Sample records for young stars gas-phase

  1. Dynamical evolution of stars and gas of young embedded stellar sub-clusters

    NASA Astrophysics Data System (ADS)

    Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah

    2018-06-01

    We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution that can include a filamentary structure in addition to gas surrounding the stellar sub-clusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young protostar clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.

  2. Molecular Gas in Disks around Young Stars with ALMA

    NASA Astrophysics Data System (ADS)

    Hughes, A. Meredith; Factor, Samuel; Lieman-Sifry, Jesse; Flaherty, Kevin; Daley, Cail; Mann, Rita; Roberge, Aki; Di Francesco, James; Williams, Jonathan; Ricci, Luca; Matthews, Brenda; Bally, John; Johnstone, Doug; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David; Andrews, Sean; Kastner, Joel H.; Abraham, Peter

    2018-01-01

    Molecular gas is a critical component of the planet formation process. In this poster, we present two analyses of the molecular gas component of circumstellar disks at extremes (young, old) of the pre-main sequence phase.(1) We characterize the molecular gas content of the disk around d216-0939, a pre-main sequence star in the Orion Nebula Cluster, using ALMA observations of CO(3-2), HCO+(4-3), and HCN(4-3) observed at 0.5" resolution. We model the density and temperature structure of the disk, returning abundances generally consistent with chemical modeling of protoplanetary disks, and obtain a dynamical mass measurement of the central star of 2.2+/-0.4 M_sun, which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blue-shifted excess emission feature with a measurable position offset from the central star, consistent with an object in Keplerian orbit at 60+/-20 au. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk, providing evidence that planet formation is ongoing within this massive and relatively isolated Orion proplyd. This work is published in Factor et al. (2017). (2) We present ~0.4" resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with ALMA. We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The radial extent of the gas disk (~220 au) is smaller than that of the dust disk (~300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly

  3. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    PubMed

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  4. Gas expulsion in highly substructured embedded star clusters

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.

    2018-06-01

    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

  5. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  6. Young Star May Be Belching Spheres of Gas, Astronomers Say

    NASA Astrophysics Data System (ADS)

    2001-05-01

    A young star more than 2,000 light-years away in the constellation Cepheus may be belching out spheres of gas, say astronomers who observed it with the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope. Not only is the star ejecting spheres of gas, the researchers say, but it also may be ejecting them repeatedly, phenomena not predicted by current theories of how young stars shed matter. Cepheus A star-forming region with blowups of detail In order to remain stable while accumulating matter, young stars have to throw off some of the infalling material to avoid "spinning up" so fast they would break apart, according to current theories. Infalling matter forms a thin spinning disk around the core of the new star, and material is ejected in twin "jets" perpendicular to the plane of the disk. "Twin jets have been seen emerging from many young stars, so we are quite surprised to see evidence that this object may be ejecting not jets, but spheres of gas," said Paul T.P. Ho, an astronomer at the Harvard-Smithsonian Center for Astrophysics. The research is reported in the May 17 edition of the scientific journal Nature. The astronomers observed a complex star-forming region in Cepheus and found an arc of water molecules that act like giant celestial amplifiers to boost the strength of radio signals at a frequency of 22 GHz. Such radio-wave amplifiers, called masers, show up as bright spots readily observed with radio telescopes. "With the great ability of the VLBA to show fine detail, we could track the motions of these maser spots over a period of weeks, and saw that this arc of water molecules is expanding at nearly 20,000 miles per hour," said Ho. "This was possible because we could detect detail equivalent to seeing Lincoln's nose on a penny in Los Angeles from the distance of New York," Ho added. "These observations pushed the tremendous capabilities of the VLBA and of modern computing power to their limits. This is an extremely complex

  7. Understanding Gas-Phase Ammonia Chemistry in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Chambers, Lauren; Oberg, Karin I.; Cleeves, Lauren Ilsedore

    2017-01-01

    Protoplanetary disks are dynamic regions of gas and dust around young stars, the remnants of star formation, that evolve and coagulate over millions of years in order to ultimately form planets. The chemical composition of protoplanetary disks is affected by both the chemical and physical conditions in which they develop, including the initial molecular abundances in the birth cloud, the spectrum and intensity of radiation from the host star and nearby systems, and mixing and turbulence within the disk. A more complete understanding of the chemical evolution of disks enables a more complete understanding of the chemical composition of planets that may form within them, and of their capability to support life. One element known to be essential for life on Earth is nitrogen, which often is present in the form of ammonia (NH3). Recent observations by Salinas et al. (2016) reveal a theoretical discrepancy in the gas-phase and ice-phase ammonia abundances in protoplanetary disks; while observations of comets and protostars estimate the ice-phase NH3/H2O ratio in disks to be 5%, Salinas reports a gas-phase NH3/H2O ratio of ~7-84% in the disk surrounding TW Hydra, a young nearby star. Through computational chemical modeling of the TW Hydra disk using a reaction network of over 5000 chemical reactions, I am investigating the possible sources of excess gas-phase NH3 by determining the primary reaction pathways of NH3 production; the downstream chemical effects of ionization by ultraviolet photons, X-rays, and cosmic rays; and the effects of altering the initial abundances of key molecules such as N and N2. Beyond providing a theoretical explanation for the NH3 ice/gas discrepancy, this new model may lead to fuller understanding of the gas-phase formation processes of all nitrogen hydrides (NHx), and thus fuller understanding of the nitrogen-bearing molecules that are fundamental for life as we know it.

  8. Local anticorrelation between star formation rate and gas-phase metallicity in disc galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.

    2018-06-01

    Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anticorrelation between the index N2 ≡ log ([N II]λ 6583/H α ) and the H α flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to H α relation may reflect the existence of an anticorrelation between the metallicity of the gas forming stars and the SFR it induces. Such an anticorrelation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anticorrelation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of H II regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disc galaxies does not produce the correlation either.

  9. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  10. The Beta Pictoris Phenomenon in Young Stars With Accreting Gas

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1999-01-01

    Program Hae2BPIC resulted in usable ISO spectra of three young, Herbig Ae stars: HR 5999 (A7e, t=0.6 Myr), SV Cep (al-2e, t=1-3 Myr), and MW Vul (Al-2e, t=1-3 Myr). While too small a sample to pursue our original goal of surveying the silicate emission in these young, protoplanetary disk systems, comparison of these data with ground-based IR spectra, and published ISO observations of other HAe stars (especially the posters at PPIV) reveals the following: The known binary stars in the sample show signatures of partially crystal line silicate features by t=0.6 Myr, at an epoch when ostensibly single Herbig Ae stars have substantially stronger silicate emission dominated by amorphous grains. The known binary stars also show deficits in the optically thick continuum flux relative to coeval single stars. Comparison of ISO spectra indicates that the flux deficit seen in WD 163296 over 10-100 microns relative to AB Aur reflects a real deficit of material interior to 300.

  11. Dust and gas around young stars

    NASA Astrophysics Data System (ADS)

    Chen, Christine Hsiao-Ching

    To understand how asteroids, planets, and comets form in circumstellar disks of gas and dust, we have carried out a high resolution mid-infrared imaging study and a high resolution ultra violet spectroscopic study of the dust and gas around nearby pre-main sequence Herbig Ae stars and dusty main sequence stars. We have used the Keck I telescope to image at 11.7 μm and 17.9 μm the dust emission around ζ Lep, a main sequence A-type star with an infrared excess, 21.5 pc from the Sun. The excess is at most marginally resolved at 17.9 μm. The dust distance from the star is probably ≤6 AU, although some dust may extend to 9 AU. The mass of observed dust is ˜10 22 g. Since the lifetime of dust particles is about 104 yr because of the Poynting- Robertson effect, we robustly estimate at least 4 × 1026 g must reside in parent bodies which may be asteroids if the system is in a steady state and has an age of ˜300 Myr. This mass is approximately 200 times that contained within the main asteroid belt in our solar system. We have obtained FUSE spectra of σ Her, a nearby binary system, with a main sequence primary, that has a Vega-like infrared excess. We observe absorption in the excited fine structure lines C II* at 1037 Å, N II* at 1085 Å, and N II** at 1086 Å that are blueshifted by as much as ˜30 km/sec with respect to the star. Since these features are considerably narrower than the stellar lines and broader than interstellar features, the C II and N II are circumstellar. Since σ Her has a high luminosity, we suggest that there is a radiatively driven wind, arising from the circumstellar matter, rather than accretion as occurs around β Pic. Assuming that the gas is liberated by collisions between parent bodies at 20 AU, the approximate distance at which blackbody grains are in radiative equilibrium with the star and at which 3-body orbits become unstable, we infer dM/dt ˜6 × 10-12 M⊙ yr-1. This wind depletes the minimum mass of parent bodies in less than

  12. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kóspál, Á.; Ábrahám, P.; Moór, A.

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the COmore » emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.« less

  13. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  14. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  15. RCW 108: Massive Young Stars Trigger Stellar Birth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

    This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

    The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

    Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas

  16. NGVLA Observations of Dense Gas Filaments in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Di Francesco, James; Chen, Mike; Keown, Jared; GAS Team, KEYSTONE Team

    2018-01-01

    Recent observations of continuum emission from nearby star-forming regions with Herschel and JCMT have revealed that filaments are ubiquitous structures within molecular clouds. Such filaments appear to be intimately connected to star formation, with those having column densities of AV > 8 hosting the majority of prestellar cores and young protostars in clouds. Indeed, this “threshold” can be explained simply as the result of supercritical cylinder fragmentation. How specifically star-forming filaments form in molecular clouds, however, remains unclear, though gravity and turbulence are likely involved. Observations of their kinematics are needed to understand how mass flows both onto and through these filaments. We show here results from two recent surveys, the Green Bank Ammonia Survey (GAS) and the K-band Examinations of Young Stellar Object Natal Environments (KEYSTONE) that have used the Green Bank Telescope’s K-band Focal Plane Array instrument to map NH3 (1,1) emission from dense gas in nearby star-forming regions. Data from both surveys show that NH3 emission traces extremely well the high column density gas across these star-forming regions. In particular, the GAS results for NGC 1333 show NH3-based velocity gradients either predominantly parallel or perpendicular to the filament spines. Though the GAS and KEYSTONE data are vital for probing filaments, higher resolutions than possible with the GBT alone are needed to examine the kinematic patterns on the 0.1-pc scales of star-forming cores within filaments. We describe how the Next Generation Very Large Array (NGVLA) will uniquely provide the key wide-field data of high sensitivity needed to explore how ambient gas in molecular clouds forms filaments that evolve toward star formation.

  17. Young Stars with SALT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riedel, Adric R.; Alam, Munazza K.; Rice, Emily L.

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members ofmore » moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups.« less

  18. HUBBLE SEES DISKS AROUND YOUNG STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA

  19. Circumstellar disks of the most vigorously accreting young stars.

    PubMed

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood.

  20. Identifying Young, Nearby Stars

    NASA Technical Reports Server (NTRS)

    Webb, Rich; Song, Inseok; Zuckerman, Ben; Bessell, Mike

    2001-01-01

    Young stars have certain characteristics, e.g., high atmospheric abundance of lithium and chromospheric activity, fast rotation, distinctive space motion and strong X-ray flux compared to that of older main sequence stars. We have selected a list of candidate young (<100Myr) and nearby (<60pc) stars based on their space motion and/or strong X-ray flux. To determine space motion of a star, one needs to know its coordinates (RA, DEC), proper motion, distance, and radial velocity. The Hipparcos and Tycho catalogues provide all this information except radial velocities. We anticipate eventually searching approx. 1000 nearby stars for signs of extreme youth. Future studies of the young stars so identified will help clarify the formation of planetary systems for times between 10 and 100 million years. Certainly, the final output of this study will be a very useful resource, especially for adaptive optics and space based searches for Jupiter-mass planets and dusty proto-planetary disks. We have begun spectroscopic observations in January, 2001 with the 2.3 m telescope at Siding Spring Observatory (SSO) in New South Wales, Australia. These spectra will be used to determine radial velocities and other youth indicators such as Li 6708A absorption strength and Hydrogen Balmer line intensity. Additional observations of southern hemisphere stars from SSO are scheduled in April and northern hemisphere observations will take place in May and July at the Lick Observatory of the University of California. AT SSO, to date, we have observed about 100 stars with a high resolution spectrometer (echelle) and about 50 stars with a medium spectral resolution spectrometer (the "DBS"). About 20% of these stars turn out to be young stars. Among these, two especially noteworthy stars appear to be the closest T-Tauri stars ever identified. Interestingly, these stars share the same space motions as that of a very famous star with a dusty circumstellar disk--beta Pictoris. This new finding better

  1. Sgr A* envelope explosion and the young stars in the centre of the Milky Way

    NASA Astrophysics Data System (ADS)

    Nayakshin, Sergei; Zubovas, Kastytis

    2018-05-01

    Sgr A* is the super massive black hole residing in the centre of the Milky Way. There is plenty of observational evidence that a massive gas cloud fell into the central parsec of the Milky Way ˜6 million years ago, triggering formation of a disc of young stars and activating Sgr A* . In addition to the disc, there is an unexplained population of young stars on randomly oriented orbits. Here we hypothesize that these young stars were formed by fragmentation of a massive quasi-spherical gas shell driven out from Sgr A* potential well by an energetic outflow. To account for the properties of the observed stars, the shell must be more massive than 105 Solar masses, be launched from inside ˜0.01 pc, and the feedback outflow has to be highly super-Eddington albeit for a brief period of time, producing kinetic energy of at least 1055 erg. The young stars in the central parsec of the Galaxy may be a unique example of stars formed from atomic rather than molecular hydrogen, and forged by extreme pressure of black hole outflows.

  2. Spectrophotometry of VIIZW421 and IIZW67 - s0 Galaxies Dominated by Young Stars

    NASA Astrophysics Data System (ADS)

    Sparke, L. S.; Kormendy, J.; Spinrad, H.

    1980-02-01

    We investigate the stellar content of two SO galaxies whose spectra show deep Balmer absorption lines but little emission. Continuum colors and the Faber-Burstein (Mg)0 index show that the blue light is dominated by young stars. In VII Zw 421 there is a radial population gradient; the nucleus has relatively more young stars than the lens. An approximate spectral synthesis confirms the need for young (rather than metal-poor) stars to produce sufficiently strong Balmer lines. In VII Zw 421 the best synthesis implies that 45Th of the nuclear light at 5000 Å comes from stars close to A1 V in type. In the lens, the young-star contribution is smaller by a factor of 2-3. Also, in the nucleus only, the observed Na D lines are much stronger than in our model. This suggests a connection with the young component and supports Faber and Burstein's conclusion that abnormally strong Na D absorption is sometimes interstellar. Thus VII Zw 421 and II Zw 67 are similar to NGC 5102, the nearest SO galaxy dominated by young stars. The present SO's provide important constraints on any interpretation of the young component. At - 19.9 and -21.5 absolute B mag (H0 = 50 km s-1 1 Mpc-1), they are unusually luminous for their early-type spectra. They are also unusually compact, which may provide them with gravitational potential wells deep enough to retain gas despite processes which remove gas from other early-type galaxies.

  3. X-Ray Outburst from Young Star in McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  4. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S., E-mail: gdoppmann@keck.hawaii.edu, E-mail: najita@noao.edu, E-mail: carr@nrl.navy.mil

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ∼10 Myr. Using high-resolution 4.7 μ m spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to themore » observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10{sup −20} to 10{sup −18} W m{sup −2}). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.« less

  5. Circumstellar disks of the most vigorously accreting young stars

    PubMed Central

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I.; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M.; Karr, Jennifer L.; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772

  6. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less

  7. Young Star Clusters: Keys to Understanding Massive Stars

    NASA Astrophysics Data System (ADS)

    Davies, B.

    2012-12-01

    Young, coeval clusters of stars provide the perfect laboratory in which to test our understanding of how massive stars evolve. Early optical observations limited us to a handful of low-mass clusters within 1kpc. However, thanks to the recent progress in infrared astronomy, the Milky Way's population of young massive star clusters is now beginning to be revealed. Here, I will review the recent progress made in this field, what it has told us about the evolution of massive stars to supernova and beyond, the prospects for this field, and some issues that should be taken into account when interpreting the results.

  8. Unbound Young Stellar Systems: Star Formation on the Loose

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.

    2018-07-01

    Unbound young stellar systems, the loose ensembles of physically related young bright stars, trace the typical regions of recent star formation in galaxies. Their morphologies vary from small few pc-size associations of newly formed stars to enormous few kpc-size complexes composed of stars few 100 Myr old. These stellar conglomerations are located within the disks and along the spiral arms and rings of star-forming disk galaxies, and they are the active star-forming centers of dwarf and starburst galaxies. Being associated with star-forming regions of various sizes, these stellar structures trace the regions where stars form at various length- and timescales, from compact clusters to whole galactic disks. Stellar associations, the prototypical unbound young systems, and their larger counterparts, stellar aggregates, and stellar complexes, have been the focus of several studies for quite a few decades, with special interest on their demographics, classification, and structural morphology. The compiled surveys of these loose young stellar systems demonstrate that the clear distinction of these systems into well-defined classes is not as straightforward as for stellar clusters, due to their low densities, asymmetric shapes and variety in structural parameters. These surveys also illustrate that unbound stellar structures follow a clear hierarchical pattern in the clustering of their stars across various scales. Stellar associations are characterized by significant sub-structure with bound stellar clusters being their most compact parts, while associations themselves are the brighter denser parts of larger stellar aggregates and stellar complexes, which are members of larger super-structures up to the scale of a whole star-forming galaxy. This structural pattern, which is usually characterized as self-similar or fractal, appears to be identical to that of star-forming giant molecular clouds and interstellar gas, driven mainly by turbulence cascade. In this short

  9. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE PAGES

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; ...

    2017-01-03

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  10. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  11. Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Meng, Xi; Semenov, Vadim A.; Kravtsov, Andrey V.

    2017-01-01

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is α ≈ 1.8{--}2, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.

  12. A Study of Inner Disk Gas around Young Stars in the Lupus Complex

    NASA Astrophysics Data System (ADS)

    Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri

    2018-06-01

    We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.

  13. Young Galaxy Surrounded by Material Needed to Make Stars, VLA Reveals

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered a massive reservoir of cold gas from which a primeval galaxy formed its first stars. Looking more than 12 billion years into the past, the scientists found that the young galaxy experiencing a "burst" of star formation was surrounded by enough cold molecular gas to make 100 billion suns. Optical and Radio Images of APM 08279+5255 at About the Same Scale "This is the first time anyone has seen the massive reservoir of cold gas required for these incredible 'starbursts' to produce a galaxy," said Chris Carilli, an astronomer at the NSF's National Radio Astronomy Observatory (NRAO) in Socorro, NM. "There is much more gas here than we anticipated," Carilli added. The research team was led by Padeli Papadoupoulos of Leiden Observatory in the Netherlands and also included Rob Ivison of University College London and Geraint Lewis of the Anglo-Australian Observatory in Australia. The scientists reported their findings in the January 4 edition of the journal Nature. The astronomers found the gas when studying a quasar called APM 08279+5255, discovered in 1998. Observations with optical and infrared telescopes revealed that the quasar, a young galaxy with a voracious black hole at its center, was forming new stars rapidly in a starburst. At a distance of more than 12 billion light-years, the quasar is seen as it was more than 12 billion years ago, just a billion or so years after the Big Bang. "This thing is at the edge of the dark ages," before the first stars in the universe were born, said Carilli. The year after its discovery, APM 08279+5255 was found to have warm carbon monoxide (CO) gas near its center, heated by the energy released as the galaxy's black hole devours material. The VLA observations revealed cold CO gas much more widely distributed than its warmer counterpart. Based on observations of closer objects, the astronomers presume the CO gas is accompanied

  14. Substantial reservoirs of molecular hydrogen in the debris disks around young stars.

    PubMed

    Thi, W F; Blake, G A; van Dishoeck, E F; van Zadelhoff, G J; Horn, J M; Becklin, E E; Mannings, V; Sargent, A I; van Den Ancker, M E; Natta, A

    2001-01-04

    Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.

  15. Young star clusters in nearby molecular clouds

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  16. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    NASA Astrophysics Data System (ADS)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  17. HIGHLY VARIABLE YOUNG MASSIVE STARS IN ATLASGAL CLUMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M. S. N.; Contreras Peña, C.; Lucas, P. W.

    High-amplitude variability in young stellar objects (YSOs) is usually associated with episodic accretion events. It has not been observed so far in massive YSOs. Here, the high-amplitude variable star sample of Contreras Peña et al. has been used to search for highly variable (Δ K  ≥ 1 mag) sources coinciding with dense clumps mapped using the 850  μ m continuum emission by the ATLASGAL survey. A total of 18 variable sources are centered on the submillimeter clump peaks and coincide (<1″) with a 24  μ m point or compact (<10″) source. Of these 18 sources, 13 can be fit by YSOmore » models. The 13 variable YSOs (VYSOs) have luminosities of ∼10{sup 3} L {sub ⊙}, an average mass of 8  M {sub ⊙}, and a range of ages up to 10{sup 6} yr. A total of 11 of these 13 VYSOs are located in the midst of infrared dark clouds. Nine of the 13 sources have Δ K  > 2 mag, significantly higher compared to the mean variability of the entire VVV sample. The light curves of these objects sampled between 2010 and 2015 display rising, declining, or quasi-periodic behavior but no clear periodicity. Light-curve analysis using the Plavchan method shows that the most prominent phased signals have periods of a few hundred days. The nature and timescale of variations found in 6.7 Ghz methanol maser emission in massive stars are similar to that of the VYSO light curves. We argue that the origin of the observed variability is episodic accretion. We suggest that the timescale of a few hundred days may represent the frequency at which a spiraling disk feeds dense gas to the young massive star.« less

  18. The Lifetimes of Phases in High-mass Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Bally, John; Svoboda, Brian

    2017-02-01

    High-mass stars form within star clusters from dense, molecular regions (DMRs), but is the process of cluster formation slow and hydrostatic or quick and dynamic? We link the physical properties of high-mass star-forming regions with their evolutionary stage in a systematic way, using Herschel and Spitzer data. In order to produce a robust estimate of the relative lifetimes of these regions, we compare the fraction of DMRs above a column density associated with high-mass star formation, N(H2) > 0.4-2.5 × 1022 cm-2, in the “starless” (no signature of stars ≳10 {M}⊙ forming) and star-forming phases in a 2° × 2° region of the Galactic Plane centered at ℓ = 30°. Of regions capable of forming high-mass stars on ˜1 pc scales, the starless (or embedded beyond detection) phase occupies about 60%-70% of the DMR lifetime, and the star-forming phase occupies about 30%-40%. These relative lifetimes are robust over a wide range of thresholds. We outline a method by which relative lifetimes can be anchored to absolute lifetimes from large-scale surveys of methanol masers and UCHII regions. A simplistic application of this method estimates the absolute lifetime of the starless phase to be 0.2-1.7 Myr (about 0.6-4.1 fiducial cloud free-fall times) and the star-forming phase to be 0.1-0.7 Myr (about 0.4-2.4 free-fall times), but these are highly uncertain. This work uniquely investigates the star-forming nature of high column density gas pixel by pixel, and our results demonstrate that the majority of high column density gas is in a starless or embedded phase.

  19. Young Star Probably Ejected From Triple System

    NASA Astrophysics Data System (ADS)

    2003-01-01

    , moving at about 6 miles per second. Then, between 1995 and 1998, it came within about 200 million miles (about two times the distance between the Sun and the Earth) of its companions. Following that encounter, it changed its path, moving away from its companion at about 12 miles per second, double its previous speed. "We clearly see that this star's orbit has changed dramatically after the encounter with its larger companions," said Luis Rodriguez. "By watching over the next five years or so, we should be able to tell if it will escape completely," he added. "We are very lucky to have been able to observe this event," said Loinard. Though studies with computer simulations long have shown that such close approaches and stellar ejections are likely, the time scales for these events in the real Universe are long -- thousands of years. The chance to study an actual ejection of a star from a multiple system can provide a critical test for the dynamical theories. If a young star is ejected from the system in which it was born, it would be cut off from the supply of gas and dust it needs to gain more mass, and thus its development would be abruptly halted. This process, the astronomers explain, could provide an explanation for the very-low-mass "failed stars" called brown dwarfs. "A brown dwarf could have had its growth stopped by being ejected from its parent system," Loinard said. The VLA observations were made at radio frequencies of 8 and 15 GHz. T Tauri, the "Northern" star in this system, is a famous variable star, discovered in October of 1852 by J.R. Hind, a London astronomer using a 7-inch diameter telescope. At its brightest, it is some 40 times brighter than when at its faintest. It has been studied extensively as a nearby example of a young stellar system. While readily accessible with a small telescope, it is not visible to the naked eye. The observed orbital changes took place in the southern components of the system, displaced from the visible star by about one

  20. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.

    2017-02-01

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ˜10 Myr. Using high-resolution 4.7 μm spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (I.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10-20 to 10-18 W m-2). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency’s scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. MERGER SIGNATURES IN THE DYNAMICS OF STAR-FORMING GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Chao-Ling; Sanders, D. B.; Hayward, Christopher C.

    2016-01-10

    The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We findmore » that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ∼0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ∼ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of

  2. THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herczeg, Gregory J.; Dong, Subo; Chen, Ping

    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star–disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∼3.5 mag brightening in the V band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission frommore » ∼10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km s{sup −1}. The wind and hot gas both disappeared as the outburst faded and the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10–20 days. Fluorescent excitation of H{sub 2} is detected in emission from vibrational levels as high as v = 11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, though the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling.« less

  3. Studies of Young, Star-forming Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan

    2017-08-01

    Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks

  4. Accretion Models for Young Neutron Stars

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.

    2003-07-01

    Interaction with possible fallback material, along with the magnetic fields and rotation rates at birth should determine the fates and categories of young neutron stars. This paper addresses some issues related to pure or hybrid accretion models for explaining the properties of young neutron stars.

  5. NEW YOUNG STAR CANDIDATES IN CG4 AND Sa101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebull, L. M.; Laine, S.; Laher, R.

    2011-07-15

    The CG4 and Sa101 regions together cover a region of {approx}0.5 deg{sup 2} in the vicinity of a 'cometary globule' that is part of the Gum Nebula. There are seven previously identified young stars in this region; we have searched for new young stars using mid- and far-infrared data (3.6-70 {mu}m) from the Spitzer Space Telescope, combined with ground-based optical data and near-infrared data from the Two Micron All Sky Survey. We find infrared excesses in all six of the previously identified young stars in our maps and identify 16 more candidate young stars based on apparent infrared excesses. Mostmore » (73%) of the new young stars are Class II objects. There is a tighter grouping of young stars and young star candidates in the Sa101 region, in contrast to the CG4 region, where there are fewer young stars and young star candidates, and they are more dispersed. Few likely young objects are found in the 'fingers' of the dust being disturbed by the ionization front from the heart of the Gum Nebula.« less

  6. A young star takes centre stage

    NASA Image and Video Library

    2015-03-02

    With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this new NASA/ESA Hubble Space Telescope image. The star in the centre, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the Sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a verylow-mass object in the outer circumstellar disc.

  7. Disks and Outflows Around Young Stars

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven; Staude, Jakob; Quetz, Axel; Natta, Antonella

    The subject of the book, the ubiquitous circumstellar disks around very young stars and the corresponding jets of outflowing matter, has recently become one of the hottest areas in astrophysics. The disks are thought to be precursors to planetary systems, and the outflows are thought to be a necessary phase in the formation of a young star, helping the star to get rid of angular momentum and energy as it makes its way onto the main sequence. The possible connections to planetary systems and stellar astrophysics makes these topics especially broad, appealing to generalists and specialists alike. The CD not only contains papers that could not be printed in the book but allows the authors to include a fair amount of data, often displayed as color images. The CD-ROM contains all the contributions printed in the corresponding book (Lecture Notes in Physics Vol. 465) and, in addition, those presented exclusively in digital form. Each contribution consists of a file in portable document format (PDF). The electronic version allows full-text searching within each file using Adobe's Acrobat Reader providing instructions for installation on Unix (Sun), PC and Macintosh computers, respectively. All contributions can be printed out; the color diagrams and color frames, which are printed in black and white in the book, can be viewed in color on screen.

  8. YoungStar in Wisconsin: Analysis of Data as of July 2014. YoungStar Progress Report #5

    ERIC Educational Resources Information Center

    Wisconsin Council on Children and Families, 2014

    2014-01-01

    YoungStar is a program of the Department of Children and Families (DCF) designed to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) evaluate and rate the quality of care given by child care providers; (2) help parents choose the best child care for their kids; (3) support providers with tools and training to…

  9. Gas Accretion and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  10. The Search for Young Planetary Systems And the Evolution of Young Stars

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Boden, Andrew; Ghez, Andrea; Hartman, Lee W.; Hillenbrand, Lynn; Lunine, Jonathan I.; Simon, Michael J.; Stauffer, John R.; Velusamy, Thangasamy

    2004-01-01

    The Space Interferometer Mission (SIM) will provide a census of planetary systems by con- ducting a broad survey of 2,000 stars that will be sensitive to the presence of planets with masses as small as approx. 15 Earth masses (1 Uranus mass) and a deep survey of approx. 250 of the nearest, stars with a mass limit of approx.3 Earth masses. The broad survey will include stars spanning a wide range of ages, spectral types, metallicity, and other important parameters. Within this larger context, the Young Stars and Planets Key Project will study approx. 200 stars with ages from 1 Myr to 100 Myr to understand the formation and dynamical evolution of gas giant planets. The SIM Young Stars and Planets Project will investigate both the frequency of giant planet formation and the early dynamical history of planetary systems. We will gain insight into how common the basic architecture of our solar system is compared with recently discovered systems with close-in giant planets by examining 200 of the nearest (less than 150 pc) and youngest (1-100 Myr) solar-type stars for planets. The sensitivity of the survey for stars located 140 pc away is shown in the planet mass-separation plane. We expect to find anywhere from 10 (assuming that only the presently known fraction of stars. 5-7%, has planets) to 200 (all young stars have planets) planetary systems. W-e have set our sensitivity threshold to ensure the detection of Jupiter-mass planets in the critical orbital range of 1 to 5 AU. These observations, when combined with the results of planetary searches of mature stars, will allow us to test theories of planetary formation and early solar system evolution. By searching for planets around pre-main sequence stars carefully selected to span an age range from 1 to 100 Myr, we will learn a t what epoch and with what frequency giant planets are found at the water-ice snowline where they are expected to form. This will provide insight into the physical mechanisms by which planets form

  11. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    PubMed

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  12. Young Star HD 141569

    NASA Image and Video Library

    2017-01-30

    This image shows the dusty disk of planetary material surrounding the young star HD 141569, located 380 light-years away from Earth. It was taken using the vortex coronagraph on the W.M. Keck Observatory. The vortex suppressed light from the star in the center, revealing light from the innermost ring of planetary material around the star (blue). The disk around the star, made of olivine particles, extends from 23 to 70 astronomical units from the star. By comparison, Uranus is over 19 astronomical units from our sun, and Neptune about 30 astronomical units. One astronomical unit is the distance between Earth and our sun. http://photojournal.jpl.nasa.gov/catalog/PIA21090

  13. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the

  14. The Loneliest Young Star (Artist Concept)

    NASA Image and Video Library

    2016-07-27

    This artist's concept shows an unusual celestial object called CX330 was first detected as a source of X-ray light in 2009 by NASA's Chandra X-Ray Observatory while it was surveying the bulge in the central region of the Milky Way. A 2016 study in the Monthly Notices of the Royal Astronomical Society found that CX330 is the most isolated young star that has been discovered. Researchers compared NASA's Wide-field Infrared Survey Explorer (WISE) data from 2010 with NASA's Spitzer Space Telescope data from 2007 to come to this conclusion. CX330 is not near any star-forming region. As of the most recent observation, which was August 2015, this object was outbursting, meaning it was launching "jets" of material that slam into the gas and dust around it. Astronomers plan to continue studying the object, including with future telescopes that could view CX330 in other wavelengths of light. http://photojournal.jpl.nasa.gov/catalog/PIA20700

  15. Massive Young Star and its Cradle

    NASA Image and Video Library

    2010-07-14

    This star-forming region, captured by NASA Spitzer Space Telescope, is dominated by the bright, young star IRAS 13481-6124; it is the first massive baby star for which astronomers could obtain a detailed look at the dusty disk closely encircling it.

  16. Gas and dust from solar metallicity AGB stars

    NASA Astrophysics Data System (ADS)

    Ventura, P.; Karakas, A.; Dell'Agli, F.; García-Hernández, D. A.; Guzman-Ramirez, L.

    2018-04-01

    We study the asymptotic giant branch (AGB) evolution of stars with masses between 1 M⊙and8.5 M⊙. We focus on stars with a solar chemical composition, which allows us to interpret evolved stars in the Galaxy. We present a detailed comparison with models of the same chemistry, calculated with a different evolution code and based on a different set of physical assumptions. We find that stars of mass ≥3.5 M⊙ experience hot bottom burning at the base of the envelope. They have AGB lifetimes shorter than ˜3 × 105 yr and eject into their surroundings gas contaminated by proton-capture nucleosynthesis, at an extent sensitive to the treatment of convection. Low-mass stars with 1.5 M⊙ ≤ M ≤ 3 M⊙ become carbon stars. During the final phases, the C/O ratio grows to ˜3. We find a remarkable agreement between the two codes for the low-mass models and conclude that predictions for the physical and chemical properties of these stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB phase. The dust produced is also dependent on the mass: low-mass stars produce mainly solid carbon and silicon carbide dust, whereas higher mass stars produce silicates and alumina dust. Possible future observations potentially able to add more robustness to the present results are also discussed.

  17. Young Stars Emerge from Orion Head

    NASA Image and Video Library

    2007-05-17

    This image from NASA's Spitzer Space Telescope shows infant stars "hatching" in the head of the hunter constellation, Orion. Astronomers suspect that shockwaves from a supernova explosion in Orion's head, nearly three million years ago, may have initiated this newfound birth. The region featured in this Spitzer image is called Barnard 30. It is located approximately 1,300 light-years away and sits on the right side of Orion's "head," just north of the massive star Lambda Orionis. Wisps of green in the cloud are organic molecules called polycyclic aromatic hydrocarbons. These molecules are formed anytime carbon-based materials are burned incompletely. On Earth, they can be found in the sooty exhaust from automobile and airplane engines. They also coat the grills where charcoal-broiled meats are cooked. Tints of orange-red in the cloud are dust particles warmed by the newly forming stars. The reddish-pink dots at the top of the cloud are very young stars embedded in a cocoon of cosmic gas and dust. Blue spots throughout the image are background Milky Way along this line of sight. This composite includes data from Spitzer's infrared array camera instrument, and multiband imaging photometer instrument. Light at 4.5 microns is shown as blue, 8.0 microns is green, and 24 microns is red. http://photojournal.jpl.nasa.gov/catalog/PIA09411

  18. Young Stars Emerge from Orion's Head

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image from NASA's Spitzer Space Telescope shows infant stars 'hatching' in the head of the hunter constellation, Orion. Astronomers suspect that shockwaves from a supernova explosion in Orion's head, nearly three million years ago, may have initiated this newfound birth

    The region featured in this Spitzer image is called Barnard 30. It is located approximately 1,300 light-years away and sits on the right side of Orion's 'head,' just north of the massive star Lambda Orionis.

    Wisps of green in the cloud are organic molecules called polycyclic aromatic hydrocarbons. These molecules are formed anytime carbon-based materials are burned incompletely. On Earth, they can be found in the sooty exhaust from automobile and airplane engines. They also coat the grills where charcoal-broiled meats are cooked.

    Tints of orange-red in the cloud are dust particles warmed by the newly forming stars. The reddish-pink dots at the top of the cloud are very young stars embedded in a cocoon of cosmic gas and dust. Blue spots throughout the image are background Milky Way along this line of sight.

    This composite includes data from Spitzer's infrared array camera instrument, and multiband imaging photometer instrument. Light at 4.5 microns is shown as blue, 8.0 microns is green, and 24 microns is red.

  19. A Multi-Fiber Spectroscopic Search for Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Loerincs, Jacqueline; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2017-01-01

    We present here results of a low resolution spectroscopic followup of candidate low-mass pre-main sequence stars in the Orion OB1 association. Our targets were selected from the CIDA Variability Survey of Orion (CVSO), and we used the Michigan/Magellan Fiber Spectrograph (M2FS) on the Magellan Clay 6.5m telescope to obtain spectra of 500 candidate T Tauri stars distributed in seven 0.5 deg diameter fields, adding to a total area of ~5.5 deg2. We identify young stars by looking at the distinctive Hα 6563 Å emission and Lithium Li I 6707 Å absorption features characteristic of young low mass pre-main sequence stars. Furthermore, by measuring the strength of their Hα emission lines, confirmed T Tauri stars can be classified as either Classical T Tauris (CTTS) or Weak-line T Tauris (WTTS), which give indication of whether the star is actively accreting material from a gas and dust disk surrounding the star, which may be the precursor of a planetary system. We confirm a total of 90 T Tauri stars, of which 50% are newly identified young members of Orion; out of the 49 new detections,15 are accreting CTTS, and of these all but one are found in the OB1b sub-region. This result is in line with our previous findings that this region is much younger than the more extended Orion OB1a sub-association. The M2FS results add to our growing census of young stars in Orion, that is allowing us to characterize in a systematic and consistent way the distribution of stellar ages across the entire complex, in order to building a complete picture of star formation in this, one of nearest most active sites of star birth.

  20. YoungStar: We're Turning Five! Five Year Analysis as of July 2015. YoungStar Progress Report 6

    ERIC Educational Resources Information Center

    Wisconsin Council on Children and Families, 2015

    2015-01-01

    This report is the sixth in a series of Wisconsin Council on Children & Families (WCCF) reports tracking the progress of Wisconsin's YoungStar program, a quality rating and improvement system (QRIS) launched in 2010 to improve the quality of Wisconsin child care programs. YoungStar focuses on children of low-income working families receiving…

  1. High Energy (X-ray/UV) Radiation Fields of Young, Low-Mass Stars Observed with Chandra and HST

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Brown, J. M.; Herczeg, G.; Bary, J.; Walter, F. M.; Ayres, T. R.

    2010-01-01

    Pre-main-sequence (PMS) stars are strong UV and X-ray emitters and the high energy (UV/X-ray) radiation from the central stars directly influences the physical and chemical processes in their protoplanetary disks. Gas and dust in protoplanetary systems are excited by these photons, which are the dominant ionization source for hundreds of AU around the star. X-rays penetrate deep into disks and power complex chemistry on grain surfaces. ``Transitional disks'' are a crucial and important evolutionary stage for PMS stars and protoplanetary systems. These disks have transformed most of the dust and gas in their inner regions into planetesimals or larger solid bodies. The disks show clear inner ``holes'' that almost certainly harbor infant planetary systems, given the very sharp gap boundaries inferred. Transitional disks are rare and represent a short-lived phase of PMS disk evolution. We have observed a sample of PMS stars at a variety of evolutionary stages, including the transitional disk stars GM Aur (K5) and HD135344B (F4). Chandra ACIS CCD-resolution X-ray spectra and HST STIS and COS FUV spectra are being used to reconstruct the full high energy (X-ray/EUV/FUV/NUV) spectra of these young stars, so as to allow detailed modeling of the physics and chemistry of their circumstellar environments, thereby providing constraints on the formation process of planetary systems. This work is supported by Chandra grants GO8-9024X, GO9-0015X and GO9-0020B and HST grants for GO projects 11336, 11828, and 11616 to the University of Colorado.

  2. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a

  3. Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring?

    NASA Astrophysics Data System (ADS)

    Punzi, K. M.; Kastner, J. H.; Melis, C.; Zuckerman, B.; Pilachowski, C.; Gingerich, L.; Knapp, T.

    2018-01-01

    The erratically variable star RZ Piscium (RZ Psc) displays extreme optical dropout events and strikingly large excess infrared emission. To ascertain the evolutionary status of this intriguing star, we obtained observations of RZ Psc with the European Space Agency’s X-ray Multi-Mirror Mission (XMM-Newton), as well as high-resolution optical spectroscopy with the Hamilton Echelle on the Lick Shane 3 m telescope and with HIRES on the Keck I 10 m telescope. The optical spectroscopy data demonstrate that RZ Psc is a pre-main sequence star with an effective temperature of 5600 ± 75 K and log g of 4.35 ± 0.10. The ratio of X-ray to bolometric luminosity, {log}{L}X/{L}{bol}, lies in the range ‑3.7 to ‑3.2, consistent with ratios typical of young, solar-mass stars, thereby providing strong support for the young star status of RZ Psc. The Li absorption line strength of RZ Psc suggests an age in the range 30–50 Myr, which in turn implies that RZ Psc lies at a distance of ∼170 pc. Adopting this estimated distance, we find the Galactic space velocity of RZ Psc to be similar to the space velocities of stars in young moving groups near the Sun. Optical spectral features indicative of activity and/or circumstellar material are present in our spectra over multiple epochs, which provide evidence for the presence of a significant mass of circumstellar gas associated with RZ Psc. We suggest that the destruction of one or more massive orbiting bodies has recently occurred within 1 au of the star, and we are viewing the aftermath of such an event along the plane of the orbiting debris.

  4. ALMA Observations of the Molecular Gas in the Debris Disk of the 30 Myr Old Star HD 21997

    NASA Technical Reports Server (NTRS)

    Kospal, A.; Moor, A.; Juhasz, A.; Abraham, P.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Kiss, Cs.; hide

    2013-01-01

    The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of (12)CO and (13)CO in the J = 2-1 and J = 3-2 transitions and C(18)O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r(sub in) < 26 AU, r(sub out) = 138 +/- 20 AU, Stellar M = 1.8 +0.5/-0.2 Solar M, and i = 32. Deg. 6 +/- 3 deg..1. The total CO mass, as calculated from the optically thin C(18)O line, is about (4-8) ×10(exp -2 ) Solar M, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.

  5. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    binary system and the third object that shines with constant light. Both the primary, deeper and the secondary, less deep eclipses are well visible. The primary eclipse was observed on December 8, 2000 and is here displayed at phase zero. During this minimum, the brightness of the binary system decreases by about 45% (0.4 magnitudes). The primary eclipse takes place when the smaller component blocks the light from the brighter and hotter star. The orbital motions of the two stars are illustrated by a computer-generated, animated sequence. The secondary eclipse (at phase 0.5) dims the light from the system less; it occurs when the larger and brighter star almost completely (about 90%) hides its smaller companion. The second minimum was recorded on January 12, 2001. None of the eclipses is therefore "total". The stellar parameters A detailed analysis of these high-precision light curves allowed the astronomers to determine the orbits and hence, to perform an extremely accurate measurement of the fundamental stellar parameters for the two young stars of RXJ 0529.4+0041 . The star that is eclipsed during the primary eclipse (the "primary") is the more massive and also the hotter and brighter of the two stars. Its mass is 1.3 times that of our Sun, i.e., about 2.6 10 30 kg [2]. Its diameter is nearly 1.6 times larger than that of our Sun (i.e., about 2.2 million km) and the surface temperature is found to be a little more than 5000 °C, or a few hundred degrees cooler than the Sun. The "secondary" star is slightly lighter than our Sun. Its weight is about 90% of that of the Sun (1.8 10 30 kg) and the diameter is 20% larger (about 1.7 million km), while the surface temperature is 4000 degrees. In fact, these two stars are still so young that most of their energy comes from the contraction process - the first phase during which they are formed from an interstellar cloud by this process is not yet over and they are still getting smaller. It is by this process that collapsing

  6. Herschel Studies of the Evolution and Environs of Young Stars in the DIGIT, WISH, and FOOSH Programs

    NASA Astrophysics Data System (ADS)

    Green, Joel D.; DIGIT OT Key Project Team; WISH GT Key Project Team; FOOSH OT1 Team

    2012-01-01

    The Herschel Space Observatory has enabled us to probe the physical conditions of outer disks, envelopes, and outflows of young stellar objects, including embedded objects, Herbig Ae/Be disks, and T Tauri disks. We will report on results from three projects, DIGIT, WISH, and FOOSH. The DIGIT (Dust, Ice, and Gas in Time) program (PI: Neal Evans) utilizes the full spectral range of the PACS instrument to explore simultaneously the solid and gas-phase chemistry around sources in all of these stages. WISH (Water in Star Forming Regions with Herschel, PI Ewine van Dishoeck) focuses on observations of key lines with HIFI and line scans of selected spectral regions with PACS. FOOSH (FU Orionis Objects Surveyed with Herschel, PI Joel Green) studies FU Orionis objects with full range PACS and SPIRE scans. DIGIT includes examples of low luminosity protostars, while FOOSH studies the high luminosity objects during outburst states. Rotational ladders of highly excited CO and OH emission are detected in both disks and protostars. The highly excited lines are more commonly seen in the embedded phases, where there appear to be two temperature components. Intriguingly, water is frequently detected in spectra of embedded sources, but not in the disk spectra. In addition to gas features, we explore the extent of the newly detected 69 um forsterite dust feature in both T Tauri and Herbig Ae/Be stars. When analyzed along with the Spitzer-detected dust features, these provide constraints on a population of colder crystalline material. We will present some models of individual sources, as well as some broad statistics of the emission from these stages of star and planet formation.

  7. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  8. Search for OB stars running away from young star clusters. I. NGC 6611

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  9. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    NASA Astrophysics Data System (ADS)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-06-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (< 10 Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower interstellar medium (ISM) content and star formation activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  10. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    NASA Astrophysics Data System (ADS)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-04-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (< 10 Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower interstellar medium (ISM) content and star formation activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  11. Diffuse γ-ray emission in the vicinity of young star cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; de Oña Wilhelmi, Emma; Aharonian, Felix

    2018-04-01

    We report the results of our analysis of the publicly available data obtained by the Large Area Telescope (LAT) on board the Fermi satellite towards the direction of the young massive star cluster Westerlund 2. We found significant extended γ-ray emission in the vicinity of Westerlund 2 with a hard power-law energy spectrum extending from 1 to 250 GeV with a photon index of 2.0 ± 0.1. We argue that amongst several alternatives, the luminous stars in Westerlund 2 are likely sites of acceleration of particles responsible for the diffuse γ-ray emission of the surrounding interstellar medium. In particular, the young star cluster Westerlund 2 can provide sufficient non-thermal energy to account for the γ-ray emission. In this scenario, since the γ-ray production region is significantly larger than the area occupied by the star cluster, we conclude that the γ-ray production is caused by hadronic interactions of accelerated protons and nuclei with the ambient gas. In that case, the total energy budget in relativistic particles is estimated of the order of 1050 erg.

  12. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.

    2015-04-01

    We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.

  13. Gas and dust in the star-forming region ρ Oph A. II. The gas in the PDR and in the dense cores

    NASA Astrophysics Data System (ADS)

    Larsson, B.; Liseau, R.

    2017-12-01

    Context. The evolution of interstellar clouds of gas and dust establishes the prerequisites for star formation. The pathway to the formation of stars can be studied in regions that have formed stars, but which at the same time also display the earliest phases of stellar evolution, i.e. pre-collapse/collapsing cores (Class -1), protostars (Class 0), and young stellar objects (Class I, II, III). Aims: We investigate to what degree local physical and chemical conditions are related to the evolutionary status of various objects in star-forming media. Methods: ρ Oph A displays the entire sequence of low-mass star formation in a small volume of space. Using spectrophotometric line maps of H2, H2O, NH3, N2H+, O2, O I, CO, and CS, we examine the distribution of the atomic and molecular gas in this dense molecular core. The physical parameters of these species are derived, as are their relative abundances in ρ Oph A. Using radiative transfer models, we examine the infall status of the cold dense cores from their resolved line profiles of the ground state lines of H2O and NH3, where for the latter no contamination from the VLA 1623 outflow is observed and line overlap of the hyperfine components is explicitly taken into account. Results: The stratified structure of this photon dominated region (PDR), seen edge-on, is clearly displayed. Polycyclic aromatic hydrocarbons (PAHs) and O I are seen throughout the region around the exciting star S 1. At the interface to the molecular core 0.05 pc away, atomic hydrogen is rapidly converted into H2, whereas O I protrudes further into the molecular core. This provides oxygen atoms for the gas-phase formation of O2 in the core SM 1, where X(O2) 5 × 10-8. There, the ratio of the O2 to H2O abundance [X(H2O) 5 × 10-9] is significantly higher than unity. Away from the core, O2 experiences a dramatic decrease due to increasing H2O formation. Outside the molecular core ρ Oph A, on the far side as seen from S 1, the intense radiation from

  14. Stellar Content and Star Formation in Young Clusters Influenced by Massive Stars

    NASA Astrophysics Data System (ADS)

    Jose, J.

