their chance to succeed in a scientific or technical field becomes remote. Why is this happening? What can we, as educators, scientists, and parents do to address this problem? The literature identifies three principal factors that relate to the lack of female involvement in science classes: culture, attitude, and education. This paper reviews these factors and provides examples of programs that Pacific Northwest Laboratory (PNL) and others have developed to increase the number of young women entering college ready and wanting to pursue a career in a scientific or technical field.« less

  9. Exploring How and Why Young People Use Social Networking Sites

    ERIC Educational Resources Information Center

    Gray, Laura

    2018-01-01

    Upcoming statutory UK government guidance for keeping children safe in education reflects the use of social media, which is one of the most common activities undertaken by young people. This study explores how and why young people are using social networking sites (SNS) and whether there are age or gender differences. A key feature of the study…

  10. Young and Homeless: Exploring the Education, Life Experiences and Aspirations of Homeless Youth

    ERIC Educational Resources Information Center

    Byrom, Tina; Peart, Sheine

    2017-01-01

    Why do young people become homeless, and what might be done about it? This new study is important reading for academics and students of education, sociology or social work who wish to explore and understand the experiences of homeless young people. Their stories about their aspirations, experiences of schooling and the family breakdowns that…

  11. Exploring the Psychosocial and Behavioral Adjustment Outcomes of Multi-Type Abuse among Homeless Young Adults

    ERIC Educational Resources Information Center

    Ferguson, Kristin M.

    2009-01-01

    This article explores the psychosocial and behavioral adjustment outcomes associated with verbal, emotional, physical, and sexual abuse among homeless young adults as well as the associations among abuse types. Convenience sampling was used to select 28 homeless young adults (ages 18 to 24) from one drop-in center. Overall, subjects experienced…

  12. "Are They Just Checking Our Obesity or What?" The Healthism Discourse and Rural Young Women

    ERIC Educational Resources Information Center

    Lee, Jessica; Macdonald, Doune

    2010-01-01

    This paper makes use of critical discourse analysis and Bourdieu's theoretical framework to explore rural young women's meanings of health and fitness and how the healthism discourse is perpetuated through their experiences in school physical education (PE). The young women's own meanings are explored alongside interview data from their school PE…

  13. Exploring Marine Citizenship among Young People in Select Urban and Rural Villages in the Philippines

    ERIC Educational Resources Information Center

    Jabar, Melvin A.; Regadio, Crisanto Q., Jr.; Collado, Zaldy C.

    2018-01-01

    This article explores the understanding of marine citizenship among young people from two villages (urban and rural) in the Philippines. The purpose of the article is to examine the differences and similarities of their attitudes toward and engagement in marine environment conservation in rural and urban contexts. Young Focus Group Discussion…

  14. Young People's Perceptions of the Objective Physical Activity Monitoring Process: A Qualitative Exploration

    ERIC Educational Resources Information Center

    Scott, Joseph J.; Hansen, Vibeke; Morgan, Philip J.; Plotnikoff, Ronald C.; Lubans, David R.

    2018-01-01

    Objective: To explore young people's perceptions of pedometers and investigate behaviours exhibited while being monitored. Design: Qualitative design using six focus groups with participants (mean age 14.7 years). Setting: Study participants (n = 24) were randomly selected from a previous study of 123 young people aged 14-15 years from three…

  15. Exploring Vaccine Hesitancy Through an Artist-Scientist Collaboration : Visualizing Vaccine-Critical Parents' Health Beliefs.

    PubMed

    Koski, Kaisu; Holst, Johan

    2017-09-01

    This project explores vaccine hesitancy through an artist-scientist collaboration. It aims to create better understanding of vaccine hesitant parents' health beliefs and how these influence their vaccine-critical decisions. The project interviews vaccine-hesitant parents in the Netherlands and Finland and develops experimental visual-narrative means to analyse the interview data. Vaccine-hesitant parents' health beliefs are, in this study, expressed through stories, and they are paralleled with so-called illness narratives. The study explores the following four main health beliefs originating from the parents' interviews: (1) perceived benefits of illness, (2) belief in the body's intelligence and self-healing capacity, (3) beliefs about the "inside-outside" flow of substances in the body, and (4) view of death as a natural part of life. These beliefs are interpreted through arts-based diagrammatic representations. These diagrams, merging multiple aspects of the parents' narratives, are subsequently used in a collaborative meaning-making dialogue between the artist and the scientist. The resulting dialogue contrasts the health beliefs behind vaccine hesitancy with scientific knowledge, as well as the authors' personal, and differing, attitudes toward these.

  16. When Science Studies Religion: Six Philosophy Lessons for Science Classes

    ERIC Educational Resources Information Center

    Pigliucci, Massimo

    2013-01-01

    It is an unfortunate fact of academic life that there is a sharp divide between science and philosophy, with scientists often being openly dismissive of philosophy, and philosophers being equally contemptuous of the naivete of scientists when it comes to the philosophical underpinnings of their own discipline. In this paper I explore the…

  17. Young Investigator Perspectives. Teaching and the postdoctoral experience: impact on transition to faculty positions.

