Sample records for young wild-type mice

  1. Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates.

    PubMed

    Kalbassi, Shireene; Bachmann, Sven O; Cross, Ellen; Roberton, Victoria H; Baudouin, Stéphane J

    2017-01-01

    In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3 , a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other's behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals' behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers' behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3 , being more influential in males than females.

  2. Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates

    PubMed Central

    Kalbassi, Shireene; Cross, Ellen

    2017-01-01

    Abstract In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3, a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other’s behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals’ behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers’ behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3, being more influential in males than females. PMID:28795135

  3. Pharmacologic Treatment Assigned for Niemann Pick Type C1 Disease Partly Changes Behavioral Traits in Wild-Type Mice.

    PubMed

    Schlegel, Victoria; Thieme, Markus; Holzmann, Carsten; Witt, Martin; Grittner, Ulrike; Rolfs, Arndt; Wree, Andreas

    2016-11-09

    Niemann-Pick Type C1 (NPC1) is an autosomal recessive inherited disorder characterized by accumulation of cholesterol and glycosphingolipids. Previously, we demonstrated that BALB/c-npc1 nih Npc1 -/- mice treated with miglustat, cyclodextrin and allopregnanolone generally performed better than untreated Npc1 -/- animals. Unexpectedly, they also seemed to accomplish motor tests better than their sham-treated wild-type littermates. However, combination-treated mutant mice displayed worse cognition performance compared to sham-treated ones. To evaluate effects of these drugs in healthy BALB/c mice, we here analyzed pharmacologic effects on motor and cognitive behavior of wild-type mice. For combination treatment mice were injected with allopregnanolone/cyclodextrin weekly, starting at P7. Miglustat injections were performed daily from P10 till P23. Starting at P23, miglustat was embedded in the chow. Other mice were treated with miglustat only, or sham-treated. The battery of behavioral tests consisted of accelerod, Morris water maze, elevated plus maze, open field and hot-plate tests. Motor capabilities and spontaneous motor behavior were unaltered in both drug-treated groups. Miglustat-treated wild-type mice displayed impaired spatial learning compared to sham- and combination-treated mice. Both combination- and miglustat-treated mice showed enhanced anxiety in the elevated plus maze compared to sham-treated mice. Additionally, combination treatment as well as miglustat alone significantly reduced brain weight, whereas only combination treatment reduced body weight significantly. Our results suggest that allopregnanolone/cyclodextrin ameliorate most side effects of miglustat in wild-type mice.

  4. Locomotor differences in mice expressing wild-type human α-synuclein.

    PubMed

    Giraldo, Genesys; Brooks, Mieu; Giasson, Benoit I; Janus, Christopher

    2018-05-01

    Parkinson's disease manifests as a progressive movement disorder with underlying degeneration of dopaminergic neurons in the substantia nigra, consequent depletion of dopamine levels, and the accumulation of Lewy bodies in the brain. Because α-synuclein (α-Syn) protein is the major component of Lewy bodies, mouse models expressing wild-type or mutant SNCA/α-Syn genes provide a useful tool to investigate canonical characteristics of the disease. We evaluated a mouse model (denoted M20) that expresses human wild-type SNCA gene. The M20 mice showed abnormal locomotor behavior and reduced species-specific home cage activity. However, the direction of behavioral changes was task specific. In comparison with their control littermates, the M20 mice exhibited shorter grip endurance, and longer times to traverse elevated beams, but they descended the vertical pole faster and stayed longer on the accelerated rod than the control mice. The M20 mice were also impaired in burrowing and nest building activities. These results indicate a possible role of α-Syn in motor coordination and the motivation to perform species-specific behaviors in the presymptomatic model of synucleinopathy. Published by Elsevier Inc.

  5. Comparison of body weight and gene expression in amelogenin null and wild-type mice.

    PubMed

    Li, Yong; Yuan, Zhi-An; Aragon, Melissa A; Kulkarni, Ashok B; Gibson, Carolyn W

    2006-05-01

    Amelogenin (AmelX) null mice develop hypomineralized enamel lacking normal prism structure, but are healthy and fertile. Because these mice are smaller than wild-type mice prior to weaning, we undertook a detailed analysis of the weight of mice and analyzed AmelX expression in non-dental tissues. Wild-type mice had a greater average weight each day within the 3-wk period. Using reverse transcription-polymerase chain reaction (RT-PCR), products of approximately 200 bp in size were generated from wild-type teeth, brain, eye, and calvariae. DNA sequence analysis of RT-PCR products from calvariae indicated that the small amelogenin leucine-rich amelogenin peptide (LRAP), both with and without exon 4, was expressed. No products were obtained from any of the samples from the AmelX null mice. We also isolated mRNAs that included AmelX exons 8 and 9, and identified a duplication within the murine AmelX gene with 91% homology. Our results add additional support to the hypothesis that amelogenins are multifunctional proteins, with potential roles in non-ameloblasts and in non-mineralizing tissues during development. The smaller size of AmelX null mice could potentially be explained by the lack of LRAP expression in some of these tissues, leading to a delay in development.

  6. Cardiac Function in Young and Old Little Mice

    PubMed Central

    Reddy, Anilkumar K.; Amador-Noguez, Daniel; Darlington, Gretchen J.; Scholz, Beth A.; Michael, Lloyd H.; Hartley, Craig J.; Entman, Mark L.; Taffet, George E.

    2009-01-01

    We studied cardiac function in young and old, wild-type (WT), and longer-living Little mice using cardiac flow velocities, echocardiographic measurements, and left ventricular (LV) pressure (P) to determine if enhanced reserves were in part responsible for longevity in these mice. Resting/baseline cardiac function, as measured by velocities, LV dimensions, +dP/dtmax, and −dP/dtmax, was significantly lower in young Little mice versus young WT mice. Fractional shortening (FS) increased significantly, and neither +dP/dtmax nor −dP/dtmax declined with age in Little mice. In contrast, old WT mice had no change in FS but had significantly lower +dP/dtmax and −dP/dtmax versus young WT mice. Significant decreases were observed in the velocity indices of old Little mice versus old WT mice, but other parameters were unchanged. The magnitude of dobutamine stress response remained unchanged with age in Little mice, while that in WT mice decreased. These data suggest that while resting cardiac function in Little mice versus WT mice is lower at young age, it is relatively unaltered with aging. Additionally, cardiac function in response to stress was maintained with age in Little mice but not in their WT counterparts. Thus, some mouse models of increased longevity may not be associated with enhanced reserves. PMID:18166681

  7. Stimulus control by 5methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice

    PubMed Central

    Winter, J. C.; Amorosi, D. J.; Rice, Kenner C.; Cheng, Kejun; Yu, Ai-Ming

    2011-01-01

    In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. PMID:21624387

  8. Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice.

    PubMed

    Winter, J C; Amorosi, D J; Rice, Kenner C; Cheng, Kejun; Yu, Ai-Ming

    2011-09-01

    In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. The Effect of Microporous Polysaccharide Hemospheres on Wound Healing and Scarring in Wild-Type and db/db Mice.

    PubMed

    Miller, Kyle J; Cao, Wei; Ibrahim, Mohamed M; Levinson, Howard

    2017-04-01

    Hemostasis, the initial phase of wound healing, sets the stage for tissue repair. Microporous polysaccharide hemosphere powder (MPH) is an FDA-approved hemostatic agent that may impact the wound-healing process. This study examined the role of MPH in murine wild-type and diabetic (db/db) wound-healing models and a foreign body response scarring model. The powder was topically applied to excisional wounds in wild-type C57BL/6 mice and db/db mice. The effect of MPH on scarring was evaluated by applying it to the expanded polytetrafluoroethylene tube implantation model. In wild-type mice, topically applied MPH increased epithelial thickness. Levels of α-smooth muscle actin (α-SMA) were decreased in MPH-treated wild-type wounds, whereas Rho-associated protein kinase 2 (ROCK2) and transforming growth factor β levels were increased. In db/db mice, topical wound MPH application decreased epithelial thickness and delayed wound closure. The db/db wounds displayed an increased collagen index. The ROCK2 was increased in a similar manner to wild-type mice, whereas α-SMA and transforming growth factor β levels were decreased. The MPH-treated expanded polytetrafluoroethylene tube mice showed increased α-SMA levels and depressed ROCK2 levels. There were no changes in histologic parameters of the foreign body response. The results suggest that MPH does not adversely impact wound healing in wild-type mice, both topically and around implants, but prolongs time to closure and diminishes thickness in db/db wounds. The MPH application alters contractile proteins in all wound models. These changes could have downstream effects on the wound healing process, and further investigation into the use of MPH in altered or impaired states of wound healing is warranted.

  10. Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function.

    PubMed

    Schmucker, Christine; Seeliger, Mathias; Humphries, Pete; Biel, Martin; Schaeffel, Frank

    2005-01-01

    The mouse eye has become an important model in vision research. However, it is not known how visual acuity changes with luminance. Therefore, grating acuity of mice was measured at different luminances in an automated optomotor paradigm. Furthermore, mutant mice lacking either rods (RHO-/- and CNGB1-/-) or cones (CNGA3-/-), or both, were studied to determine the rod and cone contribution to visual acuity. Freely ranging individual mice were automatically tracked at a 25-Hz sampling rate with a self-programmed video system in a large rotating optomotor drum. The drum had a square-wave grating inside with adjustable spatial frequency. The angular speed of the mice with respect to the center of the drum and the angular orientation of the snout-tail body axis were analyzed. In addition, the motor activity of the wild-type mice was recorded at different luminances. The optomotor drum provided reliable data on visual input to the mouse's behavior and was convenient to use, since the experimenter's had only to place the mice individually in a Perspex cylinder. Optomotor grating acuity of the wild-type mice was limited to 0.3 to 0.4 cyc/deg. Maximum optomotor responses were obtained at 0.1 to 0.2 cyc/deg. The importance of visual input declined monotonically with decreasing luminance (30 cd/m2, 100%; 0.1 cd/m2, 76.4%; 0.005 cd/m2, 45.9%; and darkness, -9%). Mice lacking functional rods were able to resolve gratings up to 0.1 cyc/deg at 30 cd/m2. Surprisingly, mice lacking functional cones had an optomotor acuity that was similar to the wild-type. Double-knockout mice without rods and cones had no detectable grating acuity. Because the visual system of the mouse is more responsive at bright luminances, experiments in which visual input is important should be performed in photopic conditions (30 cd/m2 or even more). Apparently, spatial vision is governed by the rod system, which is not saturated in the mesopic or low photopic range. Mice lacking both rods and cones have no

  11. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemicalmore » changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  12. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice.

    PubMed

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-05-21

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysiology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells' synapse guided by climbing fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally testable predictions. Copyright © 2014 the authors 0270-6474/14/347203-13$15.00/0.

  13. Mid-aged and aged wild-type and progestin receptor knockout (PRKO) mice demonstrate rapid progesterone and 3alpha,5alpha-THP-facilitated lordosis.

    PubMed

    Frye, C A; Sumida, K; Lydon, J P; O'Malley, B W; Pfaff, D W

    2006-05-01

    Progesterone (P) and its 5alpha-reduced metabolite, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP), facilitate sexual behavior of rodents via agonist-like actions at intracellular progestin receptors (PRs) and membrane GABA(A)/benzodiazepine receptor complexes (GBRs), respectively. Given that ovarian secretion of progestins declines with aging, whether or not senescent mice are responsive to progestins was of interest. Homozygous PR knockout (PRKO) or wild-type mice that were between 10-12 (mid-aged) or 20-24 (aged) months of age were administered P or 3alpha,5alpha-THP, and the effect on lordosis were examined. Effects of a progestin-priming regimen that enhances PR-mediated (experiment 1) or more rapid, PR-independent effects of progestins (experiments 2 and 3) on sexual behavior were examined. Levels of P, 3alpha,5alpha-THP, and muscimol binding were examined in tissues from aged mice (experiment 4). Wild-type, but not PRKO, mice were responsive when primed with 17beta-estradiol (E(2); 0.5 microg) and administered P (500 microg, subcutaneously). Mid-aged wild-type mice demonstrated greater increases in lordosis 6 h later compared to their pre-P, baseline test than did aged wild-type mice (experiment 1). Lordosis of younger and older wild-type, but not PRKO, mice was significantly increased within 5 min of intravenous (IV) administration of P (100 ng), compared with E(2)-priming alone (experiment 2). However, wild-type and PRKO mice demonstrated significant increases in lordosis 5 min after IV administration of 3alpha,5alpha-THP, an effect which was more pronounced in mid-aged than in aged animals (100 ng-experiment 3). In tissues from aged wild-type and PRKO mice, levels of P, 3alpha,5alpha-THP, and muscimol binding were increased by P administration (experiment 4). PR binding was lower in the cortex of PRKO than that of wild-type mice. Mid-aged and aged PRKO and wild-type mice demonstrated rapid P or 3alpha,5alpha-THP-facilitated lordosis that may be

  14. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    PubMed Central

    Thelin, Jonas; Schouenborg, Jens

    2008-01-01

    Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR) system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1) if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2) if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP) in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting. PMID:18495020

  15. The neuropathology observed in wild-type mice inoculated with human poliovirus mirrors human paralytic poliomyelitis.

    PubMed

    Ford, Dayton J; Ropka, Stacie L; Collins, George H; Jubelt, Burk

    2002-09-01

    Human paralytic poliomyelitis results from the destruction of spinal cord anterior horn motor neurons by human poliovirus (PV). CNS disease pathology similar to human poliomyelitis has been observed in experimentally infected chimpanzees, monkeys and wild-type mice. In this study we present a detailed examination of the clinical and histopathological features in the wild-type mouse after intracranial (i.c.) and novel intramuscular (i.m.) injection of poliovirus. Either route of poliovirus administration results in a clinical disease characterized predominately by flaccid paralysis. The observed histopathological features are compared with the histopathology reported for human paralytic poliomyelitis, experimentally infected chimpanzees, monkeys and transgenic mice expressing the human poliovirus receptor (hPVR). The observation of flaccid paralysis and anterior horn motor neuron destruction mirrors what is observed in human paralytic poliomyelitis. Our results suggest that the neuropathology observed in the wild-type mouse model is similar to what has been observed in both the human disease and in other experimental animal models, with the possible exception of the transgenic mouse model. The observed neuropathology of the wild-type mouse model more closely reflects what has been observed in human poliomyelitis, as well as in experimentally infected chimpanzees and monkeys, than does the hPVR transgenic mouse model. The previously reported poliovirus-induced white matter demyelinating disease was not observed.

  16. Characterization of a sensitive mouse Aβ40 PD biomarker assay for Alzheimer's disease drug development in wild-type mice.

    PubMed

    Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E

    2016-05-01

    Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.

  17. Effects of social stress and intrauterine position on sexual phenotype in wild-type house mice (Mus musculus)

    Treesearch

    William J. Zielinski; John G. Vandenbergh; Monica M. Montano

    1991-01-01

    Wild-type house mice were used to test the effect of intrauterine position on anogenital distance (AGD) and to verify whether crowding stress would masculinize female pups, developing at all intrauterine positions, as has been demonstrated in CF-1 mice stressed by restraint, heat, and...

  18. Insights into wild-type and mutant p53 functions provided by genetically engineered mice.

    PubMed

    Donehower, Lawrence A

    2014-06-01

    Recent whole-exome sequencing studies of numerous human cancers have now conclusively shown that the TP53 tumor-suppressor gene is the most frequently mutated gene in human cancers. Despite extensive studies of the TP53 gene and its encoded protein (p53), our understanding of how TP53 mutations contribute to cancer initiation and progression remain incomplete. Genetically engineered mice with germline or inducible Trp53 somatic mutations have provided important insights into the mechanisms by which different types of p53 mutation influence cancer development. Trp53 germline mutations that alter specific p53 structural domains or posttranslation modification sites have benefitted our understanding of wild-type p53 functions in a whole organism context. Moreover, genetic approaches to reestablish functional wild-type p53 to p53-deficient tissues and tumors have increased our understanding of the therapeutic potential of restoring functional p53 signaling to cancers. This review outlines many of the key insights provided by the various categories of Trp53 mutant mice that have been generated by multiple genetic engineering approaches. © 2014 WILEY PERIODICALS, INC.

  19. Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes

    PubMed Central

    Ding, Jianqiang; Yannam, Govardhana R.; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I.; Wong, Ronald J.; Avsar, Yesim; Guha, Chandan; Perlmutter, David H.; Fox, Ira J.; Roy-Chowdhury, Jayanta

    2011-01-01

    α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z–expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%–98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z–expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals. PMID:21505264

  20. Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes.

    PubMed

    Ding, Jianqiang; Yannam, Govardhana R; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I; Wong, Ronald J; Avsar, Yesim; Guha, Chandan; Perlmutter, David H; Fox, Ira J; Roy-Chowdhury, Jayanta

    2011-05-01

    α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.

  1. Hepcidin regulation in wild-type and Hfe knockout mice in response to alcohol consumption: evidence for an alcohol-induced hypoxic response.

    PubMed

    Heritage, Mandy L; Murphy, Therese L; Bridle, Kim R; Anderson, Gregory J; Crawford, Darrell H G; Fletcher, Linda M

    2009-08-01

    Expression of Hamp1, the gene encoding the iron regulatory peptide hepcidin, is inappropriately low in HFE-associated hereditary hemochromatosis and Hfe knockout mice (Hfe(-/-)). Since chronic alcohol consumption is also associated with disturbances in iron metabolism, we investigated the effects of alcohol consumption on hepcidin mRNA expression in Hfe(-/-) mice. Hfe(-/-) and C57BL/6 (wild-type) mice were pair-fed either an alcohol liquid diet or control diet for up to 8 weeks. The mRNA levels of hepcidin and ferroportin were measured at the mRNA level by RT-PCR and protein expression of hypoxia inducible factor-1 alpha (HIF-1alpha) was measured by western blot. Hamp1 mRNA expression was significantly decreased and duodenal ferroportin expression was increased in alcohol-fed wild-type mice at 8 weeks. Time course experiments showed that the decrease in hepcidin mRNA was not immediate, but was significant by 4 weeks. Consistent with the genetic defect, Hamp1 mRNA was decreased and duodenal ferroportin mRNA expression was increased in Hfe(-/-) mice fed on the control diet compared with wild-type animals and alcohol further exacerbated these effects. HIF-1alpha protein levels were elevated in alcohol-fed wild-type animals compared with controls. Alcohol may decrease Hamp1 gene expression independently of the HFE pathway possibly via alcohol-induced hypoxia.

  2. Ablation of the Locus Coeruleus Increases Oxidative Stress in Tg-2576 Transgenic but Not Wild-Type Mice

    PubMed Central

    Hurko, Orest; Boudonck, Kurt; Gonzales, Cathleen; Hughes, Zoe A.; Jacobsen, J. Steve; Reinhart, Peter H.; Crowther, Daniel

    2010-01-01

    Mice transgenic for production of excessive or mutant forms of beta-amyloid differ from patients with Alzheimer's disease in the degree of inflammation, oxidative damage, and alteration of intermediary metabolism, as well as the paucity or absence of neuronal atrophy and cognitive impairment. Previous observers have suggested that differences in inflammatory response reflect a discrepancy in the state of the locus coeruleus (LC), loss of which is an early change in Alzheimer's disease but which is preserved in the transgenic mice. In this paper, we extend these observations by examining the effects of the LC on markers of oxidative stress and intermediary metabolism. We compare four groups: wild-type or Tg2576 Aβ transgenic mice injected with DSP4 or vehicle. Of greatest interest were metabolites different between ablated and intact transgenics, but not between ablated and intact wild-type animals. The Tg2576_DSP4 mice were distinguished from the other three groups by oxidative stress and altered energy metabolism. These observations provide further support for the hypothesis that Tg2576 Aβ transgenic mice with this ablation may be a more congruent model of Alzheimer's disease than are transgenics with an intact LC. PMID:20981353

  3. Further studies on cortical tangential migration in wild type and Pax-6 mutant mice.

    PubMed

    Jiménez, D; López-Mascaraque, L; de Carlos, J A; Valverde, F

    2002-01-01

    In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6(Sey-Neu)/Pax-6(Sey-Neu)), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.

  4. Effect of running exercise on the number of the neurons in the hippocampus of young transgenic APP/PS1 mice.

    PubMed

    Jiang, Lin; Ma, Jing; Zhang, Yi; Zhou, Chun-Ni; Zhang, Lei; Chao, Feng-Lei; Chen, Lin-Mu; Jiang, Rong; Wu, Hong; Tang, Yong

    2018-08-01

    To investigate the effect of running exercise on the number of the neurons in the hippocampus of young APP/PS1 mice, twenty 6-month-old male APP/ PS1 transgenic mice were randomly divided into the APP/PS1 control (AD control) group and the APP/PS1 running (AD running) group (10 mice per group), and ten wild-type mice of the littermate were regarded as the wild-type (WT) group. The AD running mice ran on motorized treadmill machiene for 4 months, while the WT mice and AD control mice were housed in standard condition without running. Then, Morris water maze tests (MWM) were used to assess the special learning and memory abilities of mice in three groups. The stereological methods were used to quantitatively evaluate the volume of the hippocampus, CA1/2, CA3 and the dentate gyrus (DG) and count the number of the neurons in CA1/2, CA3 and DG. We found that 4-month running effectively shortened the escape latency of young APP/PS1 control mice in MWM. More importantly, 4-month running effectively increased the volumes of the hippocampus, CA1/2, CA3 and DG and increased the number of neurons in CA1/2, CA3 and DG in young APP/PS1 mice. The present results suggested that 4-month running has significant beneficial effects on the spatial learning and memory capacities of young APP/PS1 mice and could delay the progress of atrophy of hippocampus and the neuron death in CA1/2, CA3 and DG in young APP/PS1 mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. On-going electroencephalographic rhythms related to cortical arousal in wild-type mice: the effect of aging.

    PubMed

    Del Percio, Claudio; Drinkenburg, Wilhelmus; Lopez, Susanna; Infarinato, Francesco; Bastlund, Jesper Frank; Laursen, Bettina; Pedersen, Jan T; Christensen, Ditte Zerlang; Forloni, Gianluigi; Frasca, Angelisa; Noè, Francesco M; Bentivoglio, Marina; Fabene, Paolo Francesco; Bertini, Giuseppe; Colavito, Valeria; Kelley, Jonathan; Dix, Sophie; Richardson, Jill C; Babiloni, Claudio

    2017-01-01

    Resting state electroencephalographic (EEG) rhythms reflect the fluctuation of cortical arousal and vigilance in a typical clinical setting, namely the EEG recording for few minutes with eyes closed (i.e., passive condition) and eyes open (i.e., active condition). Can this procedure be back-translated to C57 (wild type) mice for aging studies? On-going EEG rhythms were recorded from a frontoparietal bipolar channel in 85 (19 females) C57 mice. Male mice were subdivided into 3 groups: 25 young (4.5-6 months), 18 middle-aged (12-15 months), and 23 old (20-24 months) mice to test the effect of aging. EEG power density was compared between short periods (about 5 minutes) of awake quiet behavior (passive) and dynamic exploration of the cage (active). Compared with the passive condition, the active condition induced decreased EEG power at 1-2 Hz and increased EEG power at 6-10 Hz in the group of 85 mice. Concerning the aging effects, the passive condition showed higher EEG power at 1-2 Hz in the old group than that in the others. Furthermore, the active condition exhibited a maximum EEG power at 6-8 Hz in the former group and 8-10 Hz in the latter. In the present conditions, delta and theta EEG rhythms reflected changes in cortical arousal and vigilance in freely behaving C57 mice across aging. These changes resemble the so-called slowing of resting state EEG rhythms observed in humans across physiological and pathological aging. The present EEG procedures may be used to enhance preclinical phases of drug discovery in mice for understanding the neurophysiological effects of new compounds against brain aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  7. Time Courses of Cortical Glucose Metabolism and Microglial Activity Across the Life Span of Wild-Type Mice: A PET Study.

    PubMed

    Brendel, Matthias; Focke, Carola; Blume, Tanja; Peters, Finn; Deussing, Maximilian; Probst, Federico; Jaworska, Anna; Overhoff, Felix; Albert, Nathalie; Lindner, Simon; von Ungern-Sternberg, Barbara; Bartenstein, Peter; Haass, Christian; Kleinberger, Gernot; Herms, Jochen; Rominger, Axel

    2017-12-01

    Contrary to findings in the human brain, 18 F-FDG PET shows cerebral hypermetabolism of aged wild-type (WT) mice relative to younger animals, supposedly due to microglial activation. Therefore, we used dual-tracer small-animal PET to examine directly the link between neuroinflammation and hypermetabolism in aged mice. Methods: WT mice (5-20 mo) were investigated in a cross-sectional design using 18 F-FDG ( n = 43) and translocator protein (TSPO) ( 18 F-GE180; n = 58) small-animal PET, with volume-of-interest and voxelwise analyses. Biochemical analysis of plasma cytokine levels and immunohistochemical confirmation of microglial activity were also performed. Results: Age-dependent cortical hypermetabolism in WT mice relative to young animals aged 5 mo peaked at 14.5 mo (+16%, P < 0.001) and declined to baseline at 20 mo. Similarly, cortical TSPO binding increased to a maximum at 14.5 mo (+15%, P < 0.001) and remained high to 20 mo, resulting in an overall correlation between 18 F-FDG uptake and TSPO binding (R = 0.69, P < 0.005). Biochemical and immunohistochemical analyses confirmed the TSPO small-animal PET findings. Conclusion: Age-dependent neuroinflammation is associated with the controversial observation of cerebral hypermetabolism in aging WT mice. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  8. Taste responses to sweet stimuli in alpha-gustducin knockout and wild-type mice.

    PubMed

    Danilova, Vicktoria; Damak, Sami; Margolskee, Robert F; Hellekant, Göran

    2006-07-01

    The importance of alpha-gustducin in sweet taste transduction is based on data obtained with sucrose and the artificial sweetener SC45647. Here we studied the role of alpha-gustducin in sweet taste. We compared the behavioral and electrophysiological responses of alpha-gustducin knockout (KO) and wild-type (WT) mice to 11 different sweeteners, representing carbohydrates, artificial sweeteners, and sweet amino acids. In behavioral experiments, over 48-h preference ratios were measured in two-bottle preference tests. In electrophysiological experiments, integrated responses of chorda tympani (CT) and glossopharyngeal (NG) nerves were recorded. We found that preference ratios of the KO mice were significantly lower than those of WT for acesulfame-K, dulcin, fructose, NC00174, D-phenylalanine, L-proline, D-tryptophan, saccharin, SC45647, sucrose, but not neotame. The nerve responses to all sweeteners, except neotame, were smaller in the KO mice than in the WT mice. The differences between the responses in WT and KO mice were more pronounced in the CT than in the NG. These data indicate that alpha-gustducin participates in the transduction of the sweet taste in general.

  9. Pulmonary Hypertension in Wild Type Mice and Animals with Genetic Deficit in KCa2.3 and KCa3.1 Channels

    PubMed Central

    Sadda, Veeranjaneyulu; Nielsen, Gorm; Hedegaard, Elise Røge; Mogensen, Susie; Köhler, Ralf; Simonsen, Ulf

    2014-01-01

    Objective In vascular biology, endothelial KCa2.3 and KCa3.1 channels contribute to arterial blood pressure regulation by producing membrane hyperpolarization and smooth muscle relaxation. The role of KCa2.3 and KCa3.1 channels in the pulmonary circulation is not fully established. Using mice with genetically encoded deficit of KCa2.3 and KCa3.1 channels, this study investigated the effect of loss of the channels in hypoxia-induced pulmonary hypertension. Approach and Result Male wild type and KCa3.1−/−/KCa2.3T/T(+DOX) mice were exposed to chronic hypoxia for four weeks to induce pulmonary hypertension. The degree of pulmonary hypertension was evaluated by right ventricular pressure and assessment of right ventricular hypertrophy. Segments of pulmonary arteries were mounted in a wire myograph for functional studies and morphometric studies were performed on lung sections. Chronic hypoxia induced pulmonary hypertension, right ventricular hypertrophy, increased lung weight, and increased hematocrit levels in either genotype. The KCa3.1−/−/KCa2.3T/T(+DOX) mice developed structural alterations in the heart with increased right ventricular wall thickness as well as in pulmonary vessels with increased lumen size in partially- and fully-muscularized vessels and decreased wall area, not seen in wild type mice. Exposure to chronic hypoxia up-regulated the gene expression of the KCa2.3 channel by twofold in wild type mice and increased by 2.5-fold the relaxation evoked by the KCa2.3 and KCa3.1 channel activator NS309, whereas the acetylcholine-induced relaxation - sensitive to the combination of KCa2.3 and KCa3.1 channel blockers, apamin and charybdotoxin - was reduced by 2.5-fold in chronic hypoxic mice of either genotype. Conclusion Despite the deficits of the KCa2.3 and KCa3.1 channels failed to change hypoxia-induced pulmonary hypertension, the up-regulation of KCa2.3-gene expression and increased NS309-induced relaxation in wild-type mice point to a novel

  10. Paternal spatial training enhances offspring's cognitive performance and synaptic plasticity in wild-type but not improve memory deficit in Alzheimer's mice.

    PubMed

    Zhang, Shujuan; Li, Xiaoguang; Wang, Zhouyi; Liu, Yanchao; Gao, Yuan; Tan, Lu; Liu, Enjie; Zhou, Qiuzhi; Xu, Cheng; Wang, Xin; Liu, Gongping; Chen, Haote; Wang, Jian-Zhi

    2017-05-08

    Recent studies suggest that spatial training can maintain associative memory capacity in Tg2576 mice, but it is not known whether the beneficial effects can be inherited from the trained fathers to their offspring. Here, we exposed male wild-type and male 3XTg Alzheimer disease (AD) mice (3-m old) respectively to spatial training for one week and assessed the transgenerational effects in the F1 offspring when they were grown to 7-m old. We found that the paternal spatial training significantly enhanced progeny's spatial cognitive performance and synaptic transmission in wild-type mice. Among several synapse- or memory-associated proteins, we observed that the expression level of synaptotagmin 1 (SYT1) was significantly increased in the hippocampus of the paternally trained-offspring. Paternal training increased histone acetylation at the promoter of SYT1 in both fathers' and the offspring's hippocampus, and as well as in the fathers' sperm. Finally, paternal spatial training for one week did not improve memory and synaptic plasticity in 3XTg AD F1 offspring. Our findings suggest paternal spatial training for one week benefits the offspring's cognitive performance in wild-type mice with the mechanisms involving an enhanced transgenerational histone acetylation at SYT1 promoter.

  11. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  12. Excretion of Wild-Type and Vaccine-Derived Poliovirus in the Feces of Poliovirus Receptor-Transgenic Mice

    PubMed Central

    Boot, Hein J.; Kasteel, Daniella T. J.; Buisman, Anne-Marie; Kimman, Tjeerd G.

    2003-01-01

    The emergence of circulating vaccine-derived poliovirus (cVDPV) strains in suboptimally vaccinated populations is a serious threat to the global poliovirus eradication. The genetic determinants for the transmissibility phenotype of polioviruses, and in particularly of cVDPV strains, are currently unknown. Here we describe the fecal excretion of wild-type poliovirus, oral polio vaccine, and cVDPV (Hispaniola) strains after intraperitoneal injection in poliovirus receptor-transgenic mice. Both the pattern and the level of fecal excretion of the cVDPV strains resemble those of wild-type poliovirus type 1. In contrast, very little poliovirus was present in the feces after oral polio vaccine administration. This mouse model will be helpful in elucidating the genetic determinants for the high fecal-oral transmission phenotype of cVDPV strains. PMID:12743311

  13. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

    PubMed

    Endo, Toyoshi; Kobayashi, Tetsuro

    2013-09-01

    Hypothyroidism in the young leads to irreversible growth failure. hyt/hyt Mice have a nonfunctional TSH receptor (TSHR) and are severely hypothyroid, but growth retardation was not observed in adult mice. We found that epiphysial cartilage as well as cultured chondrocytes expressed functional TSHR at levels comparable to that seen in the thyroid, and that addition of TSH to cultured chondrocytes suppressed expression of chondrocyte differentiation marker genes such as Sox-9 and type IIa collagen. Next, we compared the long bone phenotypes of two distinct mouse models of hypothyroidism: thyroidectomized (THYx) mice and hyt/hyt mice. Although both THYx and hyt/hyt mice were severely hypothyroid and had similar serum Ca(2+) and growth hormone levels, the tibia was shorter and the proliferating and hypertrophic zones in the growth plate was significantly narrower in THYx mice than in hyt/hyt mice. Supplementation of hyt/hyt mice thyroid hormone resulted in a wider growth plate compared with that of wild-type mice. Expressions of chondrocyte differentiation marker genes Sox-9 and type IIa collagen in growth plate from THYx mice were 52 and 60% lower than those of hyt/hyt mice, respectively. High serum TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

  14. Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.

    PubMed

    Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M

    2007-05-15

    The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.

  15. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    PubMed Central

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  16. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice.

    PubMed

    Yang, Yue; Aloi, Macarena S; Cudaback, Eiron; Josephsen, Samuel R; Rice, Samantha J; Jorstad, Nikolas L; Keene, C Dirk; Montine, Thomas J

    2014-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.

  17. Differential tumor biology effects of double-initiation in a mouse skin chemical carcinogenesis model comparing wild type versus protein kinase Cepsilon overexpression mice.

    PubMed

    Li, Yafan; Wheeler, Deric L; Ananthaswamy, Honnavara N; Verma, Ajit K; Oberley, Terry D

    2007-12-01

    Our previous studies showed that protein kinase Cepsilon (PKCepsilon) verexpression in mouse skin resulted in metastatic squamous cell carcinoma (SCC) elicited by single 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion in the absence of preceding papilloma formation as is typically observed in wild type mice. The present study demonstrates that double-DMBA initiation modulates tumor incidence, multiplicity, and latency period in both wild type and PKCepsilon overexpression transgenic (PKCepsilon-Tg) mice. After 17 weeks (wks) of tumor promotion, a reduction in papilloma multiplicity was observed in double- versus single-DMBA initiated wild type mice. Papilloma multiplicity was inversely correlated with cell death indices of interfollicular keratinocytes, indicating decreased papilloma formation was caused by increased cell death and suggesting the origin of papillomas is in interfollicular epidermis. Double-initiated PKCepsilon-Tg mice had accelerated carcinoma formation and cancer incidence in comparison to single-initiated PKCepsilon-Tg mice. Morphologic analysis of mouse skin following double initiation and tumor promotion showed a similar if not identical series of events to those previously observed following single initiation and tumor promotion: putative preneoplastic cells were observed arising from hyperplastic hair follicles (HFs) with subsequent cancer cell infiltration into the dermis. Single-initiated PKCepsilon-Tg mice exhibited increased mitosis in epidermal cells of HFs during tumor promotion.

  18. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and “early aging” mice

    PubMed Central

    Guest, Ian; Ilic, Zoran; Sell, Stewart

    2015-01-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16–18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best. PMID:26796640

  19. Substance P and central respiratory activity: a comparative in vitro study in NK1 receptor knockout and wild-type mice.

    PubMed

    Ptak, K; Hunt, S P; Monteau, R

    2000-07-01

    Neurokinin-1 receptors (NK1) are present within the respiratory medullary network and in the phrenic nucleus, which controls the diaphragm. We compared the efficacy of substance P (SP) at inducing changes in respiratory frequency or the amplitude of the respiratory motor output between NK1 knockout (NK1-/-) and wild-type mice, using the in vitro brainstem-spinal cord preparation. The in vitro respiratory frequency, as well as the variability of the rhythm and the amplitude of the motor output were similar in both lines. In wild-type mice, application of exogenous SP induced either an increase in respiratory frequency (superfusion of the medulla) or an increase of the inspiratory motor output, as defined by the integral of C4 cervical ventral root activity (superfusion of the spinal cord). These two effects were not apparent in NK1-/- mice. In conclusion, NK1 receptors mediate the respiratory responses to SP but the lack of NK1 receptors in newborn NK1-/- mice does not change the respiratory activity.

  20. The effect of mild traumatic brain injury on peripheral nervous system pathology in wild-type mice and the G93A mutant mouse model of motor neuron disease.

    PubMed

    Evans, T M; Jaramillo, C A; Sataranatarajan, K; Watts, L; Sabia, M; Qi, W; Van Remmen, H

    2015-07-09

    Traumatic brain injury (TBI) is associated with a risk of neurodegenerative disease. Some suggest a link between TBI and motor neuron disease (MND), including amyotrophic lateral sclerosis (ALS). To investigate the potential mechanisms linking TBI to MND, we measured motor function and neuropathology following mild-TBI in wild-type and a transgenic model of ALS, G93A mutant mice. Mild-TBI did not alter the lifespan of G93A mice or age of onset; however, rotarod performance was impaired in G93A verses wild-type mice. Grip strength was reduced only in G93A mice after mild-TBI. Increased electromyography (EMG) abnormalities and markers of denervation (AchR, Runx1) indicate that mild-TBI may result in peripheral effects that are exaggerated in G93A mice. Markers of inflammation (cell edema, astrogliosis and microgliosis) were detected at 24 and 72h in the brain and spinal cord in wild-type and G93A mice. Levels of F2-isoprostanes, a marker of oxidative stress, were increased in the spinal cord 24h post mild-TBI in wild-type mice but were not affected by TBI in G93A mice. In summary, our data demonstrate that mild-TBI induces inflammation and oxidative stress and negatively impacts muscle denervation and motor performance, suggesting mild-TBI can potentiate motor neuron pathology and influence the development of MND in mice. Published by Elsevier Ltd.

  1. Peptide Transporter 1 is Responsible for Intestinal Uptake of the Dipeptide Glycylsarcosine: Studies in Everted Jejunal Rings from Wild-type and Pept1 Null Mice

    PubMed Central

    Ma, Katherine; Hu, Yongjun; Smith, David E.

    2010-01-01

    The purpose of this study was to determine the relative importance of PEPT1 in the uptake of peptides/mimetics from mouse small intestine using glycylsarcosine (GlySar). After isolating jejunal tissue from wild-type and Pept1 null mice, 2-cm intestinal segments were everted and mounted on glass rods for tissue uptake studies. [14C]GlySar (4 μM) was studied as a function of time, temperature, sodium and pH, concentration, and potential inhibitors. Compared to wild-type animals, Pept1 null mice exhibited a 78% reduction of GlySar uptake at pH 6.0, 37°C. GlySar uptake showed pH dependence with peak values between pH 6.0-6.5 in wild-type animals, while no such tendency was observed in Pept1 null mice. GlySar exhibited Michaelis-Menten uptake kinetics and a minor nonsaturable component in wild-type animals. In contrast, GlySar uptake occurred by only a nonsaturable process in Pept1 null mice. GlySar uptake was significantly inhibited by dipeptides, aminocephalosporins, angiotensin-converting enzyme inhibitors, and the antiviral prodrug valacyclovir; these inhibitors had little, if any, effect on the uptake of GlySar in Pept1 null mice. The findings demonstrate that PEPT1 plays a critical role in the uptake of GlySar in jejunum, and suggest that PEPT1 is the major transporter responsible for the intestinal absorption of small peptides. PMID:20862774

  2. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.

    PubMed

    Selvaratnam, Johanna S; Robaire, Bernard

    2016-09-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. © 2016 by the Society for the Study of Reproduction, Inc.

  3. A comparison of GluR-A-deficient and wild-type mice on a test battery assessing sensorimotor, affective, and cognitive behaviors.

    PubMed

    Bannerman, D M; Deacon, R M J; Brady, S; Bruce, A; Sprengel, R; Seeburg, P H; Rawlins, J N P

    2004-06-01

    Previous studies have demonstrated a spatial working memory deficit in glutamate receptor (GluR)-A (GluR1) AMPA receptor subunit knockout mice. The present study evaluated male and female wild-type and GluR-A-/- mice on a test battery that assessed sensorimotor, affective, and cognitive behaviors. Results revealed a behavioral phenotype more extensive than previously described. GluR-A-/- mice were hyperactive, displayed a subtle lack of motor coordination, and were generally more anxious than wild-type controls. In addition, they showed a deficit in spontaneous alternation, consistent with previous reports of a role for GluR-A-dependent plasticity in hippocampus-dependent, spatial working memory. Although changes in motor coordination or anxiety cannot explain the dissociations already reported within the spatial memory domain, it is clear that they could significantly affect interpretation of results obtained in other kinds of behavioral tasks. ((c) 2004 APA, all rights reserved)

  4. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice1

    PubMed Central

    Selvaratnam, Johanna S.; Robaire, Bernard

    2016-01-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat−/−) and SOD1-null (Sod−/−) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod−/− mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod−/− mice, while aged Cat−/− mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat−/− mice but was consistently low in young and aged Sod−/− mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod−/− and Cat−/− mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat−/− and in Sod−/− mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod−/− mice and with age in all mice. These studies show that aged Sod−/− mice display severe redox dysfunction, while wild-type and Cat−/− mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. PMID:27465136

  5. Significance of Peptide Transporter 1 in the Intestinal Permeability of Valacyclovir in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Yang, Bei

    2013-01-01

    The purpose of this study was to quantitatively determine the contribution of PepT1 [peptide transporter 1 (SLC15A1)] to the intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir. In situ single-pass intestinal perfusions were employed (pH 6.5 × 90 minutes) to assess the effective permeability (Peff) of 100 μM [3H]valacyclovir in wild-type and PepT1 knockout mice. Acyclovir pharmacokinetics was also evaluated after oral administration of 25 nmol/g valacyclovir. In wild-type mice, jejunal uptake of valacyclovir was best described by both saturable (Km = 10.2 mM) and nonsaturable components where the saturable pathway accounted for 82% of total transport. Valacyclovir Peff was 2.4 × 10−4 cm/s in duodenum, 1.7 × 10−4 cm/s in jejunum, 2.1 × 10−4 cm/s in ileum, and 0.27 × 10−4 cm/s in colon. In Pept1 knockout mice, Peff values were about 10% of that in wild-type animals for these small intestinal segments. Valacyclovir Peff was similar in the colon of both genotypes. There were no differences in valacyclovir Peff between any of the intestinal segments of PepT1 knockout mice. Valacyclovir Peff was significantly reduced by the dipeptide glycylsarcosine and the aminocephalosporin cefadroxil, but not by the amino acids l-valine or l-histidine, the organic acid p-aminohippurate, or the organic base tetraethylammonium (all at 25 mM). PepT1 ablation resulted in 3- to 5-fold reductions in the in vivo rate and extent of valacyclovir absorption. Our findings conclusively demonstrate, using in situ and in vivo validations in genetically modified mice, that PepT1 has a major influence in improving the oral absorption of valacyclovir. PMID:23264448

  6. Glio-vascular changes during ageing in wild-type and Alzheimer's disease-like APP/PS1 mice.

    PubMed

    Janota, C S; Brites, D; Lemere, C A; Brito, M A

    2015-09-16

    Vascular and glial involvement in the development of neurodegenerative disorders, such as Alzheimer's disease (AD), and age-related brain vulnerabilities have been suggested. Therefore, we sought to: (i) investigate which vascular and glial events are evident in ageing and/or AD, (ii) to establish the temporal evolution of vascular and glial changes in AD-like and wild-type (WT) mice and (iii) to relate them to amyloid-β (Aβ) peptide accumulation. We examined immunohistochemically hippocampi and cortex from APP/PS1dE9 and WT C57BL/6 mice along ageing and disease progression (young-adulthood, middle- and old-age). Ageing resulted in the increase in receptor for advanced glycation endproducts expression, as well as the entrance of thrombin and albumin in hippocampal parenchyma. In contrast, the loss of platelet-derived growth factor receptor-β (PDGFR-β) positive cells, in both regions, was only related to AD pathogenesis. Hypovascularization was affected by both ageing and AD in the hippocampus, but resulted from the interaction between both factors in the cortex. Astrogliosis was a result of AD in hippocampus and of both factors in cortex, while microgliosis was associated with fibrillar amyloid plaques in AD-like mice and with the interaction between both factors in each of the studied regions. In sum, these data show that senile plaques precede vascular and glial alterations only in hippocampus, whereas in cortex, vascular and glial alterations, namely the loss of PDGFR-β-positive cells and astrogliosis, accompanied the first senile plaques. Hence, this study points to vascular and glial events that co-exist in AD pathogenesis and age-related brain vulnerabilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Low-Pathogenic Avian Influenza Viruses in Wild House Mice

    PubMed Central

    Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.

    2012-01-01

    Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076

  8. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice.

    PubMed

    Nallanthighal, Sameera; Chan, Cadia; Murray, Thomas M; Mosier, Aaron P; Cady, Nathaniel C; Reliene, Ramune

    2017-10-01

    Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.

  9. Interspecies Variation in the Susceptibility of a Wild-Derived Colony of Mice to Pinworms (Aspiculuris tetraptera).

    PubMed

    Curtis, Ryan C; Murray, Jill K; Campbell, Polly; Nagamori, Yoko; Molnar, Adam; Jackson, Todd A

    2017-01-01

    Pinworms are common parasites in wild and laboratory rodents. Despite their relative nonpathogenicity in immunocompetent models, pinworm infections add an unwanted variable and may confound some types of research. For this reason, health monitoring programs and biosecurity measures aim to minimize the spread of pinworm infections into colonies free from the organisms. Wild-derived and laboratory strains of mice have shown varied susceptibility to infection with Aspiculuris tetraptera, the most commonly found murine pinworm. In particular, susceptibility is increased in wild-derived mice, young animals, and males. Routine surveillance at our institution revealed pinworm infection (A. tetraptera only) within a colony of multiple, wild-derived species of Mus, although only specific species showed positive results during initial sampling. To assess whether species-associated differences in susceptibility were present, we analyzed fecal egg counts of A. tetraptera in every cage of the colony. Our results revealed significant differences in susceptibility between various species and subspecies of Mus. Egg counts were significantly higher in Mus spicilegus than Mus m. domesticus (WSB/EiJ) and Mus macedonicus. Mus spretus had higher egg counts than M. m. domesticus (WSB/EiJ), M. m. musculus (PWK/PhJ), and M. macedonicus. Egg counts did not differ in regard to age, sex, or number of mice per cage. As wild-derived mouse models continue to compliment research largely based on laboratory strains, it will be important to understand host-parasite interactions and their effects on research, particularly studies evaluating immune responses, behavior, growth, and other physiologic parameters.

  10. Differences in Ultrasonic Vocalizations between Wild and Laboratory California Mice (Peromyscus californicus)

    PubMed Central

    Kalcounis-Rueppell, Matina C.; Petric, Radmila; Briggs, Jessica R.; Carney, Catherine; Marshall, Matthew M.; Willse, John T.; Rueppell, Olav; Ribble, David O.; Crossland, Janet P.

    2010-01-01

    Background Ultrasonic vocalizations (USVs) emitted by muroid rodents, including laboratory mice and rats, are used as phenotypic markers in behavioral assays and biomedical research. Interpretation of these USVs depends on understanding the significance of USV production by rodents in the wild. However, there has never been a study of muroid rodent ultrasound function in the wild and comparisons of USVs produced by wild and laboratory rodents are lacking to date. Here, we report the first comparison of wild and captive rodent USVs recorded from the same species, Peromyscus californicus. Methodology and Principal Findings We used standard ultrasound recording techniques to measure USVs from California mice in the laboratory (Peromyscus Genetic Stock Center, SC, USA) and the wild (Hastings Natural History Reserve, CA, USA). To determine which California mouse in the wild was vocalizing, we used a remote sensing method that used a 12-microphone acoustic localization array coupled with automated radio telemetry of all resident Peromyscus californicus in the area of the acoustic localization array. California mice in the laboratory and the wild produced the same types of USV motifs. However, wild California mice produced USVs that were 2–8 kHz higher in median frequency and significantly more variable in frequency than laboratory California mice. Significance The similarity in overall form of USVs from wild and laboratory California mice demonstrates that production of USVs by captive Peromyscus is not an artifact of captivity. Our study validates the widespread use of USVs in laboratory rodents as behavioral indicators but highlights that particular characteristics of laboratory USVs may not reflect natural conditions. PMID:20368980

  11. Dietary Supplementation of Hericium erinaceus Increases Mossy Fiber-CA3 Hippocampal Neurotransmission and Recognition Memory in Wild-Type Mice

    PubMed Central

    Cesaroni, Valentina; Gregori, Andrej; Repetti, Margherita; Romano, Chiara; Orrù, Germano; Botta, Laura; Girometta, Carolina; Guglielminetti, Maria Lidia; Savino, Elena

    2017-01-01

    Hericium erinaceus (Bull.) Pers. is a medicinal mushroom capable of inducing a large number of modulatory effects on human physiology ranging from the strengthening of the immune system to the improvement of cognitive functions. In mice, dietary supplementation with H. erinaceus prevents the impairment of spatial short-term and visual recognition memory in an Alzheimer model. Intriguingly other neurobiological effects have recently been reported like the effect on neurite outgrowth and differentiation in PC12 cells. Until now no investigations have been conducted to assess the impact of this dietary supplementation on brain function in healthy subjects. Therefore, we have faced the problem by considering the effect on cognitive skills and on hippocampal neurotransmission in wild-type mice. In wild-type mice the oral supplementation with H. erinaceus induces, in behaviour test, a significant improvement in the recognition memory and, in hippocampal slices, an increase in spontaneous and evoked excitatory synaptic current in mossy fiber-CA3 synapse. In conclusion, we have produced a series of findings in support of the concept that H. erinaceus induces a boost effect onto neuronal functions also in nonpathological conditions. PMID:28115973

  12. Dietary Supplementation of Hericium erinaceus Increases Mossy Fiber-CA3 Hippocampal Neurotransmission and Recognition Memory in Wild-Type Mice.

    PubMed

    Brandalise, Federico; Cesaroni, Valentina; Gregori, Andrej; Repetti, Margherita; Romano, Chiara; Orrù, Germano; Botta, Laura; Girometta, Carolina; Guglielminetti, Maria Lidia; Savino, Elena; Rossi, Paola

    2017-01-01

    Hericium erinaceus (Bull.) Pers. is a medicinal mushroom capable of inducing a large number of modulatory effects on human physiology ranging from the strengthening of the immune system to the improvement of cognitive functions. In mice, dietary supplementation with H. erinaceus prevents the impairment of spatial short-term and visual recognition memory in an Alzheimer model. Intriguingly other neurobiological effects have recently been reported like the effect on neurite outgrowth and differentiation in PC12 cells. Until now no investigations have been conducted to assess the impact of this dietary supplementation on brain function in healthy subjects. Therefore, we have faced the problem by considering the effect on cognitive skills and on hippocampal neurotransmission in wild-type mice. In wild-type mice the oral supplementation with H. erinaceus induces, in behaviour test, a significant improvement in the recognition memory and, in hippocampal slices, an increase in spontaneous and evoked excitatory synaptic current in mossy fiber-CA3 synapse. In conclusion, we have produced a series of findings in support of the concept that H. erinaceus induces a boost effect onto neuronal functions also in nonpathological conditions.

  13. Murray's Law in elastin haploinsufficient (Eln+/-) and wild-type (WT) mice.

    PubMed

    Sather, Bradley A; Hageman, Daniel; Wagenseil, Jessica E

    2012-12-01

    Using either the principle of minimum energy or constant shear stress, a relation can be derived that predicts the diameters of branching vessels at a bifurcation. This relation, known as Murray's Law, has been shown to predict vessel diameters in a variety of cardiovascular systems from adult humans to developing chicks. The goal of this study is to investigate Murray's Law in vessels from mice that are haploinsufficient for the elastin protein (Eln+/-). Elastin is one of the major proteins in the blood vessel wall and is organized in concentric rings, known as lamellae, with smooth muscle cells (SMCs) around the vessel lumen. Eln+/- mice have an increased number of lamellae, as well as smaller, thinner vessels. It is possible that due to decreased amounts of elastin available for vessel wall remodeling during development and in adulthood, Eln+/- vessels would not follow Murray's Law. We examined vessel bifurcations in six different physiologic regions, including the brain, heart, epidermis, ceocum (or cecum), testes, and intestines, in Eln+/- mice and wild-type (WT) littermates. All vessels were between 40 and 300 μm in diameter. We found that the diameters of both Eln+/- and WT vessels have an average of 13% error from the diameters predicted by Murray's Law, with no significant differences between genotypes or physiologic regions. The data suggest that vessels are optimized to follow Murray's Law, despite limitations on the proteins available for growth and remodeling of the vessel wall.

  14. Overexpressing wild-type γ2 subunits rescued the seizure phenotype in Gabrg2+/Q390X Dravet syndrome mice.

    PubMed

    Huang, Xuan; Zhou, Chengwen; Tian, Mengnan; Kang, Jing-Qiong; Shen, Wangzhen; Verdier, Kelienne; Pimenta, Aurea; MacDonald, Robert L

    2017-08-01

    The mutant γ-aminobutyric acid type A (GABA A ) receptor γ2(Q390X) subunit (Q351X in the mature peptide) has been associated with the epileptic encephalopathy, Dravet syndrome, and the epilepsy syndrome genetic epilepsy with febrile seizures plus (GEFS+). The mutation generates a premature stop codon that results in translation of a stable truncated and misfolded γ2 subunit that accumulates in neurons, forms intracellular aggregates, disrupts incorporation of γ2 subunits into GABA A receptors, and affects trafficking of partnering α and β subunits. Heterozygous Gabrg2 +/Q390X knock-in (KI) mice had reduced cortical inhibition, spike wave discharges on electroencephalography (EEG), a lower seizure threshold to the convulsant drug pentylenetetrazol (PTZ), and spontaneous generalized tonic-clonic seizures. In this proof-of-principal study, we attempted to rescue these deficits in KI mice using a γ2 subunit gene (GABRG2) replacement therapy. We introduced the GABRG2 allele by crossing Gabrg2 +/Q390X KI mice with bacterial artificial chromosome (BAC) transgenic mice overexpressing HA (hemagglutinin)-tagged human γ2 HA subunits, and compared GABA A receptor subunit expression by Western blot and immunohistochemical staining, seizure threshold by monitoring mouse behavior after PTZ-injection, and thalamocortical inhibition and network oscillation by slice recording. Compared to KI mice, adult mice carrying both mutant allele and transgene had increased wild-type γ2 and partnering α1 and β2/3 subunits, increased miniature inhibitory postsynaptic current (mIPSC) amplitudes recorded from layer VI cortical neurons, reduced thalamocortical network oscillations, and higher PTZ seizure threshold. Based on these results we suggest that seizures in a genetic epilepsy syndrome caused by epilepsy mutant γ2(Q390X) subunits with dominant negative effects could be rescued potentially by overexpression of wild-type γ2 subunits. Wiley Periodicals, Inc. © 2017 International

  15. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  16. Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice

    PubMed Central

    Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.

    2010-01-01

    Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone. PMID:20033775

  17. Activation Of Wild-Type Hras Suppresses The Earliest Stages Of Pancreatic Cancer.

    PubMed

    Weyandt, Jamie

    2015-08-01

    The RAS family of small GTPases is comprised of HRAS, NRAS, and KRAS. KRAS is invariably oncogenically mutated in pancreatic cancers, which is known to induce this disease. Beyond oncogenic KRAS, redox-dependent reactions have been implicated in the activation of the remaining wild-type RAS proteins in pancreatic cancer cell lines. These results suggest a possible involvement of wild-type RAS proteins in pancreatic cancer. To evaluate the impact of genetically suppressing wild-type RAS expression on pancreatic cancer. Hras homozygous null mice (Hras -/- ) were crossed into a Pdx-Cre; LSL-Kras G12D/+ (KC) murine background in which oncogenic Kras is activated in the pancreas to promote preinvasive pancreatic cancer. Tumor burden was then measured at different stages of disease. HRas -/- ;KC mice exhibited more precancerous lesions in the pancreas and more off-target skin papillomas compared to their wild-type counterparts, suggesting that Hras suppresses early oncogenic Kras-driven tumorigenesis, possibly at the time of initiation. Loss of Hras also reduced the survival of mice engineered to develop aggressive pancreatic cancer by the additional disruption of one allele of the tumor suppressor p53 (Trp53 R172H/+ ). However, this survival advantage was lost when both alleles of Trp53 were mutated, suggesting that wild-type Hras inhibits tumorigenesis in a p53-dependent fashion. Loss of wild-type Hras promotes the earliest stages of pancreatic tumorigenesis, and moreover results in more rapid progression of the disease. As such, mechanisms leading to activation of wild-type Ras proteins, including but not limited to redox-dependent reactions, may influence the development of pancreatic cancer. Copyright © 2015. Published by Elsevier B.V.

  18. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein.

    PubMed

    Fleming, Sheila M; Salcedo, Jonathan; Fernagut, Pierre-Olivier; Rockenstein, Edward; Masliah, Eliezer; Levine, Michael S; Chesselet, Marie-Françoise

    2004-10-20

    Accumulation of alpha-synuclein in brain is a hallmark of synucleinopathies, neurodegenerative diseases that include Parkinson's disease. Mice overexpressing alpha-synuclein under the Thy-1 promoter (ASO) show abnormal accumulation of alpha-synuclein in cortical and subcortical regions of the brain, including the substantia nigra. We examined the motor deficits in ASO mice with a battery of sensorimotor tests that are sensitive to alterations in the nigrostriatal dopaminergic system. Male wild-type and ASO mice were tested every 2 months for 8 months for motor performance and coordination on a challenging beam, inverted grid, and pole, sensorimotor deficits in an adhesive removal test, spontaneous activity in a cylinder, and gait. Fine motor skills were assessed by the ability to grasp cotton from a bin. ASO mice displayed significant impairments in motor performance and coordination and a reduction in spontaneous activity as early as 2 months of age. Motor performance and coordination impairments became progressively worse with age and sensorimotor deficits appeared at 6 months. Fine motor skills were altered at 4 months and worsened at 8 months. These data indicate that overexpression of alpha-synuclein induced an early and progressive behavioral phenotype that can be detected in multiple tests of sensorimotor function. These behavioral deficits provide a useful way to assess novel drug therapy in genetic models of synucleinopathies.

  19. GENETIC CATHEPSIN B DEFICIENCY REDUCES β-AMYLOID IN TRANSGENIC MICE EXPRESSING HUMAN WILD-TYPE AMYLOID PRECURSOR PROTEIN

    PubMed Central

    Hook, Vivian Y. H.; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory

    2009-01-01

    Neurotoxic β-amyloid (Aβ) peptides participate in Alzheimer’s disease (AD); therefore, reduction of Aβ generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Aβ may identify targets for reducing Aβ. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decrease of Aβ40 and Aβ42 by 67% in brain, and decreases levels of the C-terminal β-secretase fragment (CTFβ) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Aβ. The difference in reduction of Aβ in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Aβ in AD. PMID:19501042

  20. Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein.

    PubMed

    Hook, Vivian Y H; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory

    2009-08-21

    Neurotoxic beta-amyloid (Abeta) peptides participate in Alzheimer's disease (AD); therefore, reduction of Abeta generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Abeta may identify targets for reducing Abeta. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Abeta40 and Abeta42 by 67% and decreases in levels of the C-terminal beta-secretase fragment (CTFbeta) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Abeta. The difference in reduction of Abeta in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Abeta in AD.

  1. Reductions in expression of growth regulating genes in skeletal muscle with age in wild type and myostatin null mice.

    PubMed

    Jones, Jennifer C; Kroscher, Kellie A; Dilger, Anna C

    2014-03-28

    Genes that decline in expression with age and are thought to coordinate growth cessation have been identified in various organs, but their expression in skeletal muscle is unknown. Therefore, our objective was to determine expression of these genes (Ezh2, Gpc3, Mdk, Mest, Mycn, Peg3, and Plagl1) in skeletal muscle from birth to maturity. We hypothesized that expression of these genes would decline with age in skeletal muscle but differ between sexes and between wild type and myostatin null mice. Female and male wild type and myostatin null mice (C57BL/6J background) were sacrificed by carbon dioxide asphyxiation followed by decapitation at d -7, 0, 21, 42, and 70 days of age. Whole bodies at d -7, all muscles from both hind limbs at d 0, and bicep femoris muscle from d 21, 42 and 70 were collected. Gene expression was determined by quantitative real-time PCR. In general, expression of these growth-regulating genes was reduced at d 21 compared with day 0 and d -7. Expression of Gpc3, Mest, and Peg3 was further reduced at d 42 and 70 compared with d 21, however the expression of Mycn increased from d 21 to d 42 and 70. Myostatin null mice, as expected, were heavier with increased biceps femoris weight at d 70. However, with respect to sex and genotype, there were few differences in expression. Expression of Ezh2 was increased at d 70 and expression of Mdk was increased at d 21 in myostatin null mice compared with wild type, but no other genotype effects were present. Expression of Mdk was increased in females compared to males at d 70, but no other sex effects were present. Overall, these data suggest the downregulation of these growth-regulating genes with age might play a role in the coordinated cessation of muscle growth similar to organ growth but likely have a limited role in the differences between sexes or genotypes.