    2014-09-01

    Star Formation (SF) in extreme environment is always challenging and can be significantly different from that in quiet environments. This study presents the comprehensive multi-wavelength (optical, NIR, MIR and radio) observational analysis of three Galactic starforming regions associated with H II regions/young clusters and located at > 2 kpc, which are found to be evolving under the influence of massive stars within their vicinity. The candidate massive stars, young stellar objects, their mass, age, age spread, the form of K-band Luminosity Function (KLF), Initial Mass Function (IMF) and a possible formation history of each region are studied. The major results on Sh2-252, an extended H II region that appears to be undergoing multiple episodes of SF, are highlighted. Our analysis shows that all the regions are undergoing complex SF activity and the new generation of stars in each region seem to be an outcome of the influence by the presence of massive stars within them. SF process in these regions are likely to be multi-fold and the results suggest that multiple modes of triggering mechanism and hierarchial modes of SF are a common phenomena within young clusters.

  15. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  16. Caught in the Act: Gas and Stellar Velocity Dispersions in a Fast Quenching Compact Star-Forming Galaxy at z~1.7

    NASA Astrophysics Data System (ADS)

    Barro, Guillermo; Faber, Sandra M.; Dekel, Avishai; Pacifici, Camilla; Pérez-González, Pablo G.; Toloba, Elisa; Koo, David C.; Trump, Jonathan R.; Inoue, Shigeki; Guo, Yicheng; Liu, Fengshan; Primack, Joel R.; Koekemoer, Anton M.; Brammer, Gabriel; Cava, Antonio; Cardiel, Nicolas; Ceverino, Daniel; Eliche, Carmen; Fang, Jerome J.; Finkelstein, Steven L.; Kocevski, Dale D.; Livermore, Rachael C.; McGrath, Elizabeth

    2016-04-01

    We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ˜ 1.7. Its spectrum reveals both Hα and [N II] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 μm fluxes are both weak, thus indicating a low star-formation rate of SFR ≲ 5{--}10 {M}⊙ yr-1. This, added to a relatively young age of ˜700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ˜ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, {σ }{{{LOS}}}{{gas}} = 127 ± 32 km s-1, is nearly 40% smaller than that of its stars, {σ }{{{LOS}}}\\star = 215 ± 35 km s-1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ˜1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.

  17. Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Akiyama, Eiji; Sitko, Michael; Fernandes, Rachel B.; Assani, Korash; Grady, Carol A.; Cure, Michel; Danchi, William C.; Dong, Ruobing; Fukagawa, Misato; Hasegawa, Yasuhiro; Hashimoto, Jun; Henning, Thomas; Inutsuka, Shu-Ichiro; Kraus, Stefan; Kwon, Jungmi; Lisse, Carey M.; Baobabu Liu, Hauyu; Mayama, Satoshi; Muto, Takayuki; Nakagawa, Takao; Takami, Michihiro; Tamura, Motohide; Currie, Thayne; Wisniewski, John P.; Yang, Yi

    2018-05-01

    We present ALMA 0.87 mm continuum, HCO+ J = 4–3 emission line, and CO J = 3–2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ± 0.″05, an azimuthal gap in the HCO+ J = 4–3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.

  18. Candidate Nearby, Young Stars in Gaia's First Data Release

    NASA Astrophysics Data System (ADS)

    Chalifour, Matthieu; Kastner, Joel H.; Binks, Alex; Rodriguez, David; Punzi, Kristina; Zuckerman, Ben; Sacco, Germano

    2018-01-01

    The nearest examples of young stars are essential subjects for the study of planet and star formation. The recent data release from Gaia, which contains accurate parallax distances for ~2.5 million stars, allows age determinations via isochronal analysis for thousands of stars within ~100 pc. We have selected nearly 400 candidates nearby, young, late-type stars in the approximate mass range 0.5-1.0 Msun from the Tycho Gaia Astrometric Solution catalog on the basis of (a) D < 100 pc, (b) Galex UV detection, and (c) isochronal age <~ 80 Myr. Approximately 10% of these candidates lie within 50 pc of Earth and, hence, may represent excellent targets for direct-imaging searches for young, self-luminous planets. We discuss our ongoing efforts to assess the accuracy of these stars' isochronal ages via various diagnostic tools, including galactic kinematics, UV excess, relative X-ray luminosity, andoptical spectroscopic indicators of youth.

  19. Brown Dwarfs and Giant Planets Around Young Stars

    NASA Astrophysics Data System (ADS)

    Mahmud, Naved; Crockett, C.; Johns-Krull, C.; Prato, L.; Hartigan, P.; Jaffe, D.; Beichman, C.

    2011-01-01

    How dry is the brown dwarf (BD) desert at young ages? Previous radial velocity (RV) surveys have revealed that the frequency of BDs as close companions to solar-age stars in the field is extraordinarily low compared to the frequency of close planetary and stellar companions. Is this a formation or an evolutionary effect? Do close-in BDs form at lower rates, or are they destroyed by migration via interactions with a massive circumstellar disk, followed by assimilation into the parent star? To answer these questions, we are conducting an RV survey of 130 T Tauri stars in Taurus-Auriga (a few Myr old) and a dozen stars in the Pleiades (100 Myr old) to search for stellar reflex motions resulting from close substellar companions. Our goal is to measure the frequency of BDs at young ages. Detecting a higher frequency of BDs in young systems relative to the field will provide evidence for the migration theory as well as set limits on the migration timescale. Two additional goals are (1) to investigate the effect of star spots in young stars on RV observations, and (2) to detect the youngest-known giant exoplanet. We present results from the first few years of this survey. Strikingly, after completing observations of a third of our sample, we have yet to detect a single BD. Thus we can set limits on the dryness of the BD desert at young ages and shed light on the mysterious early lives of these objects.

  20. The Lifshitz-Kosevich-Shoenberg theory of relativistic electronic gas in neutron stars

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua

    2014-10-01

    Similar to the de Haas-van Alphen magnetic oscillatory in some normal metals when the Landau quantization is predominant, the magnetic oscillation can also occur in highly degenerate and relativistic electron gas in neutron stars. At large Landau quantum number (Landau quantum number r≥2), we generalize the Lifshitz-Kosevich-Shoenberg theory in non-relativistic electron gas to relativistic gas. At small Landau quantum number ( r<2), we expand the grand potential into Fourier series and get similar harmonic oscillatory formula of magnetization. These results indicate that magnetic phase transition similar as Condon transition observed in metals can appear in neutron stars when the differential susceptibility exceeds 1/4 π.

  1. Orion in a New Light - VISTA exposes high-speed antics of young stars

    NASA Astrophysics Data System (ADS)

    2010-02-01

    The Orion Nebula reveals many of its hidden secrets in a dramatic image taken by ESO's new VISTA survey telescope. The telescope's huge field of view can show the full splendour of the whole nebula and VISTA's infrared vision also allows it to peer deeply into dusty regions that are normally hidden and expose the curious behaviour of the very active young stars buried there. VISTA - the Visible and Infrared Survey Telescope for Astronomy - is the latest addition to ESO's Paranal Observatory (eso0949). It is the largest survey telescope in the world and is dedicated to mapping the sky at infrared wavelengths. The large (4.1-metre) mirror, wide field of view and very sensitive detectors make VISTA a unique instrument. This dramatic new image of the Orion Nebula illustrates VISTA's remarkable powers. The Orion Nebula [1] is a vast stellar nursery lying about 1350 light-years from Earth. Although the nebula is spectacular when seen through an ordinary telescope, what can be seen using visible light is only a small part of a cloud of gas in which stars are forming. Most of the action is deeply embedded in dust clouds and to see what is really happening astronomers need to use telescopes with detectors sensitive to the longer wavelength radiation that can penetrate the dust. VISTA has imaged the Orion Nebula at wavelengths about twice as long as can be detected by the human eye. As in the many visible light pictures of this object, the new wide field VISTA image shows the familiar bat-like form of the nebula in the centre of the picture as well as the fascinating surrounding area. At the very heart of this region lie the four bright stars forming the Trapezium, a group of very hot young stars pumping out fierce ultraviolet radiation that is clearing the surrounding region and making the gas glow. However, observing in the infrared allows VISTA to reveal many other young stars in this central region that cannot be seen in visible light. Looking to the region above the

  2. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  3. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    NASA Astrophysics Data System (ADS)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  4. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    NASA Astrophysics Data System (ADS)

    Morris, Nathan Ryan; Mann, Andrew; Rizzuto, Aaron

    2018-01-01

    Observations of planetary systems around young stars provide insight into the early stages of planetary system formation. Nearby young open clusters such as the Hyades, Pleiades, and Praesepe provide important benchmarks for the properties of stellar systems in general. These clusters are all known to be less than 1 Gyr old, making them ideal targets for a survey of young planetary systems. Few transiting planets have been detected around clusters stars, however, so this alone is too small of a sample. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in clusters and elsewhere in the K2 field. This provides us with the opportunity to extend the sample of young systems to field stars while calibrating with cluster stars. We compute rotational periods from starspot patterns for ~36,000 K2 targets and use gyrochronological relationships derived from cluster stars to determine their ages. From there, we have begun searching for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve in their early, most formative years.

  5. The Abundance of SiC2 in Carbon Star Envelopes: Evidence that SiC2 is a gas-phase precursor of SiC dust.

    PubMed

    Massalkhi, Sarah; Agúndez, M; Cernicharo, J; Velilla Prieto, L; Goicoechea, J R; Quintana-Lacaci, G; Fonfría, J P; Alcolea, J; Bujarrabal, V

    2018-03-01

    Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si-C bond detected in C-rich AGB stars are SiC 2 , SiC, and Si 2 C. To date, the ring molecule SiC 2 has been observed in a handful of evolved stars, while SiC and Si 2 C have only been detected in the C-star envelope IRC +10216. We aim to study how widespread and abundant SiC 2 , SiC, and Si 2 C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. We carried out sensitive observations with the IRAM 30m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC 2 , SiC, and Si 2 C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC 2 and to derive SiC 2 fractional abundances in the observed envelopes. We detect SiC 2 in most of the sources, SiC in about half of them, and do not detect Si 2 C in any source, at the exception of IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC 2 line emission, which suggests that both species are chemically linked, the SiC radical probably being the photodissociation product of SiC 2 in the external layer of the envelope. We find a clear trend in which the denser the envelope, the less abundant SiC 2 is. The observed trend is interpreted as an evidence of efficient incorporation of SiC 2 onto dust grains, a process which is favored at high densities owing to the higher rate at which collisions between particles take place. The observed behavior of a decline in the SiC 2 abundance with increasing density strongly suggests that SiC 2 is an important gas-phase

  6. The Mass Function of Young Star Clusters in the "Antennae" Galaxies.

    PubMed

    Zhang; Fall

    1999-12-20

    We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.

  7. Warm gas towards young stellar objects in Corona Australis. Herschel/PACS observations from the DIGIT key programme

    NASA Astrophysics Data System (ADS)

    Lindberg, Johan E.; Jørgensen, Jes K.; Green, Joel D.; Herczeg, Gregory J.; Dionatos, Odysseas; Evans, Neal J.; Karska, Agata; Wampfler, Susanne F.

    2014-05-01

    Context. The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. Aims: We study the effects of the irradiation coming from the young luminous Herbig Be star R CrA on the warm gas and dust in a group of low-mass young stellar objects. Methods: Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distributions of CO, OH, H2O, [C ii], [O i], and continuum emission are investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. Results: By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO (282 ± 4 K), hot CO (890 ± 84 K), OH (79 ± 4 K), and H2O (197 ± 7 K) emission in the point sources and the extended emission. The rotational temperatures are also similar to those found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular millimetre emission, indicative of external heating from the Herbig Be star R CrA. Conclusions: Our results show that nearby luminous stars do not increase the molecular excitation temperatures of the warm gas around young stellar objects (YSOs). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not subjected to external irradiation. Table 9 and appendices are available in

  8. Jets from Young Stars in Cygnus-X

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    How do you spot very young, newly formed stars? One giveaway is the presence of jets and outflows that interact with the stars environments. In a new study, scientists have now discovered an unprecedented number of these outflows in a nearby star-forming region of our galaxy.Young Stars Hard at WorkCO map of the Cygnus-X region of the galactic plane, with the grid showing the UWISH2 coverage and the black triangles showing the positions of the detected outflows. [Makin Froebrich 2018]The birth and evolution of young stars is a dynamic, energetic process. As new stars form, material falls inward from the accretion disks surrounding young stellar objects, or YSOs. This material can power collimated streams of gas and dust that flow out along the stars rotation axes, plowing through the surrounding material. Where the outflows collide with the outside environment, shocks form that can be spotted in near-infrared hydrogen emission.Though weve learned a lot about these outflows, there remain a number of open questions. What factors govern their properties, such as their lengths, luminosities, and orientations? What is the origin of the emission features we see within the jets, known as knots? What roles do the driving sources and the environments play in the behavior and appearance of the jets?A selection of previously unknown outflows discovered as a result of this survey. Click for a closer look. [Makin Froebrich 2018]To answer these questions, we need to build a large, unbiased statistical sample of YSOs from across the galactic plane. Now, a large infrared survey known as the UKIRT Widefield Infrared Survey for H2 (UWISH2) is working toward that goal.Jackpot in Cygnus-XIn a recent publication, Sally Makin and Dirk Froebrich (University of Kent, UK), present results from UWISH2s latest release: a survey segment targeting a 42-square-degree region in the galactic plane known as the Cygnus-X star-forming region.The teams search for shock-excited emission in Cygnus

  9. SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    NASA Technical Reports Server (NTRS)

    Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir; hide

    2008-01-01

    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.

  10. Angular Momentum Evolution in Young Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Pinzón, G.; de La Reza, R.

    2006-06-01

    During the last decades, the study of rotation in young low mass stars has been one of the more active areas in the field of stellar evolution. Many theoretical efforts have been made to understand the angular momentum evolution and our picture now, reveals the main role of the stellar magnetic field in all pre-main sequence stage (Ghosh & Lamb 1979, ApJ, 234, 296; Cameron & Campbell 1993, A&A, 274, 309; Cameron & Campbell 1995, A&A, 298, 133; Kúker, Henning, & Rúdiger 2003, ApJ, 589, 397; Matt & Pudritz 2005, MNRAS, 356, 167). The mean rotation of most of the cool low mass stars remains roughly constant during the T Tauri stage. This can be explained by the disc locking scenario. This paradigm suggest that star start out as CTTS with periods of 4-14 days, perhaps locked to their disc, and that this disc is eventually lost mainly by accretion. At the current time, it is not clear that this is true for all low mass stars. Some authors have questioned its validity for stars less massive than 0.5 solar masses. Although the reality may eventually turn out to be considerably more complex, a simple consideration of the effects of and limits on disc locking of young low mass stars seems necessary.We have investigated the exchange of angular momentum between a low mass star and an accretion disc during the Hayashi Track (Pinzón, Kúker, & de la Reza 2005, in preparation) and also along the first 100Myr of stellar evolution. The model incorporates changes in the star's moment of inertia, magnetic field strength (Elstner & Rúdiger 2000, A&A, 358, 612), angular momentum loss by a magnetic wind and an exponential decrease of the accretion rate. The lifetime of the accretion disc is a free parameter in our model. The resulting rotation rates are in agreement with observed vsin and photometric periods for young stars belonging to co-moving groups and open young clusters.

  11. A Search for Circumstellar Gas-Disk Variability in F-type Stars

    NASA Astrophysics Data System (ADS)

    Adkins, Ally; Montgomery, Sharon Lynn; Welsh, Barry

    2018-01-01

    Over the past six years, short-term (night-to-night) variability in the CaII K-line (3933Å) absorption has been detected towards 22 rapidly-rotating A-type stars, all but four of them discovered by us. Most of these stars are young (age < 100 million years) and possess dusty debris disks as evidenced by their infrared excesses. The variability is thought to be due to kilometer-sized planetesimals (i.e., exocomets) that release gas during their catastrophic in-falls towards their central star. To expand the relatively small number of systems showing this type of variability, we conducted a search amongst nearby, rapidly-rotating, F-type stars. Here, we present high signal-to-noise, medium-resolution spectral observations of the CaII K-line absorption (R≈60,000) recorded towards seven F-type stars. Six of these stars were observed multiple times over the course of our seven-night run on the 2.1-meter Otto Struve Telescope (McDonald Observatory) during June 2017. The appearance or absence of similar short-lived, Doppler-shifted absorption in F-type stars serves as a test of our understanding of the underlying phenomena.

  12. Hubble Sees a Young Star Take Center Stage

    NASA Image and Video Library

    2015-03-06

    With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this NASA/ESA Hubble Space Telescope image. The star in the center, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a very low-mass object in the outer circumstellar disk. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing

  14. The Abundance of SiC2 in Carbon Star Envelopes⋆: Evidence that SiC2 is a gas-phase precursor of SiC dust

    PubMed Central

    Massalkhi, Sarah; Agúndez, M.; Cernicharo, J.; Velilla Prieto, L.; Goicoechea, J. R.; Quintana-Lacaci, G.; Fonfría, J. P.; Alcolea, J.; Bujarrabal, V.

    2017-01-01

    Context Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si–C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. To date, the ring molecule SiC2 has been observed in a handful of evolved stars, while SiC and Si2C have only been detected in the C-star envelope IRC +10216. Aims We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. Methods We carried out sensitive observations with the IRAM 30m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes. Results We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source, at the exception of IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked, the SiC radical probably being the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend in which the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as an evidence of efficient incorporation of SiC2 onto dust grains, a process which is favored at high densities owing to the higher rate at which collisions between particles take place. Conclusions The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important

  15. Rotation in young massive star clusters

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela

    2017-05-01

    Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.

  16. Young massive star clusters in the era of HST and integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Pasquali, Anna

    2018-01-01

    With an age of 1 – 2 Myr at a distance of 4 kpc and a total stellar mass of 3.7×104 M⊙, Westerlund 2 (Wd2) is one of the most massive young star clusters in the Milky Way. We present a detailed analysis of its prominent pre-main-sequence population using the data of a high-resolution multi-band survey in the optical and near-infrared with the Hubble Space Telescope (HST), in combination with our spectroscopic survey, observed with the VLT/MUSE integral field unit. With our derived high-resolution extinction map of the region, which is absolutely essential giving the dominating presences of the gas and dust, we derived the spatial dependence of the mass function and quantify the degree of mass segregation down to 0.65 M⊙ with a completeness level better than 50%. Studying the radial dependence of the mass function of Wd2 and quantifying the degree of mass segregation in this young massive star cluster showed that it consists of two sub-clumps, namely the main cluster and the northern clump. From the MUSE data, we can extract individual stellar spectra and spectral energy distributions of the stars, based on the astrometry, provided by our high-resolution HST photometric catalog. This data will provide us with an almost complete spectral classification of a young massive star cluster down to 1.0 M⊙. The combination of the MUSE data, together with 3 more years of approved HST data will allow us to obtain, for the first time, the 3D motions of the stars with an accuracy of 1-2 km s-2 to determine the stellar velocity dispersion in order to study the fate of Wd2. This information is of great importance to adjust the initial conditions in cluster evolution models in order to connect these young massive star clusters and the old globular cluster population. Additionally, the combination of the photometric and spectroscopic datasets allows us to study the stars and their feedback onto the surrounding HII region simultaneously, as well as peculiar objects such as

  17. Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.

    PubMed

    Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem

    2006-10-27

    Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.

  18. An extremely young massive clump forming by gravitational collapse in a primordial galaxy.

    PubMed

    Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C

    2015-05-07

    When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.

  19. Young Star Cluster Found Aglow With Mysterious X-Ray Cloud

    NASA Astrophysics Data System (ADS)

    2002-12-01

    A mysterious cloud of high-energy electrons enveloping a young cluster of stars has been discovered by astronomers using NASA's Chandra X-ray Observatory. These extremely high-energy particles could cause dramatic changes in the chemistry of the disks that will eventually form planets around stars in the cluster. Known as RCW 38, the star cluster covers a region about 5 light years across. It contains thousands of stars formed less than a million years ago and appears to be forming new stars even today. The crowded environment of a star cluster is thought to be conducive to the production of hot gas, but not high-energy particles. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which is evident in RCW 38. "The RCW 38 observation doesn't agree with the conventional picture," said Scott Wolk of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, lead author of an Astrophysical Journal Letters paper describing the Chandra observation. "The data show that somehow extremely high-energy electrons are being produced there, although it is not clear how." RCW 38 RCW 38 X-ray, Radio, Infrared Composite Electrons accelerated to energies of trillions of volts are required to account for the observed X-ray spectrum of the gas cloud surrounding the ensemble of stars, which shows an excess of high-energy X-rays. As these electrons move in the magnetic field that threads the cluster, they produce X-rays. One possible origin for the high-energy electrons is a previously undetected supernova that occurred in the cluster. Although direct evidence for the supernova could have faded away thousands of years ago, a shock wave or a rapidly rotating neutron star produced by the outburst could be acting in concert with stellar winds to produce the high-energy electrons. "Regardless of the origin of the energetic electrons," said Wolk, "their presence would change the chemistry of proto

  20. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  1. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L. Clifton; Sandstrom, Karin; Seth, Anil C.

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studiedmore » galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.« less

  2. EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.

    2016-08-10

    There is evidence that the well-established mass–metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We presentmore » the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ∼130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%–55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.« less

  3. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    NASA Astrophysics Data System (ADS)

    Morris, Nathan; Mann, Andrew W.

    2017-06-01

    Nearby young, open clusters such as the Hyades, Pleiades, and Praesepe provide an important reference point for the properties of stellar systems in general. In each cluster, all stars are of the same known age. As such, observations of planetary systems around these stars can be used to gain insight into the early stages of planetary system formation. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in the and elsewhere in the K2 field. We aim to compute rotational periods from sunspot patterns for all K2 target stars and use gyrochronometric relationships derived from cluster stars to determine their ages. From there, we will search for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve with time.

  4. Slingshot mechanism for clusters: Gas density regulates star density in the Orion Nebula Cluster (M42)

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.

    2018-02-01

    We characterize the stellar and gas volume density, potential, and gravitational field profiles in the central ∼0.5 pc of the Orion Nebula Cluster (ONC), the nearest embedded star cluster (or rather, protocluster) hosting massive star formation available for detailed observational scrutiny. We find that the stellar volume density is well characterized by a Plummer profile ρstars(r) = 5755 M⊙ pc- 3 (1 + (r/a)2)- 5/2, where a = 0.36 pc. The gas density follows a cylindrical power law ρgas(R) = 25.9 M⊙ pc- 3 (R/pc)- 1.775. The stellar density profile dominates over the gas density profile inside r ∼ 1 pc. The gravitational field is gas-dominated at all radii, but the contribution to the total field by the stars is nearly equal to that of the gas at r ∼ a. This fact alone demonstrates that the protocluster cannot be considered a gas-free system or a virialized system dominated by its own gravity. The stellar protocluster core is dynamically young, with an age of ∼2-3 Myr, a 1D velocity dispersion of σobs = 2.6 km s-1, and a crossing time of ∼0.55 Myr. This time-scale is almost identical to the gas filament oscillation time-scale estimated recently by Stutz & Gould. This provides strong evidence that the protocluster structure is regulated by the gas filament. The protocluster structure may be set by tidal forces due to the oscillating filamentary gas potential. Such forces could naturally suppress low density stellar structures on scales ≳ a. The analysis presented here leads to a new suggestion that clusters form by an analogue of the 'slingshot mechanism' previously proposed for stars.

  5. Chaotic Star Birth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  6. A debris disk around an isolated young neutron star.

    PubMed

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  7. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    PubMed Central

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models. PMID:25370190

  8. Disk evolution, element abundances and cloud properties of young gas giant planets.

    PubMed

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-04-14

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  9. The gas-phase metallicities of star-forming galaxies in aperture-matched SDSS samples follow potential rather than mass or average surface density

    NASA Astrophysics Data System (ADS)

    D'Eugenio, Francesco; Colless, Matthew; Groves, Brent; Bian, Fuyan; Barone, Tania M.

    2018-05-01

    We present a comparative study of the relation between the aperture-based gas-phase metallicity and three structural parameters of star-forming galaxies: mass (M ≡ M*), average potential (Φ ≡ M*/Re) and average surface mass density (Σ ≡ M_*/R_e^2; where Re is the effective radius). We use a volume-limited sample drawn from the publicly available SDSS DR7, and base our analysis on aperture-matched sampling by selecting sets of galaxies where the SDSS fibre probes a fixed fraction of Re. We find that between 0.5 and 1.5 Re, the gas-phase metallicity correlates more tightly with Φ than with either {M} or Σ, in that for all aperture-matched samples, the potential-metallicity relation has (i) less scatter, (ii) higher Spearman rank correlation coefficient and (iii) less residual trend with Re than either the mass-metallicity relation and the average surface density-metallicity relation. Our result is broadly consistent with the current models of gas enrichment and metal loss. However, a more natural explanation for our findings is a local relation between the gas-phase metallicity and escape velocity.

  10. Evolution of high-mass star-forming regions .

    NASA Astrophysics Data System (ADS)

    Giannetti, A.; Leurini, S.; Wyrowski, F.; Urquhart, J.; König, C.; Csengeri, T.; Güsten, R.; Menten, K. M.

    Observational identification of a coherent evolutionary sequence for high-mass star-forming regions is still missing. We use the progressive heating of the gas caused by the feedback of high-mass young stellar objects to prove the statistical validity of the most common schemes used to observationally define an evolutionary sequence for high-mass clumps, and identify which physical process dominates in the different phases. From the spectroscopic follow-ups carried out towards the TOP100 sample between 84 and 365 km s^-1 giga hertz, we selected several multiplets of CH3CN, CH3CCH, and CH3OH lines to derive the physical properties of the gas in the clumps along the evolutionary sequence. We demonstrate that the evolutionary sequence is statistically valid, and we define intervals in L/M separating the compression, collapse and accretion, and disruption phases. The first hot cores and ZAMS stars appear at L/M≈10usk {L_ȯ}msun-1

  11. Spitzer Digs Up Hidden Stars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4

    Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope.

    The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image.

    The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is

  12. Compact Stars with Sequential QCD Phase Transitions.

    PubMed

    Alford, Mark; Sedrakian, Armen

    2017-10-20

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  13. Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian

    2018-05-01

    We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.

  14. Exo-comet Detection in Debris Disks Around Young A-type Stars

    NASA Astrophysics Data System (ADS)

    Welsh, Barry; Montgomery, S. L.

    2013-01-01

    We present details of the successful search for comet-like bodies (i.e. exo-comets) in orbit around several nearby stars. These objects have been found in young stellar systems that are in the transitional stage of evolution between possession of a gaseous protoplanetary disk to that of a dust-rich debris disk. During this period it is thought that large planetesimals of ~ 1000 km diameter may cause dynamical perturbations in the population of smaller bodies (such as asteroids and comets), such that they are sent on highly eccentric orbits towards their parent star resulting in the liberation of large amounts of evaporating gas and dust. By observing the varying spectral absorption signature of the CaII K-line at 3933Å due to this liberated gas, we have been able to track the trajectory of these exo-comets over a time-frame of several nights as they approach (and sometimes pass around) the central star. The youngest debris disks (1 - 50 Myr) are thought to represent the last stage in the formation of planetary systems and they may resemble our solar system’s own debris disk at the time of the Late Heavy Bombardment when the terrestrial worlds were subject to frequent collisions with asteroids and comets. Collisions with water-rich comets from the outer regions of our solar system may have delivered water to thee Earth’s oceans.

  15. 3D ADAPTIVE MESH REFINEMENT SIMULATIONS OF THE GAS CLOUD G2 BORN WITHIN THE DISKS OF YOUNG STARS IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schartmann, M.; Ballone, A.; Burkert, A.

    The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtainedmore » results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-γ data, (3) a detailed comparison to the observed high-quality position–velocity (PV) diagrams and the evolution of the total Brackett-γ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scenario: the unphysical formation epoch only shortly before the first detection and the too steep Brackett-γ light curve obtained in simulations, whereas the observations indicate a constant Brackett-γ luminosity between 2004 and 2013. For a given atmosphere and cloud mass, we find a consistent model that can explain both, the observed Brackett-γ light curve and the PV diagrams of all epochs. Assuming initial pressure equilibrium with the atmosphere, this can be reached for a starting date earlier than roughly 1900, which is close to apo-center and well within the disks of young stars.« less

  16. Observational aspects of Herbig Ae/Be stars and of candidate young A/B stars

    NASA Astrophysics Data System (ADS)

    de Winter, Dolf

    1996-06-01

    observed in the LMC. In recent publications, however, HD 45677 was described as a possible Herbig Be star. In Chapter B4 new observational evidences together with the analyses of about 100 years of known brightness measurements of this star indicate that its PMS nature must be questioned. Another object for which the PMS status is doubtful is HD 147196. A Be star located in the dark cloud region ρ Ophiuchus. In Chapter B5 we show that the emission line nature of this object is variable, which indicate the difficulties to select homogeneous samples on the bases of spectral observations. Finally in Chapter B6 we discuss the possible youth of HR 6000, an object not showing any observable peculiarities at first sight. But being the close neighbour of HR 5999, a comparable youth is likely. Indeed, a weak near-IR excess, photometric variability and being a strong X-ray source, suggest the presence of a T Tauri companion. In Parts A and B we have encountered various difficulties to make a clear and easy distinction between PMS stars and more evolved objects. In the case of young open clusters such problems are less severe. For this reason in Part C a study of the well known very young open cluster NGC 6611 is presented. The results are reported in two chapters: in Chapter C1 the stars in the cluster field are studied, from which a HRD can be constructed, giving necessary information about some cluster properties such as distance and age; we use these findings in Chapter C1 to study in detail objects which were previously recognised as PMS candidates, in order to discover true HAeBe objects. Although we find a large number of early type stars being in the PMS phase, we find only scarcely objects with clear HAeBe characteristics. It is therefore discussed that the clearing mechanism on the circumstellar material must work on a very short timescale and that not all of them go through a HAeBe-phase. This conclusion is discussed with an eye to the recent finding af EGGs in the field

  17. Observational Studies of the Clearing Phase in Proto-Planetary Disks Surrounding Intermediate Mass Stars

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1999-01-01

    A detailed study of circumstellar gas associated with young, intermediate-mass stars has demonstrated that, far from being unique or an infrequently occurring phenomenon, beta Pic-like infall activity is routinely observed in stars younger than 10-50 Myr when the observer's line of sight lies within 15 degrees of the disk mid-plane. Detailed studies of 2 Herbig Ae/Be stars, AB Aur and HD 163296 demonstrate that enhanced infall episodes last 20-60 hours, comparable to the duration of similar episodes in beta Pictoris. The infall activity is consistent with detection of the comae of swarms of star-grazing bodies of asteroidal to cometary composition. Episodic fluctuations in the infall activity are clearly present by approximately 6 Myr, and may indicate the presence of massive planets within the disk. This study has therefore, directly contributed to NASA's Origins of Planetary Systems theme by identifying under what conditions extra-solar planetesimals can be remotely sensed, indicating that such bodies appear to be routinely detectable among young stars in the 1-10 Myr range, and suggesting that temporal studies of spectroscopic variability may provide a means of identifying those systems harboring massive planets. This study has resulted in 2 refereed review papers, 13 other refereed papers, and 17 conference papers.

  18. The Correlation Dimension of Young Stars in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Odekon, Mary Crone

    2006-11-01

    We present the correlation dimension of resolved young stars in four actively star-forming dwarf galaxies that are sufficiently resolved and transparent to be modeled as projections of three-dimensional point distributions. We use data from the Hubble Space Telescope archive; photometry for one of the galaxies, UGCA 292, is presented here for the first time. We find that there are statistically distinguishable differences in the nature of stellar clustering among the sample galaxies. The young stars of VII Zw 403, the brightest galaxy in the sample, have the highest value for the correlation dimension and the most dramatic decrease with logarithmic scale, falling from 1.68+/-0.14 to 0.10+/-0.05 over less than a factor of 10 in r. This decrease is consistent with the edge effect produced by a projected Poisson distribution within a 2:2:1 ellipsoid. The young stars in UGC 4483, the faintest galaxy in the sample, exhibit very different behavior, with a constant value of about 0.5 over this same range in r, extending nearly to the edge of the distribution. This behavior may indicate either a scale-free distribution with an unusually low correlation dimension or a two-component (not scale-free) combination of cluster and field stars.

  19. Nebula-based Primordial Atmospheres of Planets Around Solar-Like Stars Revised

    NASA Astrophysics Data System (ADS)

    Scherf, Manuel; Lammer, H.; Leitzinger, M.; Odert, P.; Güdel, M.; Hanslmeier, A.

    2012-05-01

    At the beginning of a planetary system, in the stage of the stellar nebula and the growing-phase of the planets, planetesimals and Earth-like proto-planets accumulate a remarkable amount of gas, mainly consisting of hydrogen and helium. The mass of such a primordial atmosphere was first estimated for the proto-Earth by Hayashi et al. (1979), with up to 1026 g accumulated within 106 years. Furthermore it is commonly expected that these primordial atmospheres will be completely dissipated due to irradiation of the stellar EUV-flux during the first 108 years. Recent observations of young solar-like stars indicate that the efficiency and effect of the EUV-flux after the nebula disappeared, was highly overestimated by previous studies. We show that parts of these dense hydrogen/helium-gas envelopes may sustain this early active stage of a young star. Implications on the habitability are also discussed.

  20. Star formation across cosmic time and its influence on galactic dynamics

    NASA Astrophysics Data System (ADS)

    Freundlich, Jonathan

    2015-12-01

    Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.

  1. YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, M.; Debattista, Victor P.; Cole, D. R.

    2014-06-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstratemore » that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look.« less

  2. New places and phases of CO-poor/CI-rich molecular gas in the Universe

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; Bisbas, Thomas G.; Zhang, Zhiyu

    2018-04-01

    In this work we extend the work on the recently discovered role of Cosmic Rays (CRs) in regulating the average CO/H_2 abundance ratio in molecular clouds (and thus their CO line visibility) in starburst galaxies, and find that it can lead to a CO-poor/CI-rich H_2 gas phase even in environments with Galactic or in only modestly enhanced CR backgrounds expected in ordinary star-forming galaxies. Furthermore, the same CR-driven astro-chemistry raises the possibility of a widespread phase transition of molecular gas towards a CO-poor/CI-rich phase in: a) molecular gas outflows found in star-forming galaxies, b) active galactic nuclei (AGNs), and c) near synchrotron-emitting radio jets and the radio-loud cores of powerful radio galaxies. For main sequence galaxies we find that CRs can render some of their molecular gas mass CO-invisible, compounding the effects of low metallicities. Imaging the two fine structure lines of atomic carbon with resolution high enough to search beyond the CI/CO-bright line regions associated with central starbursts can reveal such a CO-poor/CI-rich molecular gas phase, provided that relative brightness sensitivity levels of Tb(CI 1 - 0)/Tb(CO J = 1 - 0) ˜0.15 are reached. The capability to search for such gas in the Galaxy is now at hand with the new high-frequency survey telescope HEAT deployed in Antarctica and future ones to be deployed in Dome A. ALMA can search for such gas in star-forming spiral disks, galactic molecular gas outflows and the CR-intense galactic and circumgalactic gas-rich environments of radio-loud objects.

  3. Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model

    NASA Astrophysics Data System (ADS)

    Ruaud, Maxime; Wakelam, Valentine; Hersant, Franck

    2016-07-01

    We present an extended version of the two-phase gas-grain code NAUTILUS to the three-phase modelling of gas and grain chemistry of cold cores. In this model, both the mantle and the surface are considered as chemically active. We also take into account the competition among reaction, diffusion and evaporation. The model predictions are confronted to ice observations in the envelope of low-mass and massive young stellar objects as well as towards background stars. Modelled gas-phase abundances are compared to species observed towards TMC-1 (CP) and L134N dark clouds. We find that our model successfully reproduces the observed ice species. It is found that the reaction-diffusion competition strongly enhances reactions with barriers and more specifically reactions with H2, which is abundant on grains. This finding highlights the importance having a good approach to determine the abundance of H2 on grains. Consequently, it is found that the major N-bearing species on grains go from NH3 to N2 and HCN when the reaction-diffusion competition is taken into account. In the gas phase and before a few 105 yr, we find that the three-phase model does not have a strong impact on the observed species compared to the two-phase model. After this time, the computed abundances dramatically decrease due to the strong accretion on dust, which is not counterbalanced by the desorption less efficient than in the two-phase model. This strongly constrains the chemical age of cold cores to be of the order of few 105 yr.

  4. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Tie; Wu Yuefang; Zhang Huawei

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed towardmore » core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.« less

  5. Gamma-ray bursts generated from phase transition of neutron stars to quark stars

    NASA Astrophysics Data System (ADS)

    Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi

    2017-02-01

    The evolution of compact stars is believed to be able to produce various violent phenomena in our universe. In this paper, we discuss the possibility that gamma-ray bursts (GRBs) might result from the phase transition of a neutron star to a quark star and calculate the energy released from the conversion. In our study, we utilize the relativistic mean field (RMF) theory to describe the hadronic phase of neutron stars, while an improved quasi-particle model is adopted to describe the quark phase of quark stars. With quark matter equation-of-state (EOS) more reliable than models used before, it is found that the energy released is of the order of 1052 erg, which confirms the validity of the phase transition model.

  6. Dynamical ejections of stars due to an accelerating gas filament

    NASA Astrophysics Data System (ADS)

    Boekholt, T. C. N.; Stutz, A. M.; Fellhauer, M.; Schleicher, D. R. G.; Matus Carrillo, D. R.

    2017-11-01

    Observations of the Orion A integral shaped filament (ISF) have shown indications of an oscillatory motion of the gas filament. This evidence is based on both the wave-like morphology of the filament and the kinematics of the gas and stars, where the characteristic velocities of the stars require a dynamical heating mechanism. As proposed by Stutz & Gould, such a heating mechanism (the `Slingshot') may be the result of an oscillating gas filament in a gas-dominated (as opposed to stellar-mass dominated) system. Here we test this hypothesis with the first stellar-dynamical simulations in which the stars are subjected to the influence of an oscillating cylindrical potential. The accelerating, cylindrical background potential is populated with a narrow distribution of stars. By coupling the potential to N-body dynamics, we are able to measure the influence of the potential on the stellar distribution. The simulations provide evidence that the slingshot mechanism can successfully reproduce several stringent observational constraints. These include the stellar spread (both in projected position and in velocity) around the filament, the symmetry in these distributions, and a bulk motion of the stars with respect to the filament. Using simple considerations, we show that star-star interactions are incapable of reproducing these spreads on their own when properly accounting for the gas potential. Thus, properly accounting for the gas potential is essential for understanding the dynamical evolution of star-forming filamentary systems in the era of Gaia (Gaia Collaboration 2016).

  7. Optical High-resolution Spectroscopy of 14 Young α-rich Stars

    NASA Astrophysics Data System (ADS)

    Matsuno, Tadafumi; Yong, David; Aoki, Wako; Ishigaki, Miho N.

    2018-06-01

    We report chemical abundances of 14 young α-rich stars including neutron-capture elements based on high-quality optical spectra from HIRES/Keck I and differential line-by-line analysis. From a comparison of the abundance patterns of young α-rich stars to those of nearby bright red giants with a similar metallicity range (‑0.7 < [Fe/H] < ‑0.2), we confirm their high α-element abundances reported by previous studies based on near-infrared spectroscopy. We reveal for the first time low abundances of s-process elements and high abundances of r-process elements. All the abundances are consistent with those seen in the typical α-rich population of the Galactic disk, and no abundance anomalies are found except for Li-enhancement in one object previously reported and mild enhancement of Na in two stars. In particular, the lack of s-process enhancement excludes the hypothesis that mass transfer from asymptotic giant branch stars plays an important role in the formation of young α-rich stars. The high frequency of radial velocity variation (more than 50%) is also confirmed. We argue that mass transfer from low-mass red giants is the likely dominant formation mechanism for young α-rich stars. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. Do All O Stars Form in Star Clusters?

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  9. Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Berger, J.-P.; Millan-Gabet, R.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Zhao, M.

    2006-08-01

    Using the three-telescope IOTA interferometer on Mount Hopkins, we report results from the first near-infrared (λ=1.65 μm) closure-phase survey of young stellar objects (YSOs). These closure phases allow us to unambiguously detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of ~4 mas, expected from generic ``flared disk'' models. Six of 14 targets showed small, yet statistically significant nonzero closure phases, with largest values from the young binary system MWC 361-A and the (pre-main-sequence?) Be star HD 45677. Our observations are quite sensitive to the vertical structure of the inner disk, and we confront the predictions of the ``puffed-up inner wall'' models of Dullemond, Dominik, & Natta (DDN). Our data support disk models with curved inner rims because the expected emission appears symmetrically distributed around the star over a wide range of inclination angles. In contrast, our results are incompatible with the models possessing vertical inner walls because they predict extreme skewness (i.e., large closure phases) from the near-IR disk emission that is not seen in our data. In addition, we also present the discovery of mysterious H-band ``halos'' (~5%-10% of light on scales 0.01"-0.50") around a few objects, a preliminary ``parametric imaging'' study for HD 45677, and the first astrometric orbit for the young binary MWC 361-A.

  10. X-Raying the Star Formation History of the Universe.

    PubMed

    Cavaliere; Giacconi; Menci

    2000-01-10

    The current models of early star and galaxy formation are based upon the hierarchical growth of dark matter halos, within which the baryons condense into stars after cooling down from a hot diffuse phase. The latter is replenished by infall of outer gas into the halo potential wells; this includes a fraction previously expelled and preheated because of momentum and energy fed back by the supernovae which follow the star formation. We identify such an implied hot phase with the medium known to radiate powerful X-rays in clusters and in groups of galaxies. We show that the amount of the hot component required by the current star formation models is enough to be observable out to redshifts z approximately 1.5 in forthcoming deep surveys from Chandra and X-Ray Multimirror Mission, especially in case the star formation rate is high at such and earlier redshifts. These X-ray emissions constitute a necessary counterpart and will provide a much-wanted probe of the star formation process itself (in particular, of the supernova feedback) to parallel and complement the currently debated data from optical and IR observations of the young stars.

  11. Metallicity fluctuation statistics in the interstellar medium and young stars - I. Variance and correlation

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Ting, Yuan-Sen

    2018-04-01

    The distributions of a galaxy's gas and stars in chemical space encode a tremendous amount of information about that galaxy's physical properties and assembly history. However, present methods for extracting information from chemical distributions are based either on coarse averages measured over galactic scales (e.g. metallicity gradients) or on searching for clusters in chemical space that can be identified with individual star clusters or gas clouds on ˜1 pc scales. These approaches discard most of the information, because in galaxies gas and young stars are observed to be distributed fractally, with correlations on all scales, and the same is likely to be true of metals. In this paper we introduce a first theoretical model, based on stochastically forced diffusion, capable of predicting the multiscale statistics of metal fields. We derive the variance, correlation function, and power spectrum of the metal distribution from first principles, and determine how these quantities depend on elements' astrophysical origin sites and on the large-scale properties of galaxies. Among other results, we explain for the first time why the typical abundance scatter observed in the interstellar media of nearby galaxies is ≈0.1 dex, and we predict that this scatter will be correlated on spatial scales of ˜0.5-1 kpc, and over time-scales of ˜100-300 Myr. We discuss the implications of our results for future chemical tagging studies.

  12. Bipolar outflows and Jets From Young Stars

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2000-05-01

    Stars produce powerful jets and winds during their birth. These primary outflows power shock waves (Herbig-Haro objects) and entrain surrounding gas to produce molecular outflows. Many outflows reach parsec-scale dimensions whose dynamical ages can become comparable to the accretion age of the source star. Thus, these giant outflows provide fossil records of the mass loss histories of their parent stars. Jet symmetries provide tantalizing clues about the violent history of stellar accretion and dynamical interactions with nearby companions. These flows inject sufficient energy and momentum into the surrounding medium to alter the physical and chemical state of the gas, generate turbulence, disrupt the parent cloud, and self-regulate the rate of star formation. Recent observations have revealed a new class of externally irradiated jets which are rendered visible by the light of nearby massive stars. Some of these jets appear to be millions of years old, indicating that outflow activity can persist for much longer than previously thought. Stellar jets provide ideal laboratories for the investigation of accretion powered outflows and associated shocks since their time-dependent behavior can be observed with a rich variety of spectral line diagnostics.

  13. Testing the universality of the star-formation efficiency in dense molecular gas

    NASA Astrophysics Data System (ADS)

    Shimajiri, Y.; André, Ph.; Braine, J.; Könyves, V.; Schneider, N.; Bontemps, S.; Ladjelate, B.; Roy, A.; Gao, Y.; Chen, H.

    2017-08-01

    Context. Recent studies with, for example, Spitzer and Herschel have suggested that star formation in dense molecular gas may be governed by essentially the same "law" in Galactic clouds and external galaxies. This conclusion remains controversial, however, in large part because different tracers have been used to probe the mass of dense molecular gas in Galactic and extragalactic studies. Aims: We aimed to calibrate the HCN and HCO+ lines commonly used as dense gas tracers in extragalactic studies and to test the possible universality of the star-formation efficiency in dense gas (≳104 cm-3), SFEdense. Methods: We conducted wide-field mapping of the Aquila, Ophiuchus, and Orion B clouds at 0.04 pc resolution in the J = 1 - 0 transition of HCN, HCO+, and their isotopomers. For each cloud, we derived a reference estimate of the dense gas mass MHerschelAV > 8, as well as the strength of the local far-ultraviolet (FUV) radiation field, using Herschel Gould Belt survey data products, and estimated the star-formation rate from direct counting of the number of Spitzer young stellar objects. Results: The H13CO+(1-0) and H13CN(1-0) lines were observed to be good tracers of the dense star-forming filaments detected with Herschel. Comparing the luminosities LHCN and LHCO+ measured in the HCN and HCO+ lines with the reference masses MHerschelAV > 8, the empirical conversion factors αHerschel - HCN (=MHerschelAV > 8/LHCN) and αHerschel - HCO+ (=MHerschelAV > 8/LHCO+) were found to be significantly anti-correlated with the local FUV strength. In agreement with a recent independent study of Orion B by Pety et al., the HCN and HCO+ lines were found to trace gas down to AV ≳ 2. As a result, published extragalactic HCN studies must be tracing all of the moderate density gas down to nH2 ≲ 103 cm-3. Estimating the contribution of this moderate density gas from the typical column density probability distribution functions in nearby clouds, we obtained the following G0

  14. Shapes of star-gas waves in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen H.

    1988-01-01

    Density-wave profile shapes are influenced by several effects. By solving viscous fluid equations, the nonlinear effects of the gas and its gravitational interaction with the stars can be analyzed. The stars are treated through a linear theory developed by Lin and coworkers. Short wavelength gravitational forces are important in determining the gas density profile shape. With the inclusion of disk finite thickness effects, the gas gravitational field remains important, but is significantly reduced at short wavelengths. Softening of the gas equation of state results in an enhanced response and a smoothing of the gas density profile. A Newtonian stress relation is marginally acceptable for HI gas clouds, but not acceptable for giant molecular clouds.

  15. NGC 2782: A Merger Remnant with Young Stars in its Gaseous Tidal Tail

    NASA Technical Reports Server (NTRS)

    Torres-Flores, S.; de Oliveira, C. Mendes; de Mello, D. F.; Scarano, S. Jr.; Urrutia-Viscarra, R.

    2012-01-01

    We have searched for young star-forming regions around the merger remnant NGC 2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources, located at distances greater than 26 kpc from the center of NGG 2782, and coinciding with its western HI tidal tail. These regions were resolved in several smaller systems when Gemini/GMOS r-band images were used. We compared the observed colors to stellar population synthesis models and we found that these objects have ages of l to ll11yr and masses ranging from 10(exp 3.9) to l0(exp 4.6) Solar Mass. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H)=8.74+/-0.20, 8.81+/-0.20 and 8.78+/-0.20). These metallicities are similar to the value presented by the nuclear region of NGG 2782 and also similar to the value presented for an object located close to the main body of NGG 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGG 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the center of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.