    PubMed

    Uno, Jennifer; Walton, Kristen L W

    2014-05-01

    This editorial continues with our Young Investigator Perspectives series. Drs. Uno and Walton are young investigators who hold faculty positions. They completed a K12 postdoctoral program through the IRACDA (Individual Research and Career Development Award) program sponsored through the NIGMS institute at NIH. IRACDA programs exist at multiple institutions in the USA to combine postdoctoral training with formal training in academic skills and teaching at partner institutions. I thank Drs. Walton and Uno for a thoughtful perspective on how this experience shaped their career goals to combine teaching and research and inspire undergraduates to science careers. Given the current national dialog on broadening career paths and outcomes for PhD scientists, this is a timely perspective. -P. Kay Lund.

  18. Support for Students and Young Scientists to Participate in the 2009 Actinides Conference to be held in San Francisco, CA, Sunday, 12 July 2009 -- Friday, 17 July 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, Kenneth N.

    2011-04-08

    Early career scientist were provided support to attend and participate in the Actinides 2009 (AN2009) International Conference held in San Francisco, California from 12-17 July 2011. This is the premier conference in the field of actinide chemistry, physics, and materials science of the actinide elements. Participation in the preeminent scientific meeting in actinide science keeps the U.S at the forefront of developments in this key field. The specific involvement of early career scientists combats the loss of expertise in the aforementioned critical areas related to f-element chemistry such as energy, homeland, and environmental security. Without these trained scientists, the U.S.more » will not be able to properly exploit nuclear technology to its fullest and will not be able to address its energy needs in either an environmentally safe or cost–effective manner nor will it be able to provide for its national defense. Furthermore, the early career scientists added greatly to the scientific content of the meeting and stimulates early career scientists to remain in the filed of actinide science. Providing support for participation in the AN2009 Conference via registration fee waivers, hotel cost support, and travel cost support, was extremely effective in securing the participation of early career scientists that would have not otherwise been able to attend.« less

  19. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III

    2015-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.

  20. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Ellen Stofan, NASA Chief Scientist, left, and David Miller, NASA Chief Technologist, right, participate in a panel discussion during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  1. Historical trends of participation of women in robotic spacecraft missions

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Dones, Luke; Gay, Pamela; Cohen, Barbara; Horst, Sarah; Lakdawalla, Emily; Spickard, James; Milazzo, Moses; Sayanagi, Kunio M.; Schug, Joanna

    2015-11-01

    For many planetary scientists, being involved in a spacecraft mission is the highlight of a career. Many young scientists hope to one day be involved in such a mission. We will look at the science teams of several flagship-class spacecraft missions to look for trends in the representation of groups that are underrepresented in science. We will start with The Galileo, Cassini, and Europa missions to the outer solar system as representing missions that began in the 1980s, 1990s and 2010s respectively. We would also like to extend our analysis to smaller missions and those to targets other than the outer solar system.

  2. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    NASA Astrophysics Data System (ADS)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  3. A virtual tour of the Galilean Satellites

    NASA Astrophysics Data System (ADS)

    Schenk, Paul

    2010-01-01

    Galileo's imagination was quick to comprehend the importance of the 4 starry objects he observed near Jupiter in January 1610, not only for himself as a scientist but for our common understanding of the place of the Earth and our species in the cosmos. Even he, however, could not have imagined what those four objects would actually look like once humans got their first good look. Some 369 years the fast traveling Voyager 1 and 2 spacecraft provided that first good look during 1979, followed by an even closer look from the Galileo Orbiter beginning in 1996 through 2001. The following mosaics represent some of the best of those views. They include views of impact craters young and ancient, icy terrains that have been intensely faulted, eroded or disrupted, mountains towering 10 or more kilometers high, and volcanic eruptions hotter than those on Earth. Each of the four Galilean satellites is geologically distinct, betraying very diverse global histories and evolutions. Images and other observations of these 4 objects revealed the importance of tidal heating and subsurface water oceans in planetary evolution, but mapping is very incomplete. New missions to explore these planetary bodies are being planned and the images and observations of the missions that went before will lay the groundwork for these new explorations as we begin the 5th Galilean century.

  4. Scientists Needed! The Year of the Solar System: Opportunities for Scientist Involvement

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Scalice, D.; Bleacher, L.