  2. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice.

    PubMed

    Rodriguez-Cuenca, Sergio; Cochemé, Helena M; Logan, Angela; Abakumova, Irina; Prime, Tracy A; Rose, Claudia; Vidal-Puig, Antonio; Smith, Anthony C; Rubinsztein, David C; Fearnley, Ian M; Jones, Bruce A; Pope, Simon; Heales, Simon J R; Lam, Brian Y H; Neogi, Sudeshna Guha; McFarlane, Ian; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2010-01-01

    The mitochondria-targeted quinone MitoQ protects mitochondria in animal studies of pathologies in vivo and is being developed as a therapy for humans. However, it is unclear whether the protective action of MitoQ is entirely due to its antioxidant properties, because long-term MitoQ administration may alter whole-body metabolism and gene expression. To address this point, we administered high levels of MitoQ orally to wild-type C57BL/6 mice for up to 28 weeks and investigated the effects on whole-body physiology, metabolism, and gene expression, finding no measurable deleterious effects. In addition, because antioxidants can act as pro-oxidants under certain conditions in vitro, we examined the effects of MitoQ administration on markers of oxidative damage. There were no changes in the expression of mitochondrial or antioxidant genes as assessed by DNA microarray analysis. There were also no increases in oxidative damage to mitochondrial protein, DNA, or cardiolipin, and the activities of mitochondrial enzymes were unchanged. Therefore, MitoQ does not act as a pro-oxidant in vivo. These findings indicate that mitochondria-targeted antioxidants can be safely administered long-term to wild-type mice. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Differential proteomic and behavioral effects of long-term voluntary exercise in wild-type and APP-overexpressing transgenics.

    PubMed

    Rao, Shailaja Kishan; Ross, Jordan M; Harrison, Fiona E; Bernardo, Alexandra; Reiserer, Randall S; Reiserer, Ronald S; Mobley, James A; McDonald, Michael P

    2015-06-01

    Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  5. Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist.

    PubMed

    Roper, J A; Craighead, M; O'Carroll, A-M; Lolait, S J

    2010-11-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.

  6. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice

    PubMed Central

    Friedrich, O; Both, M; Gillis, J M; Chamberlain, J S; Fink, RHA

    2004-01-01

    L-type calcium currents (iCa) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of iCa were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of iCa was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of iCa were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas iCa was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation–contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin. PMID:14594987

  7. Systemic metabolite changes in wild-type C57BL/6 mice fed black raspberries

    PubMed Central

    Pan, Pan; Skaer, Chad W.; Wang, Hsin-Tzu; Kreiser, Michael A.; Stirdivant, Steven M.; Oshima, Kiyoko; Huang, Yi-Wen; Young, Matthew R.; Wang, Li-Shu

    2017-01-01

    Introduction Freeze-dried black raspberries (BRBs) elicit chemopreventive effects against colorectal cancer in humans and in rodents. The study objective was to investigate potential BRB-caused metabolite changes using wild-type (WT) C57BL/6 mice. Methods and results WT mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver, and fecal specimens collected from both diet groups. BRBs significantly changed the levels of 41 colonic mucosa metabolites, 40 liver metabolites and 34 fecal metabolites compared to control diet-fed mice. BRBs reduced 34 lipid metabolites in colonic mucosa and increased levels of amino acids in liver. One metabolite, 3-[3-(sulfooxy) phenyl] propanoic acid, might be a useful biomarker of BRB consumption. In addition, BRB powder was found to contain 30-fold higher levels of linolenate compared to control diets. Consistently, multiple omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including stearidonate, docosapentaenoate (ω-3 DPA), eicosapentaenoate (EPA) and docosahexaenoate (DHA), were significantly elevated in livers of BRB-fed mice. Conclusion The data from the current study suggest that BRBs produce systemic metabolite changes in multiple tissue matrices, supporting our hypothesis that BRBs may serve as both a chemopreventive agent and a beneficial dietary supplement. PMID:28094560

  8. Effects of gintonin-enriched fraction on hippocampal cell proliferation in wild-type mice and an APPswe/PSEN-1 double Tg mouse model of Alzheimer's disease.

    PubMed

    Kim, Hyeon-Joong; Kim, Dae-Joong; Shin, Eun-Ju; Lee, Byung-Hwan; Choi, Sun-Hye; Hwang, Sung-Hee; Rhim, Hyewhon; Cho, Ik-Hyun; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2016-12-01

    We previously showed that gintonin, an exogenous lysophosphatidic acid (LPA) receptor ligand, attenuated β-amyloid plaque formation in the cortex and hippocampus, and restored β-amyloid-induced memory dysfunction. Both endogenous LPA and LPA receptors play a key role in embryonic brain development. However, little is known about whether gintonin can induce hippocampal cell proliferation in adult wild-type mice and an APPswe/PSEN-1 double Tg mouse model of Alzheimer's disease (AD). In the present study, we examined the effects of gintonin on the proliferation of hippocampal neural progenitor cells (NPCs) in vitro and its effects on the hippocampal cell proliferation in wild-type mice and a transgenic AD mouse model. Gintonin treatment increased 5-bromo-2'-deoxyuridine (BrdU) incorporation in hippocampal NPCs in a dose- and time-dependent manner. Gintonin (0.3 μg/ml) increased the immunostaining of glial fibrillary acidic protein, NeuN, and LPA1 receptor in hippocampal NPCs. However, the gintonin-induced increase in BrdU incorporation and immunostaining of biomarkers was blocked by an LPA1/3 receptor antagonist and Ca 2+ chelator. Oral administration of the gintonin-enriched fraction (50 and 100 mg/kg) increased hippocampal BrdU incorporation and LPA1/3 receptor expression in adult wild-type and transgenic AD mice. The present study showed that gintonin could increase the number of hippocampal neurons in adult wild-type mice and a transgenic AD mouse model. Our results indicate that gintonin-mediated hippocampal cell proliferation contributes to the gintonin-mediated restorative effect against β-amyloid-induced hippocampal dysfunction. These results support the use of gintonin for the prevention or treatment of neurodegenerative diseases such as AD via promotion of hippocampal neurogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Contribution of B2 receptors for bradykinin in Arthus reaction-induced plasma extravasation in wild-type or B2 transgenic knockout mice

    PubMed Central

    Samadfam, R; Teixeira, C; Bkaily, G; Sirois, P; de Brum-Fernandes, A; D'Orleans-Juste, P

    2000-01-01

    The aim of the present study was to investigate the contribution of bradykinin (BK) B1 and B2 receptors in a model of type III hypersensitivity, the reverse passive Arthus reaction (RPA), in wild-type mice and transgenic B2 knockout littermates.BK (10 μg mouse−1) or bovine serum albumin (0.5 mg mouse−1) induced a sustained Evans blue extravasation for more than 80 min in naive or rabbit anti-bovine serum albumin-treated mice (RPA model), respectively. The response to the two stimuli was prevented by the B2 receptor antagonist, HOE-140, but not by [Leu8]desArg9-BK (B1 receptor antagonist).In contrast to the wild-type littermates, RPA and bradykinin were unable to trigger an increase in plasma extravasation in B2 knockout mice.Furthermore, endothelin-1 (5 μg mouse−1) and a selective NK-1 receptor agonist [Sar9,Met (O2)11]-SP (20 μg mouse−1), triggered a significant increase in peritoneal plasma extravasation in both wild-type and B2 knockout animals.A pretreatment with indomethacin (200 μg mouse−1) significantly reduced the RPA-induced but not the BK-induced increase in Evans blue extravasation. Furthermore, RPA, but not BK, triggered a significant indomethacin-sensitive increase in peritoneal prostaglandin E2 content.Our results suggest a pivotal role for B2 receptors in the mechanism of plasma extravasation which occurs during the reverse passive Arthus reaction in the mouse. Moreover, our results suggest an important contribution of prostanoids in the plasma leakage mechanisms triggered by RPA but not by bradykinin. PMID:10780980

  10. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice

    PubMed Central

    2013-01-01

    Background Parkinson’s disease (PD) is an age-related progressive neurodegenerative disorder caused by selective loss of dopaminergic neurons from the substantia nigra (SN) to the striatum. The initial factor that triggers neurodegeneration is unknown; however, inflammation has been demonstrated to be significantly involved in the progression of PD. The present study was designed to investigate the role of the pro-inflammatory cytokine interleukin-1 (IL-1) in the activation of microglia and the decline of motor function using IL-1 knockout (KO) mice. Methods Lipopolysaccharide (LPS) was stereotaxically injected into the SN of mice brains as a single dose or a daily dose for 5 days (5 mg/2 ml/injection, bilaterally). Animal behavior was assessed with the rotarod test at 2 hr and 8, 15 and 22 days after the final LPS injection. Results LPS treatment induced the activation of microglia, as demonstrated by production of IL-1β and tumor necrosis factor (TNF) α as well as a change in microglial morphology. The number of cells immunoreactive for 4-hydroxynonenal (4HNE) and nitrotyrosine (NT), which are markers for oxidative insults, increased in the SN, and impairment of motor function was observed after the subacute LPS treatment. Cell death and aggregation of α-synuclein were observed 21 and 30 days after the final LPS injection, respectively. Behavioral deficits were observed in wild-type and TNFα KO mice, but IL-1 KO mice behaved normally. Tyrosine hydroxylase (TH) gene expression was attenuated by LPS treatment in wild-type and TNFα KO mice but not in IL-1 KO mice. Conclusions The subacute injection of LPS into the SN induces PD-like pathogenesis and symptoms in mice that mimic the progressive changes of PD including the aggregation of α-synuclein. LPS-induced dysfunction of motor performance was accompanied by the reduced gene expression of TH. These findings suggest that activation of microglia by LPS causes functional changes such as dopaminergic neuron

  11. Kuru prions and sporadic Creutzfeldt–Jakob disease prions have equivalent transmission properties in transgenic and wild-type mice

    PubMed Central

    Wadsworth, Jonathan D. F.; Joiner, Susan; Linehan, Jacqueline M.; Desbruslais, Melanie; Fox, Katie; Cooper, Sharon; Cronier, Sabrina; Asante, Emmanuel A.; Mead, Simon; Brandner, Sebastian; Hill, Andrew F.; Collinge, John

    2008-01-01

    Kuru provides our principal experience of an epidemic human prion disease and primarily affected the Fore linguistic group of the Eastern Highlands of Papua New Guinea. Kuru was transmitted by the practice of consuming dead relatives as a mark of respect and mourning (transumption). To date, detailed information of the prion strain type propagated in kuru has been lacking. Here, we directly compare the transmission properties of kuru prions with sporadic, iatrogenic, and variant Creutzfeldt–Jakob disease (CJD) prions in Prnp-null transgenic mice expressing human prion protein and in wild-type mice. Molecular and neuropathological data from these transmissions show that kuru prions are distinct from variant CJD and have transmission properties equivalent to those of classical (sporadic) CJD prions. These findings are consistent with the hypothesis that kuru originated from chance consumption of an individual with sporadic CJD. PMID:18316717

  12. The comparative immunology of wild and laboratory mice, Mus musculus domesticus

    PubMed Central

    Abolins, Stephen; King, Elizabeth C.; Lazarou, Luke; Weldon, Laura; Hughes, Louise; Drescher, Paul; Raynes, John G.; Hafalla, Julius C. R.; Viney, Mark E.; Riley, Eleanor M.

    2017-01-01

    The laboratory mouse is the workhorse of immunology, used as a model of mammalian immune function, but how well immune responses of laboratory mice reflect those of free-living animals is unknown. Here we comprehensively characterize serological, cellular and functional immune parameters of wild mice and compare them with laboratory mice, finding that wild mouse cellular immune systems are, comparatively, in a highly activated (primed) state. Associations between immune parameters and infection suggest that high level pathogen exposure drives this activation. Moreover, wild mice have a population of highly activated myeloid cells not present in laboratory mice. By contrast, in vitro cytokine responses to pathogen-associated ligands are generally lower in cells from wild mice, probably reflecting the importance of maintaining immune homeostasis in the face of intense antigenic challenge in the wild. These data provide a comprehensive basis for validating (or not) laboratory mice as a useful and relevant immunological model system. PMID:28466840

  13. Spaceflight Influences both Mucosal and Peripheral Cytokine Production in PTN-Tg and Wild Type Mice

    PubMed Central

    Liu, Yi; Kalmokoff, Martin; Brooks, Stephen P. J.; Green-Johnson, Julia M.

    2013-01-01

    Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice. PMID:23874826

  14. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM(+/-)) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM(+/-) cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage.

  15. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  16. Intake of Wild Blueberry Powder Improves Episodic-Like and Working Memory during Normal Aging in Mice.

    PubMed

    Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie

    2016-08-01

    The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity. Georg Thieme Verlag KG Stuttgart · New York.

  17. Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function.

    PubMed

    Sigruener, Alexander; Wolfrum, Christian; Boettcher, Alfred; Kopf, Thomas; Liebisch, Gerhard; Orsó, Evelyn; Schmitz, Gerd

    2017-01-01

    Sequence variants near the human gene for P4-type ATPase, class V, type 10D (ATP10D) were shown to significantly associate with circulating hexosylceramide d18:1/16:0 and d18:1/24:1 levels, obesity, insulin resistance, plasma high density lipoprotein (HDL), coronary stenotic index and intracranial atherosclerotic index. In mice Atp10d is associated with HDL modulation and C57BL/6 mice expressing a truncated, non-functional form of ATP10D easily develop obesity and insulin resistance on high-fat diet. We analyzed metabolic differences of ATP10D deficient C57BL/6J wild type and ATP10D transgenic C57BL/6J BAC129 mice. ATP10D transgenic mice gain 25% less weight on high-fat diet concomitant with a reduced increase in fat cell mass but independent of adipocyte size change. ATP10D transgenic mice also had 26% lower triacylglycerol levels with approximately 76% bound to very low density lipoprotein while in ATP10D deficient wild type mice 57% are bound to low density lipoprotein. Furthermore increased oxygen consumption and CO2 production, 38% lower glucose and 69% lower insulin levels and better insulin sensitivity were observed in ATP10D transgenic mice. Besides decreased hexosylceramide species levels were detected. Part of these effects may be due to reduced hepatic stearoyl-CoA desaturase 1 (SCD1) expression in ATP10D transgenic mice, which was reflected by altered fatty acid and lipid species patterns. There was a significant decrease in the hepatic 18:1 to 18:0 free fatty acid ratio in transgenic mice. The ratio of 16:1 to 16:0 was not significantly different. Interestingly both ratios were significantly reduced in plasma total fatty acids. In summary we found that ATP10D reduces high-fat diet induced obesity and improves insulin sensitivity. ATP10D transgenic mice showed altered hepatic expression of lipid-metabolism associated genes, including Scd1, along with changes in hepatic and plasma lipid species and plasma lipoprotein pattern.

  18. Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.

    PubMed

    Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H

    1997-05-15

    Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.

  19. The effect of calorie restriction on the presence of apoptotic ovarian cells in normal wild type mice and low-plasma-IGF-1 Laron dwarf mice

    PubMed Central

    2013-01-01

    Background It is known that caloric restriction extends lifespan and can minimize age-related dysfunction of the reproductive system. We became interested in how caloric restriction influences apoptosis, which is a crucial process that maintains ovarian cell homeostasis. Methods We examined ovarian cells in: 2.5-year-old wild type mice on caloric restriction (CR) or fed ad libitum (AL) and Laron dwarf mice (GHR-KO) at the same ages on CR or fed AL. Apoptosis was assessed by histochemical analysis on paraffin sections of ovarian tissue. Results Morphological and histochemical analysis revealed that CR improved reproductive potential in 2.5-year-old WT littermates and GHR-KO female mice, as indicated by the increased number of ovarian follicles. The level of apoptosis in ovarian tissue was higher in WT mice on a CR diet compared with WT mice on the AL diet. In GHR-KO mice, the level of apoptosis in ovaries was similar for mice on CR and on AL diets and bigger than in WT mice on CR. Conclusions Morphological and histochemical analysis revealed a younger biological age of the ovaries in 2-year-old WT littermates and GHR-KO female mice on CR compared with animals fed AL. PMID:24063422

  20. Fertility comparison between wild type and transgenic mice by in vitro fertilization.

    PubMed

    Vasudevan, Kuzhalini; Raber, James; Sztein, Jorge

    2010-08-01

    from superovulated females were inseminated with sperm of same background. Fertility rate was considered as the percentage of two cell embryos scored 24 h after insemination. The data collected from this study shows that the fertilization rate is affected (reduced to half fold) in some of the transgenic mice compared to the respective Wild Type (WT) mice. For the WT the average fertility rate ranged from 80% (C57BL/6), 90% (FVB/N), 45% (129Sv/J x C57Bl/6)F1 and 43% (CD1). For transgenic mice it was 52% (C57BL/6), 65% (FVB/N), 22% (129Sv/J x C57Bl/6)F1 and 25% (CD1).

  1. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    PubMed Central

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM+/−) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM+/− cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage. PMID:12119422

  2. Nuclear factor erythroid 2-related factor 2 deletion impairs glucose tolerance and exacerbates hyperglycemia in type 1 diabetic mice.

    PubMed

    Aleksunes, Lauren M; Reisman, Scott A; Yeager, Ronnie L; Goedken, Michael J; Klaassen, Curtis D

    2010-04-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic beta-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum beta-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels.

  3. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Characteristics of Sleep and Wakefulness inWild-Derived Inbred Mice

    PubMed Central

    HIYOSHI, Hideyuki; TERAO, Akira; OKAMATSU-OGURA, Yuko; KIMURA, Kazuhiro

    2014-01-01

    Genetic variations in the wild-derived inbred mouse strains are more diverse than that of classical laboratory inbred mouse strains, including C57BL/6J (B6). The sleep/wake and monoamine properties of six wild-derived inbred mouse strains (PGN2, NJL, BLG2, KJR, MSM, HMI) were characterized and compared with those of B6 mice. All examined mice were nocturnal and had a polyphasic sleep pattern with a “main sleep period” identified during the light period. However, there were three sleep/wake phenotypic differences between the wild-derived mouse strains and B6 strain. First, the amount of sleep during the dark phase was comparable with that of B6 mice. However, the amount of sleep during the light phase was more varied among strains, in particular, NJL and HMI had significantly less sleep compared with that of B6 mice. Second, PGN2, NJL, BLG2, and KJR mice showed a “highly awake period” (in which the hourly total sleep time was <10%) immediately after the onset of the dark period, which was not seen in B6 mice. Third, relative to that of B6 mice, PGN2 and KJR mice showed longer duration of wakefulness episodes during the 12-h dark phase. Differences in whole brain noradrenaline, dopamine, and 5-hydroxy-tryptamine contents between the wild-derived mouse strains and B6 strain were also found. These identified phenotypes might be potentially under strong genetic control. Hence, wild-derived inbred mice could be useful for identifying the genetic factors underlying the regulation of sleep and wakefulness. PMID:24770646

  5. Elucidation of the atherosclerotic disease process in apo E and wild type mice by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Adar, Fran; Jelicks, Linda; Naudin, Coralie; Rousseau, Denis; Yeh, Syun-ru

    2004-07-01

    Raman and FTIR microprobe spectroscopy have been used to characterize the atherosclerotic process in Apo E and wild type mice. The Apo E null mouse is being studied in parallel with a healthy strain as a model of the human atherosclerotic disease. Preliminary Raman microprobe spectra have been recorded from the lumen of the aorta vessels from a normal black mouse (C57BL/6J) and the apo E null mouse fed on a normal chow diet. Spectra were also recorded from another normal mouse fed breeder chow containing a much higher content of fats. In the Raman spectra the fat cells exhibited spectra typical of esterified triglycerides while the wall tissue had spectra dominated by Amide I and III modes and the phenylalanine stretch at 1003 cm-1 of protein. The FTIR spectra showed the typical Amide I and II bands of protein and the strong >C=O stretch of the triglycerides. In addition, there were morphologically distinct regions of the specimens indicating a surprising form of calcification in one very old mouse (wild type), and free fatty acid inclusions in the knock out mouse. The observation of these chemistries provide new information for elucidation of the molecular mechanisms of the development of atherosclerosis.

  6. Delay-dependent working memory impairment in young-adult and aged 5-HT1BKO mice as assessed in a radial-arm water maze.

    PubMed

    Wolff, Mathieu; Benhassine, Narimane; Costet, Pierre; Hen, Rene; Segu, Louis; Buhot, Marie-Christine

    2003-01-01

    Serotonin (5-HT) plays a modulatory role in mnemonic functions, especially by interacting with the cholinergic system. The 5-HT1B receptor is a key target of this interaction. The 5-HT1B receptor knockout mice were found previously to exhibit a facilitation in hippocampal-dependent spatial reference memory learning. In the present study, we submitted mice to a delayed spatial working memory task, allowing the introduction of various delays between an exposure trial and a test trial. The 5-HT1BKO and wild-type mice learned the task in a radial-arm water maze (returning to the most recent presented arm containing the escape platform), and exhibited a high level of performance at delays of 0 and 5 min. However, at the delay of 60 min, only 5-HT1BKO mice exhibited an impairment. At a delay of 90 min, all mice were impaired. Treatment by scopolamine (0.8 mg/kg) induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. The 22-month-old wild-type and knockout mice exhibited an impairment at short delays (5 and 15 min). The effect of the mutation affected both young-adult and aged mice at delays of 15, 30, and 60 min. Neurobiological data show that stimulation of the 5-HT1B receptor inhibits the release of acetylcholine in the hippocampus, but stimulates this in the frontal cortex. This dual function might, at least in part, explain the opposite effect of the mutation on reference memory (facilitation) and delay-dependent working memory (impairment). These results support the idea that cholinergic-serotonergic interactions play an important role in memory processes.

  7. PHEX Mimetic (SPR4-Peptide) Corrects and Improves HYP and Wild Type Mice Energy-Metabolism

    PubMed Central

    Zelenchuk, Lesya V.; Hedge, Anne-Marie; Rowe, Peter S. N.

    2014-01-01

    Context PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5β3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. Results SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. Conclusions ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5β3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of

  8. Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice.

    PubMed

    Pal, Sukumar; Tifrea, Delia F; Zhong, Guangming; de la Maza, Luis M

    2018-01-01

    Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 10 5 C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice ( P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) ( P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 10 4 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 10 5 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed. Copyright © 2017 American Society for Microbiology.

  9. Microglial K+ Channel Expression in Young Adult and Aged Mice

    PubMed Central

    Schilling, Tom; Eder, Claudia

    2015-01-01

    The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca2+-activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca2+-activated, K+ channels. PMID:25472417

  10. Sex and Immunogen-Specific Benefits of Immunotherapy Targeting Islet Amyloid Polypeptide in Transgenic and Wild-Type Mice

    PubMed Central

    Krishnamurthy, Pavan K.; Rajamohamedsait, Hameetha B.; Gonzalez, Veronica; Rajamohamedsait, Wajitha J.; Ahmed, Nawal; Krishnaswamy, Senthilkumar; Sigurdsson, Einar M.

    2016-01-01

    Type 2 diabetes mellitus is characterized by the deposition of islet amyloid polypeptide (IAPP) as amyloid in islets, a process thought to be toxic to β-cells. To determine the feasibility of targeting these aggregates therapeutically, we vaccinated transgenic (Tg) mice that overexpress human IAPP and were fed a high-fat diet to promote their diabetic phenotype. Our findings indicate that prophylactic vaccination with IAPP and its derivative IAPP7-19-TT, protects wild-type female mice, but not males, from obesity-induced early mortality, and the derivative showed a strong trend for prolonging the lifespan of Tg females but not males. Furthermore, IAPP7-19-TT-immunized Tg females cleared a glucose bolus more efficiently than controls, while IAPP-immunized Tg females showed an impaired ability to clear a glucose bolus compared to their adjuvant injected Tg controls. Interestingly, IAPP or IAPP7-19-TT treatments had no effect on glucose clearance in Tg males. Overall, these beneficial effects of IAPP targeted immunization depend on Tg status, sex, and immunogen. Hence, future studies in this field should carefully consider these variables that clearly affect the therapeutic outcome. In conclusion, IAPP targeting immunotherapy may have benefits in patients with type 2 diabetes. PMID:27379014

  11. The locus coeruleus neurotoxin, DSP4, and/or a high sugar diet induce behavioral and biochemical alterations in wild-type mice consistent with Alzheimers related pathology.

    PubMed

    Choudhary, Pooja; Pacholko, Anthony G; Palaschuk, Josh; Bekar, Lane K

    2018-06-03

    Alzheimer's disease (AD) is the sixth leading cause of death in the United States where it is estimated that one in three seniors dies with AD or another dementia. Are modern lifestyle habits a contributing factor? Increased carbohydrate (sugar) consumption, stress and disruption of sleep patterns are quickly becoming the norm rather than the exception. Interestingly, seven months on a non-invasive high sucrose diet (20% sucrose in drinking water) has been shown to induce behavioral, metabolic and pathological changes consistent with AD in wild-type mice. As chronic stress and depression are associated with loss of locus coeruleus (LC) noradrenergic neurons and projections (source of anti-inflammatory and trophic factor control), we assessed the ability for a selective LC neurotoxin (DSP4) to accelerate and aggravate a high-sucrose mediated AD-related phenotype in wild-type mice. Male C57/Bl6 mice were divided into four groups: 1) saline injected, 2) DSP4 injected, 3) high sucrose drinking water (20%) or 4) DSP4 injected and high sucrose drinking water. We demonstrate that high sucrose consumption and DSP4 treatment promote an early-stage AD-related phenotype after only 3-4 months, as evidenced by elevated fecal corticosterone, increased despair, spatial memory deficits, increased AChE activity, elevated NO production, decreased pGSK3β and increased pTau. Combined treatment appears to accelerate and aggravate pathological processes consistent with Alzheimer disease and dementia. Developing a simple model in wild-type mice will highlight environmental and lifestyle factors that need to be addressed to slow, prevent or even reverse the rising trend in dementia patient numbers and cost.

  12. Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice

    PubMed Central

    Thuma, Jean R.; Courreges, Maria C.; Benencia, Fabian; James, Calvin B.L.; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L.

    2015-01-01

    Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3+/+) and TLR3 knockout (TLR3−/−) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice. PMID:25422874

  13. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method.

    PubMed

    Ge, Shufan; Gao, Song; Yin, Taijun; Hu, Ming

    2015-03-25

    Chrysin, a flavone found in many plants, is also available as a dietary supplement because of its reported anticancer activities. However, its bioavailability is very poor due to extensive phase II metabolism. The purpose of this study was to develop an UPLC-MS/MS method to simultaneously quantify chrysin and its phase II metabolites, and to determine its pharmacokinetics in FVB wild-type and Bcrp knockout (Bcrp1 -/-) mice. In addition, the role of BCRP in chrysin phase II disposition was further investigated in Caco-2 cells. The results showed that our sensitive and reproducible UPLC-MS/MS method was successfully applied to the pharmacokinetic study of chrysin in wild-type and Bcrp1 (-/-) FVB mice after oral administration (20 mg/kg). Although there was no significant change in systemic exposure of chrysin and its metabolites, it was found that the Tmax for chrysin glucuronide was significantly shorter (p < 0.01) in Bcrp1-deficient mice. Furthermore, it was shown that inhibition of BCRP by Ko143 significantly reduced the efflux of chrysin sulfate in Caco-2 cells. In conclusion, BCRP had significant but less than expected impact on pharmacokinetics of chrysin and its conjugates, which were determined using a newly developed and validated LC-MS/MS method.

  14. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Ontogeny of SERT Expression and Antidepressant-like Response to Escitalopram in Wild-Type and SERT Mutant Mice.

    PubMed

    Mitchell, Nathan C; Gould, Georgianna G; Koek, Wouter; Daws, Lynette C

    2016-08-01

    Depression is a disabling affective disorder for which the majority of patients are not effectively treated. This problem is exacerbated in children and adolescents for whom only two antidepressants are approved, both of which are selective serotonin reuptake inhibitor (SSRIs). Unfortunately SSRIs are often less effective in juveniles than in adults; however, the mechanism(s) underlying age-dependent responses to SSRIs is unknown. To this end, we compared the antidepressant-like response to the SSRI escitalopram using the tail suspension test and saturation binding of [(3)H]citalopram to the serotonin transporter (SERT), the primary target of SSRIs, in juvenile [postnatal day (P)21], adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. In addition, to model individuals carrying low-expressing SERT variants, we studied mice with reduced SERT expression (SERT+/-) or lacking SERT (SERT-/-). Maximal antidepressant-like effects were less in P21 mice relative to P90 mice. This was especially apparent in SERT+/- mice. However, the potency for escitalopram to produce antidepressant-like effects in SERT+/+ and SERT+/- mice was greater in P21 and P28 mice than in adults. SERT expression increased with age in terminal regions and decreased with age in cell body regions. Binding affinity values did not change as a function of age or genotype. As expected, in SERT-/- mice escitalopram produced no behavioral effects, and there was no specific [(3)H]citalopram binding. These data reveal age- and genotype-dependent shifts in the dose-response for escitalopram to produce antidepressant-like effects, which vary with SERT expression, and may contribute to the limited therapeutic response to SSRIs in juveniles and adolescents. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. The usage of a three-compartment model to investigate the metabolic differences between hepatic reductase null and wild-type mice.

    PubMed

    Hill, Lydia; Chaplain, Mark A J; Wolf, Roland; Kapelyukh, Yury

    2017-03-01

    The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. , 13480-13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  17. Modulatory Role of Postsynaptic 5-Hydroxytryptamine Type 1A Receptors in (±)-8-Hydroxy-N,N-dipropyl-2-aminotetralin-Induced Hyperphagia in Mice.

    PubMed

    Brosda, Jan; Müller, Nadine; Bert, Bettina; Fink, Heidrun

    2015-07-15

    Brain serotonin (5-HT) is involved in the control of food intake. The ingestive effects of 5-HT are mediated by various receptor subtypes, among others the 5-HT1A receptor. While the involvement of presynaptic 5-HT1A receptors is regarded as certain, the role of postsynaptic 5-HT1A receptors is rather vague. Here, we studied the role of the 5-HT1A receptor on feeding in non-food-deprived and food-deprived (young adult and adult, both sexes) wild-type NMRI mice as well as transgenic NMRI mice, which are characterized by a distinct overexpression of postsynaptic 5-HT1A receptors. The known hyperphagic effect of the 5-HT1A receptor full agonist 8-OH-DPAT ((±)-8-hydroxy-N,N-dipropyl-2-aminotetralin) in non-food-deprived animals was demonstrated in male NMRI wild-type mice and could be antagonized by the selective 5-HT1A receptor antagonist WAY100635. In transgenic mice, this hyperphagic response was induced at lower doses, with an earlier onset and even in females. However, in adult male transgenic mice, the hyperphagic effect did not occur. In food-deprived NMRI wild-type as well as transgenic mice, 8-OH-DPAT first induced a hypophagic and subsequently a hyperphagic effect. Again, in transgenic animals most responses occurred at lower doses and with an earlier onset. The results indicate that postsynaptic 5-HT1A receptors exert a modulatory function in food intake in free-feeding and fasted mice, which for the first time shows an involvement of postsynaptic 5-HT1A receptors in feeding behavior. Understanding the function of pre- and postsynaptic 5-HT1A receptors may help to achieve new insights into the regulation of food intake and foster prospective treatment strategies for eating disorders.

  18. Cellular FLIP can substitute for the herpes simplex virus type 1 latency-associated transcript gene to support a wild-type virus reactivation phenotype in mice

    PubMed Central

    Jin, Ling; Carpenter, Dale; Moerdyk-Schauwecker, Megan; Vanarsdall, Adam L; Osorio, Nelson; Hsiang, Chinhui; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    Latency-associated transcript (LAT) deletion mutants of herpes simplex virus type 1 (HSV-1) have reduced reactivation phenotypes. Thus, LAT plays an essential role in the latency-reactivation cycle of HSV-1. We have shown that LAT has antiapoptosis activity and demonstrated that the chimeric virus, dLAT-cpIAP, resulting from replacing LAT with the baculovirus antiapoptosis gene cpIAP, has a wild-type HSV-1 reactivation phenotype in mice and rabbits. Thus, LAT can be replaced by an alternative antiapoptosis gene, confirming that LAT’s antiapoptosis activity plays an important role in the mechanism by which LAT enhances the virus’ reactivation phenotype. However, because cpIAP interferes with both of the major apoptosis pathways, these studies did not address whether LAT’s proreactivation phenotype function was due to blocking the extrinsic (Fas-ligand–, caspase-8–, or caspase-10–dependent pathway) or the intrinsic (mitochondria-, caspase-9–dependent pathway) pathway, or whether both pathways must be blocked. Here we constructed an HSV-1 LAT(−) mutant that expresses cellular FLIP (cellular FLICE-like inhibitory protein) under control of the LAT promoter and in place of LAT nucleotides 76 to 1667. Mice were ocularly infected with this mutant, designated dLAT-FLIP, and the reactivation phenotype was determined using the trigeminal ganglia explant model. dLAT-FLIP had a reactivation phenotype similar to wild-type virus and significantly higher than the LAT(−) mutant dLAT2903. Thus, the LAT function responsible for enhancing the reactivation phenotype could be replaced with an antiapoptosis gene that primarily blocks the extrinsic signaling apoptosis pathway. PMID:18989818

  19. Crimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice.

    PubMed

    Bereczky, Sándor; Lindegren, Gunnel; Karlberg, Helen; Akerström, Sara; Klingström, Jonas; Mirazimi, Ali

    2010-06-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) poses a great threat to public health due to its high mortality, transmission and geographical distribution. To date, there is no vaccine or specific treatment available and the knowledge regarding its pathogenesis is highly limited. Using a small-animal model system, this study showed that adult mice missing the type I interferon (IFN) receptor (IFNAR(-/-)) were susceptible to CCHFV and developed an acute disease with fatal outcome. In contrast, infection of wild-type mice (129 Sv/Ew) was asymptomatic. Viral RNA was found in all analysed organs of the infected mice, but the amount of CCHFV RNA was significantly higher in the IFNAR(-/-) mice than in the wild-type mice. Furthermore, the liver of IFNAR(-/-) mice was enlarged significantly, showing that IFN is important for limiting virus spread and protecting against liver damage in mice.

  20. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice.

    PubMed

    Sanchez, Benjamin; Li, Jia; Yim, Sung; Pacheck, Adam; Widrick, Jeffrey J; Rutkove, Seward B

    2015-01-01

    Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx). Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters. Eight wild-type (wt) and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg-1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed. As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p < 0.001 respectively) and muscle mass (25% p < 0.05 and 22% p < 0.001, respectively). The Cole impedance parameters in treated wt mice, showed a 24% lower central frequency (p < 0.05) and 19% higher resistance ratio (p < 0.05); no significant differences were observed in the mdx mice. These differences were consistent with those seen in maximum isometric force, which was greater in the wt animals (p < 0.05 at > 70 Hz), but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01). Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively). Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials.

  1. Depressor effect of the young leaves of Polygonum hydropiper Linn. in high-salt induced hypertensive mice.

    PubMed

    Devarajan, Sankar; Yahiro, Eiji; Uehara, Yoshinari; Kuroda, Rieko; Hirano, Yoshio; Nagata, Kaori; Miura, Shinichiro; Saku, Keijiro; Urata, Hidenori

    2018-06-01

    A novel chymase inhibitor has been reported to have depressor effect in salt-induced hypertension. Therefore, we examined the hypothesis that chymase inhibitory dried young leaves of Polygonum hydropiper (PPH) or young leaves extract of Polygonum hydropiper (PHE) could reduce salt-induced hypertension. In this study, 8-wk old wild-type mice were allocated into three experiments and experiment I included groups, I- normal water drinking, II- high salt (2% NaCl) water (HSW) drinking, and III- HSW plus PPH (500 mg kg -1 , orally) for 12-wk. Blood pressure (BP) and heart rate (HR) were measured at baseline and weekly up to wk-12. In experiment II, mice were given HSW for 12-wk followed by 8-wk treatment with PPH plus HSW (62.5, 125, 250 and 500 mg kg -1 for groups I, II, III and IV, respectively). BP and HR were measured at baseline and monthly until wk-12, following weekly for 8-wk. Experiment III comprised of four groups of mice for 12-wk HSW and 8-wk treatment with PHE plus HSW (2.5, 5, 10 and 20 mg kg -1 for groups I-IV, respectively). BP and HR were measured at baseline and monthly up to wk-12, following weekly for 8-wk. Significant reduction in BP and HR were observed in mice treated with PPH (500 mg kg -1 ) compared to HSW control. PPH reduced BP and HR dose dependently in hypertensive mice and the higher dose showed maximum reduction. PHE at its maximum dose (20 mg kg -1 ) significantly suppressed BP and HR. Over all, we found that the young leaves of Polygonum hydropiper suppressed salt-induced hypertension. Copyright © 2018. Published by Elsevier Masson SAS.

  2. The Psen1-L166P-knock-in mutation leads to amyloid deposition in human wild-type amyloid precursor protein YAC transgenic mice

    PubMed Central

    Vidal, Ruben; Sammeta, Neeraja; Garringer, Holly J.; Sambamurti, Kumar; Miravalle, Leticia; Lamb, Bruce T.; Ghetti, Bernardino

    2012-01-01

    Genetically engineered mice have been generated to model cerebral β-amyloidosis, one of the hallmarks of Alzheimer disease (AD) pathology, based on the overexpression of a mutated cDNA of the amyloid-β precursor protein (AβPP) or by knock-in of the murine Aβpp gene alone or with presenilin1 mutations. Here we describe the generation and initial characterization of a new mouse line based on the presence of 2 copies of the human genomic region encoding the wild-type AβPP and the L166P presenilin 1 mutation. At ∼6 mo of age, double-mutant mice develop amyloid pathology, with signs of neuritic dystrophy, intracellular Aβ accumulation, and glial inflammation, an increase in AβPP C-terminal fragments, and an 8 times increase in Aβ42 levels with a 40% decrease in Aβ40 levels, leading to a significant increase (14 times) of Aβ42/Aβ40 ratios, with minimal effects on presenilin or the Notch1 pathway in the brain. We conclude that in mice, neither mutations in AβPP nor overexpression of an AβPP isoform are a prerequisite for Aβ pathology. This model will allow the study of AD pathogenesis and testing of therapeutic strategies in a more relevant environment without experimental artifacts due to the overexpression of a single-mutant AβPP isoform using exogenous promoters.—Vidal, R., Sammeta, N., Garringer, H. J., Sambamurti, K., Miravalle, L., Lamb B. T., Ghetti, B. The Psen1-L166P-knock-in mutation leads to amyloid deposition in human wild-type amyloid precursor protein YAC transgenic mice. PMID:22459153

  3. Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.

    PubMed

    Wang, Xinkun; Patel, Nilam D; Hui, Dongwei; Pal, Ranu; Hafez, Mohamed M; Sayed-Ahmed, Mohamed M; Al-Yahya, Abdulaziz A; Michaelis, Elias K

    2014-03-04

    Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.

  4. Significance and Regional Dependency of Peptide Transporter (PEPT) 1 in the Intestinal Permeability of Glycylsarcosine: In Situ Single-Pass Perfusion Studies in Wild-Type and Pept1 Knockout Mice

    PubMed Central

    Jappar, Dilara; Wu, Shu-Pei; Hu, Yongjun

    2010-01-01

    The purpose of this study was to evaluate the role, relevance, and regional dependence of peptide transporter (PEPT) 1 expression and function in mouse intestines using the model dipeptide glycylsarcosine (GlySar). After isolating specific intestinal segments, in situ single-pass perfusions were performed in wild-type and Pept1 knockout mice. The permeability of [3H]GlySar was measured as a function of perfusate pH, dipeptide concentration, potential inhibitors, and intestinal segment, along with PEPT1 mRNA and protein. We found the permeability of GlySar to be saturable (Km = 5.7 mM), pH-dependent (maximal value at pH 5.5), and specific for PEPT1; other peptide transporters, such as PHT1 and PHT2, were not involved, as judged by the lack of GlySar inhibition by excess concentrations of histidine. GlySar permeabilities were comparable in the duodenum and jejunum of wild-type mice but were much larger than that in ileum (approximately 2-fold). A PEPT1-mediated permeability was not observed for GlySar in the colon of wild-type mice (<10% residual uptake compared to proximal small intestine). Moreover, GlySar permeabilities were very low and not different in the duodenum, jejunum, ileum, and colon of Pept1 knockout mice. Functional activity of intestinal PEPT1 was confirmed by real-time polymerase chain reaction and immunoblot analyses. Our findings suggest that a loss of PEPT1 activity (e.g., due to polymorphisms, disease, or drug interactions) should have a major effect in reducing the intestinal absorption of di-/tripeptides, peptidomimetics, and peptide-like drugs. PMID:20660104

  5. Perseveration by NK1R-/- (‘knockout’) mice is blunted by doses of methylphenidate that affect neither other aspects of their cognitive performance nor the behaviour of wild-type mice in the 5-Choice Continuous Performance Test

    PubMed Central

    Pillidge, Katharine; Porter, Ashley J; Young, Jared W; Stanford, S Clare

    2016-01-01

    The underlying cause(s) of abnormalities expressed by patients with attention deficit hyperactivity disorder (ADHD) have yet to be delineated. One factor that has been associated with increased vulnerability to ADHD is polymorphism(s) of TACR1, which is the human equivalent of the rodent NK1 (substance P-preferring) receptor gene (Nk1r). We have reported previously that genetically altered mice, lacking functional NK1R (NK1R–/–), express locomotor hyperactivity, which was blunted by the first-line treatment for ADHD, methylphenidate. Here, we compared the effects of this psychostimulant (3, 10 and 30 mg/kg, intraperitoneally) on the behaviour of NK1R-/- mice and their wild types in the 5-Choice Continuous Performance Test, which emulates procedures used to study attention and response control in ADHD patients. Methylphenidate increased total trials (a measure of ‘productivity’) completed by wild types, but not by NK1R-/- mice. Conversely, this drug reduced perseveration by NK1R-/- mice, but not by wild types. Other drug-induced changes in key behaviours were not genotype dependent, especially at the highest dose: for example, % omissions (an index of inattentiveness) was increased, whereas % false alarms and % premature responses (measures of impulsivity) declined in both genotypes, indicating reduced overall response. These findings are discussed in the context of the efficacy of methylphenidate in the treatment of ADHD. Moreover, they lead to several testable proposals. First, methylphenidate does not improve attention in a subgroup of ADHD patients with a functional deficit of TACR1. Second, these patients do not express excessive false alarms when compared with other groups of subjects, but they do express excessive perseveration, which would be ameliorated by methylphenidate. PMID:27097734

  6. DNA beta-amyloid(1-42) trimer immunization for Alzheimer disease in a wild-type mouse model.

    PubMed

    Lambracht-Washington, Doris; Qu, Bao-Xi; Fu, Min; Eagar, Todd N; Stüve, Olaf; Rosenberg, Roger N

    2009-10-28

    DNA beta-amyloid(1-42) (Abeta42) trimer immunization was developed to produce specific T helper 2 cell (T(H)2)-type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Abeta42 peptide that occur in the brain of patients with AD. To compare the immune response in wild-type mice after immunization with DNA Abeta42 trimer and Abeta42 peptide. Wild-type mice received either 4 microg of DNA Abeta42 trimer immunization administered with gene gun (n = 8) or intraperitoneal injection of 100 microg of human Abeta42 peptide with the adjuvant Quil A (n = 8). Titers, epitope mapping, and isotypes of the Abeta42-specific antibodies were analyzed. Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Abeta42-specific antibodies, and T-cell activation. DNA Abeta42 trimer immunization resulted in antibody titers with a mean of 15 microg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a T(H)2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed T(H)1/T(H)2 immune response (IgG1/IgG2a ratio of 1) (P < .001). No increased T-cell proliferation was observed in the DNA-immunized mice (P = .03). In this preliminary study in a wild-type mouse model, DNA Abeta42 trimer immunization protocol produced a T(H)2 immune response and appeared to have low potential to cause an inflammatory T-cell response.

  7. A Longitudinal Study of Cognition, Proton MR Spectroscopy and Synaptic and Neuronal Pathology in Aging Wild-type and AβPPswe-PS1dE9 Mice

    PubMed Central

    Jansen, Diane; Zerbi, Valerio; Janssen, Carola I. F.; Dederen, Pieter J. W. C.; Mutsaers, Martina P. C.; Hafkemeijer, Anne; Janssen, Anna-Lena; Nobelen, Cindy L. M.; Veltien, Andor; Asten, Jack J.; Heerschap, Arend; Kiliaan, Amanda J.

    2013-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a valuable tool in Alzheimer’s disease research, investigating the functional integrity of the brain. The present longitudinal study set out to characterize the neurochemical profile of the hippocampus, measured by single voxel 1H MRS at 7 Tesla, in the brains of AβPPSswe-PS1dE9 and wild-type mice at 8 and 12 months of age. Furthermore, we wanted to determine whether alterations in hippocampal metabolite levels coincided with behavioral changes, cognitive decline and neuropathological features, to gain a better understanding of the underlying neurodegenerative processes. Moreover, correlation analyses were performed in the 12-month-old AβPP-PS1 animals with the hippocampal amyloid-β deposition, TBS-T soluble Aβ levels and high-molecular weight Aβ aggregate levels to gain a better understanding of the possible involvement of Aβ in neurochemical and behavioral changes, cognitive decline and neuropathological features in AβPP-PS1 transgenic mice. Our results show that at 8 months of age AβPPswe-PS1dE9 mice display behavioral and cognitive changes compared to age-matched wild-type mice, as determined in the open field and the (reverse) Morris water maze. However, there were no variations in hippocampal metabolite levels at this age. AβPP-PS1 mice at 12 months of age display more severe behavioral and cognitive impairment, which coincided with alterations in hippocampal metabolite levels that suggest reduced neuronal integrity. Furthermore, correlation analyses suggest a possible role of Aβ in inflammatory processes, synaptic dysfunction and impaired neurogenesis. PMID:23717459

  8. Isolation of Novel Synthetic Prion Strains by Amplification in Transgenic Mice Coexpressing Wild-Type and Anchorless Prion Proteins

    PubMed Central

    Raymond, Gregory J.; Race, Brent; Hollister, Jason R.; Offerdahl, Danielle K.; Moore, Roger A.; Kodali, Ravindra; Raymond, Lynne D.; Hughson, Andrew G.; Rosenke, Rebecca; Long, Dan; Dorward, David W.

    2012-01-01

    Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrPres]) of the cellular prion protein (PrPC). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrPC. Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrPC and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrPC. To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrPres-like protease-resistant banding profile. These fibrils induced the formation of PrPres deposits in transgenic mice coexpressing wt and GPI-anchorless PrPC (wt/GPI−) at a combined level comparable to that of PrPC expression in wt mice. Secondary passage into mice expressing wt, GPI−, or wt plus GPI− PrPC induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI− PrPC and, in one case, caused disease only in GPI− mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrPC. These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrPC GPI anchor can modulate the propagation of synthetic TSE strains. PMID:22915801

  9. Reversibility of dopamine receptor antagonist-induced hyperprolactinemia and associated histological changes in Tg RasH2 wild-type mice.

    PubMed

    Krishna, Gopala; Ganiger, Shivaputhrappa; Kannan, Kamala; Gopalakrishnan, Gopa; Goel, Saryu

    2015-12-01

    The purpose of this study was to better understand the biological effects of increased prolactin levels induced in mice by dopamine D2 receptor antagonist molindone treatment. Toxicokinetics, prolactin levels, and reproductive tissue histology were evaluated in Tg rasH2 wild-type mice treated orally with molindone at 0, 5, 15, and 50mg/kg/day for 6 months, followed by a 2-month posttreatment recovery period. A greater than dose-proportional increase in molindone exposure ([AUC]0‒24) was observed on Day 180 for both sexes. Statistically significant (P<0.01) increases in prolactin levels were observed in most treatment groups compared with controls at 0.5h postdose on Days 1 and 180. Prolactin levels returned to baseline levels during the recovery period. Microscopic changes attributable to hyperprolactinemia, including corpora lutea enlargement and interstitial cell atrophy in the ovaries, and atrophy of the uterus and vagina were observed on Day 180. These changes were reversed during the recovery period in the 5- and 15-mg/kg/day treatment groups. Mice receiving molindone at 50mg/kg/day also showed signs of reversal on histologic examination. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The effect of dietary prebiotics and probiotics on body weight, large intestine indices, and fecal bile acid profile in wild type and IL10-/- mice.

    PubMed

    Kuo, Shiu-Ming; Merhige, Patricia M; Hagey, Lee R

    2013-01-01

    Previous studies have suggested roles of probiotics and prebiotics on body weight management and intestinal function. Here, the effects of a dietary prebiotic, inulin (50 mg/g diet), and probiotic, Bfidobacterium animalis subsp. lactis (Bb12) (final dose verified at 10(5) colony forming unit (cfu)/g diet, comparable to human consumption), were determined separately and in combination in mice using cellulose-based AIN-93G diets under conditions allowed for the growth of commensal bacteria. Continuous consumption of Bb12 and/or inulin did not affect food intake or body, liver, and spleen weights of young and adult mice. Fecal bile acid profiles were determined by nanoESI-MS/MS tandem mass spectrometry. In the presence of inulin, more bacterial deconjugation of taurine from primary bile acids was observed along with an increased cecal weight. Consumption of inulin in the absence or presence of Bb12 also increased the villus cell height in the proximal colon along with a trend of higher bile acid sulfation by intestinal cells. Feeding Bb12 alone at the physiological dose did not affect bile acid deconjugation and had little effect on other intestinal indices. Although interleukin (IL)10-null mice are susceptible to enterocolitis, they maintained the same body weight as the wild type mice under our specific pathogen-free housing condition and showed no signs of inflammation. Nevertheless, they had smaller cecum suggesting a mildly compromised intestinal development even before the disease manifestation. Our results are consistent with the notion that dietary factors such as prebiotics play important roles in the growth of intestinal microbiota and may impact on the intestinal health. In addition, fecal bile acid profiling could potentially be a non-invasive tool in monitoring the intestinal environment.

  11. Ablation of Prion Protein in Wild Type Human Amyloid Precursor Protein (APP) Transgenic Mice Does Not Alter The Proteolysis of APP, Levels of Amyloid-β or Pathologic Phenotype

    PubMed Central

    Baybutt, Herbert; Diack, Abigail B.; Kellett, Katherine A. B.; Piccardo, Pedro; Manson, Jean C.

    2016-01-01

    The cellular prion protein (PrPC) has been proposed to play an important role in the pathogenesis of Alzheimer’s disease. In cellular models PrPC inhibited the action of the β-secretase BACE1 on wild type amyloid precursor protein resulting in a reduction in amyloid-β (Aβ) peptides. Here we have assessed the effect of genetic ablation of PrPC in transgenic mice expressing human wild type amyloid precursor protein (line I5). Deletion of PrPC had no effect on the α- and β-secretase proteolysis of the amyloid precursor protein (APP) nor on the amount of Aβ38, Aβ40 or Aβ42 in the brains of the mice. In addition, ablation of PrPC did not alter Aβ deposition or histopathology phenotype in this transgenic model. Thus using this transgenic model we could not provide evidence to support the hypothesis that PrPC regulates Aβ production. PMID:27447728

  12. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance[S

    PubMed Central

    Grimpo, Kirsten; Völker, Maximilian N.; Heppe, Eva N.; Braun, Steve; Heverhagen, Johannes T.; Heldmaier, Gerhard

    2014-01-01

    We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST. PMID:24343897

  13. Placental Glucose and Amino Acid Transport in Calorie-Restricted Wild-Type and Glut3 Null Heterozygous Mice

    PubMed Central

    Ganguly, Amit; Collis, Laura

    2012-01-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3+/−) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3+/− mice. In glut3+/− mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3+/− mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3+/− fetuses against maternal CR-imposed reduction of macromolecular nutrients. PMID:22700768

  14. Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice.

    PubMed

    Ganguly, Amit; Collis, Laura; Devaskar, Sherin U

    2012-08-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3(+/-)) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3(+/-) mice. In glut3(+/-) mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3(+/-) mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3(+/-) fetuses against maternal CR-imposed reduction of macromolecular nutrients.

  15. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS).

    PubMed

    Tavella, Sara; Ruggiu, Alessandra; Giuliani, Alessandra; Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.

  16. Exploration and risk assessment in female wild house mice (Mus musculus musculus) and two laboratory strains.

    PubMed

    Augustsson, Hanna; Dahlborn, Kristina; Meyerson, Bengt J

    2005-02-15

    In an evolutionary prospective, it is possible that female mice have a differential perception of novel events than male mice and use a different behavioural strategy for risk assessment. However, female mice are less studied than male mice in behavioural tests of emotional reactivity. The aim of the present study was to investigate how wild-derived female house mice differ from domesticated female mice in their risk assessment strategy. A total of 46 adult female mice, 14 BALB/c, 16 C57BL/6 and 14 Wild mice were tested in the Concentric Square Field (CSF), Open Field (OF) and Elevated Plus Maze (EPM) at three consecutive days. Parameters from all three tests were categorized according to their relevance to activity, exploration, approach-avoidance and use of open areas-shelter. Principal Component Analysis (PCA-SIMCA) of the animals' behaviour in the CSF arena was performed both for females alone and in comparison with earlier findings in male mice under the same test conditions. The results clearly show that female wild mice had a higher avoidance of open areas than the laboratory strains. There was also a trend indicating differences in exploration and approach-avoidance between female Wild and the laboratory strains. The multivariate test, CSF, was able to detect differences between Wild and laboratory strains in three (exploration, approach-avoidance, open-shelter) of the four functional categories measured. Wild female mice also had a higher frequency of rearing and grooming and a lower duration in the corridors in the CSF. Clear strain differences were found between BALB and C57BL in all tests where BALB generally had higher risk assessment and lower risk taking than C57BL. No general sex differences were found, however the sex differences were greater in Wild mice compared to the laboratory strains.

  17. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    PubMed

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  18. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  19. Alterations in Oral [1-14C] 18:1n-9 Distribution in Lean Wild-Type and Genetically Obese (ob/ob) Mice

    PubMed Central

    Wang, Xinxia; Feng, Jie; Yu, Caihua; Shen, Qingwu W.; Wang, Yizhen

    2015-01-01

    Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-14C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The 14C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The 14C concentration was constant in adipose tissue and muscle of obese mice from 4h to 168h. 14C-label content in adipose tissue was significantly affected by genotype, whereas muscle 14C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total 14C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The 14C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest 14C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest 14C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity. PMID:25826747

  20. Increased superoxide production and altered nitric oxide-mediated relaxation in the aorta of young but not old male relaxin-deficient mice.

    PubMed

    Ng, Hooi H; Jelinic, Maria; Parry, Laura J; Leo, Chen-Huei

    2015-07-15

    The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging. Copyright © 2015 the American Physiological Society.

  1. DNA β-Amyloid1–42 Trimer Immunization for Alzheimer Disease in a Wild-Type Mouse Model

    PubMed Central

    Lambracht-Washington, Doris; Qu, Bao-Xi; Fu, Min; Eagar, Todd N.; Stüve, Olaf; Rosenberg, Roger N.

    2010-01-01

    Context DNA β-amyloid1–42 (Aβ42) trimer immunization was developed to produce specific T helper 2 cell (TH2)–type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Aβ42 peptide that occur in the brain of patients with AD. Objective To compare the immune response in wild-type mice after immunization with DNA Aβ42 trimer and Aβ42 peptide. Design and Intervention Wild-type mice received either 4 µg of DNA Aβ42 trimer immunization administered with gene gun (n=8) or intraperitoneal injection of 100 µg of human Aβ42 peptide with the adjuvant Quil A (n=8). Titers, epitope mapping, and isotypes of the Aβ42-specific antibodies were analyzed. Main Outcome Measures Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Aβ42-specific antibodies, and T-cell activation. Results DNA Aβ42 trimer immunization resulted in antibody titers with a mean of 15 µg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a TH2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed TH1/TH2 immune response (IgG1/IgG2a ratio of 1) (P<.001). No increased T-cell proliferation was observed in the DNA-immunized mice (P=.03). Conclusion In this preliminary study in a wild-type mouse model, DNA Aβ42 trimer immunization protocol produced a TH2 immune response and appeared to have low potential to cause an inflammatory T-cell response. PMID:19861672

  2. Targeted overexpression of endothelial nitric oxide synthase in endothelial cells improves cerebrovascular reactivity in Ins2Akita-type-1 diabetic mice.

    PubMed

    Chandra, Saurav B; Mohan, Sumathy; Ford, Bridget M; Huang, Lei; Janardhanan, Preethi; Deo, Kaiwalya S; Cong, Linlin; Muir, Eric R; Duong, Timothy Q

    2016-06-01

    Reduced bioavailability of nitric oxide due to impaired endothelial nitric oxide synthase (eNOS) activity is a leading cause of endothelial dysfunction in diabetes. Enhancing eNOS activity in diabetes is a potential therapeutic target. This study investigated basal cerebral blood flow and cerebrovascular reactivity in wild-type mice, diabetic mice (Ins2(Akita+/-)), nondiabetic eNOS-overexpressing mice (TgeNOS), and the cross of two transgenic mice (TgeNOS-Ins2(Akita+/-)) at six months of age. The cross was aimed at improving eNOS expression in diabetic mice. The major findings were: (i) Body weights of Ins2(Akita+/-) and TgeNOS-Ins2(Akita+/-) were significantly different from wild-type and TgeNOS mice. Blood pressure of TgeNOS mice was lower than wild-type. (ii) Basal cerebral blood flow of the TgeNOS group was significantly higher than cerebral blood flow of the other three groups. (iii) The cerebrovascular reactivity in the Ins2(Akita+/-) mice was significantly lower compared with wild-type, whereas that in the TgeNOS-Ins2(Akita+/-) was significantly higher compared with the Ins2(Akita+/-) and TgeNOS groups. Overexpression of eNOS rescued cerebrovascular dysfunction in diabetic animals, resulting in improved cerebrovascular reactivity. These results underscore the possible role of eNOS in vascular dysfunction in the brain of diabetic mice and support the notion that enhancing eNOS activity in diabetes is a potential therapeutic target. © The Author(s) 2015.

  3. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  4. Estrogen increases latencies to seizures and levels of 5α-pregnan-3α-ol-20-one in hippocampus of wild-type, but not 5α-reductase knockout, mice

    PubMed Central

    Osborne, Danielle M.; Frye, Cheryl A.

    2013-01-01

    Sex steroids can influence seizures. Estrogen (E2), progesterone (P4), and its metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), in particular, have received much attention for exerting these effects. Typically, it is thought that E2 precipitates seizures, and progestogens, such as P4 and 3α,5α-THP, attenuate seizures. However, E2 may also have antiseizure effects, perhaps in part through its enhancement of the formation of 3α,5α-THP, which has GABAA/benzodiazepine receptor agonist-like actions. To test this hypothesis, male and female, castrated or ovariectomized, wild-type and 5α-reductase knockout mice were implanted with Silastic capsules of E2 or vehicle and then administered pentylenetetrazol (85 mg/kg, ip). Wild-type, but not 5α-reductase knockout, mice administered E2 had significantly longer latencies to myoclonus and increased levels of 3α,5α-THP in the hippocampus. Thus, some of the anticonvulsive effects of E2 may involve formation of 3α,5α-THP in the hippocampus. PMID:19782646

  5. The effect of nitric oxide synthase inhibitors nitro-L-arginine and 7-nitroindazole on spatial learning and motor functions in Lurcher mutant and wild type mice.

    PubMed

    Markvartová, V; Vozeh, F

    2008-01-01

    Nitric oxide (NO) is an intercellular messenger that, among other things, plays an important role in the nervous system as a gaseous neurotransmitter, modulating long-term potentiation (LTP) induction of synaptic transmission. LTP has been suggested to be the basis of memory formation. On the other hand NO also participates in excitotoxic processes which play an important role in many neuropathological states. The aim of this work was to observe the effect of two NO synthase (NOS) inhibitors (N omega-Nitro-L-arginine, NA; 7-nitroindazole, NI) on spontaneous behaviour, spatial learning and motor functions in Lurcher (+/Lc) and wild type (+/+) mice, derived from the B6CBA strain. Heterozygous Lurcher mutant mice represent a natural model of the olivocerebellar degeneration. They suffer from postnatal, practically total, extinction of cerebellar Purkinje cells (due to the excitotoxic apoptosis) and a partial decrease of granule cells and inferior olive neurons (ION) because of the lost target of their axons. +/+ animals are healthy littermates of +/Lc. NA is a nonselective NOS inhibitor which influences, except neuronal (n), also endothelial (e) NOS with an impact on blood pressure, NI is a selective nNOS inhibitor without any circulatory effect. The adult animals of both types (+/Lc; +/+) were influenced by acute administration of both inhibitors (25 mg/kg i.p. 30 min. before experiments) and newborns only by both acute and long-term administration of NI (1 month, starting from postnatal day 2, P2). Control solutions - saline or solvents of both NA and NI inhibitors--diluted 1M HCl and dimethyl sulfoxide (DMSO) respectively, were given at a relevant volume in the same way. The effect of both inhibitors and control solutions on motor functions was tested using four standard procedures (horizontal wire, slanting ladder, rotating cylinder, foot-bridge); in newborns at the age of 14 days. Spatial learning ability was examined in five-day long procedure in the Morris

  6. Type 2 diabetes impairs the ability of skeletal muscle pericytes to augment postischemic neovascularization in db/db mice.