  16. COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kóspál, Á.; Ábrahám, P.; Moór, A.

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the {sup 12}CO J = 3−2 and 4–3 lines, and themore » {sup 13}CO 3–2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.« less

  17. From gas to stars in energetic environments: dense gas clumps in the 30 Doradus region within the Large Magellanic Cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Crystal N.; Meier, David S.; Ott, Jürgen

    2014-09-20

    We present parsec-scale interferometric maps of HCN(1-0) and HCO{sup +}(1-0) emission from dense gas in the star-forming region 30 Doradus, obtained using the Australia Telescope Compact Array. This extreme star-forming region, located in the Large Magellanic Cloud (LMC), is characterized by a very intense ultraviolet ionizing radiation field and sub-solar metallicity, both of which are expected to impact molecular cloud structure. We detect 13 bright, dense clumps within the 30 Doradus-10 giant molecular cloud. Some of the clumps are aligned along a filamentary structure with a characteristic spacing that is consistent with formation via varicose fluid instability. Our analysis showsmore » that the filament is gravitationally unstable and collapsing to form stars. There is a good correlation between HCO{sup +} emission in the filament and signatures of recent star formation activity including H{sub 2}O masers and young stellar objects (YSOs). YSOs seem to continue along the same direction of the filament toward the massive compact star cluster R136 in the southwest. We present detailed comparisons of clump properties (masses, linewidths, and sizes) in 30Dor-10 to those in other star forming regions of the LMC (N159, N113, N105, and N44). Our analysis shows that the 30Dor-10 clumps have similar masses but wider linewidths and similar HCN/HCO{sup +} (1-0) line ratios as clumps detected in other LMC star-forming regions. Our results suggest that the dense molecular gas clumps in the interior of 30Dor-10 are well shielded against the intense ionizing field that is present in the 30 Doradus region.« less

  18. Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2017-09-01

    We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.

  19. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  20. GAS in Protoplanetary Systems (GASPS). I. First results

    NASA Astrophysics Data System (ADS)

    Mathews, G. S.; Dent, W. R. F.; Williams, J. P.; Howard, C. D.; Meeus, G.; Riaz, B.; Roberge, A.; Sandell, G.; Vandenbussche, B.; Duchêne, G.; Kamp, I.; Ménard, F.; Montesinos, B.; Pinte, C.; Thi, W. F.; Woitke, P.; Alacid, J. M.; Andrews, S. M.; Ardila, D. R.; Aresu, G.; Augereau, J. C.; Barrado, D.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Eiroa, C.; Fedele, D.; Grady, C. A.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mendigutía, I.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Rice, K.; Riviere-Marichalar, P.; Solano, E.; Tilling, I.; Walker, H.; White, G. J.; Wright, G.

    2010-07-01

    Context. Circumstellar discs are ubiquitous around young stars, but rapidly dissipate their gas and dust on timescales of a few Myr. The Herschel Space Observatory allows for the study of the warm disc atmosphere, using far-infrared spectroscopy to measure gas content and excitation conditions, and far-IR photometry to constrain the dust distribution. Aims: We aim to detect and characterize the gas content of circumstellar discs in four targets as part of the Herschel science demonstration phase. Methods: We carried out sensitive medium resolution spectroscopy and high sensitivity photometry at λ ~ 60-190 μm using the Photodetector Array Camera and Spectrometer instrument on the Herschel Space Observatory. Results: We detect [OI] 63 μm emission from the young stars HD 169142, TW Hydrae, and RECX 15, but not HD 181327. No other lines, including [CII] 158 and [OI] 145, are significantly detected. All four stars are detected in photometry at 70 and 160 μm. Extensive models are presented in associated papers. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Cold gas and the disruptive effect of a young radio jet

    NASA Astrophysics Data System (ADS)

    Morganti, R.; Oosterloo, T.; Maccagni, F. M.; Geréb, K.; Oonk, J. B. R.; Tadhunter, C. N.

    2016-02-01

    Newly born and young radio sources are in a delicate phase of their life. Their jets are fighting their way through the surrounding gaseous medium, strongly experiencing this interaction while, at the same time, impacting and affecting the interstellar medium (ISM). Quantifying this interplay has far reaching implications: the rate of occurrence and the magnitude of the interaction between radio jets and ISM can have consequences for the evolution of the host galaxy. Despite the hostile conditions, cold gas - neutral atomic hydrogen and molecular - has been often found in these objects and can be also associated to fast outflows. Here we present the results from two studies of H I and molecular gas illustrating what can be learned from these phases of the gas. We first describe a statistical study of the occurrence and kinematics of H I observed in absorption with the Westerbork Synthesis Radio telescope. This allows a comparison between the properties of the gas in extended and in compact/young radio sources. The study shows that the young radio sources not only have an higher detection rate of H I, but also systematically broader and more asymmetric H I profiles, most of them blueshifted. This supports the idea that we are looking at young radio jets making their way through the surrounding ISM, which also appears to be, on average, richer in gas than in evolved radio sources. Signatures of the impact of the jet are seen in the kinematics of the gas, but the resulting outflows may be characteristic of only the initial phase of the radio source evolution. However, even among the young sources, we identify a population that remains undetected in H I even after stacking their profiles. Orientation effects can only partly explain the result. These objects either are genuinely gas-poor or have different conditions of the medium, e.g. higher spin temperature. The upcoming blind H I surveys which are about to start with large-field-of-view radio facilities (i.e. Apertif

  2. Radio and infrared properties of young stars

    NASA Technical Reports Server (NTRS)

    Panagia, Nino

    1987-01-01

    Observing young stars, or more appropriately, pre-main-sequence (PMS) stars, in the infrared and at radio frequencies has the advantage over optical observation in that the heavy extinction associated with a star forming region is only a minor problem, so that the whole region can be studied thoroughly. Therefore, it means being able to: (1) search for stars and do statistical studies on the rate of star formation; (2) determine their luminosity, hence, to study luminosity functions and initial mass functions down to low masses; and (3) to study their spectra and, thus, to determine the prevailing conditions at and near the surface of a newly born star and its relations with the surrounding environment. The third point is of principal interest. The report limits itself to a consideration of the observations concerning the processes of outflows from, and accretion onto, PMS stars and the theory necessary to interpret them. Section 2 discusses the radiative processes relevant in stellar outflows. The main observational results are presented in Section 3. A discussion of the statistical properties of stellar winds from PMS stars are given in Section 4.

  3. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Elmegreen, B. G.; Calzetti, D.; Adamo, A.; Aloisi, A.; Bright, S. N.; Cook, D. O.; Dale, D. A.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Kahre, L.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Messa, M.; Ryon, J. E.; Ubeda, L.

    2017-06-01

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25-0.6 power, and that the maximum size over which star formation is physically correlated ranges from ˜200 pc to ˜1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  4. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Elmegreen, B. G.

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are closemore » to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.« less

  5. THE GALACTIC CENTER CLOUD G2-A YOUNG LOW-MASS STAR WITH A STELLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoville, N.; Burkert, A.

    2013-05-10

    We explore the possibility that the G2 gas cloud falling in toward SgrA* is the mass-loss envelope of a young T Tauri star. As the star plunges to smaller radius at 1000-6000 km s{sup -1}, a strong bow shock forms where the stellar wind is impacted by the hot X-ray emitting gas in the vicinity of SgrA*. For a stellar mass-loss rate of 4 Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1} and wind velocity 100 km s{sup -1}, the bow shock will have an emission measure (EM = n {sup 2} vol) at a distance {approx}10{sup 16} cm, similar tomore » that inferred from the IR emission lines. The ionization of the dense bow shock gas is potentially provided by collisional ionization at the shock front and cooling radiation (X-ray and UV) from the post shock gas. The former would predict a constant line flux as a function of distance from SgrA*, while the latter will have increasing emission at lesser distances. In this model, the star and its mass-loss wind should survive pericenter passage since the wind is likely launched at 0.2 AU and this is much less than the Roche radius at pericenter ({approx}3 AU for a stellar mass of 2 M{sub Sun }). In this model, the emission cloud will probably survive pericenter passage, discriminating this scenario from others.« less

  6. Investigating Star-Gas Correlation and Evolution in the 100pc Cygnus X Complex

    NASA Astrophysics Data System (ADS)

    Gutermuth, Robert

    We request support to pursue a substantial refinement of the ongoing characterizations of star and gas surface density in nearby star forming regions by engaging in a focused study of the Cygnus X star forming complex. The substantial physical size of the region and high spatial dynamic range of its surveys enables us to achieve the following science goals: - Characterize the distributions of gas and stellar column densities in a large, nearby starforming complex and integrate those values over successively larger physical scales in order to gauge the effect of varying physical resolution on the measured star-gas correlation. - Validate integrated 24 ¼m luminosity as a method of estimating star formation rate surface density using a region in which the substantial number of known forming members should ensure that the IMF is statistically well-sampled. - Validate 12CO luminosity as a method of estimating molecular gas column density against 13CO column density. tegrated 24 micron and radio continuum luminosity. To achieve these goals, we will perform substantial improvement and expansion of the Cygnus X Spitzer (and 2MASS) Legacy Survey point source catalog using UKIRT Infrared Deep Sky Survey (UKIDSS) near-IR data and WISE mid-IR data. From this catalog, we will produce a comprehensive census of young stellar objects (YSOs) with IR-excess emission over the numerical bulk of the stellar mass function (0.2 2 M ). This YSO catalog is expected to be considerably larger than the entire YSO census of the nearest kiloparsec. Both the point source and YSO catalogs will be contributed to the Infrared Science Archive (IRSA) to facilitate community access to these improved data products. In addition, we will provide a star formation surface density map derived from the MIPS 24 micron map of Cygnus X from the Spitzer Legacy Survey and gas column density maps derived from 12CO and 13CO data from the Exeter-Five College Radio Astronomy Observatory Cygnus Survey. The proposed

  7. Signatures of Young Star Formation Activity within Two Parsecs of Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Sewilo, M.; Roberts, D. A.; Smith, I.; Arendt, R.; Cotton, W.; Lacy, J.; Martin, S.; Pound, M. W.; Rickert, M.; Royster, M.

    2015-07-01

    We present radio and infrared observations indicating ongoing star formation activity inside the ˜2-5 pc circumnuclear ring at the Galactic center. Collectively these measurements suggest a continued disk-based mode of ongoing star formation has taken place near Sgr A* over the last few million years. First, Very Large Array observations with spatial resolution 2.″17 × 0.″81 reveal 13 water masers, several of which have multiple velocity components. The presence of interstellar water masers suggests gas densities that are sufficient for self-gravity to overcome the tidal shear of the 4× {10}6 {M}⊙ black hole. Second, spectral energy distribution modeling of stellar sources indicates massive young stellar object (YSO) candidates interior to the molecular ring, supporting in situ star formation near Sgr A* and appear to show a distribution similar to that of the counter-rotating disks of ˜100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS 5) have bow shock structures, suggesting that they have gaseous disks that are phototoevaporated and photoionized by the strong radiation field. Third, we detect clumps of SiO (2-1) and (5-4) line emission in the ring based on Combined Array for Research in Millimeter-wave Astronomy and Sub-Millimeter Array observations. The FWHM and luminosity of the SiO emission is consistent with shocked protostellar outflows. Fourth, two linear ionized features with an extent of ˜0.8 pc show blue and redshifted velocities between +50 and -40 km s-1, suggesting protostellar jet driven outflows with mass-loss rates of ˜ 5× {10}-5 {M}⊙ yr-1. Finally, we present the imprint of radio dark clouds at 44 GHz, representing a reservoir of molecular gas that feeds star formation activity close to Sgr A*.

  8. Evolution of massive stars in very young clusters and associations

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1985-01-01

    Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

  9. Observational and experimental astrochemistry: A high resolution gas phase study of metal containing species in the laboratory and circumstellar envelopes of stars

    NASA Astrophysics Data System (ADS)

    Pulliam, Robin Leigh

    It was once thought that molecules in the interstellar medium (ISM) would be destroyed in the harsh surroundings and conditions of space, and therefore unobservable by radio techniques. However, it is now understood that the chemistry of the ISM is vast and complex. The question still remains as to just how complex is this chemistry? Much is clearly still not understood. This dissertation presents work on the study of metal compounds and cations in the circumstellar envelopes of oxygen- and carbon-rich asymptotic giant branch (AGB) and supergiant stars. Laboratory studies were also conducted on several transition metal compounds of interstellar interest, some of high spin and orbital angular momentum states. Work has been completed to confirm the detection of the debated metal cyanide KCN in the carbon-rich AGB star IRC+10216. KCN joins the list as the fifth interstellar metal cyanide/isocyanide detected in this source. In addition, preliminary results on the search for TiO are presented towards the oxygen-rich supergiant star, VY CMa. To further understand the evolutionary processes of carbon- and oxygen-rich stars, a survey of HCO+ was taken towards the carbon star IRC+10216, the oxygen-rich AGBs TX Cam, IK Tau, and W Hya and the oxygen-rich supergiant NML Cyg. While HCO+ was detected towards all of these sources, the results are vastly different. The outflow of NML Cyg proves to be asymmetric and further study is necessary. Interestingly, while TX Cam and IK Tau are thought to be virtually similar stars, the emission of HCO+ might state otherwise. Finally, the emission from W Hya is significantly narrower than the other sources. To understand species in space with more confidence, a laboratory search for several 3d transition metal species of astrochemical interest was conducted in the laboratory: HZnCl, ZnO, ZnCl, TiS and CrS. All of the molecules have been observed for the first time through high resolution gas phase rotational spectroscopy and the work on Zn

  10. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  11. Probing the chemical environments of early star formation: A multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Emily Elizabeth

    Chemical compositions of prestellar and protostellar environments in the dense interstellar medium are best quantified using a multidisciplinary approach. For my dissertation, I completed two projects to measure molecular abundances during the earliest phases of star formation. The first project investigates gas phase CO depletion in molecular cloud cores, the progenitors of star systems, using infrared photometry and molecular line spectroscopy at radio wavelengths. Hydrogenation of CO depleted onto dust is an important first step toward building complex organic molecules. The second project constrains polycyclic aromatic hydrocarbon (PAH) abundances toward young stellar objects (YSO). Band strengths measured from laboratory spectroscopy of pyrene/water ice mixtures were applied to estimate abundances from features attributed to PAHs in observational YSO spectra. PAHs represent a distinct but important component of interstellar organic material that is widely observed but not well quantified in star-forming regions.

  12. High Resolution Spectroscopy of Vega-like Stars: Abundances and Circumstellar Gas

    NASA Technical Reports Server (NTRS)

    Dunkin, S. K.; Barlow, M. J.; Ryan, Sean G.

    1996-01-01

    Vega-like stars are main-sequence stars exhibiting excess infrared emission. In an effort to improve the information available on this class of star, 13 stars have been analyzed which have been classed as Vega-like, or have an infra-red excess attributable to dust in their circumstellar environment. In a separate paper stellar properties such as effective temperature and log g have been derived and in this poster we highlight the results of the photospheric abundance analysis also carried out during this work. King recently drew attention to the possible link between Vega-like stars and the photospheric metal-depleted class of A-stars, the Lambda Bootis stars. Since Vega-like stars are thought to have disks of dust, it might be expected that accretion of depleted gas onto the surface of these stars may cause this same phenomenon. In the 6 stars studied for depletions, none showed the extreme underabundance patterns observed in Lambda Bootis stars. However, depletions of silicon and magnesium were found in two of the sample, suggesting that these elements are in silicate dust grains in the circumstellar environment of these stars. Absorption lines attributed to circumstellar gas have been positively identified in three stars in our sample. Individual cases show evidence either of high-velocity outflowing gas, variability in the circumstellar lines observed, or evidence of circumstellar gas in excited lines of Fe II. No previous identification of circumstellar material has been made for two of the stars in question.

  13. Observation of Young Stars at the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Berndt, A.; Errmann, R.; Maciejewski, G.; Raetz, St.; Marka, C.; Ginski, Ch.; Mugrauer, M.; Schmidt, T. O. B.; Neuhäuser, R.; Seeliger, M.; Moualla, M.; Pribulla, T.; Hohle, M. M.; Tetzlaff, N.; Adam, Ch.; Eisenbeiss, T.; YETI Team

    2011-12-01

    We report on observation and determination of rotational and orbital periods of young stars and eclipsing binaries in the young open cluster Trumpler 37. Observations were carried out with the "Schmidt-Teleskop-Kamera" (STK) at University Observatory Jena in 2009 and 2010.

  14. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  15. Multiwavelength study of the low-luminosity outbursting young star HBC 722

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Acosta-Pulido, J. A.; Dunham, M. M.; García-Álvarez, D.; Hogerheijde, M. R.; Kun, M.; Moór, A.; Farkas, A.; Hajdu, G.; Hodosán, G.; Kovács, T.; Kriskovics, L.; Marton, G.; Molnár, L.; Pál, A.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Szalai, T.; Szegedi-Elek, E.; Szing, A.; Tóth, I.; Vida, K.; Vinkó, J.

    2016-11-01

    Context. HBC 722 (V2493 Cyg) is a young eruptive star in outburst since 2010. Spectroscopic evidence suggests that the source is an FU Orionis-type object, with an atypically low outburst luminosity. Aims: Because it was well characterized in the pre-outburst phase, HBC 722 is one of the few FUors from which we can learn about the physical changes and processes associated with the eruption, including the role of the circumstellar environment. Methods: We monitored the source in the BVRIJHKS bands from the ground and at 3.6 and 4.5 μm from space with the Spitzer Space Telescope. We analyzed the light curves and studied the evolving spectral energy distribution by fitting a series of steady accretion disk models at many epochs covering the outburst. We also analyzed the spectral properties of the source based on our new optical and infrared spectra, comparing our line inventory with those published in the literature for other epochs. We also mapped HBC 722 and its surroundings at millimeter wavelengths. Results: From the light-curve analysis we conclude that the first peak of the outburst in 2010 September was mainly due to an abrupt increase in the accretion rate in the innermost part of the system. This was followed after a few months by a long-term process, when the brightening of the source was mainly due to a gradual increase in the accretion rate and the emitting area. Our new observations show that the source is currently in a constant plateau phase. We found that the optical spectrum was similar in the first peak and following periods, but around the peak the continuum was bluer and the Hα profile changed significantly between 2012 and 2013. The source was not detected in the millimeter continuum, but we discovered a flattened molecular gas structure with a diameter of 1700 au and mass of 0.3 M⊙ centered on HBC 722. Conclusions: While the first brightness peak might be interpreted as a rapid fall of piled-up material from the inner disk onto the star, the

  16. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  17. A study of the gas-star formation relation over cosmic time

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Gracia-Carpio, J.; Sternberg, A.; Cooper, M. C.; Shapiro, K.; Bolatto, A.; Bouché, N.; Bournaud, F.; Burkert, A.; Combes, F.; Comerford, J.; Cox, P.; Davis, M.; Schreiber, N. M. Förster; Garcia-Burillo, S.; Lutz, D.; Naab, T.; Neri, R.; Omont, A.; Shapley, A.; Weiner, B.

    2010-10-01

    We use the first systematic data sets of CO molecular line emission in z ~ 1-3 normal star-forming galaxies (SFGs) for a comparison of the dependence of galaxy-averaged star formation rates on molecular gas masses at low and high redshifts, and in different galactic environments. Although the current high-z samples are still small and biased towards the luminous and massive tail of the actively star-forming `main-sequence', a fairly clear picture is emerging. Independent of whether galaxy-integrated quantities or surface densities are considered, low- and high-z SFG populations appear to follow similar molecular gas-star formation relations with slopes 1.1 to 1.2, over three orders of magnitude in gas mass or surface density. The gas-depletion time-scale in these SFGs grows from 0.5 Gyr at z ~ 2 to 1.5 Gyr at z ~ 0. The average corresponds to a fairly low star formation efficiency of 2 per cent per dynamical time. Because star formation depletion times are significantly smaller than the Hubble time at all redshifts sampled, star formation rates and gas fractions are set by the balance between gas accretion from the halo and stellar feedback. In contrast, very luminous and ultraluminous, gas-rich major mergers at both low and high z produce on average four to 10 times more far-infrared luminosity per unit gas mass. We show that only some fraction of this difference can be explained by uncertainties in gas mass or luminosity estimators; much of it must be intrinsic. A possible explanation is a top-heavy stellar mass function in the merging systems but the most likely interpretation is that the star formation relation is driven by global dynamical effects. For a given mass, the more compact merger systems produce stars more rapidly because their gas clouds are more compressed with shorter dynamical times, so that they churn more quickly through the available gas reservoir than the typical normal disc galaxies. When the dependence on galactic dynamical time-scale is

  18. Metallicity of Young and Old Stars in Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Tikhonov, N. A.

    2018-01-01

    Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index ( V - I) of the supergiant branch at the luminosity level M I = -7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies ( M B ) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.

  19. Radiative Hydrodynamics and the Formation of Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.

    2009-05-01

    Gas giant planets undoubtedly form from the orbiting gas and dust disks commonly observed around young stars, and there are two principal mechanisms proposed for how this may occur. The core accretion plus gas capture model argues that a solid core forms first and then accretes gas from the surrounding disk once the core becomes massive enough (about 10 Earth masses). The gas accumulation process is comparatively slow but becomes hydrodynamic at later times. The disk instability model alternatively suggests that gas giant planet formation is initiated by gas-phase gravitational instabilities (GIs) that fragment protoplanetary disks into bound gaseous protoplanets rapidly, on disk orbit period time scales. Solid cores then form more slowly by accretion of solid planetesimals and settling. The overall formation time scales for these two mechanisms can differ by orders of magnitude. Both involve multidimensional hydrodynamic flows at some phase, late in the process for core accretion and early on for disk instability. The ability of cores to accrete gas and the ability of GIs to produce bound clumps depend on how rapidly gas can lose energy by radiation. This regulatory process, while important for controlling the time scale for core accretion plus gas capture, turns out to be absolutely critical for disk instability to work at all. For this reason, I will focus in my talk on the use of radiation hydrodynamics simulations to determine whether and where disk instability can actually form gas giant planets in disks. Results remain controversial, but simulations by several different research groups support analytic arguments that disk instability leading to fragmentation probably cannot occur in disks around Sun-like stars at orbit radii of 10's of Earth-Sun distances or less. On the other hand, very recent simulations suggest that very young, rapidly accreting disks with much larger radii (100's of times the Sun-Earth distance) can indeed readily fragment by disk

  20. Hot Gas Flows in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, G.; Gregory, S. G.; Ingleby, L.; France, K.; Brown, A.; Edwards, S.; Linsky, J.; Yang, H.; Valenti, J. A.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Bethell, T.; Brown, J.; Calvet, N.; Espaillat, C.; Hervé, A.; Hillenbrand, L.; Hussain, G.; Roueff, E.; Schindhelm, E.; Walter, F. M.

    2013-01-01

    We describe observations of the hot gas 1e5 K) ultraviolet lines C IV and He II, in Classical and Weak T Tauri Stars (CTTSs, WTTSs). Our goal is to provide observational constraints for realistic models. Most of the data for this work comes from the Hubble proposal “The Disks, Accretion, and Outflows (DAO) of T Tau stars” (PI Herczeg). The DAO program is the largest and most sensitive high resolution spectroscopic survey of young stars in the UV ever undertaken and it provides a rich source of information for these objects. The sample of high resolution COS and STIS spectra presented here comprises 35 stars: one Herbig Ae star, 28 CTTSs, and 6 WTTSs. For CTTSs, the lines consist of two kinematic components. The relative strengths of the narrow and broad components (NC, BC) are similar in C IV but in He II the NC is stronger than the BC, and dominates the line profile. We do not find correlations between disk inclination and the velocity centroid, width, or shape of the CIV line profile. The NC of the C IV line in CTTSs increases in strength with accretion rate, and its contribution to the line increases from ˜20% to ˜80%, for the accretion rates considered here (1e-10 to 1e-7 Msun/yr). The CTTSs C IV lines are redshifted by ˜20 km/s while the CTTSs He II are redshifted by ˜10 km/s. Because the He II line and the C IV NC have the same width in CTTSs and in WTTSs, but are correlated with accretion, we suggest that they are produced in the stellar transition region. The accretion shock model predicts that the velocity of the post-shock emission should be 4x smaller than the velocity of the pre-shock emission. Identifying the post-shock emission with the NC and the pre-shock with the BC, we find that this is approximately the case in 11 out of 23 objects. The model cannot explain 11 systems in which the velocity of the NC is smaller than the velocity of the BC, or systems in which one of the velocities is negative (five CTTSs). The hot gas lines in some systems

  1. 75 FR 40802 - Southern Star Central Gas Pipeline, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-2-001] Southern Star... Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42301, filed in... CP10-2-000. Specifically, Southern Star proposes to increase the working gas capacity and amend the...

  2. The Quest for Quality: How YoungStar Is Affecting Child Care in Milwaukee County

    ERIC Educational Resources Information Center

    Mueller, Betsy; Peterangelo, Joe; Henken, Rob

    2016-01-01

    The State of Wisconsin's YoungStar system was created by the Legislature and Governor in 2010 to "drive quality improvement in child care throughout the state." YoungStar uses a five-star system to rate child care providers based on several measures of quality, including staff education levels, learning environment, business methods, and…

  3. The Beta Pictoris Phenomenon in A-Shell Stars: Detection of Accreting Gas

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Perez, Mario R.; Talavera, A.; McCollum, B.; Rawley, L. A.; England, M. N.; Schlegel, M.

    1996-01-01

    We present the results of an expanded survey of A-shell stars using IUE high-dispersion spectra and find accreting, circumstellar gas in the line of sight to nine stars, in addition to the previously identified beta Pic, HR 10, and 131 Tau, which can be followed to between +70 and 100 km/s relative to the star. Two of the program stars, HD 88195 and HD 148283, show variable high-velocity gas. Given the small number of IUE spectra for our program stars, detection of high-velocity, accreting gas in 2/3 of the A-shell stars sampled indicates that accretion is an intrinsic part of the A-shell phenomenon and that beta Pic is not unique among main-sequence A stars in exhibiting such activity. Our program stars, as a group, have smaller column densities of high-velocity gas and smaller near-IR excesses compared with beta Pic. These features are consistent with greater central clearing of a remnant debris disk, compared with beta Pic, and suggest that the majority of field A-shell stars are older than beta Pic.

  4. Analysis of Extreme Star Formation Environments in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Nayak, Omnarayani

    2018-01-01

    My thesis is on three extreme star forming environments in the Large Magellanic Cloud: 30 Doradus, N159, and N79. These three regions are at different evolutionary stage of forming stars. N79 is at a very young stage, just starting its star formation activity. N159 is currently actively forming several massive YSOs. And 30 Doradus has already passed it peak star formation, and several protostars are no longer shrouded by gas and dust, and are starting to be more visible in the optical wavelengths. I analyze the CO molecular gas clouds with ALMA in 30 Doradus, N159, and N79. I identify all massive YSOs within the ALMA footprint of all three regions. My thesis is on relating the star formation activity in 30 Doradus, N159, and N79 to the high density gas in which these protostars form. I find that not all massive young stellar objects are associated with CO gas, higher mass clumps tend to form higher mass stars, and lower mass clumps tend to not be gravitationally bound however the larger clouds are bound. I use ancillary SOFIA data and Magellan FIRE data to place constraints on the outflow rate from the massive protostars, constrain the temperature of the gas, determine the spectral type of the young stellar objects, and estimate the extinction. Looking at the interplay between dense molecular gas and the newly forming stars in a stellar nursery will shed light on how these stars formed: filamentary collision, monolithic collapse, or competitive accretion. The Large Magellanic Cloud has been the subject of star formation studies for decades due to its proximity to the Milky Way (50 kpc), a nearly face-on orientation, and a low metallicity (0.5 solar) similar to that of galaxies at the peak of star formation in the universe (z~2). Thus, my thesis probes the chemical and physical conditions necessary for massive star formation in an environment more typical of the peak of star formation in the universe.

  5. Anomalous Eclipses of the Young Star RW Aur A

    NASA Astrophysics Data System (ADS)

    Lamzin, S.; Cheryasov, D.; Chuntonov, G.; Dodin, A.; Grankin, K.; Malanchev, K.; Nadzhip, A.; Safonov, B.; Shakhovskoy, D.; Shenavrin, V.; Tatarnikov, A.; Vozyakova, O.

    2017-06-01

    Results of UBVRIJHKLM photometry, VRI polarimetry and optical spectroscopy of a young star RW Aur A obtained during 2010-11 and 2014-16 dimming events are presented. During the second dimming the star decreased its brightness to ΔV >4.5 mag, polarization of its light in I-band was up to 30 %, and color-magnitude diagramm was similar to that of UX Ori type stars. We conclude that the reason of both dimmings is an eclipses of the star by dust screen, but the size of the screen is much larger than in the case of UXORs.

  6. Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers

    NASA Astrophysics Data System (ADS)

    Jofré, P.; Jorissen, A.; Van Eck, S.; Izzard, R. G.; Masseron, T.; Hawkins, K.; Gilmore, G.; Paladini, C.; Escorza, A.; Blanco-Cuaresma, S.; Manick, R.

    2016-10-01

    Spectro-seismic measurements of red giants enabled the recent discovery of stars in the thick disk that are more massive than 1.4 M⊙. While it has been claimed that most of these stars are younger than the rest of the typical thick disk stars, we show evidence that they might be products of mass transfer in binary evolution, notably evolved blue stragglers. We took new measurements of the radial velocities in a sample of 26 stars from APOKASC, including 13 "young" stars and 13 "old" stars with similar stellar parameters but with masses below 1.2 M⊙ and found that more of the young starsappear to be in binary systems with respect to the old stars.Furthermore, we show that the young stars do not follow the expected trend of [C/H] ratios versus mass for individual stars. However, with a population synthesis of low-mass stars including binary evolution and mass transfer, we can reproduce the observed [C/N] ratios versus mass. Our study shows how asteroseismology of solar-type red giants provides us with a unique opportunity to study the evolution of field blue stragglers after they have left the main-sequence.

  7. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxiesmore » by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.« less

  8. Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom

    2018-01-01

    Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall

  9. YoungStar in Wisconsin: An Initial Progress Report as of July 2011

    ERIC Educational Resources Information Center

    Edie, Dave

    2011-01-01

    YoungStar is a program of the Department of Children and Families (DCF) created to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) Evaluate and rate the quality of care given by child care providers; (2) Help parents choose the best child care for their kids; (3) Support providers with tools and training to…

  10. Results from the APOGEE IN-SYNC Orion: parameters and radial velocities for thousands of young stars in the Orion Complex.

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; SDSS Apogee IN-SYNC ancillary program Team

    2015-01-01

    I will present the results of our characterization of the dynamical status of the young stellar population in the Orion A star forming region. This is based on radial velocity measurements obtained within the SDSS-III Apogee IN-SYNC Orion Survey, which obtained high-resolution spectroscopy of ~3000 objects in the region, from the dense Orion Nebula Cluster - the prototypical nearby region of active massive star formation - to the low-density environments of the L1641 region. We find evidence for kinematic subclustering along the star forming filament, where the stellar component remains kinematically associated to the gas; in the ONC we find that the stellar population is supervirial and currently expanding. We rule out the existence of a controversial candidate foreground cluster to the south of the ONC. These results, complemented with an analysis of the spatial structure of the population, enables critical tests of theories that describe the formation and early evolution of Orion and young clusters in general.

  11. Astronomers Gain Important Insight on How Massive Stars Form

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form. Young Star Graphic Artist's Conception of Young Star Showing Motions Detected in G24 A1: (1) Infall toward torus, (2) Rotation and (3) outflow. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for larger graphic file (JPEG, 129K) "We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery," said Maria Teresa Beltran, of the University of Barcelona in Spain. Beltran and other astronomers from Italy and Hawaii studied a young, massive star called G24 A1 about 25,000 light-years from Earth. This object is about 20 times more massive than the Sun. The scientists reported their findings in the September 28 issue of the journal Nature. Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars. "When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material," Beltran explained. "We know there are many stars bigger than that, so the question is, how do they get that much mass?" One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows. "If this model is correct, there should be material falling inward, rushing outward and rotating

  12. Hot ammonia around young O-type stars. III. High-mass star formation and hot core activity in W51 Main

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Ginsburg, A.; Zhang, Q.

    2016-05-01

    Context. This paper is the third in a series of NH3 multilevel imaging studies in well-known, high-mass star-forming regions. The main goal is to characterize kinematics and physical conditions of (hot and dense) circumstellar molecular gas around O-type young stars. Aims: We want to map at subarcsecond resolution highly excited inversion lines of NH3 in the high-mass star-forming region W51 Main (distance = 5.4 kpc), which is an ideal target to constrain theoretical models of high-mass star formation. Methods: Using the Karl Jansky Very Large Array (JVLA), we mapped the hot and dense molecular gas in W51 Main with ~0.2 arcsec-0.3 arcsec angular resolution in five metastable (J = K) inversion transitions of ammonia (NH3): (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13). These lines arise from energy levels between ~400 K and ~1700 K above the ground state. We also made maps of the (free-free) continuum emission at frequencies between 25 and 36 GHz. Results: We have identified and characterized two main centers of high-mass star formation in W51 Main, which excite hot cores and host one or multiple high-mass young stellar objects (YSOs) at their centers: the W51e2 complex and the W51e8 core (~6'' southward of W51e2). The former breaks down into three further subcores: W51e2-W, which surrounds the well-known hypercompact (HC) HII region, where hot NH3 is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 arcsec to the East) and W51e2-NW (~1'' to the North), where hot NH3 is observed in emission. The velocity maps toward the HC HII region show a clear velocity gradient along the east-west in all lines. The gradient may indicate rotation, although any Keplerian motion must be on smaller scales (<1000 AU) as we do not directly observe a Keplerian velocity profile. The absence of outflow and/or maser activity and the low amount of molecular gas available for accretion (~5 M⊙, assuming [NH3]/[H2] = 10-7) with respect to the mass of the central

  13. The embedded population around Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Testi, L.; Stanga, R. M.; Natta, A.; Palla, F.; Prusti, T.; Baffa, C.; Hunt, L. K.; Lisi, F.

    Herbig Ae/Be stars are intermediate mass young stars in the pre-main sequence phase of evolution. There are only few stars of this type known so far, and all of them seem to be relatively isolated, in contrast to their low mass counterparts, the T Tauri stars. A possible explanation of this fact is that other young stars formed near the known YSO are deeply embedded in the molecular cloud environment and are not detectable at optical wavelengths. We used the new ARcetri Near Infrared CAmera (ARNICA) to survey in the J, H and K bands the regions of sky around Herbig stars. The aim of this work is to identify embedded YSO and investigate the clustering properties of these young stars.

  14. Shocked and Scorched - Free-Floating Evaporating Gas Globules and Star Formation

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Morris, Mark R.; Claussen, Mark J.

    2014-07-01

    Massive stars have a strong feedback effect on their environment, via their winds, UV radiation, and ultimately, supernova blast waves, all of which can alter the likelihood for the formation of stars in nearby clouds and limit the accretion process of nearby protostars. Free-floating Evaporating Gaseous Globules, or frEGGs, are a newly recognized class of stellar nurseries embedded within the giant HII regions found in massive star-formation region (MSFRs). We recently discovered the prototype frEGG in the Cygnus MSFR with HST. Further investigation using the Spitzer and Herschel archives have revealed a much larger number (>50) in Cygnus and other MSFRs. Our molecular-line observations of these show the presence of dense clouds with total masses of cool molecular gas exceeding 0.5 to a few Msun associated with these objects, thereby disproving the initial hypothesis based on their morphology that these have an origin similar to the proplyds (cometary-shaped photoevaporating protoplanetary disks) found in Orion. We report the results of our molecular-line studies and detailed high-resolution optical (with HST) or near-IR (with AO at the Keck Observatory) imaging of a few frEGGs in Cygnus, Carina and the W5 MSFRs. The images show the presence of young stars with associated outflow cavities and/or jets in the heads of the tadpole-shaped frEGGs. These results support our hypothesis that frEGGs are density concentrations originating in giant molecular clouds, that, when subject to the compression by the strong winds and ionization from massive stars in these MSFRs, become active star-forming cores. In summary, by virtue of their distinct, isolated morphologies, frEGGs offer us a clean probe of triggered star formation on small scales in the vicinity of massive stars.

  15. Photoevaporating Disks around Young Stars: Ultracompact HII Regions and Protoplanetary Disks.

    NASA Astrophysics Data System (ADS)

    Johnstone, Douglas Ian

    1995-01-01

    -mass stars are known to have enhanced extreme ultraviolet luminosity suggested to be due to boundary layer accretion. Assuming that most low mass stars have such an enhanced Lyman luminosity phi ~ 1041 s ^{-1}, for ~ 3 times 10^7 yrs it is possible to remove most of the gas in the outer disk. A diagnostic of this mass loss may be the low-velocity forbidden oxygen, nitrogen, and sulphur line emission observed around young stars with disks. Photoevaporating disk models yield reasonable agreement with the flux seen in these lines. The process of photoevaporation also has implications for the formation of the giant planets within the solar nebula. Within young stellar clusters a few high mass stars may overwhelm the internal Lyman continuum flux from low mass stars and externally evaporated disks may result. The Trapezium region presents the best studied example of such a cluster. Photoionization due to high energy photons from the high mass stars erode the disks around nearby low mass stars. The resulting short destruction times for these disks constrain the gestation period for creating planets.

  16. 76 FR 31599 - Southern Star Central Gas Pipeline, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-481-000] Southern Star Central Gas Pipeline, Inc.; Notice of Application On May 13, 2011, Southern Star Central Gas Pipeline, Inc. (Southern Star) filed with the Federal Energy Regulatory Commission (Commission) an application under...

  17. 76 FR 67160 - Southern Star Central Gas Pipeline, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-481-001] Southern Star Central Gas Pipeline, Inc.; Notice of Application On October 19, 2011, Southern Star Central Gas Pipeline, Inc. (Southern Star) filed with the Federal Energy Regulatory Commission (Commission) an amendment to...

  18. Implications of SWAS Observations for Interstellar Chemistry and Star Formation

    NASA Technical Reports Server (NTRS)

    Bergin, Edwin A.; Melnick, Gary J.; Stauffer, John R.; Ashby, Matthew L. N.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, John E.; Kleiner, Steven C.

    2000-01-01

    A long standing prediction of steady state gas-phase chemical theory is that H2O and O2 are important reservoirs of elemental oxygen and major coolants of the interstellar medium. Analysis of SWAS observations has set sensitive upper limits on the abundance Of O2 and has provided H2O abundances toward a variety of star forming regions. Based on these results, we show that gaseous H2O and O2 are not dominant carriers of elemental oxygen in molecular clouds. Instead the available oxygen is presumably frozen on dust grains in the form of molecular ices, with a significant portion potentially remaining in atomic form, along with CO, in the gas phase. H2O and O2 are also not significant coolants for quiescent molecular gas. In the case of H2O, a number of known chemical processes can locally elevate its abundance in regions with enhanced temperatures, such as warm regions surrounding young stars or in hot shocked gas. Thus, water can be a locally important coolant. The new information provided by SWAS, when combined with recent results from the Infrared Space Observatory, also provide several hard observational constraints for theoretical models of the chemistry in molecular clouds and we discuss various models that satisfy these conditions.

  19. Gas dynamics in the inner few AU around the Herbig B[e] star MWC297. Indications of a disk wind from kinematic modeling and velocity-resolved interferometric imaging

    NASA Astrophysics Data System (ADS)

    Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques

    2017-10-01

    Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be

  20. ALMA Shows that Gas Reservoirs of Star-forming Disks over the Past 3 Billion Years Are Not Predominantly Molecular

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortese, Luca; Catinella, Barbara; Janowiecki, Steven, E-mail: luca.cortese@uwa.edu.au

    Cold hydrogen gas is the raw fuel for star formation in galaxies, and its partition into atomic and molecular phases is a key quantity for galaxy evolution. In this Letter, we combine Atacama Large Millimeter/submillimeter Array and Arecibo single-dish observations to estimate the molecular-to-atomic hydrogen mass ratio for massive star-forming galaxies at z ∼ 0.2 extracted from the HIGHz survey, i.e., some of the most massive gas-rich systems currently known. We show that the balance between atomic and molecular hydrogen in these galaxies is similar to that of local main-sequence disks, implying that atomic hydrogen has been dominating the coldmore » gas mass budget of star-forming galaxies for at least the past three billion years. In addition, despite harboring gas reservoirs that are more typical of objects at the cosmic noon, HIGHz galaxies host regular rotating disks with low gas velocity dispersions suggesting that high total gas fractions do not necessarily drive high turbulence in the interstellar medium.« less

  1. 77 FR 41975 - Southern Star Central Gas Pipeline, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-479-000] Southern Star Central Gas Pipeline, Inc.; Notice of Application Take notice that on June 27, 2012, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42301, filed an application...

  2. 77 FR 28867 - Southern Star Central Gas Pipeline, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-285-000] Southern Star Central Gas Pipeline, Inc.; Notice of Application Take notice that on April 27, 2012, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42304, filed in Docket No...

  3. Variability of Young Stars: the Importance of Keeping an Eye on Children

    NASA Astrophysics Data System (ADS)

    Herbst, W.

    2013-06-01

    (Abstract only) I will review the state of our understanding of young stars with an emphasis on how and why they vary in brightness. The main causes of the variations will be reviewed, including the rotation of spotted weak-lined T Tauri stars, accretion onto classical T Tauri stars, the eruptive behavior of FUors, and the enigmatic variations of the UXors. The important role that amateurs have and will continue to play in these studies is highlighted. I will also discuss the latest results on two unusual young binaries, BM Orionis in the Trapezium asterism and KH 15D in NGC 2264.

  4. Star-forming Filament Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zonemore » of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.« less

  5. Magnetic Stars After the Hayashi Phase. I

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2016-06-01

    The problems of the origin and evolution of magnetic stars based on analysis of observational data are discussed. It is assumed that magnetic stars acquire their major properties during the protostellar collapse stage. The properties of magnetic stars after the Hayashi phase are examined in detail.

  6. A perfect starburst cluster made in one go: The NGC 3603 young cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sambaran; Kroupa, Pavel

    2014-06-01

    Understanding how distinct, near-spherical gas-free clusters of very young, massive stars shape out of vast, complex clouds of molecular hydrogen is one of the biggest challenges in astrophysics. A popular thought dictates that a single gas cloud fragments into many newborn stars which, in turn, energize and rapidly expel the residual gas to form a gas-free cluster. This study demonstrates that the above classical paradigm remarkably reproduces the well-observed central, young cluster (HD 97950) of the Galactic NGC 3603 star-forming region, in particular, its shape, internal motion, and mass distribution of stars naturally and consistently follow from a single modelmore » calculation. Remarkably, the same parameters (star formation efficiency, gas expulsion timescale, and delay) reproduce HD 97950, as were found to reproduce the Orion Nebula Cluster, Pleiades, and R136. The present results therefore provide intriguing evidence of formation of star clusters through single-starburst events followed by significant residual gas expulsion.« less

  7. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses <10(sup 7.7) solar mass and Hi line widths <80 kilometers per second. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  8. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; onlymore » 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.« less

  9. On the Appearance of Thresholds in the Dynamical Model of Star Formation

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2018-02-01

    The Kennicutt–Schmidt (KS) relationship between the surface density of the star formation rate (SFR) and the gas surface density has three distinct power laws that may result from one model in which gas collapses at a fixed fraction of the dynamical rate. The power-law slope is 1 when the observed gas has a characteristic density for detection, 1.5 for total gas when the thickness is about constant as in the main disks of galaxies, and 2 for total gas when the thickness is regulated by self-gravity and the velocity dispersion is about constant, as in the outer parts of spirals, dwarf irregulars, and giant molecular clouds. The observed scaling of the star formation efficiency (SFR per unit CO) with the dense gas fraction (HCN/CO) is derived from the KS relationship when one tracer (HCN) is on the linear part and the other (CO) is on the 1.5 part. Observations of a threshold density or column density with a constant SFR per unit gas mass above the threshold are proposed to be selection effects, as are observations of star formation in only the dense parts of clouds. The model allows a derivation of all three KS relations using the probability distribution function of density with no thresholds for star formation. Failed galaxies and systems with sub-KS SFRs are predicted to have gas that is dominated by an equilibrium warm phase where the thermal Jeans length exceeds the Toomre length. A squared relation is predicted for molecular gas-dominated young galaxies.

  10. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, 10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, 25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  11. ALMA Resolves the Molecular Gas in a Young Low-metallicity Starburst Galaxy at z = 1.7

    NASA Astrophysics Data System (ADS)

    González-López, Jorge; Barrientos, L. Felipe; Gladders, M. D.; Wuyts, Eva; Rigby, Jane; Sharon, Keren; Aravena, Manuel; Bayliss, Matthew B.; Ibar, Eduardo

    2017-09-01

    We present Atacama Large Millimeter/submillimeter Array observations of CO lines and dust continuum emission of the source RCSGA 032727-132609, a young z = 1.7 low-metallicity starburst galaxy. The CO(3-2) and CO(6-5) lines and continuum at rest-frame 450 μm are detected and show a resolved structure in the image plane. We use the corresponding lensing model to obtain a source plane reconstruction of the detected emissions revealing an intrinsic flux density of {S}450μ {{m}}={23.5}-8.1+26.8 μJy and intrinsic CO luminosities {L}{CO(3-2)}{\\prime }={2.90}-0.23+0.21 × {10}8 {{K}} {km} {{{s}}}-1 {{pc}}2 and {L}{CO(6-5)}{\\prime }={8.0}-1.3+1.4× {10}7 {{K}} {km} {{{s}}}-1 {{pc}}2. We used the resolved properties in the source plane to obtain molecular gas and star formation rate surface densities of {{{Σ }}}{{H}2}={16.2}-3.5+5.8 {M}⊙ {{pc}}-2 and {{{Σ }}}{SFR}={0.54}-0.27+0.89 {M}⊙ {{yr}}-1 {{kpc}}-2, respectively. The intrinsic properties of RCSGA 032727-132609 show an enhanced star formation activity compared to local spiral galaxies with similar molecular gas densities, supporting the ongoing merger-starburst phase scenario. RCSGA 032727-132609 also appears to be a low-density starburst galaxy similar to local blue compact dwarf galaxies, which have been suggested as local analogs to high-redshift low-metallicity starburst systems. Finally, the CO excitation level in the galaxy is consistent with having the peak at J˜ 5, with a higher excitation concentrated in the star-forming clumps.

  12. HOT WHITE DWARF SHINES IN YOUNG STAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A dazzling 'jewel-box' collection of over 20,000 stars can be seen in crystal clarity in this NASA Hubble Space Telescope image, taken with the Wide Field and Planetary Camera 2. The young (40 million year old) cluster, called NGC 1818, is 164,000 light-years away in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. The LMC, a site of vigorous current star formation, is an ideal nearby laboratory for studying stellar evolution. In the cluster, astronomers have found a young white dwarf star, which has only very recently formed following the burnout of a red giant. Based on this observation astronomers conclude that the red giant progenitor star was 7.6 times the mass of our Sun. Previously, astronomers have estimated that stars anywhere from 6 to 10 solar masses would not just quietly fade away as white dwarfs but abruptly self-destruct in torrential explosions. Hubble can easily resolve the star in the crowded cluster, and detect its intense blue-white glow from a sizzling surface temperature of 50,000 degrees Fahrenheit. IMAGE DATA Date taken: December 1995 Wavelength: natural color reconstruction from three filters (I,B,U) Field of view: 100 light-years, 2.2 arc minutes TARGET DATA Name: NGC 1818 Distance: 164,000 light-years Constellation: Dorado Age: 40 million years Class: Rich star cluster Apparent magnitude: 9.7 Apparent diameter: 7 arc minutes Credit: Rebecca Elson and Richard Sword, Cambridge UK, and NASA (Original WFPC2 image courtesy J. Westphal, Caltech) Image files are available electronically via the World Wide Web at: http://oposite.stsci.edu/pubinfo/1998/16 and via links in http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. GIF and JPEG images are available via anonymous ftp to oposite.stsci.edu in /pubinfo/GIF/9816.GIF and /pubinfo/JPEG/9816.jpg.