    2011-12-01

    Spanning a Martian Year - 23 months from October 2010 through August 2012 - the Year of the Solar System (YSS) celebrates the amazing discoveries of numerous new and ongoing NASA missions and research efforts as they explore our near and distant neighbors and probe the outer edges of our solar system. The science revealed by these endeavors is dramatically revising our understanding of the formation and evolution of our solar system. YSS offers opportunities for planetary scientists to become involved in education and public outreach (E/PO) in meaningful ways. By getting involved in YSS E/PO activities, scientists can help to raise awareness of, build excitement in, and make connections with educators, students and the public about current planetary science research and exploration. Each month during YSS a different compelling aspect of the solar system - its formation, volcanism, ice, life - is explored. The monthly topics, tied to the big questions of planetary science, include online resources that can be used by scientists to engage their audiences: hands-on learning activities, demonstrations, connections to solar system and mission events, ideas for partnering with other organizations, and other programming ideas. Resources for past, present, and future YSS monthly topics can be found at: http://solarsystem.nasa.gov/yss. Scientists are encouraged to get involved in YSS through an avenue that best fits their available time and interests. Possible paths include: contacting the YSS organizational team to provide content for or to review the monthly topics; integrating current planetary research discoveries into your introductory college science classes; starting a science club; prompting an interview with the local media, creating a podcast about your science, sharing YSS with educators or program coordinators at your local schools, museums, libraries, astronomical clubs and societies, retirement homes, or rotary club; volunteering to present your science in one of these venues for a YSS event; co-hosting a YSS event for an audience with educators or other local partners; or hosting a YSS event at your own institution. YSS offers rich and diverse ways for scientists to actively engage with the public about planetary science; we invite you to get involved!

  5. Scientists as Communicators: Inclusion of a Science/Education Liaison on Research Expeditions

    NASA Astrophysics Data System (ADS)

    Sautter, L. R.

    2004-12-01

    Communication of research and scientific results to an audience outside of one's field poses a challenge to many scientists. Many research scientists have a natural ability to address the challenge, while others may chose to seek assistance. Research cruise PIs maywish to consider including a Science/Education Liaison (SEL) on future grants. The SEL is a marine scientist whose job before, during and after the cruise is to work with the shipboard scientists to document the science conducted. The SEL's role is three-fold: (1) to communicate shipboard science activities near-real-time to the public via the web; (2) to develop a variety of web-based resources based on the scientific operations; and (3) to assist educators with the integration of these resources into classroom curricula. The first role involves at-sea writing and relaying from ship-to-shore (via email) a series of Daily Logs. NOAA Ocean Exploration (OE) has mastered the use of web-posted Daily Logs for their major expeditions (see their OceanExplorer website), introducing millions of users to deep sea exploration. Project Oceanica uses the OE daily log model to document research expeditions. In addition to writing daily logs and participating on OE expeditions, Oceanica's SEL also documents the cruise's scientific operations and preliminary findings using video and photos, so that web-based resources (photo galleries, video galleries, and PhotoDocumentaries) can be developed during and following the cruise, and posted on the expedition's home page within the Oceanica web site (see URL). We have created templates for constructing these science resources which allow the shipboard scientists to assist with web resource development. Bringing users to the site is achieved through email communications to a growing list of educators, scientists, and students, and through collaboration with the COSEE network. With a large research expedition-based inventory of web resources now available, Oceanica is training teachers and college faculty on the use and incorporation of these resources into middle school, high school and introductory college classrooms. Support for a SEL on shipboard expeditions serves to catalyze the dissemination of the scientific operations to a broad audience of users.

  6. Marine Educators Explore the Ocean Depths.

    ERIC Educational Resources Information Center

    Heidenreich, Kathleen; Nielsen, Diane

    2001-01-01

    Describes the experiences of two teachers in the Research and Education: Volcanoes, Exploration and Life (R.E.V.E.L.) program which connects scientists and science teachers, and how they brought these experiences into their classrooms. (YDS)

  7. From outreach to inreach: Connecting young learners with the world of emerging science

    NASA Astrophysics Data System (ADS)

    Buell, James

    Agencies that fund scientific research have called increasingly in recent years for the projects they support to contribute to broader social and educational impacts. However, the means by which these projects might best utilize their own resources to support educational outcomes for young learners have received relatively little attention. This dissertation explores how a scientific research project developed a summer 2008 science education workshop for high school students, situates the case within a larger context of leading-edge scientific research projects having public education aims, and considers ways in which carefully structured learner-scientist interactions may contribute to young students' meaningful learning of science. The research questions are: 1. How did scientists and educators in a university research project come to design an intensive educational activity on the topic of their research, for an audience of high school students? 2. What were the distinguishing features of this educational activity? 3. How did the students learn and remember from this experience? The research takes shape as a design-oriented case study, tracing the development of the education initiative from its beginnings through its impact on learners. The first research question is explored through the technique of "design narrative" (Barab et al., 2008), to trace the development of ideas that culminated in the workshop curriculum through a series of six design episodes that occurred over a four-year span. The second question is investigated through qualitative analysis of workshop documents and post-workshop interviews with organizers and learners, and through comparison of the workshop curriculum with various sorts of "research-science-meets-school-science" (RSMSS) outreach that have been reported in recent science education literature. The third question is explored through analysis of the workshop's memorability, as evidenced by comments made by learners in interviews four months after the workshop. Findings relating to the first question indicate that tensions and contradictions between the project's primary research role and its secondary educational aims were important factors in shaping the curriculum of the 2008 summer education workshop. Investigation of the second question revealed ways in which the 2008 curriculum differed from the various forms of RSMSS outreach previously reported, and led to a conclusion that the form of curriculum exhibited by the workshop merits consideration as "Inreach" rather than outreach. Investigation of the third question revealed that at a distance of four months, learners continued to recall episodic aspects and substantive knowledge from the workshop in detail. Analysis of this set of findings suggests ways in which features of the workshop curriculum enhanced its memorability by students. A separate chapter considers how design features of the 2008 curriculum relate to principles for learning that are drawn from the literature of science education. In the concluding chapter, the study's findings are considered with regard to how they might strengthen efforts by scientific research projects to develop and deliver forms of educational involvement that are both meaningful for students and supportable within the means of the projects themselves. In addition, consideration is given to ways in which the findings from this research might spur further investigation in subsequent design-based research that overcomes limitations inherent in a single-case study.