    PubMed

    Hayes, Katherine L; Messina, Louis M; Schwartz, Lawrence M; Yan, Jinglian; Burnside, Amy S; Witkowski, Sarah

    2018-05-01

    Peripheral artery disease is an atherosclerotic occlusive disease that causes limb ischemia and has few effective noninterventional treatments. Stem cell therapy is promising, but concomitant diabetes may limit its effectiveness. We evaluated the therapeutic potential of skeletal muscle pericytes to augment postischemic neovascularization in wild-type and type 2 diabetic (T2DM) mice. Wild-type C57BL/6J and leptin receptor spontaneous mutation db/db T2DM mice underwent unilateral femoral artery excision to induce limb ischemia. Twenty-four hours after ischemia induction, CD45 - CD34 - CD146 + skeletal muscle pericytes or vehicle controls were transplanted into ischemic hindlimb muscles. At postoperative day 28, pericyte transplantation augmented blood flow recovery in wild-type mice (79.3 ± 5% vs. 61.9 ± 5%; P = 0.04), but not in T2DM mice (48.6% vs. 46.3 ± 5%; P = 0.51). Pericyte transplantation augmented collateral artery enlargement in wild-type (26.7 ± 2 μm vs. 22.3 ± 1 μm, P = 0.03), but not T2DM mice (20.4 ± 1.4 μm vs. 18.5 ± 1.2 μm, P = 0.14). Pericyte incorporation into collateral arteries was higher in wild-type than in T2DM mice ( P = 0.002). Unexpectedly, pericytes differentiated into Schwann cells in vivo. In vitro, Insulin increased Nox2 expression and decreased tubular formation capacity in human pericytes. These insulin-induced effects were reversed by N-acetylcysteine antioxidant treatment. In conclusion, T2DM impairs the ability of pericytes to augment neovascularization via decreased collateral artery enlargement and impaired engraftment into collateral arteries, potentially via hyperinsulinemia-induced oxidant stress. While pericytes show promise as a unique form of stem cell therapy to increase postischemic neovascularization, characterizing the molecular mechanisms by which T2DM impairs their function is essential to achieve their therapeutic potential.

  7. The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice.

    PubMed

    Sophocleous, A; Börjesson, A E; Salter, D M; Ralston, S H

    2015-09-01

    Cannabinoid receptors and their ligands have been implicated in the regulation of various physiological processes but their role in osteoarthritis has not been investigated. The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice. We analysed the severity of knee osteoarthritis as assessed by the Osteoarthritis Research Society International (OARSI) scoring system in mice with targeted deletion of Cnr2 (Cnr2(-/-)) and wild type (WT) littermates. Studies were conducted in mice subjected to surgical destabilisation of the medial meniscus (DMM) and in those with spontaneous age-related osteoarthritis (OA). Osteoarthritis was more severe following DMM in the medial compartment of the knee in Cnr2(-/-) compared with WT mice (mean ± sem score = 4.9 ± 0.5 vs 3.6 ± 0.3; P = 0.017). Treatment of WT mice with the CB2-selective agonist HU308 following DMM reduced the severity of OA in the whole joint (HU308 = 8.4 ± 0.2 vs vehicle = 10.4 ± 0.6; P = 0.007). Spontaneous age related osteoarthritis was also more severe in the medial compartment of the knee in 12-month old Cnr2(-/-) mice compared with WT (5.6 ± 0.5 vs 3.5 ± 0.3, P = 0.008). Cultured articular chondrocytes from Cnr2(-/-) mice produced less proteoglycans in vitro than wild type chondrocytes. These studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect. Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Temperature dependence of O2 consumption; opposite effects of leptin and etomoxir on respiratory quotient in mice.

    PubMed

    Högberg, Helena; Engblom, Lars; Ekdahl, Asa; Lidell, Veronica; Walum, Erik; Alberts, Peteris

    2006-04-01

    The aims were to compare the temperature dependence of the metabolic rate in young ob/ob mice with that in mature ob/ob and db/db mice and to examine the effect on the metabolic substrate preference of leptin and etomoxir in ob/ob, C57BL/6J (wild-type), and db/db mice. In vivo oxygen consumption and carbon dioxide production were continuously measured by indirect calorimetry, and body temperature and total locomotor activity were measured by an implanted transponder. Leptin, etomoxir, or vehicle was administered intraperitoneally. The temperature dependence of the metabolic rate of mature ob/ob and db/db mice were similar to that in wild-type mice. In young 6-week-old ob/ob mice, the metabolic rate was almost doubled at 15 degrees C. Leptin (2 x 3 mg/kg) decreased the respiratory quotient (RQ) and carbon dioxide production but did not alter oxygen consumption, body temperature, or locomotor activity in ob/ob and C57BL/6J mice and had no effect in the db/db mice. Etomoxir (2 x 30 mg/kg) enhanced RQ and decreased oxygen consumption, carbon dioxide production, and body temperature in ob/ob, C57BL/6J, and db/db mice. Total locomotor activity was reduced in ob/ob and C57BL/6J mice. In young ob/ob mice, the temperature sensitivity was enhanced compared with mature mice. Leptin and etomoxir had opposite effects on metabolic substrate preference. Leptin and lowered environmental temperature increased the relative fat oxidation as indicated by decreased RQ, possibly through activation of the sympathetic nervous system.

  9. FOLFIRI plus panitumumab in the treatment of wild-type KRAS and wild-type NRAS metastatic colorectal cancer.

    PubMed

    Geredeli, Caglayan; Yasar, Nurgul

    2018-03-27

    The aim of this study was to investigate the efficacy and safety of first-line panitumumab plus folinic acid, 5-fluorouracil and irinotecan (FOLFIRI) in patients with wild-type KRAS and wild-type NRAS metastatic colorectal cancer (mCRC). Patients with wild-type KRAS and wild-type NRAS mCRC presenting to the medical oncology department of the Okmeydani Training and Research Hospital in Istanbul, Turkey, between April 2014 and January 2018 were enrolled in this study. A total of 64 patients (35 males and 29 females) with a median age of 59 (35-81) years old were enrolled. The median follow-up was 18.9 months, and the median progression-free survival was 13 months. The median overall survival (OS) was 26 months in the patients with wild-type KRAS and wild-type NRAS mCRC. It was 90.4% for the 6-month OS, 79.5% for the 1-year OS, 53.7% for the 2-year OS and 31.1% for the 3-year OS. The median OS of the patients who underwent metastasectomies was 40 [95% confidence interval (CI) = 19.9-60.1] months, and the median OS of the patients without metastasectomies was 22 (95% CI = 17.7-26.4) months. There was a statistically significant difference between these (P = 0.007). The first-line FOLFIRI plus panitumumab was associated with favourable efficacy in the patients with wild-type KRAS and wild-type NRAS mCRC, and it was well tolerated. The removal of the metastases that became resectable after chemotherapy further prolonged the patients' survival. Retrospectively registered: 33886.

  10. Decreased severity of experimental autoimmune arthritis in peptidylarginine deiminase type 4 knockout mice.

    PubMed

    Suzuki, Akari; Kochi, Yuta; Shoda, Hirofumi; Seri, Yu; Fujio, Keishi; Sawada, Tetsuji; Yamada, Ryo; Yamamoto, Kazuhiko

    2016-05-05

    Peptidylarginine deiminase type 4 (PADI4) has been identified as a susceptibility gene for rheumatoid arthritis (RA) by genome-wide association studies. PADI4 is highly expressed in the bone marrow, macrophages, neutrophils, and monocytes. Peptidyl citrulline is an interesting molecule in RA because it is a target antigen for anti-citrullinated peptide antibodies, and only PADs (translated proteins from PADI genes) can provide peptidyl citrulline via the modification of protein substrates. The aim of this study was to evaluate the importance of the PADI4 gene in the progression of RA. We generated Padi4 knockout (Padi4(-/-)) DBA1J mice. The Padi4(-/-) DBA1J and wild-type mice were immunized with bovine type II collagen (CII) to develop collagen-induced arthritis (CIA). The expression of various inflammatory cytokines and Padi genes in immune cells was detected by the real-time TaqMan assay. Cytokine concentrations in sera were measured by enzyme-linked immunosorbent assays. Localization of the PAD4 and PAD2 proteins was indicated by immunohistochemistry. We demonstrated that the clinical disease score was significantly decreased in the Padi4(-/-) mice and Padi4 expression was induced by CII immunization. In the Padi4(-/-) mice, serum anti-type II collagen (CII) immunoglobulin M (IgM), IgG, and inflammatory cytokine levels were significantly decreased compared with those in the wild-type mice. Padi2 expression was induced in the immune cells of the Padi4(-/-) mice as a compensation for the defect in Padi4. Padi4 affected disease severity in the CIA mice and was involved in the enhancement of the collagen-initiated inflammatory responses.

  11. Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology.

    PubMed

    Wang, Runsheng; Wang, Baiping; He, Wanxia; Zheng, Hui

    2006-06-02

    Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.

  12. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses

    PubMed Central

    Singh, Udai P; Murphy, Angela E; Enos, Reilly T; Shamran, Haidar A; Singh, Narendra P; Guan, Honbing; Hegde, Venkatesh L; Fan, Daping; Price, Robert L; Taub, Dennis D; Mishra, Manoj K; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    Inflammatory bowel disease (IBD), a chronic intestinal inflammatory condition that affects millions of people worldwide, results in high morbidity and exorbitant health-care costs. The critical features of both innate and adaptive immunity are to control inflammation and dysfunction in this equilibrium is believed to be the reason for the development of IBD. miR-155, a microRNA, is up-regulated in various inflammatory disease states, including IBD, and is a positive regulator of T-cell responses. To date, no reports have defined a function for miR-155 with regard to cellular responses in IBD. Using an acute experimental colitis model, we found that miR-155−/− mice, as compared to wild-type control mice, have decreased clinical scores, a reversal of colitis-associated pathogenesis, and reduced systemic and mucosal inflammatory cytokines. The increased frequency of CD4+ lymphocytes in the spleen and lamina propria with dextran sodium sulphate induction was decreased in miR-155−/− mice. Similarly, miR-155 deficiency abrogated the increased numbers of interferon-γ expressing CD4+ T cells typically observed in wild-type mice in this model. The frequency of systemic and mucosal T helper type 17-, CCR9-expressing CD4+ T cells was also reduced in miR-155−/− mice compared with control mice. These findings strongly support a role for miR-155 in facilitating pro-inflammatory cellular responses in this model of IBD. Loss of miR-155 also results in decreases in T helper type 1/type 17, CD11b+, and CD11c+ cells, which correlated with reduced clinical scores and severity of disease. miR-155 may serve as a potential therapeutic target for the treatment of IBD. PMID:24891206

  13. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome.

    PubMed

    Costa, Lara; Spatuzza, Michela; D'Antoni, Simona; Bonaccorso, Carmela M; Trovato, Chiara; Musumeci, Sebastiano A; Leopoldo, Marcello; Lacivita, Enza; Catania, Maria V; Ciranna, Lucia

    2012-12-01

    Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism. Fmr1 knockout (Fmr1 KO) mice, an animal model of FXS, exhibit spatial memory impairment and synapse malfunctioning in the hippocampus, with abnormal enhancement of long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). The neurotransmitter serotonin (5-HT) modulates hippocampal-dependent learning through serotonin 1A (5-HT1A) and serotonin 7 (5-HT7) receptors; the underlying mechanisms are unknown. We used electrophysiology to test the effects of 5-HT on mGluR-LTD in wild-type and Fmr1 KO mice and immunocytochemistry and biotinylation assay to study related changes of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) glutamate receptor surface expression. Application of 5-HT or 8-OH-DPAT (a mixed 5-HT1A/5-HT7 agonist) reversed mGluR-LTD in hippocampal slices. Reversal of mGluR-LTD by 8-OH-DPAT persisted in the presence of the 5-HT1A receptor antagonist WAY-100635, was abolished by SB-269970 (5-HT7 receptor antagonist), and was mimicked by LP-211, a novel selective 5-HT7 receptor agonist. Consistently, 8-OH-DPAT decreased mGluR-mediated reduction of AMPA glutamate receptor 2 (GluR2) subunit surface expression in hippocampal slices and cultured hippocampal neurons, an effect mimicked by LP-211 and blocked by SB-269970. In Fmr1 KO mice, mGluR-LTD was abnormally enhanced; similarly to wild-type, 8-OH-DPAT reversed mGluR-LTD and decreased mGluR-induced reduction of surface AMPA receptors, an effect antagonized by SB-269970. Serotonin 7 receptor activation reverses metabotropic glutamate receptor-induced AMPA receptor internalization and LTD both in wild-type and in Fmr1 KO mice, correcting excessive mGluR-LTD. Therefore, selective activation of 5-HT7 receptors may represent a novel strategy in the therapy of FXS. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Long-chain fatty acid uptake by skeletal muscle is impaired in homozygous, but not heterozygous, heart-type-FABP null mice.

    PubMed

    Luiken, J J F P; Koonen, D P Y; Coumans, W A; Pelsers, M M A L; Binas, B; Bonen, A; Glatz, J F C

    2003-04-01

    Previous studies with cardiac myocytes from homozygous heart-type fatty acid (FA)-binding protein (H-FABP) -/- mice have indicated that this intracellular receptor protein for long-chain FA is involved in the cellular uptake of these substrates. Based on the knowledge that muscle FA uptake is a process highly sensitive to regulation by hormonal and mechanical stimuli, we studied whether H-FABP would play a role in this regulation. A suitable model system to answer this question is provided by H-FABP +/- mice, because in hindlimb muscles the content of H-FABP was measured to be 34% compared to wild-type mice. In these H-FABP +/- skeletal muscles, just as in H-FABP -/- muscles, contents of FA transporters, i.e., 43-kDa FABPpm and 88-kDa FAT/CD36, were similar compared to wild-type muscles, excluding possible compensatory mechanisms at the sarcolemmal level. Palmitate uptake rates were measured in giant vesicles prepared from hindlimb muscles of H-FABP -/-, H-FABP +/-, and H-FABP +/+ mice. For comparison, giant vesicles were isolated from liver, the tissue of which expresses a distinct type of FABP (i.e., L-FABP). Whereas in H-FABP -/- skeletal muscle FA uptake was reduced by 42-45%, FA uptake by H-FABP +/- skeletal muscle was not different from that in wild-type mice. In contrast, in liver from H-FABP -/- and from H-FABP +/- mice, FA uptake was not altered compared to wild-type animals, indicating that changes in FA uptake are restricted to H-FABP expressing tissues. It is concluded that H-FABP plays an important, yet merely permissive, role in FA uptake into muscle tissues.

  16. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    PubMed

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  17. Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?

    PubMed

    Basisty, Nathan; Dai, Dao-Fu; Gagnidze, Arni; Gitari, Lemuel; Fredrickson, Jeanne; Maina, Yvonne; Beyer, Richard P; Emond, Mary J; Hsieh, Edward J; MacCoss, Michael J; Martin, George M; Rabinovitch, Peter S

    2016-08-01

    Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules associated with aging and a broad spectrum of pathologies. We have previously shown that transgenic expression of the antioxidant enzyme catalase targeted to the mitochondria (mCAT) in mice reduces ROS, attenuates age-related disease, and increases lifespan. However, it has been increasingly recognized that ROS also has beneficial roles in signaling, hormesis, stress response, and immunity. We therefore hypothesized that mCAT might be beneficial only when ROS approaches pathological levels in older age and might not be advantageous at a younger age when basal ROS is low. We analyzed abundance and turnover of the global proteome in hearts and livers of young (4 month) and old (20 month) mCAT and wild-type (WT) mice. In old hearts and livers of WT mice, protein half-lives were reduced compared to young, while in mCAT mice the reverse was observed; the longest half-lives were seen in old mCAT mice and the shortest in young mCAT. Protein abundance of old mCAT hearts recapitulated a more youthful proteomic expression profile (P-value < 0.01). However, young mCAT mice partially phenocopied the older wild-type proteome (P-value < 0.01). Age strongly interacts with mCAT, consistent with antagonistic pleiotropy in the reverse of the typical direction. These findings underscore the contrasting roles of ROS in young vs. old mice and indicate the need for better understanding of the interaction between dose and age in assessing the efficacy of therapeutic interventions in aging, including mitochondrial antioxidants. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A

    PubMed Central

    Vallejo, Abbe N.; Michel, Joshua J.; Bale, Laurie K.; Lemster, Bonnie H.; Borghesi, Lisa; Conover, Cheryl A.

    2009-01-01

    Pregnancy-associated plasma protein A (PAPPA) is a metalloproteinase that controls the tissue availability of insulin-like growth factor (IGF). Homozygous deletion of PAPPA in mice leads to lifespan extension. Since immune function is an important determinant of individual fitness, we examined the natural immune ecology of PAPPA−/− mice and their wild-type littermates reared under specific pathogen-free condition with aging. Whereas wild-type mice exhibit classic age-dependent thymic atrophy, 18-month-old PAPPA−/− mice maintain discrete thymic cortex and medulla densely populated by CD4+CD8+ thymocytes that are capable of differentiating into single-positive CD4 and CD8 T cells. Old PAPPA−/− mice have high levels of T cell receptor excision circles, and have bone marrows enriched for subsets of thymus-seeding progenitors. PAPPA−/− mice have an overall larger pool of naive T cells, and also exhibit an age-dependent accumulation of CD44+CD43+ memory T cells similar to wild-type mice. However, CD43+ T cell subsets of old PAPPA−/− mice have significantly lower prevalence of 1B11 and S7, glycosylation isoforms known to inhibit T cell activation with normal aging. In bioassays of cell activation, splenic T cells of old PAPPA−/− mice have high levels of activation antigens and cytokine production, and also elicit Ig production by autologous B cells at levels equivalent to young wild-type mice. These data suggest an IGF-immune axis of healthy longevity. Controlling the availability of IGF in the thymus by targeted manipulation of PAPPA could be a way to maintain immune homeostasis during postnatal development and aging. PMID:19549878

  19. Cardiac extrinsic apoptotic pathway is silent in young but activated in elder mice overexpressing bovine GH: interplay with the intrinsic pathway.

    PubMed

    Bogazzi, Fausto; Russo, Dania; Raggi, Francesco; Bohlooly-Y, Mohammad; Tornell, Jan; Sardella, Chiara; Lombardi, Martina; Urbani, Claudio; Manetti, Luca; Brogioni, Sandra; Martino, Enio

    2011-08-01

    Apoptosis may occur through the mitochondrial (intrinsic) pathway and activation of death receptors (extrinsic pathway). Young acromegalic mice have reduced cardiac apoptosis whereas elder animals have increased cardiac apoptosis. Multiple intrinsic apoptotic pathways have been shown to be modulated by GH and other stimuli in the heart of acromegalic mice. However, the role of the extrinsic apoptotic pathways in acromegalic hearts is currently unknown. In young (3-month-old) acromegalic mice, expression of proteins of the extrinsic apoptotic pathway did not differ from that of wild-type animals, suggesting that this mechanism did not participate in the lower cardiac apoptosis levels observed at this age. On the contrary, the extrinsic pathway was active in elder (9-month-old) animals (as shown by increased expression of TRAIL, FADD, TRADD and increased activation of death inducing signaling complex) leading to increased levels of active caspase 8. It is worth noting that changes of some pro-apoptotic proteins were induced by GH, which seemed to have, in this context, pro-apoptotic effects. The extrinsic pathway influenced the intrinsic pathway by modulating t-Bid, the cellular levels of which were reduced in young and increased in elder animals. However, in young animals this effect was due to reduced levels of Bid regulated by the extrinsic pathway, whereas in elder animals the increased levels of t-Bid were due to the increased levels of active caspase 8. In conclusion, the extrinsic pathway participates in the cardiac pro-apoptotic phenotype of elder acromegalic animals either directly, enhancing caspase 8 levels or indirectly, increasing t-Bid levels and conveying death signals to the intrinsic pathway.

  20. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet

    PubMed Central

    Noll, Christophe; Labbé, Sébastien M.; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C.; Gallo-Payet, Nicole

    2016-01-01

    ABSTRACT The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  1. Continuous in vivo infusion of interferon-gamma (IFN-gamma) enhances engraftment of syngeneic wild-type cells in Fanca-/- and Fancg-/- mice.

    PubMed

    Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J; Critser, John; Arwert, Fre; Haneline, Laura S; Clapp, D Wade

    2006-12-15

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc-/- cells to interferon-gamma (IFN-gamma), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc-/- mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca-/- and Fancg-/- mice are hypersensitive to IFN-gamma and that in vivo infusion of IFN-gamma at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-gamma conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients.

  2. Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo

    PubMed Central

    2012-01-01

    Background Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. Methods Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri’s Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. Results Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. Conclusions Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury. PMID:22901501

  3. Wild-type offspring of heterozygous prolactin receptor-null female mice have maladaptive β-cell responses during pregnancy.

    PubMed

    Huang, Carol

    2013-03-01

    Abstract  β-Cell mass increases during pregnancy in adaptation to the insulin resistance of pregnancy. This increase is accompanied by an increase in β-cell proliferation, a process that requires intact prolactin receptor (Prlr) signalling. Previously, it was found that during pregnancy, heterozygous prolactin receptor-null (Prlr(+/-)) mice had lower number of β-cells, lower serum insulin and higher blood glucose levels than wild-type (Prlr(+/+)) mice. An unexpected observation was that the glucose homeostasis of the experimental mouse depends on the genotype of her mother, such that within the Prlr(+/+) group, the Prlr(+/+) offspring derived from Prlr(+/+) mothers (Prlr(+/+(+/+))) had higher β-cell mass and lower blood glucose than those derived from Prlr(+/-) mothers (Prlr(+/+(+/-))). Pathways that are known to regulate β-cell proliferation during pregnancy include insulin receptor substrate-2, Akt, menin, the serotonin synthetic enzyme tryptophan hydroxylase-1, Forkhead box M1 and Forkhead box D3. The aim of the present study was to determine whether dysregulation in these signalling molecules in the islets could explain the maternal effect on the phenotype of the offspring. It was found that the pregnancy-induced increases in insulin receptor substrate-2 and Akt expression in the islets were attenuated in the Prlr(+/+(+/-)) mice in comparison to the Prlr(+/+(+/+)) mice. The expression of Forkhead box D3, which plays a permissive role for β-cell proliferation during pregnancy, was also lower in the Prlr(+/+(+/-)) mice. In contrast, the pregnancy-induced increases in phospho-Jak2, tryptophan hydroxylase-1 and FoxM1, as well as the pregnancy-associated reduction in menin expression, were comparable between the two groups. There was also no difference in expression levels of genes that regulate insulin synthesis and secretion (i.e. glucose transporter 2, glucokinase and pancreatic and duodenal homeobox-1) between these two groups. Taken together, these

  4. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents.

    PubMed

    Nicaise, Charles; Prozzi, Deborah; Viaene, Eric; Moreno, Christophe; Gustot, Thierry; Quertinmont, Eric; Demetter, Pieter; Suain, Valérie; Goffin, Philippe; Devière, Jacques; Hols, Pascal

    2008-10-01

    Hyperammonemia is a common complication of acute and chronic liver diseases. Often accompanied with side effects, therapeutic interventions such as antibiotics or lactulose are generally targeted to decrease the intestinal production and absorption of ammonia. In this study, we aimed to modulate hyperammonemia in three rodent models by administration of wild-type Lactobacillus plantarum, a genetically engineered ammonia hyperconsuming strain, and a strain deficient for the ammonia transporter. Wild-type and metabolically engineered L. plantarum strains were administered in ornithine transcarbamoylase-deficient Sparse-fur mice, a model of constitutive hyperammonemia, in a carbon tetrachloride rat model of chronic liver insufficiency and in a thioacetamide-induced acute liver failure mice model. Constitutive hyperammonemia in Sparse-fur mice and hyperammonemia in a rat model of chronic hepatic insufficiency were efficiently decreased by Lactobacillus administration. In a murine thioacetamide-induced model of acute liver failure, administration of probiotics significantly increased survival and decreased blood and fecal ammonia. The ammonia hyperconsuming strain exhibited a beneficial effect at a lower dose than its wild-type counterpart. Improved survival in the acute liver failure mice model was associated with lower blood ammonia levels but also with a decrease of astrocyte swelling in the brain cortex. Modulation of ammonia was abolished after administration of the strain deficient in the ammonium transporter. Intestinal pH was clearly lowered for all strains and no changes in gut flora were observed. Hyperammonemia in constitutive model or after acute or chronic induced liver failure can be controlled by the administration of L. plantarum with a significant effect on survival. The mechanism involved in this ammonia decrease implicates direct ammonia consumption in the gut.

  5. A Novel 1,4-Dihydropyridine Derivative Improves Spatial Learning and Memory and Modifies Brain Protein Expression in Wild Type and Transgenic APPSweDI Mice.

    PubMed

    Jansone, Baiba; Kadish, Inga; van Groen, Thomas; Beitnere, Ulrika; Moore, Doyle Ray; Plotniece, Aiva; Pajuste, Karlis; Klusa, Vija

    2015-01-01

    Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer's disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer's disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer's disease.

  6. Vitamin D2-Enriched Button Mushroom (Agaricus bisporus) Improves Memory in Both Wild Type and APPswe/PS1dE9 Transgenic Mice

    PubMed Central

    Bennett, Louise; Kersaitis, Cindy; Macaulay, Stuart Lance; Münch, Gerald; Niedermayer, Garry; Nigro, Julie; Payne, Matthew; Sheean, Paul; Vallotton, Pascal; Zabaras, Dimitrios; Bird, Michael

    2013-01-01

    Vitamin D deficiency is widespread, affecting over 30% of adult Australians, and increasing up to 80% for at-risk groups including the elderly (age>65). The role for Vitamin D in development of the central nervous system is supported by the association between Vitamin D deficiency and incidence of neurological and psychiatric disorders including Alzheimer’s disease (AD). A reported positive relationship between Vitamin D status and cognitive performance suggests that restoring Vitamin D status might provide a cognitive benefit to those with Vitamin D deficiency. Mushrooms are a rich source of ergosterol, which can be converted to Vitamin D2 by treatment with UV light, presenting a new and convenient dietary source of Vitamin D2. We hypothesised that Vitamin D2-enriched mushrooms (VDM) could prevent the cognitive and pathological abnormalities associated with dementia. Two month old wild type (B6C3) and AD transgenic (APPSwe/PS1dE9) mice were fed a diet either deficient in Vitamin D2 or a diet which was supplemented with VDM, containing 1±0.2 µg/kg (∼54 IU/kg) vitamin D2, for 7 months. Effects of the dietary intervention on memory were assessed pre- and post-feeding. Brain sections were evaluated for amyloid β (Aβ) plaque loads and inflammation biomarkers using immuno-histochemical methods. Plasma vitamin D metabolites, Aβ40, Aβ42, calcium, protein and cholesterol were measured using biochemical assays. Compared with mice on the control diet, VDM-fed wild type and AD transgenic mice displayed improved learning and memory, had significantly reduced amyloid plaque load and glial fibrillary acidic protein, and elevated interleukin-10 in the brain. The results suggest that VDM might provide a dietary source of Vitamin D2 and other bioactives for preventing memory-impairment in dementia. This study supports the need for a randomised clinical trial to determine whether or not VDM consumption can benefit cognitive performance in the wider population. PMID

  7. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice

    PubMed Central

    Prasher, Joanna M; Lalai, Astrid S; Heijmans-Antonissen, Claudia; Ploemacher, Robert E; Hoeijmakers, Jan H J; Touw, Ivo P; Niedernhofer, Laura J

    2005-01-01

    The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1−/− mice was compared to that in young and old wild-type mice. Ercc1−/− mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1−/− mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa−/− mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging. PMID:15692571

  8. Three Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutants with Distinct and Asymmetric Effects on Virulence in Mice Compared with Rabbits

    PubMed Central

    Perng, Guey-Chuen; Esmaili, Daniel; Slanina, Susan M.; Yukht, Ada; Ghiasi, Homayon; Osorio, Nelson; Mott, Kevin R.; Maguen, Barak; Jin, Ling; Nesburn, Anthony B.; Wechsler, Steven L.

    2001-01-01

    Herpes simplex virus type 1 latency-associated transcript (LAT)-null mutants have decreased reactivation but normal virulence in rabbits and mice. We report here on dLAT1.5, a mutant with LAT nucleotides 76 to 1667 deleted. Following ocular infection of rabbits, dLAT1.5 reactivated at a lower rate than its wild-type parent McKrae (6.1 versus 11.8%; P = 0.0025 [chi-square test]). Reactivation was restored in the marker-rescued virus dLAT1.5R (12.6%; P = 0.53 versus wild type), confirming the importance of the deleted region in spontaneous reactivation. Compared with wild-type or marker-rescued virus, dLAT1.5 had similar or slightly reduced virulence in rabbits (based on survival following ocular infection). In contrast, in mice, dLAT1.5 had increased virulence (P < 0.0001). Thus, deletion of LAT nucleotides 76 to 1667 increased viral virulence in mice but not in rabbits. In contrast, we also report here that LAT2.9A, a LAT mutant that we previously reported to have increased virulence in rabbits (G. C. Perng, S. M. Slanina, A. Yuhkt, B. S. Drolet, W. J. Keleher, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 73:920–929, 1999), had decreased virulence in mice (P = 0.03). In addition, we also found that dLAT371, a LAT mutant that we previously reported to have wild-type virulence in rabbits (G. C. Perng, S. M. Slanina, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 70:2014–2018, 1996), had decreased virulence in mice (P < 0.05). Thus, these three mutants, each of which encodes a different LAT RNA, have different virulence phenotypes. dLAT1.5 had wild-type virulence in rabbits but increased virulence in mice. In contrast, LAT2.9A had increased virulence in rabbits but decreased virulence in mice, and dLAT371 had wild-type virulence in rabbits but decreased virulence in mice. Taken together, these results suggest that (i) the 5′ end of LAT and/or a gene that overlaps part of this region is involved in viral virulence, (ii) this virulence appears

  9. Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium systemic infection of wild type and immune-deficient mice

    PubMed Central

    Oshota, Olusegun; Fookes, Maria; Schreiber, Fernanda; Chaudhuri, Roy R.; Yu, Lu; Clare, Simon; Choudhary, Jyoti; Thomson, Nicholas R.; Lio, Pietro

    2017-01-01

    Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported. PMID:28796780

  10. Exogenous PTHrP Repairs the Damaged Fracture Healing of PTHrP+/− Mice and Accelerates Fracture Healing of Wild Mice

    PubMed Central

    Wang, Yinhe; Fang, Xin; Wang, Chun; Ding, Congzhu; Lin, Hua; Liu, Anlong; Wang, Lei; Cao, Yang

    2017-01-01

    Bone fracture healing is a complicated physiological regenerative process initiated in response to injury and is similar to bone development. To demonstrate whether an exogenous supply of parathyroid hormone–related protein (PTHrP) helps in bone fracture healing, closed mid-diaphyseal femur fractures were created and stabilized with intramedullary pins in eight-week-old wild-type (WT) PTHrP+/+ and PTHrP+/− mice. After administering PTHrP for two weeks, callus tissue properties were analyzed at one, two, and four weeks post-fracture (PF) by various methods. Bone formation–related genes and protein expression levels were evaluated by real-time reverse transcriptase–polymerase chain reaction and Western blots. At two weeks PF, mineral density of callus, bony callus areas, mRNA levels of alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx-2), and protein levels of Runx-2 and insulin-like growth factor-1 decreased in PTHrP+/− mice compared with WT mice. At four weeks PF, total collagen-positive bony callus areas, osteoblast number, ALP-positive areas, and type I collagen-positive areas all decreased in PTHrP+/− mice. At both two and four weeks PF, tartrate-resistant acid phosphatase–positive osteoclast number and surface decreased a little in PTHrP+/− mice. The study indicates that exogenous PTHrP provided by subcutaneous injection could redress impaired bone fracture healing, leading to mutation of activated PTHrP by influencing callus areas, endochondral bone formation, osteoblastic bone formation, and bone turnover. PMID:28178186

  11. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice

    PubMed Central

    Schroeder, Analyne M; Truong, Danny; Loh, Dawn H; Jordan, Maria C; Roos, Kenneth P; Colwell, Christopher S

    2012-01-01

    The circadian system co-ordinates the temporal patterning of behaviour and many underlying biological processes. In some cases, the regulated outputs of the circadian system, such as activity, may be able to feed back to alter core clock processes. In our studies, we used four wheel-access conditions (no access; free access; early night; and late night) to manipulate the duration and timing of activity while under the influence of a light–dark cycle. In wild-type mice, scheduled wheel access was able to increase ambulatory activity, inducing a level of exercise driven at various phases of the light–dark cycle. Scheduled exercise also manipulated the magnitude and phasing of the circadian-regulated outputs of heart rate and body temperature. At a molecular level, the phasing and amplitude of PER2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN and peripheral tissues of Per2::Luc knockin mice were altered by scheduled exercise. We then tested whether scheduled wheel access could improve deficits observed in vasointestinal polypeptide-deficient mice under the influence of a light–dark cycle. We found that scheduled wheel access during the late night improved many of the behavioural, physiological and molecular deficits previously described in vasointestinal polypeptide-deficient mice. Our results raise the possibility that scheduled exercise could be used as a tool to modulate daily rhythms and, when applied, may counteract some of the negative impacts of ageing and disease on the circadian system. PMID:22988135

  12. IDENTIFICATION OF NOVEL TOXICITY-ASSOCIATED METABOLITES BY METABOLOMICS AND MASS ISOTOPOMER ANALYSIS OF ACETAMINOPHEN METABOLISM IN WILD-TYPE AND CYP2E1-NULL MICE

    PubMed Central

    Chen, Chi; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.

    2008-01-01

    CYP2E1 is recognized as the most important enzyme for initiation of acetaminophen (APAP)-induced toxicity. In this study, the resistance of Cyp2e1-null mice to APAP treatment was confirmed by comparing serum aminotransferase activities and blood urea nitrogen levels in wild-type and Cyp2e1-null mice. However, unexpectedly, profiling of major known APAP metabolites in urine and serum revealed that the contribution of CYP2E1 to APAP metabolism decreased with increasing APAP doses administered. Measurement of hepatic glutathione and hydrogen peroxide levels exposed the importance of oxidative stress in determining the consequence of APAP overdose. Subsequent metabolomic analysis was capable of constructing a principal components analysis (PCA) model that delineated a relationship between urinary metabolomes and the responses to APAP treatment. Urinary ions high in wild-type mice treated with 400 mg/kg APAP were elucidated as 3-methoxy-APAP glucuronide (VII) and three novel APAP metabolites, including S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid (VI, formed by a Cys-APAP transamination reaction in kidney), 3,3′-biacetaminophen (VIII, an APAP dimer) and a benzothiazine compound (IX, originated from deacetylated APAP), through mass isotopomer analysis, accurate mass measurement, tandem MS fragmentation, in vitro reactions and chemical treatments. Dose-, time- and genotype-dependent appearance of these minor APAP metabolites implied their association with the APAP-induced toxicity and potential biomarker application. Overall, the oxidative stress elicited by CYP2E1-mediated APAP metabolism might significantly contribute to APAP-induced toxicity. The combination of genetically-modified animal models, mass isotopomer analysis and metabolomics provides a powerful and efficient technical platform to characterize APAP-induced toxicity through identifying novel biomarkers and unravelling novel mechanisms. PMID:18093979

  13. Recombination and mutation of class II histocompatibility genes in wild mice.

    PubMed

    Wakeland, E K; Darby, B R

    1983-12-01

    We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.

  14. The lack of RNA-dependent protein kinase enhances susceptibility of mice to genital herpes simplex virus type 2 infection

    PubMed Central

    Carr, Daniel J J; Wuest, Todd; Tomanek, Lisa; Silverman, Robert H; Williams, Bryan R G

    2006-01-01

    Mice deficient in RNA-dependent protein kinase (PKR–/–) or deficient in PKR and a functional 2′,5′-oligoadenylate synthetase (OAS) pathway (PKR/RL–/–) are more susceptible to genital herpes simplex virus type 2 (HSV-2) infection than wild-type mice or mice that are deficient only in a functional OAS pathway (RL–/–) as measured by survival over 30 days. The increase in susceptibility correlated with an increase in virus titre recovered from vaginal tissue or brainstem of infected mice during acute infection. There was also an increase in CD45+ cells and CD8+ T cells residing in the central nervous system of HSV-2-infected PKR/RL–/– mice in comparison with RL–/– or wild-type control animals. In contrast, there was a reduction in the HSV-specific CD8+ T cells within the draining lymph node of the PKR/RL–/– mice. Collectively, activation of PKR, but not of OAS, contributes significantly to the local control and spread of HSV-2 following genital infection. PMID:16895559

  15. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice.

    PubMed

    Arrant, Andrew E; Patel, Aashka R; Roberson, Erik D

    2015-01-01

    Loss-of-function mutations in progranulin ( GRN ) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous ( Grn + / - ) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn + / - mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn - / - mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn - / - mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels.

  16. Pituitary-adrenal responses to oxotremorine and acute stress in male and female M1 muscarinic receptor knockout mice: comparisons to M2 muscarinic receptor knockout mice.

    PubMed

    Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K

    2008-05-01

    Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The

  17. Production of ultrasonic vocalizations by Peromyscus mice in the wild

    PubMed Central

    Kalcounis-Rueppell, Matina C; Metheny, Jackie D; Vonhof, Maarten J

    2006-01-01

    Background There has been considerable research on rodent ultrasound in the laboratory and these sounds have been well quantified and characterized. Despite the value of research on ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the wild, and how they function in natural habitats. Results We have made the first recordings of ultrasonic vocalizations produced by two free-living species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there was considerable variation in the acoustic characteristics suggesting individual and contextual variation in the production of ultrasound by these species. Conclusion The discovery of the production of ultrasonic vocalizations by Peromyscus in the wild highlights an underappreciated component in the behavior of these model organisms. The ability to examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test hypotheses regarding the function of ultrasound produced by rodents in a natural context. PMID:16507093

  18. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knock-out mice and wild-type C57BL mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasprzak, Kazimierz S.; Diwan, Bhalchandra A.; Kaczmarek, Monika Z.

    2011-11-15

    The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono- < gamma > -lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni{sub 3}S{sub 2}), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strainsmore » of mice differed significantly with regard to (1) Ni{sub 3}S{sub 2} carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni{sub 3}S{sub 2}. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni{sub 3}S{sub 2} in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni{sub 3}S{sub 2} carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni{sub 3}S{sub 2} and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies. -- Highlights: Black-Right-Pointing-Pointer Ascorbate depletion enhances carcinogenicity and acute toxicity of nickel. Black-Right-Pointing-Pointer Gulo-/- mice unable to synthesize ascorbate were used in this study. Black

  19. Expression of Wild-Type Rp1 Protein in Rp1 Knock-in Mice Rescues the Retinal Degeneration Phenotype

    PubMed Central

    Liu, Qin; Collin, Rob W. J.; Cremers, Frans P. M.; den Hollander, Anneke I.; van den Born, L. Ingeborgh; Pierce, Eric A.

    2012-01-01

    Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3rd exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled. PMID:22927954

  20. Peripheral Elevation of a Klotho Fragment Enhances Brain Function and Resilience in Young, Aging, and α-Synuclein Transgenic Mice.

    PubMed

    Leon, Julio; Moreno, Arturo J; Garay, Bayardo I; Chalkley, Robert J; Burlingame, Alma L; Wang, Dan; Dubal, Dena B

    2017-08-08

    Cognitive dysfunction and decreased mobility from aging and neurodegenerative conditions, such as Parkinson and Alzheimer diseases, are major biomedical challenges in need of more effective therapies. Increasing brain resilience may represent a new treatment strategy. Klotho, a longevity factor, enhances cognition when genetically and broadly overexpressed in its full, wild-type form over the mouse lifespan. Whether acute klotho treatment can rapidly enhance cognitive and motor functions or induce resilience is a gap in our knowledge of its therapeutic potential. Here, we show that an α-klotho protein fragment (αKL-F), administered peripherally, surprisingly induced cognitive enhancement and neural resilience despite impermeability to the blood-brain barrier in young, aging, and transgenic α-synuclein mice. αKL-F treatment induced cleavage of the NMDAR subunit GluN2B and also enhanced NMDAR-dependent synaptic plasticity. GluN2B blockade abolished αKL-F-mediated effects. Peripheral αKL-F treatment is sufficient to induce neural enhancement and resilience in mice and may prove therapeutic in humans. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Comparison of Ehrlichia muris strains isolated from wild mice and ticks and serologic survey of humans and animals with E. muris as antigen.

    PubMed

    Kawahara, M; Ito, T; Suto, C; Shibata, S; Rikihisa, Y; Hata, K; Hirai, K

    1999-04-01

    In metropolitan Tokyo, the Ehrlichia muris seropositivity rate of 24 wild mice was 63% in Hinohara Village, but in the surrounding areas, it was 0 to 5%. This finding suggests that the reservoir of E. muris is focal. Among the 15 seropositive mice, ehrlichiae were isolated from 9 Apodemus speciosus mice and 1 A. argenteus mouse, respectively. Five ehrlichial isolates were obtained from 10 ticks (Haemaphysalis flava) collected in Asuke Town, Aichi Prefecture, where the E. muris type strain had been isolated. These new isolates were compared with the E. muris type strain. The mouse virulence and ultrastructure of the new isolates were similar to those of the type strain, and all of them were cross-reactive with each other, as well as with the type strain, by indirect immunofluorescent-antibody test. The levels of similarity of the base sequences of the 16S rRNA gene of one of the A. speciosus isolates and one of the tick isolates to that of the E. muris type strain were 99.79 and 99.93%, respectively. We suggest that all of these isolates are E. muris; that E. muris is not limited to Eothenomys kageus but infects other species of mice; and that E. muris is present at locations other than Aichi Prefecture. It appears that H. flava is a potential vector of E. muris. Twenty (1%) of 1803 humans from metropolitan Tokyo were found to be seropositive for E. muris antibodies. A serological survey revealed that exposure to E. muris or organisms antigenically cross-reactive to E. muris occurred among dogs, wild mice, monkeys, bears, deer, and wild boars in Gifu Prefecture, nearby prefectures, and Nagoya City, central Japan. However, human beings and Rattus norvegicus rats in this area were seronegative. These results indicate broader geographic distribution of and human and animal species exposure to E. muris or related Ehrlichia spp. in Japan.

  2. Dietary cladode powder from wild type and domesticated Opuntia species reduces atherogenesis in apoE knock-out mice.

    PubMed

    Garoby-Salom, Sandra; Guéraud, Françoise; Camaré, Caroline; de la Rosa, Ana-Paulina Barba; Rossignol, Michel; Santos Díaz, María del Socorro; Salvayre, Robert; Negre-Salvayre, Anne

    2016-03-01

    Dietary intake of Opuntia species may prevent the development of cardiovascular diseases. The present study was designed to characterize the biological antioxidant and anti-inflammatory properties of Opuntia species and to investigate whether Opuntia cladodes prevent the development of atherosclerosis in vivo, in apoE(-)KO mice. The effects of the two Opuntia species, the wild Opuntia streptacantha and the domesticated Opuntia ficus-indica, were tested on the generation of intra- and extracellular reactive oxygen species (ROS) production and kinetics of the LDL oxidation by murine CRL2181 endothelial cells and on the subsequent inflammatory signaling leading to the adhesion of monocytes on the activated endothelium and the formation of foam cells. Opuntia species blocked the extracellular ROS (superoxide anion) generation and LDL oxidation by CRL2181, as well as the intracellular ROS rise and signaling evoked by the oxidized LDL, including the nuclear translocation of the transcription factor NFκB, the expression of ICAM-1 and VCAM-1 adhesion molecules, and the adhesion of monocytes to CRL2181. In vivo, Opuntia significantly reduced the formation of atherosclerotic lesions and the accumulation of 4-hydroxynonenal adducts in the vascular wall of apoE-KO mice, indicating that Opuntia cladodes prevent lipid oxidation in the vascular wall. In conclusion, wild and domesticated Opuntia species exhibit antioxidant, anti-inflammatory, and antiatherogenic properties which emphasize their nutritional benefit for preventing cardiovascular diseases.

  3. Continuous in vivo infusion of interferon-gamma (IFN-γ) enhances engraftment of syngeneic wild-type cells in Fanca–/– and Fancg–/– mice

    PubMed Central

    Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J.; Critser, John; Arwert, Fre; Haneline, Laura S.; Clapp, D. Wade

    2006-01-01

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc–/– cells to interferon-gamma (IFN-γ), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc–/– mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca–/– and Fancg–/– mice are hypersensitive to IFN-γ and that in vivo infusion of IFN-γ at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-γ conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients. PMID:16946306

  4. Quantitative analysis by next generation sequencing of hematopoietic stem and progenitor cells (LSK) and of splenic B cells transcriptomes from wild-type and Usp3-knockout mice.

    PubMed

    Lancini, Cesare; Gargiulo, Gaetano; van den Berk, Paul C M; Citterio, Elisabetta

    2016-03-01

    The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK) and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ). Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR) (Jackson and Durocher, 2013) [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB) that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008) [2], [3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs) during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014) [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article "Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells" (Lancini et al., 2014) [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002) [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495). With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis.

  5. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    PubMed

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  6. Perception of sweet taste is important for voluntary alcohol consumption in mice.

    PubMed

    Blednov, Y A; Walker, D; Martinez, M; Levine, M; Damak, S; Margolskee, R F

    2008-02-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: alpha-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.

  7. PERCEPTION OF SWEET TASTE IS IMPORTANT FOR VOLUNTARY ALCOHOL CONSUMPTION IN MICE

    PubMed Central

    Blednov, Y.A.; Walker, D.; Martinez, M.; Levine, M.; Damak, S.; Margolskee, R.F.

    2012-01-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild type mice, whereas Tas1r3 null mice were not different from wild-type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in conditioned taste aversion to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. PMID:17376151

  8. An investigation into "two hit" effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice.

    PubMed

    Klug, Maren; van den Buuse, Maarten

    2013-01-01

    Reduced brain-derived neurotrophic factor (BDNF) signaling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET) and wild-type controls were chronically treated during weeks 6, 7, and 8 of life with the cannabinoid receptor agonist, CP55,940 (CP). After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI) was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [(3)H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus. These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male "two hit" mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [(3)H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential "two hit" neurodevelopmental mechanisms in schizophrenia.

  9. Sequence analysis of chromosome 1 revealed different selection patterns between Chinese wild mice and laboratory strains.

    PubMed

    Xu, Fuyi; Hu, Shixian; Chao, Tianzhu; Wang, Maochun; Li, Kai; Zhou, Yuxun; Xu, Hongyan; Xiao, Junhua

    2017-10-01

    Both natural and artificial selection play a critical role in animals' adaptation to the environment. Detection of the signature of selection in genomic regions can provide insights for understanding the function of specific phenotypes. It is generally assumed that laboratory mice may experience intense artificial selection while wild mice more natural selection. However, the differences of selection signature in the mouse genome and underlying genes between wild and laboratory mice remain unclear. In this study, we used two mouse populations: chromosome 1 (Chr 1) substitution lines (C1SLs) derived from Chinese wild mice and mouse genome project (MGP) sequenced inbred strains and two selection detection statistics: Fst and Tajima's D to identify the signature of selection footprint on Chr 1. For the differentiation between the C1SLs and MGP, 110 candidate selection regions containing 47 protein coding genes were detected. A total of 149 selection regions which encompass 7.215 Mb were identified in the C1SLs by Tajima's D approach. While for the MGP, we identified nearly twice selection regions (243) compared with the C1SLs which accounted for 13.27 Mb Chr 1 sequence. Through functional annotation, we identified several biological processes with significant enrichment including seven genes in the olfactory transduction pathway. In addition, we searched the phenotypes associated with the 47 candidate selection genes identified by Fst. These genes were involved in behavior, growth or body weight, mortality or aging, and immune systems which align well with the phenotypic differences between wild and laboratory mice. Therefore, the findings would be helpful for our understanding of the phenotypic differences between wild and laboratory mice and applications for using this new mouse resource (C1SLs) for further genetics studies.

  10. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    PubMed

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  11. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.

    PubMed

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-05-17

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.

  12. Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice.

    PubMed

    Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X

    2017-10-18

    The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.

  13. Glucagon Receptor Knockout Prevents Insulin-Deficient Type 1 Diabetes in Mice

    PubMed Central

    Lee, Young; Wang, May-Yun; Du, Xiu Quan; Charron, Maureen J.; Unger, Roger H.

    2011-01-01

    OBJECTIVE To determine the role of glucagon action in the metabolic phenotype of untreated insulin deficiency. RESEARCH DESIGN AND METHODS We compared pertinent clinical and metabolic parameters in glucagon receptor-null (Gcgr−/−) mice and wild-type (Gcgr+/+) controls after equivalent destruction of β-cells. We used a double dose of streptozotocin to maximize β-cell destruction. RESULTS Gcgr+/+ mice became hyperglycemic (>500 mg/dL), hyperketonemic, polyuric, and cachectic and had to be killed after 6 weeks. Despite comparable β-cell destruction in Gcgr−/− mice, none of the foregoing clinical or laboratory manifestations of diabetes appeared. There was marked α-cell hyperplasia and hyperglucagonemia (∼1,200 pg/mL), but hepatic phosphorylated cAMP response element binding protein and phosphoenolpyruvate carboxykinase mRNA were profoundly reduced compared with Gcgr+/+ mice with diabetes—evidence that glucagon action had been effectively blocked. Fasting glucose levels and oral and intraperitoneal glucose tolerance tests were normal. Both fasting and nonfasting free fatty acid levels and nonfasting β-hydroxy butyrate levels were lower. CONCLUSIONS We conclude that blocking glucagon action prevents the deadly metabolic and clinical derangements of type 1 diabetic mice. PMID:21270251

  14. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    PubMed Central

    Moore, Kelsey; Madularu, Dan; Iriah, Sade; Yee, Jason R.; Kulkarni, Praveen; Darcq, Emmanuel; Kieffer, Brigitte L.; Ferris, Craig F.

    2016-01-01

    Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain

  15. An investigation into “two hit” effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice

    PubMed Central

    Klug, Maren; van den Buuse, Maarten

    2013-01-01

    Reduced brain-derived neurotrophic factor (BDNF) signaling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET) and wild-type controls were chronically treated during weeks 6, 7, and 8 of life with the cannabinoid receptor agonist, CP55,940 (CP). After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI) was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [3H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus. These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male “two hit” mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [3H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential “two hit” neurodevelopmental mechanisms in schizophrenia. PMID:24155701

  16. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents

    PubMed Central

    Cavegn, Nicole; van Dijk, R. Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T.; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern Africa [Namaqua rock mouse (Micaelamys namaquensis), red veld rat (Aethomys chrysophilus), highveld gerbil (Tatera brantsii), and spiny mouse (Acomys spinosissimus)] with data from wild European Muridae [long-tailed wood mice (Apodemus sylvaticus), pygmy field mice (Apodemus microps), yellow-necked wood mice (Apodemus flavicollis), and house mice (Mus musculus domesticus)] from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and Doublecortin(DCX)-positive cells to total granule cells (GCs), is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower AHN compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat) show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups. PMID:23616743

  17. Differential long-term effects of MDMA on the serotoninergic system and hippocampal cell proliferation in 5-HTT knock-out vs. wild-type mice.

    PubMed

    Renoir, Thibault; Païzanis, Eleni; El Yacoubi, Malika; Saurini, Françoise; Hanoun, Naïma; Melfort, Maxette; Lesch, Klaus Peter; Hamon, Michel; Lanfumey, Laurence

    2008-12-01

    Although numerous studies investigated the mechanisms underlying 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity, little is known about its long-term functional consequences on 5-HT neurotransmission in mice. This led us to evaluate the delayed effects of MDMA exposure on the 5-HT system, using in-vitro and in-vivo approaches in both 5-HTT wild-type and knock-out mice. Acute MDMA in-vitro application on slices of the dorsal raphe nucleus (DRN) induced concentration-dependent 5-HT release and 5-HT cell firing inhibition. Four weeks after MDMA administration (20 mg/kg b.i.d for 4 d), a 2-fold increase in the potency of the 5-HT1A receptor agonist ipsapirone to inhibit the discharge of DRN 5-HT neurons and a larger hypothermic response to 8-OH-DPAT were observed in MDMA- compared to saline-treated mice. This adaptive 5-HT1A autoreceptor supersensitivity was associated with decreases in 5-HT levels but no changes of [3H]citalopram binding in brain. Long-term MDMA treatment also induced a 30% decrease in BrdU labelling of proliferating hippocampal cells and an increased immobility duration in the forced swim test suggesting a depressive-like behaviour induced by MDMA treatment. All these effects were abolished in 5-HTT-/- knock-out mice. These data indicated that, in mice, MDMA administration induced a delayed adaptive supersensitivity of 5-HT1A autoreceptors in the DRN, a deficit in hippocampal cell proliferation and a depressive-like behaviour. These 5-HTT-dependent effects, opposite to those of antidepressants, might contribute to MDMA-induced mood disorders.

  18. Akt-mediated cardioprotective effects of aldosterone in type 2 diabetic mice.

    PubMed

    Fazal, Loubina; Azibani, Feriel; Bihry, Nicolas; Coutance, Guillaume; Polidano, Evelyne; Merval, Régine; Vodovar, Nicolas; Launay, Jean-Marie; Delcayre, Claude; Samuel, Jane-Lise

    2014-06-01

    Studies have shown that aldosterone would have angiogenic effects and therefore would be beneficial in the context of cardiovascular diseases. We thus investigated the potential involvement of aldosterone in triggering a cardiac angiogenic response in the context of type-2 diabetes and the molecular pathways involved. Male 3-wk-old aldosterone synthase (AS)-overexpressing mice and their control wild-type (WT) littermates were fed a standard or high-fat, high-sucrose (HFHS) diet. After 6 mo of diet treatment, mice were euthanized, and cardiac samples were assayed by RT-PCR, immunoblotting, and immunohistology. HFHS diet induced type-2 diabetes in WT (WT-D) and AS (AS-D) mice. VEGFa mRNAs decreased in WT-D (-43%, P<0.05 vs. WT) and increased in AS-D mice (+236%, P< 0.01 vs. WT-D). In WT-D mouse hearts, the proapoptotic p38MAPK was activated (P<0.05 vs. WT and AS-D), whereas Akt activity decreased (-64%, P<0.05 vs. WT). The AS mice, which exhibited a cardiac up-regulation of IGF1-R, showed an increase in Akt phosphorylation when diabetes was induced (P<0.05 vs. WT and AS-D). Contrary to WT-D mice, AS-D mouse hearts did not express inflammatory markers and exhibited a normal capillary density (P<0.05 vs. WT-D). To our knowledge, this is the first study providing new insights into the mechanisms whereby aldosterone prevents diabetes-induced cardiac disorders. © FASEB.

  19. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice

    PubMed Central

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-01-01

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice. DOI: http://dx.doi.org/10.7554/eLife.14846.001 PMID:27187150

  20. Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice.

    PubMed

    Spencer, Nick J

    2013-01-01

    It is well established that the intrinsic pacemaker mechanism that generates cyclical colonic migrating motor complexes (CMMCs) does not require endogenous nitric oxide (NO). However, pharmacological blockade of endogenous NO production potently increases the frequency of CMMCs, suggesting that endogenous NO acts normally to inhibit the CMMC pacemaker mechanism. In this study, we investigated whether mice with a life long genetic deletion of the neuronal nitric oxide synthase (nNOS) gene would show similar CMMC characteristics as wild type mice that have endogenous NO production acutely inhibited. Intracellular electrophysiological and mechanical recordings were made from circular muscle cells of isolated whole mouse colon in wild type and nNOS knockout (KO) mice at 35°C. In wild type mice, the NOS inhibitor, L-NA (100 μM) caused a significant increase in CMMC frequency and a significant depolarization of the CM layer. However, unexpectedly, the frequency of CMMCs in nNOS KO mice was not significantly different from control mice. Also, the resting membrane potential of CM cells in nNOS KO mice was not depolarized compared to controls; and the amplitude of the slow depolarization phase underlying MCs was of similar amplitude between KO and wild type offspring. These findings show that in nNOS KO mice, the major characteristics of CMMCs and their electrical correlates are, at least in adult mice, indistinguishable from wild type control offspring. One possibility why the major characteristics of CMMCs were no different between both types of mice is that nNOS KO mice may compensate for their life long deletion of the nNOS gene, and their permanent loss of neuronal NO production. In this regard, we suggest caution should be exercised when assuming that data obtained from adult nNOS KO mice can be directly extrapolated to wild type mice, that have been acutely exposed to an inhibitor of NOS.

  1. The ESA Mice in Space (MIS) habitat: effects of cage confinement on neuromusculoskeletal structure and function and stress/behavior using wild-type C57Bl/6JRj mice in a modular science reference model (MSRM) test on ground

    NASA Astrophysics Data System (ADS)

    Blottner, Dieter; Vico, Laurence; Jamon, D. Berckmansp L. Vicop Y. Liup R. Canceddap M.

    Background: Environmental conditions likely affect physiology and behaviour of mice used for Life Sciences Research on Earth and in Space. Thus, mice habitats with sufficient statistical numbers should be developed for adequate life support and care and that should meet all nesces-sary ethical and scientific requirements needed to successfully perform animal experimentation in Space. Aim of study: We here analysed the effects of cage confinement on the weightbear-ing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based MSRM (modular science ref-erence module) in the frame of breadboard activities for a fully automated life support habitat called "Mice in Space" (MIS) at the Leuven University, Belgium. Results: Compared with control housing (individually ventilated cages, IVC-mice) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, ag-gressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). Conclusions: The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure on orbit as planned for future biosatellite programmes. Sponsors: ESA-ESTEC, Noordwijk, NL

  2. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis

    PubMed Central

    Wang, Guohao; Liu, Xudong; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2016-01-01

    The Huntington’s disease (HD) protein, huntingtin (HTT), is essential for early development. Because suppressing the expression of mutant HTT is an important approach to treat the disease, we must first understand the normal function of Htt in adults versus younger animals. Using inducible Htt knockout mice, we found that Htt depletion does not lead to adult neurodegeneration or animal death at >4 mo of age, which was also verified by selectively depleting Htt in neurons. On the other hand, young Htt KO mice die at 2 mo of age of acute pancreatitis due to the degeneration of pancreatic acinar cells. Importantly, Htt interacts with the trypsin inhibitor, serine protease inhibitor Kazal-type 3 (Spink3), to inhibit activation of digestive enzymes in acinar cells in young mice, and transgenic HTT can rescue the early death of Htt KO mice. These findings point out age- and cell type-dependent vital functions of Htt and the safety of knocking down neuronal Htt expression in adult brains as a treatment. PMID:26951659

  3. Impaired fear extinction learning in adult heterozygous BDNF knock-out mice.

    PubMed

    Psotta, Laura; Lessmann, Volkmar; Endres, Thomas

    2013-07-01

    Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuroplasticity, which underlies learning and memory processes in different brain areas. To investigate the role of BDNF in the extinction of amygdala-dependent cued fear memories, we analyzed fear extinction learning in heterozygous BDNF knock-out mice, which possess a reduction of endogenous BDNF protein levels to ~50% of wild-type animals. Since BDNF expression has been shown to decline with aging of animals, we tested the performance in extinction learning of these mice at 2 months (young adults) and 7 months (older adults) of age. The present study shows that older adult heterozygous BDNF knock-out mice, which have a chronic 50% lack of BDNF, also possess a deficit in the acquisition of extinction memory, while extinction learning remains unaffected in young adult heterozygous BDNF knock-out mice. This deficit in extinction learning is accompanied by a reduction of BDNF protein in the hippocampus, amygdala and the prefrontal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice1,2,3

    PubMed Central

    Arrant, Andrew E.; Patel, Aashka R.

    2015-01-01

    Abstract Loss-of-function mutations in progranulin (GRN) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous (Grn+/−) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn+/− mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn−/−mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn−/−mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels. PMID:26361634

  5. Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice.