  13. YoungStar in Milwaukee County: An Initial Progress Report as of July 2011

    ERIC Educational Resources Information Center

    Edie, Dave

    2011-01-01

    YoungStar is a program of the Department of Children and Families (DCF) created to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) Evaluate and rate the quality of care given by child care providers; (2) Help parents choose the best child care for their kids; (3) Support providers with tools and training to…

  14. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  15. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    NASA Astrophysics Data System (ADS)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  16. Chemical Compositions of Young Stars in the Leading Arm of the Magellanic System

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Moni Bidin, C.; Casetti-Dinescu, D. I.; Mendez, R. A.; Girard, T. M.; Korchagin, V. I.; Vieira, K.; van Altena, W. F.; Zhao, G.

    2017-07-01

    Seven element abundances (He, C, N, O, Mg, Si, and S) and kinematics were determined for eight O-/B- type stars, based on high resolution spectra taken with the MIKE instrument on the Magellan 6.5m Clay telescope (program ID: CN2014A-057). The sample is selected from 42 candidates Casetti-Dinescu et al.(2014, ApJL, 784, L37) of membership in the Leading Arm (LA) of the Magellanic System. After investigating the relationship between abundances and kinematics parameters, we found that five stars have kinematics compatible with LA membership, i.e. RV>100kms-1. For the five possible LA member stars, Mg abundance is significantly lower than that of the remaining two that are kinematical members of the Galactic disk, and is more close to the LMC values. Distances to the LA members indicate that they are at the edge of the Galactic disk, while ages are of the order of ˜ 50-70 Myr, lower than the dynamical age of the LA, suggesting a single star-forming episode in the LA. VLSR of the LA members decreases with decreasing Magellanic longitude, confirming the results of previous LA gas studies (McClure-Griffiths et al.2008, ApJ, 673, L143). Our abundance and kinematic results for the LA member stars demonstrate that parts of the LA are hydrodynamically interacting with the gaseous Galactic disk, forming young stars that are chemically distinct from those in the Galactic disk. These results can provide constraints to future models for the Magellanic leading material.

  17. The accelerating pace of star formation

    NASA Astrophysics Data System (ADS)

    Caldwell, Spencer; Chang, Philip

    2018-03-01

    We study the temporal and spatial distribution of star formation rates in four well-studied star-forming regions in local molecular clouds (MCs): Taurus, Perseus, ρ Ophiuchi, and Orion A. Using published mass and age estimates for young stellar objects in each system, we show that the rate of star formation over the last 10 Myr has been accelerating and is (roughly) consistent with a t2 power law. This is in line with previous studies of the star formation history of MCs and with recent theoretical studies. We further study the clustering of star formation in the Orion nebula cluster. We examine the distribution of young stellar objects as a function of their age by computing an effective half-light radius for these young stars subdivided into age bins. We show that the distribution of young stellar objects is broadly consistent with the star formation being entirely localized within the central region. We also find a slow radial expansion of the newly formed stars at a velocity of v = 0.17 km s-1, which is roughly the sound speed of the cold molecular gas. This strongly suggests the dense structures that form stars persist much longer than the local dynamical time. We argue that this structure is quasi-static in nature and is likely the result of the density profile approaching an attractor solution as suggested by recent analytic and numerical analysis.

  18. Coronal Properties of X-ray bright stars in young associations: abundances, temperatures and variability

    NASA Astrophysics Data System (ADS)

    Argiroffi, Costanza

    2006-03-01

    element depletion dependent on the first ionization potential (FIP), similar to the inverse FIP effect usually observed in the coronae of very active stars; (2) the X-ray emitting plasma on TWA 5 may be partially heated by the shock produced by the infall accretion streams onto the stellar photosphere, and hence it may originate from the circumstellar disk, where grain depletion is a possible cause of the metal deficiency; (3) the peculiar abundances on TWA 5 are due to the local chemical composition of the original cloud from which the star formed, and this explains why TWA 5 shares the same abundances with TW Hydrae, another young star located in the same stellar association. The 5 Myr old USco association, due to its vicinity (145 pc) and low circumstellar extinction, is a good laboratory to perform a detailed study of PMS stars of this age. Here I present the results of the analysis of deep XMM-Newton observations of two USco regions covering an area of ?0.4 deg^2 . I have detected 224 X-ray sources among which 22 have been identified with probable USco members on the basis of near infrared and optical photometry. Among these 22 sources, I have recognized 13 sources as USco members for the first time. Except for the intermediate mass star HD 142578, all the detected USco sources are low mass stars of spectral type ranging from G to late M, and including at least one brown dwarf. The X-ray spectral analysis of the most intense USco sources indicates metal depleted plasma with temperature of ? 10 MK, resembling the typical case of active main sequence stars, as already found for TWA 5 and PZ Tel. Strong flares detected from 4 USco members have allowed me to derive coronal lengths of the flaring structures by performing time resolved spectroscopy during the flare decay phases. In all cases the flaring loops have sizes of 10^10 - 10^11 cm, hence smaller than the corresponding stellar radii. These results suggest that, in these very young stars coronal plasma is confined

  19. Probing Gas Stripping with Resolved Star-Formation Maps of Virgo Filament Galaxies

    NASA Astrophysics Data System (ADS)

    Collova, Natasha

    2018-01-01

    We are conducting a multi-wavelength study of the gas in galaxies at a variety of positions in the cosmic web surrounding the Virgo cluster, one of the best studied regions of high density in the Universe. Galaxies are very likely pre-processed in filaments before falling into clusters, and our goal is to understand how galaxies are altered as they move through the cosmic web and enter the densest regions. We present spatially-resolved H-alpha imaging results from the KPNO 0.9-m and INT 2.54-m telescopes for a preliminary sample of 30 galaxies. We will combine the star-formation maps with observations of molecular and atomic gas to calculate gas consumption timescales, characterize multiple phases of the galactic gas, and look for signatures of environmentally-driven depletion. This work is supported in part by NSF grant AST-1716657.

  20. Metallicity gradients in local field star-forming galaxies: insights on inflows, outflows, and the coevolution of gas, stars and metals

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Zahid, H. Jabran; Dopita, Michael A.; Bresolin, Fabio; Rupke, David S. N.

    2015-04-01

    We present metallicity gradients in 49 local field star-forming galaxies. We derive gas-phase oxygen abundances using two widely adopted metallicity calibrations based on the [O III]/Hβ, [N II]/Hα, and [N II]/[O II] line ratios. The two derived metallicity gradients are usually in good agreement within ± 0.14 dex R_{25}^{-1} (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionization parameters change systematically with radius. We investigate the metallicity gradients as a function of stellar mass (8 < log (M*/M⊙) < 11) and absolute B-band luminosity (-16 > MB > -22). When the metallicity gradients are expressed in dex kpc-1, we show that galaxies with lower mass and luminosity, on average, have steeper metallicity gradients. When the metallicity gradients are expressed in dex R_{25}^{-1}, we find no correlation between the metallicity gradients, and stellar mass and luminosity. We provide a local benchmark metallicity gradient of field star-forming galaxies useful for comparison with studies at high redshifts. We investigate the origin of the local benchmark gradient using simple chemical evolution models and observed gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest that the local benchmark gradient is a direct result of the coevolution of gas and stellar disc under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes high (≫0.3). These models imply low current mass accretion rates ( ≲ 0.3 × SFR), and low-mass outflow rates ( ≲ 3 × SFR) in local field star-forming galaxies.

  1. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  2. Integral field spectroscopy of nearby quasi-stellar objects - II. Molecular gas content and conditions for star formation

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Davis, T. A.; Jahnke, K.; Dannerbauer, H.; Urrutia, T.; Hodge, J.

    2017-09-01

    We present single-dish 12CO(1-0) and 12CO(2-1) observations for 14 low-redshift quasi-stellar objects (QSOs). In combination with optical integral field spectroscopy, we study how the cold gas content relates to the star formation rate (SFR) and black hole accretion rate. 12CO(1-0) is detected in 8 of 14 targets and 12CO(2-1) is detected in 7 out of 11 cases. The majority of disc-dominated QSOs reveal gas fractions and depletion times matching normal star-forming systems. Two gas-rich major mergers show clear starburst signatures with higher than average gas fractions and shorter depletion times. Bulge-dominated QSO hosts are mainly undetected in 12CO(1-0), which corresponds, on average, to lower gas fractions than in disc-dominated counterparts. Their SFRs, however, imply shorter than average depletion times and higher star formation efficiencies. Negative QSO feedback through removal of cold gas seems to play a negligible role in our sample. We find a trend between black hole accretion rate and total molecular gas content for disc-dominated QSOs when combined with literature samples. We interpret this as an upper envelope for the nuclear activity and it is well represented by a scaling relation between the total and circumnuclear gas reservoir accessible for accretion. Bulge-dominated QSOs significantly differ from that scaling relation and appear uncorrelated with the total molecular gas content. This could be explained either by a more compact gas reservoir, blown out of the gas envelope through outflows, or a different interstellar medium phase composition.

  3. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  4. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 2 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 47 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Conversion of gas into stars in the Galactic center

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  7. A Search for Pulsation in Young Brown Dwarfs and Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie

    2012-05-01

    In 2005, Palla and Baraffe proposed that brown dwarfs and very low mass stars (<0.1 solar masses) may be unstable to radial oscillations during the pre-main-sequence deuterium burning phase. With associated oscillation periods of 1--4 hours, this potentially new class of pulsation offers unprecedented opportunities to probe the interiors and evolution of low-mass objects in the 1--15 million year age range. Furthermore, several previous reports of short-period variability have suggested that deuterium-burning pulsation is in fact at work in young clusters. For my dissertation, I developed a photometric monitoring campaign to search for low-amplitude periodic variability in young brown dwarfs and very low mass stars using meter-class telescopes from both the ground and space. The resulting high-precision, high-cadence time-series photometry targeted four young clusters and achieved sensitivity to periodic oscillations with photometric amplitudes down to several millimagnitudes. This unprecedented variability census probed timescales ranging from minutes to weeks in a sample of 200 young, low-mass cluster members of IC 348, Sigma Orionis, Chamaeleon I, and Upper Scorpius. While I find a dearth of photometric periods under 10 hours, the campaign's high time resolution and precision have enabled detailed study of diverse light curve behavior in the clusters: rotational spot modulation, accretion signatures, and occultations by surrounding disk material. Analysis of the data has led to the establishment of a lower limit for the timescale of periodic photometric variability in young low-mass and substellar objects, an extension of the rotation period distribution to the brown dwarf regime, as well as insights into the connection between variability and circumstellar disks in the Sigma Orionis and Chamaeleon I clusters.

  8. Large-scale Map of Millimeter-wavelength Hydrogen Radio Recombination Lines around a Young Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Nguyen-Luong, Q.; Anderson, L. D.; Motte, F.; Kim, Kee-Tae; Schilke, P.; Carlhoff, P.; Beuther, H.; Schneider, N.; Didelon, P.; Kramer, C.; Louvet, F.; Nony, T.; Bihr, S.; Rugel, M.; Soler, J.; Wang, Y.; Bronfman, L.; Simon, R.; Menten, K. M.; Wyrowski, F.; Walmsley, C. M.

    2017-08-01

    We report the first map of large-scale (10 pc in length) emission of millimeter-wavelength hydrogen recombination lines (mm-RRLs) toward the giant H II region around the W43-Main young massive star cluster (YMC). Our mm-RRL data come from the IRAM 30 m telescope and are analyzed together with radio continuum and cm-RRL data from the Karl G. Jansky Very Large Array and HCO+ 1-0 line emission data from the IRAM 30 m. The mm-RRLs reveal an expanding wind-blown ionized gas shell with an electron density ˜70-1500 cm-3 driven by the WR/OB cluster, which produces a total Lyα photon flux of 1.5× {10}50 s-1. This shell is interacting with the dense neutral molecular gas in the W43-Main dense cloud. Combining the high spectral and angular resolution mm-RRL and cm-RRL cubes, we derive the two-dimensional relative distributions of dynamical and pressure broadening of the ionized gas emission and find that the RRL line shapes are dominated by pressure broadening (4-55 {km} {{{s}}}-1) near the YMC and by dynamical broadening (8-36 {km} {{{s}}}-1) near the shell’s edge. Ionized gas clumps hosting ultra-compact H II regions found at the edge of the shell suggest that large-scale ionized gas motion triggers the formation of new star generation near the periphery of the shell.

  9. STAR FORMATION LAWS: THE EFFECTS OF GAS CLOUD SAMPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calzetti, D.; Liu, G.; Koda, J., E-mail: calzetti@astro.umass.edu

    Recent observational results indicate that the functional shape of the spatially resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scales that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy and, assuming a power-law relation between star formation rate (SFR) and cloud mass, explore a range of input parameters. We confirm that the slope and the scattermore » of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to {approx}unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or as backgrounds (e.g., diffuse emission unrelated to current star formation is counted toward the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power-law index between SFR and molecular gas.« less

  10. Young star clusters in the circumnuclear region of NGC 2110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durré, Mark; Mould, Jeremy, E-mail: mdurre@swin.edu.au

    2014-03-20

    High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ☉} yr{sup –1}. The photoionized gas (Hemore » I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ☉}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.« less

  11. Mapping the QCD Phase Transition with Accreting Compact Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschke, D.; Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Joliot-Curie str. 6, 141980 Dubna; Poghosyan, G.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in themore » {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.« less

  12. A Multiplicity Census of Young Stars in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Lafrenière, David; Jayawardhana, Ray; Brandeker, Alexis; Ahmic, Mirza; van Kerkwijk, Marten H.

    2008-08-01

    We present the results of a multiplicity survey of 126 stars spanning ~0.1-3 M⊙ in the ~2 Myr old Chamaeleon I star-forming region, based on adaptive optics imaging with the ESO Very Large Telescope. Our observations have revealed 30 binaries and six triples, of which 19 and four, respectively, are new discoveries. The overall multiplicity fraction we find for Cha I (~30%) is similar to those reported for other dispersed young associations, but significantly higher than seen in denser clusters and the field, for comparable samples. Both the frequency and the maximum separation of Cha I binaries decline with decreasing mass, while the mass ratios approach unity; conversely, tighter pairs are more likely to be equal mass. We confirm that brown dwarf companions to stars are rare, even at young ages at wide separations. Based on follow-up spectroscopy of two low-mass substellar companion candidates, we conclude that both are likely background stars. The overall multiplicity fraction in Cha I is in rough agreement with numerical simulations of cloud collapse and fragmentation, but its observed mass dependence is less steep than predicted. The paucity of higher order multiples, in particular, provides a stringent constraint on the simulations, and seems to indicate a low level of turbulence in the prestellar cores in Cha I.

  13. Investigation of Dual Active Nuclei, Outflows, Shock-heated Gas, and Young Star Clusters in Markarian 266

    NASA Astrophysics Data System (ADS)

    Mazzarella, J. M.; Iwasawa, K.; Vavilkin, T.; Armus, L.; Kim, D.-C.; Bothun, G.; Evans, A. S.; Spoon, H. W. W.; Haan, S.; Howell, J. H.; Lord, S.; Marshall, J. A.; Ishida, C. M.; Xu, C. K.; Petric, A.; Sanders, D. B.; Surace, J. A.; Appleton, P.; Chan, B. H. P.; Frayer, D. T.; Inami, H.; Khachikian, E. Ye.; Madore, B. F.; Privon, G. C.; Sturm, E.; U, Vivian; Veilleux, S.

    2012-11-01

    Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a ≈2.5 × 108 M ⊙ black hole. Although the nuclei have an observed hard X-ray flux ratio of fX (NE)/fX (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe Kα line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H2 line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T ~ 107 K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 μm emission aligned with soft X-rays, radio continuum, and ionized gas emission extending ~34'' (20 kpc) north of the galaxies is interpreted as ~2 × 107 M ⊙ of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust "blow-out" phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early

  14. A multiwavelength study of young stars in the Elephant Trunk

    NASA Astrophysics Data System (ADS)

    López Martí, B.; Bayo, A.; Morales Calderón, M.; Barrado, D.

    2013-05-01

    We present the results of a multiwavelength study of young stars in IC 1396A, ``the Elephant Trunk Nebula''. Our targets are selected combining optical, near-infrared and mid-infrared photometry. Near-infrared and optical spectroscopy are used to confirm their youth and to derive spectral types for these objects, showing that they are early to mid-M stars, and that our sample includes some of the lowest-mass objects reported so far in the region. The photometric and spectroscopic information is used to construct the spectral energy distributions and to study the properties of the stars (mass, age, accretion, disks, spatial location). The implications for the triggered star formation picture are discussed.

  15. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  16. Detailed photometric analysis of young star groups in the galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Rodríguez, M. J.; Baume, G.; Feinstein, C.

    2016-10-01

    Aims: The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The proximity and orientation of this Sculptor Group galaxy make it an ideal candidate for this study. Methods: The research was conducted using archival point spread function (PSF) fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). Using the path linkage criterion (PLC), we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. This method provided an additional tool for the detection of young stellar structures. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy. For each region of a detected young star group, we estimated the size and derived the radial surface density profiles for stellar populations of different color (blue and red). A statistical decontamination of field stars was performed for each region. In this way it was possible to build the color-magnitude diagrams (CMD) and compare them with theoretical evolutionary models. We also constrained the present-day mass function (PDMF) per group by estimating a value for its slope. Results: The blue population distribution in NGC 300 clearly follows the spiral arms of the galaxy, showing a hierarchical behavior in which the larger and loosely distributed structures split into more compact and denser ones over several density levels. We created a catalog of 1147 young star groups in six fields of the galaxy NGC 300, in which we present their fundamental characteristics. The mean and the mode radius values

  17. Resolving Gas-Phase Metallicity In Galaxies

    NASA Astrophysics Data System (ADS)

    Carton, David

    2017-06-01

    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  18. Where to Find Young Bright Stars in Geosciences: GGD, NSU

    NASA Astrophysics Data System (ADS)

    Rakhmenkoulova, I. F.; Sharapov, V. N.

    2004-12-01

    examinations are based on free competition and education at GGD is free. For example, to become a student of oil and gas geochemistry a young star should win a competition between nine young persons. 5.GGD scientific research program starts from course paper (second year of study), the next steps being Bachelor's and Master's dissertations and postgraduate course. The scientific advisors are most famous scientists from Academgorodok. Moreover, the GGD students have a possibility to take unique exclusive electives of most modern fields of science. 6.GGD is equipped by a good computer class and SGG workstation. Most computers were granted by Schlumberger, as a sign that best graduates in geosciences in Russia are from GGD NSU. So the students have free Internet access as well as they can use online web educational resources of GGD. The educational system of GGD does not use a conception `to teach something', but the conception `to teach how to learn'. At GGD a tutor has 5-6 students. For some electives and specialties there is one student - one tutor system. GGD students are able to have field practice in all Siberian and Far East regions, huge territory with unique geology. The NSU educational system is flexible enough, so that the graduates are able to adapt to any interdisciplinary science and can successfully work in other fields. The graduators work not only in oil companies and scientific institutions in Russia, but in such companies as Schlumberger, Halliburton, Shell, Total, De Beers, and others. The brightest GGD stars are even head-hunted. The NSU slogan is `WE WILL NOT MAKE YOU SMARTER, WE WILL TEACH YOU HOW TO THINK!'

  19. Spatially Resolved Dust, Gas, and Star Formation in the Dwarf Magellanic Irregular NGC 4449

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Wilson, G. W.; Draine, B. T.; Roussel, H.; Johnson, K. E.; Heyer, M. H.; Wall, W. F.; Grasha, K.; Battisti, A.; Andrews, J. E.; Kirkpatrick, A.; Rosa González, D.; Vega, O.; Puschnig, J.; Yun, M.; Östlin, G.; Evans, A. S.; Tang, Y.; Lowenthal, J.; Sánchez-Arguelles, D.

    2018-01-01

    We investigate the relation between gas and star formation in subgalactic regions, ∼360 pc to ∼1.5 kpc in size, within the nearby starburst dwarf NGC 4449, in order to separate the underlying relation from the effects of sampling at varying spatial scales. Dust and gas mass surface densities are derived by combining new observations at 1.1 mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8–500 μm from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our millimeter (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) (and F(160)/F(1100)) and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR–molecular gas and the SFR–total gas relations in NGC 4449. We find that the SFR–molecular gas relation is described by a power law with an exponent that decreases from ∼1.5 to ∼1.2 for increasing region size, while the exponent of the SFR–total gas relation remains constant with a value of ∼1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a nonlinear relation between SFR and gas surface density in NGC 4449, similar to what is observed for galaxy samples. Based on observations obtained with the Large Millimeter Telescope Alfonso Serrano—a binational collaboration between INAOE (Mexico) and the University of Massachusetts–Amherst (USA).

  20. 78 FR 68835 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP14-15-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky... of the Commission's Regulations under the Natural Gas Act (NGA). Southern Star seeks authorization to...

  1. 78 FR 13663 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-76-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, P.O. Box 20010... public inspection. Specifically, Southern Star proposes to construct a new compressor site gas and...

  2. Detection of X-ray emission from the young low-mass star Rossiter 137B

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Linsky, J. L.

    1987-01-01

    Rst 137B, a close M-dwarf companion to the active K-star HD 36705, has been detected in a High Resolution Image in the Einstein Observatory Archive. The X-ray surface fluxes (0.2-4 keV) from both stars are close to the empirical saturation level, F(x)/F(bol) of about 0.001, defined by rapid rotators and very young stars. This supports the earlier results of the youthfulness of the system. This young couple is an excellent subject for studies of dependence of early evolution on stellar mass. Rst 137B is one of the latest spectral types and thus lowest-mass premain-sequence stars yet detected as an X-ray source.

  3. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  4. VLBA Scientists Study Birth of Sunlike Stars

    NASA Astrophysics Data System (ADS)

    1999-06-01

    Three teams of scientists have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to learn tantalizing new details about how Sun-like stars are formed. Young stars, still growing by drawing in nearby gas, also spew some of that material back into their surroundings, like impatient infants that eat too quickly. The VLBA observations are giving astronomers new insights on both processes -- the accretion of material by the new stars and the outflows of material from them. "For the first time, we're actually seeing what happens right down next to the star in these young systems," said Mark Claussen, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Claussen and other researchers announced their findings at the American Astronomical Society's meeting in Chicago. Material attracted by a young star's gravitational pull forms a flat, orbiting disk, called an accretion disk, in which the material circles closer and closer to the star until finally drawn into it. At the same time, material is ejected in "jets" speeding from the poles of the accretion disk. "The VLBA is showing us the first images of the region close to the star where the material in these jets is accelerated and formed into the `beams' of the jet," Claussen said. "We don't understand the details of these processes well," Claussen said. "These VLBA research projects are beginning to help unravel the mysteries of how stars like the Sun form." The teams are observing clumps of water vapor that naturally amplify radio emissions to see details smaller than the orbit of Mercury in young stellar systems as well as track gas motions. The clumps of gas are called masers, and amplify radio emission in much the same way that a laser amplifies light emission. "These images are just fantastic," said Al Wootten of NRAO in Charlottesville, VA. The maser clumps or "spots," emitting radio waves at a specific wavelength, can be tracked as they move over time. In addition

  5. How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?

    NASA Astrophysics Data System (ADS)

    Wofford, Alia

    2017-01-01

    The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.

  6. Spectral Characteristics of Young Stars Associated with the Sh2-296 Nebula

    NASA Astrophysics Data System (ADS)

    Fernandes, Beatriz; Gregorio-Hetem, Jane

    Aiming to contribute to the understanding of star formation and evolution in the Canis Major (CMa R1) Molecular Clouds Complex, we analyze the spectral characteristics of a population of young stars associated with the arc-shaped nebula Sh2-296. Our XMM/Newton observations detected 109 X-ray sources in the region and optical spectroscopy was performed with Gemini telescope for 85 optical counterparts. We identified and characterized 51 objects that present features typically found in young objects, such as Hα emission and strong absorption on the Li I line.

  7. A Search for Low Mass Stars and Substellar Companions and A Study of Circumbinary Gas and Dust Disks

    NASA Astrophysics Data System (ADS)

    Rodriguez, David R.

    2011-01-01

    We have searched for nearby low-mass stars and brown dwarfs and have studied the planet-forming environment of binary stars. We have carried out a search for young, low-mass stars in nearby stellar associations using X-ray and UV source catalogs. We discovered a new technique to identify 10-100 Myr-old low-mass stars within 100 pc of the Earth using GALEX-optical/near-IR data. We present candidate young stars found by applying this new method in the 10 Myr old TW Hydrae and Scorpius-Centaurus associations. In addition, we have searched for the coolest brown dwarf class: Y-dwarfs, expected to appear at temperatures <500 K. Using wide-field near infrared imaging with ground (CTIO, Palomar, KPNO) and space (Spitzer, AKARI) observatories, we have looked for companions to nearby, old (2 Gyr or older), high proper motion white dwarfs. We present results for Southern Hemisphere white dwarfs. Additionally, we have characterized how likely planet formation occurs in binary star systems. While 20% of planets have been discovered around one member of a binary system, these binaries have semi-major axes larger than 20 AU. We have performed an AO and spectroscopic search for binary stars among a sample of known debris disk stars, which allows us to indirectly study planet formation and evolution in binary systems. As a case study, we examined the gas and dust present in the circumbinary disk around V4046 Sagittarii, a 2.4-day spectroscopic binary. Our results demonstrate it is unlikely that planets can form in binaries with stellar semi-major axes of 10s of AU. This research has been funded by a NASA ADA grant to UCLA and RIT.

  8. The Evolution of Pristine Gas: Implications for Milky Way Halo Stars

    NASA Astrophysics Data System (ADS)

    Sarmento, Richard J.; Scannapieco, Evan; Pan, Liubin

    2016-06-01

    We implement a new subgrid model for turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova ejecta and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code RAMSES, we implement a model for the pollution of pristine gas as described in Pan et al. (2013). This allows us to account for the fraction of Z < Zcrit stars formed throughout the simulation volume, even in regions in which the average metallicity is well above Zcrit. Further, as a result of modeling the pristine fraction of gas, we also improve our modeling of the metallicity of the polluted fraction, fpol, of both the gas and stars.Additionally, we track the evolution of the “primordial metals” generated by Pop III supernovae. These metals are taken up by second-generation stars and are likely to lead to unique abundance signatures characteristic of carbon enhanced, metal poor (CEMP) stars. As an illustrative example, we associate primordial metals with abundance ratios used by Keller at al (2014) to explain the source of metals in the star SMSS J031300.36- 670839.3, finding good agreement with the observed [Fe/H], [C/H], [O/H] and [Mg/Ca] ratios in CEMP Milky Way (MW) halo stars.

  9. An Introverted Starburst: Gas and SSC Formation in NGC 5253

    NASA Astrophysics Data System (ADS)

    Turner, J. L.; Beck, S. C.

    2004-06-01

    High resolution Brackett line spectroscopy with the Keck Telescope reveals relatively narrow recombination lines toward the embedded young super star cluster nebula in NGC 5253. The gas within this nebula is almost certainly gravitationally bound by the massive and compact young star cluster.

  10. Dying star creates sculpture of gas and dust

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Sculpture of gas and dust hi-res Size hi-res: 125 Kb Credits: ESA, NASA, HEIC and The Hubble Heritage Team (STScI/AURA) Dying star creates sculpture of gas and dust The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. High resolution version (JPG format) 125 Kb High resolution version (TIFF format) 2569 Kb Acknowledgment: R. Corradi (Isaac Newton Group of Telescopes, Spain) and Z. Tsvetanov (NASA). Sculpture of gas and dust hi-res Size hi-res: 287 Kb Credits: Nordic Optical Telescope and Romano Corradi (Isaac Newton Group of Telescopes, Spain) Dying star creates sculpture of gas and dust An enormous but extremely faint halo of gaseous material surrounds the Cat’s Eye Nebula and is over three light-years across. Some planetary nebulae been found to have halos like this one, likely formed of material ejected during earlier active episodes in the star's evolution - most likely some 50 000 to 90 000 years ago. This image was taken by Romano Corradi with the Nordic Optical Telescope on La Palma in the Canary Islands. The image is constructed from two narrow-band exposures showing oxygen atoms (1800 seconds, in blue) and nitrogen atoms (1800 seconds, in red). High resolution version (JPG

  11. Stars and gas in the Medusa merger

    NASA Astrophysics Data System (ADS)

    Manthey, E.; Hüttemeister, S.; Aalto, S.; Horellou, C.; Bjerkeli, P.

    2008-11-01

    The Medusa (NGC 4194) is a well-studied nearby galaxy with the disturbed appearance of a merger and evidence for ongoing star formation. In order to test whether it could be the result of an interaction between a gas-rich disk-like galaxy and a larger elliptical, we have carried out optical and radio observations of the stars and the gas in the Medusa, and performed N-body numerical simulations of the evolution of such a system. We used the Nordic Optical Telescope to obtain a deep V-band image and the Westerbork Radio Synthesis Telescope to map the large-scale distribution and kinematics of atomic hydrogen. A single Hi tail was found to the South of the Medusa with a projected length of ~56 kpc (~5') and a gas mass of 7 × 10^8~M⊙, thus harbouring about one third of the total Hi mass of the system. Hi was also detected in absorption toward the continuum in the center. Hi was detected in a small nearby galaxy to the North-West of the Medusa at a projected distance of 91 kpc. It is, however, unlikely that this galaxy has had a significant influence on the evolution of the Medusa. The simulations of the slightly prograde infall of a gas-rich disk galaxy on an larger, four time more massive elliptical (spherical) galaxy reproduce most of the observed features of the Medusa. Thus, the Medusa is an ideal object to study the merger-induced star formation contribution from the small galaxy of a minor merger. Movies are only available in electronic form at http://www.aanda.org

  12. 78 FR 66915 - Notice of Request Under Blanket Authorization; Southern Star Central Gas Pipeline, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Request Under Blanket Authorization; Southern Star Central Gas Pipeline, Inc. Take notice that on October 21, 2013 Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro... Counties, Missouri, under authorization issued to Southern Star in Docket No. CP82-479-000 pursuant to...

  13. Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.

    2011-04-01

    Star formation depends on the available gaseous ``fuel'' as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.

  14. High rotational CO lines in post-AGB stars and PNe

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Tielens, Alexander G. G. M.; Skinner, C. J.; Haas, Michael R.

    1995-01-01

    A significant fraction of a star's initial mass is lost while it is on the Asymptotic Giant Branch (AGB). Mass loss rates range from 10(exp -7) solar mass/yr for early AGB stars to a few 10(exp -4) solar mass/yr for stars at the tip of the AGB. Dust grains condense from the outflow as the gas expands and form a dust shell around the central star. A superwind (approximately 10(exp -4) to 10(exp -3) solar mass/yr) is thought to terminate the AGB phase. In the post-AGB phase, the star evolves to a higher effective temperature, the mass loss decreases (approximately 10(exp -8) solar mass/yr), but the wind velocity increases (approximately 1000 km/s). During this evolution, dust and gas are exposed to an increasingly harsher radiation field and when T(sub eff) reaches about 30,000 K, the nebula is ionized and becomes a planetary nebula (PN). Photons from the central star can create a photodissociation region (PDR) in the expanding superwind. Gas can be heated through the photoelectric effect working on small grains and polycyclic aromatic hydrocarbons (PAH's). This gas can cool via the atomic fine structure lines of O I (63 microns and 145 microns) and C II (158 microns), as well as the rotational lines of CO. In the post-AGB phase, the fast wind from the central star will interact with the material ejected during the AGB phase. The shock caused by this interaction will dissociate and heat the gas. This warm gas will cool through atomic fine structure lines of O I and the rotational lines of (newly formed) CO.

  15. Low Gas Fractions Connect Compact Star-Forming Galaxies to their z~2 Quiescent Descendants

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.

    2017-01-01

    Early quiescent galaxies at z ~ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. I will present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z ~ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions 5 times lower and gas depletion times 10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z > 2 and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z ~ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass. I will conclude by discussing my ongoing efforts to characterize the gas and star forming properties of this unusual population of galaxies.

  16. Structured star formation in the Magellanic inter-Cloud region

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Koposov, S. E.; Da Costa, G. S.; Belokurov, V.; Erkal, D.; Fraternali, F.; McClure-Griffiths, N. M.; Fraser, M.

    2017-12-01

    We use a new contiguous imaging survey conducted using the Dark Energy Camera to investigate the distribution and properties of young stellar populations in the Magellanic inter-Cloud region. These young stars are strongly spatially clustered, forming a narrow chain of low-mass associations that trace the densest H I gas in the Magellanic Bridge and extend, in projection, from the SMC to the outer disc of the LMC. The associations in our survey footprint have ages ≲ 30 Myr, masses in the range ∼100-1200 M⊙ and very diffuse structures with half-light radii of up to ∼100 pc. The two most populous are strongly elliptical and aligned to ≈10°, with the axis joining the centres of the LMC and the SMC. These observations strongly suggest that the young inter-Cloud populations formed in situ, likely due to the compression of gas stripped during the most recent close LMC-SMC encounter. The associations lie at distances intermediate between the two Clouds, and we find no evidence for a substantial distance gradient across the imaged area. Finally, we identify a vast shell of young stars surrounding a central association, that is spatially coincident with a low column density bubble in the H I distribution. The properties of this structure are consistent with a scenario where stellar winds and supernova explosions from massive stars in the central cluster swept up the ambient gas into a shell, triggering a new burst of star formation. This is a prime location for studying stellar feedback in a relatively isolated environment.

  17. Gas-phase abundances of refractory elements in planetary nebulae - A hot-wind model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, G.A.

    Planetary nebulae (PN) characteristically show large gas-phase depletions of some refractory elements, with Fe/H and Ca/H concentration ratios approximately equal to -1.5. In contrast, the gas-phase abundance of carbon is large, with a C/H concentration ratio greater than approximately +0.3. This pattern is difficult to understand in terms of grain formation and destruction during PN formation. However, these abundances are consistent with a model (Kwok, Purton, and FitzGerald, 1978) in which the PN shell consists of material expelled as a wind during the red-giant phase and subsequently compressed and accelerated by the impact of a hot stellar wind from themore » central star.« less

  18. Young tidal dwarf galaxies around the gas-rich disturbed lenticular NGC 5291

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.

    1998-05-01

    NGC 5291 is an early type galaxy at the edge of the cluster Abell 3574 which drew the attention because of the unusual high amount of atomic gas ( ~ 5 x 10(10) {M_{\\odot}}) found associated to it. The HI is distributed along a huge and fragmented ring, possibly formed after a tidal interaction with a companion galaxy. We present multi-slit optical spectroscopic observations and optical/near-infrared images of the system. We show that NGC 5291 is a LINER galaxy exhibiting several remnants of previous merging events, in particular a curved dust lane and a counter-rotation of the gas with respect to the stars. The atomic hydrogen has undoubtly an external origin and was probably accreted by the galaxy from a gas-rich object in the cluster. It is unlikely that the HI comes from the closest companion of NGC 5291, the so-called ``Seashell'' galaxy, which appears to be a fly-by object at a velocity greater than 400 km s(-1) . We have analyzed the properties of 11 optical counterparts to the clumps observed in the HI ring. The brightest knots show strong similarities with classical blue compact dwarf galaxies. They are dominated by active star forming regions; their most recent starburst is younger than 5 Myr; we did not find evidences for the presence of an old underlying stellar population. NGC 5291 appears to be a maternity of extremely young objects most probably forming their first generation of stars. Born in pre-enriched gas clouds, these recycled galaxies have an oxygen abundance which is higher than BCDGs ({Z_{\\odot}}/3 on average) and which departs from the luminosity-metallicity relation observed for typical dwarf and giant galaxies. We propose this property as a tool to identify tidal dwarf galaxies (TDGs) among the dwarf galaxy population. Several TDGs in NGC 5291 exhibit strong velocity gradients in their ionized gas and may already be dynamically independent galaxies. Based on observations collected at the European Southern Observatory, La Silla, Chile

  19. The star-forming history of the young cluster NGC 2264

    NASA Technical Reports Server (NTRS)

    Adams, M. T.; Strom, K. M.; Strom, S. E.

    1983-01-01

    UBVRI H-alpha photographic photometry was obtained for a sample of low-mass stars in the young open cluster NGC 2264 in order to investigate the star-forming history of this region. A theoretical H-R diagram was constructed for the sample of probable cluster members. Isochrones and evolutionary tracks were adopted from Cohen and Kuhi (1979). Evidence for a significant age spread in the cluster was found amounting to over ten million yr. In addition, the derived star formation rate as a function of stellar mass suggests that the principal star-forming mass range in NGC 2264 has proceeded sequentially in time from the lowest to the highest masses. The low-mass cluster stars were the first cluster members to form in significant numbers, although their present birth rate is much lower now than it was about ten million yr ago. The star-formation rate has risen to a peak at successively higher masses and then declined.

  20. The evidence for clumpy accretion in the Herbig Ae star HR 5999

    NASA Technical Reports Server (NTRS)

    Perez, M. R.; Grady, C. A.; The, P. S.

    1993-01-01

    Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I, and C IV emission lines, which are correlated with the UV excess luminosity. Variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state, was also observed. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M greater than or equal to 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as plus 300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, V sini=180 plus or minus 20 km/s for this system) also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, is consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 Myr less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.

  1. EFFECTS OF HOT HALO GAS ON STAR FORMATION AND MASS TRANSFER DURING DISTANT GALAXY–GALAXY ENCOUNTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jeong-Sun; Park, Changbom, E-mail: jshwang@kias.re.kr, E-mail: cbp@kias.re.kr

    2015-06-01

    We use N-body/smoothed particle hydrodynamics simulations of encounters between an early-type galaxy (ETG) and a late-type galaxy (LTG) to study the effects of hot halo gas on the evolution for a case with the mass ratio of the ETG to LTG of 2:1 and the closest approach distance of ∼100 kpc. We find that the dynamics of the cold disk gas in the tidal bridge and the amount of the newly formed stars depend strongly on the existence of a gas halo. In the run of interacting galaxies not having a hot gas halo, the gas and stars accreted into themore » ETG do not include newly formed stars. However, in the run using the ETG with a gas halo and the LTG without a gas halo, a shock forms along the disk gas tidal bridge and induces star formation near the closest approach. The shock front is parallel to a channel along which the cold gas flows toward the center of the ETG. As a result, the ETG can accrete star-forming cold gas and newly born stars at and near its center. When both galaxies have hot gas halos, a shock is formed between the two gas halos somewhat before the closest approach. The shock hinders the growth of the cold gas bridge to the ETG and also ionizes it. Only some of the disk stars transfer through the stellar bridge. We conclude that the hot halo gas can give significant hydrodynamic effects during distant encounters.« less

  2. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies

    PubMed Central

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A.; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A.; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A.; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-01-01

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars. PMID:27759033

  3. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies.

    PubMed

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-10-19

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars.

  4. Star formation and gas flows in the centre of the NUGA galaxy NGC 1808 observed with SINFONI

    NASA Astrophysics Data System (ADS)

    Busch, Gerold; Eckart, Andreas; Valencia-S., Mónica; Fazeli, Nastaran; Scharwächter, Julia; Combes, Françoise; García-Burillo, Santiago

    2017-02-01

    NGC 1808 is a nearby barred spiral galaxy which hosts young stellar clusters in a patchy circumnuclear ring with a radius of 240 pc. In order to study the gaseous and stellar kinematics and the star formation properties of the clusters, we perform seeing-limited H + K-band near-infrared integral-field spectroscopy with SINFONI of the inner 600 pc. From the MBH-σ∗ relation, we find a black hole mass of a few 107M⊙. We estimate the age of the young stellar clusters in the circumnuclear ring to be ≲10 Myr. No age gradient along the ring is visible. However, the starburst age is comparable to the travel time along the ring, indicating that the clusters almost completed a full orbit along the ring during their lifetime. In the central 600 pc, we find a hot molecular gas mass of 730 M⊙ which, with standard conversion factors, corresponds to a large cold molecular gas reservoir of several 108M⊙, in agreement with CO measurements from the literature. The gaseous and stellar kinematics show several deviations from pure disc motion, including a circumnuclear disc and signs of a nuclear bar potential. In addition, we confirm streaming motions on the 200 pc scale that have recently been detected in CO(1-0) emission. Thanks to the enhanced angular resolution of <1″, we find further streaming motion within the inner arcsecond that had not been detected until now. Despite the flow of gas towards the centre, no signs of significant AGN activity are found. This raises the question: will the infalling gas fuel an AGN or star formation? Based on observations with ESO-VLT, STS-Cologne GTO proposal ID 094.B-0009(A) and ESO archival data, proposal nos 074.A-9011(A) and 075.B-0648(A).

  5. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud.

    PubMed

    McLeod, Anna F; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D; Evans, Christopher J

    2018-02-15

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  6. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    McLeod, Anna F.; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D.; Evans, Christopher J.

    2018-02-01

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  7. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 34 Bow Shock Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Sarah Elizabeth

    The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming

  9. Young Stars in Orion May Solve Mystery of Our Solar System

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Scientists may have to give the Sun a little more credit. Exotic isotopes present in the early Solar System--which scientists have long-assumed were sprinkled there by a powerful, nearby star explosion--may have instead been forged locally by our Sun during the colossal solar-flare tantrums of its baby years. The isotopes--special forms of atomic nuclei, such as aluminum-26, calcium-41, and beryllium-10--can form in the X-ray solar flares of young stars in the Orion Nebula, which behave just like our Sun would have at such an early age. The finding, based on observations by the Chandra X-ray Observatory, has broad implications for the formation of our own Solar System. Eric Feigelson, professor of astronomy and astrophysics at Penn State, led a team of scientists on this Chandra observation and presents these results in Washington, D.C., today at a conference entitled "Two Years of Science with Chandra". "The Chandra study of Orion gives us the first chance to study the flaring properties of stars resembling the Sun when our solar system was forming," said Feigelson. "We found a much higher rate of flares than expected, sufficient to explain the production of many unusual isotopes locked away in ancient meteorites. If the young stars in Orion can do it, then our Sun should have been able to do it too." Scientists who study how our Solar System formed from a collapsed cloud of dust and gas have been hard pressed to explain the presence of these extremely unusual chemical isotopes. The isotopes are short-lived and had to have been formed no earlier than the creation of the Solar System, some five billion years ago. Yet these elements cannot be produced by a star as massive as our Sun under normal circumstances. (Other elements, such as silver and gold, were created long before the creation of the solar system.) The perplexing presence of these isotopic anomalies, found in ancient meteoroids orbiting the Earth, led to the theory that a supernova explosion occurred

  10. Exploring the Dynamics of Exoplanetary Systems in a Young Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Thornton, Jonathan Daniel; Glaser, Joseph Paul; Wall, Joshua Edward

    2018-01-01

    I describe a dynamical simulation of planetary systems in a young star cluster. One rather arbitrary aspect of cluster simulations is the choice of initial conditions. These are typically chosen from some standard model, such as Plummer or King, or from a “fractal” distribution to try to model young clumpy systems. Here I adopt the approach of realizing an initial cluster model directly from a detailed magnetohydrodynamical model of cluster formation from a 1000-solar-mass interstellar gas cloud, with magnetic fields and radiative and wind feedback from massive stars included self-consistently. The N-body simulation of the stars and planets starts once star formation is largely over and feedback has cleared much of the gas from the region where the newborn stars reside. It continues until the cluster dissolves in the galactic field. Of particular interest is what would happen to the free-floating planets created in the gas cloud simulation. Are they captured by a star or are they ejected from the cluster? This method of building a dynamical cluster simulation directly from the results of a cluster formation model allows us to better understand the evolution of young star clusters and enriches our understanding of extrasolar planet development in them. These simulations were performed within the AMUSE simulation framework, and combine N-body, multiples and background potential code.

  11. Structural parameters of young star clusters: fractal analysis

    NASA Astrophysics Data System (ADS)

    Hetem, A.

    2017-07-01

    A unified view of star formation in the Universe demand detailed and in-depth studies of young star clusters. This work is related to our previous study of fractal statistics estimated for a sample of young stellar clusters (Gregorio-Hetem et al. 2015, MNRAS 448, 2504). The structural properties can lead to significant conclusions about the early stages of cluster formation: 1) virial conditions can be used to distinguish warm collapsed; 2) bound or unbound behaviour can lead to conclusions about expansion; and 3) fractal statistics are correlated to the dynamical evolution and age. The technique of error bars estimation most used in the literature is to adopt inferential methods (like bootstrap) to estimate deviation and variance, which are valid only for an artificially generated cluster. In this paper, we expanded the number of studied clusters, in order to enhance the investigation of the cluster properties and dynamic evolution. The structural parameters were compared with fractal statistics and reveal that the clusters radial density profile show a tendency of the mean separation of the stars increase with the average surface density. The sample can be divided into two groups showing different dynamic behaviour, but they have the same dynamic evolution, since the entire sample was revealed as being expanding objects, for which the substructures do not seem to have been completely erased. These results are in agreement with the simulations adopting low surface densities and supervirial conditions.

  12. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis

    NASA Astrophysics Data System (ADS)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian

    2018-01-01

    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  13. Kinematic evidence for feedback-driven star formation in NGC 1893

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung

    2018-06-01

    OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.

  14. The VMC Survey. XXVII. Young Stellar Structures in the LMC’s Bar Star-forming Complex

    NASA Astrophysics Data System (ADS)

    Sun, Ning-Chen; de Grijs, Richard; Subramanian, Smitha; Bekki, Kenji; Bell, Cameron P. M.; Cioni, Maria-Rosa L.; Ivanov, Valentin D.; Marconi, Marcella; Oliveira, Joana M.; Piatti, Andrés E.; Ripepi, Vincenzo; Rubele, Stefano; Tatton, Ben L.; van Loon, Jacco Th.

    2017-11-01

    Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(τ/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(τ/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300 pc, suggesting that the young stellar structures are completely dispersed on a timescale of ˜100 Myr. These results are consistent with the characteristics of the 30 Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads.

  15. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  16. Ultraviolet gas absorption and dust extinction toward M8

    NASA Technical Reports Server (NTRS)

    Boggs, Don; Bohm-Vitense, Erika

    1990-01-01

    Interstellar absorption lines are analyzed using high-resolution IUE spectra of 11 stars in the young cluster NGC 6530 located in the M8 region. High-velocity clouds at -35 km/s and -60 km/s are seen toward all cluster stars. The components arise in gases that are part of large interstellar bubbles centered on the cluster and driven by stellar winds of the most luminous members. Absorption lines of species of different ionization states are separated in velocity. The velocity stratification is best explained as a 'champagne' flow of ionized gas away from the cluster. The C IV/Si IV ratios toward the hotter cluster members are consistent with simple photoionization models if the gas-phase C/Si ratio is increased by preferential accretion onto dust grains. High ion column densities in the central cluster decline with distance from W93, suggesting that radiation from a hot source near W93 has photoionized gas in the central cluster.

  17. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less

  18. Star formation around supermassive black holes.

    PubMed

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.

  19. The Spatial Distribution of Resolved Young Stars in Blue Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Murphy, K.; Crone, M. M.

    2002-12-01

    We present the first results from a survey of the distribution of resolved young stars in Blue Compact Dwarf Galaxies. In order to identify the dominant physical processes driving star formation in these puzzling galaxies, we use a multi-scale cluster-finding algorithm to quantify the characteristic scales and properties of star-forming regions, from sizes smaller than 10 pc up to the size of each entire galaxy. This project was partially funded by the Lubin Chair at Skidmore College.