  8. Thomas Young's contribution to visual optics: the Bakerian Lecture "on the mechanism of the eye".

    PubMed

    Atchison, David A; Charman, W Neil

    2010-10-15

    Thomas Young (1773-1829) carried out major pioneering work in many different subjects. In 1800 he gave the Bakerian Lecture of the Royal Society on the topic of the "mechanism of the eye": this was published in the following year (T. Young, 1801). Young used his own design of optometer to measure refraction and accommodation, and discovered his own astigmatism. He considered the different possible origins of accommodation and confirmed that it was due to change in shape of the lens rather than to change in shape of the cornea or an increase in axial length. However, the paper also dealt with many other aspects of visual and ophthalmic optics, such as biometric parameters, peripheral refraction, longitudinal chromatic aberration, depth-of-focus and instrument myopia. These aspects of the paper have previously received little attention. We now give detailed consideration to these and other less-familiar features of Young's work and conclude that his studies remain relevant to many of the topics which currently engage visual scientists.

  9. Solar Week 2000: Using role models to encourage an interest in science

    NASA Astrophysics Data System (ADS)

    Alexander, D.

    2000-12-01

    Solar Week 2000 is a week-long set of games and activities allowing students to interact directly with solar science and solar scientists. The main goal of Solar Week was to provide young women, primarily in grades 6-8, with access to role models in the sciences. The scientists participating in Solar Week are women from a variety of backgrounds and with a variety of scientific expertise. An online bulletin board was used to foster discussion between the students and the scientists about both science and career issues. In this presentation I will discuss the successes and failures of the first run of Solar Week which occurred on 9-13 October 2000. Our aim is to provide some insight into doing activity-based space science on the web and to discuss the lessons-learned from tailoring to a specific group of participants.

  10. On the Predictability of Future Impact in Science

    PubMed Central

    Penner, Orion; Pan, Raj K.; Petersen, Alexander M.; Kaski, Kimmo; Fortunato, Santo

    2013-01-01

    Correctly assessing a scientist's past research impact and potential for future impact is key in recruitment decisions and other evaluation processes. While a candidate's future impact is the main concern for these decisions, most measures only quantify the impact of previous work. Recently, it has been argued that linear regression models are capable of predicting a scientist's future impact. By applying that future impact model to 762 careers drawn from three disciplines: physics, biology, and mathematics, we identify a number of subtle, but critical, flaws in current models. Specifically, cumulative non-decreasing measures like the h-index contain intrinsic autocorrelation, resulting in significant overestimation of their “predictive power”. Moreover, the predictive power of these models depend heavily upon scientists' career age, producing least accurate estimates for young researchers. Our results place in doubt the suitability of such models, and indicate further investigation is required before they can be used in recruiting decisions. PMID:24165898

  11. "The nature of diamonds and their use in earth's study"

    NASA Astrophysics Data System (ADS)

    Nestola, F.; Alvaro, M.; Pearson, D. G.; Shirey, S. B.

    2016-11-01

    To mark the occasion of the second International Diamond School (IDS) held in January 2015 at Bressanone (Italy), it is appropriate to publish a special issue of Lithos on diamond research entitled "The nature of diamonds and their use in Earth's study". The IDS, sponsored by the Gemological Institute of America (GIA) and by the Deep Carbon Observatory (DCO), was a special event that allowed undergraduate students, Ph.D. students and young scientists to meet, learn and discuss diamond research with some of the most eminent international scientists and leaders from industry, for an entire week. In alignment with the aim of the school, the goal of this issue is present a collection of research papers, from scientists from all over the world, providing an overview of the most advanced frontiers in diamond research, with the aim of demonstrating how diamonds can be used to provide a unique perspective on the deep Earth.

  12. 3rd annual symposium of chemical and pharmaceutical structure analysis.