    PubMed

    Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki

    2017-10-15

    Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca 2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which IP 3 /Ca 2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP 3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca 2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which astrocytic Ca 2+ elevations are largely diminished. We found that the gamma power was also higher in IP 3 R2-KO-ENR mice compared to IP 3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily

  6. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice.

    PubMed

    Murach, Kevin A; Confides, Amy L; Ho, Angel; Jackson, Janna R; Ghazala, Lina S; Peterson, Charlotte A; Dupont-Versteegden, Esther E

    2017-10-01

    Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7 CreER -R26R DTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell

  7. Effect of Obstructive Jaundice and Nitric Oxide on the Profiles of Intestinal Bacterial Flora in Wild and iNOS−/− Mice

    PubMed Central

    Hong, Ji-Young; F. Sato, Eisuke; Nishikawa, Tomoko; Hiramoto, Keiichi; Inoue, Masayasu

    2009-01-01

    We previously reported that the plasma level of endotoxin and colonic expression of IgA in the mouse increased with obstructive jaundice induced by bile duct ligation (BDL). To elucidate the mechanism of the BDL-induced increase, we analyzed the effect of BDL on intestinal flora in wild type and inducible nitric oxide synthase (iNOS)-deficient mice (iNOS−/−) using the terminal restriction fragment length polymorphism analysis (T-RFLP) and 16S rDNA clone libraries. The amounts of bacterial DNA detected in fecal samples from both animal groups pretreated with antibiotics were extremely low as compared with untreated groups. We found that the profiles of enteric bacteria changed markedly after BDL. The bacterial composition is significantly different between not only wild type and iNOS−/− mice but also those before and after BDL, respectively. Among enteric bacteria examined, Lactobacillus murinus was found to increase markedly after BDL in rectum of both animal groups. However, Escherichia coli markedly increased after BDL in the iNOS−/− mice. These findings suggest that profiles of enteric flora change markedly in animals during obstructive jaundice by some mechanism that is affected by bile constituents and iNOS-derived NO. PMID:19308270

  8. Environmental structure and energetic consequences in groups of young mice.

    PubMed

    Shelton, Delia S; Meyer, Paul M; Ocasio, Karen M

    2017-08-01

    Microenvironments can have considerable physiological consequences for the inhabitants by influencing the movements of individual members. The microenvironment can permit more diverse aggregation patterns or restrict movements to certain dimensions. Here, we tested whether aspects of the microenvironment that influenced aggregation patterns also influenced the energetics of groups of young animals. We tested the effects of enclosure configuration on the group temperature and respiration of infant mice (Mus musculus). We monitored the huddle temperature and respiration of groups in flat, concave and conical enclosures, which varied in shape and available space, and consequently the types of movements they permitted. We found that the amount of available space (or density) had a stronger effect on the group temperature than did the shape of the enclosure or types of permissible movements. We found no evidence that density or shape of the arena strongly affected the respiration rate of the group, with groups showing similar levels of oxygen consumption in all treatments. The lower density enclosures conveyed a considerable metabolic savings to groups in comparison to those tested in a higher density enclosure. These findings show density can have a large effect on the energetics of young mice, and provide insights on how simple features of the environment will influence physiology in a changing world. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels.

    PubMed

    Perng, Guey-Chuen; Maguen, Barak; Jin, Ling; Mott, Kevin R; Osorio, Nelson; Slanina, Susan M; Yukht, Ada; Ghiasi, Homayon; Nesburn, Anthony B; Inman, Melissa; Henderson, Gail; Jones, Clinton; Wechsler, Steven L

    2002-02-01

    After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500-1503, 2000; M. Inman et al., J. Virol. 75:3636-3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT

  10. Lipoprotein lipase gene-deficient mice with hypertriglyceridaemia associated with acute pancreatitis.

    PubMed

    Tang, Maochun; Zong, Pengfei; Zhang, Ting; Wang, Dongyan; Wang, Yuhui; Zhao, Yan

    2016-10-01

    To investigate the severity of pancreatitis in lipoprotein lipase (LPL)-deficient hypertriglyceridaemic (HTG) heterozygous mice and to establish an experimental animal model for HTG pancreatitis study. LPL-deficient HTG heterozygous mice were rescued by somatic gene transfer and mated with wild-type mice. The plasma amylase, triglyceride, and pathologic changes in the pancreas of the LPL-deficient HTG heterozygous mice were compared with those of wild-type mice to assess the severity of pancreatitis. In addition, acute pancreatitis (AP) was induced by caerulein (50 µg/kg) for further assessment. The levels of plasma amylase and triglyceride were significantly higher in the LPL-deficient HTG heterozygous mice. According to the pancreatic histopathologic scores, the LPL-deficient HTG heterozygous mice showed more severe pathologic damage than the wild-type mice. Lipoprotein lipase deficient heterozygous mice developed severe caerulein-induced pancreatitis. In addition, their high triglyceride levels were stable. Therefore, LPL-deficient HTG heterozygous mice are a useful experimental model for studying HTG pancreatitis.

  11. Sequence Diversity, Intersubgroup Relationships, and Origins of the Mouse Leukemia Gammaretroviruses of Laboratory and Wild Mice.

    PubMed

    Bamunusinghe, Devinka; Naghashfar, Zohreh; Buckler-White, Alicia; Plishka, Ronald; Baliji, Surendranath; Liu, Qingping; Kassner, Joshua; Oler, Andrew J; Hartley, Janet; Kozak, Christine A

    2016-04-01

    Mouse leukemia viruses (MLVs) are found in the common inbred strains of laboratory mice and in the house mouse subspecies ofMus musculus Receptor usage and envelope (env) sequence variation define three MLV host range subgroups in laboratory mice: ecotropic, polytropic, and xenotropic MLVs (E-, P-, and X-MLVs, respectively). These exogenous MLVs derive from endogenous retroviruses (ERVs) that were acquired by the wild mouse progenitors of laboratory mice about 1 million years ago. We analyzed the genomes of seven MLVs isolated from Eurasian and American wild mice and three previously sequenced MLVs to describe their relationships and identify their possible ERV progenitors. The phylogenetic tree based on the receptor-determining regions ofenvproduced expected host range clusters, but these clusters are not maintained in trees generated from other virus regions. Colinear alignments of the viral genomes identified segmental homologies to ERVs of different host range subgroups. Six MLVs show close relationships to a small xenotropic ERV subgroup largely confined to the inbred mouse Y chromosome.envvariations define three E-MLV subtypes, one of which carries duplications of various sizes, sequences, and locations in the proline-rich region ofenv Outside theenvregion, all E-MLVs are related to different nonecotropic MLVs. These results document the diversity in gammaretroviruses isolated from globally distributedMussubspecies, provide insight into their origins and relationships, and indicate that recombination has had an important role in the evolution of these mutagenic and pathogenic agents. Laboratory mice carry mouse leukemia viruses (MLVs) of three host range groups which were acquired from their wild mouse progenitors. We sequenced the complete genomes of seven infectious MLVs isolated from geographically separated Eurasian and American wild mice and compared them with endogenous germ line retroviruses (ERVs) acquired early in house mouse evolution. We did this

  12. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia

    PubMed Central

    Rocca, Celine J.; Goodman, Spencer M.; Dulin, Jennifer N.; Haquang, Joseph H.; Gertsman, Ilya; Blondelle, Jordan; Smith, Janell L. M.; Heyser, Charles J.; Cherqui, Stephanie

    2017-01-01

    Friedreich’s ataxia (FRDA) is an incurable autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin due to an intronic GAA-repeat expansion in the FXN gene. We report the therapeutic efficacy of transplanting wild-type mouse hematopoietic stem and progenitor cells (HSPCs) into the YG8R mouse model of FRDA. In the HSPC-transplanted YG8R mice, development of muscle weakness and locomotor deficits was abrogated as was degeneration of large sensory neurons in the dorsal root ganglia (DRGs) and mitochondrial capacity was improved in brain, skeletal muscle, and heart. Transplanted HSPCs engrafted and then differentiated into microglia in the brain and spinal cord and into macrophages in the DRGs, heart, and muscle of YG8R FRDA mice. We observed the transfer of wild-type frataxin and Cox8 mitochondrial proteins from HSPC-derived microglia/macrophages to FRDA mouse neurons and muscle myocytes in vivo. Our results show the HSPC-mediated phenotypic rescue of FRDA in YG8R mice and suggest that this approach should be investigated further as a strategy for treating FRDA. PMID:29070698

  13. The effect of forced exercise on knee joints in Dio2(-/-) mice: type II iodothyronine deiodinase-deficient mice are less prone to develop OA-like cartilage damage upon excessive mechanical stress.

    PubMed

    Bomer, Nils; Cornelis, Frederique M F; Ramos, Yolande F M; den Hollander, Wouter; Storms, Lies; van der Breggen, Ruud; Lakenberg, Nico; Slagboom, P Eline; Meulenbelt, Ingrid; Lories, Rik J L

    2016-03-01

    To further explore deiodinase iodothyronine type 2 (DIO2) as a therapeutic target in osteoarthritis (OA) by studying the effects of forced mechanical loading on in vivo joint cartilage tissue homeostasis and the modulating effect herein of Dio2 deficiency. Wild-type and C57BL/6-Dio2(-/-) -mice were subjected to a forced running regime for 1 h per day for 3 weeks. Severity of OA was assessed by histological scoring for cartilage damage and synovitis. Genome-wide gene expression was determined in knee cartilage by microarray analysis (Illumina MouseWG-6 v2). STRING-db analyses were applied to determine enrichment for specific pathways and to visualise protein-protein interactions. In total, 158 probes representing 147 unique genes showed significantly differential expression with a fold-change ≥1.5 upon forced exercise. Among these are genes known for their association with OA (eg, Mef2c, Egfr, Ctgf, Prg4 and Ctnnb1), supporting the use of forced running as an OA model in mice. Dio2-deficient mice showed significantly less cartilage damage and signs of synovitis. Gene expression response upon exercise between wild-type and knockout mice was significantly different for 29 genes. Mice subjected to a running regime have significant increased cartilage damage and synovitis scores. Lack of Dio2 protected against cartilage damage in this model and was reflected in a specific gene expression profile, and either mark a favourable effect in the Dio2 knockout (eg, Gnas) or an unfavourable effect in wild-type cartilage homeostasis (eg, Hmbg2 and Calr). These data further support DIO2 activity as a therapeutic target in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. High frequency fo X-Y chromosome dissociation in primary spermatocytes of F1 hybrids between Japanese wild mice (Mus musculus molossinus) and inbred laboratory mice.

    PubMed

    Imai, H T; Matsuda, Y; Shiroishi, T; Moriwaki, K

    1981-01-01

    In the hybrids between Japanese wild mice (Mus musculus molossinus) and inbred laboratory mice (BALB/c and B10.BR, which were probably derived from M. m. domesticus), the X and Y chromosomes dissociated precociously at the first meiotic metaphase in some 70% of spermatocytes; that percentage was only 8.9% in inbred laboratory mice and 21.1% in wild mice. X-Y dissociation began at least at early diakinesis and continued during metaphase I (MI). Some autosomes of the hybrid (10.1%) and BALB/c (10.6%) mice also dissociated precociously, but there was no distinctive correlation between X-Y and autosomal dissociation. In B10 or B6 congenic lines with a Y chromosome from wild M. m. molossinus, there was an apparent tendency for the percentage of precocious X-Y dissociation to decrease with an increasing number of back cross generations. Based on these observations we concluded that: 1. the X-Y dissociation found is genetically controlled, perhaps by multiple genes; 2. these genes are located on autosomes and are active only when they are heterozygous; 3. the frequent dissociation of the sex chromosomes neither affects male fertility nor induces non-disjunction of the X and Y chromosomes, though it significantly reduces testes weight.

  15. A Ser75-to-Asp phospho-mimicking mutation in Src accelerates ageing-related loss of retinal ganglion cells in mice.

    PubMed

    Kashiwagi, Kenji; Ito, Sadahiro; Maeda, Shuichiro; Kato, Goro

    2017-12-01

    Src knockout mice show no detectable abnormalities in central nervous system (CNS) post-mitotic neurons, likely reflecting functional compensation by other Src family kinases. Cdk1- or Cdk5-dependent Ser75 phosphorylation in the amino-terminal Unique domain of Src, which shares no homology with other Src family kinases, regulates the stability of active Src. To clarify the roles of Src Ser75 phosphorylation in CNS neurons, we established two types of mutant mice with mutations in Src: phospho-mimicking Ser75Asp (SD) and non-phosphorylatable Ser75Ala (SA). In ageing SD/SD mice, retinal ganglion cell (RGC) number in whole retinas was significantly lower than that in young SD/SD mice in the absence of inflammation and elevated intraocular pressure, resembling the pathogenesis of progressive optic neuropathy. By contrast, SA/SA mice and wild-type (WT) mice exhibited no age-related RGC loss. The age-related retinal RGC number reduction was greater in the peripheral rather than the mid-peripheral region of the retina in SD/SD mice. Furthermore, Rho-associated kinase activity in whole retinas of ageing SD/SD mice was significantly higher than that in young SD/SD mice. These results suggest that Src regulates RGC survival during ageing in a manner that depends on Ser75 phosphorylation.

  16. Isoflurane unveils a critical role of glutamate transporter type 3 in regulating hippocampal GluR1 trafficking and context-related learning and memory in mice.

    PubMed

    Cao, J; Wang, Z; Mi, W; Zuo, Z

    2014-07-11

    Glutamate transporter type 3 (EAAT3) may play a role in cognition. Isoflurane enhances EAAT3 trafficking to the plasma membrane. Thus, we used isoflurane to determine how EAAT3 might regulate learning and memory and the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, such as GluR1, to the plasma membrane, a fundamental biochemical process for learning and memory. Here, isoflurane increased EAAT3 but did not change GluR1 levels in the plasma membrane of wild-type mouse hippocampus. Isoflurane increased protein phosphatase activity in the wild-type and EAAT3(-/-) mouse hippocampus. Also, isoflurane reduced GluR1 in the plasma membrane and decreased phospho-GluR1 in EAAT3(-/-) mice. The phosphatase inhibitor okadaic acid attenuated these effects. Finally, isoflurane inhibited context-related fear conditioning in EAAT3(-/-) mice but not in wild-type mice. Thus, isoflurane may increase GluR1 trafficking to the plasma membrane via EAAT3 and inhibit GluR1 trafficking via protein phosphatase. Lack of EAAT3 effects leads to decreased GluR1 trafficking and impaired cognition after isoflurane exposure in EAAT3(-/-) mice. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Arthritis is developed in Borrelia-primed and -infected mice deficient of interleukin-17.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Munson, Erik L; Nardelli, Dean T; Schell, Ronald F

    2016-10-01

    Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice

    PubMed Central

    Hartmann, Phillipp; Chen, Peng; Wang, Hui J.; Wang, Lirui; McCole, Declan F.; Brandl, Katharina; Stärkel, Peter; Belzer, Clara; Hellerbrand, Claus; Tsukamoto, Hidekazu; Ho, Samuel B.; Schnabl, Bernd

    2013-01-01

    The intestinal mucus layer protects the epithelium from noxious agents, viruses, and pathogenic bacteria present in the gastrointestinal tract. It is composed of mucins, predominantly mucin-2 (Muc2), secreted by goblet cells of the intestine. Experimental alcoholic liver disease requires translocation of bacterial products across the intestinal barrier into the systemic circulation, which induces an inflammatory response in the liver and contributes to steatohepatitis. We investigated the roles of the intestinal mucus layer, and in particular Muc2, in development of experimental alcohol-associated liver disease in mice. We studied experimental alcohol-induced liver disease, induced by the Tsukamoto-French method (which involves continuous intragastric feeding of an isocaloric diet or alcohol) in wild-type and Muc2−/− mice. Muc2−/− mice showed less alcohol-induced liver injury and steatosis that developed in wild-type mice. Most notably, Muc2−/− mice had significantly lower plasma levels of lipopolysaccharide than wild-type mice after alcohol feeding. In contrast to wild-type mice, Muc2−/− mice were protected from alcohol-associated microbiome changes that are dependent on intestinal mucins. The anti-microbial proteins Reg3b and Reg3g were expressed at significantly higher levels in the jejunum of Muc2−/− mice fed the isocaloric diet or alcohol, compared with wild-type mice. Consequently, Muc2−/− mice showed increased killing of commensal bacteria and prevented intestinal bacterial overgrowth. Conclusion: Muc2−/− mice are protected from intestinal bacterial overgrowth and dysbiosis in response to alcohol feeding. Subsequently, lower amounts of bacterial products such as endotoxin translocate into the systemic circulation, decreasing liver disease. PMID:23408358

  19. Comprehensive and differential long-term characterization of the alpha-galactosidase A deficient mouse model of Fabry disease focusing on the sensory system and pain development

    PubMed Central

    Biko, Lydia; Hose, Dorothea; Hofmann, Lukas; Sommer, Claudia

    2016-01-01

    Background Fabry disease is an X-linked lysosomal storage disorder due to impaired activity of alpha-galactosidase A with intracellular accumulation of globotriaosylceramide. Associated small fiber pathology leads to characteristic pain in Fabry disease. We systematically assessed sensory system, physical activity, metabolic parameters, and morphology of male and female mice with alpha-galactosidase A deficiency (Fabry ko) from 2 to 27 months of age and compared results with those of age- and gender-matched wild-type littermates of C57Bl/6J background. Results From the age of two months, male and female Fabry mice showed mechanical hypersensitivity (p < 0.001 each) compared to wild-type littermates. Young Fabry ko mice of both genders were hypersensitive to heat stimulation (p < 0.01) and developed heat hyposensitivity with aging (p < 0.05), while cold hyposensitivity was present constantly in young (p < 0.01) and old (p < 0.05) Fabry ko mice compared to wild-type littermates. Stride angle increased only in male Fabry ko mice with aging (p < 0.01) in comparison to wild-type littermates. Except for young female mice, male (p < 0.05) and female (p < 0.01) Fabry ko mice had a higher body weight than wild-type littermates. Old male Fabry ko mice were physically less active than their wild-type littermates (p < 0.05), had lower chow intake (p < 0.001), and lost more weight (p < 0.001) in a one-week treadmill experiment than wild-type littermates. Also, Fabry ko mice showed spontaneous pain protective behavior and developed orofacial dysmorphism resembling patients with Fabry disease. Conclusions Mice with alpha-galactosidase A deficiency show age-dependent and distinct deficits of the sensory system. alpha-galactosidase A-deficient mice seem to model human Fabry disease and may be helpful when studying the pathophysiology of Fabry-associated pain. PMID:27145802

  20. DNA prime–protein boost increased the titer, avidity and persistence of anti-Aβ antibodies in wild-type mice

    PubMed Central

    Davtyan, H; Mkrtichyan, M; Movsesyan, N; Petrushina, I; Mamikonyan, G; Cribbs, DH; Agadjanyan, MG; Ghochikyan, A

    2010-01-01

    Recently, we reported that a DNA vaccine, composed of three copies of a self B cell epitope of amyloid-β (Aβ42) and the foreign T-cell epitope, Pan DR epitope (PADRE), generated strong anti-Aβ immune responses in wild-type and amyloid precursor protein transgenic animals. Although DNA vaccines have several advantages over peptide–protein vaccines, they induce lower immune responses in large animals and humans compared with those in mice. The focus of this study was to further enhance anti-Aβ11 immune responses by developing an improved DNA vaccination protocol of the prime–boost regimen, in which the priming step would use DNA and the boosting step would use recombinant protein. Accordingly, we generated DNA and recombinant protein-based epitope vaccines and showed that priming with DNA followed by boosting with a homologous recombinant protein vaccine significantly increases the anti-Aβ antibody responses and do not change the immunoglobulin G1 (IgG1) profile of humoral immune responses. Furthermore, the antibodies generated by this prime–boost regimen were long-lasting and possessed a higher avidity for binding with an Aβ42 peptide. Thus, we showed that a heterologous prime–boost regimen could be an effective protocol for developing a potent Alzheimer’s disease (AD) vaccine. PMID:19865176

  1. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age.

    PubMed

    Shoji, Hirotaka; Takao, Keizo; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-28

    Aging is considered to be associated with progressive changes in the brain and its associated sensory, motor, and cognitive functions. A large number of studies comparing young and aged animals have reported differences in various behaviors between age-cohorts, indicating behavioral dysfunctions related to aging. However, relatively little is known about behavioral changes from young adulthood to middle age, and the effect of age on behavior during the early stages of life remains to be understood. In order to investigate age-related changes in the behaviors of mice from young adulthood to middle age, we performed a large-scale analysis of the behavioral data obtained from our behavioral test battery involving 1739 C57BL/6J wild-type mice at 2-12 months of age. Significant behavioral differences between age groups (2-3-, 4-5-, 6-7-, and 8-12-month-old groups) were found in all the behavioral tests, including the light/dark transition, open field, elevated plus maze, rotarod, social interaction, prepulse inhibition, Porsolt forced swim, tail suspension, Barnes maze, and fear conditioning tests, except for the hot plate test. Compared with the 2-3-month-old group, the 4-5- and 6-7-month-old groups exhibited decreased locomotor activity to novel environments, motor function, acoustic startle response, social behavior, and depression-related behavior, increased prepulse inhibition, and deficits in spatial and cued fear memory. For most behaviors, the 8-12-month-old group showed similar but more pronounced changes in most of these behaviors compared with the younger age groups. Older groups exhibited increased anxiety-like behavior in the light/dark transition test whereas those groups showed seemingly decreased anxiety-like behavior measured by the elevated plus maze test. The large-scale analysis of behavioral data from our battery of behavioral tests indicated age-related changes in a wide range of behaviors from young adulthood to middle age in C57BL/6J mice, though

  2. Differential cytokine expression in skin graft healing in inducible nitric oxide synthase knockout mice.

    PubMed

    Most, D; Efron, D T; Shi, H P; Tantry, U S; Barbul, A

    2001-10-01

    Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test. Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05). Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These

  3. Salivary Gland Hypofunction in tyrosylprotein sulfotransferase-2 Knockout Mice Is Due to Primary Hypothyroidism

    PubMed Central

    Westmuckett, Andrew D.; Siefert, Joseph C.; Tesiram, Yasvir A.; Pinson, David M.; Moore, Kevin L.

    2013-01-01

    Background Protein-tyrosine sulfation is a post-translational modification of an unknown number of secreted and membrane proteins mediated by two known Golgi tyrosylprotein sulfotransferases (TPST-1 and TPST-2). We reported that Tpst2-/- mice have mild-moderate primary hypothyroidism, whereas Tpst1-/- mice are euthyroid. While using magnetic resonance imaging (MRI) to look at the thyroid gland we noticed that the salivary glands in Tpst2-/- mice appeared smaller than in wild type mice. This prompted a detailed analysis to compare salivary gland structure and function in wild type, Tpst1-/-, and Tpst2 -/- mice. Methodology/Principal Findings Quantitative MRI imaging documented that salivary glands in Tpst2-/- females were ≈ 30% smaller than wild type or Tpst1-/- mice and that the granular convoluted tubules in Tpst2-/- submandibular glands were less prominent and were almost completely devoid of exocrine secretory granules compared to glands from wild type or Tpst1-/- mice. In addition, pilocarpine–induced salivary flow and salivary α-amylase activity in Tpst2-/- mice of both sexes was substantially lower than in wild type and Tpst1-/- mice. Anti-sulfotyrosine Western blots of salivary gland extracts and saliva showed no differences between wild type, Tpst1-/-, and Tpst2-/- mice, suggesting that the salivary gland hypofunction is due to factor(s) extrinsic to the salivary glands. Finally, we found that all indicators of hypothyroidism (serum T4, body weight) and salivary gland hypofunction (salivary flow, salivary α-amylase activity, histological changes) were restored to normal or near normal by thyroid hormone supplementation. Conclusions/Significance Our findings conclusively demonstrate that low body weight and salivary gland hypofunction in Tpst2-/- mice is due solely to primary hypothyroidism. PMID:23951251

  4. Wild rodents and shrews are natural hosts of Staphylococcus aureus.

    PubMed

    Mrochen, Daniel M; Schulz, Daniel; Fischer, Stefan; Jeske, Kathrin; El Gohary, Heba; Reil, Daniela; Imholt, Christian; Trübe, Patricia; Suchomel, Josef; Tricaud, Emilie; Jacob, Jens; Heroldová, Marta; Bröker, Barbara M; Strommenger, Birgit; Walther, Birgit; Ulrich, Rainer G; Holtfreter, Silva

    2017-09-22

    Laboratory mice are the most commonly used animal model for Staphylococcus aureus infection studies. We have previously shown that laboratory mice from global vendors are frequently colonized with S. aureus. Laboratory mice originate from wild house mice. Hence, we investigated whether wild rodents, including house mice, as well as shrews are naturally colonized with S. aureus and whether S. aureus adapts to the wild animal host. 295 animals of ten different species were caught in different locations over four years (2012-2015) in Germany, France and the Czech Republic. 45 animals were positive for S. aureus (15.3%). Three animals were co-colonized with two different isolates, resulting in 48 S. aureus isolates in total. Positive animals were found in Germany and the Czech Republic in each studied year. The S. aureus isolates belonged to ten different spa types, which grouped into six lineages (clonal complex (CC) 49, CC88, CC130, CC1956, sequence type (ST) 890, ST3033). CC49 isolates were most abundant (17/48, 35.4%), followed by CC1956 (14/48, 29.2%) and ST890 (9/48, 18.8%). The wild animal isolates lacked certain properties that are common among human isolates, e.g., a phage-encoded immune evasion cluster, superantigen genes on mobile genetic elements and antibiotic resistance genes, which suggests long-term adaptation to the wild animal host. One CC130 isolate contained the mecC gene, implying wild rodents might be both reservoir and vector for methicillin-resistant S. aureus. In conclusion, we demonstrated that wild rodents and shrews are naturally colonized with S. aureus, and that those S. aureus isolates show signs of host adaptation. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Interferon-Induced Ifit2/ISG54 Protects Mice from Lethal VSV Neuropathogenesis

    PubMed Central

    Fensterl, Volker; Wetzel, Jaime L.; Ramachandran, Srividya; Ogino, Tomoaki; Stohlman, Stephen A.; Bergmann, Cornelia C.; Diamond, Michael S.; Virgin, Herbert W.; Sen, Ganes C.

    2012-01-01

    Interferon protects mice from vesicular stomatitis virus (VSV) infection and pathogenesis; however, it is not known which of the numerous interferon-stimulated genes (ISG) mediate the antiviral effect. A prominent family of ISGs is the interferon-induced with tetratricopeptide repeats (Ifit) genes comprising three members in mice, Ifit1/ISG56, Ifit2/ISG54 and Ifit3/ISG49. Intranasal infection with a low dose of VSV is not lethal to wild-type mice and all three Ifit genes are induced in the central nervous system of the infected mice. We tested their potential contributions to the observed protection of wild-type mice from VSV pathogenesis, by taking advantage of the newly generated knockout mice lacking either Ifit2 or Ifit1. We observed that in Ifit2 knockout (Ifit2 −/−) mice, intranasal VSV infection was uniformly lethal and death was preceded by neurological signs, such as ataxia and hind limb paralysis. In contrast, wild-type and Ifit1 −/− mice were highly protected and survived without developing such disease. However, when VSV was injected intracranially, virus replication and survival were not significantly different between wild-type and Ifit2−/− mice. When administered intranasally, VSV entered the central nervous system through the olfactory bulbs, where it replicated equivalently in wild-type and Ifit2 −/− mice and induced interferon-β. However, as the infection spread to other regions of the brain, VSV titers rose several hundred folds higher in Ifit2 −/− mice as compared to wild-type mice. This was not caused by a broadened cell tropism in the brains of Ifit2 −/− mice, where VSV still replicated selectively in neurons. Surprisingly, this advantage for VSV replication in the brains of Ifit2−/− mice was not observed in other organs, such as lung and liver. Pathogenesis by another neurotropic RNA virus, encephalomyocarditis virus, was not enhanced in the brains of Ifit2 −/− mice. Our study provides a clear demonstration of

  6. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    PubMed

    Windahl, Sara H; Andersson, Niklas; Börjesson, Anna E; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05) and cortical bone mineral content (-15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  7. Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice

    PubMed Central

    Windahl, Sara H.; Andersson, Niklas; Börjesson, Anna E.; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K.; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1 −/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1 −/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1 −/− mice. Male Srd5a1 −/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1 −/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1 −/− mice, is an indirect effect mediated by elevated circulating androgen levels. PMID:21731732

  8. Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate

    PubMed Central

    Gardner, Christina L.; Burke, Crystal W.; Higgs, Stephen T.; Klimstra, William B.; Ryman, Kate D.

    2012-01-01

    In humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthalgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent. PMID:22305131

  9. Efflux of creatine kinase from isolated soleus muscle depends on age, sex and type of exercise in mice.

    PubMed

    Baltusnikas, Juozas; Venckunas, Tomas; Kilikevicius, Audrius; Fokin, Andrej; Ratkevicius, Aivaras

    2015-06-01

    Elevated plasma creatine kinase (CK) activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL) of adult (7.5-month old) female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old) male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05) after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h(-1), respectively), but smaller (p < 0.05) than for young females after the same type of exercise (1069 ± 341 mU·h(-1)). Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h(-1), respectively, p < 0.001). Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice. Key pointsMuscle lengthening contractions induce the highest CK efflux in vitro compared with similar protocol of isometric contractions or passive stretches.Muscle CK efflux in vitro is applicable in studying changes of sarcolemma permeability/integrity, a proxy of muscle damage, in response to muscle contractile activity.Isolated muscle resistance to exercise-induced CK efflux is greater in female compared to male mice of young age and is further increased in adult female mice.

  10. Efflux of Creatine Kinase from Isolated Soleus Muscle Depends on Age, Sex and Type of Exercise in Mice

    PubMed Central

    Baltusnikas, Juozas; Venckunas, Tomas; Kilikevicius, Audrius; Fokin, Andrej; Ratkevicius, Aivaras

    2015-01-01

    Elevated plasma creatine kinase (CK) activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL) of adult (7.5-month old) female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old) male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05) after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h−1, respectively), but smaller (p < 0.05) than for young females after the same type of exercise (1069 ± 341 mU·h−1). Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h−1, respectively, p < 0.001). Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice. Key points Muscle lengthening contractions induce the highest CK efflux in vitro compared with similar protocol of isometric contractions or passive stretches. Muscle CK efflux in vitro is applicable in studying changes of sarcolemma permeability/integrity, a proxy of muscle damage, in response to muscle contractile activity. Isolated muscle resistance to exercise-induced CK efflux is greater in female compared to male mice of young age and is further increased in adult female mice. PMID:25983588

  11. Citrulline diet supplementation improves specific age-related raft changes in wild-type rodent hippocampus.

    PubMed

    Marquet-de Rougé, Perrine; Clamagirand, Christine; Facchinetti, Patricia; Rose, Christiane; Sargueil, Françoise; Guihenneuc-Jouyaux, Chantal; Cynober, Luc; Moinard, Christophe; Allinquant, Bernadette

    2013-10-01

    The levels of molecules crucial for signal transduction processing change in the brain with aging. Lipid rafts are membrane microdomains involved in cell signaling. We describe here substantial biophysical and biochemical changes occurring within the rafts in hippocampus neurons from aging wild-type rats and mice. Using continuous sucrose density gradients, we observed light-, medium-, and heavy raft subpopulations in young adult rodent hippocampus neurons containing very low levels of amyloid precursor protein (APP) and almost no caveolin-1 (CAV-1). By contrast, old rodents had a homogeneous age-specific high-density caveolar raft subpopulation containing significantly more cholesterol (CHOL), CAV-1, and APP. C99-APP-Cter fragment detection demonstrates that the first step of amyloidogenic APP processing takes place in this caveolar structure during physiological aging of the rat brain. In this age-specific caveolar raft subpopulation, levels of the C99-APP-Cter fragment are exponentially correlated with those of APP, suggesting that high APP concentrations may be associated with a risk of large increases in beta-amyloid peptide levels. Citrulline (an intermediate amino acid of the urea cycle) supplementation in the diet of aged rats for 3 months reduced these age-related hippocampus raft changes, resulting in raft patterns tightly close to those in young animals: CHOL, CAV-1, and APP concentrations were significantly lower and the C99-APP-Cter fragment was less abundant in the heavy raft subpopulation than in controls. Thus, we report substantial changes in raft structures during the aging of rodent hippocampus and describe new and promising areas of investigation concerning the possible protective effect of citrulline on brain function during aging.

  12. Immune mechanisms induced by an HSV-1 mutant strain: Discrepancy analysis of the immune system gene profile in comparison with a wild-type strain.

    PubMed

    Zhang, Xiaolong; Jiang, Quanlong; Xu, Xingli; Wang, Yongrong; Liu, Lei; Lian, Yaru; Li, Hao; Wang, Lichun; Zhang, Ying; Jiang, Guorun; Zeng, Jieyuan; Zhang, Han; Han, Jing-Dong Jackie; Li, Qihan

    2018-04-25

    Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Resistance to collagen-induced arthritis in SHPS-1 mutant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzawa, Chie; Kaneko, Yoriaki; Murata, Yoji

    SHPS-1 is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Here we show that mice expressing a mutant form of SHPS-1 fail to develop type-II collagen (CII)-induced arthritis (CIA), a model for rheumatoid arthritis in humans. Histological examinations of the arthritic paws from immunized wild-type mice revealed that cartilage was destroyed in association with marked mononuclear cell infiltration, while only mild cell infiltration was observed in immunized SHPS-1 mutant mice. Consistently, the serum levels of both IgG and IgG2a specific to CII andmore » of IL-1{beta} in immunized SHPS-1 mutant mice were markedly reduced compared with those apparent for wild-type mice. The CII-induced proliferation of, and production of cytokines by, T cells from immunized SHPS-1 mutant mice were reduced compared to wild-type cells. These results suggest that SHPS-1 is essential for development of CIA.« less

  14. Mechanical response of wild-type and Alport murine lens capsules during osmotic swelling.

    PubMed

    Gyoneva, Lazarina; Segal, Yoav; Dorfman, Kevin D; Barocas, Victor H

    2013-08-01

    The mechanical support of basement membranes, such as the lens capsule, is believed to arise from one of their main constituents - collagen IV. The basement membranes of the lens, kidney, and ear normally contain two different types of collagen IV networks, referred to as the major and minor chain networks. In Alport syndrome, a mutation in one of the minor chain COL4 genes leads to the absence of the minor chain network, causing life-threatening disturbances. We hypothesized that the absence of the minor chain network increases basement membrane distensibility, as measured in wild-type (n = 25) and Alport syndrome (n = 21) mice using the lens capsule as a model. Osmotic swelling experiments revealed direction-dependent changes. As a reflection of lens capsule properties, Alport lenses strained significantly more than wild-type lenses in the anterior-posterior direction, i.e. along their thickness, but not in the equatorial direction (p = 0.03 and p = 0.08, respectively). This is consistent with clinical data: Alport patients develop conical protrusions on the anterior and posterior lenticular poles. There was no evidence of significant change in total amount of collagen between Alport and wild-type lenses (p = 0.6). The observed differences in distensibility could indicate that the major chain network alone cannot fully compensate for the absence of the more highly cross-linked minor chain network, which is believed to be stronger, more stable, and resistant to deformation. The addition of mechanical information on Alport syndrome to the currently available biological data provides a fuller picture into the progression of the disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice.

    PubMed

    Lee, Sukchan; Ahmed, Touqeer; Lee, Soojung; Kim, Huisu; Choi, Sukwoo; Kim, Duk-Soo; Kim, Sang Jeong; Cho, Jeiwon; Shin, Hee-Sup

    2011-12-25

    The mediodorsal thalamic nucleus has been implicated in the control of memory processes. However, the underlying neural mechanism remains unclear. Here we provide evidence for bidirectional modulation of fear extinction by the mediodorsal thalamic nucleus. Mice with a knockout or mediodorsal thalamic nucleus-specific knockdown of phospholipase C β4 exhibited impaired fear extinction. Mutant mediodorsal thalamic nucleus neurons in slices showed enhanced burst firing accompanied by increased T-type Ca(2+) currents; blocking of T channels in vivo rescued the fear extinction. Tetrode recordings in freely moving mice revealed that, during extinction, the single-spike (tonic) frequency of mediodorsal thalamic nucleus neurons increased in wild-type mice, but was static in mutant mice. Furthermore, tonic-evoking microstimulations of the mediodorsal thalamic nucleus, contemporaneous with the extinction tones, rescued fear extinction in mutant mice and facilitated it in wild-type mice. In contrast, burst-evoking microstimulation suppressed extinction in wild-type mice, mimicking the mutation. These results suggest that the firing mode of the mediodorsal thalamic nucleus is critical for the modulation of fear extinction.

  16. Dried bonito dashi: taste qualities evaluated using conditioned taste aversion methods in wild-type and T1R1 knockout mice.

    PubMed

    Delay, Eugene R; Kondoh, Takashi

    2015-02-01

    The primary taste of dried bonito dashi is thought to be umami, elicited by inosine 5'-monphosphate (IMP) and L-amino acids. The present study compared the taste qualities of 25% dashi with 5 basic tastes and amino acids using conditioned taste aversion methods. Although wild-type C57BL/6J mice with compromised olfactory systems generalized an aversion of dashi to all 5 basic tastes, generalization was greater to sucrose (sweet), citric acid (sour), and quinine (bitter) than to NaCl (salty) or monosodium L-glutamate (umami) with amiloride. At neutral pH (6.5-6.9), the aversion generalized to l-histidine, L-alanine, L-proline, glycine, L-aspartic acid, L-serine, and monosodium L-glutamate, all mixed with IMP. Lowering pH of the test solutions to 5.7-5.8 (matching dashi) with HCl decreased generalization to some amino acids. However, adding lactic acid to test solutions with the same pH increased generalization to 5'-inosine monophosphate, L-leucine, L-phenylalanine, L-valine, L-arginine, and taurine but eliminated generalization to L-histidine. T1R1 knockout mice readily learned the aversion to dashi and generalized the aversion to sucrose, citric acid, and quinine but not to NaCl, glutamate, or any amino acid. These results suggest that dashi elicits a complex taste in mice that is more than umami, and deleting T1R1 receptor altered but did not eliminate their ability to taste dashi. In addition, lactic acid may alter or modulate taste transduction or cell-to-cell signaling. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Voluntary running enhances glymphatic influx in awake behaving, young mice.

    PubMed

    von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken

    2018-01-01

    Vascular pathology and protein accumulation contribute to cognitive decline, whereas exercise can slow vascular degeneration and improve cognitive function. Recent investigations suggest that glymphatic clearance measured in aged mice while anesthetized is enhanced following exercise. We predicted that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We injected fluorescent tracers in cisterna magna of awake behaving mice and in ketamine/xylazine anesthetized mice, and later assessed tracer distribution in coronal brain sections. Voluntary exercise consistently increased CSF influx during wakefulness, primarily in the hypothalamus and ventral parts of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas of the mouse brain, which may contribute to the pro-cognitive effects of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rotavirus A genotype G1P[8]: a novel method to distinguish wild-type strains from the Rotarix vaccine strain.

    PubMed

    Rose, Tatiana L; Miagostovich, Marize P; Leite, José Paulo G

    2010-12-01

    Rotaviruses are important enteric pathogens for humans and animals. Group A rotaviruses (RV-A) are the most common agents of severe gastroenteritis in infants and young children and vaccination is the most effective method to reduce RV-A-associated diseases. G1P[8], the most prevalent RV-A genotype worldwide, is included in the RV-A vaccine Rotarix®. The discrimination between wild-type G1P[8] and vaccine G1P[8] strains is an important topic in the study of RV-A epidemiology to manage outbreaks and to define control measures for vaccinated children. In this study, we developed a novel method to segregate the wild-type and vaccine strains using restriction endonucleases. The dsRNA from the Rotarix® vaccine was sequenced and the NSP3 gene was selected as the target gene. The vaccine strain has a restriction pattern that is different than that of wild-type RV-A G1P[8] isolates after digestion with the restriction endonuclease BspHI. This pattern could be used as a marker for the differentiation of wild-type G1P[8] strains from the vaccine strain.

  19. Multiple adaptive amino acid substitutions increase the virulence of a wild waterfowl-origin reassortant H5N8 avian influenza virus in mice.

    PubMed

    Yu, Zhijun; Cheng, Kaihui; Sun, Weiyang; Zhang, Xinghai; Xia, Xianzhu; Gao, Yuwei

    2018-01-15

    A novel H5N8 highly pathogenic avian influenza virus (HPAIV) caused poultry outbreaks in the Republic of Korea in 2014. The novel H5N8 HPAIV has spread to Asia, Europe, and North America and caused great public concern from then on. Here, we generated mouse-adapted variants of a wild waterfowl-origin H5N8 HPAIV to identify adaptive mutants that confer enhanced pathogenicity in mammals. The mouse lethal doses (MLD 50 ) of the mouse-adapted variants were reduced 31623-fold compared to the wild-type (WT) virus. Mouse-adapted variants displayed enhanced replication in vitro and in vivo, and expanded tissue tropism in mice. Sequence analysis revealed four amino acid substitutions in the PB2 (E627K), PA (F35S), HA (R227H), and NA (I462V) proteins. These data suggest that multiple amino acid substitutions collaboratively increase the virulence of a wild bird-origin reassortant H5N8 HPAIV and cause severe disease in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Laboratory and wild-derived mice with multiple loci for production of xenotropic murine leukemia virus.

    PubMed

    Kozak, C A; Hartley, J W; Morse, H C

    1984-07-01

    Mendelian segregation analysis was used to define genetic loci for the induction of infectious xenotropic murine leukemia virus in several laboratory and wild-derived mice. MA/My mice contain two loci for xenotropic virus inducibility, one of which, Bxv -1, is the only induction locus carried by five other inbred strains. The second, novel MA/My locus, designated Mxv -1, is unlinked to Bxv -1 and shows a lower efficiency of virus induction. The NZB mouse carries two induction loci; both are distinct from Bxv -1 since neither is linked to the Pep-3 locus on chromosome 1. Finally, one partially inbred strain derived from the wild Japanese mouse, Mus musculus molossinus, carries multiple (at least three) unlinked loci for induction of xenotropic virus. Although it is probable that inbred strains inherited xenotropic virus inducibility from Japanese mice, our data suggest that none of the induction loci carried by this particular M. m. molossinus strain are allelic with Bxv -1.

  1. Laboratory and wild-derived mice with multiple loci for production of xenotropic murine leukemia virus.

    PubMed Central

    Kozak, C A; Hartley, J W; Morse, H C

    1984-01-01

    Mendelian segregation analysis was used to define genetic loci for the induction of infectious xenotropic murine leukemia virus in several laboratory and wild-derived mice. MA/My mice contain two loci for xenotropic virus inducibility, one of which, Bxv -1, is the only induction locus carried by five other inbred strains. The second, novel MA/My locus, designated Mxv -1, is unlinked to Bxv -1 and shows a lower efficiency of virus induction. The NZB mouse carries two induction loci; both are distinct from Bxv -1 since neither is linked to the Pep-3 locus on chromosome 1. Finally, one partially inbred strain derived from the wild Japanese mouse, Mus musculus molossinus, carries multiple (at least three) unlinked loci for induction of xenotropic virus. Although it is probable that inbred strains inherited xenotropic virus inducibility from Japanese mice, our data suggest that none of the induction loci carried by this particular M. m. molossinus strain are allelic with Bxv -1. PMID:6328046

  2. Orthotopic transplantation of LH receptor knockout and wild-type ovaries.

    PubMed

    Chudgar, Daksha; Lei, Zhenmin; Rao, Ch V

    2005-10-07

    Luteinizing hormone (LH) receptor knockout animals have an ovarian failure due to an arrest in folliculogenesis at the antral stage. As a result, the animals have an infertility phenotype. The present study was undertaken to determine whether this phenotype could be reversed by orthotopic transplantation of wild-type ovaries. The results revealed that transplanting wild-type ovaries into null animals did not result in resumption of estrus cycles. Although the number of different types of follicles increased, none progressed to ovulation. The serum hormone profiles improved, reflecting the ovarian changes. The wild-type animals with null ovaries also failed to cycle and their ovaries and serum hormone levels were more like null animals with their own ovaries. Although the lack of rescue of null ovaries placed into wild-type animals was predicted, the failure of wild-type ovaries placed in null animals was not, which could be due to chronic exposure of transplanted tissue to high circulating LH levels and also possibly due to altered internal milieu in null animals. These findings may have implications for potential future considerations of grafting normal donor ovaries into women who have an ovarian failure resulting from inactivating LH receptor mutations.

  3. Human thrombomodulin knock-in mice reveal differential effects of human thrombomodulin on thrombosis and atherosclerosis.

    PubMed

    Raife, Thomas J; Dwyre, Denis M; Stevens, Jeff W; Erger, Rochelle A; Leo, Lorie; Wilson, Katina M; Fernández, Jose A; Wilder, Jennifer; Kim, Hyung-Suk; Griffin, John H; Maeda, Nobuyo; Lentz, Steven R

    2011-11-01

    We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (P<0.01) and lung (P<0.001). Activation of endogenous protein C following infusion of thrombin was decreased by 90% in knock-in mice compared with wild-type mice (P<0.05). Carotid artery thrombosis induced by photochemical injury occurred more rapidly in knock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; P<0.05). No differences in serum cytokine levels were detected between knock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.

  4. Critical role of toll-like receptor 9 in morphine and Mycobacterium tuberculosis-Induced apoptosis in mice.

    PubMed

    Chen, Lin; Shi, Wanliang; Li, Hui; Sun, Xiuli; Fan, Xionglin; Lesage, Gene; Li, Hui; Li, Yi; Zhang, Yi; Zhang, Xiumei; Zhang, Ying; Yin, Deling

    2010-02-19

    Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive. We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-alpha, IL-1beta, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3beta in the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3beta in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration. These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection.

  5. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin

    PubMed Central

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Peacock, Sharon J.

    2016-01-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  6. Experimental transmission of systemic AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice.

    PubMed

    Maeda, Mayuko; Murakami, Tomoaki; Muhammad, Naeem; Inoshima, Yasuo; Ishiguro, Naotaka

    2016-11-01

    AA amyloidosis is a protein misfolding disease characterized by extracellular deposition of amyloid A (AA) fibrils. AA amyloidosis has been identified in food animals, and it has been postulated that AA amyloidosis may be transmissible to different animal species. Since the precursor protein of AA fibrils is serum amyloid A (SAA), which is an inflammatory acute phase protein, AA amyloidosis is considered to be associated with inflammatory diseases such as rheumatoid arthritis. Chronic diseases such as autoimmune disease and type 2 diabetes mellitus could be potential factors for AA amyloidosis. In this study, to examine the relationship between the induction of AA amyloidosis and chromic abnormalities such as autoimmune disease or type 2 diabetes mellitus, amyloid fibrils from mice, cattle, or chickens were experimentally injected into disease model mice. Wild-type mice were used as controls. The concentrations of SAA, IL-6, and IL-10 in autoimmune disease model mice were higher than those of control mice. However, induction of AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice was lower than that in control mice, and the amount of amyloid deposits in the spleens of both mouse models was lower than that of control mice according to Congo red staining and immunohistochemistry. These results suggest that factors other than SAA levels, such as an inflammatory or anti-inflammatory environment in the immune response, may be involved in amyloid deposition.

  7. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells.

    PubMed

    Cawood, Ryan; Chen, Hannah H; Carroll, Fionnadh; Bazan-Peregrino, Miriam; van Rooijen, Nico; Seymour, Leonard W

    2009-05-01

    Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-122 within the 3' UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (5x10(10) viral particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4 microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for designing safe attenuated vaccines applied across a broad range of viral diseases.

  8. Recombination within the nonstructural genes of the parvovirus minute virus of mice (MVM) generates functional levels of wild-type NS1, which can be detected in the absence of selective pressure following transfection of nonreplicating plasmids.

    PubMed

    Pearson, J L; Pintel, D J

    2000-03-30

    Recombination within the coding region of the nonstructural genes of minute virus of mice (MVM), which generates functional levels of wild-type NS1, was observed in the absence of selective pressure following cotransfection of nonreplicating plasmids. P38 activity was used as a measure of recombinant NS1 production, which, together with direct detection of recombinant-generated products by RT-PCR, allowed an estimation of recombination efficiency. In addition, we show that very low levels of wild-type NS1 were able to significantly transactivate P38. Given that recombination following cotransfection can generate NS1 at these levels, our observations have implications for the study of parvoviral genetics, the construction of recombinant parvoviral vectors for gene therapy applications, and perhaps other systems using cotransfection of plasmids that share homologous sequences. Copyright 2000 Academic Press.

  9. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  10. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.

    PubMed

    Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R

    2005-01-15

    Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.

  11. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae.

    PubMed

    Beard, C B; Benedict, M Q; Primus, J P; Finnerty, V; Collins, F H

    1995-01-01

    Chromatographic analysis of pigments extracted from wild-type eyes of the mosquito Anopheles gambiae reveals the presence of the ommatin precursor 3-hydroxykynurenine, its transamination derivative xanthurenic acid, and a dark, red-brown pigment spot that probably is composed of two or more low mobility xanthommatins. No colored or fluorescent pteridines are evident. Mosquitoes homozygous for an autosomal recessive mutation at the red-eye (r) locus have a brick-red eye color in larvae, pupae, and young adults, in contrast to the almost black color of the wild eye. Mosquitoes homozygous for this mutant allele have levels of ommochrome precursors that are indistinguishable from the wild-type, but the low-mobility xanthommatin spot is ochre-brown in color rather than red-brown as in the wild-type. Mosquitoes with two different mutant alleles at the X-linked pink-eye locus (p, which confers a pink eye color, and pw, which confers a white eye phenotype in homozygotes or hemizygous males) have normal levels of ommochrome precursors but no detectable xanthommatins. Mosquitoes homozygous for both the r and p mutant alleles have apricot-colored eyes and show no detectable xanthommatins. Both the pink-eye and red-eye mutations appear to involve defects in the transport into or assembly of pigments in the membrane-bound pigment granules rather then defects in ommochrome synthesis.

  12. [Aconitine analogues in wild Aconitum plants: contents toxicity to mice and decrease by boiling].

    PubMed

    Kasahara, Yoshimasa; Itou, Takeshi; Numazawa, Toshiaki; Wada, Akinobu

    2013-01-01

    Simultaneous determination of four aconitine analogues (ACs) (AC; aconitine, HA; hypaconitine, JA; jesaconitine, MA; mesaconitine) in leaves and roots of wild Aconitum plants (Aconitum japonicum THUNBERG, Aconitum okuyamae Nakai) was carried out to elucidate the relation between toxicity to mice and ACs content determind by liquid chromatography tandem mass spectrometry. The total amounts of ACs in leaves, roots, petals and nectaries of Aconitum japonicum collected at Sagae-shi Tashiro were 5.9 μg/g, 928.1 μg/g, 46.1 μg/g, and 69.8 μg/g, respectively. Despite the high contents in nectary, commercial honey contained no ACs. Extract of wild Aconitum japonicum roots which contained ACs (2.69 mg/g) was administered to 5 mice orally at 1.0 g/kg (fresh root equivalent), and 2 mice died. On the other hand, 3 of 5 mice died after being given the standard AC (3.0 mg/kg, p.o.). These findings confirmed good coincidence between toxicity and quantitative values. Mice given extract of Aconitum okuyamae root (100 g/kg, p.o.) without ACs showed no toxic symptoms. Residual ACs in Aconitum leaves were examined after boiling. The remaining percentage of ACs in leaves after 0.5 minutes boiling was 31.6%, and the amount in the boiling water was 54.5%. MA is converted into benzoylmesaconine by hydrolysis (by boiling). Therefore food poisoning caused by Aconitum plants is explained by detection of benzoylmesaconine formed during food preparation.

  13. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    PubMed Central

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  14. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.

    PubMed

    Ma, Zhongming; Saung, Wint Thu; Foskett, J Kevin

    2017-05-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na + currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na + and K + channels but contributed modestly to the kinetics of action potentials. Copyright © 2017 the American Physiological Society.

  15. Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer's mouse model: Implication of TLR4 signaling in disease progression.

    PubMed

    Go, Michelle; Kou, Jinghong; Lim, Jeong-Eun; Yang, Junling; Fukuchi, Ken-Ichiro

    2016-10-14

    Microglia-mediated clearance of amyloid beta-protein (Aβ) via Toll-like receptor 4 (TLR4) signaling may play an important role in the pathogenesis of Alzheimer's disease (AD). However, as the disease progresses, activated microglia appear to become incapable of clearing Aβ deposits. Because repeated exposure to a TLR4 ligand leads to a diminished response of monocytes/macrophages to lipopolysaccharide (LPS) and because aggregated Aβ is a TLR4 ligand, we hypothesize that chronic exposure of microglia to Aβ deposits may induce a state of Toll-like receptor (TLR) signaling dysfunction, leading to decreased Aβ clearance and accelerated disease progression. LPS or phosphate-buffered saline (PBS) was injected into the hippocampus of AD-model (TgAPP/PS1) and wild-type (non-Tg) mice before and after the onset of Aβ deposition, at age 2 and 12 months, respectively. Brain specimens were collected 7 days post-injection and analyzed for microglial activation and Aβ load. While LPS-injected 2-month-old non-Tg mice showed 48-fold and 11-fold greater Iba1 immunoreactivity in the neocortex and hippocampus, respectively, compared with PBS-injected mice, LPS-injected 2-month-old TgAPP/PS1 mice had 61-fold and 13-fold increases in the neocortex and hippocampus, respectively. LPS injection activated microglia more strongly in TgAPP/PS1 mice than in non-Tg mice at 2 months of age. In contrast, at 12 months of age, Iba1 immunoreactivity of microglia was increased 541-fold and 38-fold in the neocortex and hippocampus, respectively, in LPS-injected non-Tg mice and 2.7-fold and 3.3-fold in the neocortex and hippocampus, respectively, in LPS-injected TgAPP/PS1 mice. Surprisingly, LPS injection decreased CD45 immunoreactivity in TgAPP/PS1 mice but increased it in non-Tg mice at 12 months. Although microglia in 12-month-old non-Tg mice showed stronger response to LPS than 2-month-old non-Tg mice, microglia in TgAPP/PS1 mice exhibited diminished immune response to LPS during aging. Our

  16. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    PubMed

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  17. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    PubMed Central

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  18. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice

    NASA Technical Reports Server (NTRS)

    Roten, L.; Nemoto, S.; Simsic, J.; Coker, M. L.; Rao, V.; Baicu, S.; Defreyte, G.; Soloway, P. J.; Zile, M. R.; Spinale, F. G.

    2000-01-01

    Alterations in the expression and activity of the matrix metalloproteinases (MMPs) and the tissue inhibitors of the MMPs (TIMPs) have been implicated in tissue remodeling in a number of disease states. One of the better characterized TIMPs, TIMP-1, has been shown to bind to active MMPs and to regulate the MMP activational process. The goal of this study was to determine whether deletion of the TIMP-1 gene in mice, which in turn would remove TIMP-1 expression in LV myocardium, would produce time-dependent effects on LV geometry and function. Age-matched sibling mice (129Sv) deficient in the TIMP-1 gene (TIMP-1 knock-out (TIMP-1 KO), n=10) and wild-type mice (n=10) underwent comparative echocardiographic studies at 1 and 4 months of age. LV catheterization studies were performed at 4 months and the LV harvested for histomorphometric studies. LV end-diastolic volume and mass increased (18+/-4 and 38+/-3%, respectively, P<0.05) at 4 months in the TIMP-1 KO group; a significant increase compared to wild-type controls (P<0.05). At 4 months, LV and end-diastolic wall stress was increased by over two-fold in the TIMP-1 KO compared to wild type (P<0.05). However, LV systolic pressure and ejection performance were unchanged in the two groups of mice. LV myocyte cross-sectional area was unchanged in the TIMP-1 KO mice compared to controls, but myocardial fibrillar collagen content was reduced. Changes in LV geometry occurred in TIMP-1 deficient mice and these results suggest that constitutive TIMP-1 expression participates in the maintenance of normal LV myocardial structure. Copyright 2000 Academic Press.

  19. Exacerbation of Diabetic Renal Alterations in Mice Lacking Vasohibin-1

    PubMed Central

    Hinamoto, Norikazu; Maeshima, Yohei; Yamasaki, Hiroko; Nasu, Tatsuyo; Saito, Daisuke; Watatani, Hiroyuki; Ujike, Haruyo; Tanabe, Katsuyuki; Masuda, Kana; Arata, Yuka; Sugiyama, Hitoshi; Sato, Yasufumi; Makino, Hirofumi

    2014-01-01

    Vasohibin-1 (VASH1) is a unique endogenous inhibitor of angiogenesis that is induced in endothelial cells by pro-angiogenic factors. We previously reported renoprotective effect of adenoviral delivery of VASH1 in diabetic nephropathy model, and herein investigated the potential protective role of endogenous VASH1 by using VASH1-deficient mice. Streptozotocin-induced type 1 diabetic VASH1 heterozygous knockout mice (VASH1+/−) or wild-type diabetic mice were sacrificed 16 weeks after inducing diabetes. In the diabetic VASH1+/− mice, albuminuria were significantly exacerbated compared with the diabetic wild-type littermates, in association with the dysregulated distribution of glomerular slit diaphragm related proteins, nephrin and ZO-1, glomerular basement membrane thickning and reduction of slit diaphragm density. Glomerular monocyte/macrophage infiltration and glomerular nuclear translocation of phosphorylated NF-κB p65 were significantly exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates, accompanied by the augmentation of VEGF-A, M1 macrophage-derived MCP-1 and phosphorylation of IκBα, and the decrease of angiopoietin-1/2 ratio and M2 macrophage-derived Arginase-1. The glomerular CD31+ endothelial area was also increased in the diabetic VASH1+/− mice compared with the diabetic-wild type littermates. Furthermore, the renal and glomerular hypertrophy, glomerular accumulation of mesangial matrix and type IV collagen and activation of renal TGF-β1/Smad3 signaling, a key mediator of renal fibrosis, were exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates. In conditionally immortalized mouse podocytes cultured under high glucose condition, transfection of VASH1 small interfering RNA (siRNA) resulted in the reduction of nephrin, angiopoietin-1 and ZO-1, and the augmentation of VEGF-A compared with control siRNA. These results suggest that endogenous VASH1 may regulate the

  20. Analysis of Kalirin-7 Knockout Mice Reveals Different Effects in Female Mice

    PubMed Central

    Mazzone, Christopher M.; Larese, Taylor P.; Kiraly, Drew D.; Eipper, Betty A.

    2012-01-01

    Estradiol treatment of ovariectomized rodents is known to affect the morphology of dendritic spines and produce behavioral and cognitive effects. Kalirin-7 (Kal7), a postsynaptic density (PSD)-localized Rho-guanine nucleotide exchange factor, is important for dendritic spine formation and stability. Male Kal7 knockout [Kal7(KO)] mice exhibit a number of abnormal behavioral and biochemical phenotypes. Given that chronic 17β-estradiol (E2) replacement of ovariectomized rats enhanced Kal7 expression in the hippocampus and primary hippocampal cultures, we assessed the behavioral and biochemical effects of chronic E2 treatment of ovariectomized female wild-type and Kal7(KO) mice. Both intact and ovariectomized Kal7(KO) female mice exhibited decreased anxiety-like behavior compared with the corresponding wild type in the elevated zero maze and were unaffected by E2 treatment. Chronic E2 decreased locomotor activity in the open field and enhanced performance in a passive-avoidance fear conditioning task, which were both unaffected by genotype. Kal7(KO) female mice engaged in significantly more object exploration, both familiar and novel, than did wild-type females. E2 enhanced the acute locomotor response to cocaine, with no significant effect of genotype. Similar to Kal7(KO) males, Kal7(KO) females had decreased levels of N-methyl-d-aspartate receptor 2B in hippocampal PSD fractions with no effect of E2 treatment. The differing behavioral effects of Kal7 ablation in female and male mice may offer insight into the molecular underpinnings of these differences. PMID:22989522

  1. Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson’s disease

    PubMed Central

    Zhang, Lifen; Le, Weidong; Xie, Wenjie; Dani, John A.