  20. A Sparkling Spray of Stars

    NASA Astrophysics Data System (ADS)

    2008-12-01

    The festive season has arrived for astronomers at the European Southern Observatory (ESO) in the form of this dramatic new image. It shows the swirling gas around the region known as NGC 2264 -- an area of sky that includes the sparkling blue baubles of the Christmas Tree star cluster. Omega Centauri ESO PR Photo 48/08 NGC 2264 and the Christmas Tree cluster NGC 2264 lies about 2600 light-years from Earth in the obscure constellation of Monoceros, the Unicorn, not far from the more familiar figure of Orion, the Hunter. The image shows a region of space about 30 light-years across. William Herschel discovered this fascinating object during his great sky surveys in the late 18th century. He first noticed the bright cluster in January 1784 and the brightest part of the visually more elusive smudge of the glowing gas clouds at Christmas nearly two years later. The cluster is very bright and can easily be seen with binoculars. With a small telescope (whose lenses will turn the view upside down) the stars resemble the glittering lights on a Christmas tree. The dazzling star at the top is even bright enough to be seen with the unaided eye. It is a massive multiple star system that only emerged from the dust and gas a few million years ago. As well as the cluster there are many interesting and curious structures in the gas and dust. At the bottom of the frame, the dark triangular feature is the evocative Cone Nebula, a region of molecular gas flooded by the harsh light of the brightest cluster members. The region to the right of the brightest star has a curious, fur-like texture that has led to the name Fox Fur Nebula. Much of the image appears red because the huge gas clouds are glowing under the intense ultra-violet light coming from the energetic hot young stars. The stars themselves appear blue as they are hotter, younger and more massive than our own Sun. Some of this blue light is scattered by dust, as can be seen occurring in the upper part of the image. This

  1. The INfrared Survey of Young Nebulous Clusters (IN-SYNC): Surveying the Dynamics and Star Formation Histories of Young Clusters with APOGEE

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Da Rio, Nicola; Tan, Jonathan; Meyer, Michael; Nidever, David L.; Flaherty, Kevin M.; Arce, Hector G.; Rebull, Luisa M.; Chojnowski, S. Drew; Frinchaboy, Peter M.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Stassun, Keivan; Wilson, John C.; Zasowski, Gail

    2015-01-01

    Young clusters are the most prolific sites of star formation in the Milky Way, but demographic studies indicate that relatively few of the Milky Way's stellar clusters persist as bound structures for 100 Myrs or longer. Uniform & precise measurements of the stellar populations and internal dynamics of these regions are difficult to obtain, however, particularly for extremely young clusters whose optical visibility is greatly hampered by their parental molecular cloud. The INfrared Survey of Young Nebulous Clusters (IN-SYNC), an SDSS-III ancillary science program, leverages the stability and multiplex capability of the APOGEE spectrograph to obtain high resolution spectra at near-infrared wavelengths, where photospheric emission is better able to penetrate the dusty shrouds that surround sites of active star formation. We summarize our recent measurements of the kinematics and stellar populations of IC 348 and NGC 1333, two young clusters in the Perseus Molecular Cloud, and of the members of the Orion Nebula Cluster (ONC) and L1641 filament in the Orion molecular complex. These measurements highlight the dynamically 'warm' environment within these young clusters, and suggest a range of stellar radii within these quasi-single-age populations. We close with a preview of plans for continuing this work as part of the APOGEE-2 science portfolio: self-consistent measurements of the kinematics and star formation histories for clusters spanning a range of initial conditions and ages will provide a opportunity to disentangle the mechanisms that drive the formation and dissolution of sites of active star formation.

  2. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  3. Dense Gas-Star Systems: Evolution of Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, P.; Spurzem, R.

    In the 60s and 70s super-massive central objects (from now onwards SMOs) were thought to be the main source of active galactic nuclei (AGNs) characteristics (luminosities of L ≅1012 Lodot). The release of gravitational binding energy by the accretion of material on to an SMO in the range of 107 - 109 Modot has been suggested to be the primary powerhouse (Lynden-Bell 1969). That rather exotic idea in early time has become common sense nowadays. Not only our own galaxy harbours a few million-solar mass black hole (Genzel 2001) but also many of other non-active galaxies show kinematic and gas-dynamic evidence of these objects (Magorrian et al. 1998) The concept of central super-massive stars (SMSs henceforth) (cal M ≥ 5 × 104 Modot, where cal M is the mass of the SMS) embedded in dense stellar systems was suggested as a possible explanation for high- energy emissions phenomena occurring in AGNs and quasars (Vilkoviski 1976, Hara 1978), such as X-ray emissions (Bahcall and Ostriker, 1975). SMSs and super-massive black holes (SMBHs) are two possibilities to explain the nature of SMOs, and SMSs may be an intermediate step towards the formation of SMBHs (Rees 1984). In this paper we give the equations that describe the dynamics of such a dense star-gas system which are the basis for the code that will be used in a prochain future to simulate this scenario. We also briefly draw the mathematical fundamentals of the code.

  4. Impact of a star formation efficiency profile on the evolution of open clusters

    NASA Astrophysics Data System (ADS)

    Shukirgaliyev, B.; Parmentier, G.; Berczik, P.; Just, A.

    2017-09-01

    Aims: We study the effect of the instantaneous expulsion of residual star-forming gas on star clusters in which the residual gas has a density profile that is shallower than that of the embedded cluster. This configuration is expected if star formation proceeds with a given star-formation efficiency per free-fall time in a centrally concentrated molecular gas clump. Methods: We performed direct N-body simulations whose initial conditions were generated by the program "mkhalo" from the package "falcON", adapted for our models. Our model clusters initially had a Plummer profile and are in virial equilibrium with the gravitational potential of the cluster-forming clump. The residual gas contribution was computed based on a local-density driven clustered star formation model. Our simulations included mass loss by stellar evolution and the tidal field of a host galaxy. Results: We find that a star cluster with a minimum global star formation efficiency (SFE) of 15 percent is able to survive instantaneous gas expulsion and to produce a bound cluster. Its violent relaxation lasts no longer than 20 Myr, independently of its global SFE and initial stellar mass. At the end of violent relaxation, the bound fractions of the surviving clusters with the same global SFEs are similar, regardless of their initial stellar mass. Their subsequent lifetime in the gravitational field of the Galaxy depends on their bound stellar masses. Conclusions: We therefore conclude that the critical SFE needed to produce a bound cluster is 15 percent, which is roughly half the earlier estimates of 33 percent. Thus we have improved the survival likelihood of young clusters after instantaneous gas expulsion. Young clusters can now survive instantaneous gas expulsion with a global SFEs as low as the SFEs observed for embedded clusters in the solar neighborhood (15-30 percent). The reason is that the star cluster density profile is steeper than that of the residual gas. However, in terms of the

  5. UV, optical and infrared properties of star forming galaxies

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  6. Young Stars in Old Galaxies - a Cosmic Hide and Seek Game

    NASA Astrophysics Data System (ADS)

    2002-05-01

    Surprise Discovery with World's Leading Telescopes [1] Summary Combining data from the NASA/ESA Hubble Space Telescope (HST) and the ESO Very Large Telescope (VLT) , a group of European and American astronomers [2] have made an unexpected, major discovery. They have identified a huge number of "young" stellar clusters , only a few billion years old [3], inside an "old" elliptical galaxy (NGC 4365), probably aged some 12 billion years. For the first time, it has been possible to identify several distinct periods of star-formation in a galaxy as old as this one . Elliptical galaxies like NGC 4365 have until now been considered to have undergone one early star-forming period and thereafter to be devoid of any star formation. However, the combination of the best and largest telescopes in space and on the ground has now clearly shown that there is more than meets the eye. This important new information will help to understand the early history of galaxies and the general theory of star formation in the Universe . PR Photo 15a/02 : Combined HST+VLT image of elliptical galaxy NGC 4365 PR Photo 15b/02 : Same image, with "old" and "young" stellar clusters indicated PR Photo 15c/02 : Animated GIF image, showing the three cluster populations observed in NGC 4365 Do elliptical galaxies only contain old stars? One of the challenges of modern astronomy is to understand how galaxies, those large systems of stars, gas and dust, form and evolve. In this connection, a central question has always been to learn when most of the stars in the Universe formed. Did this happen at a very early stage, within a few billion years after the Big Bang? Or were a significant number of the stars we now observe formed much more recently? Spectacular collisions between galaxies take place all the time, triggering the formation of thousands or even millions of stars, cf. ESO PR Photo 29b/99 of the dramatic encounter between NGC 6872 and IC 4970. However, when looking at the Universe as a whole, most

  7. Finding binaries from phase modulation of pulsating stars with Kepler

    NASA Astrophysics Data System (ADS)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  8. Chemical Soups Around Cool Stars

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth.

    Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth.

    Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  9. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  10. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    PubMed

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  11. A clustered origin for isolated massive stars

    NASA Astrophysics Data System (ADS)

    Lucas, William E.; Rybak, Matus; Bonnell, Ian A.; Gieles, Mark

    2018-03-01

    High-mass stars are commonly found in stellar clusters promoting the idea that their formation occurs due to the physical processes linked with a young stellar cluster. It has recently been reported that isolated high-mass stars are present in the Large Magellanic Cloud. Due to their low velocities, it has been argued that these are high-mass stars which formed without a surrounding stellar cluster. In this paper, we present an alternative explanation for the origin of these stars in which they formed in a cluster environment but are subsequently dispersed into the field as their natal cluster is tidally disrupted in a merger with a higher mass cluster. They escape the merged cluster with relatively low velocities typical of the cluster interaction and thus of the larger scale velocity dispersion, similarly to the observed stars. N-body simulations of cluster mergers predict a sizeable population of low-velocity (≤20 km s-1), high-mass stars at distances of >20 pc from the cluster. High-mass clusters in which gas poor mergers are frequent would be expected to commonly have haloes of young stars, including high-mass stars, which were actually formed in a cluster environment.

  12. Star formation inside a galactic outflow.

    PubMed

    Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E

    2017-04-13

    Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.

  13. SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni

    2010-05-10

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less

  14. Disks around stars and the growth of planetary systems.

    PubMed

    Greaves, Jane S

    2005-01-07

    Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.

  15. Multiplicity among Young Brown Dwarfs and Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Ahmic, Mirza; Jayawardhana, Ray; Brandeker, Alexis; Scholz, Alexander; van Kerkwijk, Marten H.; Delgado-Donate, Eduardo; Froebrich, Dirk

    2007-12-01

    We report on a near-infrared adaptive optics imaging survey of 31 young brown dwarfs and very low mass (VLM) stars, 28 of which are in the Chamaeleon I star-forming region, using the ESO Very Large Telescope. We resolve the suspected 0.16'' (~26 AU) binary Cha Hα 2 and present two new binaries, Hn 13 and CHXR 15, with separations of 0.13'' (~20 AU) and 0.30'' (~50 AU), respectively; the latter is one of the widest VLM systems known. We find a binary frequency of 11+9-6%, thus confirming the trend for a lower binary frequency with decreasing mass. By combining our work with previous surveys, we arrive at the largest sample of young VLM objects (72) with high angular resolution imaging to date. Its multiplicity fraction is in statistical agreement with that for VLM objects in the field. Furthermore, we note that many field stellar binaries with lower binding energies and/or wider cross sections have survived dynamical evolution and that statistical models suggest tidal disruption by passing stars is unlikely to affect the binary properties of our systems. Thus, we argue that there is no significant evolution of multiplicity with age among brown dwarfs and VLM stars in OB and T associations between a few megayears to several gigayears. Instead, the observations so far suggest that VLM objects are either less likely to be born in fragile multiple systems than solar-mass stars or such systems are disrupted very early. We dedicate this paper to the memory of our coauthor, Eduardo Delgado-Donate, who died in a hiking accident in Tenerife earlier this year.

  16. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genzel, R.; Tacconi, L. J.; Kurk, J.

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similarmore » and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.« less

  17. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese "Yanghe Daqu" liquors.

    PubMed

    Fan, Wenlai; Qian, Michael C

    2005-10-05

    The aroma compounds of young and aged Chinese "Yanghe Daqu" liquor samples were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography (GC)-olfactometry dilution analysis. The original liquor samples were diluted with deionized water to give a final alcohol content of 14% (v/v). The samples were stepwise diluted (1:1) with 14% (by volume) ethanol-water solution and then extracted by headspace SPME. The samples were preequilibrated at 50 degrees C for 15 min and extracted with stirring at the same temperature for 30 min prior to injection into GC. The aroma compounds were identified by both GC-MS and GC-olfactometry using DB-Wax and DB-5 columns. The results suggested that esters were the major contributors to Yanghe Daqu liquor aroma. Ethyl hexanoate, ethyl butanoate, and ethyl pentanoate had very high flavor dilution values in both young and aged liquors (FD > 8192). Methyl hexanoate, ethyl heptanoate, ethyl benzoate, and butyl hexanoate could also be very important because of their high flavor dilution values (FD > or = 256). Moreover, two acetals, 1,1-diethoxyethane and 1,1-diethoxy-3-methylbutane, also were shown high flavor dilution values in Yanghe Daqu liquors (FD > or = 256). Other aroma compounds having moderate flavor dilution values included acetaldehyde, 3-methylbutanol, and 2-pentanol (FD > or = 32). Comparing young and aged liquors, the aroma profiles were similar, but the aroma compounds in the aged sample had higher flavor dilution values than in the young ones.

  18. A Comparison of Young Star Properties with Local Galactic Environment for LEGUS/LITTLE THINGS Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Adamo, Angela; Elmegreen, Bruce G.; Gallardo, Samavarti; Lee, Janice C.; Cook, David O.; Thilker, David; Kayitesi, Bridget; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Calzetti, Daniela; Tosi, Monica; Grasha, Kathryn; Messa, Matteo; Fumagalli, Michele; Dale, Daniel A.; Sabbi, Elena; Cignoni, Michele; Smith, Linda J.; Gouliermis, Dimitrios M.; Grebel, Eva K.; Aloisi, Alessandra; Whitmore, Bradley C.; Chandar, Rupali; Johnson, Kelsey E.

    2018-07-01

    We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by Hα surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region Hα surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.

  19. Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z~2

    NASA Astrophysics Data System (ADS)

    Brisbin, Drew; Aravena, Manuel; Hodge, Jacqueline; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut; Riechers, Dominik; Wagg, Jeff

    2018-06-01

    We have resolved molecular gas in a 'typical' star forming disk galaxy at z>2 down to the scale of ~500 pc. Previous observations of CO and [CI] lines on larger spatial scales have revealed bulk molecular and atomic gas properties indicating that the target is a massive disk galaxy with large gas reserves. Unlike many galaxies studied at high redshift, it is undergoing modest quiescent star formation rather than bursty centrally concentrated star formation. Therefore this galaxy represents an under-studied, but cosmologically important population in the early universe. Our new observations of CO (4-3) highlight the clumpy molecular gas fuelling star formation throughout the disk. Underlying continuum from cold dust provides a key constraint on star formation rate surface densities, allowing us to examine the star formation rate surface density scaling law in a never-before-tested regime of early universe galaxies.These observations enable an unprecedented view of the obscured star formation that is hidden to optical/UV imaging and trace molecular gas on a fine enough scale to resolve morphological traits and provide a view akin to single dish surveys in the local universe.

  20. Lurking systematics in predicting galaxy cold gas masses using dust luminosities and star formation rates

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle J.

    2018-05-01

    We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. We calibrate predictions for cold neutral atomic and molecular gas using infrared dust emission and gas depletion time methods that are self-consistent and have ˜20 per cent accuracy (with the highest accuracy in the prediction of total cold gas mass). However, modest systematic residual dependences are found in all calibrations that depend on the partition between molecular and atomic gas, and can over/underpredict gas masses by up to 0.3 dex. As expected, dust-based estimates are best at predicting the total gas mass while depletion time-based estimates are only able to predict the (star-forming) molecular gas mass. Additionally, we advise caution when applying these predictions to high-z galaxies, as significant (0.5 dex or more) errors can arise when incorrect assumptions are made about the dominant gas phase. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.

  1. Reconstructing the Initial Relaxation Time of Young Star Clusters in the Large Magellanic Cloud: The Evolution of Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.; Chen, H.-C.

    2008-06-01

    We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ⪉ 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.

  2. Physical conditions in star-forming regions around S235

    NASA Astrophysics Data System (ADS)

    Kirsanova, M. S.; Wiebe, D. S.; Sobolev, A. M.; Henkel, C.; Tsivilev, A. P.

    2014-01-01

    Gas density and temperature in star-forming regions around Sh2-235 are derived from ammonia line observations. This information is used to evaluate formation scenarios and to determine evolutionary stages of the young embedded clusters S235 East 1, S235 East 2 and S235 Central. We also estimate the gas mass in the embedded clusters and its ratio to the stellar mass. S235 East 1 appears to be less evolved than S235 East 2 and S235 Central. In S235 East 1 the molecular gas mass exceeds that in the other clusters. Also, this cluster is more embedded in the parent gas cloud than the other two. Comparison with a theoretical model shows that the formation of these three clusters could have been stimulated by the expansion of the Sh2-235 H II region (hereafter S235) via a collect-and-collapse process, provided the density in the surrounding gas exceeds 3 × 103 cm-3, or via collapse of pre-existing clumps. The expansion of S235 cannot be responsible for star formation in the southern S235 A-B region. However, formation of the massive stars in this region might have been triggered by a large-scale supernova shock. Thus, triggered star formation in the studied region may come in three varieties, namely collect-and-collapse and collapse of pre-existing clumps, both initiated by expansion of the local H II regions, and triggered by an external large-scale shock. We argue that the S235 A H II region expands into a highly non-uniform medium with increasing density. It is too young to trigger star formation in its vicinity by a collect-and-collapse process. There is an age spread inside the S235 A-B region. Massive stars in the S235 A-B region are considerably younger than lower mass stars in the same area. This follows from the estimates of their ages and the ages of associated H II regions.

  3. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Adamo, A.

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. Themore » strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.« less

  4. On the determination of age and mass functions of stars in young open star clusters from the analysis of their luminosity functions

    NASA Astrophysics Data System (ADS)

    Piskunov, A. E.; Belikov, A. N.; Kharchenko, N. V.; Sagar, R.; Subramaniam, A.

    2004-04-01

    We construct the observed luminosity functions of the remote young open clusters NGC 2383, 2384, 4103, 4755, 7510 and Hogg 15 from CCD observations of them. The observed LFs are corrected for field star contamination determined with the help of a Galactic star count model. In the case of Hogg 15 and NGC 2383 we also consider the additional contamination from neighbouring clusters NGC 4609 and 2384, respectively. These corrections provide a realistic pattern of cluster LF in the vicinity of the main-sequence (MS) turn-on point and at fainter magnitudes reveal the so-called H-feature arising as a result of the transition of the pre-MS phase to the MS, which is dependent on the cluster age. The theoretical LFs are constructed representing a cluster population model with continuous star formation for a short time-scale and a power-law initial mass function (IMF), and these are fitted to the observed LF. As a result, we are able to determine for each cluster a set of parameters describing the cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It is found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as power-law functions with slopes similar to Salpeter's value. The present main-sequence turn-on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn-off region of the upper main sequences.

  5. A star-shaped polythiophene dendrimer coating for solid-phase microextraction of triazole agrochemicals.

    PubMed

    Abolghasemi, Mir Mahdi; Habibiyan, Rahim; Jaymand, Mehdi; Piryaei, Marzieh

    2018-02-14

    A nanostructured star-shaped polythiophene dendrimer was prepared and used as a fiber coating for headspace solid phase microextraction of selected triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole) from water samples. The dendrimer with its large surface area was characterized by thermogravimetric analysis, UV-Vis spectroscopy and field emission scanning electron microscopy. It was placed on a stainless steel wire for use in SPME. The experimental conditions for fiber coating, extraction, stirring rate, ionic strength, pH value, desorption temperature and time were optimized. Following thermal desorption, the pesticides were quantified by GC-MS. Under optimum conditions, the repeatability (RSD) for one fiber (for n = 3) ranges from 4.3 to 5.6%. The detection limits are between 8 and 12 pg mL -1 . The method is fast, inexpensive (in terms of equipment), and the fiber has high thermal stability. Graphical abstract Schematic presentation of a nanostructured star-shaped polythiophene dendrimer for use in headspace solid phase microextraction of the triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole). They were then quantified by gas chromatography-mass spectrometry.

  6. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsch, R.; Palouš, J.; Ehlerová, S.

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structuresmore » that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.« less

  7. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  8. Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael

    Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html

  9. A BRIGHT RING OF STAR BIRTH AROUND A GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    n image from NASA's Hubble Space Telescope reveals clusters of infant stars that formed in a ring around the core of the barred-spiral galaxy NGC 4314. This stellar nursery, whose inhabitants were created within the past 5 million years, is the only place in the entire galaxy where new stars are being born. The Hubble image is being presented today (June 11) at the American Astronomical Society meeting in San Diego, Calif. This close-up view by Hubble also shows other interesting details in the galaxy's core: dust lanes, a smaller bar of stars, dust and gas embedded in the stellar ring, and an extra pair of spiral arms packed with young stars. These details make the center resemble a miniature version of a spiral galaxy. While it is not unusual to have dust lanes and rings of gas in the centers of galaxies, it is uncommon to have spiral arms full of young stars in the cores. NGC 4314 is one of the nearest (only 40 million light-years away in the constellation Coma Berenices) examples of a galaxy with a ring of infant stars close to the core. This stellar ring - whose radius is 1,000 light-years - is a great laboratory to study star formation in galaxies. The left-hand image, taken in February 1996 by the 30-inch telescope Prime Focus Camera at the McDonald Observatory in Texas, shows the entire galaxy, including the bar of stars bisecting the core and the outer spiral arms, which begin near the ends of this bar. The box around the galaxy's core pinpoints the focus of the Hubble image. The right-hand image shows Hubble's close-up view of the galaxy's core, taken in December 1995 by the Wide Field and Planetary Camera 2. The bluish-purple clumps that form the ring are the clusters of infant stars. Two dark, wispy lanes of dust and a pair of blue spiral arms are just outside the star-forming ring. The lanes of dust are being shepherded into the ring by the longer, primary stellar bar seen in the ground-based (left-hand) image. The gas is trapped inside the ring

  10. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  11. Stellar Wind Retention and Expulsion in Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  12. IN-SYNC. II. Virial Stars from Subvirial Cores—the Velocity Dispersion of Embedded Pre-main-sequence Stars in NGC 1333

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan B.; Cottaar, Michiel; Covey, Kevin R.; Arce, Héctor G.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Rebull, Luisa; Frinchaboy, Peter M.; Majewski, Steven R.; Skrutskie, Michael; Wilson, John C.; Zasowski, Gail

    2015-02-01

    The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92 ± 0.12 km s-1 after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5 km s-1. Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 μG magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse.

  13. The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations

    NASA Astrophysics Data System (ADS)

    Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate

    2018-04-01

    We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome

  14. The (Phased?) Activity of Stars Hosting Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Pillitteri, Ignazio; Wolk, Scott J.; Lopez-Santiago, J.; Sciortino, Salvatore

    2015-01-01

    The activity of stars harboring hot Jupiters could be influenced by their close-in planets. Cases of enhanced chromospheric activity are reported in literature, suggesting magnetic interaction at well determined planetary phases. In X-rays and FUV, we have studied star-planet interaction (SPI) occurring in the system of HD 189733. In X-rays, HD 189733 shows features of high activity that can be ascribed to the influence of the magnetic field of its planetary companion. Through a wavelet analysis of a flare, we inferred a long magnetic loop of 2 R_* to 4 R_*, and a local magnetic field of strength in 40-100 G. The size of the flaring loop suggests a role of the hot Jupiter in triggering this kind of X-ray variability. In FUV, HST-COS spectra of HD 189733 shows temporal variations in intensity and Doppler shifts of Si III and Si IV lines that can be ascribed to plasma flowing from the planetary atmosphere and accreting onto the star under the action of the combined magnetic field of star and planet. The material from the planetary atmosphere can flow onto the parent star as predicted by MHD models. The foot point of the accretion on the stellar surface results in phased variability observed in X-rays and FUV, when the point, comoving with the planet, emerges at the limb of the star.

  15. Star Formation at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh

  16. Star Formation in Dusty Quasars

    NASA Astrophysics Data System (ADS)

    Lumsden, Stuart; Croom, Scott

    2012-04-01

    Quasar mode feedback is thought to be a crucial ingredient in galaxy formation for luminous merging and star-bursting systems at high redshift. The energy from the active nucleus should cause significant gas outflows, reducing the available free gas reservoir for future star formation. It is currently unknown which observational state best corresponds to the stage at which this "blowout" should occur. We intend to test one possible source population for this transition phase, by studying the molecular gas content in a small, statistically complete sample of 3 K-band selected reddened quasars from the AUS survey. All lie in the redshift range 2stars for form as well.

  17. Gas kinematics in powerful radio galaxies at z 2: Energy supply from star formation, AGN, and radio jets⋆

    NASA Astrophysics Data System (ADS)

    Nesvadba, N. P. H.; Drouart, G.; De Breuck, C.; Best, P.; Seymour, N.; Vernet, J.

    2017-04-01

    We compare the kinetic energy and momentum injection rates from intense star formation, bolometric AGN radiation, and radio jets with the kinetic energy and momentum observed in the warm ionized gas in 24 powerful radio galaxies at z 2. These galaxies are among our best candidates for being massive galaxies near the end of their active formation period, when intense star formation, quasar activity, and powerful radio jets all co-exist. All galaxies have VLT/SINFONI imaging spectroscopy of the rest-frame optical line emission, showing extended emission-line regions with large velocity offsets (up to 1500 km s-1) and line widths (typically 800-1000 km s-1) consistent with very turbulent, often outflowing gas. As part of the HeRGÉ sample, they also have FIR estimates of the star formation and quasar activity obtained with Herschel/PACS and SPIRE, which enables us to measure the relative energy and momentum release from each of the three main sources of feedback in massive, star-forming AGN host galaxies during their most rapid formation phase. We find that star formation falls short by factors 10-1000 of providing the energy and momentum necessary to power the observed gas kinematics. The obscured quasars in the nuclei of these galaxies provide enough energy and momentum in about half of the sample, however, only if both are transferred to the gas relatively efficiently. We compare with theoretical and observational constraints on the efficiency of the energy and momentum transfer from jet and AGN radiation, which favors the radio jets as main drivers of the gas kinematics. Based on observations carried out with the Very Large Telescope of ESO under Program IDs 079.A-0617, 084.A-0324, 085.A-0897, and 090.A-0614.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Adam; Song, Inseok; Melis, Carl

    2012-10-01

    It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age {approx}<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics-namely, H{alpha} emission, strong lithium absorption, and low surface gravity featuresmore » consistent with known TWA members. We also detect mid-IR excess-the first unambiguous evidence of a dusty circumstellar disk-around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.« less

  19. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocvirk, P.

    2010-01-20

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us tomore » define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar

  20. Lithium in lower-main-sequence stars of the Alpha Persei cluster

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra; Lambert, David L.; Stauffer, John R.

    1988-01-01

    Lithium abundances are presented for main-sequence stars of spectral types F, G, and K in the young open cluster Alpha Per. For 46 cluster members, a correlation between Li abundance and projected rotational velocity v sin i is found: all of the Li-poor stars are slow rotators. Two explanations are proposed to account for the correlation: (1) that the Li depletion is introduced following a rapid spin-down phase experienced by young low-mass stars, and that this episode of Li depletion may be the dominant one determining the spread of Li abundances among young low-mass main-sequence stars, and (2) that star formation has occurred over a finite period such that the older stars have undergone a spin-down and depletion of Li by a means that may or may not depend on rotation. The Li abundance in the warm and rapidly rotating stars appears to be undepleted, as is predicted by recent models of pre-main-sequence stars. The depletion observed in the cool stars exceeds the level predicted by these models.

  1. GAS CLOUDS RAINING STAR STUFF ONTO MILKY WAY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This composite radio light image and rendition of our galaxy as seen in visible light shows enigmatic 'high-velocity clouds' of gas high above the plane of the Milky Way which rain gas into the galaxy, seeding it with the stuff of stars. The cloud outlined, and possibly others too, is now known to have low heavy element content and to be raining down onto the Milky Way disk, seeding it with material for star birth. Identifying this infalling gas helps in solving a long-standing mystery of galactic evolution by revealing a source of the low-metallicity gas required to explain the observed chemical composition of stars near the Sun. In this all-sky projection, the edge-on plane of our galaxy appears as a white horizontal strip. The false-color orange-yellow 'clouds' are regions containing neutral hydrogen, which glows in 21-centimeter radiation. Hubble Space Telescope's spectrograph was aimed at one of the clouds (encircled) to measure its detailed composition and velocity. This discovery is based on a combination of data from NASA's Hubble Space Telescope, three radio telescopes (at Effelsberg in Germany, and Dwingeloo and Westerbork in the Netherlands), the William Herschel Telescope on the island of La Palma and the Wisconsin H-alpha Mapper at NOAO's Kitt Peak Observatory. Photo Credits: Image composite by Ingrid Kallick of Possible Designs, Madison Wisconsin. The background Milky Way image is a drawing made at Lund Observatory. High-velocity clouds are from the survey done at Dwingeloo Observatory (Hulsbosch and Wakker, 1988).

  2. X-ray sources associated with young stellar objects in the star formation region CMa R1

    NASA Astrophysics Data System (ADS)

    Santos-Silva, Thais; Gregorio-Hetem, Jane; Montmerle, Thierry

    2013-07-01

    In previous works we studied the star formation scenario in the molecular cloud Canis Major R1 (CMa R1), derived from the existence of young stellar population groups near the Be stars Z CMa and GU CMa. Using data from the ROSAT X-ray satellite, having a field-of-view of ~ 1° in diameter, Gregorio-Hetem et al. (2009) discovered in this region young stellar objects mainly grouped in two clusters of different ages, with others located in between. In order to investigate the nature of these objects and to test a possible scenario of sequential star formation in this region, four fields (each 30 arcmin diameter, with some overlap) have been observed with the XMM-Newton satellite, with a sensitivity about 10 times better than ROSAT. The XMM-Newton data are currently under analysis. Preliminary results indicate the presence of about 324 sources, most of them apparently having one or more near-infrared counterparts showing typical colors of young stars. The youth of the X-ray sources was also confirmed by X-ray hardness ratio diagrams (XHRD), in different energy bands, giving an estimate of their Lx/Lbol ratios. In addition to these results, we present a detailed study of the XMM field covering the cluster near Z CMa. Several of these sources were classified as T Tauri and Herbig Ae/Be stars, using optical spectroscopy obtained with Gemini telescopes, in order to validate the use of XHRD applied to the entire sample. This classification is also used to confirm the relation between the luminosities in the near-infrared and X-ray bands expected for the T Tauri stars in CMa R1. In the present work we show the results of the study based on the spectra of about 90 sources found nearby Z CMa. We checked that the X-ray spectra (0.3 to 10 keV) of young objects is different from that observed in field stars and extragalactic objects. Some of the candidates also have light curve showing flares that are typical of T Tauri stars, which confirms the young nature of these X

  3. Radial distribution of dust, stars, gas, and star-formation rate in DustPedia⋆ face-on galaxies

    NASA Astrophysics Data System (ADS)

    Casasola, V.; Cassarà, L. P.; Bianchi, S.; Verstocken, S.; Xilouris, E.; Magrini, L.; Smith, M. W. L.; De Looze, I.; Galametz, M.; Madden, S. C.; Baes, M.; Clark, C.; Davies, J.; De Vis, P.; Evans, R.; Fritz, J.; Galliano, F.; Jones, A. P.; Mosenkov, A. V.; Viaene, S.; Ysard, N.

    2017-09-01

    Aims: The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. Methods: This study is performed by exploiting the multi-wavelength DustPedia database, from ultraviolet (UV) to sub-millimeter bands, in addition to molecular (12CO) and atomic (Hi) gas maps and metallicity abundance information available in the literature. We fitted the surface-brightness profiles of the tracers of dust and stars, the mass surface-density profiles of dust, stars, molecular gas, and total gas, and the SFR surface-density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (αCO) per galaxy by using dust- and gas-mass profiles. Results: Although each galaxy has its own peculiar behavior, we identified a common trend of the exponential scale-lengths versus wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec2 radius decrease from UV to 70 μm, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust-mass surface-density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 μm surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 μm scale-length tend to increase from earlier to later types, the scale-length at 70 μm tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 μm that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Our αCO determinations are in the range (0.3-9) M⊙ pc-2 (K km s-1)-1, almost invariant by using a fixed dust-to-gas ratio mass (DGR) or a DGR depending on metallicity

  4. Young star clusters in circumnuclear starburst rings

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Ma, Chao; Jia, Siyao; Ho, Luis C.; Anders, Peter

    2017-03-01

    We analyse the cluster luminosity functions (CLFs) of the youngest star clusters in two galaxies exhibiting prominent circumnuclear starburst rings. We focus specifically on NGC 1512 and NGC 6951, for which we have access to Hα data that allow us to unambiguously identify the youngest sample clusters. To place our results on a firm statistical footing, we first explore in detail a number of important technical issues affecting the process from converting the observational data into the spectral energy distributions of the objects in our final catalogues. The CLFs of the young clusters in both galaxies exhibit approximate power-law behaviour down to the 90 per cent observational completeness limits, thus showing that star cluster formation in the violent environments of starburst rings appears to proceed similarly as that elsewhere in the local Universe. We discuss this result in the context of the density of the interstellar medium in our starburst-ring galaxies.

  5. The extent of chemically enriched gas around star-forming dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Sean

    2018-01-01

    Supernovae driven winds are often invoked to remove chemically enriched gas from galaxies to match the low metallicities of dwarf galaxies. In such shallow potential wells, outflows may produce massive amounts of enriched halo gas (circum-galactic medium or CGM) and pollute the intergalactic medium (IGM). I will present a survey of the CGM and IGM around 18 star-forming field dwarf galaxies with stellar masses of log M*/M⊙ ≈ 8 ‑ 9 at z ≈ 0.2. Eight of these have CGM probed by quasar absorption spectra at projected distances, d, less than the host virial radius, Rh. Ten are probed at d/Rh = 1 ‑ 3 to study the surrounding IGM. The absorption measurements include neutral hydrogen (H I), the dominant silicon ions for diffuse cool gas (T ∼ 104 K; Si II, Si III, and Si IV), more highly ionized carbon (C IV), and highly ionized oxygen (O VI). The metal absorption from the CGM of the dwarf galaxies is less common and ≈ 4× weaker compared to massive star-forming galaxies though O VI absorption is still common. None of the dwarfs probed at d/Rh = 1 ‑ 3 have definitive metal-line detections. Combining the available silicon ions, we estimate that the cool CGM accounts for only 2 ‑ 6% of the expected silicon budget. CGM absorption from O VI can account for ≈ 8% of the expected oxygen budget. As O VI traces an ion with expected equilibrium ion fractions of 0.2, this highly ionized phase of the CGM may represent a significant metal reservoir even for dwarf galaxies not expected to maintain gravitationally shock heated hot halos.

  6. Hubble Sweeps a Messy Star Factory

    NASA Image and Video Library

    2017-12-08

    This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers to study star formation, as their conditions are similar to those thought to exist in the early Universe. Markarian 209 in particular has been studied extensively. It is filled with diffuse gas and peppered with star-forming regions towards its core. This image captures it undergoing a particularly dramatic burst of star formation, visible as the lighter blue cloudy region towards the top right of the galaxy. This clump is filled with very young and hot newborn stars. This galaxy was initially thought to be a young galaxy undergoing its very first episode of star formation, but later research showed that Markarian 209 is actually very old, with an almost continuous history of forming new stars. It is thought to have never had a dormant period — a period during which no stars were formed — lasting longer than 100 million years. The dominant population of stars in Markarian 209 is still quite young, in stellar terms, with ages of under 3 million years. For comparison, the sun is some 4.6 billion years old, and is roughly halfway through its expected lifespan. The observations used to make this image were taken using Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys, and span the ultraviolet, visible, and infrared parts of the spectrum. A scattering of other bright galaxies can be seen across the frame, including the bright golden oval that could, due to a trick of perspective, be mistaken as part of Markarian 209 but is in fact a background galaxy. Credit: ESA/Hubble & NASA Acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments

  7. NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star

  8. Bursts of star formation in computer simulations of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing burstsmore » rather than continuous, nonbursting low-level star formation activity.« less

  9. On the jet of a young star RWAurA and related problems

    NASA Astrophysics Data System (ADS)

    Berdnikov, L. N.; Burlak, M. A.; Vozyakova, O. V.; Dodin, A. V.; Lamzin, S. A.; Tatarnikov, A. M.

    2017-07-01

    Having compared images of a jet of the young star RWAurA obtained with an interval of 21.3 yr, we have found that the outermost knots of the jet have emerged approximately 350 years ago. We come up with arguments that the jet itself has appeared at the same time, and intensive accretion onto the star has begun due to rearrangement of its protoplanetary disk structure caused by the tidal effect of the companion RWAur B. More precisely suppose that intensification of accretion is a response to changing conditions in the outer-disk regions which has followed after the sound wave, generated by these changes, has passed the disk in the radial direction. In our opinion difference in the parameters of blue and red lobes of the RWAurA jet is a result of the asymmetric distribution of the circumstellar matter above and below the disk due to companion's passage. It was found from the analysis of the RWAur historical light curve that deep and long-term (Δ t > 150 days) light attenuations of RWAurA observed after 2010 had no precedents in the previous 110 years.We also associate the change in the character of photometric variability of the star with the rearrangement of the structure of inner ( r < 1 AU) regions of its protoplanetary disk, and discuss why these changes have begun only 350 years after the beginning of the active accretion phase.

  10. Exploring the Dust Content, Metallicity, Star Formation and AGN Activity in Distant Dusty, Star-Forming Galaxies Using Cosmic Telescope

    NASA Astrophysics Data System (ADS)

    Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey

    2018-01-01

    We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.

  11. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young <300 Myr), early-M dwarfs within 25 parsecs were measured using photometric data collected with telescopes at Lowell Observatory during 2012 and 2013. An additional 25 rotation periods for members of the same sample were found in the literature. Ages were derived from Hα and X-ray emission, lithium absorption, surface gravity, and kinematic association of members of known young moving groups (YMGs). We compared rotation periods with the estimated ages as well as indicators of magnetic activity, with the intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  12. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bressert, E.; Longmore, S.; Testi, L.

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that willmore » allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.« less

  13. Giant Gas Cloud Made of Atoms Formed in First Stars Revealed in Universe's Most Distant Quasar

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Astronomers studying the most distant quasar yet found in the Universe have discovered a massive reservoir of gas containing atoms made in the cores of some of the first stars ever formed. The carbon-monoxide gas was revealed by the National Science Foundation's Very Large Array (VLA) and the Plateau de Bure radio interferometer in Europe. The gas, along with the young galaxy containing it, is seen as it was when the Universe was only one-sixteenth its current age, just emerging from the primeval "Dark Ages" before light could travel freely through the cosmos. VLA Image of Quasar VLA Image of J1148+5251 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) "Our discovery of this much carbon monoxide gas in such an extremely distant and young galaxy is surprising. It means that, even at a very early time in the history of the Universe, galaxies already had huge amounts of molecular gas that would eventually form new generations of stars," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The distant galaxy, dubbed J1148+5251, contains a bright quasar powered by a black hole at least a billion times more massive than the Sun. The galaxy is seen as it was only 870 million years after the Big Bang. The Universe now is 13.7 billion years old. J1148+5251 would have been among the first luminous objects in the Universe. The original atoms formed in the Universe within the first three minutes of the Big Bang were only hydrogen and helium. Carbon and oxygen -- the atoms making up carbon monoxide -- had to be made in the thermonuclear furnaces at the cores of the earliest stars. "The carbon and oxygen atoms in the gas we detected were made by some of the first stars ever formed, only about 650 million years after the Big Bang. In the next 200 million years or so, those stars -- probably very different stars from those we see today -- exploded as supernovae, spreading the carbon and oxygen out into space. Those atoms then cooled

  14. On the star-forming ability of Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2018-02-01

    The star-forming ability of a molecular cloud depends on the fraction of gas it can cycle into the dense-phase. Consequently, one of the crucial questions in reconciling star formation in clouds is to understand the factors that control this process. While it is widely accepted that the variation in ambient conditions can alter significantly the ability of a cloud to spawn stars, the observed variation in the star-formation rate in nearby clouds that experience similar ambient conditions, presents an interesting question. In this work, we attempted to reconcile this variation within the paradigm of colliding flows. To this end we develop self-gravitating, hydrodynamic realizations of identical flows, but allowed to collide off-centre. Typical observational diagnostics such as the gas-velocity dispersion, the fraction of dense-gas, the column density distribution (N-PDF), the distribution of gas mass as a function of K-band extinction and the strength of compressional/solenoidal modes in the post-collision cloud were deduced for different choices of the impact parameter of collision. We find that a strongly sheared cloud is terribly inefficient in cycling gas into the dense phase and that such a cloud can possibly reconcile the sluggish nature of star formation reported for some clouds. Within the paradigm of cloud formation via colliding flows this is possible in case of flows colliding with a relatively large impact parameter. We conclude that compressional modes - though probably essential - are insufficient to ensure a relatively higher star-formation efficiency in a cloud.

  15. Identifying the Young Low-mass Stars within 25 pc. II. Distances, Kinematics, and Group Membership

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya L.; Anglada-Escudé, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-01

    We have conducted a kinematic study of 165 young M dwarfs with ages of lsim300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of lsim25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young (lsim3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and β Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages lsim150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope, the du Pont Telescope at Las Campanas Observatory, and the Subaru Telescope. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial

  16. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  17. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. Wemore » find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in

  18. LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Burtscher, L.; Davies, R. I.; Koss, M.; Ricci, C.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.; Lin, M.-Y.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R. A.; Schartmann, M.; Schawinski, K.; Schnorr-Müller, A.; Saintonge, A.; Shimizu, T.; Sternberg, A.; Storchi-Bergmann, T.; Sturm, E.; Tacconi, L.; Treister, E.; Veilleux, S.

    2018-02-01

    Using new Atacama Pathfinder Experiment and James Clerk Maxwell Telescope spectroscopy of the CO 2→1 line, we undertake a controlled study of cold molecular gas in moderately luminous (Lbol = 1043-44.5 erg s-1) active galactic nuclei (AGN) and inactive galaxies from the Luminous Local AGN with Matched Analogs (LLAMA) survey. We use spatially resolved infrared photometry of the LLAMA galaxies from 2MASS, the Wide-field Infrared Survey Explorer the Infrared Astronomical Satellite and the Herschel Space Observatory (Herschel), corrected for nuclear emission using multicomponent spectral energy distribution fits, to examine the dust-reprocessed star formation rates, molecular gas fractions and star formation efficiencies (SFEs) over their central 1-3 kpc. We find that the gas fractions and central SFEs of both active and inactive galaxies are similar when controlling for host stellar mass and morphology (Hubble type). The equivalent central molecular gas depletion times are consistent with the discs of normal spiral galaxies in the local Universe. Despite energetic arguments that the AGN in LLAMA should be capable of disrupting the observable cold molecular gas in their central environments, our results indicate that nuclear radiation only couples weakly with this phase. We find a mild preference for obscured AGN to contain higher amounts of central molecular gas, which suggests connection between AGN obscuration and the gaseous environment of the nucleus. Systems with depressed SFEs are not found among the LLAMA AGN. We speculate that the processes that sustain the collapse of molecular gas into dense pre-stellar cores may also be a prerequisite for the inflow of material on to AGN accretion discs.

  19. Robustness of third family solutions for hybrid stars against mixed phase effects

    NASA Astrophysics Data System (ADS)

    Ayriyan, A.; Bastian, N.-U.; Blaschke, D.; Grigorian, H.; Maslov, K.; Voskresensky, D. N.

    2018-04-01

    We investigate the robustness of third family solutions for hybrid compact stars with a quark matter core that correspond to the occurrence of high-mass twin stars against a softening of the phase transition by means of a construction that mimics the effects of pasta structures in the mixed phase. We consider a class of hybrid equations of state that exploits a relativistic mean-field model for the hadronic as well as for the quark matter phase. We present parametrizations that correspond to branches of high-mass twin star pairs with maximum masses between 2.05 M⊙ and 1.48 M⊙ having radius differences between 3.2 and 1.5 km, respectively. When compared to a Maxwell construction with a fixed value of critical pressure Pc, the effect of the mixed phase construction consists in the occurrence of a region of pressures around Pc belonging to the coexistence of hadronic and quark matter phases between the onset pressure at PH and the end of the transition at PQ. The maximum broadening which would still allow mass-twin compact stars is found to be (PQ-PH)max≈Pc for all parametrizations within the present class of models. At least the heavier of the neutron stars of the binary merger GW170817 could have been a member of the third family of hybrid stars. We present the example of another class of hybrid star equations of state for which the appearance of the third family branch is not as robust against mixed phase effects as that of the present work.

  20. Molecular Gas Content of an Extremely Star-forming Herschel Observed Lensed Dusty Galaxy at z=2.685

    NASA Astrophysics Data System (ADS)

    Nayyeri, Hooshang; Cooray, Asantha R.; H-ATLAS

    2017-01-01

    We present the results of combined deep near-infrared, far infrared and millimeter observations of an extremely star forming lensed dusty star-forming galaxy (DSFG) identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). The high redshift DSFG is gravitationally lensed by a massive WISE identified cluster at z~1 (spectroscopically confirmed with Keck/DEIMOS and Gemini/GMOS) producing multiply lensed images and arcs observed in the optical. The DSFG is spectroscopically confirmed at z=2.685 from CO(1-0) observations by GBT and separately from CO(3-2) observations by CARMA. We use the combined spectroscopic and imaging observations to construct a detailed lens model of the background DSFG which allowed us to study the sources plane properties of the target. Multi-band data from Keck/NIRC2, HST/WFC3 and Herschel yields star formation rate and stellar mass well above the main sequence. Observations of the dust continuum by the Sub-millimeter Array yields an observed total ISM mass of 6.5E+11 M* which is responsible for the intense observed star formation rates. Comparing the measured SFR with molecular gas measurements from CO(1-0) observations reveals that this system has relatively short gas depletion time scale which is consistent with the starburst phase observed in high redshift sub-millimeter galaxies.

  1. The Cygnus OB2 Star Forming Complex

    NASA Astrophysics Data System (ADS)

    Rybarczyk, Daniel R.; Bania, Thomas

    2018-01-01

    Almost all astrophysical systems—from planets to stars to supernovae to entire galaxies—are impacted by the process of star formation. The brightest, most massive stars (OB stars) form in hot young clusters called OB associations. Cygnus OB2 is an OB association containing over 160 OB stars, making it one of the largest in the Milky Way Galaxy. At a distance of less than 1.5 kpc, its proximity to the Sun makes it optimal for assessing the process of Galactic star formation and its implications for stellar evolution, Galactic structure, and Galactic chemical evolution. Using existing data sets, we derive comprehensive maps of the distribution of thermal continuum, atomic, and molecular emission from the interstellar gas in Cyg OB2. The thermal continuum emission stems from the plasma ionized by OB stars. The atomic gas is probed by emission from atomic hydrogen, HI, at 21 cm wavelength. The molecular gas is traced by emission from the CO molecule which is a proxy for molecular hydrogen, H2. We combine these atomic and molecular data to derive a map of the total proton column density distribution in Cyg OB2. We also analyze the velocity fields of the OB stars, the atomic and molecular hydrogen gas, and the HII regions' radio recombination emission. As expected, we find HII regions to be spatially coincident with zones of higher cloud density. Surrounding the greatest concentration of OB stars is a cavity in the radio continuum and CO emission. This results from shock waves produced by the combined action of the high HII region pressure and winds from the OB stars. Such a distribution implies that Cyg OB2 is old enough to have evolved to this state.

  2. Star-forming galaxies are predicted to lie on a fundamental plane of mass, star formation rate and α-enhancement

    NASA Astrophysics Data System (ADS)

    Matthee, Jorryt; Schaye, Joop

    2018-05-01

    Observations show that star-forming galaxies reside on a tight three-dimensional plane between mass, gas-phase metallicity and star formation rate (SFR), which can be explained by the interplay between metal-poor gas inflows, SFR and outflows. However, different metals are released on different time-scales, which may affect the slope of this relation. Here, we use central, star-forming galaxies with Mstar = 109.0 - 10.5 M⊙ from the EAGLE hydrodynamical simulation to examine three-dimensional relations between mass, SFR and chemical enrichment using absolute and relative C, N, O and Fe abundances. We show that the scatter is smaller when gas-phase α-enhancement is used rather than metallicity. A similar plane also exists for stellar α-enhancement, implying that present-day specific SFRs are correlated with long time-scale star formation histories. Between z = 0 and 1, the α-enhancement plane is even more insensitive to redshift than the plane using metallicity. However, it evolves at z > 1 due to lagging iron yields. At fixed mass, galaxies with higher SFRs have star formation histories shifted toward late times, are more α-enhanced and this α-enhancement increases with redshift as observed. These findings suggest that relations between physical properties inferred from observations may be affected by systematic variations in α-enhancements.