    PubMed

    Weng, Naidong; Zheng, Jenny; Lee, Mike

    2012-08-01

    The 3rd Annual Symposium on Chemical and Pharmaceutical Structure Analysis was once again held in Shanghai, where a rich history of 'East meets West' continued. This meeting is dedicated to bringing together scientists from pharmaceutical companies, academic institutes, CROs and instrument vendors to discuss current challenges and opportunities on the forefront of pharmaceutical research and development. The diversified symposia and roundtables are highly interactive events where scientists share their experiences and visions in a collegial setting. The symposium highlighted speakers and sessions that provided first-hand experiences as well as the latest guidance and industrial/regulatory thinking, which was reflected by the theme of this year's meeting 'From Bench to Decision Making - from Basics to Application.' In addition to the highly successful Young Scientist Excellence Award, new events were featured at this year's meeting, such as the Executive Roundtable and the inaugural Innovator Award.

  13. Communicating through humour: A project of stand-up comedy about science.

    PubMed

    Pinto, Bruno; Marçal, David; Vaz, Sofia G

    2015-10-01

    A study of a project on science stand-up comedy developed in Portugal between 2009 and 2013 is presented, in which thirteen scientists, coordinated by a science communicator and a professional actor, created and presented comedy acts. Eleven of these scientists were asked about their motivations to participate, the process of performance development and the perceived value of the project. Personal motivations were highly important, but professional reasons were also mentioned. Working in a group with the guidance of coordinators, testing and re-writing the texts and gradually gaining confidence on stage were considered fundamental in the development of the shows. Additionally, a questionnaire revealed that the audience, most of whom were young adults, and held a higher education degree, were satisfied with the show. Overall, both participating scientists and audience members considered that stand-up comedy has potential for science communication. © The Author(s) 2013.

  14. Reinventing Radiology: Big Data and the Future of Medical Imaging.

    PubMed

    Morris, Michael A; Saboury, Babak; Burkett, Brian; Gao, Jackson; Siegel, Eliot L

    2018-01-01

    Today, data surrounding most of our lives are collected and stored. Data scientists are beginning to explore applications that could harness this information and make sense of it. In this review, the topic of Big Data is explored, and applications in modern health care are considered. Big Data is a concept that has evolved from the modern trend of "scientism." One of the primary goals of data scientists is to develop ways to discover new knowledge from the vast quantities of increasingly available information. Current and future opportunities and challenges with respect to radiology are provided with emphasis on cardiothoracic imaging.

  15. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen

    2010-03-01

    'Retrospective views on our planet's future' - This was the theme of a tandem of meetings held by Past Global Changes (PAGES; http://www.pages-igbp.org), a project of the International Geosphere-Biosphere Programme (IGBP). It reflects the philosophy of PAGES and its community of scientists that the past holds the key to better projections of the future. Climatic and environmental evidence from the past can be used to sharpen future projections of global change, thereby informing political and societal decisions on mitigation and adaptation. Young scientists are critical to the future of this endeavour, which we call 'paleoscience'. Their scientific knowledge, interdisciplinarity, international collaboration, and leadership skills will be required if this field is to continue to thrive. Meanwhile, it is also important to remember that science develops not only by applying new strategies and new tools to make new observations, but also by building upon existing knowledge. Modern research in paleoscience began around fifty years ago, and one could say that the third generation of researchers is now emerging. It is a wise investment to ensure that existing skills and knowledge are transferred to this generation. This will enable them to lead the science towards new accomplishments, and to make important contributions towards the wider field of global change science. Motivated by such considerations, PAGES organized its first Young Scientists Meeting (YSM), held in Corvallis (Oregon, USA) in July 2009 (http://www.pages-osm.org/ysm/index.html). The meeting took place immediately before the much larger 3rd PAGES Open Science Meeting (OSM; http://www.pages-osm.org/osm/index.html). The YSM brought together 91 early-career scientists from 21 different nations. During the two-day meeting, PhD students, postdoctoral researchers, and new faculty met to present their work and build networks across geographical and disciplinary borders. Several experienced and well-recognized researchers tutored this conference, and gave assistance to young scientists by offering advice on publication, promotion, outreach processes, and data management. At the subsequent OSM, the young scientists had the opportunity to present their results to a larger community, and to build networks with their senior colleagues. In a friendly and classroom-like atmosphere, the research presented during the YSM was of a remarkably high quality, and merited publication in this special issue. The 23 short proceedings papers are first-authored by YSM attendees, and based on their presented work and the associated discussions. Consistent with the spirit of the YSM, the core of the guest editor team consisted of YSM early-career scientists, while members of the wider scientific community reviewed the papers. Studies presented in this issue cover a large range of topics. Paleoclimatic and paleoenvironmental research is always seeking new natural archives and improved proxies, and so some papers focus on reconstruction methodologies and the interpretation and calibration of proxies. Other papers present a variety of modeling approaches, such as climate system modeling, forward modeling, or ecosystem modeling. Still others focus on reconstructions from marine (foraminifera, diatoms, corals) or continental (tree rings, speleothems, ice cores) archives, or on understanding the dynamics of the Earth system and the feedbacks between its various components. The studies presented span timescales ranging from the past 200,000 years to the last few decades, and consider changes in natural phenomena such as the hydrological cycle and the El Niño-Southern Oscillation, as well as local- and regional-scale interaction of humans with the environment. The papers presented in this special issue therefore reflect current challenges in paleoscience research: understanding natural variability on both long and short time scales, and monitoring anthropogenic impacts which range from historic landscaping to more recent pollution. The concept and format of the 1st PAGES YSM worked very well, and created a high degree of enthusiasm and stimulation among the participants (as is demonstrated by this special issue). The 2nd YSM is therefore firmly planned to take place in 2013, back-to-back with the 4th PAGES OSM. Crucial and gratefully acknowledged contributions to the success of the YSM were made by the numerous co-sponsors (see logos below), who provided the financial basis for the YSM and supported the attendance of many early-career researchers from various parts of the world. Furthermore, we cordially thank all reviewers for shaping this proceeding issue with their insightful and helpful reviews. Conference photograph