    2011-01-01

    The nuclear receptor related 1 (Nurr1) transcription factor contributes to the development and maintenance of dopamine (DA) neurons in the brain. We found that heterozygous Nurr1 knock-out (Nurr1 +/−) influenced the age-dependent decline in the number of DA neurons and influenced DA signaling. We examined the DA marker, tyrosine hydroxylase, using immunohistochemistry, and we measured DA signaling using fast-scan cyclic voltammetry in 3 age groups of wild-type (Nurr1 +/+) and mutant (Nurr1 +/−) mice: 3–6, 9–12, and 15–23 months old. Prior to significant loss of DA neurons and to the onset of parkinsonian symptoms, young Nurr1 +/− mice (3–6 months) exhibited a decrease in peak evoked DA release that was partially countered by a decrease in the rate of DA reuptake. As peak evoked DA release declined with age for both the wild-type and Nurr1 +/− mice, both genotypes manifested decreased DA reuptake. As the DA release fell further with age, decreased DA reuptake eventually could not adequately compensate the Nurr1 +/− mice. The results indicated that Nurr1 deficiency led to impaired DA release even before significant DA neuron loss. PMID:21531044

  2. Aggregated Recombinant Human Interferon Beta Induces Antibodies but No Memory in Immune-Tolerant Transgenic Mice

    PubMed Central

    Sauerborn, Melody; Gilli, Francesca; Brinks, Vera; Schellekens, Huub; Jiskoot, Wim

    2010-01-01

    ABSTRACT Purpose To study the influence of protein aggregation on the immunogenicity of recombinant human interferon beta (rhIFNβ) in wild-type mice and transgenic, immune-tolerant mice, and to evaluate the induction of immunological memory. Methods RhIFNβ-1b and three rhIFNβ-1a preparations with different aggregate levels were injected intraperitoneally in mice 15× during 3 weeks, and the mice were rechallenged with rhIFNβ-1a. The formation of binding (BABs) and neutralizing antibodies (NABs) was monitored. Results Bulk rhIFNβ-1a contained large, mainly non-covalent aggregates and stressed rhIFNβ-1a mainly covalent, homogeneous (ca. 100 nm) aggregates. Reformulated rhIFNβ-1a was essentially aggregate-free. All products induced BABs and NABs in wild-type mice. Immunogenicity in the transgenic mice was product dependent. RhIFNβ-1b showed the highest and reformulated rhIFNβ-1a the lowest immunogenicity. In contrast with wild-type mice, transgenic mice did not show NABs, nor did they respond to the rechallenge. Conclusions The immunogenicity of the products in transgenic mice, unlike in wild-type mice, varied. In the transgenic mice, neither NABs nor immunological memory developed. The immunogenicity of rhIFNβ in a model reflecting the human immune system depends on the presence and the characteristics of aggregates. PMID:20499141

  3. Whole exome sequencing of an asbestos-induced wild-type murine model of malignant mesothelioma.

    PubMed

    Sneddon, Sophie; Patch, Ann-Marie; Dick, Ian M; Kazakoff, Stephen; Pearson, John V; Waddell, Nicola; Allcock, Richard J N; Holt, Robert A; Robinson, Bruce W S; Creaney, Jenette

    2017-06-02

    Malignant mesothelioma (MM) is an aggressive cancer of the pleural and peritoneal cavities caused by exposure to asbestos. Asbestos-induced mesotheliomas in wild-type mice have been used extensively as a preclinical model because they are phenotypically identical to their human counterpart. However, it is not known if the genetic lesions in these mice tumours are similar to in the human disease, a prerequisite for any new preclinical studies that target genetic abnormalities. We performed whole exome sequencing of fifteen asbestos-induced murine MM tumour cell lines from BALB/c, CBA and C57BL/6 mouse strains and compared the somatic mutations and copy number variations with those recurrently reported in human MM. We then catalogued and characterised the mutational landscape of the wild-type murine MM tumours. Quantitative RT-PCR was used to interrogate the expression of key MM genes of interest in the mRNA. Consistent with human MM tumours, we identified homozygous loss of the tumour suppressor Cdkn2a in 14/15 tumours. One tumour retained the first exon of both of the p16INK4a and p19ARF isoforms though this tumour also contained genetic amplification of Myc resulting in increased expression of the c-Myc proto-oncogene in the mRNA. There were no chromosomal losses in either the Bap1 or Nf2 regions. One tumour harbored homozygous loss of Trp53 in the DNA. Mutation rates were similar in tumours generated in the CBA and C57BL/6 strains when compared to human MM. Interestingly, all BALB/c tumour lines displayed high mutational loads, consistent with the known mutator phenotype of the host strain. The Wnt, MAPK and Jak-STAT signaling pathways were found to be the most commonly affected biological pathways. Mutations and copy number deletions also occurred in the Hedgehog and Hippo pathways. These data suggest that in the wild-type murine model asbestos causes mesotheliomas in a similar way to in human MM. This further supports the notion that the murine model of MM

  4. Reduced emotional and corticosterone responses to stress in μ-opioid receptor knockout mice

    PubMed Central

    Ide, Soichiro; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R.; Ishihara, Kumatoshi

    2014-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female μ-opioid receptor knockout (MOP-KO) mice to reveal the involvement of μ-opioid receptors in stress-induced emotional responses. MOP-KO mice entered more and spent more time in the open arms of the elevated plus maze compared with wild-type mice. MOP-KO mice also displayed significantly decreased immobility in a 15 min tail-suspension test compared with wild-type mice. Similarly, MOP-KO mice exhibited significantly decreased immobility on days 2, 3, and 4 in a 6 min forced swim test conducted for 5 consecutive days. The increase in plasma corticosterone concentration induced by tail-suspension, repeated forced swim, or restraint stress was reduced in MOP-KO mice compared with wild-type mice. Corticosterone levels were not different between wild-type and MOP-KO mice before stress exposure. In contrast, although female mice tended to exhibit fewer anxiety-like responses in the tail-suspension test in both genotypes, no significant gender differences were observed in stress-induced emotional responses. These results suggest that MOPs play an important facilitatory role in emotional responses to stress, including anxiety- and depression-like behavior and corticosterone levels. PMID:19596019

  5. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    PubMed

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  6. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice.

    PubMed

    Klug, Maren; Hill, Rachel A; Choy, Kwok Ho Christopher; Kyrios, Michael; Hannan, Anthony J; van den Buuse, Maarten

    2012-06-01

    Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive

  7. BDNF-Deficient Mice Show Reduced Psychosis-Related Behaviors Following Chronic Methamphetamine.

    PubMed

    Manning, Elizabeth E; Halberstadt, Adam L; van den Buuse, Maarten

    2016-04-01

    One of the most devastating consequences of methamphetamine abuse is increased risk of psychosis. Brain-derived neurotrophic factor has been implicated in both psychosis and neuronal responses to methamphetamine. We therefore examined persistent psychosis-like behavioral effects of methamphetamine in brain-derived neurotrophic factor heterozygous mice. Mice were chronically treated with methamphetamine from 6 to 9 weeks of age, and locomotor hyperactivity to an acute D-amphetamine challenge was tested in photocell cages after a 2-week withdrawal period. Methamphetamine-treated wild-type mice, but not brain-derived neurotrophic factor heterozygous mice, showed locomotor sensitization to acute 3mg/kg D-amphetamine. Qualitative analysis of exploration revealed tolerance to D-amphetamine effects on entropy in methamphetamine-treated brain-derived neurotrophic factor heterozygous mice, but not wild-type mice. Chronic methamphetamine exposure induces contrasting profiles of behavioral changes in wild-type and brain-derived neurotrophic factor heterozygous mice, with attenuation of behaviors relevant to psychosis in methamphetamine-treated brain-derived neurotrophic factor heterozygous mice. This suggests that brain-derived neurotrophic factor signalling changes may contribute to development of psychosis in methamphetamine users. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  8. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice.

    PubMed

    Adén, Ulrika; Halldner, Linda; Lagercrantz, Hugo; Dalmau, Ishar; Ledent, Catherine; Fredholm, Bertil B

    2003-03-01

    Cerebral hypoxic ischemia (HI) is an important cause of brain injury in the newborn infant. Adenosine is believed to protect against HI brain damage. However, the roles of the different adenosine receptors are unclear, particularly in young animals. We examined the role of adenosine A2A receptors (A2AR) using 7-day-old A2A knockout (A2AR(-/-)) mice in a model of HI. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated with the use of histopathological scoring and measurements of residual brain areas at 5 days, 3 weeks, and 3 months after HI. Behavioral evaluation of brain injury by locomotor activity, rotarod, and beam-walking test was made 3 weeks and 3 months after HI. Cortical cerebral blood flow, assessed by laser-Doppler flowmetry, and rectal temperature were measured during HI. Reduction in cortical cerebral blood flow during HI and rectal temperature did not differ between wild-type (A2AR(+/+)) and knockout mice. In the A2AR(-/-) animals, brain injury was aggravated compared with wild-type mice. The A2AR(-/-) mice subjected to HI displayed increased forward locomotion and impaired rotarod performance in adulthood compared with A2AR(+/+) mice subjected to HI, whereas beam-walking performance was similarly defective in both groups. These results suggest that, in contrast to the situation in adult animals, A2AR play an important protective role in neonatal HI brain injury.

  9. Assessment of Dental Fluorosis in Mmp20+/− Mice

    PubMed Central

    Sharma, R.; Tye, C.E.; Arun, A.; MacDonald, D.; Chatterjee, A.; Abrazinski, T.; Everett, E.T.; Whitford, G.M.; Bartlett, J.D.

    2011-01-01

    The molecular mechanisms that underlie dental fluorosis are poorly understood. The retention of enamel proteins hallmarking fluorotic enamel may result from impaired hydrolysis and/or removal of enamel proteins. Previous studies have suggested that partial inhibition of Mmp20 expression is involved in the etiology of dental fluorosis. Here we ask if mice expressing only one functional Mmp20 allele are more susceptible to fluorosis. We demonstrate that Mmp20+/− mice express approximately half the amount of MMP20 as do wild-type mice. The Mmp20 heterozygous mice have normal-appearing enamel, with Vickers microhardness values similar to those of wild-type control enamel. Therefore, reduced MMP20 expression is not solely responsible for dental fluorosis. With 50-ppm-fluoride (F−) treatment ad libitum, the Mmp20+/− mice had F− tissue levels similar to those of Mmp20+/+ mice. No significant difference in enamel hardness was observed between the F−-treated heterozygous and wild-type mice. Interestingly, we did find a small but significant difference in quantitative fluorescence between these two groups, which may be attributable to slightly higher protein content in the Mmp20+/− mouse enamel. We conclude that MMP20 plays a nominal role in dental enamel fluorosis. PMID:21386097

  10. Inflammatory markers associated with osteoarthritis after destabilization surgery in young mice with and without Receptor for Advanced Glycation End-products (RAGE)

    PubMed Central

    Larkin, D. Justin; Kartchner, Jeffrey Z.; Doxey, Alexander S.; Hollis, Weston R.; Rees, Jeffrey L.; Wilhelm, Spencer K.; Draper, Christian S.; Peterson, Danielle M.; Jackson, Gregory G.; Ingersoll, Chelsey; Haynie, S. Scott; Chavez, Elizabeth; Reynolds, Paul R.; Kooyman, David L.

    2013-01-01

    HtrA1, Ddr-2, and Mmp-13 are reliable biomarkers for osteoarthritis (OA), yet the exact mechanism for the upregulation of HtrA-1 is unknown. Some have shown that chondrocyte hypertrophy is associated with early indicators of inflammation including TGF-β and the Receptor for Advanced Glycation End-products (RAGE). To examine the correlation of inflammation with the expression of biomarkers in OA, we performed right knee destabilization surgery on 4-week-old-wild type and RAGE knock-out (KO) mice. We assayed for HtrA-1, TGF-β1, Mmp-13, and Ddr-2 in articular cartilage at 3, 7, 14, and 28 days post-surgery by immunohistochemistry on left and right knee joints. RAGE KO and wild type mice both showed staining for key OA biomarkers. However, RAGE KO mice were significantly protected against OA compared to controls. We observed a difference in the total number of chondrocytes and percentage of chondrocytes staining positive for OA biomarkers between RAGE KO and control mice. The percentage of cells staining for OA biomarkers correlated with severity of cartilage degradation. Our results indicate that the absence of RAGE did protect against the development of advanced OA. We conclude that HtrA-1 plays a role in lowering TGF-β1 expression in the process of making articular cartilage vulnerable to damage associated with OA progression. PMID:23755017

  11. Sleep apneas are increased in mice lacking monoamine oxidase A.

    PubMed

    Real, Caroline; Popa, Daniela; Seif, Isabelle; Callebert, Jacques; Launay, Jean-Marie; Adrien, Joëlle; Escourrou, Pierre

    2007-10-01

    Alterations in the serotonin (5-HT) system have been suggested as a mechanism of sleep apnea in humans and rodents. The objective is to evaluate the contribution of 5-HT to this disorder. We studied sleep and breathing (whole-body plethysmography) in mutant mice that lack monoamine oxidase A (MAOA) and have increased concentrations of monoamines, including 5-HT. Compared to wild-type mice, the mutants showed similar amounts of slow wave sleep (SWS) and rapid eye movement sleep (REMS), but exhibited a 3-fold increase in SWS and REMS apnea indices. Acute administration of the MAOA inhibitor clorgyline decreased REMS amounts and increased the apnea index in wild-type but not mutant mice. Parachlorophenylalanine, a 5-HT synthesis inhibitor, reduced whole brain concentrations of 5-HT in both strains, and induced a decrease in apnea index in mutant but not wild-type mice. Our results show that MAOA deficiency is associated with increased sleep apnea in mice and suggest that an acute or chronic excess of 5-HT contributes to this phenotype.

  12. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    PubMed

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  13. Alterations in Ethanol-Induced Behaviors and Consumption in Knock-In Mice Expressing Ethanol-Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Beckley, Jacob T.; Smothers, Thetford C.; Lench, Daniel H.; Holseberg, Zack L.; Fedarovich, Hleb; Gilstrap, Meghin J.; Homanics, Gregg E.; Woodward, John J.

    2013-01-01

    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75–2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. PMID:24244696

  14. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors.

    PubMed

    den Hartog, Carolina R; Beckley, Jacob T; Smothers, Thetford C; Lench, Daniel H; Holseberg, Zack L; Fedarovich, Hleb; Gilstrap, Meghin J; Homanics, Gregg E; Woodward, John J

    2013-01-01

    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p.) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.

  15. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    PubMed Central

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  16. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice.

    PubMed

    Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lay, Yu-An E; Lane, Nancy E; Yao, Wei

    2015-12-01

    For tamoxifen-dependent Cre recombinase, also known as CreER recombinase, tamoxifen (TAM) is used to activate the Cre to generate time- and tissue-specific mouse mutants. TAM is a potent CreER system inducer; however, TAM is also an active selective estrogen receptor modulator (SERM) that can influence bone homeostasis. The purpose of this study was to optimize the TAM dose for Cre recombinase activation while minimizing the effects of TAM on bone turnover in young growing mice. To evaluate the effects of TAM on bone turnover and bone mass, 1-month-old wild-type male and female mice were intraperitoneally injected with TAM at 0, 1, 10 or 100mg/kg/day for four consecutive days, or 100, 300 mg/kg/day for one day. The distal femurs were analyzed one month after the last TAM injection by microCT, mechanical test, and surface-based bone histomorphometry. Similar doses of TAM were used in Col1 (2.3 kb)-CreERT2; mT/mG reporter male mice to evaluate the dose-dependent efficacy of Cre-ER activation in bone tissue. A TAM dose of 100 mg/kg × 4 days significantly increased trabecular bone volume/total volume (BV/TV) of the distal femur, femur length, bone strength, and serum bone turnover markers compared to the 0mg control group. In contrast, TAM doses ≤ 10 mg/kg did not significantly change any of these parameters compared to the 0mg group, although a higher bone strength was observed in the 10mg group. Surface-based histomorphometry revealed that the 100mg/kg dose of TAM dose significantly increased trabecular bone formation and decreased periosteal bone formation at 1-week post-TAM treatment. Using the reporter mouse model Col1-CreERT2; mT/mG, we found that 10mg/kg TAM induced Col1-CreERT2 activity in bone at a comparable level to the 100mg/kg dose. TAM treatment at 100mg/kg/day × 4 days significantly affects bone homeostasis, resulting in an anabolic bone effect on trabecular bone in 1-month-old male mice. However, a lower dose of TAM at 10 mg/kg/day × 4 days can

  17. [Effects of aquaporin-4 gene knockout on behavior changes and cerebral morphology during aging in mice].

    PubMed

    Su, Shengan; Lu, Yunbi; Zhang, Weiping

    2013-05-01

    To investigate the effects of aquaporin-4 (AQP4) gene knockout on the behavior changes and cerebral morphology during aging in mice,and to compare that of young and aged mice between AQP4 knockout mice (AQP4(-/-)) and wild type mice (AQP4(+/+)). Fifty-eight CD-1 mice were divided into four groups: young (2-3 months old) AQP4(-/-), aged (17-19 months old) AQP4(-/-), young AQP4(+/+) and aged AQP4(+/+). The activity levels and exploring behavior of mice were tested in open field. The neurons were stained with toluidine blue and NeuN, the astrocytes and microglia were stained with GFAP and Iba-1, respectively. The morphological changes of neuron, astrocyte and microglia were then analyzed. Compared with young mice, the total walking distance in open field of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 41.2% and 44.1%, respectively (P<0.05); while there was no difference in the ratio of distance and retention time in the central area of open field. The density of neuron in cortex of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 19.6% and 15.8%, respectively (P<0.05), while there was no difference in the thickness of neuron cell body in hippocampus CA1 region. The density of astrocyte in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 57.7% and 64.3%, respectively (P<0.001), while there was no difference in the area of astrocyte. The area of microglia in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 46.9% and 52.0%, respectively (P<0.01), while there was no difference in the density of microglia. Compared with AQP4(+/+) mice, the young and aged AQP4(-/-) mice showed smaller area of astrocyte in hippocampus CA3 region, reduced 18.0% in young mice and 23.6% in aged mice. There was no difference between AQP4(+/+) mice and AQP4(-/-) mice for other observed indexes. AQP4 may be involved in change of astrocyte and astrocyte-related behaviors during aging. AQP4 gene knockout may have limited

  18. MT-PCR panel detection of canine parvovirus (CPV-2): Vaccine and wild-type CPV-2 can be difficult to differentiate in canine diagnostic fecal samples.

    PubMed

    Meggiolaro, Maira N; Ly, Anna; Rysnik-Steck, Benjamin; Silva, Carolina; Zhang, Joshua; Higgins, Damien P; Muscatello, Gary; Norris, Jacqueline M; Krockenberger, Mark; Šlapeta, Jan

    2017-06-01

    Canine parvovirus (CPV-2) remains an important cause of devastating enteritis in young dogs. It can be successfully prevented with live attenuated CPV-2 vaccines when given at the appropriate age and in the absence of maternal antibody interference. Rapid diagnosis of parvoviral enteritis in young dogs is essential to ensuring suitable barrier nursing protocols within veterinary hospitals. The current diagnostic trend is to use multiplexed PCR panels to detect an array of pathogens commonly responsible for diarrhea in dogs. The multiplexed PCR assays do not distinguish wild from vaccine CPV-2. They are highly sensitive and detect even a low level of virus shedding, such as those caused by the CPV-2 vaccine. The aim of this study was to identify the CPV-2 subtypes detected in diagnostic specimens and rule out occult shedding of CPV-2 vaccine strains. For a total of 21 samples that tested positive for CPV-2 in a small animal fecal pathogens diagnostic multiplexed tandem PCR (MT-PCR) panel during 2014-2016 we partially characterized the VP2 gene of CPV-2. Vaccine CPV-2 strain, wild type CPV-2a subtypes and vaccine-like CPV-2b subtypes were detected. High copy number was indicative of wild-type CPV-2a presence, but presence of vaccine-like CPV-2b had a variable copy number in fecal samples. A yardstick approach to a copy number or C t -value to discriminate vaccine strain from a wild type virus of CPV-2 can be, in some cases, potentially misleading. Therefore, discriminating vaccine strain from a wild type subtype of CPV-2 remains ambitious. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. TAM Receptors Are Not Required for Zika Virus Infection in Mice.

    PubMed

    Hastings, Andrew K; Yockey, Laura J; Jagger, Brett W; Hwang, Jesse; Uraki, Ryuta; Gaitsch, Hallie F; Parnell, Lindsay A; Cao, Bin; Mysorekar, Indira U; Rothlin, Carla V; Fikrig, Erol; Diamond, Michael S; Iwasaki, Akiko

    2017-04-18

    Tyro3, Axl, and Mertk (TAM) receptors are candidate entry receptors for infection with the Zika virus (ZIKV), an emerging flavivirus of global public health concern. To investigate the requirement of TAM receptors for ZIKV infection, we used several routes of viral inoculation and compared viral replication in wild-type versus Axl -/- , Mertk -/- , Axl -/- Mertk -/- , and Axl -/- Tyro3 -/- mice in various organs. Pregnant and non-pregnant mice treated with interferon-α-receptor (IFNAR)-blocking (MAR1-5A3) antibody and infected subcutaneously with ZIKV showed no reliance on TAMs for infection. In the absence of IFNAR-blocking antibody, adult female mice challenged intravaginally with ZIKV showed no difference in mucosal viral titers. Similarly, in young mice that were infected with ZIKV intracranially or intraperitoneally, ZIKV replication occurred in the absence of TAM receptors, and no differences in cell tropism were observed. These findings indicate that, in mice, TAM receptors are not required for ZIKV entry and infection. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice

    PubMed Central

    Suo, Meng; Wang, Ping

    2016-01-01

    Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985

  1. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice.

    PubMed

    Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E

    2014-03-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.

  2. The skeletal structure of insulin-like growth factor I-deficient mice

    NASA Technical Reports Server (NTRS)

    Bikle, D.; Majumdar, S.; Laib, A.; Powell-Braxton, L.; Rosen, C.; Beamer, W.; Nauman, E.; Leary, C.; Halloran, B.

    2001-01-01

    The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (muCT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact.

  3. Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development.

    PubMed

    Mori, Yoshiko; Kodaka, Tetsuro; Kato, Takako; Kanagawa, Edith M; Kanagawa, Osami

    2009-11-01

    IFN-gamma signaling-deficient non-obese diabetic (NOD) mice develop diabetes with similar kinetics to those of wild-type NOD mice. However, the immunization of IFN-gamma signaling-deficient NOD mice with CFA failed to induce long-term protection, whereas wild-type NOD mice receiving CFA remained diabetes-free. CFA also failed to protect IFN-gamma receptor-deficient (IFN-gammaR(-/-)) NOD mice from the autoimmune rejection of transplanted islets, as it does in diabetic NOD mice, and from disease transfer by spleen cells from diabetic NOD mice. These data clearly show that the pro-inflammatory cytokine IFN-gamma is necessary for the CFA-mediated protection of NOD mice from diabetes. There is no difference in the T(h)1/T(h)17 balance between IFN-gammaR(-/-) NOD and wild-type NOD mice. There is also no difference in the total numbers and percentages of regulatory T (Treg) cells in the lymph node CD4(+) T-cell populations between IFN-gammaR(-/-) NOD and wild-type NOD mice. However, pathogenic T cells lacking IFN-gammaR are resistant to the suppressive effect of Treg cells, both in vivo and in vitro. Therefore, it is likely that CFA-mediated protection against diabetes development depends on a change in the balance between Treg cells and pathogenic T cells, and IFN-gamma signaling seems to control the susceptibility of pathogenic T cells to the inhibitory activity of Treg cells.

  4. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  5. ALDOSTERONE-INDUCED VASCULAR REMODELING AND ENDOTHELIAL DYSFUNCTION REQUIRE FUNCTIONAL ANGIOTENSIN TYPE 1a RECEPTORS

    PubMed Central

    Coelho, Suellen C.; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M.; Paradis, Pierre; Schiffrin, Ernesto L.

    2016-01-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors (MR) in Agtr1a−/− and wild-type mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure by ~30 mmHg in wild-type mice, and ~50 mmHg in Agtr1a−/− mice. Aldosterone induced aortic and small artery remodeling and impaired endothelium-dependent relaxation in wild-type mice, and enhanced fibronectin and collagen deposition, and vascular inflammation. None of these vascular effects were observed in Agtr1a−/− mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in wild-type mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in wild-type and Agtr1a−/− mice. Agtr1a−/− mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting sodium retention that could contribute to the exaggerated blood pressure rise induced by aldosterone. Agtr1a−/− mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention exacerbate BP responses to aldosterone/salt in Agtr1a−/− mice. We conclude that although aldosterone activation of MR raises BP more in Agtr1a−/− mice, AGTR1a is required for MR stimulation to induce vascular remodeling and inflammation, and endothelial dysfunction. PMID:27045029

  6. Rcan2 and estradiol independently regulate body weight in female mice

    PubMed Central

    Ding, Ling-Cui; Gong, Qian-Qian; Li, Shi-Wei; Fu, Xiao-Long; Jin, Ye-Cheng; Zhang, Jian; Gao, Jian-Gang; Sun, Xiao-Yang

    2017-01-01

    Rcan2 increases food intake and plays an important role in the development of age- and diet- induced obesity in male mice. However, in females, wild-type mice grow almost at a similar rate as Rcan2−/− mice on normal chow diet from 6 weeks of age. Here we showed that the ability of Rcan2 to promote weight gain was attenuated by energy expenditure mediated by 17β-estradiol in female mice. Using ovariectomy-operated models, we found that 17β-estradiol deprivation did not alter food intake, but induced more weight gain in wild-type mice than Rcan2−/− mice. If wild-type mice ingested equally as Rcan2−/− mice, in the same ovarian state they exhibited similar weight changes, but the mice in ovariectomized groups were significantly heavier than the ovarian-intact mice, suggesting that body weight is not only regulated by Rcan2, but also by 17β-estradiol. Furthermore, we demonstrated that Rcan2 and 17β-estradiol independently regulated body weight even on high-fat diets. Therefore, our findings indicate that Rcan2 and 17β-estradiol regulate body weight through different mechanisms. Rcan2 increases food intake, whereas 17β-estradiol promotes energy expenditure. These findings provide novel insights into the sexual dimorphism of body weight regulation. PMID:28624805

  7. Methionine Sulfoxide Reductase A Knockout Mice Show Progressive Hearing Loss and Sensitivity to Acoustic Trauma.

    PubMed

    Alqudah, Safa; Chertoff, Mark; Durham, Dianne; Moskovitz, Jackob; Staecker, Hinrich; Peppi, Marcello

    2018-06-21

    Methionine sulfoxide reductases (MsrA and MsrB) protect the biological activity of proteins from oxidative modifications to methionine residues and are important for protecting against the pathological effects of neurodegenerative diseases. In the current study, we characterized the auditory phenotype of the MsrA knockout mouse. Young MsrA knockout mice showed small high-frequency threshold elevations for auditory brainstem response and distortion product otoacoustic emission compared to those of wild-type mice, which progressively worsened in older MsrA knockout mice. MsrA knockout mice showed an increased sensitivity to noise at young and older ages, suggesting that MsrA is part of a mechanism that protects the cochlea from acoustic damage. MsrA mRNA in the cochlea was increased following acoustic stimulation. Finally, expression of mRNA MsrB1 was compromised at 6 months old, but not in younger MsrA knockout mice (compared to controls). The identification of MsrA in the cochlea as a protective mediator from both early onset hearing loss and acoustic trauma expands our understanding of the pathways that may induce protection from acoustic trauma and foster further studies on how to prevent the damaging effect of noise exposure through Msr-based therapy. © 2018 S. Karger AG, Basel.

  8. Multiple exposures of sevoflurane during pregnancy induces memory impairment in young female offspring mice

    PubMed Central

    Chung, Woosuk; Yoon, Seunghwan

    2017-01-01

    Background Earlier studies have reported conflicting results regarding long-term behavioral consequences after anesthesia during the fetal period. Previous studies also suggest several factors that may explain such conflicting data. Thus, we examined the influence of age and sex on long-term behavioral consequences after multiple sevoflurane exposures during the fetal period. Methods C57BL/6J pregnant mice received oxygen with or without sevoflurane for 2 hours at gestational day (GD) 14-16. Offspring mice were subjected to behavioral assays for general activity (open field test), learning, and memory (fear chamber test) at postnatal day 30–35. Results Multiple sevoflurane exposures at GD 14–16 caused significant changes during the fear chamber test in young female offspring mice. Such changes did not occur in young male offspring mice. However, general activity was not affected in both male and female mice. Conclusions Multiple sevoflurane exposures in the second trimester of pregnancy affects learning and memory only in young female mice. Further studies focusing on diverse cognitive functions in an age-, sex-dependent manner may provide valuable insights regarding anesthesia-induced neurotoxicity. PMID:29225748

  9. Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L.

    PubMed

    Ayeh, Kwadwo Owusu; Lee, YeonKyeong; Ambrose, Mike J; Hvoslef-Eide, Anne Kathrine

    2009-06-23

    In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.

  10. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    PubMed

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Wild-type male offspring of fmr-1+/- mothers exhibit characteristics of the fragile X phenotype.

    PubMed

    Zupan, Bojana; Toth, Miklos

    2008-10-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1(+/-)) mothers (H>WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT>WT); here, we show that H>WT offspring are more active than WT>WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1(-/-)) mothers (H>KO/KO>KO). H>WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H>WT as well as in H>KO and KO>KO mice compared to WT>WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in 'fragile X' mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect.

  12. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    PubMed

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  13. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.

    PubMed

    Sun, Miao-Kun; Hongpaisan, Jarin; Alkon, Daniel L

    2016-05-01

    Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice

    PubMed Central

    Kim, Hye Y.; Mathews, Joel A.; Verbout, Norah G.; Williams, Alison S.; Wurmbrand, Allison P.; Ninin, Fernanda M. C.; Neto, Felippe L.; Benedito, Leandro A. P.; Hug, Christopher; Umetsu, Dale T.; Shore, Stephanie A.

    2013-01-01

    Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24–72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo−/−) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo−/− mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo−/−/IL-6−/−) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo−/− vs. wild-type mice, but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. IL-17A+ F4/80+ cells and IL-17A+ γδ T cells were also reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice exposed to ozone. Only BAL neutrophils were reduced in IL-6−/− vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1+F4/80−CD11c− cells, whereas in Adipo−/− mice F4/80+CD11c+ cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo−/− vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo−/− vs. wild-type mice but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo−/− mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF. PMID:24381131

  15. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  16. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice

    PubMed Central

    Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle

    2003-01-01

    We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695

  17. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice.

    PubMed

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO(-/-)). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/-) mice. The levels of urinary protein observed in the 5-LO(-/-) mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/-) mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/-) mice. However, 5-LO(-/-) mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.

  18. 5-Lypoxygenase Products Are Involved in Renal Tubulointerstitial Injury Induced by Albumin Overload in Proximal Tubules in Mice

    PubMed Central

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload. PMID:25302946

  19. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    PubMed

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P < 0.001); dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P < 0.001); light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P < 0.005)] with no significant difference in mean arterial pressure [wild type 110 +/- 0.3 vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  20. Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of Dcx

    PubMed Central

    Wang, Yu; Yin, Xiuyin; Rosen, Glenn; Gabel, Lisa; Guadiana, Sarah M.; Sarkisian, Matthew R; Galaburda, Albert M.; LoTurco, Joseph J.

    2011-01-01

    The dyslexia-associated gene DCDC2 is a member of the DCX family of genes known to play roles in neurogenesis, neuronal migration and differentiation. Here we report the first phenotypic analysis of a Dcdc2 knockout mouse. Comparisons between Dcdc2 knockout mice and wild type littermates revealed no significant differences in neuronal migration, neocortical lamination, neuronal cilliogenesis or dendritic differentiation. Considering previous studies showing genetic interactions and potential functional redundancy among members of the DCX family, we tested whether decreasing Dcx expression by RNAi would differentially impair neurodevelopment in Dcdc2 knockouts and wild type mice. Consistent with this hypothesis, we found that deficits in neuronal migration, and dendritic growth caused by RNAi of Dcx were more severe in Dcdc2 knockouts than in wild type mice with the same transfection. These results indicate that Dcdc2 is not required for neurogenesis, neuronal migration or differentiation in mice, but may have partial functional redundancy with Dcx. PMID:21689730

  1. Impact of Peptide Transporter 1 on the Intestinal Absorption and Pharmacokinetics of Valacyclovir after Oral Dose Escalation in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Yang, Bei; Hu, Yongjun

    2013-01-01

    The primary objective of this study was to determine the in vivo absorption properties of valacyclovir, including the potential for saturable proton-coupled oligopeptide transporter 1 (PepT1)-mediated intestinal uptake, after escalating oral doses of prodrug within the clinical dose range. A secondary aim was to characterize the role of PepT1 on the tissue distribution of its active metabolite, acyclovir. [3H]Valacyclovir was administered to wild-type (WT) and PepT1 knockout (KO) mice by oral gavage at doses of 10, 25, 50, and 100 nmol/g. Serial blood samples were collected over 180 minutes, and tissue distribution studies were performed 20 minutes after a 25-nmol/g oral dose of valacyclovir. We found that the Cmax and area under the curve (AUC)0–180 of acyclovir were 4- to 6-fold and 2- to 3-fold lower, respectively, in KO mice for all four oral doses of valacyclovir. The time to peak concentration of acyclovir was 3- to 10-fold longer in KO compared with WT mice. There was dose proportionality in the Cmax and AUC0–180 of acyclovir in WT and KO mice over the valacyclovir oral dose range of 10–100 nmol/g (i.e., linear absorption kinetics). No differences were observed in the peripheral tissue distribution of acyclovir once these tissues were adjusted for differences in perfusing drug concentrations in the systemic circulation. In contrast, some differences were observed between genotypes in the concentrations of acyclovir in the distal intestine. Collectively, the findings demonstrate a critical role of intestinal PepT1 in improving the rate and extent of oral absorption for valacyclovir. Moreover, this study provides definitive evidence for the rational development of a PepT1-targeted prodrug strategy. PMID:23924683

  2. Histomorphometric Parameters of the Growth Plate and Trabecular Bone in Wild-Type and Trefoil Factor Family 3 (Tff3)-Deficient Mice Analyzed by Free and Open-Source Image Processing Software.

    PubMed

    Bijelić, Nikola; Belovari, Tatjana; Stolnik, Dunja; Lovrić, Ivana; Baus Lončar, Mirela

    2017-08-01

    Trefoil factor family 3 (Tff3) peptide is present during intrauterine endochondral ossification in mice, and its deficiency affects cancellous bone quality in secondary ossification centers of mouse tibiae. The aim of this study was to quantitatively analyze parameters describing the growth plate and primary ossification centers in tibiae of 1-month-old wild-type and Tff3 knock-out mice (n=5 per genotype) by using free and open-source software. Digital photographs of the growth plates and trabecular bone were processed by open-source computer programs GIMP and FIJI. Histomorphometric parameters were calculated using measurements made with FIJI. Tff3 knock-out mice had significantly smaller trabecular number and significantly larger trabecular separation. Trabecular bone volume, trabecular bone surface, and trabecular thickness showed no significant difference between the two groups. Although such histomorphological differences were found in the cancellous bone structure, no significant differences were found in the epiphyseal plate histomorphology. Tff3 peptide probably has an effect on the formation and quality of the cancellous bone in the primary ossification centers, but not through disrupting the epiphyseal plate morphology. This work emphasizes the benefits of using free and open-source programs for morphological studies in life sciences.

  3. Involvement of substance P in the antinociceptive effect of botulinum toxin type A: Evidence from knockout mice.

    PubMed

    Matak, Ivica; Tékus, Valéria; Bölcskei, Kata; Lacković, Zdravko; Helyes, Zsuzsanna

    2017-09-01

    The antinociceptive action of botulinum toxin type A (BoNT/A) has been demonstrated in behavioral animal studies and clinical settings. It was shown that this effect is associated with toxin activity in CNS, however, the mechanism is not fully understood. Substance P (SP) is one of the dominant neurotransmitters in primary afferent neurons transmitting pain and itch. Thus, here we examined association of SP-mediated transmission and BoNT/A antinociceptive action by employing gene knockouts. Antinociceptive activity of intraplantarly (i.pl.) injected BoNT/A was examined in mice lacking the gene encoding for SP/neurokinin A (tac1 -/- ) or SP-preferred receptor neurokinin 1 (tac1r -/- ), compared to control C57Bl/6J wild type animals. BoNT/A action was assessed in inflammatory pain induced by formalin and CFA, and neuropathic pain induced by partial sciatic nerve ligation. BoNT/A activity in CNS was examined by c-Fos and BoNT/A-cleaved SNAP-25 immunohistochemistry. In wild type mice, acute (formalin-evoked) and chronic pain (neuropathic and inflammatory) was reduced by peripherally injected BoNT/A. In tac1 -/- and tac1r -/- knockout mice, BoNT/A exerted no analgesic effect. In control animals BoNT/A reduced the formalin-evoked c-Fos expression in lumbar dorsal horn, while in knockout mice the c-Fos expression was not reduced. After peripheral toxin injection, cleaved SNAP-25 occurred in lumbar dorsal horn in all animal genotypes. BoNT/A antinociceptive activity is absent in animals lacking the SP and neurokinin 1 receptor encoding genes, in spite of presence of toxin's enzymatic activity in central sensory regions. Thus, we conclude that the integrity of SP-ergic system is necessary for the antinociceptive activity of BoNT/A. Copyright © 2017. Published by Elsevier Ltd.

  4. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    PubMed Central

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  5. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    PubMed

    Ma, Lijie; Liu, Yan; Landry, Nichole K; El-Achkar, Tarek M; Lieske, John C; Wu, Xue-Ru

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  6. Circadian rhythms in heart rate, motility, and body temperature of wild-type C57 and eNOS knock-out mice under light-dark, free-run, and after time zone transition.

    PubMed

    Arraj, M; Lemmer, B

    2006-01-01

    The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system--though expressed in the suprachiasmatic nuclei and in peripheral tissues--did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.

  7. Long-lasting Effects of Minocycline on Behavior in Young but not Adult Fragile X Mice

    PubMed Central

    Dansie, Lorraine E.; Phommahaxay, Kelly; Okusanya, Ayodeji G.; Uwadia, Jessica; Huang, Mike; Rotschafer, Sarah E.; Razak, Khaleel A.; Ethell, Douglas W.; Ethell, Iryna M.

    2013-01-01

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder (OCD). Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in “fragile X mental retardation gene” knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4 and 8 week long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model. PMID:23660195

  8. Inhibition of Activin Receptor Type IIB Increases Strength and Lifespan in Myotubularin-Deficient Mice

    PubMed Central

    Lawlor, Michael W.; Read, Benjamin P.; Edelstein, Rachel; Yang, Nicole; Pierson, Christopher R.; Stein, Matthew J.; Wermer-Colan, Ariana; Buj-Bello, Anna; Lachey, Jennifer L.; Seehra, Jasbir S.; Beggs, Alan H.

    2011-01-01

    X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency. PMID:21281811

  9. l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice

    PubMed Central

    Romero, Maritza J.; Yao, Lin; Sridhar, Supriya; Bhatta, Anil; Dou, Huijuan; Ramesh, Ganesan; Brands, Michael W.; Pollock, David M.; Caldwell, Ruth B.; Cederbaum, Stephen D.; Head, C. Alvin; Bagi, Zsolt; Lucas, Rudolf; Caldwell, Robert W.

    2013-01-01

    Rationale: Diabetic nephropathy (DN) is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of l-arginine (l-arg), the substrate for endothelial nitric oxide synthase (eNOS), failed to improve vascular function. l-Citrulline (l-cit) supplementation not only increases l-arg synthesis, but also inhibits cytosolic arginase I, a competitor of eNOS for the use of l-arg, in the vasculature. Aims: To investigate whether l-cit treatment reduces DN in streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice and rats and to study its effects on arginase II (ArgII) function, the main renal isoform. Methods: STZ-C57BL6 mice received l-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and l-cit-treated STZ-rats were evaluated. Results: l-Citrulline exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis, and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, l-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 weeks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater blood urea nitrogen levels, hypertrophy, and dilated tubules than diabetic wild type (WT) mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic WT animals. l-Cit also restored nitric oxide/reactive oxygen species balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, l-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1β and IL-12(p70) generation in the human proximal tubular cells. Conclusion: l-Citrulline supplementation established an anti-inflammatory profile and significantly preserved the

  10. [Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].

    PubMed

    Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei

    2014-08-25

    The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.

  11. Differential Regulation of Primary Afferent Input to Spinal Cord by Muscarinic Receptor Subtypes Delineated Using Knockout Mice*

    PubMed Central

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-01-01

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732

  12. Lethal cutaneous disease in transgenic mice conditionally expressing type I human T cell leukemia virus Tax.

    PubMed

    Kwon, Hakju; Ogle, Louise; Benitez, Bobby; Bohuslav, Jan; Montano, Mauricio; Felsher, Dean W; Greene, Warner C

    2005-10-21

    Type I human T cell leukemia virus (HTLV-I) is etiologically linked with adult T cell leukemia, an aggressive and usually fatal expansion of activated CD4+ T lymphocytes that frequently traffic to skin. T cell transformation induced by HTLV-I involves the action of the 40-kDa viral Tax transactivator protein. Tax both stimulates the HTLV-I long terminal repeat and deregulates the expression of select cellular genes by altering the activity of specific host transcription factors, including cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor, NF-kappaB/Rel, and serum response factor. To study initiating events involved in HTLV-I Tax-induced T cell transformation, we generated "Tet-off" transgenic mice conditionally expressing in a lymphocyte-restricted manner (EmuSR alpha promoter-enhancer) either wild-type Tax or mutant forms of Tax that selectively compromise the NF-kappaB (M22) or CREB/activating transcription factor (M47) activation pathways. Wild-type Tax and M47 Tax-expressing mice, but not M22-Tax expressing mice, developed progressive alopecia, hyperkeratosis, and skin lesions containing profuse activated CD4 T cell infiltrates with evidence of deregulated inflammatory cytokine production. In addition, these animals displayed systemic lymphadenopathy and splenomegaly. These findings suggest that Tax-mediated activation of NF-kappaB plays a key role in the development of this aggressive skin disease that shares several features in common with the skin disease occurring during the preleukemic stage in HTLV-I-infected patients. Of note, this skin disease completely resolved when Tax transgene expression was suppressed by administration of doxycycline, emphasizing the key role played by this viral oncoprotein in the observed pathology.

  13. Disuse osteopenia induced by botulinum toxin is similar in skeletally mature young and aged female C57BL/6J mice.

    PubMed

    Vegger, Jens Bay; Brüel, Annemarie; Brent, Mikkel Bo; Thomsen, Jesper Skovhus

    2018-03-01

    Osteopenia and osteoporosis predominately occur in the fully grown skeleton. However, it is unknown whether disuse osteopenia in skeletally mature, but growing, mice resembles that of fully grown mice. Twenty-four 16-week-old (young) and eighteen 44-week-old (aged) female C57BL/6J mice were investigated. Twelve young and nine aged mice were injected with botulinum toxin in one hind limb; the remaining mice served as controls. The mice were euthanized after 3 weeks of disuse. The femora were scanned by micro-computed tomography (µCT) and bone strength was determined by mechanically testing the femoral mid-diaphysis and neck. At the distal femoral metaphysis, the loss of trabecular bone volume fraction (BV/TV) differed between the young and aged mice. However, at the distal femoral epiphysis, no age-dependent differences were observed. Thinning of the trabeculae was not affected by the age of the mice at either the distal femoral metaphysis or the epiphysis. Furthermore, the aged mice lost more bone strength at the femoral mid-diaphysis, but not at the femoral neck, compared to the young mice. In general, the bone loss induced by botulinum toxin did not differ substantially between young and aged mice. Therefore, the loss of bone in young mice resembles that of aged mice, even though they are not fully grown.

  14. Enhanced susceptibility to acute pneumococcal otitis media in mice deficient in complement C1qa, factor B, and factor B/C2.

    PubMed

    Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M

    2010-03-01

    To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.

  15. Female nursing partner choice in a population of wild house mice (Mus musculus domesticus).

    PubMed

    Harrison, Nicola; Lindholm, Anna K; Dobay, Akos; Halloran, Olivia; Manser, Andri; König, Barbara

    2018-01-01

    Communal nursing in house mice is an example of cooperation where females pool litters in the same nest and indiscriminately nurse own and other offspring despite potential exploitation. The direct fitness benefits associated with communal nursing shown in laboratory studies suggest it to be a selected component of female house mice reproductive behaviour. However, past studies on communal nursing in free-living populations have debated whether it is a consequence of sharing the same nest or an active choice. Here using data from a long-term study of free-living, wild house mice we investigated individual nursing decisions and determined what factors influenced a female's decision to nurse communally. Females chose to nurse solitarily more often than expected by chance, but the likelihood of nursing solitarily decreased when females had more partners available. While finding no influence of pairwise relatedness on partner choice, we observed that females shared their social environment with genetically similar individuals, suggesting a female's home area consisted of related females, possibly facilitating the evolution of cooperation. Within such a home area females were more likely to nest communally when the general relatedness of her available options was relatively high. Females formed communal nests with females that were familiar through previous associations and had young pups of usually less than 5 days old. Our findings suggest that communal nursing was not a by-product of sharing the same nesting sites, but females choose communal nursing partners from a group of genetically similar females, and ultimately the decision may then depend on the pool of options available. Social partner choice proved to be an integrated part of cooperation among females, and might allow females to reduce the conflict over number of offspring in a communal nest and milk investment towards own and other offspring. We suggest that social partner choice may be a general

  16. Reduced 4-Aminobiphenyl-Induced Liver Tumorigenicity but not DNA Damage in Arylamine N-Acetyltransferase Null Mice

    PubMed Central

    Sugamori, Kim S.; Brenneman, Debbie; Sanchez, Otto; Doll, Mark A.; Hein, David W.; Pierce, William M.; Grant, Denis M.

    2012-01-01

    The aromatic amine 4-aminobiphenyl (ABP) is a liver procarcinogen in mice, requiring enzymatic bioactivation to exert its tumorigenic effect. To assess the role of arylamine N-acetyltransferase (NAT)-dependent acetylation capacity in the risk for ABP-induced liver tumors, we compared 1-year liver tumor incidence following the postnatal exposure of wild-type and NAT-deficient Nat1/2(−/−) mice to ABP. At an ABP exposure of 1200 nmoles, male Nat1/2(−/−) mice had a liver tumor incidence of 36% compared to 69% in wild-type males, and at 600 nmoles there was a complete absence of tumors compared to 60% in wild-type mice. Only one female wild-type mouse had a tumor using this exposure protocol. However, levels of N-deoxyguanosin-8-yl-ABP-DNA adducts did not correlate with either the strain or sex differences in tumor incidence. These results suggest that female sex and NAT deficiency reduce risk for ABP-induced liver tumors, but by mechanisms unrelated to differences in DNA-damaging events. PMID:22193722

  17. Overexpression of TGF-alpha increases lung tissue hysteresivity in transgenic mice.

    PubMed

    Pillow, J J; Korfhagen, T R; Ikegami, M; Sly, P D

    2001-12-01

    Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H(L)) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H(L). There was a significant increase in eta (P < 0.01) and a trend to a decrease in H(L) (P = 0.07) of TGF-alpha mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta.

  18. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    PubMed Central

    Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji

    2017-01-01

    Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders. PMID:28744205

  19. In vitro re-expression of the aryl hydrocarbon receptor (Ahr) in cultured Ahr-deficient mouse antral follicles partially restores the phenotype to that of cultured wild-type mouse follicles.

    PubMed

    Ziv-Gal, A; Gao, L; Karman, B N; Flaws, J A

    2015-03-01

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. Ahr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Loss of the type I interferon pathway increases vulnerability of mice to genital herpes simplex virus 2 infection.

    PubMed

    Conrady, Christopher D; Halford, William P; Carr, Daniel J J

    2011-02-01

    The mouse model of genital herpes relies on medoxyprogesterone treatment of female mice to render the vaginal lumen susceptible to inoculation with herpes simplex virus 2 (HSV-2). In the present study, we report that mice deficient in the A1 chain of the type I interferon receptor (CD118(-/-)) are susceptible to HSV-2 in the absence of medroxyprogesterone preconditioning. In the absence of hormone pretreatment, 2,000 PFU of a clinical isolate of HSV-2 was sufficient to establish a productive infection in the vagina of 75% ± 17% and in the spinal cord of 71% ± 14% of CD118(-/-) mice, whereas the same dose of HSV-2 replicated to detectable levels in only 13% ± 13% of vaginal samples and 0% of spinal cord samples from wild-type mice, as determined at day 5 postinfection. The susceptibility to HSV-2 infection in the CD118(-/-) mice was associated with a significant reduction in the infiltration of HSV-specific cytotoxic T lymphocytes into the vaginal tissue, the local production of gamma interferon (IFN-γ), and the expression of T cell-recruiting chemokines CCL5, CXCL9, and CXCL10. Collectively, the results underscore the significant contribution of type I IFNs in resistance to genital HSV-2 infection.

  1. Antigenic and molecular characterization of wild type 1 poliovirus causing outbreaks of poliomyelitis in Albania and neighboring countries in 1996.

    PubMed

    Fiore, L; Genovese, D; Diamanti, E; Catone, S; Ridolfi, B; Ibrahimi, B; Konomi, R; van der Avoort, H G; Hovi, T; Crainic, R; Simeoni, P; Amato, C

    1998-07-01

    Mass vaccination has led poliomyelitis to become a rare disease in a large part of the world, including Western Europe. However, in the past 20 years wild polioviruses imported from countries where polio is endemic have been responsible for outbreaks in otherwise polio-free European countries. We report on the characterization of poliovirus isolates from a large outbreak of poliomyelitis that occurred in Albania in 1996 and that also spread to the neighboring countries of Yugoslavia and Greece. The epidemics involved 145 subjects, mostly young adults, and caused persisting paralysis in 87 individuals and 16 deaths. The agent responsible for the outbreak was isolated from 74 patients and was identified as wild type 1 poliovirus by both immunological and molecular methods. Sequence analysis of the genome demonstrated the involvement of a single virus strain throughout the epidemics, and genotyping analysis showed 95% homology of the strain with a wild type 1 poliovirus strain isolated in Pakistan in 1995. Neutralization assays with both human sera and monoclonal antibodies were performed to analyze the antigenic structure of the epidemic strain, suggesting its peculiar antigenic characteristics. The presented data underline the current risks of outbreaks due to imported wild poliovirus and emphasize the need to improve vaccination efforts and also the need to implement surveillance in countries free of indigenous wild poliovirus.

  2. Antigenic and Molecular Characterization of Wild Type 1 Poliovirus Causing Outbreaks of Poliomyelitis in Albania and Neighboring Countries in 1996

    PubMed Central

    Fiore, L.; Genovese, D.; Diamanti, E.; Catone, S.; Ridolfi, B.; Ibrahimi, B.; konomi, R.; van der Avoort, H. G. A. M.; Hovi, T.; Crainic, R.; Simeoni, P.; Amato, C.

    1998-01-01

    Mass vaccination has led poliomyelitis to become a rare disease in a large part of the world, including Western Europe. However, in the past 20 years wild polioviruses imported from countries where polio is endemic have been responsible for outbreaks in otherwise polio-free European countries. We report on the characterization of poliovirus isolates from a large outbreak of poliomyelitis that occurred in Albania in 1996 and that also spread to the neighboring countries of Yugoslavia and Greece. The epidemics involved 145 subjects, mostly young adults, and caused persisting paralysis in 87 individuals and 16 deaths. The agent responsible for the outbreak was isolated from 74 patients and was identified as wild type 1 poliovirus by both immunological and molecular methods. Sequence analysis of the genome demonstrated the involvement of a single virus strain throughout the epidemics, and genotyping analysis showed 95% homology of the strain with a wild type 1 poliovirus strain isolated in Pakistan in 1995. Neutralization assays with both human sera and monoclonal antibodies were performed to analyze the antigenic structure of the epidemic strain, suggesting its peculiar antigenic characteristics. The presented data underline the current risks of outbreaks due to imported wild poliovirus and emphasize the need to improve vaccination efforts and also the need to implement surveillance in countries free of indigenous wild poliovirus. PMID:9650935

  3. Long-term patterns of immune investment by wild deer mice infected with Sin Nombre virus.

    PubMed

    Lehmer, Erin M; Jones, Jeremy D; Bego, Mariana G; Varner, Johanna M; Jeor, Stephen St; Clay, Christine A; Dearing, M Denise

    2010-01-01

    Immunocompetence of animals fluctuates seasonally, However, there is little consensus on the cause of these fluctuations. Some studies have suggested that these patterns are influenced by changes in reproductive condition, whereas others have suggested that differences result from seasonal variations in energy expenditures. The objective of our study was to examine these contrasting views of immunity by evaluating seasonal patterns of immune response and reproduction in wild populations of deer mice Peromyscus maniculatus exposed to Sin Nombre virus (SNV). Over three consecutive fall (September, October, November) and three consecutive spring (March, April, May) sampling periods, we used titration enzyme-linked immunosorbent assay (ELISA) to quantify virus-specific antibody production in 48 deer mice infected with SNV. Levels of reproductive hormones were quantified using ELISA. SNV antibody titers reached their lowest level during November (geometric mean titer [GMT] = 420) and their highest levels during September (GMT = 5,545) and May (GMT = 3,582), suggesting that the immune response of deer mice to SNV has seasonal patterns. The seeming decrease in antibody titer over winter coupled with the consistency in body masses suggests that during winter, immunocompetence may be compromised to offset the energetic costs of maintenance functions, including those associated with maintaining body mass. Deer mice showed distinct sex-based differences in SNV antibody production, with males producing higher antibody titers (GMT = 3,333) than females (GMT = 1,477). Levels of reproductive hormones do not appear to influence antibody production in either males or females, as there was no correlation between estradiol concentrations and SNV antibody titer in female deer mice (r² = 0.26), nor was there a significant relationship between levels of testosterone and SNV antibody titers in males (r² = 0.28). Collectively, this study demonstrates that immunocompetence of wild deer

  4. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2Rmore » binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.« less

  5. fat-1 mice prevent high-fat plus high-sugar diet-induced non-alcoholic fatty liver disease.

    PubMed

    Guo, Xiao-Fei; Gao, Jin-Long; Li, Jiao-Mei; Li, Duo

    2017-11-15

    High-fat and high-sugar (HFS) diets have been suggested to play a causal role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate whether fat-1 transgenic mice with a higher tissue content of n-3 polyunsaturated fatty acids (PUFAs) could prevent HFS diet-induced NAFLD, compared with wild-type mice. The fat-1 and wild-type littermates had free access to a 15% fructose solution plus high-fat diet, a 15% glucose solution plus high-fat diet, or a 15% sucrose solution plus high-fat diet, respectively. Caloric intake, weight gain, biochemical parameters, histology, and gene and protein expression levels were measured after 8 weeks of intervention. Liquid intake in glucose- or sucrose-fed mice was about 2-fold compared with that in fructose-fed mice. The wild-type mice given glucose showed the highest total caloric intake and weight gain compared to the other groups. The serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and alanine transaminase (ALT) were significantly lowered in fat-1 groups compared with their paired wild-type groups. Histological analysis showed that the wild-type groups fed the HFS diets developed hepatic lipid accumulation and steatosis, compared with the fat-1 groups. The gene and protein expression levels involved in fatty acid synthesis and the toll-like receptor (TLR)-4 signaling pathway were significantly inhibited in the fat-1 groups compared with the wild-type groups. The endogenously synthesized n-3 PUFAs of the three fat-1 groups, which inhibit fatty acid synthesis and the TLR-4 signaling pathway, prevent HFS diet-induced NAFLD.

  6. Wild-Type Male Offspring of fmr-1+/− Mothers Exhibit Characteristics of the Fragile X Phenotype

    PubMed Central

    Zupan, Bojana; Toth, Miklos

    2009-01-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1+/−) mothers (H> WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT> WT); here, we show that H> WT offspring are more active than WT> WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1−/−) mothers (H> KO/KO> KO). H> WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H> WT as well as in H> KO and KO> KO mice compared to WT> WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in ‘fragile X’ mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect. PMID:18172434

  7. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice.

    PubMed

    Garcia, J P; Adams, V; Beingesser, J; Hughes, M L; Poon, R; Lyras, D; Hill, A; McClane, B A; Rood, J I; Uzal, F A

    2013-07-01

    Clostridium perfringens type D causes disease in sheep, goats, and other ruminants. Type D isolates produce, at minimum, alpha and epsilon (ETX) toxins, but some express up to five different toxins, raising questions about which toxins are necessary for the virulence of these bacteria. We evaluated the contribution of ETX to C. perfringens type D pathogenicity in an intraduodenal challenge model in sheep, goats, and mice using a virulent C. perfringens type D wild-type strain (WT), an isogenic ETX null mutant (etx mutant), and a strain where the etx mutation has been reversed (etx complemented). All sheep and goats, and most mice, challenged with the WT isolate developed acute clinical disease followed by death in most cases. Sheep developed various gross and/or histological changes that included edema of brain, lungs, and heart as well as hydropericardium. Goats developed various effects, including necrotizing colitis, pulmonary edema, and hydropericardium. No significant gross or histological abnormalities were observed in any mice infected with the WT strain. All sheep, goats, and mice challenged with the isogenic etx mutant remained clinically healthy for ≥24 h, and no gross or histological abnormalities were observed in those animals. Complementation of etx knockout restored virulence; most goats, sheep, and mice receiving this complemented mutant developed clinical and pathological changes similar to those observed in WT-infected animals. These results indicate that ETX is necessary for type D isolates to induce disease, supporting a key role for this toxin in type D disease pathogenesis.

  8. Detailed analysis of BALB/c mice challenged with wild type rotavirus EDIM provide an alternative for infection model of rotavirus.

    PubMed

    Du, Jialiang; Lan, Zhiling; Liu, Yueyue; Liu, Yan; Li, Yanchao; Li, Xiangming; Guo, Tai

    2017-01-15

    Mouse is one of the infection animal models for rotavirus. Since the optimal age of mouse sensitive to rotavirus infection thus far has not been unified, we elucidated clinical symptoms, immune responses and pathological changes of mice in different ages after challenged by murine rotavirus wild strain EDIM (Epidemic Diarrhea of Infant Mice) to provide data for the estimation. One-week-old, two-week-old, and three-week-old BALB/c mice were inoculated with EDIM in the challenge dose of 235 ID50, 470 ID50 and 705 ID50 respectively and were compared to mock-infected controls. Diarrhea illness, mobility, bodyweight were recorded, viral shedding and immune responses including serum IgA, fecal sIgA were detected, and small intestine tissue was evaluated for virus distribution and pathological changes. All the mice in one-week-old and two-week-old groups were completely unavoidable to be infected by EDIM and have been found to be malaise, activity reduced and even diarrhea, while three-week-old mice partly resist the challenge with 40% mice free from diarrhea. Meanwhile, EDIM infection has greater impact to the bodyweight of two-week-old group than those of one-week-old, three-week-old (0.9860 vs 1.2340, 1.2375g/day). One peak of virus shedding in three groups was observed in day 1-2 post infection, but the duration shortened with age increase. Feces sIgA in both two-week-old and three-week-old groups began to increase in day 4, 2-3days earlier than that in one-week-old group, and grow to the peak in day 8, which is about 2 fold of that in one-week-old group. Stronger serum IgA response was found in two-week-old group, it increased to the peak in day 15 and the level was 2 fold of three-week-old group and 4 fold of one-week-old group. The pathological changes included vacuolar degeneration, edema and congestion of intestinal wall, integrity destruction of enteric epithelium, and the changes relieved with the increase of age. Besides, rotavirus particles were found in

  9. Changes in blood carnitine and acylcarnitine profiles of very long-chain acyl-CoA dehydrogenase-deficient mice subjected to stress.

    PubMed

    Spiekerkoetter, U; Tokunaga, C; Wendel, U; Mayatepek, E; Exil, V; Duran, M; Wijburg, F A; Wanders, R J A; Strauss, A W

    2004-03-01

    In humans with deficiency of the very long-chain acyl-CoA dehydrogenase (VLCAD), C14-C18 acylcarnitines accumulate. In this paper we have used the VLCAD knockout mouse as a model to study changes in blood carnitine and acylcarnitine profiles under stress. VLCAD knockout mice exhibit stress-induced hypoglycaemia and skeletal myopathy; symptoms resembling human VLCADD. To study the extent of biochemical derangement in response to different stressors, we determined blood carnitine and acylcarnitine profiles after exercise on a treadmill, fasting, or exposure to cold. Even in a nonstressed, well-fed state, knockout mice presented twofold higher C14-C18 acylcarnitines and a lower free carnitine of 72% as compared to wild-type littermates. After 1 h of intense exercise, the C14-C18 acylcarnitines in blood significantly increased, but free carnitine remained unchanged. After 8 h of fasting at 4 degrees C, the long-chain acylcarnitines were elevated 5-fold in knockout mice in comparison with concentrations in unstressed wild-type mice (P < 0.05), and four out of 12 knockout mice died. Free carnitine decreased to 44% as compared with unstressed wild-type mice. An increase in C14-C18 acylcarnitines and a decrease of free carnitine were also observed in fasted heterozygous and wild-type mice. Long-chain acylcarnitines in blood increase in knockout mice in response to different stressors and concentrations correlate with the clinical condition. A decrease in blood free carnitine in response to severe stress is observed in knockout mice but also in wild-type littermates. Monitoring blood acylcarnitine profiles in response to different stressors may allow systematic analysis of therapeutic interventions in VLCAD knockout mice.