  3. GEOMETRIC OFFSETS ACROSS SPIRAL ARMS IN M51: NATURE OF GAS AND STAR FORMATION TRACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Melissa; Koda, Jin; Egusa, Fumi, E-mail: melissa.louie@stonybrook.edu

    We report measurements of geometric offsets between gas spiral arms and associated star-forming regions in the grand-design spiral galaxy M51. These offsets are a suggested measure of the star formation timescale after the compression of gas at spiral arm entry. A surprising discrepancy, by an order of magnitude, has been reported in recent offset measurements in nearby spiral galaxies. Measurements using CO and H{alpha} emission find large and ordered offsets in M51. On the contrary, small or non-ordered offsets have been found using the H I 21 cm and 24 {mu}m emissions, possible evidence against gas flow through spiral arms,more » and thus against the conventional density-wave theory with a stationary spiral pattern. The goal of this paper is to understand the cause of this discrepancy. We investigate potential causes by repeating those previous measurements using equivalent data, methods, and parameters. We find offsets consistent with the previous measurements and conclude that the difference of gas tracers, i.e., H I versus CO, is the primary cause. The H I emission is contaminated significantly by the gas photodissociated by recently formed stars and does not necessarily trace the compressed gas, the precursor of star formation. The H I gas and star-forming regions coincide spatially and tend to show small offsets. We find mostly positive offsets with substantial scatter between CO and H{alpha}, suggesting that gas flow through spiral arms (i.e., density wave) though the spiral pattern may not necessarily be stationary.« less

  4. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    NASA Astrophysics Data System (ADS)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages < 6 Myr are ideal tools for mapping the current chemical abundances in the Galactic disk for several reasons. First of all, the locations of these clusters can be known through spectrophotometric distances. Secondly, their young ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  5. Activity trends in young solar-type stars

    NASA Astrophysics Data System (ADS)

    Lehtinen, J.; Jetsu, L.; Hackman, T.; Kajatkari, P.; Henry, G. W.

    2016-04-01

    Aims: We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. Methods: We apply the continuous period search (CPS) time series analysis method on Johnson B- and V-band photometry of the sample stars, collected over a period of 16 to 27 years. Using the CPS method, we estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new log R'HK = log F'HK/σTeff4 emission indices for the stars from high resolution spectroscopy. Results: The measurements of the photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period as k ∝ Prot1.36, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches when examined in the log Prot/Pcyc vs. log Ro-1, where Ro-1 = 2Ωτc, or log Prot/Pcyc vs. log R'HK diagram. We find a new split into sub-branches within this diagram, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately log R'HK = -4.46 separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior

  6. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellerin, Anne; Meyer, Martin M.; Calzetti, Daniella

    2012-12-01

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advancedmore » Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.« less

  7. The (BETA) Pictoris Phenomenon Among Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Perez, M. R.; Talavera, A.; Bjorkman, K. S.; deWinter, D.; The, P.-S.; Molster, F. J.; vandenAncker, M. E.; Sitko, M. L.; Morrison, N. D.; hide

    1996-01-01

    We present a survey of high dispersion UV and optical spectra of Herbig Ae/Be (HAeBe) and related stars. We find accreting, circumstellar gas over the velocity range +100 to +400 km/s, and absorption profiles similar to those seen toward Beta Pic, in 36% of the 33 HAeBe stars with IUE data as well as in 3 non-emission B stars. We also find evidence of accretion in 7 HAeBe stars with optical data only. Line profile variability appears ubiquitous. As a group, the stars with accreting gas signatures have higher v sin i than the stars with outflowing material, and tend to exhibit large amplitude (greater than or equal to 1(sup m)) optical light variations. All of the program stars with polarimetric variations that are anti-correlated with the optical light, previously interpreted as the signature of a dust disk viewed close to equator-on, also show spectral signatures of accreting gas. These data imply that accretion activity in HAeBe stars is preferentially observed when the line of sight transits the circumstellar dust disk. Our data imply that the spectroscopic signatures of accreting circumstellar material seen in Beta Pic are not unique to that object, but instead are consistent with interpretation of Beta Pic as a comparatively young A star with its associated circumstellar disk.

  8. Current star formation in S0 galaxies: NGC 4710

    NASA Technical Reports Server (NTRS)

    Wrobel, J. M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data.

  9. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  10. CI as a Tracer of Gas Mass in Star Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Bourne, Nathan

    2018-01-01

    Research in galaxy evolution aims to understand the cosmic industry of converting gas into stars. While SFR and stellar mass evolution are well constrained by current data, our knowledge of gas in galaxies throughout cosmic time is comparatively lacking. Almost all high-redshift gas measurements to date rely on CO as a tracer, but this is subject to systematic uncertainties due to optically thick emission and poorly constrained dependences on gas density, distribution and metallicity. Recently, some attention has been given to dust continuum as an alternative gas tracer, which shows promise for large samples but still requires accurate calibration on a direct gas tracer at high redshift. The [CI] 492GHz emission line could overcome much of the systematic uncertainty, as it is optically thin and has similar excitation conditions to CO(1-0), but observational limitations have so far restricted CI measurements to very small samples. I will presen t some new data from ALMA, for the first time testing the CI/dust correlation in a representative sample of star-forming galaxies at z=1, and discuss how future observations could be designed to more widely exploit this independent gas tracer.

  11. A Star-Formation Laboratory

    NASA Image and Video Library

    2011-05-13

    The dwarf galaxy NGC 4214 is ablaze with young stars and gas clouds. Located around 10 million light-years away in the constellation of Canes Venatici (The Hunting Dogs), the galaxy's close proximity, combined with the wide variety of evolutionary stages among the stars, make it an ideal laboratory to research the triggers of star formation and evolution. Intricate patterns of glowing hydrogen formed during the star-birthing process, cavities blown clear of gas by stellar winds, and bright stellar clusters of NGC 4214 can be seen in this optical and near-infrared image. Observations of this dwarf galaxy have also revealed clusters of much older red supergiant stars. Additional older stars can be seen dotted all across the galaxy. The variety of stars at different stages in their evolution indicates that the recent and ongoing starburst periods are not the first, and the galaxy's abundant supply of hydrogen means that star formation will continue into the future. This color image was taken using the Wide Field Camera 3 in December 2009. Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration Acknowledgment: R. O'Connell (University of Virginia) and the WFC3 Scientific Oversight Committee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Modelling and observations of molecules in discs around young stars

    NASA Astrophysics Data System (ADS)

    Ilee, John David

    2013-04-01

    This thesis contains a study of molecules within circumstellar discs around young stars. Firstly, the chemistry of a disc around a young, Class 0 protostar is modelled. Such discs are thought to be massive, and thus experience gravitational instabilities, which produce spiral density waves. These affect the chemistry in three ways; by desorbing molecules from dust grains, by providing extra energy for new reactions to take place, and by mixing the internal structure of the disc to provide a rich chemistry near the midplane. Secondly, high resolution near-infrared spectra of 20 massive young stellar objects are presented. The objects display CO first overtone bandhead emission, which is excited in the conditions expected within circumstellar discs. The emission is modelled using a simple analytic model of a Keplerian disc, and good fits are found to all spectra. On average, the discs correspond to being geometrically thin, spread across a wide range of inclinations. The discs are located within the dust sublimation radius, providing strong evidence that the CO emission originates in small gaseous discs, supporting the scenario in which massive stars form via disc accretion. Finally, medium resolution near-infrared spectra of 5 Herbig Ae/Be stars are presented. The spectra cover both CO bandhead and Br gamma emission. Accretion rates are derived from the measuring the Br gamma emission and through modelling the CO emission, however these accretion rates are found to be inconsistent. High resolution archival data of one of the targets is presented, and it is shown that this CO disc model is unable to fit the high resolution data. Therefore, it is concluded that to properly fit CO spectra, high resolution data are needed, and that previously published information determined from low resolution spectra should be treated with caution.

  13. Interacting Star Clusters

    NASA Astrophysics Data System (ADS)

    Gieles, M.

    2013-06-01

    The early evolution of star cluster formation is a complicated phase in which several astrophysical processes with different time-scales operate simultaneously. From kinematical data of the young massive cluster R136 it was recently found that the cluster is in virial equilibrium; despite its young age it has already settled in a dynamical equilibrium. Somewhat surprisigly, about a quarter of the (kinetic) energy is in a rotational component. From HST observations of R136 a small clump of stars to the North-East of R136 was found, with indications that this clump is interacting/merging with R136. In this talk I will discuss whether these two observational results should be connected, i.e. whether the rotation signal is due to an ongoing "dry" interaction. The results are illustrated with a suite of N-body simulations of R136 like systems.

  14. High-density QCD phase transitions inside neutron stars: Glitches and gravitational waves

    NASA Astrophysics Data System (ADS)

    Srivastava, A. M.; Bagchi, P.; Das, A.; Layek, B.

    2017-10-01

    We discuss physics of exotic high baryon density QCD phases which are believed to exist in the core of a neutron star. This can provide a laboratory for exploring exotic physics such as axion emission, KK graviton production etc. Much of the physics of these high-density phases is model-dependent and not very well understood, especially the densities expected to occur inside neutron stars. We follow a different approach and use primarily universal aspects of the physics of different high-density phases and associated phase transitions. We study effects of density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due to rapidly changing quadrupole moment of the star due to these fluctuations.

  15. Formation of Very Young Massive Clusters and Implications for Globular Clusters

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of ≳ 104 M ⊙ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modelling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by addressing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date literature, in an integrated fashion, several new insights and discussions are provided.

  16. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, J. D.; Rujopakarn, W.; Daddi, E.

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxiesmore » having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.« less

  17. A Higher Efficiency of Converting Gas to Stars Pushes Galaxies at z ˜ 1.6 Well Above the Star-forming Main Sequence

    NASA Astrophysics Data System (ADS)

    Silverman, J. D.; Daddi, E.; Rodighiero, G.; Rujopakarn, W.; Sargent, M.; Renzini, A.; Liu, D.; Feruglio, C.; Kashino, D.; Sanders, D.; Kartaltepe, J.; Nagao, T.; Arimoto, N.; Berta, S.; Béthermin, M.; Koekemoer, A.; Lutz, D.; Magdis, G.; Mancini, C.; Onodera, M.; Zamorani, G.

    2015-10-01

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ˜ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (˜300-800 M⊙ yr-1) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ˜ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (˜30%-50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  18. 78 FR 25264 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-179-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky... free). For TTY, call (202) 502-8659. Specifically, Southern Star proposes to abandon in place four...

  19. Phibss: Molecular Gas, Extinction, Star Formation, and Kinematics in the z = 1.5 Star-forming Galaxy EGS13011166

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Kurk, J.; Wuyts, S.; Combes, F.; Freundlich, J.; Bolatto, A.; Cooper, M. C.; Neri, R.; Nordon, R.; Bournaud, F.; Burkert, A.; Comerford, J.; Cox, P.; Davis, M.; Förster Schreiber, N. M.; García-Burillo, S.; Gracia-Carpio, J.; Lutz, D.; Naab, T.; Newman, S.; Saintonge, A.; Shapiro Griffin, K.; Shapley, A.; Sternberg, A.; Weiner, B.

    2013-08-01

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the Hα line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the "Plateau de Bure high-z, blue-sequence survey" (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a "mixed" extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlogΣstar form/dlogΣmol gas, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 ± 0.1. Based on observations with the Plateau de Bure millimetre interferometer, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain). Based also on data acquired with the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in Germany, Italy, and the United States. LBT Corporation partners are LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; Istituto Nazionale di Astrofisica, Italy; The University of

  20. Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    O'Connell, Robert

    2009-07-01

    Star formation is a fundamental astrophysical process; it controls phenomena ranging from the evolution of galaxies and nucleosynthesis to the origins of planetary systems and abodes for life. The WFC3, optimized at both UV and IR wavelengths and equipped with an extensive array of narrow-band filters, brings unique capabilities to this area of study. The WFC3 Scientific Oversight Committee {SOC} proposes an integrated program on star formation in the nearby universe which will fully exploit these new abilities. Our targets range from the well-resolved R136 in 30 Dor in the LMC {the nearest super star cluster} and M82 {the nearest starbursting galaxy} to about half a dozen other nearby galaxies that sample a wide range of star-formation rates and environments. Our program consists of broad-band multiwavelength imaging over the entire range from the UV to the near-IR, aimed at studying the ages and metallicities of stellar populations, revealing young stars that are still hidden by dust at optical wavelengths, and showing the integrated properties of star clusters. Narrow-band imaging of the same environments will allow us to measure star-formation rates, gas pressure, chemical abundances, extinction, and shock morphologies. The primary scientific issues to be addressed are: {1} What triggers star formation? {2} How do the properties of star-forming regions vary among different types of galaxies and environments of different gas densities and compositions? {3} How do these different environments affect the history of star formation? {4} Is the stellar initial mass function universal or determined by local conditions?

  1. Low Gas Fractions Connect Compact Star-forming Galaxies to Their z ~ 2 Quiescent Descendants

    NASA Astrophysics Data System (ADS)

    Spilker, Justin S.; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.

    2016-11-01

    Early quiescent galaxies at z˜ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line toward three such compact, star-forming galaxies (SFGs) at z˜ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions ≳ 5 times lower and gas depletion timescales ≳ 10 times shorter than normal, extended massive SFGs at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100 Myr. These objects are among the most gas-poor objects observed at z\\gt 2, and are outliers from standard gas scaling relations, a result that remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, SFGs are in a rapid state of transition to quiescence in tandem with the buildup of the z˜ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.

  2. The Star Formation Rate Efficiency of Neutral Atomic-Dominated Hydrogen Gas in the Ooutskirts of Star-Forming Galaxies From z approx. 1 to z approx. 3

    NASA Technical Reports Server (NTRS)

    Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia

    2016-01-01

    Current observational evidence suggests that the star formation rate (SFR)efficiency of neutral atomic hydrogen gas measured in damped Ly(alpha) systems (DLAs) at z approx. 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS)relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z approx. 1, z approx. 2, and z approx. 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is approx. 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.

  3. 77 FR 14517 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-73-000] Southern Star..., 2012 Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 State Highway 56, Owensboro... Star proposes to replace 3 miles of 12-inch diameter XT pipeline by constructing approximately 3 miles...

  4. THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L. J.; Crowther, P. A.; Calzetti, D.

    2016-05-20

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy ofmore » #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.« less

  5. Single-flavor CSL phase in compact stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschke, David; Bogoliubov Laboratory for Theoretical Physics, JINR, 141980 Dubna; Sandin, Fredrik

    2008-08-29

    We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as, e.g., in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu-Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL), spin-0 two flavor (2SC) and three flavor (CFL) channels. We find that nucleon dissociation sets in at about the saturation density, n{sub 0}, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry induced by {beta}-equilibrium and charge neutrality. At about 3n{sub 0} u-quarks appear andmore » a two-flavor color superconducting (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. We construct two different hybrid equations of state (EoS) using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EoS by Shen et al. in the nuclear matter sector. The corresponding hybrid star sequences have maximum masses of, respectively, 2.1 and 2.0 M{sub {center_dot}}. Two- and three-flavor quark-matter phases exist only in gravitationally unstable hybrid star solutions in the DBHF case, while the Shen-based EoS produce stable configurations with a 2SC phase component in the core of massive stars. Nucleon dissociation due to d-quark drip at the crust-core boundary fulfills basic criteria for a deep crustal heating process which is required to explain superbusts as well as cooling of X-ray transients.« less

  6. H II Region G46.5-0.2: The Interplay between Ionizing Radiation, Molecular Gas, and Star Formation

    NASA Astrophysics Data System (ADS)

    Paron, S.; Ortega, M. E.; Dubner, G.; Yuan, Jing-Hua; Petriella, A.; Giacani, E.; Zeng Li, Jin; Wu, Yuefang; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju

    2015-06-01

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey (13CO J = 1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J = 3-2, HCO+, and HCN J = 4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10‧ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  7. The SAMI Galaxy Survey: a new method to estimate molecular gas surface densities from star formation rates

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Salim, Diane M.; Medling, Anne M.; Davies, Rebecca L.; Yuan, Tiantian; Bian, Fuyan; Groves, Brent A.; Ho, I.-Ting; Sharp, Robert; Kewley, Lisa J.; Sweet, Sarah M.; Richards, Samuel N.; Bryant, Julia J.; Brough, Sarah; Croom, Scott; Scott, Nicholas; Lawrence, Jon; Konstantopoulos, Iraklis; Goodwin, Michael

    2017-07-01

    Stars form in cold molecular clouds. However, molecular gas is difficult to observe because the most abundant molecule (H2) lacks a permanent dipole moment. Rotational transitions of CO are often used as a tracer of H2, but CO is much less abundant and the conversion from CO intensity to H2 mass is often highly uncertain. Here we present a new method for estimating the column density of cold molecular gasgas) using optical spectroscopy. We utilize the spatially resolved Hα maps of flux and velocity dispersion from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. We derive maps of Σgas by inverting the multi-freefall star formation relation, which connects the star formation rate surface density (ΣSFR) with Σgas and the turbulent Mach number (M). Based on the measured range of ΣSFR = 0.005-1.5 {M_{⊙} yr^{-1} kpc^{-2}} and M=18-130, we predict Σgas = 7-200 {M_{⊙} pc^{-2}} in the star-forming regions of our sample of 260 SAMI galaxies. These values are close to previously measured Σgas obtained directly with unresolved CO observations of similar galaxies at low redshift. We classify each galaxy in our sample as 'star-forming' (219) or 'composite/AGN/shock' (41), and find that in 'composite/AGN/shock' galaxies the average ΣSFR, M and Σgas are enhanced by factors of 2.0, 1.6 and 1.3, respectively, compared to star-forming galaxies. We compare our predictions of Σgas with those obtained by inverting the Kennicutt-Schmidt relation and find that our new method is a factor of 2 more accurate in predicting Σgas, with an average deviation of 32 per cent from the actual Σgas.

  8. Effective Temperatures for Young Stars in Binaries

    NASA Astrophysics Data System (ADS)

    Muzzio, Ryan; Avilez, Ian; Prato, Lisa A.; Biddle, Lauren I.; Allen, Thomas; Wright-Garba, Nuria Meilani Laure; Wittal, Matthew

    2017-01-01

    We have observed about 100 multi-star systems, within the star forming regions Taurus and Ophiuchus, to investigate the individual stellar and circumstellar properties of both components in young T Tauri binaries. Near-infrared spectra were collected using the Keck II telescope’s NIRSPEC spectrograph and imaging data were taken with Keck II’s NIRC2 camera, both behind adaptive optics. Some properties are straightforward to measure; however, determining effective temperature is challenging as the standard method of estimating spectral type and relating spectral type to effective temperature can be subjective and unreliable. We explicitly looked for a relationship between effective temperatures empirically determined in Mann et al. (2015) and equivalent width ratios of H-band Fe and OH lines for main sequence spectral type templates common to both our infrared observations and to the sample of Mann et al. We find a fit for a wide range of temperatures and are currently testing the validity of using this method as a way to determine effective temperature robustly. Support for this research was provided by an REU supplement to NSF award AST-1313399.

  9. Radiative Hydrodynamic Simulations of In Situ Star Formation in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Frazer, Chris; Heitsch, Fabian

    2018-01-01

    Many stars observed in the Galactic Center (GC) orbit the supermassive black hole (SMBH), Sagittarius A*, in a region where the extreme gravitational field is expected to inhibit star formation. Yet, many of these stars are young which favors an in situ formation scenario. Previous numerical work on this topic has focused on two possible solutions. First, the tidal capture of a > 10^4 Msun infalling molecular cloud by an SMBH may result in the formation of a surrounding gas disk which then rapidly cools and forms stars. This process results in stellar populations that are consistent with the observed stellar disk in the GC. Second, dense gas clumps of approximately 100 Msun on highly eccentric orbits about an SMBH can experience sparks of star formation via orbital compressions occurring during pericenter passage. In my dissertation, I build upon these models using a series of grid-based radiative hydrodynamic simulations, including the effects of both ionizing ultraviolet light from existing stars as well as X-ray radiation emanating from the central black hole. Radiation is treated with an adaptive ray-tracing routine, including appropriate heating and cooling for both neutral and ionized gas. These models show that ultraviolet radiation is sufficiently strong to heat low mass gas clouds, thus suppressing star formation from clump compression. Gas disks that form from cloud capture become sufficiently dense to provide shielding from the radiation of existing central stars, thus allowing star formation to continue. Conversely, X-rays easily penetrate and heat the potentially star forming gas. For sufficiently high radiation fields, this provides a mechanism to disrupt star formation for both scenarios considered above.

  10. Binaries among low-mass stars in nearby young moving groups

    NASA Astrophysics Data System (ADS)

    Janson, Markus; Durkan, Stephen; Hippler, Stefan; Dai, Xiaolin; Brandner, Wolfgang; Schlieder, Joshua; Bonnefoy, Mickaël; Henning, Thomas

    2017-03-01

    The solar galactic neighborhood contains a number of young co-moving associations of stars (known as young moving groups) with ages of 10-150 Myr, which are prime targets for a range of scientific studies, including direct imaging planet searches. The late-type stellar populations of such groups still remain in their pre-main sequence phase, and are thus well suited for purposes such as isochronal dating. Close binaries are particularly useful in this regard since they allow for a model-independent dynamical mass determination. Here we present a dedicated effort to identify new close binaries in nearby young moving groups, through high-resolution imaging with the AstraLux Sur Lucky Imaging camera. We surveyed 181 targets, resulting in the detection of 61 companions or candidates, of which 38 are new discoveries. An interesting example of such a case is 2MASS J00302572-6236015 AB, which is a high-probability member of the Tucana-Horologium moving group, and has an estimated orbital period of less than 10 yr. Among the previously known objects is a serendipitous detection of the deuterium burning boundary circumbinary companion 2MASS J01033563-5515561 (AB)b in the z' band, thereby extending the spectral coverage for this object down to near-visible wavelengths. Based on observations collected at the European Southern Observatory, Chile (Programs 096.C-0243 and 097.C-0135).Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A70

  11. 77 FR 38622 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-475-000] Southern Star..., Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42301, filed... amended and Southern Star's blanket certificate issued in Docket No. CP82-479-000 \\1\\ for authorization to...

  12. 78 FR 53746 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-531-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky.... Southern Star's prior notice request is more fully set forth in the application, which is on file with the...

  13. 75 FR 8053 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-48-000] Southern Star... that on January 29, 2010, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 State Highway... TTY, (202) 502-8659. Specifically, Southern Star proposes to replace two miles of 12- inch diameter XT...

  14. A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. I. Cloud-scale Gas Motions

    NASA Astrophysics Data System (ADS)

    Meidt, Sharon E.; Leroy, Adam K.; Rosolowsky, Erik; Kruijssen, J. M. Diederik; Schinnerer, Eva; Schruba, Andreas; Pety, Jerome; Blanc, Guillermo; Bigiel, Frank; Chevance, Melanie; Hughes, Annie; Querejeta, Miguel; Usero, Antonio

    2018-02-01

    Modern extragalactic molecular gas surveys now reach the scales of star-forming giant molecular clouds (GMCs; 20–50 pc). Systematic variations in GMC properties with galaxy environment imply that clouds are not universally self-gravitating objects, decoupled from their surroundings. Here we re-examine the coupling of clouds to their environment and develop a model for 3D gas motions generated by forces arising with the galaxy gravitational potential defined by the background disk of stars and dark matter. We show that these motions can resemble or even exceed the motions needed to support gas against its own self-gravity throughout typical galactic disks. The importance of the galactic potential in spiral arms and galactic centers suggests that the response to self-gravity does not always dominate the motions of gas at GMC scales, with implications for observed gas kinematics, virial equilibrium, and cloud morphology. We describe how a uniform treatment of gas motions in the plane and in the vertical direction synthesizes the two main mechanisms proposed to regulate star formation: vertical pressure equilibrium and shear/Coriolis forces as parameterized by Toomre Q ≈ 1. As the modeled motions are coherent and continually driven by the external potential, they represent support for the gas that is distinct from that conventionally attributed to turbulence, which decays rapidly and thus requires maintenance, e.g., via feedback from star formation. Thus, our model suggests that the galaxy itself can impose an important limit on star formation, as we explore in a second paper in this series.

  15. Chromospherically Active Stars in the RAVE Survey. II. Young Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Grebel, E. K.; Kordopatis, G.; Munari, U.; Seabroke, G.; Steinmetz, M.; Wojno, J.; Bienaymé, O.; Bland-Hawthorn, J.; Conrad, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kunder, A.; Navarro, J.; Parker, Q. A.; Reid, W.; Siviero, A.; Watson, F. G.; Wyse, R. F. G.

    2017-01-01

    A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age-activity relation for main-sequence dwarfs in a range from a few 10 {Myr} up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1 {Gyr} and ˜2000 younger than 100 {Myr}. The young age of the most active stars is confirmed by their position off the main sequence in the J - K versus {N}{UV}-V diagram showing strong ultraviolet excess, mid-infrared excess in the J - K versus {W}1-{W}2 diagram, and very cool temperatures (J-K> 0.7). They overlap with the reference pre-main-sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo-generating magnetic fields in cool stars. Of the RAVE objects from DR5, 50% are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE’s radial velocities directly useful as a tracer of the very recent large-scale star formation history in the solar neighborhood. The data are available online in the Vizier database.

  16. MOLECULAR GAS AND STAR-FORMATION PROPERTIES IN THE CENTRAL AND BAR REGIONS OF NGC 6946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Hsi-An; Sorai, Kazuo; Kuno, Nario

    In this work, we investigate the molecular gas and star-formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star-formation tracers. A high-resolution image (100 pc) of {sup 13}CO (1–0) is created for the inner 2 kpc disk by the single-dish Nobeyama Radio Observatory 45 m telescope and interferometer Combined Array for Research in Millimeter-wave Astronomy, including the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single-dish HCN (1–0) observations were also made to constrain the amount of dense gas. The physical properties of molecular gas are inferred from (1)more » the large velocity gradient calculations using our observations and archival {sup 12}CO (1–0), {sup 12}CO(2–1) data, (2) the dense gas fraction suggested by the luminosity ratio of HCN to {sup 12}CO (1–0), and (3) the infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. The dense gas fraction of the central region is similar to that of luminous infrared galaxies/ultraluminous infrared galaxies, whereas the offset ridges are close to the global average of normal galaxies. The coolest and least-dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. The star-formation efficiency (SFE) changes by about five times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by the galactic bar. We find a consistency between the star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of subkiloparsec-scale temperature is driven by star formation.« less

  17. Physical properties and evolutionary time scales of disks around solar-type and intermediate mass stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan

    1993-01-01

    Recent observations of circumstellar disks and their evolutionary timescales are reviewed. It is concluded that disks appear to be a natural outcome of the star-formation process. The disks surrounding young stars initially are massive, with optically thick structures comprised of gas and micron-sized grains. Disk masses are found to range from 0.01 to 0.2 solar masses for solar-type PMS stars, and from 0.01 to 6 solar masses for young, intermediate mass stars. Massive, optically thick accretion disks have accretion rates between 10 exp -8 and 10 exp -6 solar masses/yr for solar type PMS stars and between 10 exp -6 and 10 exp -4 solar masses/yr for intermediate stars. The results suggest that a significant fraction of the mass comprising the star may have passed through a circumstellar accretion disk.

  18. Degenerate stars and gravitational collapse in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik

    2011-01-01

    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.

  19. Scaling Relations between Gas and Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bigiel, Frank; Leroy, Adam; Walter, Fabian

    2011-04-01

    High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.

  20. Multiple stellar populations in Magellanic Cloud clusters - VI. A survey of multiple sequences and Be stars in young clusters

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; Di Criscienzo, M.; D'Antona, F.; Bedin, L. R.; Da Costa, G.; Piotto, G.; Tailo, M.; Dotter, A.; Angeloni, R.; Anderson, J.; Jerjen, H.; Li, C.; Dupree, A.; Granata, V.; Lagioia, E. P.; Mackey, A. D.; Nardiello, D.; Vesperini, E.

    2018-06-01

    The split main sequences (MSs) and extended MS turnoffs (eMSTOs) detected in a few young clusters have demonstrated that these stellar systems host multiple populations differing in a number of properties such as rotation and, possibly, age. We analyse Hubble Space Telescope photometry for 13 clusters with ages between ˜40 and ˜1000 Myr and of different masses. Our goal is to investigate for the first time the occurrence of multiple populations in a large sample of young clusters. We find that all the clusters exhibit the eMSTO phenomenon and that MS stars more massive than ˜1.6 M_{⊙} define a blue and a red MS, with the latter hosting the majority of MS stars. The comparison between the observations and isochrones suggests that the blue MSs are made of slow-rotating stars, while the red MSs host stars with rotational velocities close to the breakup value. About half of the bright MS stars in the youngest clusters are H α emitters. These Be stars populate the red MS and the reddest part of the eMSTO, thus supporting the idea that the red MS is made of fast rotators. We conclude that the split MS and the eMSTO are a common feature of young clusters in both Magellanic Clouds. The phenomena of a split MS and an eMSTO occur for stars that are more massive than a specific threshold, which is independent of the host-cluster mass. As a by-product, we report the serendipitous discovery of a young Small Magellanic Cloud cluster, GALFOR 1.

  1. General properties of magnetic CP stars

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2017-07-01

    We present the review of our previous studies related to observational evidence of the fossil field hypothesis of formation and evolution of magnetic and non-magnetic chemically peculiar stars. Analysis of the observed data shows that these stars acquire their main properties in the process of gravitational collapse. In the non-stationary Hayashi phase, a magnetic field becomes weakened and its configuration complicated, but the fossil field global orientation remains. After a non-stationary phase, relaxation of young star's tangled field takes place and by the time of joining ZAMS (Zero Age Main Sequence) it is generally restored to a dipole structure. Stability of dipole structures allows them to remain unchanged up to the end of their life on the Main Sequence which is 109 years at most.

  2. A Database of Young Star Clusters for Five Hundred Galaxies

    NASA Astrophysics Data System (ADS)

    Evans, Jessica; Whitmore, B. C.; Lindsay, K.; Chandar, R.; Larsen, S.

    2009-01-01

    The study of young massive stellar clusters has faced a series of observational challenges, such as the use of inconsistent data sets and low number statistics. To rectify these shortcomings, this project will use the source lists developed as part of the Hubble Legacy Archive to obtain a large, uniform database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1) To what degree is the cluster luminosity (and mass) function of star clusters universal? 2) What fraction of super star clusters are "missing" in optical studies (i.e., are hidden by dust)? The archive's recent data release (Data Release 2 - September, 2008) will help us achieve the large sample necessary (N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W). The uniform data set will comprise of ACS, WFPC2, and NICMOS data, with DAOphot used for object detection. This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years, and will be used to test the Whitmore, Chandar, Fall (2007) framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's. The poster will describe our preliminary investigation for the first 30 galaxies in the sample.

  3. Spiral density waves in a young protoplanetary disk.

    PubMed

    Pérez, Laura M; Carpenter, John M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G

    2016-09-30

    Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk. Copyright © 2016, American Association for the Advancement of Science.

  4. NEW BROWN DWARF COMPANIONS TO YOUNG STARS IN SCORPIUS-CENTAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janson, Markus; Jayawardhana, Ray; Bonavita, Mariangela

    2012-10-10

    We present the discoveries of three faint companions to young stars in the Scorpius-Centaurus region, imaged with the NICI instrument on Gemini South. We have confirmed all three companions through common proper motion tests. Follow-up spectroscopy has confirmed two of them, HIP 65423 B and HIP 65517 B, to be brown dwarfs, while the third, HIP 72099 B, is more likely a very low mass star just above the hydrogen burning limit. The detection of wide companions in the mass range of {approx}40-100 M{sub jup} complements previous work in the same region, reporting detections of similarly wide companions with lowermore » masses, in the range of {approx}10-30 M{sub jup}. Such low masses near the deuterium burning limit have raised the question of whether those objects formed like planets or stars. The existence of intermediate objects as reported here could represent a bridge between lower-mass companions and stellar companions, but in any case demonstrate that mass alone may not provide a clear-cut distinction for the formation of low-mass companions to stars.« less

  5. Photometric properties of stars clusters with young or mixed age stellar populations

    NASA Astrophysics Data System (ADS)

    Mollá, M.; García-Vargas, M. L.; Martín-Manjón, M. L.

    2013-05-01

    The main goal of this work is to present and discuss the synthetic photometrical properties of stellar clusters resulting from the PopStar code. Colors in Johnson and SDSS systems, Hα and Hβ luminosities and equivalent widths, and ionizing region size, have been computed for a wide range of metallicities Z = 0.0001, 0.0004, 0.004,0.008,0.02 and 0.05, and ages, from 0.1 Myr to 20 Gyr in Mollá, Garc{í}a-Vargas, & Bressan (2009, MNRAS, 398, 451). Emission lines are shown in Mart{í}n-Manj{ó}n et al. (2010, MNRAS, 403, 2012). Now we calculate colors with the emission lines contribution to the broad band color, so colors include stellar and nebular components, plus the emission lines following the evolution of the cluster and the region geometry in a consistent way. We compare the Single Stellar Populations contaminated and uncontaminated colors (in both Johnson and SDSS systems) and show the importance of emission lines contribution when photometry is used as a tool to characterize stellar populations. With these models we may determine the physical properties of young ionizing clusters when only photometrical observations are available and these correspond to the isolated star forming regions, subtracted the contribution of the underlying population In most cases, however, the ionizing population is usually embedded in a large and complex system, and the observed photometrical properties are the result of the combination of both the young star-forming burst and the host-underlying older population. The second objective of our work is therefore to provide a grid of models for nearby galaxies able to interpret mixed regions where the separation of young and old population is not possible or reliable enough. We obtain a set of PopStar Spectral Energy Distributions (available at PopStar site and also in VO) and derived colors for mixed populations where an underlying host population is combined in different mass ratios with a recent, metal-rich ionizing burst. These

  6. STScI-PRC98-38 GREAT BALLS OF FIRE! HUBBLE SEES BRIGHT KNOTS EJECTED FROM BRILLIANT STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling an aerial fireworks explosion, this dramatic NASA Hubble Space Telescope picture of the energetic star WR124 reveals it is surrounded by hot clumps of gas being ejected into space at speeds of over 100,000 miles per hour. Also remarkable are vast arcs of glowing gas around the star, which are resolved into filamentary, chaotic substructures, yet with no overall global shell structure. Though the existence of clumps in the winds of hot stars has been deduced through spectroscopic observations of their inner winds, Hubble resolves them directly in the nebula M1-67 around WR124 as 100 billion-mile wide glowing gas blobs. Each blob is about 30 times the mass of the Earth. The massive, hot central star is known as a Wolf-Rayet star. This extremely rare and short-lived class of super-hot star (in this case 50,000 degrees Kelvin) is going through a violent, transitional phase characterized by the fierce ejection of mass. The blobs may result from the furious stellar wind that does not flow smoothly into space but has instabilities which make it clumpy. The surrounding nebula is estimated to be no older than 10,000 years, which means that it is so young it has not yet slammed into the gasses comprising the surrounding interstellar medium. As the blobs cool they will eventually dissipate into space and so don't pose any threat to neighboring stars. The star is 15,000 light-years away, located in the constellation Sagittarius. The picture was taken with Hubble's Wide Field Planetary Camera 2 in March 1997. The image is false-colored to reveal details in the nebula's structure. Credit: Yves Grosdidier (University of Montreal and Observatoire de Strasbourg), Anthony Moffat (Universitie de Montreal), Gilles Joncas (Universite Laval), Agnes Acker (Observatoire de Strasbourg), and NASA

  7. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the

  8. Externally fed star formation: a numerical study

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Motahareh; Stahler, Steven W.

    2013-08-01

    We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.

  9. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less

  10. Search for Wide Planetary-Mass Companions in Young Star-Forming Regions with UKIDSS and Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Aller, Kimberly M.; Kraus, A. L.; Liu, M. C.; Bowler, B. P.

    2013-01-01

    Over the past decade, planetary-mass (<15 MJup) companions have been discovered in very wide orbits (>100 AU) around young stars. It is unclear whether these objects formed like planets or like stars. If these are planets, then modifications to core accretion or disk instability models are needed to allow formation at such wide orbits, or planet scattering must be an important mechanism. On the other hand, if these objects formed like stars, we need to understand the frequency of these extremely low mass ratio binary companions which challenge brown dwarf formation models. Regardless of their origins, these wide companions are easier to observe than close-in planets and can be used as benchmarks to understand the properties of young planets. We have combined optical and NIR photometry from UKIDSS and Pan-STARRS-1 to search the young star-forming region of Upper Scorpius and Taurus for new planetary-mass objects, going ≈3 mag deeper than previous work with 2MASS. We identified several candidates with very wide separations (≈400-4000 AU) from known members using a combination of color selection and spectral energy distribution (SED) fitting to templates of known low-mass stars and brown dwarfs. Furthermore, we have obtained followup NIR spectra of several Upper Scorpius candidates to spectroscopically identify three new wide very low-mass companions (≈15-25 MJup spectral type of M8-L0).

  11. Hidden Milky Way star clusters hosting Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Borissova, J.; Ivanov, V. D.; Georgiev, L.

    2009-05-01

    A noticeable fraction of the hidden young star clusters contain WR and O stars providing us with unique laboratories to study the evolution of these rare objects and their maternity places. We are reporting the reddening, the distance and age of two new members of the family of massive young Galactic clusters, hosting WR stars - Glimpse 23 and Glimpse 30.

  12. StarPals International Young Astronomers' Network Collaborative Projects for IYA

    NASA Astrophysics Data System (ADS)

    Kingan, Jessi

    2008-09-01

    StarPals is a nascent non-profit organization with the goal of providing opportunities for international collaboration between students of all ages within space science research. We believe that by encouraging an interest in the cosmos, the one thing that is truly Universal, from a young age, students will not only further their knowledge of and interest in science but will learn valuable teamwork and life skills. The goal is to foster respect, understanding and appreciation of cultural diversity among all StarPals participants, whether students, teachers, or mentors. StarPals aims to inspire students by providing opportunities in which, more than simply visualizing themselves as research scientists, they can actually become one. The technologies of robotic telescopes, videoconferencing, and online classrooms are expanding the possibilities like never before. In honor of IYA2009, StarPals would like to encourage 400 schools to participate on a global scale in astronomy/cosmology research on various concurrent projects. We will offer in-person or online workshops and training sessions to teach the teachers. We will be seeking publication in scientific journals for some student research. For our current project, the Double Stars Challenge, students use the robotic telescopes to take a series of four images of one of 30 double stars from a list furnished by the US Naval Observatory and then use MPO Canopus software to take distance and position angle measurements. StarPals provides students with hands-on training, telescope time, and software to complete the imaging and measuring. A paper will be drafted from our research data and submitted to the Journal of Double Star Observations. The kids who participate in this project may potentially be the youngest contributors to an article in a vetted scientific journal. Kids rapidly adapt and improve their computer skills operating these telescopes and discover for themselves that science is COOL!

  13. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calzetti, D.; Johnson, K. E.; Adamo, A.

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses,more » and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.« less

  14. The Brightest Young Star Clusters in NGC 5253.

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Johnson, K. E.; Adamo, A.; Gallagher, J. S., III; Andrews, J. E.; Smith, L. J.; Clayton, G. C.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Kim, H.; Ryon, J. E.; Thilker, D.; Bright, S. N.; Zackrisson, E.; Kennicutt, R. C.; de Mink, S. E.; Whitmore, B. C.; Aloisi, A.; Chandar, R.; Cignoni, M.; Cook, D.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Krumholz, M. R.; Walterbos, R.; Wofford, A.; Brown, T. M.; Christian, C.; Dobbs, C.; Herrero, A.; Kahre, L.; Messa, M.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Sacchi, E.; Schaerer, D.; Tosi, M.

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (MV < -8.8) and the two young radio nebula clusters. The clusters have ages ˜1-15 Myr and masses ˜1 × 104-2.5 × 105 M⊙. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ˜15 Myr. The most massive cluster is in the radio nebula; with a mass ˜2.5 × 105 M⊙ and an age ˜1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with AV ˜ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ˜1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. THE FORMATION AND EVOLUTION OF YOUNG LOW-MASS STARS WITHIN HALOS WITH HIGH CONCENTRATION OF DARK MATTER PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casanellas, Jordi; Lopes, IlIDio, E-mail: jordicasanellas@ist.utl.p, E-mail: ilidio.lopes@ist.utl.p

    2009-11-01

    The formation and evolution of low-mass stars within dense halos of dark matter (DM) leads to evolution scenarios quite different from the classical stellar evolution. As a result of our detailed numerical work, we describe these new scenarios for a range of DM densities on the host halo, for a range of scattering cross sections of the DM particles considered, and for stellar masses from 0.7 to 3 M {sub sun}. For the first time, we also computed the evolution of young low-mass stars in their Hayashi track in the pre-main-sequence phase and found that, for high DM densities, thesemore » stars stop their gravitational collapse before reaching the main sequence, in agreement with similar studies on first stars. Such stars remain indefinitely in an equilibrium state with lower effective temperatures (|DELTAT{sub eff}|>10{sup 3} K for a star of one solar mass), the annihilation of captured DM particles in their core being the only source of energy. In the case of lower DM densities, these protostars continue their collapse and progress through the main-sequence burning hydrogen at a lower rate. A star of 1 M{sub sun} will spend a time period greater than the current age of the universe consuming all the hydrogen in its core if it evolves in a halo with DM density rho{sub c}hi = 10{sup 9} GeV cm{sup -3}. We also show the strong dependence of the effective temperature and luminosity of these stars on the characteristics of the DM particles and how this can be used as an alternative method for DM research.« less

  16. Young Stars Emerge from Orion Head

    NASA Image and Video Library

    2007-05-17

    This image from NASA's Spitzer Space Telescope shows infant stars "hatching" in the head of the hunter constellation, Orion. Astronomers suspect that shockwaves from a supernova explosion in Orion's head, nearly three million years ago, may have initiated this newfound birth . The region featured in this Spitzer image is called Barnard 30. It is located approximately 1,300 light-years away and sits on the right side of Orion's "head," just north of the massive star Lambda Orionis. Wisps of red in the cloud are organic molecules called polycyclic aromatic hydrocarbons. These molecules are formed anytime carbon-based materials are burned incompletely. On Earth, they can be found in the sooty exhaust from automobile and airplane engines. They also coat the grills where charcoal-broiled meats are cooked. This image shows infrared light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight. http://photojournal.jpl.nasa.gov/catalog/PIA09412

  17. Young Stars Emerge from Orion's Head

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image from NASA's Spitzer Space Telescope shows infant stars 'hatching' in the head of the hunter constellation, Orion. Astronomers suspect that shockwaves from a supernova explosion in Orion's head, nearly three million years ago, may have initiated this newfound birth

    The region featured in this Spitzer image is called Barnard 30. It is located approximately 1,300 light-years away and sits on the right side of Orion's 'head,' just north of the massive star Lambda Orionis.

    Wisps of red in the cloud are organic molecules called polycyclic aromatic hydrocarbons. These molecules are formed anytime carbon-based materials are burned incompletely. On Earth, they can be found in the sooty exhaust from automobile and airplane engines. They also coat the grills where charcoal-broiled meats are cooked.

    This image shows infrared light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  18. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less

  19. Gravitational star formation thresholds and gas density in three galaxies

    NASA Technical Reports Server (NTRS)

    Oey, M. S.; Kennicutt, R. C., Jr.

    1990-01-01

    It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is

  20. STAR FORMATION ACROSS THE W3 COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts amore » large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.« less

  1. Galactic Halo Stars in Phase Space: A Hint of Satellite Accretion?

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.; Kawata, Daisuke; Gibson, Brad K.; Flynn, Chris

    2003-03-01

    The present-day chemical and dynamical properties of the Milky Way bear the imprint of the Galaxy's formation and evolutionary history. One of the most enduring and critical debates surrounding Galactic evolution is that regarding the competition between ``satellite accretion'' and ``monolithic collapse'' the apparent strong correlation between orbital eccentricity and metallicity of halo stars was originally used as supporting evidence for the latter. While modern-day unbiased samples no longer support the claims for a significant correlation, recent evidence has been presented by Chiba & Beers for the existence of a minor population of high-eccentricity metal-deficient halo stars. It has been suggested that these stars represent the signature of a rapid (if minor) collapse phase in the Galaxy's history. Employing velocity and integrals of motion phase-space projections of these stars, coupled with a series of N-body/smoothed particle hydrodynamic chemodynamical simulations, we suggest that an alternative mechanism for creating such stars may be the recent accretion of a polar orbit dwarf galaxy.

  2. A dynamical model for gas flows, star formation and nuclear winds in galactic centres

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Kruijssen, J. M. Diederik; Crocker, Roland M.

    2017-04-01

    We present a dynamical model for gas transport, star formation and winds in the nuclear regions of galaxies, focusing on the Milky Way's Central Molecular Zone (CMZ). In our model angular momentum and mass are transported by a combination of gravitational and bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar is transported inwards to a star-forming, ring-shaped region at ˜100 pc from the Galactic Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with bursts lasting ˜5-10 Myr occurring at ˜20-40 Myr intervals. During quiescence the gas in the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming ring, with a time-averaged mass flux comparable to the star formation rate. We show that our model agrees well with the observed properties of the CMZ, and places it near a star formation minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting distribution of galactic nuclei on the Kennicutt-Schmidt relation is in good agreement with that observed in nearby galaxies.

  3. Studying the inner regions of young stars and their disks with aperture masking interferometry

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team

    2017-01-01

    High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.

  4. Infrared observations of OB star formation in NGC 6334

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Gatley, I.

    1982-01-01

    Infrared photometry and maps from 2 to 100 microns are presented for three of the principal far infrared sources in NGC 6334. Each region is powered by two or more very young stars. The distribution of dust and ionized gas is probably strongly affected by the presence of the embedded stars; one of the sources is a blister H II region, another has a bipolar structure, and the third exhibits asymmetric temperature structure. The presence of protostellar objects throughout the region suggests that star formation has occurred nearly simultaneously in the whole molecular cloud rather than having been triggered sequentially from within.

  5. The effects of stimulated star formation on the evolution of the galaxy. III - The chemical evolution of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Ferrini, Federico; Palla, Francesco

    1987-01-01

    The evolution of models for star formation in galaxies with disk and halo components is discussed. Two phases for the halo (gas and stars) and three for the disk (including clouds) are used in these calculations. The star-formation history is followed using nonlinear phase-coupling models which completely determine the populations of the phases as a function of time. It is shown that for a wide range of parameters, including the effects of both spontaneous and stimulated star formation and mass exchange between the spatial components of the system, the observed chemical history of the galaxy can easily be obtained. The most sensitive parameter in the detailed metallicity and star-formation history for the system is the rate of return of gas to the diffuse phase upon stellar death.

  6. Joint stars phased array radar antenna

    NASA Astrophysics Data System (ADS)

    Shnitkin, Harold

    1994-10-01

    The Joint STARS phased array radar system is capable of performing long range airborne surveillance and was used during the Persian Gulf war on two E8-A aircraft to fly many around-the-clock missions to monitor the Kuwait and Iraq battlefield from a safe distance behind the front lines. This paper is a follow-on to previous publications on the subject of the Joint STARS antenna and deals mainly with mission performance and technical aspects not previously covered. Radar data of troop movements and armament installations will be presented, a brief review of the antenna design is given, followed by technical discussions concerning the three-port interferometry, gain and sidelobe design approach, cost control, range test implementation and future improvements.

  7. Study of the Outflow and Disk surrounding a Post-Outburst FU-Orionis Star

    NASA Astrophysics Data System (ADS)

    Mellon, Samuel N.; Perez, L. M.