  16. Rescuing the physician-scientist workforce: the time for action is now.

    PubMed

    Milewicz, Dianna M; Lorenz, Robin G; Dermody, Terence S; Brass, Lawrence F

    2015-10-01

    The 2014 NIH Physician-Scientist Workforce (PSW) Working Group report identified distressing trends among the small proportion of physicians who consider research to be their primary occupation. If unchecked, these trends will lead to a steep decline in the size of the workforce. They include high rates of attrition among young investigators, failure to maintain a robust and diverse pipeline, and a marked increase in the average age of physician-scientists, as older investigators have chosen to continue working and too few younger investigators have entered the workforce to replace them when they eventually retire. While the policy debates continue, here we propose four actions that can be implemented now. These include applying lessons from the MD-PhD training experience to postgraduate training, shortening the time to independence by at least 5 years, achieving greater diversity and numbers in training programs, and establishing Physician-Scientist Career Development offices at medical centers and universities. Rather than waiting for the federal government to solve our problems, we urge the academic community to address these goals by partnering with the NIH and national clinical specialty and medical organizations.

  17. Picturing Equality: Exploring Civil Rights' Marches through Photographs

    ERIC Educational Resources Information Center

    Santoli, Susan; Vitulli, Paige; Giles, Rebecca

    2015-01-01

    Exploring controversial and difficult events and issues with young children can be challenging. The Civil Rights Movement is an abstract, perhaps remote, issue for young children today. However, it is an important part of our country's history and a theme worthy of study. This article suggests ways to use photographs to explore this mature subject…

  18. Utilizing Professional Vision in Supporting Preservice Teachers' Learning About Contextualized Scientific Practices. Collaborative Discourse Practices Between Teachers and Scientists

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, Asli

    2018-03-01

    Drawn from the cultural-historical theories of knowing and doing science, this article uses the concept of professional vision to explore what scientists and experienced teachers see and articulate as important aspects of climate science practices. The study takes an abductive reasoning approach to analyze scientists' videotaped lectures to recognize what scientists pay attention to in their explanations of climate science practices. It then analyzes how ideas scientists attended align with experienced teachers' sense-making of scientific practices to teach climate change. The findings show that experienced teachers' and scientists' explanations showed alignment in the focus on scientific practices, but indicated variations in the temporal and spatial reasoning of climate data. Furthermore, the interdisciplinarity of climate science was emphasized in climate scientists' lectures, but was not apparent once scientists and teachers shared the same culture in meetings to provide feedback to preservice teachers. Given the importance of teaching through scientific practices in classrooms, this study provides suggestions to capture the epistemic diversity of scientific disciplines.

  19. In the heat of the moment: Effectively engaging scientists and diverging science in hazard events.

    NASA Astrophysics Data System (ADS)

    Brosnan, D. M.

    2015-12-01

    Scientists are increasingly called upon to use their expertise to help minimize disasters stemming from natural and human induced hazards ranging from volcanoes, earthquakes and tsunamis to oil-spills. Decision-makers want scientists who collect and analyze data to be able to predict the likelihood and severity of a hazard occurrence. When there is an event, they look to scientists to find ways to ameliorate the consequences. Science cannot predict with the accuracy sought by scientists and scientists themselves are rarely aware of the cascading consequences that they are being asked to minimize. Importantly too, scientists differ in their interpretation of data and uncertainties. While these differences are the spark of science they are often the bane of disaster decisions. This presentation addresses the applicatoin of science in the midst of hazard crises. Using examples from several global disasters it explores how different techniques to deal with scientific uncertainties and diverging conclusions among scientists has been more or less successful. The presentation addresses methods and opportunities exist for effectively applying science during hazard events.