  10. The clock gene Period1 regulates innate routine behaviour in mice.

    PubMed

    Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik

    2014-04-22

    Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour.

  11. Natural Variation of Drug Susceptibility in Wild-Type Human Immunodeficiency Virus Type 1

    PubMed Central

    Parkin, N. T.; Hellmann, N. S.; Whitcomb, J. M.; Kiss, L.; Chappey, C.; Petropoulos, C. J.

    2004-01-01

    Wild-type viruses from the ViroLogic phenotype-genotype database were evaluated to determine the upper confidence limit of the drug susceptibility distributions, or “biological cutoffs,” for the PhenoSense HIV phenotypic drug susceptibility assay. Definition of the natural variation in drug susceptibility in wild-type human immunodeficiency virus (HIV) type 1 isolates is necessary to determine the prevalence of innate drug resistance and to assess the capability of the PhenoSense assay to reliably measure subtle reductions in drug susceptibility. The biological cutoffs for each drug, defined by the 99th percentile of the fold change in the 50% inhibitory concentration distributions or the mean fold change plus 2 standard deviations, were lower than those previously reported for other phenotypic assays and lower than the clinically relevant cutoffs previously defined for the PhenoSense assay. The 99th percentile fold change values ranged from 1.2 (tenofovir) to 1.8 (zidovudine) for nucleoside reverse transcriptase RT inhibitors (RTIs), from 3.0 (efavirenz) to 6.2 (delavirdine) for nonnucleoside RTIs, and from 1.6 (lopinavir) to 3.6 (nelfinavir) for protease inhibitors. To evaluate the potential role of intrinsic assay variability in the observed variations in the drug susceptibilities of wild-type isolates, 10 reference viruses with different drug susceptibility patterns were tested 8 to 30 times each. The median coefficients of variation in fold change for the reference viruses ranged from 12 to 18% for all drugs except zidovudine (32%), strongly suggesting that the observed differences in wild-type virus susceptibility to the different drugs is related to intrinsic virus variability rather than assay variability. The low biological cutoffs and assay variability suggest that the PhenoSense HIV assay may assist in defining clinically relevant susceptibility cutoffs for resistance to antiretroviral drugs. PMID:14742192

  12. Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity

    PubMed Central

    Lo, Chun-Min; King, Alexandra; Samuelson, Linda C; Kindel, Tammy Lyn; Rider, Therese; Jandacek, Ronald J; Raybould, Helen E; Woods, Stephen C; Tso, Patrick

    2011-01-01

    Background & Aims Cholecystokinin (CCK) is a satiation peptide released during meals in response to lipid intake; it regulates pancreatic digestive enzymes that are required for absorption of nutrients. We proposed that mice with a disruption in the CCK gene (CCK-KO mice) that were fed a diet of 20% butter fat would have altered fat metabolism. Methods We used quantitative magnetic resonance imaging to determine body composition and monitored food intake of CCK-KO mice using an automated measurement system. Intestinal fat absorption and energy expenditure were determined using a noninvasive assessment of intestinal fat absorption and an open circuit calorimeter, respectively. Results After consuming a high-fat diet for 10 weeks, CCK-KO mice had reduced body weight gain and body fat mass and enlarged adipocytes, despite the same level of food intake as wild-type mice. CCK-KO mice also had defects in fat absorption, especially of long-chain saturated fatty acids, but pancreatic triglyceride lipase (PTL) did not appear to have a role in the fat malabsorption. Energy expenditure was higher in CCK-KO than wild-type mice and CCK-KO mice had greater oxidation of carbohydrates while on the high-fat diet. Plasma leptin levels in the CCK-KO mice fed the high-fat diet were markedly lower than in wild-type mice, although levels of insulin, gastric-inhibitory polypeptide, and glucagon-like peptide-1 were normal. Conclusion CCK is involved in regulating the metabolic rate and is important for lipid absorption and control of body weight in mice placed on a high-fat diet. PMID:20117110

  13. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carryingmore » humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.« less

  14. Atp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior.

    PubMed

    Sugimoto, H; Ikeda, K; Kawakami, K

    2018-06-01

    Atp1a3 is the Na-pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3-deficient heterozygous mice (Atp1a3 +/- ) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3 +/- and compared the rank and hierarchy structure between Atp1a3 +/- and wild-type mice within a housing cage using the round-robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3 +/- than wild-type mice, and Atp1a3 +/- approached Atp1a3 +/- mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3 +/- group than in the wild-type group, while no difference was observed in the mixed-genotype housing condition. (3) Hierarchy formation was not different between Atp1a3 +/- and wild type. (4) Atp1a3 +/- showed a lower rank in the mixed-genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3 +/- showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Characterization of age-associated changes in peripheral organ and brain region weights in C57BL/6 mice.

    PubMed

    Lessard-Beaudoin, Mélissa; Laroche, Mélissa; Demers, Marie-Josée; Grenier, Guillaume; Graham, Rona K

    2015-03-01

    In order to further understand age-related physiological changes and to have in depth reference values for C57BL/6 mice, we undertook a study to assess the effects of aging on peripheral organ weights, and brain region weights in wild type C57BL/6 male mice. Peripheral organs, body and brain region weights were collected from young (3-4 months), mid (12 months), old (23-28 months) and very old (>30 months) mice. Significant increases are observed with aging in body, liver, heart, kidney and spleen organ weights. A decrease in organ weight is observed with aging in liver and kidney only in the very old mice. In contrast, testes weight decreases with age. Within the brain, hippocampi, striata and olfactory bulbs weight decreases with age. These data further our knowledge of the anatomical and biological changes that occur with aging and provide reference values for physiological-based pharmacokinetic studies in C57BL/6 mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. MGE-derived nNOS+ interneurons promote fear acquisition in nNOS-/- mice.

    PubMed

    Zhang, Lin; Yuan, Hong-Jin; Cao, Bo; Kong, Cheng-Cheng; Yuan, Fang; Li, Jun; Ni, Huan-Yu; Wu, Hai-Yin; Chang, Lei; Liu, Yan; Luo, Chun-Xia

    2017-12-02

    Neuronal nitric oxide synthase (nNOS) 1 , mainly responsible for NO release in central nervous system (CNS) 2 , plays a significant role in multiple physiological functions. However, the function of nNOS + interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3 -derived nNOS + interneurons in fear learning. To determine the origin of nNOS + interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4 , caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6 . The results showed that MGE contained the most abundant precursors of nNOS + interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS + interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS + interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS -/- ) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS -/- but not the wild-type mice, suggesting the importance of nNOS + neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS -/- mice or wild-type mice into DG of the nNOS -/- mice and found that only MGE cells from wild-type mice but not the nNOS -/- mice rescued the deficit in acquisition of the nNOS -/- mice, further confirming the positive role of nNOS + neurons in fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Exercise Training Prevents Coronary Endothelial Dysfunction in Type 2 Diabetic Mice.

    PubMed

    Lee, Sewon; Park, Yoonjung; Zhang, Cuihua

    2011-10-01

    Type 2 diabetes (T2D) is a leading risk factor for cardiovascular diseases including atherosclerosis and coronary heart disease. Exercise training (ET) is thought to have a beneficial effect on these disorders, but the basis for this effect is not fully understood. Because endothelial dysfunction plays a key role in the pathological events leading to cardiovascular complications in T2D, we hypothesized that the effects of ET will be evidenced by improvements in coronary endothelial function. To test this hypothesis, we assessed the effects of ET on vascular function of diabetic (db/db, Lepr(db)) mice by evaluating endothelial function of isolated coronary arterioles of wild-type (WT) and db/db mice with/without ET. Although dilation of vessels to the endothelial-independent vasodilator, sodium nitroprusside was not different between db/db and WT, dilation to the endothelial-dependent agonist, acetylcholine (ACh), was impaired in db/db compared to WT mice. Vasodilation to ACh was restored in db/db with ET and insulin sensitivity was improved in the db/db after ET. Exercise did not change body weight of db/db, but superoxide dismutase (SOD1 and SOD2) and phosphorylated- eNOS protein (Ser1177) expression in heart tissue was up-regulated whereas tumor necrosis factor-alpha (TNF-α) protein level was decreased by ET. Serum level of interleukin-6 (IL-6) was higher in db/db mice but ET decreased IL-6. This suggests that ET may improve endothelial function by increasing nitric oxide bioavailability as well as decreasing chronic inflammation. We suggest this connection may be the basis for the benefit of ET in T2D.

  19. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

    PubMed

    Herrema, Hilde; Derks, Terry G J; van Dijk, Theo H; Bloks, Vincent W; Gerding, Albert; Havinga, Rick; Tietge, Uwe J F; Müller, Michael; Smit, G Peter A; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2008-06-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the

  20. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice.

    PubMed

    Schneider, Mark J; Fiering, Steven N; Thai, B; Wu, Sing-yung; St Germain, Emily; Parlow, Albert F; St Germain, Donald L; Galton, Valerie Anne

    2006-01-01

    The type 1 deiodinase (D1) is thought to be an important source of T3 in the euthyroid state. To explore the role of the D1 in thyroid hormone economy, a D1-deficient mouse (D1KO) was made by targeted disruption of the Dio1 gene. The general health and reproductive capacity of the D1KO mouse were seemingly unimpaired. In serum, levels of T4 and rT3 were elevated, whereas those of TSH and T3 were unchanged, as were several indices of peripheral thyroid status. It thus appears that the D1 is not essential for the maintenance of a normal serum T3 level in euthyroid mice. However, D1 deficiency resulted in marked changes in the metabolism and excretion of iodothyronines. Fecal excretion of endogenous iodothyronines was greatly increased. Furthermore, when compared with both wild-type and D2-deficient mice, fecal excretion of [125I]iodothyronines was greatly increased in D1KO mice during the 48 h after injection of [125I]T4 or [125I]T3, whereas urinary excretion of [125I]iodide was markedly diminished. From these data it was estimated that a majority of the iodide generated by the D1 was derived from substrates other than T4. Treatment with T3 resulted in a significantly higher serum T3 level and a greater degree of hyperthyroidism in D1KO mice than in wild-type mice. We conclude that, although the D1 is of questionable importance to the wellbeing of the euthyroid mouse, it may play a major role in limiting the detrimental effects of conditions that alter normal thyroid function, including hyperthyroidism and iodine deficiency.

  1. Cerebral cortical blood flow maps are reorganized in MAOB-deficient mice

    PubMed Central

    Scremin, Oscar U.; Holschneider, Daniel P.; Chen, Kevin; Li, Mingen G.; Shih, Jean C.

    2014-01-01

    Cerebral cortical blood flow (CBF) was measured autoradiographically in conscious mice without the monoamine oxidase B (MAOB) gene (KO, n = 11) and the corresponding wild-type animals (WILD, n = 11). Subgroups of animals of each genotype received a continuous intravenous infusion over 30 min of phenylethylamine (PEA), an endogenous substrate of MAOB, (8 nmol g−1 min−1 in normal saline at a volume rate of 0.11 μl g−1 min−1) or saline at the same volume rate. Maps of relative CBF distribution showed predominance of midline motor and sensory area CBF in KO mice over WILD mice that received saline. PEA enhanced CBF in lateral frontal and piriform cortex in both KO and WILD mice. These changes may reflect a differential activation due to chronic and acute PEA elevations on motor and olfactory function, as well as on the anxiogenic effects of this amine. In addition to its effects on regional CBF distribution, PEA decreased CBF globally in KO mice (range −31% to −41% decrease from control levels) with a lesser effect in WILD mice. It is concluded that MAOB may normally regulate CBF distribution and its response to blood PEA. PMID:10095040

  2. Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice.

    PubMed

    Dluzen, D E; Gao, X; Story, G M; Anderson, L I; Kucera, J; Walro, J M

    2001-07-01

    Deletion of a single copy of the BDNF gene has been shown to affect the nigrostriatal dopaminergic system of young adult BDNF mice. In the present report we evaluated various indices of nigrostriatal dopaminergic function between 9-month-old wild-type (+/+) and heterozygous (+/-) BDNF mutant mice. Performance in a sensorimotor beam walking task was significantly decreased in +/- mice as indicated by increased times required to traverse both a wide (21 mm) and narrow (6 mm) beam. No differences in spontaneous locomotor behavior were observed between the +/+ and +/- mice. Amphetamine-stimulated (5 mg/kg) locomotor behavior was increased to a greater degree in the +/- mice, with the number of movements performed by these mice being significantly greater than their +/+ controls. Corpus striatal dopamine concentrations were significantly greater in the +/- BDNF mice. The absence of any significant differences for dopamine concentrations within the hypothalamus and olfactory bulb of these mice, as well as an absence of any difference in striatal norepinephrine concentrations, suggested a relative specificity of these effects to the corpus striatum. Both the +/- and +/+ mice showed similar reductions in striatal dopamine concentrations in response to a neurotoxic regimen of methamphetamine (20 mg/kg). Collectively these data show increased levels of striatal dopamine concentrations associated with altered behavioral responses involving the nigrostriatal dopaminergic system within the heterozygous BDNF mutant mice. Copyright 2001 Academic Press.

  3. Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin.

    PubMed

    Fiaschi, Luigi; Di Palo, Benedetta; Scarselli, Maria; Pozzi, Clarissa; Tomaszewski, Kelly; Galletti, Bruno; Nardi-Dei, Vincenzo; Arcidiacono, Letizia; Mishra, Ravi P N; Mori, Elena; Pallaoro, Michele; Falugi, Fabiana; Torre, Antonina; Fontana, Maria Rita; Soriani, Marco; Bubeck Wardenburg, Juliane; Grandi, Guido; Rappuoli, Rino; Ferlenghi, Ilaria; Bagnoli, Fabio

    2016-06-01

    Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus. Copyright © 2016 Fiaschi et al.

  4. Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin

    PubMed Central

    Fiaschi, Luigi; Di Palo, Benedetta; Scarselli, Maria; Pozzi, Clarissa; Tomaszewski, Kelly; Galletti, Bruno; Nardi-Dei, Vincenzo; Arcidiacono, Letizia; Mishra, Ravi P. N.; Mori, Elena; Pallaoro, Michele; Falugi, Fabiana; Torre, Antonina; Fontana, Maria Rita; Soriani, Marco; Bubeck Wardenburg, Juliane; Grandi, Guido; Rappuoli, Rino

    2016-01-01

    Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus. PMID:27030589

  5. Partial rescue of glomerular laminin alpha5 mutations by wild-type endothelia produce hybrid glomeruli.

    PubMed

    Abrahamson, Dale R; St John, Patricia L; Isom, Kathryn; Robert, Barry; Miner, Jeffrey H

    2007-08-01

    Both endothelial cells and podocytes are sources for laminin alpha1 at the inception of glomerulogenesis and then for laminin alpha5 during glomerular maturation. Why glomerular basement membranes (GBM) undergo laminin transitions is unknown, but this may dictate glomerular morphogenesis. In mice that genetically lack laminin alpha5, laminin alpha5beta2gamma1 is not assembled, vascularized glomeruli fail to form, and animals die at midgestation with neural tube closure and placental deficits. It was previously shown that renal cortices of newborn mice contain endothelial progenitors (angioblasts) and that when embryonic day 12 kidneys are transplanted into newborn kidney, hybrid glomeruli (host-derived endothelium and donor-derived podocytes) result. Reasoning that host endothelium may correct the glomerular phenotype that is seen in laminin alpha5 mutants, alpha5 null embryonic day 12 metanephroi were grafted into wild-type newborn kidney. Hybrid glomeruli were identified in grafts by expression of a host-specific LacZ lineage marker. Labeling of glomerular hybrid GBM with chain-specific antibodies showed a markedly stratified distribution of laminins: alpha5 was found only on the inner endothelial half of GBM, whereas alpha1 located to outer layers beneath mutant podocytes. For measurement of the contribution of host endothelium to hybrid GBM, immunofluorescent signals for laminin alpha5 were quantified: Hybrid GBM contained approximately 50% the normal alpha5 complement as wild-type GBM. Electron microscopy of glomerular hybrids showed vascularization, but podocyte foot processes were absent. It was concluded that (1) endothelial and podocyte-derived laminins remain tethered to their cellular origin, (2) developing endothelial cells contribute large amounts of GBM laminins, and (3) podocyte foot process differentiation may require direct exposure to laminin alpha5.

  6. N-Acetyl Cysteine does not prevent liver toxicity from chronic low dose plus sub-acute high dose paracetamol exposure in young or old mice

    PubMed Central

    Kane, Alice-Elizabeth; Huizer-Pajkos, Aniko; Mach, John; McKenzie, Catriona; Mitchell, Sarah-Jayne; de Cabo, Rafael; Jones, Brett; Cogger, Victoria; Le Couteur, David G; Hilmer, Sarah-Nicole

    2016-01-01

    Paracetamol is an analgesic commonly used by people of all ages, which is well documented to cause severe hepatotoxicity with acute over-exposures. The risk of hepatotoxicity from non-acute paracetamol exposures is less extensively studied, and this is the exposure most common in older adults. Evidence on the effectiveness of N-acetyl cysteine (NAC) for non-acute paracetamol exposures, in any age group, is lacking. This study aimed to examine the effect of long-term exposure to therapeutic doses of paracetamol and sub-acute paracetamol over-exposure, in young and old mice, and to investigate whether NAC was effective at preventing paracetamol hepatotoxicity induced by these exposures. Young and old male C57BL/6 mice were fed a paracetamol-containing (1.33g/kg food) or control diet for 6 weeks. Mice were then dosed orally 8 times over 3 days with additional paracetamol (250mg/kg) or saline, followed by either one or two doses of oral NAC (1200mg/kg) or saline. Chronic low-dose paracetamol exposure did not cause hepatotoxicity in young or old mice, measured by serum alanine aminotransferase (ALT) elevation, and confirmed by histology and a DNA fragmentation assay. Sub-acute paracetamol exposure caused significant hepatotoxicity in young and old mice, measured by biochemistry (ALT) and histology. Neither a single nor double dose of NAC protected against this toxicity from sub-acute paracetamol in young or old mice. This finding has important clinical implications for treating toxicity due to different paracetamol exposure types in patients of all ages, and implies a need to develop new treatments for sub-acute paracetamol toxicity. PMID:26821200

  7. Long-term high-fat feeding induces greater fat storage in mice lacking UCP3.

    PubMed

    Costford, Sheila R; Chaudhry, Shehla N; Crawford, Sean A; Salkhordeh, Mahmoud; Harper, Mary-Ellen

    2008-11-01

    Uncoupling protein-3 (UCP3) is a mitochondrial inner-membrane protein highly expressed in skeletal muscle. While UCP3's function is still unknown, it has been hypothesized to act as a fatty acid (FA) anion exporter, protecting mitochondria against lipid peroxidation and/or facilitating FA oxidation. The aim of this study was to determine the effects of long-term feeding of a 45% fat diet on whole body indicators of muscle metabolism in congenic C57BL/6 mice that were either lacking UCP3 (Ucp3(-/-)) or had a transgenically induced approximately twofold increase in UCP3 levels (UCP3tg). Mice were fed the high-fat (HF) diet for a period of either 4 or 8 mo immediately following weaning. After long-term HF feeding, UCP3tg mice weighed an average of 15% less than wild-type mice (P < 0.05) and were 20% less metabolically efficient than both wild-type and Ucp3(-/-) mice (P < 0.01). Additionally, wild-type mice had 21% lower, whereas UCP3tg mice had 36% lower, levels of adiposity compared with Ucp3(-/-) mice (P < 0.05 and P < 0.001, respectively), indicating a protective effect of UCP3 against fat gain. No differences in whole body oxygen consumption were detected following long-term HF feeding. Glucose and insulin tolerance tests revealed that both the UCP3tg and Ucp3(-/-) mice were more glucose tolerant and insulin sensitive compared with wild-type mice after short-term HF feeding, but this protection was not maintained in the long term. Findings indicate that UCP3 is involved in protection from fat gain induced by long-term HF feeding, but not in protection from insulin resistance.

  8. Neuronal serotonin regulates growth of the intestinal mucosa in mice.

    PubMed

    Gross, Erica R; Gershon, Michael D; Margolis, Kara G; Gertsberg, Zoya V; Li, Zhishan; Cowles, Robert A

    2012-08-01

    The enteric abundance of serotonin (5-HT), its ability to promote proliferation of neural precursors, and reports that 5-HT antagonists affect crypt epithelial proliferation led us to investigate whether 5-HT affects growth and maintenance of the intestinal mucosa in mice. cMice that lack the serotonin re-uptake transporter (SERTKO mice) and wild-type mice were given injections of selective serotonin re-uptake inhibitors (gain-of-function models). We also analyzed mice that lack tryptophan hydroxylase-1 (TPH1KO mice, which lack mucosal but not neuronal 5-HT) and mice deficient in tryptophan hydroxylase-2 (TPH2KO mice, which lack neuronal but not mucosal 5-HT) (loss-of-function models). Wild-type and SERTKO mice were given ketanserin (an antagonist of the 5-HT receptor, 5-HT(2A)) or scopolamine (an antagonist of the muscarinic receptor). 5-HT(2A) receptors and choline acetyltransferase were localized by immunocytochemical analysis. Growth of the mucosa and proliferation of mucosal cells were significantly greater in SERTKO mice and in mice given selective serotonin re-uptake inhibitors than in wild-type mice, but were diminished in TPH2KO (but not in TPH1KO) mice. Ketanserin and scopolamine each prevented the ability of SERT knockout or inhibition to increase mucosal growth and proliferation. Cholinergic submucosal neurons reacted with antibodies against 5-HT(2A). 5-HT promotes growth and turnover of the intestinal mucosal epithelium. Surprisingly, these processes appear to be mediated by neuronal, rather than mucosal, 5-HT. The 5-HT(2A) receptor activates cholinergic neurons, which provide a muscarinic innervation to epithelial effectors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    PubMed

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  10. Type 1 Diabetes in Young Adulthood

    PubMed Central

    Monaghan, Maureen; Helgeson, Vicki; Wiebe, Deborah

    2015-01-01

    Type 1 diabetes has traditionally been studied as a chronic illness of childhood. However, young adulthood is a critical time for the development and integration of lifelong diabetes management skills, and research is starting to identify unique challenges faced by youth with diabetes as they age into adulthood. Most young adults experience multiple transitions during this unstable developmental period, including changes in lifestyle (e.g., education, occupation, living situation), changes in health care, and shifting relationships with family members, friends, and intimate others. Young adults with type 1 diabetes must navigate these transitions while also assuming increasing responsibility for their diabetes care and overall health. Despite these critical health and psychosocial concerns, there is a notable lack of evidence-based clinical services and supports for young adults with type 1 diabetes. We review relevant evolving concerns for young adults with type 1 diabetes, including lifestyle considerations, health care transitions, psychosocial needs, and changes in supportive networks, and how type 1 diabetes impacts and is impacted by these key developmental considerations. Specific avenues for intervention and future research are offered. PMID:25901502

  11. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush.

    PubMed

    Morrison, Brett M; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H; Lengacher, Sylvain; Magistretti, Pierre J; Pellerin, Luc; Rothstein, Jeffrey D

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Genetic loss of diazepam binding inhibitor in mice impairs social interest.

    PubMed

    Ujjainwala, A L; Courtney, C D; Rhoads, S G; Rhodes, J S; Christian, C A

    2018-06-01

    Neuropsychiatric disorders in which reduced social interest is a common symptom, such as autism, depression, and anxiety, are frequently associated with genetic mutations affecting γ-aminobutyric acid (GABA)ergic transmission. Benzodiazepine treatment, acting via GABA type-A receptors, improves social interaction in male mouse models with autism-like features. The protein diazepam binding inhibitor (DBI) can act as an endogenous benzodiazepine, but a role for DBI in social behavior has not been described. Here, we investigated the role of DBI in the social interest and recognition behavior of mice. The responses of DBI wild-type and knockout male and female mice to ovariectomized female wild-type mice (a neutral social stimulus) were evaluated in a habituation/dishabituation task. Both male and female knockout mice exhibited reduced social interest, and DBI knockout mice lacked the sex difference in social interest levels observed in wild-type mice, in which males showed higher social interest levels than females. The ability to discriminate between familiar and novel stimulus mice (social recognition) was not impaired in DBI-deficient mice of either sex. DBI knockouts could learn a rotarod motor task, and could discriminate between social and nonsocial odors. Both sexes of DBI knockout mice showed increased repetitive grooming behavior, but not in a manner that would account for the decrease in social investigation time. Genetic loss of DBI did not alter seminal vesicle weight, indicating that the social interest phenotype of males lacking DBI is not due to reduced circulating testosterone. Together, these studies show a novel role of DBI in driving social interest and motivation. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. In Vivo Absorption and Disposition of Cefadroxil after Escalating Oral Doses in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Posada, Maria M.; Smith, David E.

    2013-01-01

    Purpose To determine the effect of PepT1 on the absorption and disposition of cefadroxil, including the potential for saturable intestinal uptake, after escalating oral doses of drug. Methods The absorption and disposition kinetics of [3H]cefadroxil was determined in wild-type and PepT1 knockout mice after 44.5, 89.1, 178, and 356 nmol/g oral doses of drug. The pharmacokinetics of [3H]cefadroxil was also determined in both genotypes after 44.5 nmol/g intravenous bolus doses. Results PepT1 deletion reduced the area under the plasma concentration-time profile (AUC0-120) of cefadroxil by 10-fold, the maximum plasma concentration (Cmax) by 17.5-fold, and increased the time to reach a maximum plasma concentration (Tmax) by 3-fold. There was no evidence of nonlinear intestinal absorption since AUC0-120 and Cmax values changed in a dose-proportional manner. Moreover, the pharmacokinetics of cefadroxil was not different between genotypes after intravenous bolus doses, indicating that PepT1 did not affect drug disposition. Finally, no differences were observed in the peripheral tissue distribution of cefadroxil (i.e., outside gastrointestinal tract) once these tissues were corrected for differences in perfusing blood concentrations. Conclusions The findings demonstrate convincingly the critical role of intestinal PepT1 in both the rate and extent of oral administration for cefadroxil and potentially other aminocephalosporin drugs. PMID:23959853

  14. Impaired Leptomeningeal Collateral Flow Contributes to the Poor Outcome following Experimental Stroke in the Type 2 Diabetic Mice

    PubMed Central

    Akamatsu, Yosuke; Nishijima, Yasuo; Lee, Chih Cheng; Yang, Shih Yen; Shi, Lei; An, Lin; Wang, Ruikang K.; Tominaga, Teiji

    2015-01-01

    Collateral status is an independent predictor of stroke outcome. However, the spatiotemporal manner in which collateral flow maintains cerebral perfusion during cerebral ischemia is poorly understood. Diabetes exacerbates ischemic brain damage, although the impact of diabetes on collateral dynamics remains to be established. Using Doppler optical coherent tomography, a robust recruitment of leptomeningeal collateral flow was detected immediately after middle cerebral artery (MCA) occlusion in C57BL/6 mice, and it continued to grow over the course of 1 week. In contrast, an impairment of collateral recruitment was evident in the Type 2 diabetic db/db mice, which coincided with a worse stroke outcome compared with their normoglycemic counterpart db/+, despite their equally well-collateralized leptomeningeal anastomoses. Similar to the wild-type mice, both db/+ and db/db mice underwent collateral growth 7 d after MCA stroke, although db/db mice still exhibited significantly reduced retrograde flow into the MCA territory chronically. Acutely induced hyperglycemia in the db/+ mice did not impair collateral flow after stroke, suggesting that the state of hyperglycemia alone was not sufficient to impact collateral flow. Human albumin was efficacious in improving collateral flow and outcome after stroke in the db/db mice, enabling perfusion to proximal MCA territory that was usually not reached by retrograde flow from anterior cerebral artery without treatment. Our results suggest that the impaired collateral status contributes to the exacerbated ischemic injury in mice with Type 2 diabetes, and modulation of collateral flow has beneficial effects on stroke outcome among these subjects. PMID:25740515

  15. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    PubMed

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  16. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    PubMed Central

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  17. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice.

    PubMed

    Li, B; Nolte, L A; Ju, J S; Han, D H; Coleman, T; Holloszy, J O; Semenkovich, C F

    2000-10-01

    To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.

  18. Increased ethanol preference and serotonin 1A receptor-dependent attenuation of ethanol-induced hypothermia in PACAP-deficient mice.

    PubMed

    Tanaka, Kazuhiro; Kunishige-Yamamoto, Akiko; Hashimoto, Hitoshi; Shintani, Norihito; Hayata, Atsuko; Baba, Akemichi

    2010-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice display remarkable behavioral changes including increased novelty-seeking behavior and reduced hypothermia induced by either serotonin (5-HT)(1A) receptor agonists or ethanol. Because 5-HT(1A) receptors have been implicated in the development of alcohol dependence, we have examined ethanol preference in PACAP-deficient mice using a two-bottle choice and a conditioned place preference test, as well as additive effects of ethanol and 5-HT(1A) receptor agents on hypothermia. PACAP-deficient mice showed an increased preference towards ethanol compared with wild-type mice. However, they showed no preference for the ethanol compartment after conditioning and neither preference nor aversion to sucrose or quinine. The 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) restored the attenuated hypothermic response to ethanol in the mutants to similar levels in wild-type mice, with no effect in wild-types. In contrast, the 5-HT(1A) receptor antagonist WAY-100635 attenuated the ethanol-induced hypothermia in wild-type mice, with no effect in the mutants. These results demonstrate increased ethanol preference in PACAP-deficient mice that may be mediated by 5-HT(1A) receptor-dependent attenuation of ethanol-induced central inhibition. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Characterization of various types of mast cells derived from model mice of familial gastrointestinal stromal tumors with KIT-Asp818Tyr mutation

    PubMed Central

    Kajimoto, Noriko; Nakai, Norihiro; Ohkouchi, Mizuka; Hashikura, Yuka; Liu-Kimura, Ning-Ning; Isozaki, Koji; Hirota, Seiichi

    2015-01-01

    Sporadic mast cell neoplasms and gastrointestinal stromal tumors (GISTs) often have various types of somatic gain-of-function mutations of the c-kit gene which encodes a receptor tyrosine kinase, KIT. Several types of germline gain-of-function mutations of the c-kit gene have been detected in families with multiple GISTs. All three types of model mice for the familial GISTs with germline c-kit gene mutations at exon 11, 13 or 17 show development of GIST, while they are different from each other in skin mast cell number. Skin mast cell number in the model mice with exon 17 mutation was unchanged compared to the corresponding wild-type mice. In the present study, we characterized various types of mast cells derived from the model mice with exon 17 mutation (KIT-Asp818Tyr) corresponding to human familial GIST case with human KIT-Asp820Tyr to clarify the role of the c-kit gene mutation in mast cells. Bone marrow-derived cultured mast cells (BMMCs) derived from wild-type mice, heterozygotes and homozygotes were used for the experiments. Immortalized BMMCs, designated as IMC-G4 cells, derived from BMMCs of a homozygote during long-term culture were also used. Ultrastructure, histamine contents, proliferation profiles and phosphorylation of various signaling molecules in those cells were examined. In IMC-G4 cells, presence of additional mutation(s) of the c-kit gene and effect of KIT inhibitors on both KIT autophosphorylation and cell proliferation were also analyzed. We demonstrated that KIT-Asp818Tyr did not affect ultrastructure and proliferation profiles but did histamine contents in BMMCs. IMC-G4 cells had an additional novel c-kit gene mutation of KIT-Tyr421Cys which is considered to induce neoplastic transformation of mouse mast cells and the mutation appeared to be resistant to a KIT inhibitor of imatinib but sensitive to another KIT inhibitor of nilotinib. IMC-G4 cells might be a useful mast cell line to investigate mast cell biology. PMID:26722383

  20. The clock gene Period1 regulates innate routine behaviour in mice

    PubMed Central

    Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik

    2014-01-01

    Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour. PMID:24598427

  1. Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice.

    PubMed

    Murphy, Kate T; Ryall, James G; Snell, Sarah M; Nair, Lawrence; Koopman, René; Krasney, Philip A; Ibebunjo, Chikwendu; Holden, Kathryn S; Loria, Paula M; Salatto, Christopher T; Lynch, Gordon S

    2010-05-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle wasting and weakness, leading to premature death from respiratory and/or cardiac failure. A clinically relevant question is whether myostatin inhibition can improve function of the diaphragm, which exhibits a severe and progressive pathology comparable with that in DMD. We hypothesized that antibody-directed myostatin inhibition would improve the pathophysiology of diaphragm muscle strips from young mdx mice (when the pathology is mild) and adult mdx mice (when the pathology is quite marked). Five weeks treatment with a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg/week) increased muscle mass (P < 0.05) and increased diaphragm median fiber cross-sectional area (CSA, P < 0.05) in young C57BL/10 and mdx mice, compared with saline-treated controls. PF-354 had no effect on specific force (sPo, maximum force normalized to muscle CSA) of diaphragm muscle strips from young C57BL/10 mice, but increased sPo by 84% (P < 0.05) in young mdx mice. In contrast, 8 weeks of PF-354 treatment did not improve muscle mass, median fiber CSA, collagen infiltration, or sPo of diaphragm muscle strips from adult mdx mice. PF-354 antibody-directed myostatin inhibition completely restored the functional capacity of diaphragm strips to control levels when treatment was initiated early, but not in the later stages of disease progression, suggesting that such therapies may only have a limited window of efficacy for DMD and related conditions.

  2. Protective effect of red-stemmed type of Ipomoea aquatica Forsk against CCl4-induced oxidative damage in mice.

    PubMed

    Hirai, Shizuka; Ishibuchi, Toyohito; Watabe, Shinpei; Makita, Miki; Kishida, Chiaki; Takagaki, Michiko; Kurauchi, Nobuyuki; Egashira, Yukari

    2011-01-01

    Water spinach (Ipomoea aquatica Forsk; I. aquatica) of the green-stemmed type (green type) is widely consumed, but there also exists a red-stemmed variety (red type). In the present study, the antioxidant capacity of the red type was compared to that of the green type in carbon tetrachloride (CCl(4))-treated mice. CCl(4)-induced thiobarbituric acid reactive substrate (TBARS) formation in the liver was significantly suppressed in mice fed 5% red-type I. aquatica, while the green type showed no effect. Hydrophobic oxygen radical absorbance capacity (H-ORAC(FL)) in the red type showed a lower level than that in the green type; however, lipophilic ORAC (L-ORAC(FL)) and total-ORAC(FL) levels were significantly higher in the red type than in the green type. α-Tocopherol, anthocyanidin/proanthocyanidin, and β-carotene contents were all significantly higher in the red type than in the green type. These results suggest that the wild red-type I. aquatica contains certain lipophilic components that exert antioxidant capacities not only in vitro but also in vivo. Such effective components in the red type would be beneficial phytochemicals for suppressing several diseases related to oxidative stress.

  3. Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice.

    PubMed

    Chen, Yongmei; Wang, Huizhen; Qi, Nan; Wu, Hui; Xiong, Weipeng; Ma, Jing; Lu, Qingxian; Han, Daishu

    2009-10-01

    Mice lacking TYRO3, AXL and MER (TAM) receptor tyrosine kinases (RTKs) are male sterile. The mechanism of TAM RTKs in regulating male fertility remains unknown. In this study, we analyzed in more detail the testicular phenotype of TAM triple mutant (TAM(-/-)) mice with an effort to understand the mechanism. We demonstrate that the three TAM RTKs cooperatively regulate male fertility, and MER appears to be more important than AXL and TYRO3. TAM(-/-) testes showed a progressive loss of germ cells from elongated spermatids to spermatogonia. Young adult TAM(-/-) mice exhibited oligo-astheno-teratozoospermia and various morphological malformations of sperm cells. As the mice aged, the germ cells were eventually depleted from the seminiferous tubules. Furthermore, we found that TAM(-/-) Sertoli cells have an impaired phagocytic activity and a large number of differentially expressed genes compared to wild-type controls. By contrast, the function of Leydig cells was not apparently affected by the mutation of TAM RTKs. Therefore, we conclude that the suboptimal function of Sertoli cells leads to the impaired spermatogenesis in TAM(-/-) mice. The results provide novel insight into the mechanism of TAM RTKs in regulating male fertility.

  4. System-wide identification of wild-type SUMO-2 conjugation sites

    PubMed Central

    Hendriks, Ivo A.; D'Souza, Rochelle C.; Chang, Jer-Gung; Mann, Matthias; Vertegaal, Alfred C. O.

    2015-01-01

    SUMOylation is a reversible post-translational modification (PTM) regulating all nuclear processes. Identification of SUMOylation sites by mass spectrometry (MS) has been hampered by bulky tryptic fragments, which thus far necessitated the use of mutated SUMO. Here we present a SUMO-specific protease-based methodology which circumvents this problem, dubbed Protease-Reliant Identification of SUMO Modification (PRISM). PRISM allows for detection of SUMOylated proteins as well as identification of specific sites of SUMOylation while using wild-type SUMO. The method is generic and could be widely applied to study lysine PTMs. We employ PRISM in combination with high-resolution MS to identify SUMOylation sites from HeLa cells under standard growth conditions and in response to heat shock. We identified 751 wild-type SUMOylation sites on endogenous proteins, including 200 dynamic SUMO sites in response to heat shock. Thus, we have developed a method capable of quantitatively studying wild-type mammalian SUMO at the site-specific and system-wide level. PMID:26073453

  5. Differential regulation of primary afferent input to spinal cord by muscarinic receptor subtypes delineated using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-05-16

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK.

    PubMed

    Chae, Yun Jeong; Zhang, Jianan; Au, Paul; Sabbadini, Marta; Xie, Guo-Xi; Yost, C Spencer

    2010-12-01

    We investigated the role of tandem pore potassium ion channel (K2P) TRESK in neurobehavioral function and volatile anesthetic sensitivity in genetically modified mice. Exon III of the mouse TRESK gene locus was deleted by homologous recombination using a targeting vector. The genotype of bred mice (wild type, knockout, or heterozygote) was determined using polymerase chain reaction. Morphologic and behavioral evaluations of TRESK knockout mice were compared with wild-type littermates. Sensitivity of bred mice to isoflurane, halothane, sevoflurane, and desflurane were studied by determining the minimum alveolar concentration preventing movement to tail clamping in 50% of each genotype. With the exception of decreased number of inactive periods and increased thermal pain sensitivity (20% decrease in latency with hot plate test), TRESK knockout mice had healthy development and behavior. TRESK knockout mice showed a statistically significant 8% increase in isoflurane minimum alveolar concentration compared with wild-type littermates. Sensitivity to other volatile anesthetics was not significantly different. Spontaneous mortality of TRESK knockout mice after initial anesthesia testing was nearly threefold higher than that of wild-type littermates. TRESK alone is not critical for baseline central nervous system function but may contribute to the action of volatile anesthetics. The inhomogeneous change in anesthetic sensitivity corroborates findings in other K2P knockout mice and supports the theory that the mechanism of volatile anesthetic action involves multiple targets. Although it was not shown in this study, a compensatory effect by other K2P channels may also contribute to these observations.

  7. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    PubMed

    Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko

    2016-01-01

    Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  8. Type 1 fimbriae are important factors limiting the dissemination and colonization of mice by Salmonella Enteritidis and contribute to the induction of intestinal inflammation during Salmonella invasion

    PubMed Central

    Kuźmińska-Bajor, Marta; Grzymajło, Krzysztof; Ugorski, Maciej

    2015-01-01

    We have recently shown that Salmonella Gallinarum type 1 fimbriae with endogenous mannose-resistant (MR) variant of the FimH protein increase systemic dissemination of S. Gallinarum and colonization of internal organs in comparison to the S. Gallinarum fimH knockout strain or the mutant expressing mannose-sensitive (MS) FimH variant from S. Enteritidis. Elaborating from these studies, we proposed that MS variants of FimH are advantageous in gastrointestinal infections, in contrast to MR FimH variants which decrease intestinal colonization and promote their systemic spreading. To support our hypothesis, we carried out in vivo studies using mice infected with wild-type S. Enteritidis and its fimH knockout strain (S. Enteritidis), which was characterized by significantly lower adhesion and invasiveness of murine ICE-1 intestinal cells. Using bioluminescence imaging, we observed that the loss of MS FimH adhesin correlates well with the highly increased colonization of mice by these bacteria. The appearance of the mutant strain was observed much earlier than wild-type Salmonella, and mice infected with 104–107 S. Enteritidis fimH::kan CFUs had significantly (P < 0.05) shorter infection-free time than animals inoculated with wild-type S. Enteritidis. Infections caused by non-typhoid Salmonella, such as S. Enteritidis, are associated with massive inflammation of the lamina propria and lymph nodes in the intestinal tract. Therefore, we evaluated the role of MS type 1 fimbriae in the induction of cytokine expression and secretion, using murine ICE-1 intestinal cells. We showed that the expression, as well as secretion, of Il-1b, Il-6, Il-10, and Il-12b was significantly higher in cells infected with wild-type S. Enteritidis compared to cells infected with the mutant strain. Based on our results, we propose that type 1 fimbriae may play an important role in the pathogenicity of S. Enteritidis and may contribute to an intestinal inflammatory response. PMID:25914682

  9. T-cell-dependent control of acute Giardia lamblia infections in mice.

    PubMed

    Singer, S M; Nash, T E

    2000-01-01

    We have studied immune mechanisms responsible for control of acute Giardia lamblia and Giardia muris infections in adult mice. Association of chronic G. lamblia infection with hypogammaglobulinemia and experimental infections of mice with G. muris have led to the hypothesis that antibodies are required to control these infections. We directly tested this hypothesis by infecting B-cell-deficient mice with either G. lamblia or G. muris. Both wild-type mice and B-cell-deficient mice eliminated the vast majority of parasites between 1 and 2 weeks postinfection with G. lamblia. G. muris was also eliminated in both wild-type and B-cell-deficient mice. In contrast, T-cell-deficient and scid mice failed to control G. lamblia infections, as has been shown previously for G. muris. Treatment of wild-type or B-cell-deficient mice with antibodies to CD4 also prevented elimination of G. lamblia, confirming a role for T cells in controlling infections. By infecting mice deficient in either alphabeta- or gammadelta-T-cell receptor (TCR)-expressing T cells, we show that the alphabeta-TCR-expressing T cells are required to control parasites but that the gammadelta-TCR-expressing T cells are not. Finally, infections in mice deficient in production of gamma interferon or interleukin 4 (IL-4) and mice deficient in responding to IL-4 and IL-13 revealed that neither the Th1 nor the Th2 subset is absolutely required for protection from G. lamblia. We conclude that a T-cell-dependent mechanism is essential for controlling acute Giardia infections and that this mechanism is independent of antibody and B cells.

  10. Effects of environmental radiation on testes and spermatogenesis in wild large Japanese field mice (Apodemus speciosus) from Fukushima

    PubMed Central

    Okano, Tsukasa; Ishiniwa, Hiroko; Onuma, Manabu; Shindo, Junji; Yokohata, Yasushi; Tamaoki, Masanori

    2016-01-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident that occurred after the Great East Japan Earthquake in March 2011 released large quantities of radionuclides to the environment. The long-term effects of radioactive cesium (Cs) on biota are of particular concern. We investigated the accumulation of radioactive Cs derived from the FDNPP accident, and chronic effects of environmental radionuclides on male reproduction, in the large Japanese field mouse (Apodemus speciosus). In 2013 and 2014, wild mice were captured at 2 sites in Fukushima Prefecture and at 2 control sites that were distant from Fukushima. Although the median concentrations of 134Cs and 137Cs in the mice from Fukushima exceeded 4,000 Bq/kg, there were no significant differences in the apoptotic cell frequencies or the frequencies of morphologically abnormal sperm among the capture sites. Thus, we conclude that radiation did not cause substantial male subfertility in Fukushima during 2013 and 2014, and radionuclide pollution levels in the study sites would not be detrimental to spermatogenesis of the wild mice in Fukushima. PMID:27005329

  11. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.

    PubMed

    Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L

    2000-12-01

    Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.

  12. The rewarding action of acute cocaine is reduced in β-endorphin deficient but not in μ opioid receptor knockout mice.

    PubMed

    Nguyen, Alexander T; Marquez, Paul; Hamid, Abdul; Kieffer, Brigitte; Friedman, Theodore C; Lutfy, Kabirullah

    2012-07-05

    We have previously shown that β-endorphin plays a functional role in the rewarding effect of acute cocaine. Considering that β-endorphin has high affinity for the μ opioid receptor, we determined the role of this receptor in the rewarding action of acute cocaine. For comparison, we assessed the role of the μ opioid receptor in the rewarding effect of acute morphine. We also examined the effect of intracerebroventricular (i.c.v.) administration of β-funaltrexamine (β-FNA), an irreversible μ opioid receptor antagonist, on the rewarding action of acute cocaine as well as that of morphine. Using the conditioned place preference (CPP) paradigm as an animal model of reward, we first assessed the rewarding action of cocaine in mice lacking β-endorphin or the μ opioid receptor and their respective wild-type littermates/controls. Mice were tested for preconditioning place preference on day 1, conditioned once daily with saline/cocaine (30mg/kg, i.p.) or cocaine/saline on days 2 and 3, and then tested for postconditioning place preference on day 4. We next studied the rewarding action of acute morphine in μ knockout mice and their wild-type controls. The CPP was induced by single alternate-day saline/morphine (10mg/kg, s.c.) or morphine/saline conditioning. We finally determined the effect of β-FNA on CPP induced by cocaine or morphine in wild-type mice, in which mice were treated with saline or β-FNA (9ug/3μl; i.c.v.) a day prior to the preconditioning test day. Our results revealed that morphine induced a robust CPP in wild-type mice but not in mice lacking the μ opioid receptor or in wild-type mice treated with β-FNA. In contrast, cocaine induced CPP in μ knockout mice as well as in wild-type mice treated with β-FNA. On the other hand, cocaine failed to induce CPP in mice lacking β-endorphin. These results illustrate that β-endorphin is essential for the rewarding action of acute cocaine, but the μ opioid receptor may not mediate the regulatory action

  13. CYP1A1 and CYP1A2 expression: Comparing ‘humanized’ mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    PubMed Central

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how “human-like” can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  14. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging.

    PubMed

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null ( Col6a1 -/- ) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1 -/- mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1 -/- mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1 -/- mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1 -/- mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1 -/- diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1 -/- gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule

  15. Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes.

    PubMed

    Haines, Corinne; Elcombe, Barbara M; Chatham, Lynsey R; Vardy, Audrey; Higgins, Larry G; Elcombe, Clifford R; Lake, Brian G

    2018-03-01

    Phenobarbital (PB), a constitutive androstane receptor (CAR) activator, produces liver tumours in rodents by a mitogenic mode of action involving CAR activation. In this study, the hepatic effects of sodium phenobarbital (NaPB) were compared in male C57BL/6J wild type (WT) mice and in humanized mice, where both the mouse CAR and pregnane X receptor (PXR) have been replaced by their human counterparts (hCAR/hPXR mice). Investigations were also performed in cultured male C57BL/6J and CD-1 mouse, male Sprague-Dawley rat and male and female human hepatocytes. The treatment of WT and hCAR/hPXR mice with 186-984 ppm NaPB in the diet for 7 days resulted in increased relative liver weight, hypertrophy and induction of cytochrome P450 (CYP) enzyme activities. Treatment with NaPB also produced dose-dependent increases in hepatocyte replicative DNA synthesis (RDS), with the effect being more marked in WT than in hCAR/hPXR mice. While the treatment of cultured C57BL/6J and CD-1 mouse, Sprague-Dawley rat and human hepatocytes with 100 and/or 1000 μM NaPB for 4 days induced CYP enzyme activities, increased RDS was only observed in mouse and rat hepatocytes. However, as a positive control, epidermal growth factor increased RDS in hepatocytes from all three species. In summary, although human hepatocytes are refractory to the mitogenic effects of NaPB, treatment with NaPB induced RDS in vivo in hCAR/hPXR mice, which is presumably due to the human CAR and PXR receptors operating in a mouse hepatocyte regulatory environment. As the response of the hCAR/hPXR mouse to the CAR activator NaPB differs markedly from that of human hepatocytes, the hCAR/hPXR mouse is thus not a suitable animal model for studies on the hepatic effects of nongenotoxic rodent CAR activators. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    PubMed

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  17. Maturation Stage Enamel Malformations in Amtn and Klk4 Null Mice

    PubMed Central

    Nunez, Stephanie M.; Chun, Yong-Hee P.; Ganss, Bernhard; Hu, Yuanyuan; Richardson, Amelia S; Schmitz, James E.; Fajardo, Roberto; Yang, Jie; Hu, Jan C-C.; Simmer, James P.

    2015-01-01

    Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn−/−, Klk4−/−, Amtn+/−Klk4+/− and Amtn−/−Klk4−/− mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (µCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice, demonstrating a delay in enamel maturation in Amtn−/− incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4 gHA/cm3) in the Klk4−/− and Amtn−/−Klk4−/− mice respectively, compared with wild-type enamel (3.1 gHA/cm3). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4−/− and Amtn−/−Klk4−/− mice. Knoop hardness of Amtn−/− outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4−/− enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn−/− and Klk4−/− mice were distinctly different, while the Amtn−/−Klk4−/− outer enamel was not as hard as in the Amtn−/− and Klk4−/− mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation. PMID:26620968

  18. INDUCTION OF IMMUNOLOGIC TOLERANCE IN OLDER NEW ZEALAND MICE REPOPULATED WITH YOUNG SPLEEN, BONE MARROW, OR THYMUS

    PubMed Central

    Staples, Parker J.; Steinberg, Alfred D.; Talal, Norman

    1970-01-01

    Newborn, 7–9 day, and 16–18 day old NZB and B/W mice were, unlike older New Zealand mice, rendered tolerant to single doses of 8–10 mg of soluble BGG. After challenge, this tolerance was of short duration and escape occurred rapidly. Age-matched and similarly treated C3H, Balb/c and C57Bl mice did not escape from tolerance. Partial tolerance could be maintained by repeated injections of BGG. Biofiltration ruled out hyperphagocytosis as an explanation for this resistance to tolerance. Tolerance could be induced in older B/W mice if they were thymectomized, irradiated, and repopulated with young (12–15 day), but not old (2–3 month), spleen or bone marrow cells. Old bone marrow cells gave a non-tolerant response even when combined with young thymic grafts. Young bone marrow gave a tolerant response which was followed by the expected rapid escape only if a young thymus graft was also present. Escape was retarded if old thymus, or old irradiated thymus, was combined with young bone marrow. These results are best explained by abnormalities of both lymphoid precursors and thymic regulation. PMID:4192570

  19. Type 2 diabetes aggravates Alzheimer's disease-associated vascular alterations of the aorta in mice.

    PubMed

    Sena, Cristina M; Pereira, Ana M; Carvalho, Cristina; Fernandes, Rosa; Seiça, Raquel M; Oliveira, Catarina R; Moreira, Paula I

    2015-01-01

    Vascular risk factors are associated with a higher incidence of dementia. In fact, diabetes mellitus is considered a main risk factor for Alzheimer's disease (AD) and both diseases are characterized by vascular dysfunction. However, the underlying mechanisms remain largely unknown. Here, the effects of high-sucrose-induced type 2 diabetes (T2D) in the aorta of wild type (WT) and triple-transgenic AD (3xTg-AD) mice were investigated. 3xTg-AD mice showed a significant decrease in body weight and an increase in postprandial glycemia, glycated hemoglobin (HbA1c), and vascular nitrotyrosine, superoxide anion (O2•-), receptor for the advanced glycation end products (RAGE) protein, and monocyte chemoattractant protein-1 (MCP-1) levels when compared to WT mice. High-sucrose intake caused a significant increase in body weight, postprandial glycemia, HbA1c, triglycerides, plasma vascular cell adhesion molecule 1 (VCAM-1), and vascular nitrotyrosine, O2•-, RAGE, and MCP-1 levels in both WT and 3xTg-AD mice when compared to the respective control group. Also, a significant decrease in nitric oxide-dependent vasorelaxation was observed in 3xTg-AD and sucrose-treated WT mice. In conclusion, AD and T2D promote similar vascular dysfunction of the aorta, this effect being associated with elevated oxidative and nitrosative stress and inflammation. Also, AD-associated vascular alterations are potentiated by T2D. These findings support the idea that metabolic alterations predispose to the onset and progression of dementia.

  20. Compromised renal microvascular reactivity of angiotensin type 1 double null mice.

    PubMed

    Park, Sungmi; Bivona, Benjamin J; Harrison-Bernard, Lisa M

    2007-07-01

    Angiotensin type 1A (AT(1A)) and 1B (AT(1B)) receptor deletion (AT1DKO) results in renal microvascular disease, tubulointerstitial injury, and reduced blood pressure. To test the hypothesis that renal preglomerular responses to angiotensin (ANG) II are mediated by AT(1A) and AT(1B) receptors, experiments were performed in AT1DKO mice using the in vitro blood perfused juxtamedullary nephron technique. Kidneys were harvested from AT1DKO and wild-type (WT) mice and bathed with ANG II (1-100 nM), norepinephrine (NE; 100-1,000 nM), or acetylcholine (ACh; 10 microM). Baseline diameters of afferent (19.5 +/- 0.7 and 13.9 +/- 0.7 microm, n = 17 and 16) and efferent (15.5 +/- 2.1 and 10.8 +/- 1.0 microm, n = 4 and 7) arterioles of AT1DKO were significantly larger than WT. Afferent and efferent arteriolar responses to ANG II, 100, and 300 nM NE were absent in AT1DKO; although significant constriction to 1 microM NE was observed (-17 +/- 5 and -23 +/- 6%, respectively). Afferent arterioles of WT mice dilated significantly in response to ACh (15.1 +/- 0.6 to 17.0 +/- 1.2 microm, n = 6); however, arterioles from AT1DKO tended to contract (19.9 +/- 1.2 to 17.8 +/- 1.6 microm; n = 6, P = 0.06). In summary, loss of ANG II-induced contraction, reduced vasoconstriction to NE, and endothelial cell dysfunction contribute to the renal vascular phenotype of AT1DKO mice. We conclude that ANG II signaling via the AT(1) receptor plays a pivotal role in basal renal microvascular tone and effectiveness to respond to vasoconstrictor and vasodilator agonists.

  1. Inhibition of the promotion of hepatocarcinogenesis by 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) by the deletion of the p50 subunit of NF-{kappa}B in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glauert, Howard P.; Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506; Tharappel, Job C.

    Polychlorinated biphenyls (PCBs) are persistent and ubiquitous environmental chemicals that bioaccumulate and have hepatic tumor promoting activity in rodents. The present study examined the effect of deleting the p50 subunit of NF-{kappa}B on the hepatic tumor promoting activity of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) in mice. Both wild-type and p50-/- male mice were injected i.p. with diethylnitrosamine (DEN, 90 mg/kg) and then subsequently injected biweekly with 20 i.p. injections of PCB-153 (300 {mu}mol/kg/injection). p50 deletion decreased the tumor incidence in both PCB- and vehicle-treated mice, whereas PCB-153 slightly (P = 0.09) increased the tumor incidence in wild-type and p50-/- mice. PCB-153 increased themore » total tumor volume in both wild-type and p50-/- mice, but the total tumor volume was not affected by p50 deletion in either PCB- or vehicle-treated mice. The volume of tumors that were positive for glutamine synthetase (GS), which is indicative of mutations in the beta-catenin gene, was increased in both wild-type and p50-/- mice administered PCB-153 compared to vehicle controls, and inhibited in p50-/- mice compared to wild-type mice (in both PCB- and vehicle-treated mice). The volume of tumors that were negative for GS was increased in p50-/- mice compared to wild-type mice but was not affected by PCB-153. PCB-153 increased cell proliferation in normal hepatocytes in wild-type but not p50-/- mice; this increase was inhibited in p50-/- mice. In hepatic tumors, the rate of cell proliferation was much higher than in normal hepatocytes, but was not affected by PCB treatment or p50 deletion. The rate of apoptosis, as measured by the TUNEL assay, was not affected by PCB-153 or p50 deletion in normal hepatocytes. In hepatic tumors, the rate of apoptosis was lower than in normal hepatocytes; PCB-153 slightly (P = 0.10) increased apoptosis in p50-/- but not wild-type mice; p50 deletion had no effect. Taken together, these data indicate that

  2. Altered thermogenesis and impaired bone remodeling in Misty mice.

    PubMed

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-09-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold

  3. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    PubMed

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  4. Comparative Quantitative Studies on the Microvasculature of the Heart of a Highly Selected Meat-Type and a Wild-Type Turkey Line

    PubMed Central

    Kattanek, Maria; Richardson, Kenneth C.; Hafez, Hafez Mohamed; Plendl, Johanna; Hünigen, Hana

    2017-01-01

    In this study the macroscopic and microscopic structure of the heart of a fast growing, meat-type turkey line (British United turkeys BUT Big 6) and a wild-type turkey line (Canadian Wild turkey) were compared. At 8 and 16 weeks of age, 10 birds of each genotype and sex were sampled. The body mass and heart mass of the meat-type turkey both increased at a faster rate than those of the wild-type turkey. However in both turkey lines, the relative heart mass decreased slightly with age, the decrease was statistically significant only in the male turkeys. Furthermore meat-type turkeys had a significantly (p < 0.01) lower relative heart mass and relative thickness of the left ventricle compared to the wild-type turkeys of the same age. The wild-type turkeys showed no significant change in the size of cardiomyocytes (cross sectional area and diameter) from 8 weeks to 16 weeks. In contrast, the size of cardiomyocytes increased significantly (p < 0.001) with age in the meat-type turkeys. The number of capillaries in the left ventricular wall increased significantly (p < 0.001) in wild-type turkeys from 2351 per mm2 at the age of 8 weeks to 2843 per mm2 at 16 weeks. However, in the meat-type turkeys there were no significant changes, capillary numbers being 2989 per mm2 at age 8 weeks and 2915 per mm2 at age 16 weeks. Correspondingly the area occupied by capillaries in the myocardium increased in wild-type turkeys from 8.59% at the age of 8 weeks to 9.15% at 16 weeks, whereas in meat-type turkeys this area decreased from 10.4% at 8 weeks to 9.95% at 16 weeks. Our results indicate a mismatch in development between body mass and heart mass and a compromised cardiac capillary density and architecture in the meat-type turkeys in comparison to the wild-type turkeys. PMID:28118415

  5. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE PAGES

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...

    2016-05-26

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  6. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  7. Improvement in motor and exploratory behavior in Rett syndrome mice with restricted ketogenic and standard diets.

    PubMed

    Mantis, John G; Fritz, Christie L; Marsh, Jeremy; Heinrichs, Stephen C; Seyfried, Thomas N

    2009-06-01

    Rett syndrome (RTT) is a rare X-linked autistic-spectrum neurological disorder associated with impaired energy metabolism, seizure susceptibility, progressive social behavioral regression, and motor impairment primarily in young girls. The objective of this study was to examine the influence of restricted diets, including a ketogenic diet (KD) and a standard rodent chow diet (SD), on behavior in male Mecp2(308/y) mice, a model of RTT. The KD is a high-fat, low-carbohydrate diet that has anticonvulsant efficacy in children with intractable epilepsy and may be therapeutic in children with RTT. Following an 11-day pretrial period, adult wild-type and mutant Rett mice were separated into groups that were fed either an SD in unrestricted or restricted amounts or a ketogenic diet (KetoCal) in restricted amounts for a total of 30 days. The restricted diets were administered to reduce mouse body weight by 20-23% compared to the body weight of each mouse before the initiation of the diet. All mice were subjected to a battery of behavioral tests to determine the influence of the diet on the RTT phenotype. We found that performance in tests of motor behavior and anxiety was significantly worse in male RTT mice compared to wild-type mice and that restriction of either the KD or the SD improved motor behavior and reduced anxiety. We conclude that although both restricted diets increased the tendency of Rett mice to explore a novel environment, the beneficial effects of the KD were due more to calorie restriction than to the composition of the diet. Our findings suggest that calorically restricted diets could be effective in reducing the anxiety and in improving motor behavior in girls with RTT.

  8. Overexpression of the A-FABP gene facilitates intermuscular fat deposition in transgenic mice.

    PubMed

    Liu, Z W; Fan, H L; Liu, X F; Ding, X B; Wang, T; Sui, G N; Li, G P; Guo, H

    2015-03-31

    Adipocyte fatty acid-binding protein (A-FABP), the most abundant FABP in adipocytes, controls fatty acid uptake, transport, and metabolism in fat cells. We constructed a transgenic mice model that overexpressed the cattle A-FABP gene to investigate the relationship between A-FABP expression and intermuscular fat deposition. There was no significant difference in body weight and serum biochemical indexes between transgenic and wild-type mice. Further, there were no significant differences in intermuscular triglyceride content and A-FABP expression levels over three generations of transgenic mice. However, abdominal adipose rate, A-FABP protein content, and intermuscular triglyceride levels of transgenic mice were significantly higher than those of wild-type mice. In addition, triglycerides were remarkably higher in the skeletal muscle but lower in the myocardium of transgenic mice. Thus, overexpression of cattle A-FABP gene promoted fat deposition in the skeletal muscle of transgenic mice.