    2014-01-01

    PP 13 is a fan-shaped cometary nebula located in the constellation of Perseus and embedded in the L1473 dark cloud. At optical wavelengths this region is obscured by the surrounding dark cloud, while at infrared and longer wavelengths two northern objects (PP13Na & PP13Nb) and one southern object (PP13S) are revealed. In the past, the young stellar object inside PP13S, called PP13S*, experienced an FU-Orionis type outburst due to a massive accretion episode and is currently returning to its quiescent state. Studying the FU-Orionis phase is crucial to our understanding of how low mass stars form; it is theorized that all low-mass stars go through this outburst phase while they are forming. I used CARMA 3mm interferometric observations of the PP13 region to study the continuum and molecular line emissions from PP13. With these observations, I determined the source of the previously detected outflow and learned new information about the double star system PP13Na and PP13Nb. Although I was not able to detect the accretion disk in the gas emissions, I plan to use computer modeling to help provide constraints on the properties of PP13S* and its outflow.

  8. New Method for calculating dynamical friction on a star moving through gas using Cartesian Simulations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Blackman, Eric

    2018-01-01

    Closely interacting binary stars can incur Common Envelope Evolution (CEE) when at least one of the stars enters a giant phase. The extent to which CEE leads to envelope ejection and how tight the binaries become after CEE as a function of the mass and type of the companion stars has a broad range of phenomenological implications for both low mass and high mass binary stellar systems. Global simulations of CEE are emerging, but to understand the underlying physics of CEE and make connections with analytic formalisms, it helpful to employ reduced numerical models. Here we present results and analyses from simulations of gravitational drag using a Cartesian approach. Using AstroBEAR, a parallelized hydrodynamic/MHD simulation code, we simulate a system in which a 0.1 MSun main sequence secondary star is embedded in gas characteristic of the Envelope of a 3 MSun AGB star. The relative motion of the secondary star against the stationary envelope is represented by a supersonic wind that immerses a point particle, which is initially at rest, yet gradually dragged by the wind. Our approach differs from previous related wind-tunnel work by MacLeod et al. (2015,2017) in that we allow the particle to be displaced, offering a direct measurement of the drag force from its motion. We verify the validity of our method, extract the accretion rate of material in the wake via numerical integration, and compare the results between our method and previous work. We also use the results to help constrain the efficiency parameter in widely used analytic parameterizations of CEE.

  9. Young Blue Straggler Stars in the Galactic Field

    NASA Astrophysics Data System (ADS)

    Ekanayake, Gemunu; Wilhelm, Ronald

    2018-06-01

    In this study we present an analysis of a sample of field blue straggler (BS) stars that show high ultra violet emission in their spectral energy distributions (SED): indication of a hot white dwarf (WD) companion to BS. Using photometry available in the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX ) surveys we identified 80 stars with UV excess. To determine the parameter distributions (mass, temperature and age) of the WD companions, we developed a fitting routine that could fit binary model SEDs to the observed SED. Results from this fit indicate the need for a hot WD companion to provide the excess UV flux. The WD mass distribution peaks at ˜0.4 M⊙, suggesting the primary formation channel of field BSs is case B mass transfer, i.e. when the donor star is in red giant phase of its evolution. Based on stellar evolutionary models, we estimate the lower limit of the binary mass transfer efficiency to be β ˜ 0.5.

  10. Silicate Crystal Formation in the Disk of an Erupting Star Artist Concept

    NASA Image and Video Library

    2009-05-13

    This artist's concept illustrates how silicate crystals like those found in comets can be created by an outburst from a growing star. The image shows a young sun-like star encircled by its planet-forming disk of gas and dust. The silicate that makes up most of the dust would have begun as non-crystallized, amorphous particles. Streams of material are seen spiraling from the disk onto the star increasing its mass and causing the star to brighten and heat up dramatically. The outburst causes temperatures to rise in the star's surrounding disk. The animation (figure 1) zooms into the disk to show close-ups of silicate particles. When the disk warms from the star's outburst, the amorphous particles of silicate melt. As they cool off, they transform into forsterite (figure 2), a type of silicate crystal often found in comets in our solar system. In April 2008, NASA's Spitzer Space Telescope detected evidence of this process taking place on the disk of a young sun-like star called EX Lupi. http://photojournal.jpl.nasa.gov/catalog/PIA12008

  11. Photometric search for variable stars in the young open cluster Berkeley 59

    NASA Astrophysics Data System (ADS)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period <15 d. The classical T Tauri stars are found to have a larger amplitude than the weak-line T Tauri stars. There is an indication that the amplitude decreases with an increase in mass, which could be due to the dispersal of the discs of relatively massive stars.

  12. Molecular gas mass and star formation of 12 Virgo spiral galaxies along the ram pressure time sequence

    NASA Astrophysics Data System (ADS)

    Chung, Eun Jung; Kim, S.

    2014-01-01

    The ram pressure stripping is known as one of the most efficient mechanisms to deplete the ISM of a galaxy in the clusters of galaxies. As being affected continuously by ICM pressure, a galaxy may lose their gas that is the fuel of star formation, and consequently star formation rate would be changed. We select twelve Virgo spiral galaxies according to their stage of the ram pressure stripping event to probe possible consequences of star formation of spiral galaxies in the ram pressure and thus the evolution of galaxies in the Virgo cluster. We investigate the molecular gas properties, star formation activity, and gas depletion time along the time from the ram pressure peak. We also discussed the evolution of galaxies in the cluster.

  13. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up themore » generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.« less

  14. Fundamental Parameters of Nearby Young Stars

    NASA Astrophysics Data System (ADS)

    McCarthy, Kyle; Wilhelm, R. J.

    2013-06-01

    We present high resolution (R ~ 60,000) spectroscopic data of F and G members of the nearby, young associations AB Doradus and β Pictoris obtained with the Cross-Dispersed Echelle Spectrograph on the 2.7 meter telescope at the McDonald Observatory. Effective temperatures, log(g), [Fe/H], and microturbulent velocities are first estimated using the TGVIT code, then finely tuned using MOOG. Equivalent width (EW) measurements were made using TAME alongside a self-produced IDL routine to constrain EW accuracy and improve computed fundamental parameters. MOOG is also used to derive the chemical abundance of several elements including Mn which is known to be over abundant in planet hosting stars. Vsin(i) are also computed using a χ2 analysis of our observed data to Atlas9 model atmospheres passed through the SPECTRUM spectral synthesis code on lines which do not depend strongly on surface gravity. Due to the limited number of Fe II lines which govern the surface gravity fit in both TGVIT and MOOG, we implement another χ2 analysis of strongly log(g) dependent lines to ensure the values are correct. Coupling the surface gravities and temperatures derived in this study with the luminosities found in the Tycho-2 catalog, we estimate masses for each star and compare these masses to several evolutionary models to begin the process of constraining pre-main sequence evolutionary models.

  15. Searching for Young Stars in Cepheus C

    NASA Astrophysics Data System (ADS)

    Evans, Sam; Rebull, Luisa; Rutherford, Thomas; Stalnaker, Olivia; Taylor, John; Efsits, Gabriel; Harl, Linda; Keil, Shayna; Learman, Duncan; Leonard, Liam; Russell, Aaron

    2018-01-01

    We used archival Herschel Space Observatory data to search for young stellar objects (YSOs) in the Cepheus C region of the molecular cloud Cepheus OB3. Previous work by Gutermuth et al. (2009) identified 114 YSO candidates in this region based on Spitzer/IRAC data. Work by Orr et al. (2016) refined a list of approximately 300 young star candidates to 245 likely YSOs. Our initial search focused on longer infrared wavelength data – Herschel (70, 160, 250, 350, 500 μm) archival data and SCUBA (450, 850 μm) data from the literature (DiFrancesco et al. 2008). Through image inspection and catalog matching, we assembled a list of 54 candidate YSOs detected at wavelengths longer than 22 μm. For each source, we constructed a spectral energy distribution (SED) by aggregating available shorter wavelength data from the literature and assembling photometry from released PACS catalogs, preliminary SPIRE catalogs, and our own photometric measurements. We also created color-color and color-magnitude diagrams to see how these sources compared to each other, other populations of YSOs, and objects in extragalactic regions. Each source was then classified based on its SED shape and its locations on color-color and color-magnitude diagrams. From the initial list of 54 candidates, we suspect all are likely YSOs, some of which are very embedded; ~40% are likely SED Class I or 0. Approximately 20% of the 54 sources have not been previously identified. By beginning the investigation of YSOs in this region, we are adding to the body of YSO knowledge which can be used to understand the process of star formation. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  16. A Sleeping Giant Awakened: Reignition of AGN Activity, Reborn Star Formation, and a Multiphase Outflow in one of the Largest Radio Galaxies Known

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant; O'Dea, Christopher; Labiano, Alvaro; Baum, Stefi; McDermid, Richard; Combes, Francoise; Garcia-Burillo, Santiago; Davis, Timothy

    2014-08-01

    3C 236 is the second largest known radio galaxy and one of the largest objects in the known Universe. Its central AGN has recently reignited after a 10 Myr dormancy period, giving rise to a very young and compact radio source and a 1000 km/sec outflow of warm ionized and atomic HI gas. We propose GMOS-N IFU observations to resolve this outflow, determine its driver, and estimate the relative coupling efficiencies between the warm ionized, atomic, and cold molecular gas phases. We will assemble a much-needed spatially resolved Balmer decrement (extinction map) across the dramatic double dust lanes of this source, enabling high spatial resolution star formation rate, efficiency, and gas excitation and velocity maps. These will address several mysteries related to the very high star formation efficiency and the unique nature of the multiphase outflow in this source. 3C 236 is such a remarkable galaxy that whatever the results of the proposed observations, they will have wide-ranging implications for the triggering of star formation and AGN activity, their possibly coupled co-evolution, and the feedback effects of the latter on the former.

  17. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  18. Star Formation and Young Population of the H II Complex Sh2-294

    NASA Astrophysics Data System (ADS)

    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Chauhan, N.; Jose, J.; Pandey, B.

    2012-08-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M ⊙) YSOs; however, we also detected a massive YSO (~9 M ⊙) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ~ 4.5 × 106 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ~4 × 106 yr B0 main-sequence star.

  19. Molecular cloud-scale star formation in NGC 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan

    2014-07-01

    We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily tomore » the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.« less

  20. Multiplicity Among Young Brown Dwarfs and Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Ahmic, Mirza; Jayawardhana, R.; Brandeker, A.; Scholz, A.; van Kerkwijk, M. H.; Delgado-Donate, E.; Froebrich, D.

    2007-05-01

    Characterizing multiplicity in the very low mass (VLM) domain is a topic of much current interest and fundamental importance. Here we report on a near-infrared adaptive optics imaging survey of 28 young brown dwarfs and VLM stars, 26 of which are in the Chamaeleon I star-forming region, using the ESO Very Large Telescope. Our findings in Cha I -- the low multiplicity frequency of 8%, the preference for equal mass pairs, and the lack of wide binaries -- are strikingly similar to what has previously been reported for VLM objects in the field and in open clusters. Thus, we argue that there is no significant evolution of multiplicity with age among brown dwarfs and VLM stars between a few Myr to several Gyr. Instead, the observations to date suggest that VLM objects are either less likely to be born in wide multiple systems than solar mass stars or such systems are disrupted very early (within the first couple of Myr). Our results also imply that systems like 2MASSW J1207334-393254 and Oph 162225-240515, with planetary mass companions at wide separations, are rare. This research was supported by an NSERC grant, University of Toronto research funds and the Ontario Graduate Scholarship.

  1. An UXor among FUors: Extinction-related Brightness Variations of the Young Eruptive Star V582 Aur

    NASA Astrophysics Data System (ADS)

    Ábrahám, P.; Kóspál, Á.; Kun, M.; Fehér, O.; Zsidi, G.; Acosta-Pulido, J. A.; Carnerero, M. I.; García-Álvarez, D.; Moór, A.; Cseh, B.; Hajdu, G.; Hanyecz, O.; Kelemen, J.; Kriskovics, L.; Marton, G.; Mező, Gy.; Molnár, L.; Ordasi, A.; Rodríguez-Coira, G.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Szegedi-Elek, E.; Szing, A.; Farkas-Takács, A.; Vida, K.; Vinkó, J.

    2018-01-01

    V582 Aur is an FU Ori-type young eruptive star in outburst since ∼1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the outbursting object, explore its environment, and analyze the temporal evolution of the eruption. We are particularly interested in the physical origin of the two deep photometric dips, one that occurred in 2012 and one that is ongoing since 2016. We collected archival photographic plates and carried out new optical, infrared, and millimeter-wave photometric and spectroscopic observations between 2010 and 2018, with a high sampling rate during the current minimum. Besides analyzing the color changes during fading, we compiled multiepoch spectral energy distributions and fitted them with a simple accretion disk model. Based on pre-outburst data and a millimeter continuum measurement, we suggest that the progenitor of the V582 Aur outburst is a low-mass T Tauri star with average properties. The mass of an unresolved circumstellar structure, probably a disk, is 0.04 M ⊙. The optical and near-infrared spectra demonstrate the presence of hydrogen and metallic lines, show the CO band head in absorption, and exhibit a variable Hα profile. The color variations strongly indicate that both the ∼1 yr long brightness dip in 2012 and the current minimum since 2016 are caused by increased extinction along the line of sight. According to our accretion disk models, the reddening changed from A V = 4.5 to 12.5 mag, while the accretion rate remained practically constant. Similarly to the models of the UXor phenomenon of intermediate- and low-mass young stars, orbiting disk structures could be responsible for the eclipses.

  2. Chandra Detection of an Evolved Population of Young Stars in Serpens South

    NASA Astrophysics Data System (ADS)

    Winston, E.; Wolk, S. J.; Gutermuth, R.; Bourke, T. L.

    2018-06-01

    We present a Chandra study of the deeply embedded Serpens South star-forming region, examining cluster structure and disk properties at the earliest stages. In total, 152 X-ray sources are detected. Combined with Spitzer and 2MASS photometry, 66 X-ray sources are reliably matched to an IR counterpart. We identify 21 class I, 6 flat spectrum, 16 class II, and 18 class III young stars; 5 were unclassified. Eighteen sources were variable in X-rays, 8 exhibiting flare-like emission and one source being periodic. The cluster’s X-ray luminosity distance was estimated: the best match was to the nearer distance of 260 pc for the front of the Aquila Rift complex. The ratio of N H to A K is found to be ∼0.68 × 1022, similar to that measured in other young low-mass regions, but lower than that measured in the interstellar medium and high-mass clusters (∼(1.6–2) × 1022). We find that the spatial distribution closely follows that of the dense filament from which the stars have formed, with the class II population still strongly associated with the filament. There are four subclusters in the field, with three forming knots in the filament, and a fourth to the west, which may not be associated but may be contributing to the distributed class III population. A high percentage of diskless class IIIs (upper limit 30% of classified X-ray sources) in such a young cluster could indicate that processing of disks is influenced by the cluster environment and is not solely dependent on timescale.

  3. Obscuring and Feeding Supermassive Black Holes with Evolving Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Burkert, A.; Krause, M.; Camenzind, M.; Meisenheimer, K.; Davies, R. I.

    2010-05-01

    Recently, high-resolution observations made with the help of the near-infrared adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centers of a sample of Seyfert galaxies. With the help of high-resolution hydrodynamical simulations with the pluto code, we follow the evolution of such clusters, especially focusing on mass and energy feedback from young stars. This leads to a filamentary inflow of gas on large scales (tens of parsecs), whereas a turbulent and very dense disk builds up on the parsec scale. Here we concentrate on the long-term evolution of the nuclear disk in NGC 1068 with the help of an effective viscous disk model, using the mass input from the large-scale simulations and accounting for star formation in the disk. This two-stage modeling enables us to connect the tens-of-parsecs scale region (observable with SINFONI) with the parsec-scale environment (MIDI observations). At the current age of the nuclear star cluster, our simulations predict disk sizes of the order 0.8 to 0.9 pc, gas masses of order 106 M⊙, and mass transfer rates through the inner boundary of order 0.025 M⊙ yr-1, in good agreement with values derived from observations.

  4. An Introduction to the Gas Phase

    NASA Astrophysics Data System (ADS)

    Vallance, Claire

    2017-11-01

    'An Introduction to the Gas Phase' is adapted from a set of lecture notes for a core first year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behaviour of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.

  5. The RMS survey: galactic distribution of massive star formation

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Figura, C. C.; Moore, T. J. T.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Oudmaijer, R. D.

    2014-01-01

    We have used the well-selected sample of ˜1750 embedded, young, massive stars identified by the Red MSX Source (RMS) survey to investigate the Galactic distribution of recent massive star formation. We present molecular line observations for ˜800 sources without existing radial velocities. We describe the various methods used to assign distances extracted from the literature and solve the distance ambiguities towards approximately 200 sources located within the solar circle using archival H I data. These distances are used to calculate bolometric luminosities and estimate the survey completeness (˜2 × 104 L⊙). In total, we calculate the distance and luminosity of ˜1650 sources, one third of which are above the survey's completeness threshold. Examination of the sample's longitude, latitude, radial velocities and mid-infrared images has identified ˜120 small groups of sources, many of which are associated with well-known star formation complexes, such as G305, G333, W31, W43, W49 and W51. We compare the positional distribution of the sample with the expected locations of the spiral arms, assuming a model of the Galaxy consisting of four gaseous arms. The distribution of young massive stars in the Milky Way is spatially correlated with the spiral arms, with strong peaks in the source position and luminosity distributions at the arms' Galactocentric radii. The overall source and luminosity surface densities are both well correlated with the surface density of the molecular gas, which suggests that the massive star formation rate per unit molecular mass is approximately constant across the Galaxy. A comparison of the distribution of molecular gas and the young massive stars to that in other nearby spiral galaxies shows similar radial dependences. We estimate the total luminosity of the embedded massive star population to be ˜0.76 × 108 L⊙, 30 per cent of which is associated with the 10 most active star-forming complexes. We measure the scaleheight as a

  6. H ii REGION G46.5-0.2: THE INTERPLAY BETWEEN IONIZING RADIATION, MOLECULAR GAS, AND STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paron, S.; Ortega, M. E.; Dubner, G.

    2015-06-15

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from themore » Galactic Ring Survey ({sup 13}CO J = 1–0) and from the James Clerk Maxwell Telescope data archive ({sup 12}CO, {sup 13}CO, C{sup 18}O J = 3–2, HCO{sup +}, and HCN J = 4–3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10′ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.« less

  7. HR 6094: A Young, Solar-Type, Solar-Metallicity Barium Dwarf Star

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; da Silva, L.

    1997-02-01

    The young solar-type star HR 6094 is found to be a barium dwarf, overabundant in the s-process elements as well as deficient in C. It is a member of the solar-metallicity, 0.3 Gyr old Ursa Major kinematical group. Measurements of radial velocity and ultraviolet flux do not support the attribution of such abundance anomalies to an unseen degenerate companion. A common proper motion, V = 10, DA white dwarf (WD), located 5360 AU away, however, strongly supports the explanation of the origin of this barium star by the process of mass transfer in a binary system, in which the secondary component accreted matter from the primary one (now the WD) when it was an asymptotic giant branch (AGB) star self-enriched in the s-process elements. The membership in the UMa group of another s-process-rich and C-deficient star, HR 2047, suggests that these stars could have formed a multiple system in the past, which was disrupted by the mass-loss episode of the former AGB star. Their [C/Fe] deficiency could be explained by the action of the hot-bottomed envelope burning process in the late AGB, thereby reconverting it from a C-rich to an O-rich star, depleting C while enriching its envelope with Li and neutron capture elements. This is the first identification of the barium phenomenon in a near-zero-age star, besides being the first barium system in which the remnant of the late AGB star responsible for the heavy-element enrichment may have been directly spotted. Observations collected at the Cerro Tololo Inter-American Observatory (CTIO), Chile, and at the Observatório do Pico dos Dias, operated by the CNPq/Laboratório Nacional de Astrofísica, Brazil.

  8. Star formation and gas inflows in the OH Megamaser galaxy IRAS03056+2034

    NASA Astrophysics Data System (ADS)

    Hekatelyne, C.; Riffel, Rogemar A.; Sales, Dinalva; Robinson, Andrew; Storchi-Bergmann, Thaisa; Kharb, Preeti; Gallimore, Jack; Baum, Stefi; O'Dea, Christopher

    2018-06-01

    We have obtained observations of the OH Megamaser galaxy IRAS03056+0234 using Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU), Very Large Array (VLA) and Hubble Space Telescope (HST). The HST data reveals spiral arms containing knots of emission associated to star forming regions. The GMOS-IFU data cover the spectral range of 4500 to 7500 Å at a velocity resolution of 90 km s-1 and spatial resolution of 506 pc. The emission-line flux distributions reveal a ring of star forming regions with radius of 786 pc centred at the nucleus of the galaxy, with an ionized gas mass of 1.2× 108M⊙, an ionizing photon luminosity of log Q[H+]=53.8 and a star formation rate of 4.9 M⊙ yr-1. The emission-line ratios and radio emission suggest that the gas at the nuclear region is excited by both starburst activity and an active galactic nucleus. The gas velocity fields are partially reproduced by rotation in the galactic plane, but show, in addition, excess redshifts to the east of the nucleus, consistent with gas inflows towards the nucleus, with velocity of ˜45 km s-1 and a mass inflow rate of ˜7.7 × 10-3 M⊙ yr-1.

  9. Radiation pressure in super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  10. Accretion as a function of Orbital Phase in Young Close Binaries

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, G.; Johns-Krull, C. M.; Mathieu, R. D.; Vodniza, A.; Tofflemire, B. M.

    2014-01-01

    Many planets are known to reside around binaries and the study of young binary systems is crucial to understand their formation. Young ($<10$ Myrs) low-mass binaries are generally surrounded by circumbinary disk with an inner gap. Gas from the disk must cross this gap for accretion to take place and here we present observations of this process as a function of orbital phase. We have obtained time-resolved FUV and NUV spectroscopy (1350 to 3000 A) of DQ Tau and UZ Tau E, using the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. Each target was observed 2 to 4 times per binary orbit, over three or four consecutive orbits. For DQ Tau, we find some evidence that accretion occurs equally into both binary members, while for UZ Tau E this is not the case. H2 emission for DQ Tau most likely originates within the circumbinary gap, while for UZ Tau E no 1000 K gas is detected within the gap, although magnetospheric accretion does take place.

  11. The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Meidt, Sharon E.; Colombo, Dario; Chandar, Rupali; Dobbs, Clare L.; García-Burillo, Santiago; Hughes, Annie; Leroy, Adam K.; Pety, Jérôme; Querejeta, Miguel; Kramer, Carsten; Schuster, Karl F.

    2017-02-01

    The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H II regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure with a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.

  12. Resolved photometry of extragalactic young massive star clusters

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; de Mink, S. E.; Eldridge, J. J.; Langer, N.; Bastian, N.; Seth, A.; Smith, L. J.; Brodie, J.; Efremov, Yu. N.

    2011-08-01

    Aims: We present colour-magnitude diagrams (CMDs) of young massive star clusters in several galaxies located well beyond the Local Group. The richness of these clusters allows us to obtain large samples of post-main sequence stars and test how well the observed CMDs are reproduced by canonical stellar isochrones. Methods: We use imaging of seven clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793 obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope and carry out PSF-fitting photometry of individual stars in the clusters. The clusters have ages in the range ~(5-50) × 106 years and masses of ~105 M⊙-106 M⊙. Although crowding prevents us from obtaining photometry in the inner regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. Results: In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. We find that this spread can be reproduced by including an age spread of ~(10-30) × 106 years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role. Conclusions: Colour-magnitude diagrams can be successfully obtained for massive star

  13. Observed Luminosity Spread in Young Clusters and FU Ori Stars: A Unified Picture

    NASA Astrophysics Data System (ADS)

    Baraffe, I.; Vorobyov, E.; Chabrier, G.

    2012-09-01

    The idea that non-steady accretion during the embedded phase of protostar evolution can produce the observed luminosity spread in the Herzsprung-Russell diagram (HRD) of young clusters has recently been called into question. Observations of FU Ori, for instance, suggest an expansion of the star during strong accretion events, whereas the luminosity spread implies a contraction of the accreting objects, decreasing their radiating surface. In this paper, we present a global scenario based on calculations coupling episodic accretion histories derived from numerical simulations of collapsing cloud prestellar cores of various masses and subsequent protostar evolution. Our calculations show that, assuming an initial protostar mass Mi ~ 1 M Jup, typical of the second Larson's core, both the luminosity spread in the HRD and the inferred properties of FU Ori events (mass, radius, accretion rate) can be explained by this scenario, providing two conditions. First, there must be some variation within the fraction of accretion energy absorbed by the protostar during the accretion process. Second, the range of this variation should increase with increasing accretion burst intensity and thus with the initial core mass and final star mass. The numerical hydrodynamics simulations of collapsing cloud prestellar cores indeed show that the intensity of the accretion bursts correlates with the mass and initial angular momentum of the prestellar core. Massive prestellar cores with high initial angular momentum are found to produce intense bursts characteristic of FU Ori-like events. Our results thus suggest a link between the burst intensities and the fraction of accretion energy absorbed by the protostar, with some threshold in the accretion rate, of the order of 10-5 M ⊙ yr-1, delimitating the transition from "cold" to "hot" accretion. Such a transition might reflect a change in the accretion geometry with increasing accretion rate, i.e., a transition from magnetospheric or thin

  14. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NASA Astrophysics Data System (ADS)

    Wang, K.-S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    2012-07-01

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. Aims: This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. Methods: We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20 000 L⊙) high-mass (10-16 M⊙) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H_218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. Results: At ~0.5″ (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H_218O from the warm mid-layer, and SO2 from the upper disk. Conclusions: We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion may also be an indirect evidence of disk accretion in the very inner region because of the conservation of angular momentum. The sub-Keplerian rotation discovered in our work suggests that

  15. Star formation in early-type galaxies: the role of stellar winds and kinematics.

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca

    2015-08-01

    Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in

  16. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.

    2016-07-20

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radiomore » jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H{sub 2} line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H{sub 2} emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.« less

  17. Dense gas and star formation in individual Giant Molecular Clouds in M31

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Forbrich, J.; Fritz, J.

    2018-04-01

    Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.

  18. A survey for variable young stars with small telescopes: First results from HOYS-CAPS

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Campbell-White, J.; Scholz, A.; Eislöffel, J.; Zegmott, T.; Billington, S. J.; Donohoe, J.; Makin, S. V.; Hibbert, R.; Newport, R. J.; Pickard, R.; Quinn, N.; Rodda, T.; Piehler, G.; Shelley, M.; Parkinson, S.; Wiersema, K.; Walton, I.

    2018-05-01

    Variability in Young Stellar Objects (YSOs) is one of their primary characteristics. Long-term, multi-filter, high-cadence monitoring of large YSO samples is the key to understand the partly unusual light-curves that many of these objects show. Here we introduce and present the first results of the HOYS-CAPScitizen science project which aims to perform such monitoring for nearby (d < 1 kpc) and young (age < 10 Myr) clusters and star forming regions, visible from the northern hemisphere, with small telescopes. We have identified and characterised 466 variable (413 confirmed young) stars in 8 young, nearby clusters. All sources vary by at least 0.2 mag in V, have been observed at least 15 times in V, R and I in the same night over a period of about 2 yrs and have a Stetson index of larger than 1. This is one of the largest samples of variable YSOs observed over such a time-span and cadence in multiple filters. About two thirds of our sample are classical T-Tauri stars, while the rest are objects with depleted or transition disks. Objects characterised as bursters show by far the highest variability. Dippers and objects whose variability is dominated by occultations from normal interstellar dust or dust with larger grains (or opaque material) have smaller amplitudes. We have established a hierarchical clustering algorithm based on the light-curve properties which allows the identification of the YSOs with the most unusual behaviour, and to group sources with similar properties. We discuss in detail the light-curves of the unusual objects V2492 Cyg, V350 Cep and 2MASS J21383981+5708470.

  19. An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Davis, Timothy A.; Matsushita, Satoki; Rowlands, Kate; Shabala, Stanislav S.; Allison, James R.; Ting, Yuan-Sen; Sansom, Anne E.; van der Werf, Paul P.

    2018-05-01

    Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100 Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.

  20. Long-period variable stars in NGC 147 and NGC 185 - I. Their star formation histories

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, Roya; Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib; Saremi, Elham

    2017-04-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). Close together in the sky, of similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? Here, we present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars. These represent the final phase of evolution of low- and intermediate-mass stars at the asymptotic giant branch, when their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185, we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ˜3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times. This is corroborated by the strong tidal distortions of NGC 147 and the presence of gas in the centre of NGC 185.

  1. TENTATIVE EVIDENCE FOR RELATIVISTIC ELECTRONS GENERATED BY THE JET OF THE YOUNG SUN-LIKE STAR DG Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, Rachael E.; Ray, Tom P.; Taylor, Andrew M.

    2014-09-01

    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpretmore » this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B {sub min} ≈ 0.11 mG and particle energy E {sub min} ≈ 4 × 10{sup 40} erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.« less

  2. The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid

    NASA Astrophysics Data System (ADS)

    Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand

    2018-02-01

    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.

  3. Superfluid Fermi atomic gas as a quantum simulator for the study of the neutron-star equation of state in the low-density region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji

    2018-01-01

    We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.

  4. Searching for new young stars in the Northern hemisphere: the Pisces moving group

    NASA Astrophysics Data System (ADS)

    Binks, A. S.; Jeffries, R. D.; Ward, J. L.

    2018-01-01

    Using the kinematically unbiased technique described in Binks, Jeffries & Maxted (2015), we present optical spectra for a further 122 rapidly rotating (rotation periods <6 d), X-ray active FGK stars, selected from the SuperWASP survey. We identify 17 new examples of young, probably single stars with ages of <200 Myr and provide additional evidence for a new Northern hemisphere kinematic association: the Pisces moving group (MG). The group consists of 14 lithium-rich G- and K-type stars that have a dispersion of only ∼3 km s-1 in each Galactic space velocity coordinate. The group members are approximately coeval in the colour-magnitude diagram, with an age of 30-50 Myr, and have similar, though not identical, kinematics to the Octans-Near MG.

  5. Forming the First Stars in the Universe: The Fragmentation of Primordial Gas.

    PubMed

    Bromm; Coppi; Larson

    1999-12-10

    In order to constrain the initial mass function of the first generation of stars (Population III), we investigate the fragmentation properties of metal-free gas in the context of a hierarchical model of structure formation. We investigate the evolution of an isolated 3 sigma peak of mass 2x106 M middle dot in circle that collapses at zcoll approximately 30 using smoothed particle hydrodynamics. We find that the gas dissipatively settles into a rotationally supported disk that has a very filamentary morphology. The gas in these filaments is Jeans unstable with MJ approximately 103 M middle dot in circle. Fragmentation leads to the formation of high-density (n>108 cm-3) clumps that subsequently grow in mass by accreting the surrounding gas and by merging with other clumps up to masses of approximately 104 M middle dot in circle. This suggests that the very first stars were rather massive. We explore the complex dynamics of the merging and tidal disruption of these clumps by following their evolution over a few dynamical times.

  6. Compact stars in Eddington-inspired Born-Infeld gravity: Anomalies associated with phase transitions

    NASA Astrophysics Data System (ADS)

    Sham, Y.-H.; Leung, P. T.; Lin, L.-M.

    2013-03-01

    We study how generic phase transitions taking place in compact stars constructed in the framework of the Eddington-inspired Born-Infeld (EiBI) gravity can lead to anomalous behavior of these stars. For the case with first-order phase transitions, compact stars in EiBI gravity with a positive coupling parameter κ exhibit a finite region with constant pressure, which is absent in general relativity. However, for the case with a negative κ, an equilibrium stellar configuration cannot be constructed. Hence EiBI gravity seems to impose stricter constraints on the microphysics of stellar matter. Besides, in the presence of spatial discontinuities in the sound speed cs due to phase transitions, the Ricci scalar is spatially discontinuous and contains δ-function singularities proportional to the jump in cs2 acquired in the associated phase transition.

  7. STAR FORMATION ACTIVITY IN THE GALACTIC H II COMPLEX S255-S257

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojha, D. K.; Ghosh, S. K.; Samal, M. R.

    We present results on the star formation activity of an optically obscured region containing an embedded cluster (S255-IR) and molecular gas between two evolved H II regions, S255 and S257. We have studied the complex using optical and near-infrared (NIR) imaging, optical spectroscopy, and radio continuum mapping at 15 GHz, along with Spitzer-IRAC results. We found that the main exciting sources of the evolved H II regions S255 and S257 and the compact H II regions associated with S255-IR are of O9.5-B3 V nature, consistent with previous observations. Our NIR observations reveal 109 likely young stellar object (YSO) candidates inmore » an area of {approx}4.'9 x 4.'9 centered on S255-IR, which include 69 new YSO candidates. To see the global star formation, we constructed the V - I/V diagram for 51 optically identified IRAC YSOs in an area of {approx}13' x 13' centered on S255-IR. We suggest that these YSOs have an approximate age between 0.1 and 4 Myr, indicating a non-coeval star formation. Using spectral energy distribution models, we constrained physical properties and evolutionary status of 31 and 16 YSO candidates outside and inside the gas ridge, respectively. The models suggest that the sources associated with the gas ridge are younger (mean age {approx}1.2 Myr) than the sources outside the gas ridge (mean age {approx}2.5 Myr). The positions of the young sources inside the gas ridge at the interface of the H II regions S255 and S257 favor a site of induced star formation.« less

  8. The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Schaye, Joop; Frenk, Carlos S.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; McAlpine, Stuart

    2017-02-01

    Galaxies fall into two clearly distinct types: `blue-sequence' galaxies which are rapidly forming young stars, and `red-sequence' galaxies in which star formation has almost completely ceased. Most galaxies more massive than 3 × 1010 M⊙ follow the red sequence, while less massive central galaxies lie on the blue sequence. We show that these sequences are created by a competition between star formation-driven outflows and gas accretion on to the supermassive black hole at the galaxy's centre. We develop a simple analytic model for this interaction. In galaxies less massive than 3 × 1010 M⊙, young stars and supernovae drive a high-entropy outflow which is more buoyant than any tenuous corona. The outflow balances the rate of gas inflow, preventing high gas densities building up in the central regions. More massive galaxies, however, are surrounded by an increasingly hot corona. Above a halo mass of ˜1012 M⊙, the outflow ceases to be buoyant and star formation is unable to prevent the build-up of gas in the central regions. This triggers a strongly non-linear response from the black hole. Its accretion rate rises rapidly, heating the galaxy's corona, disrupting the incoming supply of cool gas and starving the galaxy of the fuel for star formation. The host galaxy makes a transition to the red sequence, and further growth predominantly occurs through galaxy mergers. We show that the analytic model provides a good description of galaxy evolution in the EAGLE hydrodynamic simulations. So long as star formation-driven outflows are present, the transition mass scale is almost independent of subgrid parameter choice.

  9. Young Stellar Populations in MYStIX Star-forming Regions: Candidate Protostars

    NASA Astrophysics Data System (ADS)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.

    2016-12-01

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra-based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  10. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample ismore » newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.« less

  11. A HIGH-PRECISION NEAR-INFRARED SURVEY FOR RADIAL VELOCITY VARIABLE LOW-MASS STARS USING CSHELL AND A METHANE GAS CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagné, Jonathan; Plavchan, Peter; Gao, Peter

    2016-05-01

    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2–M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25–150 Myr) moving groups, the young field star ε Eridani, and 18 nearby (<25 pc) low-mass stars and achieved typical single-measurement precisions of 8–15 m s{sup −1}with a long-term stability of 15–50 m s{sup −1} over longer baselines. We obtain the best NIR RVmore » constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ∼25–50 m s{sup −1} at ≈2.3125 μ m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3 σ –5 σ . Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s{sup −1} in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.« less

  12. FEEDBACK FROM MASSIVE STARS AND GAS EXPULSION FROM PROTO-GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calura, F.; Romano, D.; D’Ercole, A.

    2015-11-20

    Globular clusters (GCs) are considerably more complex structures than previously thought, harboring at least two stellar generations that present clearly distinct chemical abundances. Scenarios explaining the abundance patterns in GCs mostly assume that originally the clusters had to be much more massive than today, and that the second generation of stars originates from the gas shed by stars of the first generation (FG). The lack of metallicity spread in most GCs further requires that the supernova-enriched gas ejected by the FG is completely lost within ∼30 Myr, a hypothesis never tested by means of three-dimensional hydrodynamic simulations. In this paper,more » we use 3D hydrodynamic simulations including stellar feedback from winds and supernovae, radiative cooling and self-gravity to study whether a realistic distribution of OB associations in a massive proto-GC of initial mass M{sub tot} ∼ 10{sup 7} M{sub ⊙} is sufficient to expel its entire gas content. Our numerical experiment shows that the coherence of different associations plays a fundamental role: as the bubbles interact, distort, and merge, they carve narrow tunnels that reach deeper and deeper toward the innermost cluster regions, and through which the gas is able to escape. Our results indicate that after 3 Myr, the feedback from stellar winds is responsible for the removal of ∼40% of the pristine gas, and that after 14 Myr, 99% of the initial gas mass has been removed.« less

  13. MYSST: Mapping Young Stars in Space and Time - The HII Complex N44 in the LMC

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios

    2016-10-01

    The stellar initial mass function (IMF), and the timescale and lengthscale of star formation (SF) are critical issues for our understanding of how stars form. Low-mass pre-main-sequence (PMS) stars, having typical contraction times on the order of a few 10 Myr, are the live chronometers of the SF process and primary informants on the low-mass IMF of their host clusters. Our studies show that young star clusters, embedded in star-forming regions of the Large Magellanic Cloud (LMC), encompass rich samples of PMS stars, sufficient to study clustered SF in low-metallicities with optical HST photometry. Yet, the lack of a complete comprehensive stellar sample retains important questions about the universality of the IMF, and the time- and length-scale of SF across a typical molecular cloud unanswered. We propose to address these issues by employing both ACS and WFC3 with their high sensitivity and spatial resolving power to obtain deep photometry (m_555 29 mag) of the LMC star-forming complex N44. We will accomplish a detailed mapping of PMS stars that will trace the whole hierarchy of star formation springing from one giant molecular cloud. Our analysis will provide an unbiased determination of the timescale for SF and the sub-solar IMF down to the hydrogen burning limit in a variety of clustering scales for the first time. Our findings will have a significant impact on our comprehensive understanding of SF in the low-metallicity environment of the LMC. We maximize the HST observing efficiency using both ACS/WFC and WFC3/UVIS in parallel for the simultaneous observations of N44, its ensemble of HII regions and their young stellar clusters in the same F555W and F814W filters.

  14. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    2015-04-01

    objects with effective temperatures greater than 1500 K are similar to the spectra of older more massive brown dwarfs at the same temperature, in contrast to objects at 1000 K that exhibit distinct L-band SEDs. The oldest object in my sample of young companions, 50 My old CD-35 2722 B, appears redder than field dwarfs with similar spectral type based on 1--2.5mum spectra. This could indicate reduced cloud opacity compared to field dwarfs at the same temperature. I also present work to better understand the supermassive blackhole at the center of our Galaxy. Astrometric monitoring of stellar orbits about the black hole have been used to sketch the gravitational potential, revealing 4 x 106 [solar masses] within a radius of 40 AU. Further constraints on the gravitational potential, and the detection of post-Newtonian effects on the stellar orbits, will require improved astrometric precision. Currently confusion noise in the crowded central cluster limits astrometric precision. Increased spatial resolution can alleviate confusion noise. Dual field phase referencing on large-aperture infrared interferometers provides the sensitivity needed to observe the Galactic center, providing the fastest route to increased spatial resolution. I present simulations of dual-field phase referencing performance with the Keck Interferometer and with the VLTI GRAVITY instrument, to describe the potential contributions each could make to Galactic center stellar astrometry. I demonstrate that the near-future GRAVITY instrument at the VLTI will have a large impact on the ability to precisely track the paths of stars orbiting there, as long as a star with K-band apparent magnitude less than 20 exists within 70 milliarcseconds of the blackhole. Many of the stars orbiting the blackhole are in a post-main sequence wind phase. The wind from these stars is feeding an accretion flow falling onto the blackhole. This flow is radiatively inefficient, producing only 10-8 times the Eddington limit. Thus our

  15. Dynamics during outburst. VLTI observations of the young eruptive star V1647 Orionis during its 2003-2006 outburst

    NASA Astrophysics Data System (ADS)

    Mosoni, L.; Sipos, N.; Ábrahám, P.; Moór, A.; Kóspál, Á.; Henning, Th.; Juhász, A.; Kun, M.; Leinert, Ch.; Quanz, S. P.; Ratzka, Th.; Schegerer, A. A.; van Boekel, R.; Wolf, S.

    2013-04-01

    Context. It is hypothesized that low-mass young stellar objects undergo eruptive phases during their early evolution. These eruptions are thought to be caused by highly increased mass accretion from the disk onto the star, and therefore play an important role in the early evolution of Sun-like stars, of their circumstellar disks (structure, dust composition), and in the formation of their planetary systems. The outburst of V1647 Ori between 2003 and 2006 offered a rare opportunity to investigate such an accretion event. Aims: By means of our interferometry observing campaign during this outburst, supplemented by other observations, we investigate the temporal evolution of the inner circumstellar structure of V1647 Ori, the region where Earth-like planets could be born. We also study the role of the changing extinction in the brightening of the object and separate it from the accretional brightening. Methods: We observed V1647 Ori with MIDI on the VLTI at two epochs in this outburst. First, during the slowly fading plateau phase (2005 March) and second, just before the rapid fading of the object (2005 September), which ended the outburst. We used the radiative transfer code MC3D to fit the interferometry data and the spectral energy distributions from five different epochs at different stages of the outburst. The comparison of these models allowed us to trace structural changes in the system on AU-scales. We also considered qualitative alternatives for the interpretation of our data. Results: We found that the disk and the envelope are similar to those of non-eruptive young stars and that the accretion rate varied during the outburst. We also found evidence for the increase of the inner radii of the circumstellar disk and envelope at the beginning of the outburst. Furthermore, the change of the interferometric visibilities indicates structural changes in the circumstellar material. We test a few scenarios to interpret these data. We also speculate that the changes

  16. Star formation in a hierarchical model for Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Sanchez, N.; Parravano, A.

    The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.

  17. Propierties of dust in circumstellar gas around Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Jiménez-Hernández, P.; Arthur, S. J.; Toalá, J. A.

    2017-11-01

    Using archive photometric observations from Herschel (70μm, 100μm, 160μm and 250μm), Spitzer (24μm) and WISE (22μm and 12μm) we obtained infrared SED's of nebulae around the Wolf-Rayet stars WR 124, WR 16 and WR 7. We used the photoionization code Cloudy to construct models of the nebulae, taking into account the spectrum of the central star and varying the density and distance of the photoionized shell as well as the size distribution and chemical composition of the dust grains mixed with the gas, and we compared the resulting SEDs with the observations in order to study the properties of the dust in these objects. We discuss whether the dust properties depend on the spectral type of the central star and the age of the nebulae.

  18. THE INFLOW SIGNATURE TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae

    2016-08-01

    We analyze both HCN J  = 1–0 and HNC J  = 1–0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar objects (HMPOs), and 54 ultra-compact H ii regions (UCHIIs). Inflow asymmetry in the HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in the blue profile. In the case of the HNC spectra, the prevalence of blue sources does not appear, apart from for IRDCs. We suggest that this line is not appropriate to trace the inflow motionmore » in the evolved stages of massive star formation, because the abundance of HNC decreases at high temperatures. This result highlights the importance of considering chemistry in dynamics studies of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., in the IRDC phase rather than in the later phases. However, mass is still inflowing onto some UCHIIs. We also find that the absorption dips of the HNC spectra in six out of seven blue sources are redshifted relative to their systemic velocities. These redshifted absorption dips may indicate global collapse candidates, although mapping observations with better resolution are needed to examine this feature in more detail.« less

  19. Finding High Quality Young Star Candidates in Ceph C using X-ray, Optical, and IR data

    NASA Astrophysics Data System (ADS)

    Orr, Laura; Rebull, Luisa M.; Johnson, Milton; Miller, Alexandra; Aragon Orozco, Anthony; Bakhaj, Benjamin; Bakshian, Jacquelyn; Chiffelle, Elizabeth; DeLint, Arie; Gerber, Stefan; Mader, Jared; Marengo, Amelia; McAdams, Jesse; Montufar, Cassandra; Orr, Quinton; San Emeterio, Lis; Stern, Eliyah; Weisserman, Drew

    2017-01-01

    We looked for new candidate young stars within the star forming region of Ceph OB3, more specifically in a region of this molecular cloud called Ceph C. While this region lies in the galactic plane and is included in several large surveys, Ceph C has not been well studied in the past and few young stellar objects (YSOs) have been identified there. The YSOVAR team (Rebull et al. 2014) has time-series monitoring data of this region, and in order to understand the diversity of the light curves, it is crucial to understand which objects in the field of view are likely YSOs, and which are foreground/background objects. The goal of our study is to identify candidate YSO sources as well as support the greater understanding of the variety, evolution, and variability of young stars. Our search for young stars includes data in X-ray, optical, and IR. Data points used are from Chandra, SDSS, IPHAS, 2MASS, Spitzer IRAC and MIPS, and WISE, giving us data over many orders of magnitude, 0.001 to 25 microns (0.36 to 25 microns without the X-rays). The catalogs were merged across all available wavelengths. Each source was inspected in all available images to insure good matches and quality of data across wavelengths and to eliminate poor candidates, those with contamination or confusion, and non-YSO objects. Spectral energy distributions (SEDs) for each candidate YSO were constructed and compared to images for greater assessment and reliable YSO identification. Color-color and color-magnitude diagrams have been created for the sources in this region and are used in conjunction with images, SEDs, X-ray, IR excess, and variability properties to identify candidate YSOs. Support provided for this work by the NASA/IPAC Teacher Archive Research Program (NITARP), which receives funding from the NASA ADP program.

  20. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, M. R.; Pandey, A. K.; Chauhan, N.

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 {mu}m observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H{sub 2} (2.12 {mu}m) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Classmore » I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H{sub 2} emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M{sub Sun }) YSOs; however, we also detected a massive YSO ({approx}9 M{sub Sun }) of Class I nature, embedded in a cloud of visual extinction of {approx}24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age {approx} 4.5 Multiplication-Sign 10{sup 6} yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a {approx}4 Multiplication-Sign 10{sup 6} yr B0 main-sequence star.« less

  1. Star Formation: Answering Fundamental Questions During the Spitzer Warm Mission Phase

    NASA Astrophysics Data System (ADS)

    Strom, Steve; Allen, Lori; Carpenter, John; Hartmann, Lee; Megeath, S. Thomas; Rebull, Luisa; Stauffer, John R.; Liu, Michael

    2007-10-01

    Through existing studies of star-forming regions, Spitzer has created rich databases which have already profoundly influenced our ability to understand the star and planet formation process on micro and macro scales. However, it is essential to note that Spitzer observations to date have focused largely on deep observations of regions of recent star formation associated directly with well-known molecular clouds located within 500 pc. What has not been done is to explore to sufficient depth or breadth a representative sample of the much larger regions surrounding the more massive of these molecular clouds. Also, while there have been targeted studies of specific distant star forming regions, in general, there has been little attention devoted to mapping and characterizing the stellar populations and star-forming histories of the surrounding giant molecular clouds (GMCs). As a result, we have yet to develop an understanding of the major physical processes that control star formation on the scale or spiral arms. Doing so will allow much better comparison of star-formation in our galaxy to the star-forming complexes that dominate the spiral arms of external galaxies. The power of Spitzer in the Warm Mission for studies of star formation is its ability to carry out large-scale surveys unbiased by prior knowledge of ongoing star formation or the presence of molecular clouds. The Spitzer Warm Mission will provide two uniquely powerful capabilities that promise equally profound advances : high sensitivity and efficient coverage of many hundreds of square degrees, and angular resolution sufficient to resolve dense groups and clusters of YSOs and to identify contaminating background galaxies whose colors mimic those of young stars. In this contribution, we describe two major programs: a survey of the outer regions of selected nearby OB associations, and a study of distant GMCs and star formation on the scale of a spiral arm.

  2. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Spatial Dynamic Range Spectral Line Mapping

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2008-01-01

    Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.