  20. "Reading All that White Crazy Stuff:" Black Young Women Unpacking Whiteness in a High School British Literature Classroom

    ERIC Educational Resources Information Center

    Carter, Stephanie Power

    2007-01-01

    The article uses sociolinguistic and ethnographic methods and Black feminist theory to explore the classroom interactions of Pam and Natonya, two Black young females, during one event in a required high school British literature classroom. The event is presented as a telling case to explore gendered and racial complexities facing young Black…

  1. Using Action Research to Enhance Resilience in a Children's Home: An Exploration of Need, Experience and Role

    ERIC Educational Resources Information Center

    Houston, Stan

    2011-01-01

    This paper describes an action research project aimed at enhancing resilience in young people in a residential children's home. Two core areas were explored, namely: the needs of the young people as captured through a resilience framework; and the experiential and role-related issues arising from the attempts to enhance the young people's…

  2. Changing the Culture of Young People's Binge Drinking: From Motivations to Practical Solutions

    ERIC Educational Resources Information Center

    Coleman, Lester; Cater, Suzanne

    2007-01-01

    Aims: This paper explores young people's own opinions about how the "drinking to get drunk" culture can be changed. More precisely, the two objectives of this study were to explore: (1) whether young people viewed binge drinking as a real "problem"; and (2) what they thought could be done to reduce binge drinking. Methods:…

  3. An Exploration of the Role of Visual Programming Tools in the Development of Young Children's Computational Thinking

    ERIC Educational Resources Information Center

    Rose, Simon P.; Habgood, M. P. Jacob; Jay, Tim

    2017-01-01

    Programming tools are being used in education to teach computer science to children as young as 5 years old. This research aims to explore young children's approaches to programming in two tools with contrasting programming interfaces, ScratchJr and Lightbot, and considers the impact of programming approaches on developing computational thinking.…

  4. Having a Voice: An Exploration of Children's Rights and Advocacy.

    ERIC Educational Resources Information Center

    Dalrymple, Jane, Ed.; Hough, Jan, Ed.

    This book explores the concept of advocacy in British society with regard to children and young people, examining advocacy from a number of different perspectives, and taking into account the UN Convention on the Rights of the Child and legislation that affects children and young people. The three parts of the book examine why young people need an…

  5. "Boys Like Smart Girls More than Pretty Girls": Young Korean Immigrant Girls' Understanding of Romantic Love in American Popular Culture

    ERIC Educational Resources Information Center

    Lee, Lena

    2009-01-01

    Despite the importance of understanding children's interpretations of popular culture in the United States, young children's voices have not been sufficiently explored in studies. Moreover, the perspectives of American immigrant children hardly have a presence in studies of popular culture. Thus, this paper explores how young immigrant children…

  6. Video Allows Young Scientists New Ways to Be Seen

    ERIC Educational Resources Information Center

    Park, John C.

    2009-01-01

    Science is frequently a visual endeavor, dependent on direct or indirect observations. Teachers have long employed motion pictures in the science classroom to allow students to make indirect observations, but the capabilities of digital video offer opportunities to engage students in active science learning. Not only can watching a digital video…

  7. Building Conceptual Understanding in Young Scientists.

    ERIC Educational Resources Information Center

    Hawley, Duncan

    2002-01-01

    Describes the use of a new pedagogic approach to geology used to create a sequence of investigative activities enabling students to speculate, hypothesize, observe, test, reason, and infer about the characteristics of rocks. The approach is framed by two questions: (1) What are the key characteristics of different rock groups?; and (2) How did the…

  8. Water: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains simple experiments and projects through which students can learn about water and its properties. Some of the topics discussed include acid rain, dehydration, distillation, electrons, tidal waves, and the water cycle. Experiments include: finding out about the amount of water in the body; why there is water in the body; how to…

  9. Building a Sustainable Future

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Hessler, Susan

    2010-01-01

    This poster presentation shows some of the personnel at work in the Materials and Processes Laboratory at NASA's Marshall Space Flight Center. They are shown studying materials of all kinds and the processes for manufacturing. The purpose of the poster is to inspire young people to become tomorrow's engineers, scientists, technicians or support specialist at NASA.

  10. Possible Martensitic Transformation in Heusler Alloy Pt2MnSn from First Principles

    NASA Astrophysics Data System (ADS)

    Feng, Lin; Guo, Chen-Chen; Zhang, Xue-Ying; Xuan, Hai-Cheng; Wang, Wen-Hong; Liu, En-Ke; Wu, Guang-Heng

    2018-03-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51301119, 51301195, 51171206 and 51401140, the National Science Foundation for Young Scientists of Shanxi Province under Grant No 2013021010-1, and the Youth Foundation of Taiyuan University of Technology under Grant No 1205-04020102.

  11. Ethics Education and Scientific and Engineering Research: What's Been Learned? What Should Be Done? Summary of a Workshop

    ERIC Educational Resources Information Center

    Hollander, Rachelle, Ed.; Arenberg, Carol R., Ed.