  9. Chronic Exposure to Rifaximin Causes Hepatic Steatosis in Pregnane X Receptor-Humanized Mice

    PubMed Central

    Gonzalez, Frank, J.

    2012-01-01

    Rifaximin, a nonsystemic antibiotic that exhibits low gastrointestinal absorption, is a potent agonist of human pregnane X receptor (PXR), which contributes to its therapeutic efficacy in inflammatory bowel disease. To investigate the effects of long-term administration of rifaximin on the liver, PXR-humanized mice were administered rifaximin for 6 months; wild-type and Pxr-null mice were treated in parallel as controls. Histological analysis revealed time-dependent intense hepatocellular fatty degeneration and increased hepatic triglycerides in PXR-humanized mice and not in wild-type and Pxr-null mice. After long-term treatment, PXR target genes were induced in small intestine and liver, with significant up-regulation in the expression of hepatic genes related to triglyceride synthesis and lipid accumulation. However, no significant hepatic accumulation of rifaximin was found, even after 6 months of treatment, in PXR-humanized mice. Genes in the small intestine that are involved in the uptake of fatty acids and triglycerides were induced along with increased triglyceride accumulation in intestinal epithelial cells of PXR-humanized mice; this was not observed in wild-type and Pxr-null mice. These findings suggest that long-term administration of rifaximin could lead to PXR-dependent hepatocellular fatty degeneration as a result of activation of genes involved in lipid uptake, thus indicating a potential adverse effect of rifaximin on liver function after long-term exposure. PMID:22790967

  10. Yokukansankachimpihange increased body weight but not food-incentive motivation in wild-type mice.

    PubMed

    Hamaguchi, Takuya; Tsutsui-Kimura, Iku; F Tanaka, Kenji; Mimura, Masaru

    2017-08-01

    Yokukansankachimpihange (YKSCH), a traditional Japanese medicine, is widely used for the amelioration of the behavioral and psychological symptoms of dementia with digestive dysfunction. Regardless of its successful use for digestive dysfunction, the effect of YKSCH on body weight was unknown. Furthermore, if YKSCH increased body weight, it might increase motivation according to Kampo medicine theory. Therefore, we investigated whether YKSCH had the potential to increase body weight and enhance motivation in mice. To address this, C57BL/6J mice were used to evaluate the long-term effect of YKSCH on body weight and food-incentive motivation. As part of the evaluation, we optimized an operant test for use over the long-term. We found that feeding mice YKSCH-containing chow increased body weight, but did not increase their motivation to food reward. We propose that YKSCH may be a good treatment option for preventing decrease in body weight in patients with dementia.

  11. Diacylglycerol Lipase α Knockout Mice Demonstrate Metabolic and Behavioral Phenotypes Similar to Those of Cannabinoid Receptor 1 Knockout Mice

    PubMed Central

    Powell, David R.; Gay, Jason P.; Wilganowski, Nathaniel; Doree, Deon; Savelieva, Katerina V.; Lanthorn, Thomas H.; Read, Robert; Vogel, Peter; Hansen, Gwenn M.; Brommage, Robert; Ding, Zhi-Ming; Desai, Urvi; Zambrowicz, Brian

    2015-01-01

    After creating >4,650 knockouts (KOs) of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1) KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase α or β (Dagla or Daglb), which catalyze biosynthesis of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG), or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 47 and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. By contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight (BW) similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride, and total cholesterol levels, and after glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: (1) the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; (2) in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and (3) small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower BW and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric side

  12. Benzo[a]pyrene (BP) DNA adduct formation in DNA repair–deficient p53 haploinsufficient [Xpa(−/−)p53(+/−)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days

    PubMed Central

    Poirier, Miriam C.

    2012-01-01

    We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(−/−)p53(+/−) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)–DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(−/−)p53(+/−) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(−/−)p53(+/−) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(−/−)p53(+/−) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP–DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(−/−)p53(+/−) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH–DNA adduct levels consistently in human organs. PMID:22828138

  13. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    PubMed Central

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  14. Reduced ability of C-type natriuretic peptide (CNP) to activate natriuretic peptide receptor B (NPR-B) causes dwarfism in lbab−/− mice

    PubMed Central

    Yoder, Andrea R.; Kruse, Andrew C.; Earhart, Cathleen A.; Ohlendorf, Douglas H.; Potter, Lincoln R.

    2015-01-01

    C-type natriuretic peptide (CNP) stimulates endochondrial ossification by activating the transmembrane guanylyl cyclase, natriuretic peptide receptor-B (NPR-B). Recently, a spontaneous autosomal recessive mutation that causes severe dwarfism in mice was identified. The mutant, called long bone abnormality (lbab), contains a single point mutation that converts an arginine to a glycine in a conserved coding region of the CNP gene, but how this mutation affects CNP activity has not been reported. Here, we determined that thirty to greater than one hundred-fold more CNPlbab was required to activate NPR-B as compared to wild-type CNP in whole cell cGMP elevation and membrane guanylyl cyclase assays. The reduced ability of CNPlbab to activate NPR-B was explained, at least in part, by decreased binding since ten-fold more CNPlbab than wild-type CNP was required to compete with [125I][Tyr0]CNP for receptor binding. Molecular modeling suggested that the conserved arginine is critical for binding to an equally conserved acidic pocket in NPR-B. These results indicate that reduced binding to and activation of NPR-B causes dwarfism in lbab−/− mice. PMID:18554750

  15. Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis.

    PubMed

    Gómez-Hurtado, Isabel; Moratalla, Alba; Moya-Pérez, Ángela; Peiró, Gloria; Zapater, Pedro; González-Navajas, José M; Giménez, Paula; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-10-01

    Bacterial endotoxin is present in patients with advanced cirrhosis and can induce an immunogenic response without an overt infection. Norfloxacin is a gram-negative bactericidal drug able to maintain low endotoxin levels and stimulate IL-10 production. We aimed at investigating the role of IL-10 in decreasing endotoxin absorption in cirrhotic mice treated with norfloxacin. Cirrhosis was induced by carbon tetrachloride or bile duct ligation in wild type and IL10-deficient mice with or without norfloxacin prior to an intragastrical administration of E. coli, K. pneumonia or E. faecalis. Spontaneous and induced bacterial translocation, free endotoxin and cytokine levels were evaluated in mesenteric lymph nodes. Intestinal permeability was followed by fluorimetry and barrier integrity markers were measured in disrupted intestinal samples. The inflammatory-modulating mechanism was characterized in purified intestinal mononuclear cells. Norfloxacin reduced spontaneous and induced MLN positive-cultures in wild type and IL-10-deficient animals. However, reduction of free endotoxin levels was associated with norfloxacin in wild type but not in IL-10-deficient mice. Wild type but not IL-10-deficient mice treated with norfloxacin significantly normalized intestinal permeability and improved gut barrier integrity markers. The toll-like receptor 4-mediated pro-inflammatory milieu was modulated by norfloxacin in a concentration-dependent manner in cultured intestinal mononuclear cells of wild type mice but not of IL-10-deficient mice. The restoration of IL-10 levels in IL-10-deficient animals reactivated the norfloxacin effect on inflammatory-modulation, gut barrier permeability, and luminal endotoxin absorption. Norfloxacin not only reduces gram-negative intestinal flora but also participates in an IL-10-driven modulation of gut barrier permeability, thus reducing luminal free endotoxin absorption in experimental cirrhosis. Copyright © 2014 European Association for the Study

  16. A speculated ribozyme site in the herpes simplex virus type 1 latency-associated transcript gene is not essential for a wild-type reactivation phenotype

    PubMed Central

    Carpenter, Dale; Singh, Sukhpreet; Osorio, Nelson; Hsiang, Chinhui; Jiang, Xianzhi; Jin, Ling; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    During herpes simplex virus-1 (HSV-1) latency in sensory neurons, LAT (latency-associated transcript) is the only abundantly expressed viral gene. LAT plays an important role in the HSV-1 latency-reactivation cycle, because LAT deletion mutants have a significantly decreased reactivation phenotype. Based solely on sequence analysis, it was speculated that LAT encodes a ribozyme that plays an important role in how LAT enhances the virus’ reactivation phenotype. Because LAT ribozyme activity has never been reported, we decided to test the converse hypothesis, namely, that this region of LAT does not encode a ribozyme function important for LAT’s ability to enhance the reactivation phenotype. We constructed a viral mutant (LAT-Rz) in which the speculated ribozyme consensus sequence was altered such that no ribozyme was encoded. We report here that LAT-Rz had a wild-type reactivation phenotype in mice, confirming the hypothesis that the speculated LAT ribozyme is not a dominant factor in stimulating the latency-reactivation cycle in mice. PMID:18982533

  17. Experimental Support for the Ecoimmunity Theory: Distinct Phenotypes of Nonlymphocytic Cells in SCID and Wild-Type Mice.

    PubMed

    Ochayon, David E; Baranovski, Boris M; Malkin, Peter; Schuster, Ronen; Kalay, Noa; Ben-Hamo, Rotem; Sloma, Ido; Levinson, Justin; Brazg, Jared; Efroni, Sol; Lewis, Eli C; Nevo, Uri

    2016-01-01

    Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon

  18. Wild Blueberries (Vaccinium myrtillus) Alleviate Inflammation and Hypertension Associated with Developing Obesity in Mice Fed with a High-Fat Diet

    PubMed Central

    Mykkänen, Otto T.; Huotari, Anne; Herzig, Karl-Heinz; Dunlop, Thomas W.; Mykkänen, Hannu; Kirjavainen, Pirkka V.

    2014-01-01

    Background Low-grade metabolic inflammation and hypertension are primary mechanisms involved in obesity-associated adverse health effects. Berries, especially Nordic wild blueberries (hereafter referred to as bilberries), represent an important source of dietary anthocyanins, a group of polyphenols with potential beneficial effects to combat obesity-associated metabolic disturbances. Methods The effects of 5% or 10% (w/w) of whole bilberries (BB) were studied on the development of obesity and its metabolic disturbances in C57BL mice fed with a high-fat diet (HFD) for three months. Cytokines, inflammatory cells, systolic blood pressure, glucose tolerance, insulin sensitivity, weight gain, body fat, food consumption and energy metabolism were assessed. Results Bilberries ameliorated type 1 pro-inflammatory responsiveness induced by HFD. This was indicated by the altered cytokine profile and the reduced prevalence of interferon gamma -producing T-cells, in particular T helper type 1 cells. Bilberries also prevented the progression of obesity associated long term increase in systolic blood pressure in mice. Conclusions Bilberries reduce the development of systemic inflammation and prevent the progression of chronic hypertension, thus supporting their potential role in alleviating the adverse health effects associated with developing obesity. PMID:25501421

  19. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS.

    PubMed

    Fleischmann, Alexander; Hvalby, Oivind; Jensen, Vidar; Strekalova, Tatyana; Zacher, Christiane; Layer, Liliana E; Kvello, Ane; Reschke, Markus; Spanagel, Rainer; Sprengel, Rolf; Wagner, Erwin F; Gass, Peter

    2003-10-08

    The immediate early gene c-fos is part of the activator protein-1 transcription factor and has been postulated to participate in the molecular mechanisms of learning and memory. To test this hypothesis in vivo, we generated mice with a nervous system-specific c-fos knock-out using the Cre-loxP system. Adult mice lacking c-Fos in the CNS (c-fosDeltaCNS) showed normal general and emotional behavior but were specifically impaired in hippocampus-dependent spatial and associative learning tasks. These learning deficits correlated with a reduction of long-term potentiation (LTP) in hippocampal CA3-CA1 synapses. The magnitude of LTP was restored by a repeated tetanization procedure, suggesting impaired LTP induction in c-fosDeltaCNS mice. This rescue was blocked by a selective inhibitor of NR2B-type NMDA receptors. This blockade was compensated in wild-type mice by NR2A-type NMDA receptor-activated signaling pathways, thus indicating that these pathways are compromised in c-fosDeltaCNS mice. In summary, our data suggest a role for c-Fos in hippocampus-dependent learning and memory as well as in NMDA receptor-dependent LTP formation.

  20. Loss of the Type I Interferon Pathway Increases Vulnerability of Mice to Genital Herpes Simplex Virus 2 Infection ▿

    PubMed Central

    Conrady, Christopher D.; Halford, William P.; Carr, Daniel J. J.

    2011-01-01

    The mouse model of genital herpes relies on medoxyprogesterone treatment of female mice to render the vaginal lumen susceptible to inoculation with herpes simplex virus 2 (HSV-2). In the present study, we report that mice deficient in the A1 chain of the type I interferon receptor (CD118−/−) are susceptible to HSV-2 in the absence of medroxyprogesterone preconditioning. In the absence of hormone pretreatment, 2,000 PFU of a clinical isolate of HSV-2 was sufficient to establish a productive infection in the vagina of 75% ± 17% and in the spinal cord of 71% ± 14% of CD118−/− mice, whereas the same dose of HSV-2 replicated to detectable levels in only 13% ± 13% of vaginal samples and 0% of spinal cord samples from wild-type mice, as determined at day 5 postinfection. The susceptibility to HSV-2 infection in the CD118−/− mice was associated with a significant reduction in the infiltration of HSV-specific cytotoxic T lymphocytes into the vaginal tissue, the local production of gamma interferon (IFN-γ), and the expression of T cell-recruiting chemokines CCL5, CXCL9, and CXCL10. Collectively, the results underscore the significant contribution of type I IFNs in resistance to genital HSV-2 infection. PMID:21147921

  1. Decreased physical function and increased pain sensitivity in mice deficient for type IX collagen.

    PubMed

    Allen, Kyle D; Griffin, Timothy M; Rodriguiz, Ramona M; Wetsel, William C; Kraus, Virginia B; Huebner, Janet L; Boyd, Lawrence M; Setton, Lori A

    2009-09-01

    In mice with Col9a1 gene inactivation (Col9a1(-/-)), osteoarthritis (OA) and intervertebral disc degeneration develop prematurely. The aim of this study was to investigate Col9a1(-/-) mice for functional and symptomatic changes that may be associated with these pathologies. Col9a1(-/-) and wild-type mice were investigated for reflexes, functional impairment (beam walking, pole climbing, wire hang, grip strength), sensorimotor skills (rotarod), mechanical sensitivity (von Frey hair), and thermal sensitivity (hot plate/tail flick). Gait was also analyzed to determine velocity, stride frequency, symmetry, percentage stance time, stride length, and step width. Postmortem, sera obtained from the mice were analyzed for hyaluronan, and their knees and spines were graded histologically for degeneration. Col9a1(-/-) mice had compensatory gait changes, increased mechanical sensitivity, and impaired physical ability. Col9a1(-/-) mice ambulated with gaits characterized by increased percentage stance times and shorter stride lengths. These mice also had heightened mechanical sensitivity and were deficient in contact righting, wire hang, rotarod, and pole climbing tasks. Male Col9a1(-/-) mice had the highest mean serum hyaluronan levels and strong histologic evidence of cartilage erosion. Intervertebral disc degeneration was also detected, with Col9a1(-/-) mice having an increased incidence of disc tears. These data describe a Col9a1(-/-) behavioral phenotype characterized by altered gait, increased mechanical sensitivity, and impaired function. These gait and functional differences suggest that Col9a1(-/-) mice select locomotive behaviors that limit joint loads. The nature and magnitude of behavioral changes were largest in male mice, which also had the greatest evidence of knee degeneration. These findings suggest that Col9a1(-/-) mice present behavioral changes consistent with anatomic signs of OA and intervertebral disc degeneration.

  2. Effects of loaded voluntary wheel exercise on performance and muscle hypertrophy in young and old male C57Bl/6J mice.

    PubMed

    Soffe, Z; Radley-Crabb, H G; McMahon, C; Grounds, M D; Shavlakadze, T

    2016-02-01

    This study compared the capacity of young and old male C57Bl/6J mice to exercise with increasing resistance over 10 weeks, and its impact on muscle mass. Young mice (aged 15-25 weeks) were subjected to low (LR) and high (HR) resistance exercise, whereas only LR was used for old mice (107-117 weeks). Weekly patterns of voluntary wheel activity, food consumption and body weights were measured. Running patterns changed over time and with age, with two peaks of activity detected for young, but only one for old mice: speed and distance run was also less for old mice. The mass for six limb muscles was measured at the end of the experiment. The most pronounced increase in mass in response to exercise was for the soleus in young and old mice, and also quadriceps and gastrocnemius in young mice. Soleus and quadriceps muscles were analyzed histologically for myofiber number and size. A striking feature was the many small myofibers in response to exercise in young (but not old) soleus, whereas these were not present after exercise in young or old quadriceps. Overall, there was a striking difference in response to exercise between muscles and this was influenced by age. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice.

    PubMed

    Hansen, Laura M; Gupta, Divya; Joseph, Giji; Weiss, Daiana; Taylor, W Robert

    2017-01-01

    Diabetics often have poor perfusion in their limbs as a result of peripheral artery disease and an impaired ability to generate collateral vessels. The receptor for advanced glycation end products (RAGE) is one protein that is thought to play a detrimental role in collateral development in diabetics due to increased levels of advanced glycation end products (AGE), one of its ligands, in diabetes. Thus, the aim of this study was to investigate the role of RAGE in both diabetic and non-diabetic settings in a model of collateral formation in mice. Streptozotocin was used to induce diabetes in both wild type and RAGE knockout mice. Increased levels of the AGE, N ɛ -(carboxymethyl) lysine (CML), were confirmed via an ELISA. A hindlimb ischemia model, in which the femoral artery is ligated, was used to drive collateral growth and reperfusion was assessed using laser Doppler perfusion imaging and histological analysis of vessels in the muscle. Both of these measurements showed impaired collateral growth in diabetic compared with wild-type mice as well as improved collateral growth in both diabetic and non-diabetic RAGE knockout mice when compared their wild-type counterparts. Distance on a freely accessed running wheel, used as a measure of perfusion recovery, showed that wild-type diabetic mice had functionally impaired recovery compared with their wild-type counterparts. Immunohistochemistry and immunoblotting showed that HMGB-1 (high-mobility group box 1), another RAGE ligand, was increased in the ischemic leg compared with the non-ischemic leg in all mice. This increase in HMGB-1 may explain improvement in animals lacking RAGE and its subsequent signaling. In conclusion, this study shows that RAGE impairs collateral growth in a diabetic setting and also in a non-diabetic setting. This demonstrates the importance of RAGE and alternate RAGE ligands in the setting of collateral vessel growth.

  4. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid.

    PubMed

    Vodicka, Petr; Mo, Shunyan; Tousley, Adelaide; Green, Karin M; Sapp, Ellen; Iuliano, Maria; Sadri-Vakili, Ghazaleh; Shaffer, Scott A; Aronin, Neil; DiFiglia, Marian; Kegel-Gleason, Kimberly B

    2015-01-01

    Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.

  5. Deficiency in Monocarboxylate Transporter 1 (MCT1) in Mice Delays Regeneration of Peripheral Nerves following Sciatic Nerve Crush

    PubMed Central

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothstein, Jeffrey D.

    2014-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence and MCT1 tdTomato BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves in MCT1 heterozygous null mice are crushed and peripheral nerve regeneration quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly through failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. PMID:25447940

  6. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    PubMed

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.

  7. Staphylococcus aureus activates type I IFN signaling in mice and humans through the Xr repeated sequences of protein A

    PubMed Central

    Martin, Francis J.; Gomez, Marisa I.; Wetzel, Dawn M.; Memmi, Guido; O’Seaghdha, Maghnus; Soong, Grace; Schindler, Christian; Prince, Alice

    2009-01-01

    The activation of type I IFN signaling is a major component of host defense against viral infection, but it is not typically associated with immune responses to extracellular bacterial pathogens. Using mouse and human airway epithelial cells, we have demonstrated that Staphylococcus aureus activates type I IFN signaling, which contributes to its virulence as a respiratory pathogen. This response was dependent on the expression of protein A and, more specifically, the Xr domain, a short sequence–repeat region encoded by DNA that consists of repeated 24-bp sequences that are the basis of an internationally used epidemiological typing scheme. Protein A was endocytosed by airway epithelial cells and subsequently induced IFN-β expression, JAK-STAT signaling, and IL-6 production. Mice lacking IFN-α/β receptor 1 (IFNAR-deficient mice), which are incapable of responding to type I IFNs, were substantially protected against lethal S. aureus pneumonia compared with wild-type control mice. The profound immunological consequences of IFN-β signaling, particularly in the lung, may help to explain the conservation of multiple copies of the Xr domain of protein A in S. aureus strains and the importance of protein A as a virulence factor in the pathogenesis of staphylococcal pneumonia. PMID:19603548

  8. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice

    PubMed Central

    Pizza, Francis X; Peterson, Jennifer M; Baas, Joel H; Koh, Timothy J

    2005-01-01

    We tested the hypotheses that: (1) neutrophil accumulation after contraction-induced muscle injury is dependent on the β2 integrin CD18, (2) neutrophils contribute to muscle injury and oxidative damage after contraction-induced muscle injury, and (3) neutrophils aid the resolution of contraction-induced muscle injury. These hypotheses were tested by exposing extensor digitorum longus (EDL) muscles of mice deficient in CD18 (CD18−/−; Itgb2tm1Bay) and of wild type mice (C57BL/6) to in situ lengthening contractions and by quantifying markers of muscle inflammation, injury, oxidative damage and regeneration/repair. Neutrophil concentrations were significantly elevated in wild type mice at 6 h and 3 days post-lengthening contractions; however, neutrophils remained at control levels at these time points in CD18−/− mice. These data indicate that CD18 is required for neutrophil accumulation after contraction-induced muscle injury. Histological and functional (isometric force deficit) signs of muscle injury and total carbonyl content, a marker of oxidative damage, were significantly higher in wild type relative to CD18−/− mice 3 days after lengthening contractions. These data show that neutrophils exacerbate contraction-induced muscle injury. After statistically controlling for differences in the force deficit at 3 days, wild type mice also demonstrated a higher force deficit at 7 days, a lower percentage of myofibres expressing embryonic myosin heavy chain at 3 and 7 days, and a smaller cross sectional area of central nucleated myofibres at 14 days relative to CD18−/− mice. These observations suggest that neutrophils impair the restoration of muscle structure and function after injury. In conclusion, neutrophil accumulation after contraction-induced muscle injury is dependent on CD18. Furthermore, neutrophils appear to contribute to muscle injury and impair some of the events associated with the resolution of contraction-induced muscle injury. PMID

  9. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.

    PubMed

    Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S

    2007-05-01

    Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.

  10. Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to radiation induced myeloproliferative disease

    PubMed Central

    Iskander, Karim; Barrios, Roberto J.; Jaiswal, Anil K.

    2008-01-01

    NAD(P)H:quinone oxidoreductase1-null (NQO1-/-) mice exposed to 3 grays of γ-radiation demonstrated an increase in neutrophils, bone marrow hypercellularity, and enlarged lymph nodes and spleen. The spleen showed disrupted follicular structure, loss of red pulp, and granulocyte and megakarocyte invasion. Blood and histological analysis did not show any sign of infection in mice. These results suggested that exposure of NQO1-/- mice to γ-radiation led to myeloproliferative disease. Radiation-induced myeloproliferative disease was observed in 74% of NQO1-/- mice as compared to none in wild type mice. NQO1-/- mice exposed to γ-radiation also demonstrated tissues lymphoma (32%) and lung adenocarcinoma (84%). In contrast, only 11% wild type mice showed lymphoma and none showed lung adenocarcinoma. Exposure of NQO1-/- mice to γ-radiation resulted in reduced apoptosis in granulocytes and lack of induction of p53, p21, and Bax. NQO1-/- mice also demonstrated increased expression of myeloid differentiation factors C/EBPα and Pu.1. Intriguingly, exposure of NQO1-/- mice to γ-radiation failed to induce C/EBPα and Pu.1, as was observed in wild type mice. These results suggest that decreased p53/apoptosis and increased Pu.1 and C/EBPα led to myeloid hyperplasia in NQO1-/- mice. The lack of induction of apoptosis and differentiation contributed to radiation-induced myeloproliferative disease in NQO1-/- mice. PMID:18829548

  11. Hearing dysfunction in heterozygous Mitf(Mi-wh) /+ mice, a model for Waardenburg syndrome type 2 and Tietz syndrome.

    PubMed

    Ni, Christina; Zhang, Deming; Beyer, Lisa A; Halsey, Karin E; Fukui, Hideto; Raphael, Yehoash; Dolan, David F; Hornyak, Thomas J

    2013-01-01

    The human deafness-pigmentation syndromes, Waardenburg syndrome (WS) type 2a, and Tietz syndrome are characterized by profound deafness but only partial cutaneous pigmentary abnormalities. Both syndromes are caused by mutations in MITF. To illuminate differences between cutaneous and otic melanocytes in these syndromes, their development and survival in heterozygous Microphthalmia-White (Mitf(Mi-wh) /+) mice were studied and hearing function of these mice characterized. Mitf(Mi-wh) /+ mice have a profound hearing deficit, characterized by elevated auditory brainstem response thresholds, reduced distortion product otoacoustic emissions, absent endocochlear potential, loss of outer hair cells, and stria vascularis abnormalities. Mitf(Mi-wh) /+ embryos have fewer melanoblasts during embryonic development than their wild-type littermates. Although cochlear melanocytes are present at birth, they disappear from the Mitf(Mi-wh) /+ cochlea between P1 and P7. These findings may provide insight into the mechanism of melanocyte and hearing loss in human deafness-pigmentation syndromes such as WS and Tietz syndrome and illustrate differences between otic and follicular melanocytes. © 2012 John Wiley & Sons A/S.

  12. Impaired removal of Vβ8(+) lymphocytes aggravates colitis in mice deficient for B cell lymphoma-2-interacting mediator of cell death (Bim).

    PubMed

    Leucht, K; Caj, M; Fried, M; Rogler, G; Hausmann, M

    2013-09-01

    We investigated the role of B cell lymphoma (BCL)-2-interacting mediator of cell death (Bim) for lymphocyte homeostasis in intestinal mucosa. Lymphocytes lacking Bim are refractory to apoptosis. Chronic colitis was induced in Bim-deficient mice (Bim(-/-) ) with dextran sulphate sodium (DSS). Weight loss and colonoscopic score were increased significantly in Bim(-/-) mice compared to wild-type mice. As Bim is induced for the killing of autoreactive cells we determined the role of Bim in the regulation of lymphocyte survival at mucosal sites. Upon chronic dextran sulphate sodium (DSS)-induced colitis, Bim(-/-) animals exhibited an increased infiltrate of lymphocytes into the mucosa compared to wild-type mice. The number of autoreactive T cell receptor (TCR) Vβ8(+) lymphocytes was significantly higher in Bim(-/-) mice compared to wild-type controls. Impaired removal of autoreactive lymphocytes in Bim(-/-) mice upon chronic DSS-induced colitis may therefore contribute to aggravated mucosal inflammation. © 2013 British Society for Immunology.

  13. Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation.

    PubMed

    Acquaviva, Jaime; Jun, Hyun Jung; Lessard, Julie; Ruiz, Rolando; Zhu, Haihao; Donovan, Melissa; Woolfenden, Steve; Boskovitz, Abraham; Raval, Ami; Bronson, Roderick T; Pfannl, Rolf; Whittaker, Charles A; Housman, David E; Charest, Al

    2011-12-01

    Glioblastoma multiforme (GBM) is characterized by overexpression of epidermal growth factor receptor (EGFR) and loss of the tumor suppressors Ink4a/Arf. Efforts at modeling GBM using wild-type EGFR in mice have proven unsuccessful. Here, we present a unique mouse model of wild-type EGFR-driven gliomagenesis. We used a combination of somatic conditional overexpression and ligand-mediated chronic activation of EGFR in cooperation with Ink4a/Arf loss in the central nervous system of adult mice to generate tumors with the histopathologic and molecular characteristics of human GBMs. Sustained, ligand-mediated activation of EGFR was necessary for gliomagenesis, functionally substantiating the clinical observation that EGFR-positive GBMs from patients express EGFR ligands. To gain a better understanding of the clinically disappointing EGFR-targeted therapies for GBM, we investigated the molecular responses to EGFR tyrosine kinase inhibitor (TKI) treatment in this model. Gefitinib treatment of primary GBM cells resulted in a robust apoptotic response, partially conveyed by mitogen-activated protein kinase (MAPK) signaling attenuation and accompanied by BIM(EL) expression. In human GBMs, loss-of-function mutations in the tumor suppressor PTEN are a common occurrence. Elimination of PTEN expression in GBM cells posttumor formation did not confer resistance to TKI treatment, showing that PTEN status in our model is not predictive. Together, these findings offer important mechanistic insights into the genetic determinants of EGFR gliomagenesis and sensitivity to TKIs and provide a robust discovery platform to better understand the molecular events that are associated with predictive markers of TKI therapy.

  14. Impairment of Vision in a Mouse Model of Usher Syndrome Type III.

    PubMed

    Tian, Guilian; Lee, Richard; Ropelewski, Philip; Imanishi, Yoshikazu

    2016-03-01

    The purpose of this study was to obtain an Usher syndrome type III mouse model with retinal phenotype. Speed congenic method was used to obtain Clrn1 exon 1 knockout (Clrn1-/-) and Clrn1N48K knockin (Clrn1N48K/N48K) mice under A/J background. To study the retinal functions of these mice, we measured scotopic and photopic ERG responses. To observe if there are any structural abnormalities, we conducted light and transmission electron microscopy of fixed retinal specimens. In 3-month-old Clrn1-/- mice, scotopic b-wave amplitude was reduced by more than 25% at the light intensities from -2.2 to 0.38 log cd·s/m2, but scotopic a-wave amplitudes were comparable to those of age-matched wild type mice at all the light intensities tested. In 9-month-old Clrn1-/- mice, scotopic b-wave amplitudes were further reduced by more than 35%, and scotopic a-wave amplitude also showed a small decline as compared with wild type mice. Photopic ERG responses were comparable between Clrn1-/- and wild type mice. Those electrophysiological defects were not associated with a loss of rods. In Clrn1N48K/N48K mice, both a- and b-wave amplitudes were not discernable from those of wild type mice aged up to 10 months. Mutations that are Clrn1-/- biallelic cause visual defects when placed under A/J background. The absence of apparent rod degeneration suggests that the observed phenotype is due to functional defects, and not due to loss of rods. Biallelic Clrn1N48K/N48K mutations did not cause discernible visual defects, suggesting that Clrn1- allele is more severely dysfunctional than ClrnN48K allele.

  15. Analysis of immune response in young and aged mice vaccinated with corn-derived antigen against Escherichia coli heat-labile enterotoxin.

    PubMed

    Karaman, Sule; Cunnick, Joan; Wang, Kan

    2006-01-01

    Enterotoxigenic strains of Escherichia coli produce a heat-labile holotoxin (LT), which causes diarrhea. We engineered corn seeds to produce LT-B, the nontoxic subunit of LT, to serve as a plant-derived vaccine to traveler's diarrhea and as an adjuvant for co-administered proteins. We previously demonstrated that a strong mucosal and systemic antibody response is elicited in young mice with oral administration of corn-derived LT-B. The present study examined systemic and mucosal antibody responses to LT-B in young and aged mice, and recall responses to oral administration and injection of LT-B in aged mice. Specific IgA and IgG antibodies were detectable during an 11-mo period, although the concentration of antigen-specific antibodies declined gradually. Booster by feeding or injection dramatically increased the concentration of specific IgA from that seen in young mice. Specific IgG levels were boosted to concentrations similar to those in young mice. This effect may be age-dependent and related to prior immunization exposure. Analysis of the antibody response of naïve aged mice against corn-derived LT-B demonstrated an age-related suppression in specific IgG production, but not specific IgA. These results may provide important information for edible vaccine strategies for young and aged individuals.

  16. Flower-deficient mice have reduced susceptibility to skin papilloma formation

    PubMed Central

    Petrova, Evgeniya; López-Gay, Jesús M.; Rhiner, Christa; Moreno, Eduardo

    2012-01-01

    SUMMARY Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion. PMID:22362363

  17. GENE PROFILING IN WILD TYPE AND PPARÁ NULL MICE EXPOSED TO PFOA

    EPA Science Inventory

    Perflurooctanoic acid (PFOA) is a perfluoroalkyl acid used in a variety of commercial applications. Concerns have been raised because PFOA is ubiquitous in the environment and can be detected in human tissues. PFOA is a rodent carcinogen and a developmental toxicant in mice. W...

  18. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    NASA Astrophysics Data System (ADS)

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-01

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  19. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging

    PubMed Central

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null (Col6a1−/−) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1−/− mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1−/− mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1−/− mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1−/− mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1−/− diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1−/− gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased

  20. Proteome profiling of virus-host interactions of wild type and attenuated measles virus strains.

    PubMed

    Billing, Anja M; Kessler, Julia R; Revets, Dominique; Sausy, Aurélie; Schmitz, Stephanie; Barra, Claire; Muller, Claude P

    2014-08-28

    Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤0.05, fold change ≥2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences. In the present study we investigated the host cell proteome upon measles virus (MV) infection. The novelty about this study is the side-by side comparison of different strains from the same virus, which has not been done at the proteome level for any other virus including MV. We used different virus strains including a vaccine strain, wild type isolates derived from MV-infected patients as well as a Vero cell adapted strain, which serves as an intermediate between vaccine and wild type strain. We observed differences between vaccine and wild type strains as well as common features between different wild type strains. Perhaps one of the most surprising findings was that differences did not only occur between wild type and vaccine or Vero cell adapted strains but

  1. Zika Virus Fatally Infects Wild Type Neonatal Mice and Replicates in Central Nervous System

    PubMed Central

    Armstrong, Najealicka; Zhao, Huan; Hou, Wangheng; Liu, Jian; Chen, Chunye; Wan, Junkai; Wang, Wei; Zhong, Chunlian; Liu, Che; Zhu, Hua; Xia, Ningshao; Cheng, Tong

    2018-01-01

    Zika virus (ZIKV) has been defined as a teratogenic pathogen behind the increased number of cases of microcephaly in French Polynesia, Brazil, Puerto Rico, and other South American countries. Experimental studies using animal models have achieved tremendous insight into understanding the viral pathogenesis, transmission, teratogenic mechanisms, and virus–host interactions. However, the animals used in published investigations are mostly interferon (IFN)-compromised, either genetically or via antibody treatment. Herein, we studied ZIKV infection in IFN-competent mice using African (MR766) and Asian strains (PRVABC59 and SZ-WIV01). After testing four different species of mice, we found that BALB/c neonatal mice were resistant to ZIKV infection, that Kunming, ICR and C57BL/6 neonatal mice were fatally susceptible to ZIKV infection, and that the fatality of C57BL/6 neonates from 1 to 3 days old were in a viral dose-dependent manner. The size and weight of the brain were significantly reduced, and the ZIKV-infected mice showed neuronal symptoms such as hind-limb paralysis, tremor, and poor balance during walking. Pathologic and immunofluorescent experiments revealed that ZIKV infected different areas of the central nervous system (CNS) including gray matter, hippocampus, cerebral cortex, and spinal cord, but not olfactory bulb. Interestingly, ZIKV replicated in multiple organs and resulted in pathogenesis in liver and testis, implying that ZIKV infection may engender a high health risk in neonates by postnatal infection. In summary, we investigated ZIKV pathogenesis using an animal model that is not IFN-compromised. PMID:29361773

  2. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    PubMed

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  3. Defining wild-type life span in Caenorhabditis elegans.

    PubMed

    Gems, D; Riddle, D L

    2000-05-01

    The nematode Caenorhabditis elegans reproduces predominantly as a self-fertilizing hermaphrodite, and this drives laboratory populations to be homozygous at all genetic loci. Passaging of stocks can lead to fixation of spontaneous mutations, especially when the latter do not result in a selective disadvantage under laboratory conditions. Life span may be such a trait, since a comparison of six wild-type N2 lines derived from a common ancestor (but maintained separately in several laboratories) revealed four variants with median adult life spans ranging from 12.0 +/- 0.8 to 17.0 +/- 0.6 days at 20 degrees C. Fertility was also reduced in the two shortest-lived strains. We determined which life span most closely corresponds to that of the authentic wild type by two means. Firstly, N2 hermaphrodites were compared with seven C. elegans wild isolates. The latter were found to resemble only the longest-lived N2 strain. Comparison of male life spans of six lines also revealed additional strain variation. Secondly, life spans of F1 progeny issuing from crosses between N2 variants showed that short life spans were recessive, indicating that they result from loss-of-function mutations. We infer that the longest-lived N2 variant best resembles the original N2 isolate. This is the N2 male stock currently distributed by the Caenorhabditis Genetics Center.

  4. First insights into the protective effects of a recombinant swinepox virus expressing truncated MRP of Streptococcus suis type 2 in mice.

    PubMed

    Huang, Dongyan; Zhu, Haodan; Lin, Huixing; Xu, Jiarong; Lu, Chengping

    2012-01-01

    To explore the potential of the swinepox virus (SPV) as vector for Streptococcus suis vaccines, a vector system was developed for the construction of a recombinant SPV carrying bacterial genes. Using this system, a recombinant virus expressing truncated muramidase-released protein (MRP) of S. suis type 2 (SS2), designated rSPV-MRP, was produced and identified by PCR, western blotting and immunofluorescence assays. The rSPV-MRP was found to be only slightly attenuated in PK-15 cells, when compared with the wild-type virus. After immunization intramuscularly with rSPV-MRP, SS2 inactive vaccine (positive control), wild-type SPV (negative control) and PBS (blank control) respectively, all CD1 mice were challenged with a lethal dose or a sublethal dose of SS2 highly virulent strain ZY05719. While SS2 inactive vaccine protected all mice, immunization with rSPV-MRP resulted in 60% survival and protected mice against a lethal dose of the highly virulent SS2 strain, compared with the negative control (P < 0.05). Our data indicate that animals immunized with rSPV-MRP had a significantly reduced bacterial burden in all organs examined, compared to negative controls and blank controls (P <0.05). Antibody titers of the rSPV-MRP-vaccinated group were significantly higher (P <0.001), when compared to negative controls and blank controls. Antibody titers were also significantly higher in the vaccinated group at all time points post-vaccination (P <0.001), compared with the positive controls. These initial results demonstrated that the rSPV-MRP provided mice with protection from systemic SS2 infection. If SPV recombinants have the potential as S. suis vaccines for the use in pigs has to be evaluated in further studies.

  5. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Eiichi; Hosokawa, Masaya; Faculty of Human Sciences, Tezukayama Gakuin University, Osaka

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucosemore » absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a

  6. Sex-Specific Regulation of Depression, Anxiety-Like Behaviors and Alcohol Drinking in Mice Lacking ENT1

    PubMed Central

    Ruby, Christina L.; Walker, Denise L.; An, Joyce; Kim, Jason; Choi, Doo-Sup

    2012-01-01

    Objectives Adenosine signaling has been implicated in the pathophysiology of several psychiatric disorders including alcoholism, depression, and anxiety. Adenosine levels are controlled in part by transport across the cell membrane by equilibrative nucleoside transporters (ENTs). Recent evidence showed that a polymorphism in the gene encoding ENT1 is associated with comorbid depression and alcoholism in women. We have previously shown that deletion of ENT1 reduces ethanol intoxication and elevates alcohol intake in mice. Interestingly, ENT1 null mice display decreased anxiety-like behavior compared to wild-type littermates. However, our behavioral studies were performed only in male mice. Here, we extend our research to include female mice, and test the effect of ENT1 knockout on other behavioral correlates of alcohol drinking, including depressive and compulsive behavior, in mice. Methods To assess depression-like behavior, we used a forced swim test modified for mice. We examined anxiety-like behavior and locomotor activity in open field chambers, and perseverant behavior using the marble-burying test. Finally, we investigated alcohol consumption and preference in female mice using a two-bottle choice paradigm. Results ENT1 null mice of both sexes showed reduced immobility time in the forced swim test and increased time in the center of the open field compared to wild-type littermates. ENT1 null mice of both sexes showed similar locomotor activity levels and habituation to the open field chambers. Female ENT1 null mice displayed increased marble-burying compared to female wild-types, but no genotype difference was evident in males. Female ENT1 null mice showed increased ethanol consumption and preference compared to female wild-types. Conclusions Our findings suggest that ENT1 contributes to several important behaviors involved in psychiatric disorders. Inhibition of ENT1 may be beneficial in treating depression and anxiety, while enhancement of ENT1 function may

  7. Acid Sphingomyelinase Gene Deficiency Ameliorates the Hyperhomocysteinemia-Induced Glomerular Injury in Mice

    PubMed Central

    Boini, Krishna M.; Xia, Min; Li, Caixia; Zhang, Chun; Payne, Lori P.; Abais, Justine M.; Poklis, Justin L.; Hylemon, Philip B.; Li, Pin-Lan

    2011-01-01

    Hyperhomocysteinemia (hHcys) enhances ceramide production, leading to the activation of NADPH oxidase and consequent glomerular oxidative stress and sclerosis. The present study was performed to determine whether acid sphingomyelinase (Asm), a ceramide-producing enzyme, is implicated in the development of hHcys-induced glomerular oxidative stress and injury. Uninephrectomized Asm-knockout (Asm−/−) and wild-type (Asm+/+) mice, with or without Asm short hairpin RNA (shRNA) transfection, were fed a folate-free (FF) diet for 8 weeks, which significantly elevated the plasma Hcys level compared with mice fed normal chow. By using in vivo molecular imaging, we found that transfected shRNAs were expressed in the renal cortex starting on day 3 and continued for 24 days. The FF diet significantly increased renal ceramide production, Asm mRNA and activity, urinary total protein and albumin excretion, glomerular damage index, and NADPH-dependent superoxide production in the renal cortex from Asm+/+ mice compared with that from Asm−/− or Asm shRNA-transfected wild-type mice. Immunofluorescence analysis showed that the FF diet decreased the expression of podocin but increased desmin and ceramide levels in glomeruli from Asm+/+ mice but not in those from Asm−/− and Asm shRNA-transfected wild-type mice. In conclusion, our observations reveal that Asm plays a pivotal role in mediating podocyte injury and glomerular sclerosis associated with NADPH oxidase–associated local oxidative stress during hHcys. PMID:21893018

  8. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    PubMed

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  9. Nfib hemizygous mice are protected from hyperoxic lung injury and death.

    PubMed

    Kumar, Vasantha H S; Chaker El Khoury, Joseph; Gronostajski, Richard; Wang, Huamei; Nielsen, Lori; Ryan, Rita M

    2017-08-01

    Nuclear Factor I ( Nfi) genes encode transcription factors essential for the development of organ systems including the lung. Nfib null mice die at birth with immature lungs. Nfib hemizygous mice have reduced lung maturation with decreased survival. We therefore hypothesized that these mice would be more sensitive to lung injury and would have lower survival to hyperoxia. Adult Nfib hemizygous mice and their wild-type (Wt) littermates were exposed to 100% O 2 for 89, 80, 72 and 66 h for survival studies with lung outcome measurements at 66 h. Nfib hemizygous and Wt controls were also studied in RA at 66 h. Cell counts and cytokines were measured in bronchoalveolar lavage (BAL); lung sections examined by histopathology; lung angiogenic and oxidative stress gene expression assessed by real-time PCR Unexpectedly, Nfib hemizygous mice (0/14-0%) had significantly lower mortality compared to Wt mice (10/22-45%) at 80 h of hyperoxia ( P  < 0.003). LD 50 was 80 h in the Wt group versus 89 h in the hemizygous group. There were no differences in BAL cell counts between the groups. Among the cytokines studied, MIP-2 was significantly lower in hemizygous mice exposed to hyperoxia. New vessel formation, edema, congestion, and alveolar hemorrhage were noted on histopathology at 72 and 80 h in wild-type mice. Nfib hemizygous lungs had significant downregulation of genes involved in redox signaling and inflammatory pathways. Adult Nfib hemizygous mice are relatively resistant to hyperoxia compared to wild-type littermates. Mechanisms contributing to this resistance are not clear; however, transcription factors such as Nfib may regulate cell survival and play a role in modulating postnatal lung development. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Metabolically inactive insulin analog prevents type I diabetes in prediabetic NOD mice.

    PubMed Central

    Karounos, D G; Bryson, J S; Cohen, D A

    1997-01-01

    The purpose of this study was to determine the relative importance of the metabolic effects of insulin for diabetes prevention by administering insulin or an inactive insulin analog by daily subcutaneous injections to prediabetic mice. A recombinant monomeric human insulin analog, which does not bind to the insulin receptor as a consequence of an alteration of a single amino acid at position 25 of the B chain, was shown to be equally effective at diabetes prevention as was intact insulin. In contrast to native insulin, the insulin analog did not cause hypoglycemia after subcutaneous injection. The insulin analog, however, protected young adult mice from diabetes, even when it was initiated after the onset of extensive lymphocytic infiltration of the islets. Thus, preventative therapy by daily subcutaneous injections of insulin does not require the hypoglycemic response, or binding to the insulin receptor to prevent the onset of type I diabetes. PMID:9294099

  11. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference.

    PubMed

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-03-06

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3 -/- ) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3 -/- mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3 -/- mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3 -/- mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference

    PubMed Central

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-01-01

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week old EAAT3 knockout (EAAT3−/−) mice and their wild-type littermates received 3 intraperitoneal injections of 10 mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5 mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4 mg/kg riluzole, an EAAT activator, 30 min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24 h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3−/− mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8 to 9 days in wild-type mice, while this extinction occurred 6 days after discontinuation of morphine injection in EAAT3−/− mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3−/− mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. PMID:28049029

  13. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    PubMed Central

    Knudsen, Lars; Ochs, Matthias; MacKay, Rosemarie; Townsend, Paul; Deb, Roona; Mühlfeld, Christian; Richter, Joachim; Gilbert, Fabian; Hawgood, Samuel; Reid, Kenneth; Clark, Howard

    2007-01-01

    Background Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are characterized by decreased SP

  14. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines

    PubMed Central

    2011-01-01

    Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Conclusion Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the

  15. Reduced alcohol consumption in mice lacking preprodynorphin.

    PubMed Central

    Blednov, Yuri A.; Walker, Danielle; Martinez, Marni; Harris., R. Adron

    2007-01-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the κ-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 hours) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest thath this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability). PMID:17307643

  16. Reduced alcohol consumption in mice lacking preprodynorphin.

    PubMed

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  17. Wild Type and PPAR KO Dataset

    EPA Pesticide Factsheets

    Data set 1 consists of the experimental data for the Wild Type and PPAR KO animal study and includes data used to prepare Figures 1-4 and Table 1 of the Das et al, 2016 paper.This dataset is associated with the following publication:Das, K., C. Wood, M. Lin, A.A. Starkov, C. Lau, K.B. Wallace, C. Corton, and B. Abbott. Perfluoroalky acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. TOXICOLOGY. Elsevier Science Ltd, New York, NY, USA, 378: 32-52, (2017).

  18. Studying Arterial Stiffness Using High-Frequency Ultrasound in Mice with Alzheimer Disease.

    PubMed

    Huang, Chin-Chia; Cheng, Hsiang-Fan; Zhu, Ben-Peng; Chen, Pei-Yu; Beh, Suet Theng; Kuo, Yu-Min; Huang, Chih-Chung

    2017-09-01

    Alzheimer disease (AD) is an irreversible, progressive brain disorder that causes slow loss of memory and thinking skills, normally leading to death in 3-9 y. The etiology of AD is not fully understood but is widely believed to be induced by the production and deposition of amyloid-β peptide in the brain. Recently, a correlation was discovered between amyloid-β deposition and atherosclerosis in the cerebral arteries of postmortem brains, indicating that amyloid-β promotes atherogenesis and that in turn atherosclerosis promotes brain amyloid-β accumulation. However, a direct measurement of arterial stiffness for AD is lacking. In the present study, the pulse wave velocity (PWV) of the carotid artery was measured non-invasively in young (3-mo-old) and middle-aged (9-mo-old) wild-type (WT) and modeled AD mice to obtain quantitative data of arterial stiffness by using a 35-MHz high-frequency dual-element transducer. Experimental results show that the PWVs were 1.6 ± 0.5 m/s for young and 2.4 ± 0.4 m/s for middle-aged WT mice and 1.7 ± 0.4 m/s for young and 3.2 ± 0.6 m/s for middle-aged AD mice. Middle-aged groups had higher PWVs (p < 0.0001), which were more pronounced in the AD mice (p < 0.001). The differences in PWVs were not caused by arterial lumen diameter, wall thickness or contents of elastin or collagen. These results imply that AD increases the stiffness of the carotid artery and introduce ultrasound as a potential tool for AD research and diagnosis. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    PubMed

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  20. Bioactive grape proanthocyanidins enhance immune reactivity in UV-irradiated skin through functional activation of dendritic cells in mice

    PubMed Central

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Elmets, Craig A.; Xu, Hui; Katiyar, Santosh K.

    2013-01-01

    Ultraviolet (UV) radiation-induced immunosuppression has been implicated in skin carcinogenesis. Grape seed proanthocyanidins (GSPs) have anti-skin carcinogenic effects in mice and GSPs-fed mice exhibit a reduction in UV-induced suppression of allergic contact hypersensitivity (CHS), a prototypic T cell-mediated response. Here, we report that dietary GSPs did not inhibit UVB-induced suppression of CHS in xeroderma pigmentosum complementation group A (XPA)-deficient mice, which lack nucleotide excision repair mechanisms. GSPs enhanced repair of UVB-induced DNA damage (cyclobutane pyrimidine dimers) in wild-type, but not XPA-deficient, dendritic cells (DCs). Co-culture of CD4+ T cells with DCs from UVB-irradiated wild-type mice resulted in suppression of T-cell proliferation and secretion of Th-1 type cytokines that was ameliorated when the DCs were obtained from GSPs-fed mice; whereas, DCs obtained from GSPs-fed XPA-KO mice failed to restore T-cell proliferation. In adoptive transfer experiments, donor DCs were positively selected from the draining lymph nodes of UVB-exposed donor mice that were sensitized to 2,4, dinitrofluorobenzene were transferred into naïve recipient mice and the CHS response assessed. Naïve recipients that received DCs from UVB-exposed wild-type donors that had been fed GSPs exhibited a full CHS response, whereas no significant CHS was observed in mice that received DCs from XPA-KO mice fed GSPs. These results suggest that GSPs prevent UVB-induced immunosuppression through DNA repair-dependent functional activation of dendritic cells in mice. PMID:23321928

  1. Microarray analysis of retinal gene expression in Egr-1 knockout mice

    PubMed Central

    Schippert, Ruth; Schaeffel, Frank

    2009-01-01

    Purpose We found earlier that 42 day-old Egr-1 knockout mice had longer eyes and a more myopic refractive error compared to their wild-types. To identify genes that could be responsible for the temporarily enhanced axial eye growth, a microarray analysis was performed in knockout and wild-type mice at the postnatal ages of 30 and 42 days. Methods The retinas of homozygous and wild-type Egr-1 knockout mice (Taconic, Ry, Denmark) were prepared for RNA isolation (RNeasy Mini Kit, Qiagen) at the age of 30 or 42 days, respectively (n=12 each). Three retinas were pooled and labeled cRNA was made. The samples were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Hybridization signals were calculated using GC-RMA normalization. Genes were identified as differentially expressed if they showed a fold-change (FC) of at least 1.5 and a p-value <0.05. A false-discovery rate of 5% was applied. Ten genes with potential biologic relevance were examined further with semiquantitative real-time RT–PCR. Results Comparing mRNA expression levels between wild-type and homozygous Egr-1 knockout mice, we found 73 differentially expressed genes at the age of 30 days and 135 genes at the age of 42 days. Testing for differences in gene expression between the two ages (30 versus 42 days), 54 genes were differently expressed in wild-type mice and 215 genes in homozygous animals. Based on three networks proposed by Ingenuity pathway analysis software, nine differently expressed genes in the homozygous Egr-1 knockout mice were chosen for further validation by real-time RT–PCR, three genes in each network. In addition, the gene that was most prominently regulated in the knockout mice, compared to wild-type, at both 30 days and 42 days of age (protocadherin beta-9 [Pcdhb9]), was tested with real-time RT–PCR. Changes in four of the ten genes could be confirmed by real-time RT–PCR: nuclear prelamin A recognition factor (Narf), oxoglutarate dehydrogenase (Ogdh), selenium binding

  2. Microarray analysis of retinal gene expression in Egr-1 knockout mice.

    PubMed

    Schippert, Ruth; Schaeffel, Frank; Feldkaemper, Marita Pauline

    2009-12-10

    We found earlier that 42 day-old Egr-1 knockout mice had longer eyes and a more myopic refractive error compared to their wild-types. To identify genes that could be responsible for the temporarily enhanced axial eye growth, a microarray analysis was performed in knockout and wild-type mice at the postnatal ages of 30 and 42 days. The retinas of homozygous and wild-type Egr-1 knockout mice (Taconic, Ry, Denmark) were prepared for RNA isolation (RNeasy Mini Kit, Qiagen) at the age of 30 or 42 days, respectively (n=12 each). Three retinas were pooled and labeled cRNA was made. The samples were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Hybridization signals were calculated using GC-RMA normalization. Genes were identified as differentially expressed if they showed a fold-change (FC) of at least 1.5 and a p-value <0.05. A false-discovery rate of 5% was applied. Ten genes with potential biologic relevance were examined further with semiquantitative real-time RT-PCR. Comparing mRNA expression levels between wild-type and homozygous Egr-1 knockout mice, we found 73 differentially expressed genes at the age of 30 days and 135 genes at the age of 42 days. Testing for differences in gene expression between the two ages (30 versus 42 days), 54 genes were differently expressed in wild-type mice and 215 genes in homozygous animals. Based on three networks proposed by Ingenuity pathway analysis software, nine differently expressed genes in the homozygous Egr-1 knockout mice were chosen for further validation by real-time RT-PCR, three genes in each network. In addition, the gene that was most prominently regulated in the knockout mice, compared to wild-type, at both 30 days and 42 days of age (protocadherin beta-9 [Pcdhb9]), was tested with real-time RT-PCR. Changes in four of the ten genes could be confirmed by real-time RT-PCR: nuclear prelamin A recognition factor (Narf), oxoglutarate dehydrogenase (Ogdh), selenium binding protein 1 (Selenbp1), and Pcdhb9

  3. Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice.

    PubMed

    Ollero, Mario; Junaidi, Omer; Zaman, Munir M; Tzameli, Iphigenia; Ferrando, Adolfo A; Andersson, Charlotte; Blanco, Paola G; Bialecki, Eldad; Freedman, Steven D

    2004-08-01

    Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans. Copyright 2004 Wiley-Liss, Inc.

  4. Aging-associated renal disease in mice is fructokinase dependent.

    PubMed

    Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Milagres, Tamara; Hernando, Ana Andres; Jensen, Thomas; Miyazaki, Makoto; Doke, Tomohito; Hayasaki, Takahiro; Nakagawa, Takahiko; Marumaya, Shoichi; Long, David A; Garcia, Gabriela E; Kuwabara, Masanari; Sánchez-Lozada, Laura G; Kang, Duk-Hee; Johnson, Richard J

    2016-10-01

    Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (<5%) fructose content. At the end of 2 yr, wild-type mice showed elevations in systolic blood pressure, mild albuminuria, and glomerular changes with mesangial matrix expansion, variable mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration.

  5. Oral carcinogenesis is not achieved in different carcinogen-treated PAI-1 transgenic and wild-type mouse models.

    PubMed

    Avgoustidis, Dimitris; Nisyrios, Themistoklis; Nkenke, Emeka; Lijnen, Roger; Ragos, Vassilis; Perrea, Despina; Donta, Ismini; Vaena, Apostolia; Yapijakis, Christos; Vairaktaris, Eleftherios

    2012-01-01

    In an effort to assess the role of plasminogen activator inhibitor-1 (PAI-1) in oral squamous cancer development and progression, two different carcinogen treatment protocols were conducted. Protocol I included mice from a PAI-1 transgenic (Tg) breed (n=56) and their wild-type (WT) counterparts (n=56), divided into one control group and two main experimental groups, treated with 7,12-dimethylbenz[a]anthracene (DMBA) for 8 and 16 weeks, respectively. Protocol II included the same number and types of animals and groups, which were similarly treated with 4-Nitroquinoline 1-oxide (4-NQO) in drinking water. Two drugs that affect plasma PAI-1 levels, enalapril and pravastatin, were administered to certain subgroups of animals in both protocols. None of the animals developed macroscopically-visible oral cancer lesions. Eleven animals under Protocol I and 52 animals under Protocol II died. Skin lesions were noted only in DMBA-treated animals (n=9). Almost all animals administered with 4-NQO developed alopecia and lost weight, while two of them developed stomach tumours, and one female mouse developed a large ovarian cyst. Transgenic mice may respond differently when used in well-established carcinogen models and oral carcinogenesis is hard to achieve in these rodents.

  6. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice

    PubMed Central

    Ip, Blanche C.; Liu, Chun; Ausman, Lynne M.; von Lintig, Johannes; Wang, Xiang-Dong

    2014-01-01

    Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10’-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9’,10’-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether the lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 is important in BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs 20%) and multiplicity (58% vs 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic pro-inflammatory signaling (phosphorylation of nuclear factor-κB p65 and signal transducer and activator of transcription 3; interleukin-6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ERUPR), through decreasing ERUPR-mediated protein kinase RNA-activated like kinase– eukaryotic initiation factor 2α activation, and inositol requiring 1α–X-box binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals including Met mRNA, β-catenin protein, and mammalian target of rapamycin (mTOR) complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR-214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression. PMID:25293877

  7. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Cai, Zhengwei; Lin, Shuying; Dubinion, John H; Hall, John E

    2011-05-01

    Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 μg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.

  8. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.

    PubMed

    Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio

    2014-01-01

    UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.

  9. Insights into mammalian biology from the wild house mouse Mus musculus

    PubMed Central

    Phifer-Rixey, Megan; Nachman, Michael W

    2015-01-01

    The house mouse, Mus musculus, was established in the early 1900s as one of the first genetic model organisms owing to its short generation time, comparatively large litters, ease of husbandry, and visible phenotypic variants. For these reasons and because they are mammals, house mice are well suited to serve as models for human phenotypes and disease. House mice in the wild consist of at least three distinct subspecies and harbor extensive genetic and phenotypic variation both within and between these subspecies. Wild mice have been used to study a wide range of biological processes, including immunity, cancer, male sterility, adaptive evolution, and non-Mendelian inheritance. Despite the extensive variation that exists among wild mice, classical laboratory strains are derived from a limited set of founders and thus contain only a small subset of this variation. Continued efforts to study wild house mice and to create new inbred strains from wild populations have the potential to strengthen house mice as a model system. DOI: http://dx.doi.org/10.7554/eLife.05959.001 PMID:25875302

  10. The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice.

    PubMed

    Fenske, Rachel J; Cadena, Mark T; Harenda, Quincy E; Wienkes, Haley N; Carbajal, Kathryn; Schaid, Michael D; Laundre, Erin; Brill, Allison L; Truchan, Nathan A; Brar, Harpreet; Wisinski, Jaclyn; Cai, Jinjin; Graham, Timothy E; Engin, Feyza; Kimple, Michelle E

    2017-06-01

    The α-subunit of the heterotrimeric Gz protein, Gαz, promotes β-cell death and inhibits β-cell replication when pancreatic islets are challenged by stressors. Thus, we hypothesized that loss of Gαz protein would preserve functional β-cell mass in the nonobese diabetic (NOD) model, protecting from overt diabetes. We saw that protection from diabetes was robust and durable up to 35 weeks of age in Gαz knockout mice. By 17 weeks of age, Gαz-null NOD mice had significantly higher diabetes-free survival than wild-type littermates. Islets from these mice had reduced markers of proinflammatory immune cell infiltration on both the histological and transcript levels and secreted more insulin in response to glucose. Further analyses of pancreas sections revealed significantly fewer terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive β-cells in Gαz-null islets despite similar immune infiltration in control mice. Islets from Gαz-null mice also exhibited a higher percentage of Ki-67-positive β-cells, a measure of proliferation, even in the presence of immune infiltration. Finally, β-cell-specific Gαz-null mice phenocopy whole-body Gαz-null mice in their protection from developing hyperglycemia after streptozotocin administration, supporting a β-cell-centric role for Gαz in diabetes pathophysiology. We propose that Gαz plays a key role in β-cell signaling that becomes dysfunctional in the type 1 diabetes setting, accelerating the death of β-cells, which promotes further accumulation of immune cells in the pancreatic islets, and inhibiting a restorative proliferative response. Copyright © 2017 Endocrine Society.