  3. YoungStar in Wisconsin: Analysis of Data as of July 2014. Executive Summary: Key Findings and Analysis

    ERIC Educational Resources Information Center

    Wisconsin Council on Children and Families, 2014

    2014-01-01

    YoungStar is a five-star quality rating system for child care providers based on education, learning environment, business methods, and practices around child health and well-being. Through this rating system, the state is addressing several key issues in Wisconsin's child care system. The rating system will: (1) Improve the overall quality of…

  4. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, A. K.; Dotter, A.; Johnson, C. I.

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}).more » The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.« less

  5. The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinnerer, Eva; Meidt, Sharon E.; Querejeta, Miguel

    2017-02-10

    The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H ii regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure withmore » a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.« less

  6. From Head to Sword: The Clustering Properties of Stars in Orion

    NASA Astrophysics Data System (ADS)

    Gomez, Mercedes; Lada, Charles J.

    1998-04-01

    We investigate the structure in the spatial distributions of optically selected samples of young stars in the Head (lambda Orionis) and in the Sword (Orion A) regions of the constellation of Orion with the aid of stellar surface density maps and the two-point angular correlation function. The distributions of young stars in both regions are found to be nonrandom and highly clustered. Stellar surface density maps reveal three distinct clusters in the lambda Ori region. The two-point correlation function displays significant features at angular scales that correspond to the radii and separations of the three clusters identified in the surface density maps. Most young stars in the lambda Ori region (~80%) are presently found within these three clusters, consistent with the idea that the majority of young stars in this region were formed in dense protostellar clusters that have significantly expanded since their formation. Over a scale of ~0.05d-0.5d the correlation function is well described by a single power law that increases smoothly with decreasing angular scale. This suggests that, within the clusters, the stars either are themselves hierarchically clustered or have a volume density distribution that falls steeply with radius. The relative lack of Hα emission-line stars in the one cluster in this region that contains OB stars suggests a timescale for emission-line activity of less than 4 Myr around late-type stars in the cluster and may indicate that the lifetimes of protoplanetary disks around young stellar objects are reduced in clusters containing O stars. The spatial distribution of young stars in the Orion A region is considerably more complex. The angular correlation function of the OB stars (which are mostly foreground to the Orion A molecular cloud) is very similar to that of the Hα stars (which are located mostly within the molecular cloud) and significantly different from that of the young stars in the lambda Ori region. This suggests that, although

  7. Young stars in ɛ Chamaleontis and their disks: disk evolution in sparse associations

    NASA Astrophysics Data System (ADS)

    Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W. A.; Sicilia-Aguilar, A.

    2013-01-01

    Context. The nearby young stellar association ɛ Cha has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. Aims: We wish to complement existing optical and near-infrared data of the ɛ Cha association, which provide the stellar properties of its members, with mid-infrared data that probe the presence, geometry, and mineralogical composition of protoplanetary disks around individual stars. Methods: We combine the available literature data with our Spitzer/IRS spectroscopy and VLT/VISIR imaging data. We use proper motions to refine the membership of ɛ Cha. Masses and ages of individual stars are estimated by fitting model atmospheres to the optical and near-infrared photometry, followed by placement in the Hertzsprung-Russell diagram. The Spitzer/IRS spectra are analyzed using the two-layer temperature distribution spectral decomposition method. Results: Two stars previously identified as members, CXOU J120152.8 and 2MASS J12074597, have proper motions that are very different from those of the other stars. But other observations suggest that the two stars are still young and thus might still be related to ɛ Cha. HD 104237C is the lowest mass member of ɛ Cha with an estimated mass of ~13-15 Jupiter masses. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions, pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination, where the central star is effectively screened by the cold outer parts of a flared disk, but the 10 μm radiation of the warm inner disk can still reach us. We find that the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C2H2 rovibrational band around 13.7 μm on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all

  8. The ALMA and HST Views of the Molecular Gas and Star Formation in the Prototypical Barred Spiral Galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Kim, Taehyun; Kohno, Kotaro; Martin, Sergio; Villard, Eric; Onishi, Kyoko

    2016-01-01

    We mapped the entire inner disk of NGC 1097 (the circumnuclear ring, bar ends, the bar and inner spiral arms) using ALMA in the CO J=1-0 line at resolution of 1" (~65 pc). We also mapped the northern half of the bar in every other common molecular gas tracer at 3mm (HCN, HCO+, C18O, 13CO, C34S). Together these data provide the most detailed and highest resolution map of the molecular gas distribution and kinematics in a nearby barred spiral, rivalling the incredible maps seen for galaxies like M51 in the northern hemisphere. The data show the impact of the different environments in the galaxy as well as evidence for a multi-phased molecular medium. The data also evidence how the shear induced by the bar shock completely inhibits the star formation activity in the inner ends of the bar (clearly showing an anti-correlation between the strength of the CO line emission and Halpha emission). We will also present multiwavelength HST observations of the galaxy which are used to identify and map star clusters across the inner disk of the galaxy. We use these data to understand how star formation proceeds from one environment to the next across the galaxy.

  9. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo anmore » RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.« less

  10. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.

    2014-03-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the samemore » unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.« less

  11. Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon

    2018-01-01

    We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.

  12. Clouds in Context: The Cycle of Gas and Stars in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles; Forbrich, Jan

    2015-08-01

    The physical process by which gas is converted into stars takes place on small scales within Giant Molecular Clouds (GMCs), while the formation and evolution of these GMCs is influenced by global, galactic-scale processes. It is thus of key importance to connect GMC (~10 pc) and galaxy (~10 kpc) scales in order to approach a fundamental understanding of the star formation process. With this goal in mind, we have conducted a multiscale, comprehensive, multiwavelength study of the interstellar medium and star formation in the nearby (d~1.9 Mpc) spiral galaxy NGC 300. We have fully mapped the dust content within this star-forming galaxy with the Herschel Space Observatory, combining these observations with archival Spitzer data to construct a high-sensitivity, ~250 pc-scale map of the column density and dust temperature across the entire NGC 300 disk. We find that peaks in the dust temperature generally correspond with active star-forming regions, and use our Herschel data along with pointed CO(2-1) observations from APEX to characterize the ISM in these regions. To derive star formation rates from ultraviolet, visible, and infrared photometry, we have developed a new method that utilizes population synthesis modeling of individual stellar populations and accounts for both the presence of extinction and the short (< 10 Myr) timescales appropriate for cloud-scale star formation. We find that the average molecular gas depletion time at GMC complex scales in NGC 300 is similar to that of Milky Way clouds, but significantly shorter than depletion times measured over kpc-sized regions in nearby galaxies. This difference likely reflects the presence of a diffuse, non-star-forming component of molecular gas between GMCs, as well as the fact that star formation is strongly concentrated in discrete regions within galaxies. I will also present first results from follow-up interferometric observations with the SMA and ALMA that resolve individual GMCs in NGC 300 for the first

  13. Young Stellar Grouping in Cygnus X

    NASA Image and Video Library

    2017-12-08

    Cygnus X hosts many young stellar groupings. The combined outflows and ultraviolet radiation from the region's numerous massive stars have heated and pushed gas away from the clusters, producing cavities of hot, lower-density gas. In this 8-micron infrared image, ridges of denser gas mark the boundaries of the cavities. Bright spots within these ridges show where stars are forming today. Credit: NASA/IPAC/MSX To read more go to: www.nasa.gov/mission_pages/GLAST/news/cygnus-cocoon.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. NuSTAR Observations of X-Ray Flares from Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Vievering, Juliana; Glesener, Lindsay; Grefenstette, Brian; Smith, David

    2018-01-01

    Young stellar objects (YSOs), which tend to flare more frequently and at higher temperatures than what is typically observed on Sun-like stars, are excellent targets for studying the physical processes behind large flaring events. In the hard x-ray regime, radiation can penetrate through dense circumstellar material, and it is possible to measure thermal emission from hot plasma and to search for nonthermal emission from accelerated particles, which are key components for understanding the nature of energy release in these flares. Additionally, high-energy x-ray emission can ionize material in the disk, which may have implications for planet formation. To investigate hard x-ray emission from YSOs, three 50ks observations of a star-forming region called rho Ophiuchi have been taken with the Nuclear Spectroscopic Telescope Array (NuSTAR). Through use of direct focusing optics, NuSTAR provides unprecedented sensitivity in the hard x-ray regime, making these YSO observations the first of their kind. Multiple stellar flares have been identified in the data set; here we present the current spectral and timing analyses of the brightest of the these events, exploring the way energy is released as well as the effects of these large flares on the surrounding environment.

  15. An intriguing young-looking dwarf galaxy

    NASA Image and Video Library

    2015-03-16

    The bright streak of glowing gas and stars in this NASA/ESA Hubble Space Telescope image is known as PGC 51017, or SBSG 1415+437. It is type of galaxy known as a blue compact dwarf. This particular dwarf is well studied and has an interesting star formation history. Astronomers initially thought that SBS 1415+437 was a very young galaxy currently undergoing its very first burst of star formation, but more recent studies have suggested that the galaxy is in fact a little older, containing stars over 1.3 billion years old. Starbursts are an area of ongoing research for astronomers — short-lived and intense periods of star formation, during which huge amounts of gas within a galaxy are hungrily used up to form newborn stars. They have been seen in gas-rich disc galaxies, and in some lower-mass dwarfs. However, it is still unclear whether all dwarf galaxies experience starbursts as part of their evolution. It is possible that dwarf galaxies undergo a star formation cycle, with bursts occurring repeatedly over time. SBS 1415+437 is an interesting target for another reason. Dwarf galaxies like this are thought to have formed early in the Universe, producing some of the very first stars before merging together to create more massive galaxies. Dwarf galaxies which contain very few of the heavier elements formed from having several generations of stars, like SBS 1415+437, remain some of the best places to study star-forming processes similar to those thought to occur in the early Universe. However, it seems that our nearby patch of the Universe may not contain any galaxies that are currently undergoing their first burst of star formation. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Nick Rose.

  16. DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY VARIATIONS IN THE ANTENNAE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigiel, F.; Leroy, A. K.; Blitz, L.

    2015-12-20

    We use the Combined Array for Research in Millimeter-wave Astronomy (CARMA) millimeter interferometer to map the Antennae Galaxies (NGC 4038/39), tracing the bulk of the molecular gas via the {sup 12}CO(1–0) line and denser molecular gas via the high density transitions HCN(1–0), HCO{sup +}(1–0), CS(2–1), and HNC(1–0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified “supergiant molecular clouds.” We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formationmore » efficiency (star formation rate/H{sub 2} ∝ IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of six within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in millimeter-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO{sup +} (1–0) emission is stronger than HCN (1–0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.« less

  17. Bright Young Star Clusters in NGC5253 with LEGUS

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica

    2016-01-01

    Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  18. The Structure of the Young Star Cluster NGC 6231. I. Stellar Population

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Medina, Nicolás; Getman, Konstantin V.; Feigelson, Eric D.; Gromadzki, Mariusz; Borissova, Jordanka; Kurtev, Radostin

    2017-09-01

    NGC 6231 is a young cluster (age ˜2-7 Myr) dominating the Sco OB1 association (distance ˜1.59 kpc) with ˜100 O and B stars and a large pre-main-sequence stellar population. We combine a reanalysis of archival Chandra X-ray data with multiepoch near-infrared (NIR) photometry from the VISTA Variables in the Vía Lactéa (VVV) survey and published optical catalogs to obtain a catalog of 2148 probable cluster members. This catalog is 70% larger than previous censuses of probable cluster members in NGC 6231. It includes many low-mass stars detected in the NIR but not in the optical and some B stars without previously noted X-ray counterparts. In addition, we identify 295 NIR variables, about half of which are expected to be pre-main-sequence stars. With the more complete sample, we estimate a total population in the Chandra field of 5700-7500 cluster members down to 0.08 {M}⊙ (assuming a universal initial mass function) with a completeness limit at 0.5 {M}⊙ . A decrease in stellar X-ray luminosities is noted relative to other younger clusters. However, within the cluster, there is little variation in the distribution of X-ray luminosities for ages less than 5 Myr. The X-ray spectral hardness for B stars may be useful for distinguishing between early-B stars with X-rays generated in stellar winds and B-star systems with X-rays from a pre-main-sequence companion (>35% of B stars). A small fraction of catalog members have unusually high X-ray median energies or reddened NIR colors, which might be explained by absorption from thick or edge-on disks or being background field stars.

  19. Gas Flow and Star Formation in the Centre of the Milky Way : Investigations with Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lucas, William Evan

    2015-06-01

    The centre of the Milky Way, commonly referred to as the Galactic Centre, is roughly that region within 500 pc of the central black hole, Sagittarius A*. Within the innermost parsec around the supermassive black hole Sagittarius A* are more than a hundred massive young stars whose orbits align to form one or possibly two discs. At about 100 pc is a ring containing more than ten million solar masses of molecular gas which could be the origin of some of the most massive star clusters in the Galaxy. I have performed a number of numerical simulations to help us understand how it is that these structures may have been formed. I firstly describe and test an improvement to the smoothed particle hydrodynamics code I used. This improves conservation of energy and momentum in certain situations such as in strong shocks from supernovae, which were to be included in a later chapter. The discs of massive stars around Sagittarius A* are believed to have been born there within fragmenting gaseous discs. This is problematic, as the formation of two stellar discs would require two gaseous counterparts. A method is described of forming multiple discs around a black hole from a single cloud's infall and subsequent tidal destruction. This is due to its prolate shape providing a naturally large distribution in the direction of the angular momentum vectors within the cloud. The resulting discs may then go on to form stars. Energetically, it would appear that a sequence of supernovae could potentially cause a giant molecular cloud to fall inwards towards the central black hole from an originally large orbit around the Galactic Centre. I simulate the impact on a giant molecular cloud of supernovae originating from a massive stellar cluster located a parsec away. Ultimately, the supernovae are found to have little effect. Finally, I simulate the formation of the dense ring of clouds observed in the Central Molecular Zone at a distance of about 100 pc from Sgr A*. Infalling gas is shown to

  20. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    NASA Astrophysics Data System (ADS)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.

  1. Resolving Star Formation, Multiphase ISM Structure, and Wind Driving with MHD and RHD Models of Galactic Disks

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve

    Current studies of star and galaxy formation have concluded that energetic feedback from young stars and supernovae (SNe) is crucial, both for controlling observed interstellar medium (ISM) properties and star formation rates in the Milky Way and other galaxies, and for driving galactic winds that govern the baryon abundance in dark matter halos. However, in many numerical studies of the ISM, energy inputs have not been implemented self-consistently with the evolving rate of gravitational collapse to make stars, or have considered only isolated star-forming clouds without a realistic galactic environment (including sheared rotation and externally-originating SNe), or have not directly incorporated radiation, magnetic, and chemical effects that are important or even dominant. In models of galaxy formation and evolution in the cosmic context, galactic winds are indispensable but highly uncertain as the physics of superbubble evolution and radiation-gas interactions cannot be resolved. Our central objectives are (1) to address the above limitations of current models, developing self-consistent simulations of the multiphase ISM in disk galaxies that resolve both star formation and stellar feedback, covering the range of scales needed to connect star cluster formation to galactic superwind ejection, and the range of environments from dwarfs to ULIRGs; and (2) to analyze the detailed properties of the gas, magnetic field, radiation field, and star formation/SNe in our simulations, including dependencies on local galactic disk environment, and to connect intrinsic properties with observable diagnostics. The proposed project will employ the Athena code for numerical magneto-hydrodynamic (MHD) and radiation-hydrodynamic (RHD) simulations, using comprehensive physics modules that have been developed, tested, and demonstrated in sample simulations. We will consider local ``shearing box'' disk models with gas surface density Sigma = 2 - 10,000 Msun/pc^2, and a range of stellar

  2. What Determines Star Formation Rates?

    NASA Astrophysics Data System (ADS)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  3. Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-05-01

    Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

  4. Stars Form Surprisingly Close to Milky Way's Black Hole

    NASA Astrophysics Data System (ADS)

    2005-10-01

    million low mass, sun-like stars in and around the ring, whereas in the disk model, the number of low mass stars could be much less. Nayakshin and his coauthor, Rashid Sunyaev of the Max Plank Institute for Physics in Garching, Germany, used Chandra observations to compare the X-ray glow from the region around Sgr A* to the X-ray emission from thousands of young stars in the Orion Nebula star cluster. They found that the Sgr A* star cluster contains only about 10,000 low mass stars, thereby ruling out the migration model. "We can now say that the stars around Sgr A* were not deposited there by some passing star cluster, rather they were born there," said Sunyaev . "There have been theories that this was possible, but this is the first real evidence. Many scientists are going to be very surprised by these results." Because the Galactic Center is shrouded in dust and gas, it has not been possible to look for the low-mass stars in optical observations. In contrast, X-ray data have allowed astronomers to penetrate the veil of gas and dust and look for these low mass stars. Scenario Dismissed by Chandra Results Scenario Dismissed by Chandra Results "In one of the most inhospitable places in our Galaxy, stars have prevailed," said Nayakshin. "It appears that star formation is much more tenacious than we previously believed." The results suggest that the "rules" of star formation change when stars form in the disk of a giant black hole. Because this environment is very different from typical star formation regions, there is a change in the proportion of stars that form. For example, there is a much higher percentage of massive stars in the disks around black holes. And, when these massive stars explode as supernovae, they will "fertilize" the region with heavy elements such as oxygen. This may explain the large amounts of such elements observed in the disks of young supermassive black holes. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for

  5. Completing the census of young stars near the Sun with the FunnelWeb spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Lawson, Warrick; Murphy, Simon; Tinney, Christopher G.; Ireland, Michael; Bessell, Michael S.

    2016-06-01

    From late 2016, the Australian FunnelWeb survey will obtain medium-resolution (R~2000) spectra covering the full optical range for 2 million of the brightest stars (I<12) in the southern sky. It will do so using an upgraded UK Schmidt Telescope at Siding Spring Observatory, equipped with a revolutionary, parallelizable optical fibre positioner ("Starbugs") and spectrograph. The ability to reconfigure a multi-fibre plate in less than 5 minutes allows FunnelWeb to observe more stars per night than any other competing multi-fibre spectrograph and enables a range of previously inefficient bright star science not attempted since the completion of the HD catalogues in the 1940s. Among its key science aims, FunnelWeb will obtain spectra for thousands of young and adolescent (<1 Gyr) stars near the Sun (<200 pc) across a wide range of spectral types. These spectra will include well-studied youth and activity indicators such as H-alpha, Li I 6708A, Ca II H&K, as well as surface gravity diagnostics (e.g. Na I, K I). In addition, FunnelWeb will obtain stellar parameters (Teff, logg, vsini), abundances (Fe/H, alpha/Fe) and radial velocities to 1-2 km/s for every star in the survey. When combined with high precision parallaxes and proper motions from the Gaia mission expected from 2017, this dataset will provide a near-complete census of adolescent stars in the solar neighbourhood. It will help reveal the typical formation environments of young solar-type stars, how such stars move from their stellar nurseries to their adult lives in the field, and identifying thousands of high-priority targets for follow-up direct imaging (GPI, SPHERE), transit (including TESS) and radial velocity exoplanet studies. In this poster contribution we introduce the FunnelWeb survey, its science goals and input catalogue, as well as provide an update on the status of the fibre positioner and spectrograph commissioning at Siding Spring.

  6. The NGC 281 west cluster. I. Star formation in photoevaporating clumps.

    NASA Astrophysics Data System (ADS)

    Megeath, S. T.; Wilson, T. L.

    1997-09-01

    The NGC281 West molecular cloud is an excellent test case for studying star formation in the clumpy interface between a \\hii region and a giant molecular cloud. We present here a study based on new high resolution radio and near-infrared data. Using the IRAM 30-meter telescope, we have mapped the interface in the \\cotwo, \\coone, and \\cs transitions with FWHP beamwidths <= 22''. We have imaged the same region with the VLA in the 20, 6 and 2 cm continuum bands to obtain complementary maps of the ionized gas distribution with angular resolutions <= 13''. In addition, we have obtained near-infrared J and K'-band images to detect young stars in the interface. The 30-meter data shows the molecular gas is concentrated into three clumps with masses of 570, > 210, and 300 \\msun and average volume densities of 1.4, >1, and 2 x 10(4) \\cm. We detect \\cs emission in two of the clumps, indicating peak densities in excess of 5x 10(5) \\cm are attained in the clumps. A comparison of the \\co line data with the 20 cm continuum image suggests that the molecular clumps are being photoevaporated through their direct exposure to the UV radiation from neighboring OB stars. The luminosity and extent of the observed 20 cm emission is in good agreement with theoretical predictions. We use models of photoevaporative flows to estimate the pressure exerted on the clumps by the ionized gas and find that it exceeds the internal, turbulent pressure of the clumps by a factor of a 2.5. Although a pressure equilibrium is not excluded given the uncertainties inherent in determining the pressures of the ionized and molecular gases, our best estimates of the clumps and flow parameters favor the the existence of low velocity shocks (1.5 \\kms) in the clumps. The clumps exhibit broad, non-gaussian lineshapes and complex kinematical structures suggestive of shocks. Further evidence for shocks is found in a comparison of position-velocity diagrams with published numerical simulations of imploding

  7. Observing Star and Planet Formation in the Submillimeter and Far Infrared

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2004-01-01

    Stars from in the densest parts of cold interstellar clouds which-due to presence of obscuring dust-cannot be observed with optical telescopes. Recent rapid progress in understanding how stars and planets are formed has gone hand in hand with our ability to observe extremely young systems in the infrared and (submillimeter) spectral regimes. The detections and silhouetted imaging of disks around young objects in the visible and NIR have demonstrated the common occurrence of circumstellar disks and their associated jets and outflows in star forming regions. However, in order to obtain quantitative information pertaining to even earlier evolutionary phases, studies at longer wavelengths are necessary. From spectro-photometric imaging at all wavelengths we learn about the temperature and density structure of the young stellar environment. From narrow band imaging in the far infrared and submillimeter spectral regimes we can learn much about the velocity structure and the chemical makeup (pre-biotic material) of the planet-forming regions.

  8. HUBBLE PROBES THE COMPLEX HISTORY OF A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The dynamical effects of two stars orbiting one another most easily explains the intricate structures, which are much more complicated than features seen in most planetary nebulae. (The two stars are too close together to be individually resolved by Hubble, and instead, appear as a single point of light at the center of the nebula.) According to this model, a fast 'stellar wind' of gas blown off the central star created the elongated shell of dense, glowing gas. This structure is embedded inside two larger lobes of gas blown off the star at an earlier phase. These lobes are 'pinched' by a ring of denser gas, presumably ejected along the orbital plane of the binary companion. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. The image was taken with the Wide Field Planetary Camera-2 on September 18, 1994. NGC 6543 is 3,000 light-years away in the

  9. Physical properties of gas disks around shell stars with and without dust

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1992-01-01

    Analysis of archival IRAS and IUE data has resulted in: (1) identification of 8 new A star proto-planetary candidates; (2) detection of a mass outflow event around Beta Pic (subsequently confirmed by the 1991 July HST observation); and (3) confirmation of the suggestion by Waters et al. (1988) that 51 Oph is a protoplanetary system similar to beta Pic with the detection of high density, high velocity, collisionally ionized accreting gas in the line of sight toward this star.

  10. The Stars behind the Curtain

    NASA Astrophysics Data System (ADS)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  11. Nearby Galaxy is a Hotbed of Star Birth Activity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  12. A giant planet imaged in the disk of the young star beta Pictoris.

    PubMed

    Lagrange, A-M; Bonnefoy, M; Chauvin, G; Apai, D; Ehrenreich, D; Boccaletti, A; Gratadour, D; Rouan, D; Mouillet, D; Lacour, S; Kasper, M

    2010-07-02

    Here, we show that the approximately 10-million-year-old beta Pictoris system hosts a massive giant planet, beta Pictoris b, located 8 to 15 astronomical units from the star. This result confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets. Among the few planets already imaged, beta Pictoris b is the closest to its parent star. Its short period could allow for recording of the full orbit within 17 years.

  13. Precision Photometric Monitoring of Young Low-mass Stars and Brown Dwarfs: Shedding Light on Rotation, Pulsation, and the Star-disk Connection

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Hillenbrand, L. A.

    2010-01-01

    Young star-forming regions are host to a variety of optically variable sources, from accreting and flaring stars to those whose light is modulated by surface spots. In addition, recent theory has suggested that a new type of variability-- pulsation powered by deuterium burning-- may be at work on hour timescales in young brown dwarfs and very low mass stars. Photometric studies of these diverse phenomena are key in probing the underlying physics governing the evolution of few-Myr-old cluster members. High-cadence time series provide insight into not only the stochastic nature of accretion, but also trends in rotation via monitoring of magnetic surface spots. Nevertheless, a complete characterization of variability down to low amplitudes, and particularly amongst very-low-mass (0.01-0.3 M⊙) objects, remains elusive. The lower limit to rotation periods in young clusters is not well established, and mechanisms regulating angular momentum down through the substellar regime are not well understood. To expand the census of variability to very low mass and short timescales, as well as assess the possibility of deuterium-burning pulsation, we have carried out a dedicated monitoring campaign on confirmed low-mass members in several 2-5 Myr clusters. Using meter-class telescopes, our survey achieves sensitivity to periodic variations with photometric amplitudes down to the millimagnitude level on timescales ranging from a fraction of an hour to several weeks. We present results from the 5 Myr Sigma Orionis cluster, including a new compilation of rotation rates and a strong correspondence between variability type and presence of a disk, as indicated by Spitzer/IRAC excesses. In contrast to previous reports of 1-4-hour variability amongst brown dwarfs, we find a dearth of periods under 10 hours. However, we identify a significant positive correlation between rotation period and mass.

  14. On the Nature of the Enigmatic Object IRAS 19312+1950: A Rare Phase of Massive Star Formation?

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Boogert, A. C. A.; Charnley, S. B.; Justtanont, K.; Cox, N. L. J.; Smith, R. G.; Tielens, A. G. G. M.; Wirstrom, E. S.; Milam, S. N.; Keane, J. V.

    2016-01-01

    IRAS?19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS?19312+1950 in the range 5-550 microns using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 microns, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: approx. = 0.22 Stellar Mass of material at 280+/-18 K, and ˜1.6 Me of material at 157+/-3 K. The OI 63 micron line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 microns and CO2 at 15 microns. The spectral energy distribution is consistent with a massive, luminous (approx. 2 × 10(exp 4) Stellar Luminosity) central source surrounded by a dense, warm circumstellar disk and envelope of total mass approx. 500-700 Stellar Mass with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.

  15. ON THE NATURE OF THE ENIGMATIC OBJECT IRAS 19312+1950: A RARE PHASE OF MASSIVE STAR FORMATION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordiner, M. A.; Charnley, S. B.; Milam, S. N.

    IRAS 19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS 19312+1950 in the range 5–550 μ m using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 μ m, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: ≈0.22 M {sub ⊙} of material at 280 ± 18 K, andmore » ≈1.6 M {sub ⊙} of material at 157 ± 3 K. The O i 63 μ m line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km s{sup −1} along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H{sub 2}O at 5.8 μ m and CO{sub 2} at 15 μ m. The spectral energy distribution is consistent with a massive, luminous (∼2 × 10{sup 4} L {sub ⊙}) central source surrounded by a dense, warm circumstellar disk and envelope of total mass ∼500–700 M {sub ⊙}, with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS 19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS 19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.« less

  16. Numerical Simulation of the Global Star Formation Pattern in the LMC

    NASA Astrophysics Data System (ADS)

    Gardiner, L. T.; Turfus, C.

    Dottori et al. (1996, ApJ 461, 742) have recently presented evidence for the idea that the observed distribution of young star clusters in the Large Magellanic Cloud (LMC) has resulted from the gravitational perturbation induced by a bar potential offset from the LMC disk center. We have constructed a dynamical model of the LMC to examine the effects of such an off-center perturbation on the global distribution of the gas and star formation activity. We have used a newly developed hybrid N-body/cellular automaton scheme for modeling star formation in galaxies which incorporates the dual mechanisms of gravitational instability and self-propagating star formation, combined with feedback of kinetic energy from star-forming regions into the interstellar medium. We find that a weak rotating bar perturbation, whose center is displaced by 0.6 kpc from the disk center, gives rise to an asymmetric spiral structure which mimics the chains of recent star formation observed in the LMC as well as delineating activity in the bar region. Large gas concentrations are produced where the spiral arms merge in the northern part of the galaxy, and such structures may have observed counterparts in giant star-forming complexes such as Constellation III in the NE part of the LMC.

  17. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less

  18. Bar quenching in gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  19. Quantum geometric phase in Majorana's stellar representation: mapping onto a many-body Aharonov-Bohm phase.

    PubMed

    Bruno, Patrick

    2012-06-15

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  20. Quantum Geometric Phase in Majorana's Stellar Representation: Mapping onto a Many-Body Aharonov-Bohm Phase

    NASA Astrophysics Data System (ADS)

    Bruno, Patrick

    2012-06-01

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  1. The Evolution of Gas in Protoplanetary Systems: The Herschel GASPS Open Time Key Programme

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Dent, W.

    2010-01-01

    The Gas in Protoplanetary Systems (GASPS) Open Time Key Programme for the Herschel Space Observatory will be the first extensive, systematic survey of gas in circumstellar disks over the critical transition from gas-rich protoplanetary through to gas-poor debris. The brightest spectral lines from disks lie in the far-infrared and arise from radii spanning roughly 10 to 100 AU, where giant planets are expected to form. Herschel is uniquely able to observe this wavelength regime with the sensitivity to allow a large scale survey. We will execute a 2-phase study using the PACS instrument. Phase I is a spectroscopic survey about 250 young stars for fine structure emission lines of [CII] (at 157 microns) and [OI] (at 63 microns). In Phase II, the brightest sources will be followed up with additional PACS spectroscopy ([OI] at 145 microns and some rotational lines of water). We expect that the gas mass sensitivity will be more than an order of magnitude lower than that achieved by ISO and Spitzer or expected for SOFIA. We will also measure the dust continuum to an equivalent mass sensitivity. We will observe several nearby clusters with ages from 1 to 30 Myr, encompassing a wide range of disk masses and stellar luminosities. The sample covers disk evolution from protoplanetary disks through to young debris disks, i.e. the main epoch of planet formation. With this extensive dataset, the GASPS project will: 1) trace gas and dust in the planet formation region across a large multivariate parameter space, 2) provide the first definitive measurement of the gas dissipation timescale in disks, 3) elucidate the evolutionary link between protoplanetary and debris disks, 4) investigate water abundances in the planetforming regions of disks, and 5) provide a huge database of disk observations and models with long-lasting legacy value for follow-up studies.

  2. Dynamical Phase Transition in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Mallick, Ritam

    2018-05-01

    We have studied the dynamical evolution of the shock in a neutron star (NS). The conversion of nuclear to quark matter (QM) is assumed to take place at the shock discontinuity. The density and pressure discontinuity is studied both spatially and temporally as it starts near the center of the star and moves toward the surface. Polytropic equations of state (EoS), which mimic original nuclear and QM EoS, are used to study such dynamical phase transition (PT). Solving relativistic hydrodynamic equations for a spherically symmetric star, we study the PT, assuming a considerable density discontinuity near the center. We find that as the shock wave propagates outward, its intensity decreases with time; however, the shock velocity peaks up and reaches a value close to that of light. Such fast shock velocity indicates rapid PT in NS taking place on a timescale of some 10s of microseconds. Such a result is quite interesting, and it differs from previous calculations that the PT in NSs takes at least some 10s of milliseconds. Rapid PT can have significant observational significance, because such fast PT would imply rather strong gravitational wave (GW) signals that are rather short lived. Such short-lived GW signals would be accompanied with short-lived gamma-ray bursts and neutrino signals originating from the neutrino and gamma-ray generation from the PT of nuclear matter to QM.

  3. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  4. Clues to the Formation of Spiral Structure in M51 from the Ages and Locations of Star Clusters

    NASA Astrophysics Data System (ADS)

    Chandar, Rupali; Chien, L.-H.; Meidt, Sharon; Querejeta, Miguel; Dobbs, Clare; Schinnerer, Eva; Whitmore, Bradley C.; Calzetti, Daniela; Dinino, Daiana; Kennicutt, Robert C.; Regan, Michael

    2017-08-01

    We determine the spatial distributions of star clusters at different ages in the grand-design spiral galaxy M51 using a new catalog based on multi-band images taken with the Hubble Space Telescope (HST). These distributions, when compared with the spiral structure defined by molecular gas, dust, young and old stars, show the following sequence in the inner arms: dense molecular gas (and dust) defines the inner edge of the spiral structure, followed by an overdensity of old stars and then young stellar clusters. The offset between gas and young clusters in the inner arms is consistent with the expectations for a density wave. Clusters as old as a few hundred Myr remain concentrated close to the spiral arms, although the distributions are broader than those for the youngest clusters, which is also consistent with predictions from density wave simulations. The outermost portion of the west arm is different from the rest of the spiral structure in that it contains primarily intermediate-age (≈ 100{--}400 {Myr}) clusters; we believe that this is a “material” arm. We have identified four “feathers,” stellar structures beyond the inner arms that have a larger pitch angle than the arms. We do not find age gradients along any of the feathers, but the least coherent feathers appear to have the largest range of cluster ages.

  5. Near-infrared imaging polarimetry of dusty young stars

    NASA Astrophysics Data System (ADS)

    Hales, A. S.; Gledhill, T. M.; Barlow, M. J.; Lowe, K. T. E.

    2006-02-01

    We have carried out JHK polarimetric observations of 11 dusty young stars, by using the polarimeter module IRPOL2 with the near-infrared camera UIST on the 3.8-m United Kingdom Infrared Telescope (UKIRT). Our sample targeted systems for which UKIRT-resolvable discs had been predicted by model fits to their spectral energy distributions. Our observations have confirmed the presence of extended polarized emission around TW Hya and around HD 169142. HD 150193 and HD 142666 show the largest polarization values among our sample, but no extended structure was resolved. By combining our observations with Hubble Space Telescope (HST) coronographic data from the literature, we derive the J- and H-band intrinsic polarization radial dependences of the disc of TW Hya. We find the polarizing efficiency of the disc is higher at H than at J, and we confirm that the J- and H-band percentage polarizations are reasonably constant with radius in the region between 0.9 and 1.3arcsec from the star. We find that the objects for which we have detected extended polarizations are those for which previous modelling has suggested the presence of flared discs, which are predicted to be brighter than flat discs and thus would be easier to detect polarimetrically.

  6. Interstellar Gas-phase Element Depletions in the Small Magellanic Cloud: A Guide to Correcting for Dust in QSO Absorption Line Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Edward B.; Wallerstein, George, E-mail: ebj@astro.princeton.edu, E-mail: walleg@u.washington.edu

    We present data on the gas-phase abundances for 9 different elements in the interstellar medium of the Small Magellanic Cloud (SMC), based on the strengths of ultraviolet absorption features over relevant velocities in the spectra of 18 stars within the SMC. From this information and the total abundances defined by the element fractions in young stars in the SMC, we construct a general interpretation on how these elements condense into solid form onto dust grains. As a group, the elements Si, S, Cr, Fe, Ni, and Zn exhibit depletion sequences similar to those in the local part of our Galaxymore » defined by Jenkins. The elements Mg and Ti deplete less rapidly in the SMC than in the Milky Way, and Mn depletes more rapidly. We speculate that these differences might be explained by the different chemical affinities to different existing grain substrates. For instance, there is evidence that the mass fractions of polycyclic aromatic hydrocarbons in the SMC are significantly lower than those in the Milky Way. We propose that the depletion sequences that we observed for the SMC may provide a better model for interpreting the element abundances in low-metallicity Damped Lyman Alpha (DLA) and sub-DLA absorption systems that are recorded in the spectra of distant quasars and gamma-ray burst afterglows.« less

  7. Constant volume gas cell optical phase-shifter

    DOEpatents

    Phillion, Donald W.

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  8. The Extent of Chemically Enriched Gas around Star-forming Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Sean D.; Chen, Hsiao-Wen; Mulchaey, John S.; Schaye, Joop; Straka, Lorrie A.

    2017-11-01

    Supernova driven winds are often invoked to remove chemically enriched gas from dwarf galaxies to match their low observed metallicities. In such shallow potential wells, outflows may produce massive amounts of enriched halo gas (circumgalactic medium, CGM) and pollute the intergalactic medium (IGM). Here, we present a survey of the CGM and IGM around 18 star-forming field dwarfs with stellar masses of {log} {M}* /{M}⊙ ≈ 8{--}9 at z≈ 0.2. Eight of these have CGM probed by quasar absorption spectra at projected distances, d, less than that of the host virial radius, {R}{{h}}. Ten are probed in the surrounding IGM at d/{R}{{h}}=1{--}3. The absorption measurements include neutral hydrogen, the dominant silicon ions for diffuse cool gas (T ˜ 104 K; Si II, Si III, and Si IV), moderately ionized carbon (C IV), and highly ionized oxygen (O VI). Metal absorption from the CGM of the dwarfs is less common and ≈ 4× weaker compared to massive star-forming galaxies, though O VI absorption is still common. None of the dwarfs probed at d/{R}{{h}}=1{--}3 have definitive metal-line detections. Combining the available silicon ions, we estimate that the cool CGM of the dwarfs accounts for only 2%-6% of the expected silicon budget from the yields of supernovae associated with past star formation. The highly ionized O VI accounts for ≈8% of the oxygen budget. As O VI traces an ion with expected equilibrium ion fractions of ≲0.2, the highly ionized CGM may represent a significant metal reservoir even for dwarfs not expected to maintain gravitationally shock heated hot halos.

  9. A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schruba, Andreas; Walter, Fabian; Dumas, Gaelle

    2011-08-15

    We use the IRAM HERACLES survey to study CO emission from 33 nearby spiral galaxies down to very low intensities. Using 21 cm line atomic hydrogen (H I) data, mostly from THINGS, we predict the local mean CO velocity based on the mean H I velocity. By re-normalizing the CO velocity axis so that zero corresponds to the local mean H I velocity we are able to stack spectra coherently over large regions. This enables us to measure CO intensities with high significance as low as I{sub CO} {approx} 0.3 K km s{sup -1} ({Sigma}{sub H{sub 2}}{approx}1 M{sub sun} pc{supmore » -2}), an improvement of about one order of magnitude over previous studies. We detect CO out to galactocentric radii r{sub gal} {approx} r{sub 25} and find the CO radial profile to follow a remarkably uniform exponential decline with a scale length of {approx}0.2 r{sub 25}. Here we focus on stacking as a function of radius, comparing our sensitive CO profiles to matched profiles of H I, H{alpha}, far-UV (FUV), and Infrared (IR) emission at 24 {mu}m and 70 {mu}m. We observe a tight, roughly linear relationship between CO and IR intensity that does not show any notable break between regions that are dominated by molecular gas ({Sigma}{sub H{sub 2}}>{Sigma}{sub H{sub i}}) and those dominated by atomic gas ({Sigma}{sub H{sub 2}}<{Sigma}{sub H{sub i}}). We use combinations of FUV+24 {mu}m and H{alpha}+24 {mu}m to estimate the recent star formation rate (SFR) surface density, {Sigma}{sub SFR}, and find approximately linear relations between {Sigma}{sub SFR} and {Sigma}{sub H{sub 2}}. We interpret this as evidence of stars forming in molecular gas with little dependence on the local total gas surface density. While galaxies display small internal variations in the SFR-to-H{sub 2} ratio, we do observe systematic galaxy-to-galaxy variations. These galaxy-to-galaxy variations dominate the scatter in relationships between CO and SFR tracers measured at large scales. The variations have the sense that less

  10. Astronomers Find New Evidence for the Violent Demise of Sun-like Stars

    NASA Astrophysics Data System (ADS)

    2005-06-01

    40 adds to a growing list of such discoveries by Chandra and its European counterpart, the XMM-Newton X-ray satellite observatory. Kastner and Montez (along with collaborators Orsola de Marco, of the American Museum of Natural History in New York, and Noam Soker, of the Technion Institute in Haifa, Israel) have studied these previous X-ray observations of planetary nebulae, and find that the X-ray and infrared output of such objects is closely coupled. "The connection between X-ray and infrared emission seems to show that the hot bubble phase is restricted to early times in stellar death, when a planetary nebula is quite young and the dust within it is still relatively warm," says Montez about his observations. The correspondence indicates that the production of superheated gas is a short-lived phase in the life of a planetary nebula, although Kastner cautions that additional Chandra and XMM-Newton observations are required to test this idea. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  11. Hokupa'a-Gemini Discovery of Two Ultracool Companions to the Young Star HD 130948

    NASA Astrophysics Data System (ADS)

    Potter, D.; Martín, E. L.; Cushing, M. C.; Baudoz, P.; Brandner, W.; Guyon, O.; Neuhäuser, R.

    2002-03-01

    We report the discovery of two faint ultracool companions to the nearby (d~17.9 pc) young G2 V star HD 130948 (HR 5534, HIP 72567) using the Hokupa'a adaptive optics (AO) instrument mounted on the Gemini North 8 m telescope. Both objects have the same common proper motion as the primary star as seen over a 7 month baseline and have near-IR photometric colors that are consistent with an early L classification. Near-IR spectra taken with the NIRSPEC AO instrument on the Keck II telescope reveal K I lines, FeH, and H2O band heads. Based on these spectra, we determine that both objects have a spectral type of dL2 with an uncertainty of two spectral subclasses. The position of the new companions on the H-R diagram in comparison with theoretical models is consistent with the young age of the primary star (<0.8 Gyr) estimated on the basis of X-ray activity, lithium abundance, and fast rotation. HD 130948B and C likely constitute a pair of young contracting brown dwarfs with an orbital period of about 10 yr and will yield dynamical masses for L dwarfs in the near future. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  12. Chandra Finds X-ray Star Bonanza in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic

  13. Star formation rates and efficiencies in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Barnes, A. T.; Longmore, S. N.; Battersby, C.; Bally, J.; Kruijssen, J. M. D.; Henshaw, J. D.; Walker, D. L.

    2017-08-01

    The inner few hundred parsecs of the Milky Way harbours gas densities, pressures, velocity dispersions, an interstellar radiation field and a cosmic ray ionization rate orders of magnitude higher than the disc; akin to the environment found in star-forming galaxies at high redshift. Previous studies have shown that this region is forming stars at a rate per unit mass of dense gas which is at least an order of magnitude lower than in the disc, potentially violating theoretical predictions. We show that all observational star formation rate diagnostics - both direct counting of young stellar objects and integrated light measurements - are in agreement within a factor two, hence the low star formation rate (SFR) is not the result of the systematic uncertainties that affect any one method. As these methods trace the star formation over different time-scales, from 0.1 to 5 Myr, we conclude that the SFR has been constant to within a factor of a few within this time period. We investigate the progression of star formation within gravitationally bound clouds on ˜parsec scales and find 1-4 per cent of the cloud masses are converted into stars per free-fall time, consistent with a subset of the considered 'volumetric' star formation models. However, discriminating between these models is obstructed by the current uncertainties on the input observables and, most importantly and urgently, by their dependence on ill-constrained free parameters. The lack of empirical constraints on these parameters therefore represents a key challenge in the further verification or falsification of current star formation theories.

  14. An Observational Study of Blended Young Stellar Clusters in the Galactic Plane - Do Massive Stars form First?

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban

    2018-01-01

    From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of

  15. A scaling law of radial gas distribution in disk galaxies

    NASA Technical Reports Server (NTRS)

    Wang, Zhong

    1990-01-01

    Based on the idea that local conditions within a galactic disk largely determine the region's evolution time scale, researchers built a theoretical model to take into account molecular cloud and star formations in the disk evolution process. Despite some variations that may be caused by spiral arms and central bulge masses, they found that many late-type galaxies show consistency with the model in their radial atomic and molecular gas profiles. In particular, researchers propose that a scaling law be used to generalize the gas distribution characteristics. This scaling law may be useful in helping to understand the observed gas contents in many galaxies. Their model assumes an exponential mass distribution with disk radius. Most of the mass are in atomic gas state at the beginning of the evolution. Molecular clouds form through a modified Schmidt Law which takes into account gravitational instabilities in a possible three-phase structure of diffuse interstellar medium (McKee and Ostriker, 1977; Balbus and Cowie, 1985); whereas star formation proceeds presumably unaffected by the environmental conditions outside of molecular clouds (Young, 1987). In such a model both atomic and molecular gas profiles in a typical galactic disk (as a result of the evolution) can be fitted simultaneously by adjusting the efficiency constants. Galaxies of different sizes and masses, on the other hand, can be compared with the model by simply scaling their characteristic length scales and shifting their radial ranges to match the assumed disk total mass profile sigma tot(r).

  16. Stars Can't Spin Out of Control (Artist's Animation)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for QuickTime Movie of Stars Can't Spin Out of Control

    This artist's animation demonstrates how a dusty planet-forming disk can slow down a whirling young star, essentially saving the star from spinning itself to death. Evidence for this phenomenon comes from NASA's Spitzer Space Telescope.

    The movie begins by showing a developing star (red ball). The star is basically a giant ball of gas that is collapsing onto itself. As it shrinks, it spins faster and faster, like a skater folding in his or her arms. The green lines represent magnetic fields.

    As gravity continues to pull matter inward, the star spins so fast, it starts to flatten out. The same principle applies to the planet Saturn, whose spin has caused it to be slightly squashed or oblate.

    A forming star can theoretically whip around fast enough to overcome gravity and flatten itself into a state where it can no longer become a full-fledged star. But stars don't spin out of control, possibly because swirling disks of dust slow them down. Such disks can be found orbiting young stars, and are filled with dust that might ultimately stick together to form planets.

    The second half of the animation demonstrates how a disk is thought to keep its star's speed in check. A developing star is shown twirling inside its disk. As it turns, its magnetic fields pass through the disk and get bogged down like a spoon in molasses. This locks the star's rotation to the slower-turning disk, so the star, while continuing to shrink, does not spin faster.

    Spitzer found evidence for star-slowing disks in a survey of nearly 500 forming stars in the Orion nebula. It observed that slowly spinning stars are five times more likely to host disks than rapidly spinning stars.

  17. Formation of massive black holes through runaway collisions in dense young star clusters.

    PubMed

    Zwart, Simon F Portegies; Baumgardt, Holger; Hut, Piet; Makino, Junichiro; McMillan, Stephen L W

    2004-04-15

    A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11.

  18. Tracing Star Formation in the Outskirts of the Milky Way

    NASA Astrophysics Data System (ADS)

    Casetti, Dana

    Discovery of the presence of young stars in the Leading Arm of the Magellanic Stream and in the periphery of the Large Magellanic Cloud (Casetti-Dinescu et al. 2014, Moni Bidin et al. 2017) poses a fundamental question as to how star formation can occur in intergalactic space within an environment of very low gas density. Recent models indicate that the hydrodynamical interaction with the gaseous component of the Milky Way may be of significant importance in shaping the Leading Arm of the Magellanic Stream; however models are still poorly constrained due to a lack of observational data. The existence of such stars is crucial as it informs on both star-formation and the Clouds' interaction with one another and with the Milky Way. Moreover, stars, as opposed to gas, provide secure distances to constrain the interactions. In the discovery of these young stars, the GALEX UV mission played the key role in selecting potential candidates. Together with infrared photometry from 2MASS and optical V from ground-based data, our team developed a method to select such candidates that were then followed up with spectroscopy (Casetti-Dinescu et al. 2012). This pilot study demonstrated that, with large sky coverage, our team could explore significant portions of the Magellanic Stream, whereas previously only regions adjacent to the Clouds had been studied. Still, the pilot study was limited to the southern sky (Dec. d -20°). Here, we propose to recreate a young-star candidate list using two completed NASA space missions: the recently updated GALEX (DR6plus7) and the infrared WISE missions. Together with optical photometry from Gaia DR1 (and/or PanSTARRS), we will increase the sample of candidate OB-type stars by exploring a volume of space over four times that of our previous, pilot study. The area coverage for the proposed new study will be the entire sky; previous spatial gaps in earlier versions of GALEX are now filled in, and the depth of the study will increase by 0.3 to 0

  19. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  20. Integral equation theory study on the phase separation in star polymer nanocomposite melts.

    PubMed

    Zhao, Lei; Li, Yi-Gui; Zhong, Chongli

    2007-10-21

    The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.