    2009-01-01

    Increasing complexity and competitiveness in research environments, the prevalence of interdisciplinary and international involvement in research projects, and the close coupling of commerce and academia have created an ethically challenging environment for young scientists and engineers. For the past several decades, federal research agencies…

  12. Engineering in Children's Fiction--Not a Good Story?

    ERIC Educational Resources Information Center

    Holbrook, Allyson; Panozza, Lisa; Prieto, Elena

    2009-01-01

    Responding to concerns that engineering is a poorly understood occupation and that young people are exposed to stereotyped images of scientists and engineers at an early age, this investigation sought to identify how science and engineering is portrayed in contemporary junior fiction (ages 8-12) and to what extent. An examination of 4,800 junior…

  13. Engage, Investigate, and Report: Enhancing the Curriculum with Scientific Inquiry

    ERIC Educational Resources Information Center

    Blake, Sally

    2009-01-01

    Young children are called natural scientists for good reason. Even infants investigate their surroundings, using their senses to look, touch, smell, hear, and taste. As children discover objects and situations that are puzzling or intriguing--things that provoke their curiosity--they begin looking for ways to find answers, all in an effort to…

  14. Evaluating and communicating options for harvesting young-growth douglas-fir forests

    Treesearch

    Dean S. DeBell; Jeffery D. DeBell; Robert O. Curtis; Nancy K. Allison

    1997-01-01

    A cooperative project, developed by Washington State Department of Natural Resources (DNR) and the Pacific Northwest Research Station (PNW), provides a framework for managers and scientists to (1) obtain experience with a range of silvicultural options; (2) develop information about public response to visual appearance, economic performance, and biological aspects...

  15. Alternative Conceptions about Micro-Organisms Are Influenced by Experiences with Disease in Children

    ERIC Educational Resources Information Center

    Prokop, Pavol; Fancovicová, Jana; Krajcovicová, Adriána

    2016-01-01

    Children's ideas concerning natural phenomena often differ from those of scientists, and these ideas are termed as alternative conceptions. The prevalence of alternative conceptions is highest among young children who possess less experience with the natural world as compared with adults. Children's ideas about micro-organisms are of special…

  16. Getting to the guts of enteric nervous system development.

    PubMed

    Heuckeroth, Robert O; Pachnis, Vassilis

    2006-06-01

    Scientists from around the world gathered in New York City recently to discuss the latest research on enteric nervous system development at a meeting organised by Alan Burns and Heather Young. The participants enjoyed 3 days of presentations that spurred active conversations and highlighted the rapidly advancing research in this field.

  17. Inspiring Young Scientists with Great Books

    ERIC Educational Resources Information Center

    Brassell, Danny

    2006-01-01

    In an effort to increase her students' interest in science, a teacher in an underresourced school secured large donations of science-related books for her classroom of second-language learners. By balancing her science classroom library and read-alouds with a number of interesting nonfiction trade books and storybooks, the teacher tried to enhance…

  18. Neutrons, Magnets, and Photons: A Career in Structural Biology

    PubMed Central

    Moore, Peter B.

    2012-01-01

    The purpose of Reflections articles, it seems, is to give elderly scientists a chance to write about the “good old days,” when everyone walked to school in the snow. They enjoy this activity so much that your editor, Martha Fedor, must have known that I would accept her invitation to write such an article, no matter how much I demurred at first. As everyone knows, flattery will get you everywhere. It may comfort the apprehensive reader to learn that there is not going to be much walking to school in the snow in this story. On the contrary, rather than thinking how hard I had it during my scientific career, I find it inconceivable that anyone could have had a smoother ride. At the time I began my career, science was an expanding enterprise in the United States that welcomed the young. Only in such an opportunity-rich environment would someone like me have stood a chance. The contrast between that world and the dog-eat-dog world young scientists confront today is stark. PMID:22086921

  19. Dust Tsunamis, Blackouts and 50 deg C: Teaching MATLAB in East Africa

    NASA Astrophysics Data System (ADS)

    Trauth, M. H.

    2016-12-01

    MATLAB is the tool of choice when analyzing earth and environmental data from East Africa. The software and companion toolboxes helps to process satellite images and digital elevation models, to detect trends, cycles, and recurrent, characteristic types of climate transitions in climate time series, and to model the hydrological balance of ancient lakes. The advantage of MATLAB is that the user can do many different types of analyses with the same software, making the software very attractive for young scientists at African universities. Since 2009 we are organizing summer schools on the subject of data analysis with various tools including MATLAB in Ethiopia, Kenya and Tanzania. Throughout the summerschool, participants are instructed by teams of senior researchers, together with young scientists, some of which were participants of an earlier summerschool. The participants are themselves integrated in teaching, depending on previous knowledge, so that the boundary between teachers and learners constantly shifts or even dissolves. From the extraordinarily positive experience, but also the difficulties in teaching data analysis methods with MATLAB in East Africa is reported.

  20. China's roadmap for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Yao, Zhonghua; Wan, Weixing

    2018-05-01

    China has approved or planned a string of several space exploration missions to be launched over the next decade. A new generation of planetary scientists in China is playing an important role in determining the scientific goals of future missions.

Top