  11. Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1

    PubMed Central

    Carr, Daniel J.J.; Ash, John; Lane, Thomas E.; Kuziel, William A.

    2006-01-01

    Summary Ocular herpes simplex virus type 1 (HSV-1) infection elicits a strong inflammatory response that is associated with production of the β chemokines CCL3 and CCL5, which share a common receptor, CCR5. To gain insight into the role of these molecules in ocular immune responses, we infected the corneas of WT and CCR5-deficient (CCR5-/-) mice with HSV-1 and measured inflammatory parameters. In the absence of CCR5, the early infiltration of neutrophils into the cornea was diminished. Associated with this aberrant leukocyte recruitment, neutrophils in CCR5-/- mice were restricted to the stroma whereas in wild type mice these cells trafficked to the stroma and epithelial layers of the infected cornea. Virus titers and cytokine/chemokine levels in the infected tissue of these mice were similar for the first 5 days after infection. However, by day 7 post-infection, the CCR5-/- mice showed a significant elevation in the chemokines CCL2, CCL5, CXCL9, and CXCL10 in the trigeminal ganglion and brain stem as well as a significant increase in viral burden. The increase in chemokine expression was associated with an increase in the infiltration of CD4 and/or CD8 T cells into the trigeminal ganglion and brain stem of CCR5-/- mice. Surprisingly, even though infected CCR5-/- mice were less efficient at controlling the progression of virus replication, there was no difference in mortality. These results suggest that, although CCR5 plays a role in regulating leukocyte trafficking and control of virus burden, compensatory mechanisms are involved in preventing mortality following HSV-1 infection. PMID:16476970

  12. Subclinical infection without encephalitis in mice following intranasal exposure to Nipah virus-Malaysia and Nipah virus-Bangladesh.

    PubMed

    Dups, Johanna; Middleton, Deborah; Long, Fenella; Arkinstall, Rachel; Marsh, Glenn A; Wang, Lin-Fa

    2014-06-02

    Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis. Aged and young adult wild type mice did not develop clinical disease including encephalitis following intranasal exposure to either the Malaysia (NiV-MY) or Bangladesh (NiV-BD) strains of Nipah virus. However viral RNA was detected in lung tissue of mice at euthanasia (21 days following exposure) accompanied by a non-neutralizing antibody response. In a subsequent time course trial this viral RNA was shown to be reflective of an earlier self-limiting and subclinical lower respiratory tract infection through successful virus re-isolation and antigen detection in lung. There was no evidence for viremia or infection of other organs, including brain. Mice develop a subclinical self-limiting lower respiratory tract infection but not encephalitis following intranasal exposure to NiV-BD or NiV-MY. These results contrast with those reported for HeV under similar exposure conditions in mice, demonstrating a significant biological difference in host clinical response to exposure with these viruses. This finding provides a new platform from which to explore the viral and/or host factors that determine the neuroinvasive ability of henipaviruses.

  13. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation

    PubMed Central

    Souza, Ana Carolina P.; Bocharov, Alexander V.; Baranova, Irina; Vishnyakova, Tatyana; Huang, Yuning G.; Wilkins, Kenneth J.; Hu, Xuzhen; Street, Jonathan M.; Alvarez-Prats, Alejandro; Mullick, Adam E.; Patterson, Amy P.; Remaley, Alan; Eggerman, Thomas L.; Yuen, Peter S.T.; Star, Robert A.

    2016-01-01

    Scavenger receptor CD36 participates in lipid metabolism and inflammatory pathways important for cardiovascular disease and chronic kidney disease (CKD). Few pharmacological agents are available to slow the progression of CKD. However, apolipoprotein AI-mimetic peptide 5A antagonizes CD36 in vitro. To test the efficacy of 5A, and to test the role of CD36 during CKD, we compared wild type to CD36 knockout mice and wild type mice treated with 5A, in a progressive CKD model that resembles human disease. Knockout and 5A-treated wild type mice were protected from CKD progression without changes in blood pressure and had reductions in cardiovascular risk surrogate markers that are associated with CKD. Treatment with 5A did not further protect CD36 knockout mice from CKD progression, implicating CD36 as its main site of action. In a separate model of kidney fibrosis, 5A-treated wild type mice had less macrophage infiltration and interstitial fibrosis. Peptide 5A exerted anti-inflammatory effects in the kidney and decreases renal expression of inflammasome genes. Thus, CD36 is a new therapeutic target for CKD and its associated cardiovascular risk factors. Peptide 5A may be a promising new agent to slow CKD progression. PMID:26994575

  14. Peroxisome Proliferator-Activated Receptor α Activation Suppresses Cytochrome P450 Induction Potential in Mice Treated with Gemfibrozil.

    PubMed

    Shi, Cunzhong; Min, Luo; Yang, Julin; Dai, Manyun; Song, Danjun; Hua, Huiying; Xu, Gangming; Gonzalez, Frank J; Liu, Aiming

    2017-09-01

    Gemfibrozil, a peroxisome proliferator-activated receptor α (PPARα) agonist, is widely used for hypertriglyceridaemia and mixed hyperlipidaemia. Drug-drug interaction of gemfibrozil and other PPARα agonists has been reported. However, the role of PPARα in cytochrome P450 (CYP) induction by fibrates is not well known. In this study, wild-type mice were first fed gemfibrozil-containing diets (0.375%, 0.75% and 1.5%) for 14 days to establish a dose-response relationship for CYP induction. Then, wild-type mice and Pparα-null mice were treated with a 0.75% gemfibrozil-containing diet for 7 days. CYP3a, CYP2b and CYP2c were induced in a dose-dependent manner by gemfibrozil. In Pparα-null mice, their mRNA level, protein level and activity were induced more than those in wild-type mice. So, gemfibrozil induced CYP, and this action was inhibited by activated PPARα. These data suggested that the induction potential of CYPs was suppressed by activated PPARα, showing a potential role of this receptor in drug-drug interactions and metabolic diseases treated with fibrates. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Increased pain and neurogenic inflammation in mice deficient of neutral endopeptidase.

    PubMed

    Krämer, Heidrun H; He, Lan; Lu, Bao; Birklein, Frank; Sommer, Claudia

    2009-08-01

    The complex regional pain syndrome (CRPS) is characterized by enhanced neurogenic inflammation, mediated by neuropeptides. Neutral endopeptidase (NEP) is a key enzyme in neuropeptide catabolism. We used NEP knock out (ko) mice to investigate whether NEP deficiency leads to increased pain behavior and signs of neurogenic inflammation after soft tissue trauma with and without nerve injury. After chronic constriction injury (CCI) of the right sciatic nerve, NEP ko mice were more sensitive to heat, to mechanical stimuli, and to cold than wild type mice. Tissue injury without nerve injury produced no differences between genotypes. After CCI, NEP ko mice showed increased hind paw edema but lower skin temperatures than wild type mice. Substance P (SP) and endothelin 1 (ET 1) determined by enzyme immuno assay (EIA) were increased in sciatic nerves from NEP ko mice after CCI. Tissue CGRP content did not differ between the genotypes. The results provide evidence that pain behavior and neurogenic inflammation are enhanced in NEP ko mice after nerve injury. These findings resemble human 'cold' CRPS and suggest that ET 1 plays an important role in the pathogenesis of CRPS with nerve injury.

  16. B cell-deficient mice display markedly enhanced resistance to the intracellular bacterium Brucella abortus.

    PubMed

    Goenka, Radhika; Parent, Michelle A; Elzer, Philip H; Baldwin, Cynthia L

    2011-04-15

    Brucella species are facultative intracellular bacteria that cause lifelong infections in humans and livestock. Here we evaluated the contribution of B cells in control of murine brucellosis in the more susceptible BALB/c and the more resistant C57BL/6 mice by infecting B cell-deficient mice. Strikingly, in the absence of B cells in both C57BL/6 and BALB/c mice, 99% and 99.5% of the infection found in wild type mice was cleared, respectively. This augmented clearance was not reversed in either strain by passive transfer of immune serum. In C57BL/6 mice, the clearance of infection coincided with an increase in interferon γ (IFN-γ)-producing CD4 and CD8 T cells and a reduction in interleukin 10 (IL-10)-producing cells. In BALB/c mice, this clearance was IFN-γ-dependent, as B cell/IFN-γ dual knockout mice were unable to clear the infection, and was inversely related to the levels of transforming growth factor β (TGF-β). Furthermore, B cells were found to produce TGF-β and IL-10 during early stages of infection in BALB/c wild-type and C57BL/6 wild-type mice, respectively. Thus, we demonstrate that the establishment of the high plateau phase of infection is dependent on non-antibody-mediated B cell effector mechanisms, including B regulatory functions, during murine brucellosis. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.

  17. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  18. Proteoglycan 4: A Dynamic Regulator of Skeletogenesis and Parathyroid Hormone Skeletal Anabolism

    PubMed Central

    Novince, Chad M; Michalski, Megan N; Koh, Amy J; Sinder, Benjamin P; Entezami, Payam; Eber, Matthew R; Pettway, Glenda J; Rosol, Thomas J; Wronski, Thomas J; Kozloff, Ken M; McCauley, Laurie K

    2014-01-01

    Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH-responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild-type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH-mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild-type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF-2) mRNA and reduced serum FGF-2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF-2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone- and liver-derived FGF-2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure. PMID:21932346

  19. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice.

    PubMed

    Renkema, Kirsten Y; Nijenhuis, Tom; van der Eerden, Bram C J; van der Kemp, Annemiete W C M; Weinans, Harrie; van Leeuwen, Johannes P T M; Bindels, René J M; Hoenderop, Joost G J

    2005-11-01

    Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalciuria, hypervitaminosis D, and intestinal hyperabsorption of Ca(2+). Moreover, these mice demonstrate upregulation of intestinal TRPV6 and calbindin-D(9K) expression compared with wild-type mice. For addressing the role of the observed hypervitaminosis D in the maintenance of Ca(2+) homeostasis and the regulation of expression levels of the Ca(2+) transport proteins in kidney and intestine, TRPV5/25-hydroxyvitamin-D(3)-1alpha-hydroxylase double knockout (TRPV5(-/-)/1alpha-OHase(-/-)) mice, which show undetectable serum 1,25(OH)(2)D(3) levels, were generated. TRPV5(-/-)/1alpha-OHase(-/-) mice displayed a significant hypocalcemia compared with wild-type mice (1.10 +/- 0.02 and 2.54 +/- 0.01 mM, respectively; P < 0.05). mRNA levels of renal calbindin-D(28K) (7 +/- 2%), calbindin-D(9K) (32 +/- 4%), Na(+)/Ca(2+) exchanger (12 +/- 2%), and intestinal TRPV6 (40 +/- 8%) and calbindin-D(9K) (26 +/- 4%) expression levels were decreased compared with wild-type mice. Hyperparathyroidism and rickets were present in TRPV5(-/-)/1alpha-OHase(-/-) mice, more pronounced than observed in single TRPV5 or 1alpha-OHase knockout mice. It is interesting that a renal Ca(2+) leak, as demonstrated in TRPV5(-/-) mice, persisted in TRPV5(-/-)/1alpha-OHase(-/-) mice, but a compensatory upregulation of intestinal Ca(2+) transporters was abolished. In conclusion, the elevation of serum 1,25(OH)(2)D(3) levels in TRPV5(-/-) mice is responsible for the upregulation of intestinal Ca(2+) transporters and Ca(2+) hyperabsorption. Hypervitaminosis D, therefore, is of crucial importance to maintain normocalcemia in impaired Ca(2+) reabsorption in TRPV5(-/-) mice.

  20. Theiler's virus-infected L-selectin-deficient mice have decreased infiltration of CD8(+) T lymphocytes in central nervous system but clear the virus.

    PubMed

    Zhang, X; Brewer, L; Walcheck, B; Johnson, A; Pease, L R; Njenga, M K

    2001-06-01

    Mice with targeted deletion of L-selectin gene (L-sel(-/-)) were used to investigate the role of adhesion molecule in immunologic responses following virus infection in the central nervous system (CNS). L-Sel(-/-) mice from a resistant H-2(b) genetic background and parental wild-type H-2(b) (C57BL/6) mice were infected with Theiler's murine encephalomyelitis virus (TMEV) intracerebrally and the kinetics of virus replication and infiltration of immune cells in the CNS determined. The levels of infectious TMEV, as measured by plaque assay at 3, 7, 14, and 28 days after infection were between 4 and 6 log(10) PFU of virus per gram of CNS tissues at days 3 and 7 post-infection, and then decreased to undetectable levels by day 14 after infection in both strains of mice. The L-sel(-/-) mice had decreased numbers of CD8(+) T lymphocytes (17.72%+/-2.4) infiltrating into the CNS at 7 days post-infection when compared to wild-type mice (31.02%+/-7.5). In addition, the L-sel(-/-) mice had significantly lower levels of TMEV-specific serum IgG resulting in lower virus neutralizing activity of the serum when compared to wild-type mice. However, the L-sel(-/-) mice had 2.5-fold increase in B lymphocytes in the CNS (8.29%+/-1.1) when compared to wild-type mice (3.2%+/-0.4). Taken together, these data indicate that L-selectin plays a role in recruitment of B and CD8(+) T lymphocytes into the CNS following virus infection, which, however, did not affect the ability of the mice to clear TMEV infection.

  1. Thyroid epithelial cell hyperplasia in IFN-gamma deficient NOD.H-2h4 mice.

    PubMed

    Yu, Shiguang; Sharp, Gordon C; Braley-Mullen, Helen

    2006-01-01

    The role of inflammatory cells in thyroid epithelial cell (thyrocyte) hyperplasia is unknown. Here, we demonstrate that thyrocyte hyperplasia in IFN-gamma-/- NOD.H-2h4 mice has an autoimmune basis. After chronic exposure to increased dietary iodine, 60% of IFN-gamma-/- mice had severe thyrocyte hyperplasia with minimal or moderate lymphocyte infiltration, and thyroid dysfunction with reduced serum T4. All mice produced anti-thyroglobulin autoantibody. Some wild-type NOD.H-2h4 mice had isolated areas of thyrocyte hyperplasia with predominantly lymphocytic infiltration, whereas IL-4-/- and 50% of wild-type NOD.H-2h4 mice developed lymphocytic thyroiditis but no thyrocyte hyperplasia. Both thyroid infiltrating inflammatory cells and environmental factors (iodine) were required to induce thyrocyte hyperplasia. Splenocytes from IFN-gamma-/- mice with thyrocyte hyperplasia, but not splenocytes from naïve IFN-gamma-/- mice, induced hyperplasia in IFN-gamma-/- NOD.H-2h4.SCID mice. These results may provide clues for understanding the mechanisms underlying development of epithelial cell hyperplasia not only in thyroids but also in other tissues and organs.

  2. Differential Effects of Leucine Supplementation in Young and Aged Mice at the Onset of Skeletal Muscle Regeneration

    PubMed Central

    Perry, Richard A.; Brown, Lemuel A.; Lee, David E.; Brown, Jacob L.; Baum, Jamie I.; Greene, Nicholas P.; Washington, Tyrone A.

    2016-01-01

    Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice. PMID:27327351

  3. Morphological observation of the stria vascularis in midkine and pleiotrophin knockout mice.

    PubMed

    Sone, Michihiko; Muramatsu, Hisako; Muramatsu, Takashi; Nakashima, Tsutomu

    2011-02-01

    Midkine and Pleiotrophin are low molecular weight basic proteins with closely related structures and serve as growth/differentiation factors. They have been reported to be expressed in the cochlea during the embryonic and perinatal periods. In the present study, we focused on the roles of midkine and pleiotrophin in the stria vascularis and investigated morphological changes using mice deficient in these genes. Midkine knockout, pleiotrophin knockout, and double knockout mice were used and compared to wild-type mice. Auditory brain stem responses (ABRs) and cochlear blood flows were measured in each type of mice. Pathological changes in the stria vascularis were examined by light microscopy, including immunohistochemical staining with anti-Kir4.1 antibody, and electron microscopy. Hearing thresholds examined by ABRs were significantly higher in midkine knockout and pleiotrophin knockout mice than in wild-type mice. Double knockout mice showed higher thresholds compared to midkine knockout and pleiotrophin knockout mice. Blood flow in the lateral walls did not significantly differ and light microscopy examination showed an almost normal appearance of the stria vascularis in these knockout mice. However, the expression of Kir4.1 was weak in the knockout mice and severe vacuolar degeneration was observed by electron microscopy in the intermediate cells of the double knockout mice. The present study demonstrates that midkine and pleiotrophin play some roles for the morphological maintenance of intermediate cell in the stria vascularis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Increased susceptibility to fatigue of slow- and fast-twitch muscles from mice lacking the MG29 gene.

    PubMed

    Nagaraj, R Y; Nosek, C M; Brotto, M A; Nishi, M; Takeshima, H; Nosek, T M; Ma, J

    2000-11-09

    Mitsugumin 29 (MG29), a major protein component of the triad junction in skeletal muscle, has been identified to play roles in the formation of precise junctional membrane structures important for efficient signal conversion in excitation-contraction (E-C) coupling. We carried out several experiments to not only study the role of MG29 in normal muscle contraction but also to determine its role in muscle fatigue. We compared the in vitro contractile properties of three muscles types, extensor digitorum longus (EDL) (fast-twitch muscle), soleus (SOL) (slow-twitch muscle), and diaphragm (DPH) (mixed-fiber muscle), isolated from mice lacking the MG29 gene and wild-type mice prior to and after fatigue. Our results indicate that the mutant EDL and SOL muscles, but not DPH, are more susceptible to fatigue than the wild-type muscles. The mutant muscles not only fatigued to a greater extent but also recovered significantly less than the wild-type muscles. Following fatigue, the mutant EDL and SOL muscles produced lower twitch forces than the wild-type muscles; in addition, fatiguing produced a downward shift in the force-frequency relationship in the mutant mice compared with the wild-type controls. Our results indicate that fatiguing affects the E-C components of the mutant EDL and SOL muscles, and the effect of fatigue in these mutant muscles could be primarily due to an alteration in the intracellular Ca homeostasis.

  5. Gastric Expression of Plasminogen Activator Inhibitor (PAI)-1 Is Associated with Hyperphagia and Obesity in Mice

    PubMed Central

    Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatković, Nikolina; Dimaline, Rod; Varro, Andrea

    2013-01-01

    The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H+/K+β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1–null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake. PMID:23254194

  6. Gastric expression of plasminogen activator inhibitor (PAI)-1 is associated with hyperphagia and obesity in mice.

    PubMed

    Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatkovic, Nikolina; Dimaline, Rod; Varro, Andrea; Dockray, Graham J

    2013-02-01

    The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H(+)/K(+)β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1-null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake.

  7. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent

    PubMed Central

    Cardiff, Robert D.; Trott, Josephine F.; Hovey, Russell C.; Hubbard, Neil E.; Engelberg, Jesse A.; Tepper, Clifford G.; Willis, Brandon J.; Khan, Imran H.; Ravindran, Resmi K.; Chan, Szeman R.; Schreiber, Robert D.; Borowsky, Alexander D.

    2015-01-01

    Female 129:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment. PMID:26075897

  8. A Ten-Week Biochemistry Lab Project Studying Wild-Type and Mutant Bacterial Alkaline Phosphatase

    ERIC Educational Resources Information Center

    Witherow, D. Scott

    2016-01-01

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important…

  9. Structures and Free Energy Landscapes of the Wild-Type and A30P Mutant-Type α-Synuclein Proteins with Dynamics

    PubMed Central

    2013-01-01

    The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson’s disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson’s disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward

  10. Structures and free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins with dynamics.

    PubMed

    Wise-Scira, Olivia; Aloglu, Ahmet Kemal; Dunn, Aquila; Sakallioglu, Isin Tuna; Coskuner, Orkid

    2013-03-20

    The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson's disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward

  11. The antioxidant and anti-inflammatory activities of tocopherols are independent of Nrf2 in mice.

    PubMed

    Li, Guangxun; Lee, Mao-Jung; Liu, Anna Ba; Yang, Zhihong; Lin, Yong; Shih, Weichung Joe; Yang, Chung S

    2012-04-01

    The present study investigated the antioxidant and anti-inflammatory actions of tocopherols in mice and determined whether the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved in these activities. A mixture of tocopherols (γ-TmT) that is rich in γ-tocopherol was used. Nrf2 knockout (Nrf2 -/-) and wild-type mice were maintained on 0.03, 0.1, or 0.3% γ-TmT-enriched diet starting 2 weeks before the administration of dextran sulfate sodium (DSS) in drinking water (for 1 week, to induce colonic inflammation), until the termination of the experiment at 3 days after the DSS treatment. Dietary γ-TmT dose dependently lowered the levels of 8-oxo-deoxyguanosine, nitrotyrosine, inflammation index, and leukocyte infiltration in colon tissues, as well as 8-isoprostane and prostaglandin E2 in the serum, in both Nrf2 (-/-) and wild-type mice. No significant difference on the inhibitory actions of γ-TmT between the Nrf2 (-/-) and the wild-type mice was observed. The γ-TmT treatment significantly increased the serum levels of γ- and δ-tocopherols. Interestingly, the serum levels of tocopherol metabolites, specifically the γ- and δ-forms of carboxymethylbutyl hydroxychroman and carboxyethyl hydroxychroman, in Nrf2 (-/-) mice were significantly higher than those in wild-type mice. These findings suggest that the antioxidant and anti-inflammatory activities of γ-TmT in the colon are mostly due to the direct action of tocopherols in trapping reactive oxygen and nitrogen species, independent of the antioxidant enzymes and anti-inflammatory proteins that are regulated by Nrf2; however, Nrf2 knockout appears to affect the serum levels of tocopherol metabolites. Copyright © 2011. Published by Elsevier Inc.

  12. Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice.

    PubMed

    González, Luis F; Henríquez-Belmar, Francisca; Delgado-Acevedo, Claudia; Cisternas-Olmedo, Marisol; Arriagada, Gloria; Sotomayor-Zárate, Ramón; Murphy, Dennis L; Moya, Pablo R

    2017-09-19

    Obsessive-compulsive disorder (OCD) is a severe neuropsychiatric condition affecting 1-3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze) and compulsivity (marble burying), as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus-brain areas that are relevant to OCD. Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally) increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors.

  13. Sensorimotor control of breathing in the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Burns, David P; Roy, Arijit; Lucking, Eric F; McDonald, Fiona B; Gray, Sam; Wilson, Richard J; Edge, Deirdre; O'Halloran, Ken D

    2017-11-01

    Respiratory failure is a leading cause of mortality in Duchenne muscular dystrophy (DMD), but little is known about the control of breathing in DMD and animal models. We show that young (8 weeks of age) mdx mice hypoventilate during basal breathing due to reduced tidal volume. Basal CO 2 production is equivalent in wild-type and mdx mice. We show that carotid bodies from mdx mice have blunted responses to hyperoxia, revealing hypoactivity in normoxia. However, carotid body, ventilatory and metabolic responses to hypoxia are equivalent in wild-type and mdx mice. Our study revealed profound muscle weakness and muscle fibre remodelling in young mdx diaphragm, suggesting severe mechanical disadvantage in mdx mice at an early age. Our novel finding of potentiated neural motor drive to breathe in mdx mice during maximal chemoactivation suggests compensatory neuroplasticity enhancing respiratory motor output to the diaphragm and probably other accessory muscles. Patients with Duchenne muscular dystrophy (DMD) hypoventilate with consequential arterial blood gas derangement relevant to disease progression. Whereas deficits in DMD diaphragm are recognized, there is a paucity of knowledge in respect of the neural control of breathing in dystrophinopathies. We sought to perform an analysis of respiratory control in a model of DMD, the mdx mouse. In 8-week-old male wild-type and mdx mice, ventilation and metabolism, carotid body afferent activity, diaphragm muscle force-generating capacity, and muscle fibre size, distribution and centronucleation were determined. Diaphragm EMG activity and responsiveness to chemostimulation was determined. During normoxia, mdx mice hypoventilated, owing to a reduction in tidal volume. Basal CO 2 production was not different between wild-type and mdx mice. Carotid sinus nerve responses to hyperoxia were blunted in mdx, suggesting hypoactivity. However, carotid body, ventilatory and metabolic responses to hypoxia were equivalent in wild-type and

  14. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice.

    PubMed

    Choi, Soonwook; Yu, Eunah; Kim, Daesoo; Urbano, Francisco J; Makarenko, Vladimir; Shin, Hee-Sup; Llinás, Rodolfo R

    2010-08-15

    The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming alpha1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming alpha1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1-/- mice. In the CaV3.1-/- mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1-/- mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1-/- mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1-/- and CaV3.1-/- mice. These results suggest that both alpha1A P/Q- and alpha1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics.

  15. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells.

    PubMed

    Mohanty, Madhu C; Deshpande, Jagadish M

    2013-01-01

    Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  16. Bioactive grape proanthocyanidins enhance immune reactivity in UV-irradiated skin through functional activation of dendritic cells in mice.

    PubMed

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Elmets, Craig A; Xu, Hui; Katiyar, Santosh K

    2013-03-01

    Ultraviolet (UV) radiation-induced immunosuppression has been implicated in skin carcinogenesis. Grape seed proanthocyanidins (GSPs) have anti-skin carcinogenic effects in mice and GSPs-fed mice exhibit a reduction in UV-induced suppression of allergic contact hypersensitivity (CHS), a prototypic T-cell-mediated response. Here, we report that dietary GSPs did not inhibit UVB-induced suppression of CHS in xeroderma pigmentosum complementation group A (XPA)-deficient mice, which lack nucleotide excision repair mechanisms. GSPs enhanced repair of UVB-induced DNA damage (cyclobutane pyrimidine dimers) in wild-type, but not XPA-deficient, dendritic cells (DC). Co-culture of CD4(+) T cells with DCs from UVB-irradiated wild-type mice resulted in suppression of T-cell proliferation and secretion of T-helper (TH) 1-type cytokines that was ameliorated when the DCs were obtained from GSP-fed mice, whereas DCs obtained from GSP-fed XPA-KO mice failed to restore T-cell proliferation. In adoptive transfer experiments, donor DCs were positively selected from the draining lymph nodes of UVB-exposed donor mice that were sensitized to 2,4,-dinitrofluorobenzene were transferred into naïve recipient mice and the CHS response assessed. Naïve recipients that received DCs from UVB-exposed wild-type donors that had been fed GSPs exhibited a full CHS response, whereas no significant CHS was observed in mice that received DCs from XPA-KO mice fed GSPs. These results suggest that GSPs prevent UVB-induced immunosuppression through DNA repair-dependent functional activation of dendritic cells in mice. Cancer Prev Res; 6(3); 242-52. ©2013 AACR. ©2013 AACR.

  17. TLR2 signal influences the iNOS/NO responses and worm development in C57BL/6J mice infected with Clonorchis sinensis.

    PubMed

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Shi, Yun-Liang; Wan, Xiao-Ling; Yang, Yi-Chao

    2017-08-07

    Although the responses of inducible nitric oxide synthase (iNOS) and associated cytokine after Clonorchis sinensis infection have been studied recently, their mechanisms remain incompletely understood. In this study, we investigated the effects of toll-like receptor 2 (TLR2) signals on iNOS/nitric oxide (NO) responses after C. sinensis infection. We also evaluated the correlations between iNOS responses and worm development, which are possibly regulated by TLR2 signal. TLR2 wild-type and mutant C57BL/6 J mice were infected with 60 C. sinensis metacercariae, and the samples were collected at 30, 60, 90 and 120 days post-infection (dpi). The total serum NO levels were detected using Griess reagent after nitrate was reduced to nitrite. Hepatic tissue samples from the infected mice were sliced and stained with hematoxylin and eosin (HE) to observe worm development in the intrahepatic bile ducts. The iNOS mRNA transcripts in the splenocytes were examined by real time reverse transcriptase polymerase chain reaction (qRT-PCR), and iNOS expression was detected by immunohistochemistry. Developing C. sinensis juvenile worms were more abundant in the intrahepatic bile ducts of TLR2 mutant mice than those of TLR2 wild-type mice. However, no eggs were found in the faeces of both mice samples. The serum levels of total NO significantly increased in TLR2 mutant mice infected with C. sinensis at 30 (t (5)  = 2.595, P = 0.049), 60 (t (5)  = 7.838, P = 0.001) and 90 dpi (t (5)  = 3.032, P = 0.029). Meanwhile, no changes occurred in TLR2 wild-type mice compared with uninfected controls during the experiment. The iNOS expression in splenocytes showed unexpected higher background levels in TLR2 mutant mice than those in TLR2 wild-type mice. Furthermore, the iNOS mRNA transcripts in splenocytes were significantly increased in the TLR2 wild-type mice infected with C. sinensis at 30 (t (5)  = 5.139, P = 0.004), 60 (t (5)  = 6.138, P = 0.002) and 90 dpi (t (5)  = 6

  18. Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice.

    PubMed

    Perez, Virginia; D Annunzio, Verónica; Mazo, Tamara; Marchini, Timoteo; Caceres, Lourdes; Evelson, Pablo; Gelpi, Ricardo J

    2016-04-01

    Thioredoxin-1 (Trx-1) is part of an antioxidant system that maintains the cell redox homeostasis but their role on ischemic postconditioning (PostC) is unknown. The aim of this work was to determine whether Trx-1 participates in the cardioprotective mechanism of PostC in young, middle-aged, and old mice. Male FVB young (Y: 3 month-old), middle-aged (MA: 12 month-old), and old (O: 20 month-old) mice were used. Langendorff-perfused hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). After ischemia, we performed 6 cycles of R/I (10 s each) followed by 120 min of reperfusion (PostC group). We measured the infarct size (triphenyltetrazolium); Trx-1, total and phosphorylated Akt, and GSK3β expression (Western blot); and the GSH/GSSG ratio (HPLC). PostC reduced the infarct size in young mice (I/R-Y: 52.3 ± 2.4 vs. PostC-Y: 40.0 ± 1.9, p < 0.05), but this protection was abolished in the middle-aged and old mice groups. Trx-1 expression decreased after I/R, and the PostC prevented the protein degradation in young animals (I/R-Y: 1.05 ± 0.1 vs. PostC-Y: 0.52 ± .0.07, p < 0.05). These changes were accompanied by an improvement in the GSH/GSSG ratio (I/R-Y: 1.25 ± 0.30 vs. PostC-Y: 7.10 ± 2.10, p < 0.05). However, no changes were observed in the middle-aged and old groups. Cytosolic Akt and GSK3β phosphorylation increased in the PostC compared with the I/R group only in young animals. Our results suggest that PostC prevents Trx-1 degradation, decreasing oxidative stress and allowing the activation of Akt and GSK3β to exert its cardioprotective effect. This protection mechanism is not activated in middle-aged and old animals.

  19. NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes.

    PubMed

    Ebrahimian, Téni G; Heymes, Christophe; You, Dong; Blanc-Brude, Olivier; Mees, Barend; Waeckel, Ludovic; Duriez, Micheline; Vilar, José; Brandes, Ralph P; Levy, Bernard I; Shah, Ajay M; Silvestre, Jean-Sébastien

    2006-08-01

    We hypothesized that diabetes-induced oxidative stress may affect postischemic neovascularization. The response to unilateral femoral artery ligation was studied in wild-type or gp91(phox)-deficient control or type 1 diabetic mice or in animals treated with the anti-oxidant N-acetyl-l-cysteine (NAC) or with in vivo electrotransfer of a plasmid encoding dominant-negative Rac1 (50 microg) for 21 days. Postischemic neovascularization was reduced in diabetic mice in association with down-regulated vascular endothelial growth factor-A protein levels. In diabetic animals vascular endothelial growth factor levels and postischemic neovascularization were restored to nondiabetic levels by the scavenging of reactive oxygen species (ROS) by NAC administration or the inhibition of ROS generation by gp91(phox) deficiency or by administration of dominant-negative Rac1. Finally, diabetes reduced the ability of adherent bone marrow-derived mononuclear cells (BM-MNCs) to differentiate into endothelial progenitor cells. Treatment with NAC (3 mmol/L), apocynin (200 micromol/L), or the p38MAPK inhibitor LY333351 (10 micromol/L) up-regulated the number of endothelial progenitor cell colonies derived from diabetic BM-MNCs by 1.5-, 1.6-, and 1.5-fold, respectively (P < 0.05). In the ischemic hindlimb model, injection of diabetic BM-MNCs isolated from NAC-treated or gp91(phox)-deficient diabetic mice increased neovascularization by approximately 1.5-fold greater than untreated diabetic BM-MNCs (P < 0.05). Thus, inhibition of NADPH oxidase-derived ROS overproduction improves the angiogenic and vasculogenic processes and restores postischemic neovascularization in type 1 diabetic mice.

  20. Reduced Extinction of Hippocampal-Dependent Memories in CPEB Knockout Mice

    ERIC Educational Resources Information Center

    Zearfoss, N. Ruth; Richter, Joel D.; Berger-Sweeney, Joanne

    2006-01-01

    CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of…

  1. Maternal administration of meclozine for the treatment of foramen magnum stenosis in transgenic mice with achondroplasia.

    PubMed

    Matsushita, Masaki; Mishima, Kenichi; Esaki, Ryusaku; Ishiguro, Naoki; Ohno, Kinji; Kitoh, Hiroshi

    2017-01-01

    OBJECTIVE Achondroplasia (ACH) is the most common short-limbed skeletal dysplasia caused by gain-of-function mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Foramen magnum stenosis (FMS) is one of the serious neurological complications in ACH. Through comprehensive drug screening, the authors identified that meclozine, an over-the-counter drug for motion sickness, inhibited activation of FGFR3 signaling. Oral administration of meclozine to the growing ACH mice promoted longitudinal bone growth, but it did not prevent FMS. In the current study, the authors evaluated the effects of maternal administration of meclozine on FMS in ACH mice. METHODS The area of the foramen magnum was measured in 17-day-old Fgfr3 ach mice and wild-type mice using micro-CT scanning. Meclozine was administered to the pregnant mice carrying Fgfr3 ach offspring from embryonic Day (ED) 14.5 to postnatal Day (PD) 4.5. Spheno-occipital and anterior intraoccipital synchondroses were histologically examined, and the bony bridges were scored on PD 4.5. In wild-type mice, tissue concentrations of meclozine in ED 17.5 fetuses and PD 6.5 pups were investigated. RESULTS The area of the foramen magnum was significantly smaller in 17-day-old Fgfr3 ach mice than in wild-type mice (p < 0.005). There were no bony bridges in the spheno-occipital and anterior intraoccipital synchondroses in wild-type mice, while some of the synchondroses prematurely closed in untreated Fgfr3 ach mice at PD 4.5. The average bony bridge score in the cranial base was 7.053 ± 1.393 in untreated Fgfr3 ach mice and 6.125 ± 2.029 in meclozine-treated Fgfr3 ach mice. The scores were not statistically significant between mice with and those without meclozine treatment (p = 0.12). The average tissue concentration of meclozine was significantly higher (508.88 ± 205.16 ng/g) in PD 6.5 mice than in ED 17.5 mice (56.91 ± 20.05 ng/g) (p < 0.005). CONCLUSIONS Maternal administration of meclozine postponed premature

  2. Antibody targeting KIT as pretransplantation conditioning in immunocompetent mice.

    PubMed

    Xue, Xingkui; Pech, Nancy K; Shelley, W Christopher; Srour, Edward F; Yoder, Mervin C; Dinauer, Mary C

    2010-12-09

    Inherited hematologic defects that lack an in vivo selective advantage following gene correction may benefit from effective yet minimally toxic cytoreduction of endogenous hematopoietic stem cells (HSCs) prior to transplantation of gene-modified HSCs. We studied the efficacy of administering a novel sequential treatment of parenteral ACK2, an antibody that blocks KIT, followed by low-dose irradiation (LD-IR) for conditioning of wild-type and X-linked chronic granulomatous disease (X-CGD) mice. In wild-type mice, combining ACK2 and LD-IR profoundly decreased endogenous competitive long-term HSC repopulating activity, and permitted efficient and durable donor-derived HSC engraftment after congenic transplantation. ACK2 alone was ineffective. The combination of ACK2 and LD-IR was also effective conditioning in X-CGD mice for engraftment of X-CGD donor HSCs transduced ex vivo with a lentiviral vector. We conclude that combining ACK2 with LD-IR is a promising approach to effectively deplete endogenous HSCs and facilitate engraftment of transplanted donor HSCs.

  3. Overexpression of alpha(1)-acid glycoprotein in transgenic mice leads to sensitisation to acute colitis.

    PubMed

    Hochepied, T; Wullaert, A; Berger, F G; Baumann, H; Brouckaert, P; Steidler, L; Libert, C

    2002-09-01

    alpha(1)-Acid glycoprotein (alpha(1)-AGP) is an acute phase protein in most mammalian species whose concentration rises 2-5-fold during an acute phase reaction. Its serum concentration has often been used as a marker of disease, including inflammatory bowel disease (IBD). High alpha(1)-AGP levels were found to have a prognostic value for an increased risk of relapse in IBD. To investigate a possible role for increased serum levels of alpha(1)-AGP in the development of IBD. Dextran sodium sulphate (DSS) 2% was added to the drinking water of transgenic mice, overexpressing the rat alpha(1)-AGP gene, to induce acute colitis, thus mimicking the conditions of relapse. Clinical parameters, inflammatory parameters, and histological analyses on colon sections were performed. Homozygous alpha(1)-AGP-transgenic mice started losing weight and showed rectal bleeding significantly earlier than heterozygous transgenic or wild-type mice. Survival time of homozygous transgenic mice was significantly shorter compared with heterozygous and wild-type mice. The higher susceptibility of homozygous alpha(1)-AGP-transgenic mice to DSS induced acute colitis was also reflected in higher local myeloperoxidase levels, higher inflammation scores of the colon, and higher systemic levels of interleukin 6 and serum amyloid P component. Local inflammatory parameters were also significantly different in heterozygous transgenic mice compared with wild-type mice, indicating a local dosage effect. In homozygous transgenic mice, significantly higher amounts of bacteria were found in organs but IgA levels were only slightly lower than those of control mice. Sufficiently high serum levels of alpha(1)-AGP result in a more aggressive development of acute colitis.

  4. Spontaneous Aberrant Crypt Foci in Apc1638N Mice with a Mutant Apc Allele

    PubMed Central

    Pretlow, Theresa P.; Edelmann, Winfried; Kucherlapati, Raju; Pretlow, Thomas G.; Augenlicht, Leonard H.

    2003-01-01

    The Apc1638N/+ mouse has a chain-terminating mutation in one allele of the adenomatous polyposis coli (Apc) gene that is similar to most mutations observed in the human familial adenomatous polyposis syndrome. Aberrant crypt foci (ACF), the earliest identified neoplastic lesions in the colon, are morphologically abnormal structures that are identifiedmicroscopically in the grossly normal colonic mucosas of rodents treated with colon carcinogens and of human patients. The colons and cecums of 62 Apc1638N/+ mice were evaluated for the spontaneous occurrence of ACF and tumors. Both male and female mice were killed at different times between 5 and 28 weeks of age. Wild-type littermates, ie, Apc+/+ mice, at 22 to 26 weeks of age served as controls. ACF were identified in 97% of the Apc1638N/+ mice starting at 5 weeks of age and not in any wild-type littermates. Although the number of ACF increased with age (P < 0.0001), the average number of crypts per focus of the ACF did not increase significantly. In addition, wild-type Apc protein was detected by immunohistochemistry in all 22 ACF evaluated. Together these data suggest that heterozygous loss of Apc may be sufficient to initiate ACF in these mice and that these mice may be suitable models to study the interaction of environmental factors with an inherited mutation of the Apc gene that is associated with colon cancer. PMID:14578176

  5. CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE

    EPA Science Inventory

    We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...

  6. MTBDRplus and MTBDRsl Assays: Absence of Wild-Type Probe Hybridization and Implications for Detection of Drug-Resistant Tuberculosis

    PubMed Central

    Georghiou, Sophia B.; Catanzaro, Donald; Rodrigues, Camilla; Crudu, Valeriu; Victor, Thomas C.; Garfein, Richard S.; Catanzaro, Antonino; Rodwell, Timothy C.

    2016-01-01

    Accurate identification of drug-resistant Mycobacterium tuberculosis is imperative for effective treatment and subsequent reduction in disease transmission. Line probe assays rapidly detect mutations associated with resistance and wild-type sequences associated with susceptibility. Examination of molecular-level performance is necessary for improved assay result interpretation and for continued diagnostic development. Using data collected from a large, multisite diagnostic study, probe hybridization results from line probe assays, MTBDRplus and MTBDRsl, were compared to those of sequencing, and the diagnostic performance of each individual mutation and wild-type probe was assessed. Line probe assay results classified as resistant due to the absence of wild-type probe hybridization were compared to those of sequencing to determine if novel mutations were inhibiting wild-type probe hybridization. The contribution of absent wild-type probe hybridization to the detection of drug resistance was assessed via comparison to a phenotypic reference standard. In our study, mutation probes demonstrated significantly higher specificities than wild-type probes and wild-type probes demonstrated marginally higher sensitivities than mutation probes, an ideal combination for detecting the presence of resistance conferring mutations while yielding the fewest number of false-positive results. The absence of wild-type probe hybridization without mutation probe hybridization was determined to be primarily the result of failure of mutation probe hybridization and not the result of novel or rare mutations. Compared to phenotypic culture-based drug susceptibility testing, the absence of wild-type probe hybridization without mutation probe hybridization significantly contributed to the detection of phenotypic rifampin and fluoroquinolone resistance with negligible increases in false-positive results. PMID:26763971

  7. Accentuated Osteoclastic Response to Parathyroid Hormone Undermines Bone Mass Acquisition in Osteonectin-null Mice

    PubMed Central

    do Reis, Luciene Machado; Kessler, Catherine B.; Adams, Douglas J.; Lorenzo, Joseph; Jorgetti, Vanda; Delany, Anne M.

    2008-01-01

    Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone. In the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 μg/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin

  8. Intradermal infections of mice by low numbers of african trypanosomes are controlled by innate resistance but enhance susceptibility to reinfection.

    PubMed

    Wei, Guojian; Bull, Harold; Zhou, Xia; Tabel, Henry

    2011-02-01

    Antibodies are required to control blood-stage forms of African trypanosomes in humans and animals. Here, we report that intradermal infections by low numbers of African trypanosomes are controlled by innate resistance but prime the adaptive immune response to increase susceptibility to a subsequent challenge. Mice were found 100 times more resistant to intradermal infections by Trypanosoma congolense or Trypanosoma brucei than to intraperitoneal infections. B cell-deficient and RAG2(-/-) mice are as resistant as wild-type mice to intradermal infections, whereas inducible nitric oxide synthase (iNOS)(-/-) mice and wild-type mice treated with antibody to tumor necrosis factor (TNF) α are more susceptible. We conclude that primary intradermal infections with low numbers of parasites are controlled by innate defense mediated by induced nitric oxide (NO). CD1d(-/-) and major histocompatibility complex (MHC) class II(-/-) mice are more resistant than wild-type mice to primary intradermal infections. Trypanosome-specific spleen cells, as shown by cytokine production, are primed as early as 24 h after intradermal infection. Infecting mice intradermally with low numbers of parasites, or injecting them intradermally with a trypanosomal lysate, makes mice more susceptible to an intradermal challenge. We suggest that intradermal infections with low numbers of trypanosomes or injections with trypanosomal lysates prime the adaptive immune system to suppress protective immunity to an intradermal challenge.

  9. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice

    PubMed Central

    Deguise, Marc-Olivier; De Repentigny, Yves; McFall, Emily; Auclair, Nicole; Sad, Subash

    2017-01-01

    Abstract Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis. PMID:28108555

  10. The effects of JWB1-84-1 on memory-related task performance by amyloid Abeta transgenic mice and by young and aged monkeys.

    PubMed

    Sood, Ajay; Warren Beach, J; Webster, Scott J; Terry, Alvin V; Buccafusco, Jerry J

    2007-10-01

    JWB1-84-1 is one of 50 tertiary amine analogs of choline synthesized with expectation that they would be high potency compounds for cytoprotection. As one of the more potent analogs in this regard, JWB1-84-1, a piperazine derivative, was selected for testing as a cognition-enhancing agent. The compound was evaluated for efficacy in Alzheimer's disease transgenic mice (B6C3-Tg(APPswe, PSEN1dE9)85Dbo/J). A separate cohort of mice (AD Tg) were first subjected to a behavioral test battery in which the transgenic strain was compared with the wild-type strain. AD Tg mice were shown to exhibit specific deficits in the acquisition of a working memory (5-trial/session radial arm water maze, RAWM) task at a time when the animals exhibited maximal cerebral amyloid burden. JWB1-84-1 produced a dose-dependent decrease in the number of errors made by well trained AD-Tg mice the RAWM task that was maximal after the 20 microg/kg dose. Aged macaques (20-32 y) were trained to proficiency in their performance of a computer-assisted delayed matching-to-sample task. Vehicle (normal saline) or JWB1-84-1 (5-150 microg/kg, i.m.) was administered 10 min before the initiating of testing. On average, JWB1-84-1 treatment significantly improved task accuracy after all but the lowest dose. The maximal degree of improvement was attained after animals received the 100 microg/kg dose. The drug's effects were restricted primarily to Medium and Long delay trials - the most difficult portions of the task, which were improved by up to 18% above control. In young macaques JWB1-84-1 treatment also significantly reversed the decrements in task accuracy associated with the random presentation of a task distractor. Thus JWB1-84-1exhibits the potential for treating the cognitive symptoms associated with neurodegenerative diseases and attention deficit disorders. Its cytoprotective action might also work to slow the progression of Alzheimer's disease.

  11. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  12. Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice

    PubMed Central

    Bomer, Nils; Cornelis, Frederique M. F.; Ramos, Yolande F. M.; den Hollander, Wouter; Lakenberg, Nico; van der Breggen, Ruud; Storms, Lies; Slagboom, P. Eline; Lories, Rik J. U.; Meulenbelt, Ingrid

    2016-01-01

    Objective To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. Methods Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. Results Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. Conclusion We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity. PMID:27163789

  13. Hyperresponsive febrile reactions to interleukin (IL) 1α and IL-1β, and altered brain cytokine mRNA and serum cytokine levels, in IL-1β-deficient mice

    PubMed Central

    Alheim, Katarina; Chai, Zhen; Fantuzzi, Giamila; Hasanvan, Homa; Malinowsky, David; Di Santo, Elena; Ghezzi, Pietro; Dinarello, Charles A.; Bartfai, Tamas

    1997-01-01

    IL-1β is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1α and IL-1β, and compared these with response to LPS (i.p.) in wild-type and IL-1β-deficient mice. The IL-1β deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1β, IL-1α, or LPS induced hyperresponsive fevers in the IL-1β-deficient mice. We also observed phenotypic differences between wild-type and IL-1β-deficient mice in hypothalamic basal mRNA levels for IL-1α and IL-6, but not for IL-1β-converting enzyme or IL-1 receptor type I or type II. The IL-1α mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1β-deficient mice as compared with wild-type mice. The IL-1β-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type α levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1β plays an important but not obligatory role in fever induction by LPS or IL-1α, as well as in the induction of serum tumor necrosis factor type α and corticosterone responses either by LPS or by IL-1α or IL-1β. PMID:9122256

  14. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNELmore » staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.« less

  15. Renoprotective impact of estrogen receptor α and its splice variants in female mice with type 1 diabetes.

    PubMed

    Irsik, Debra L; Romero-Aleshire, Melissa Jill; Chavez, Erin M; Fallet, Rachel W; Brooks, Heddwen L; Carmines, Pamela K; Lane, Pascale H

    2018-04-18

    Estrogen has been implicated in the regulation of growth and immune function in the kidney, which expresses the full-length estrogen receptor α (ERα66), its ERα splice variants, and estrogen receptor β (ERβ). Thus, we hypothesized that these splice variants may inhibit glomerular enlargement that occurs early in type 1 diabetes (T1D). T1D was induced by streptozotocin (STZ) injection in 8-12 wk-old female mice lacking ERα66 (ERα66KO) or all ERα variants (αERKO), and their wild-type (WT) littermates. Basal renal ERα36 protein expression was reduced in the ERα66KO model and was downregulated by T1D in WT mice. T1D did not alter ERα46 or ERβ in WT-STZ; however, ERα46 was decreased modestly in ERα66KO. Renal hypertrophy was evident in all diabetic mice. F4/80-positive immunostaining was reduced in ERα66KO, compared with WT and αERKO mice, but was higher in STZ than in WT mice across all genotypes. Glomerular area was greater in WT and αERKO than in ERα66KO mice, with T1D-induced glomerular enlargement apparent in WT-STZ and αERKO-STZ, but not in ERα66KO-STZ. Proteinuria and hyperfiltration were evident in ERα66KO-STZ and αERKO-STZ, but not in WT-STZ mice. These data indicate that ERα splice variants may exert an inhibitory influence on glomerular enlargement and macrophage infiltration during T1D; however, effects of splice variants are masked in the presence of the full-length ERα66, suggesting that ERα66 acts in opposition to its splice variants to influence these parameters. In contrast, hyperfiltration and proteinuria in T1D are attenuated via an ERα66-dependent mechanism that is unaffected by splice variant status.

  16. Noxious heat threshold temperature and pronociceptive effects of allyl isothiocyanate (mustard oil) in TRPV1 or TRPA1 gene-deleted mice.

    PubMed

    Tékus, Valéria; Horváth, Ádám; Hajna, Zsófia; Borbély, Éva; Bölcskei, Kata; Boros, Melinda; Pintér, Erika; Helyes, Zsuzsanna; Pethő, Gábor; Szolcsányi, János

    2016-06-01

    To investigate the roles of TRPV1 and TRPA1 channels in baseline and allyl isothiocyanate (AITC)-evoked nociceptive responses by comparing wild-type and gene-deficient mice. In contrast to conventional methods of thermonociception measuring reflex latencies, we used our novel methods to determine the noxious heat threshold. It was revealed that the heat threshold of the tail measured by an increasing-temperature water bath is significantly higher in TRPV1(-/-), but not TRPA1(-/-), mice compared to respective wild-types. There was no difference between the noxious heat thresholds of the hind paw as measured by an increasing-temperature hot plate in TRPV1(-/-), TRPA1(-/-) and the corresponding wild-type mice. The withdrawal latency of the tail from 0°C water was prolonged in TRPA1(-/-), but not TRPV1(-/-), mice compared to respective wild-types. In wild-type animals, dipping the tail or paw into 1% AITC induced an 8-14°C drop of the noxious heat threshold (heat allodynia) of both the tail and paw, and 40-50% drop of the mechanonociceptive threshold (mechanical allodynia) of the paw measured by dynamic plantar esthesiometry. These AITC-evoked responses were diminished in TRPV1(-/-), but not TRPA1(-/-), mice. Tail withdrawal latency to 1% AITC was significantly prolonged in both gene-deleted strains. Different heat sensors determine the noxious heat threshold in distinct areas: a pivotal role for TRPV1 on the tail is contrasted with no involvement of either TRPV1 or TRPA1 on the hind paw. Noxious heat threshold measurement appears appropriate for preclinical screening of TRP channel ligands as novel analgesics. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nod2 deficiency protects mice from cholestatic liver disease by increasing renal excretion of bile acids

    PubMed Central

    Wang, Lirui; Hartmann, Phillipp; Haimerl, Michael; Bathena, Sai P.; Sjöwall, Christopher; Almer, Sven; Alnouti, Yazen; Hofmann, Alan F.; Schnabl, Bernd

    2014-01-01

    Background & aims Chronic liver disease is characterized by fibrosis that may progress to cirrhosis. Nucleotide oligomerization domain 2 (Nod2), a member of the Nod-like receptor (NLR) family of intracellular immune receptors, plays an important role in the defense against bacterial infection through binding to the ligand muramyl dipeptide (MDP). Here, we investigated the role of Nod2 in the development of liver fibrosis. Methods We studied experimental cholestatic liver disease induced by bile duct ligation or toxic liver disease induced by carbon tetrachloride in wild type and Nod2−/− mice. Results Nod2 deficiency protected mice from cholestatic but not toxin-induced liver injury and fibrosis. Most notably, the hepatic bile acid concentration was lower in Nod2−/− mice than wild type mice following bile duct ligation for 3 weeks. In contrast to wild type mice, Nod2−/− mice had increased urinary excretion of bile acids, including sulfated bile acids, and an upregulation of the bile acid efflux transporters MRP2 and MRP4 in tubular epithelial cells of the kidney. MRP2 and MRP4 were downregulated by IL-1β in a Nod2 dependent fashion. Conclusions Our findings indicate that Nod2 deficiency protects mice from cholestatic liver injury and fibrosis through enhancing renal excretion of bile acids that in turn contributes to decreased concentration of bile acids in the hepatocyte. PMID:24560660

  18. Experimental transmission of rabbit haemorrhagic disease virus (RHDV) from rabbit to wild mice (Mus spretus and Apodemus sylvaticus) under laboratory conditions.

    PubMed

    Rocha, Gregorio; Alda, Fernando; Pagés, Albert; Merchán, Tomás

    2017-01-01

    Rabbit haemorrhagic disease (RHD) is a highly lethal and contagious viral disease that produces haemorrhagic lesions in liver and lungs of domestic and wild rabbits (Oryctolagus cuniculus). This study investigates the transmission of RHDV from infected rabbits to mice, based on the detection of viral RNA. Sixteen wild mice (Mus spretus, n=12 and Apodemus sylvaticus, n=4) were put in contact with nine rabbits inoculated with RHDV. No mice died following exposure to RHDV-infected rabbits or developed macroscopic haemorrhagic lesions. On the fourth day of contact, RHDV was detected by RT-PCR in the faeces of three of the four mice killed and in the livers of two of them. Three days after contact period with the inoculated rabbits (7th day of the experiment), RHDV was detected by RT-PCR in 100% (n=4) of the faeces and 50% (n=2) of the livers of euthanized animals. Ten days after contact period (14th day of the experiment), RHDV was not detected in the faeces or liver from any of the mice euthanized. However, 64days after contact period, RHDV was detected in the faeces of one mouse (1 of 4). We demonstrate cross-species transmission of RHDV-RNA from rabbit to rodent and the capability of RHDV-RNA to persist in mice for at least 10days after contact, and potentially up to two months, although viral replication within the rodent and/or infectivity was not evaluated in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Increased Differentiation of Dermal Mast Cells in Mice Lacking the Mpl Gene

    PubMed Central

    Ghinassi, Barbara; Zingariello, Maria; Martelli, Fabrizio; Lorenzini, Rodolfo; Vannucchi, Alessandro M.; Rana, Rosa Alba; Nishikawa, Mitsuo; Migliaccio, Giovanni; Mascarenhas, John

    2009-01-01

    Thrombopoietin interactions with its receptor, Mpl, play an important role in the regulation of hematopoietic stem/progenitor cell proliferation and differentiation. In this study, we report that the mast cell restricted progenitor cells (MCP) and the mast cell precursors in the bone marrow of wild-type mice express Mpl on their surface. Furthermore, targeted deletion of the Mpl gene in mice decreases the number of MCP while increasing the number of mast cell precursors present in the marrow and spleen. It also increases the number of mast cells present in the dermis, in the peritoneal cavity, and in the gut of the mice. In addition, serosal mast cells from Mplnull mice have a distinctive differentiation profile similar to that expressed by wild-type dermal mast cells. These results suggest that not only does ligation of thrombopoietin with the Mpl receptor exert an effect at the mast cell restricted progenitor cell level, but also plays an unexpected yet important role in mast cell maturation. PMID:19025339

  20. TRPM8 is a neuronal osmosensor that regulates eye blinking in mice

    PubMed Central

    Quallo, Talisia; Vastani, Nisha; Horridge, Elisabeth; Gentry, Clive; Parra, Andres; Moss, Sian; Viana, Felix; Belmonte, Carlos; Andersson, David A.; Bevan, Stuart

    2015-01-01

    Specific peripheral sensory neurons respond to increases in extracellular osmolality but the mechanism responsible for excitation is unknown. Here we show that small increases in osmolality excite isolated mouse dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons expressing the cold-sensitive TRPM8 channel (transient receptor potential channel, subfamily M, member 8). Hyperosmotic responses were abolished by TRPM8 antagonists, and were absent in DRG and TG neurons isolated from Trpm8−/− mice. Heterologously expressed TRPM8 was activated by increased osmolality around physiological levels and inhibited by reduced osmolality. Electrophysiological studies in a mouse corneal preparation demonstrated that osmolality regulated the electrical activity of TRPM8-expressing corneal afferent neurons. Finally, the frequency of eye blinks was reduced in Trpm8−/− compared with wild-type mice and topical administration of a TRPM8 antagonist reduced blinking in wild-type mice. Our findings identify TRPM8 as a peripheral osmosensor responsible for the regulation of normal eye-blinking in mice. PMID:25998021

  1. Cdx mutant axial progenitor cells are rescued by grafting to a wild type environment.

    PubMed

    Bialecka, Monika; Wilson, Valerie; Deschamps, Jacqueline

    2010-11-01

    Cdx transcription factors are required for axial extension. Cdx genes are expressed in the posterior growth zone, a region that supplies new cells for axial elongation. Cdx2(+/-)Cdx4(-/-) (Cdx2/4) mutant embryos show abnormalities in axis elongation from E8.5, culminating in axial truncation at E10.5. These data raised the possibility that the long-term axial progenitors of Cdx mutants are intrinsically impaired in their ability to contribute to posterior growth. We investigated whether we could identify cell-autonomous defects of the axial progenitor cells by grafting mutant cells into a wild type growth zone environment. We compared the contribution of GFP labeled mutant and wild type progenitors grafted to unlabeled wild type recipients subsequently cultured over the period during which Cdx2/4 defects emerge. Descendants of grafted cells were scored for their contribution to differentiated tissues in the elongating axis and to the posterior growth zone. No difference between the contribution of descendants from wild type and mutant grafted progenitors was detected, indicating that rescue of the Cdx mutant progenitors by the wild type recipient growth zone is provided non-cell autonomously. Recently, we showed that premature axial termination of Cdx mutants can be partly rescued by stimulating canonical Wnt signaling in the posterior growth zone. Taken together with the data shown here, this suggests that Cdx genes function to maintain a signaling-dependent niche for the posterior axial progenitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Hepatitis B virus x gene and cyanobacterial toxins promote aflatoxin B1-induced hepatotumorigenesis in mice

    PubMed Central

    Lian, Min; Liu, Ying; Yu, Shun-Zhang; Qian, Geng-Sun; Wan, Shu-Guang; Dixon, Kenneth R

    2006-01-01

    AIM: To assess the combinative role of aflatoxin B1 (AFB1), cyanobacterial toxins (cyanotoxins), and hepatitis B virus (HBV) x gene in hepatotumorigenicity. METHODS: One-week-old animals carrying HBV x gene and their wild-type littermates were intraperitoneally (ip) injected with either single-dose AFB1 [6 mg/kg body weight (bw)], repeated-dose cyanotoxins (microcystin-LR or nodularin, 10 μg/kg bw once a week for 15 wk), DMSO (vehicle control) alone, or AFB1 followed by cyanotoxins a week later, and were sacrificed at 24 and 52 wk post-treatment. RESULTS: AFB1 induced liver tumors in 13 of 29 (44.8%) transgenic mice at 52 wk post-treatment, significantly more frequent than in wild-type mice (13.3%). This significant difference was not shown in the 24-wk study. Compared with AFB1 exposure alone, MC-LR and nodularin yielded approximately 3-fold and 6-fold increases in the incidence of AFB1-induced liver tumors in wild-type animals at 24 wk, respectively. HBV x gene did not further elevate the risk associated with co-exposure to AFB1 and cyanotoxins. With the exception of an MC-LR-dosed wild-type mouse, no liver tumor was observed in mice treated with cyanotoxins alone at 24 wk. Neither DMSO-treated transgenic mice nor their wild-type littermates had pathologic alterations relevant to hepatotumorigenesis in even up to 52 wk. CONCLUSION: HBV x gene and nodularin promote the development of AFB1-induced liver tumors. Co-exposure to AFB1 and MC-LR tends to elevate the risk of liver tumors at 24 wk relative to exposure to one of them. The combinative effect of AFB1, cyanotoxins and HBVx on hepatotumorigenesis is weak at 24 wk. PMID:16718789

  3. A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Wagner, T. A.; Cove, D. J.; Sack, F. D.

    1997-01-01

    Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.

  4. Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture.

    PubMed

    de Mooij, Tim; Schediwy, Kira; Wijffels, René H; Janssen, Marcel

    2016-12-20

    Under high light conditions, microalgae are oversaturated with light which significantly reduces the light use efficiency. Microalgae with a reduced pigment content, antenna size mutants, have been proposed as a potential solution to increase the light use efficiency. The goal of this study was to investigate the competition between antenna size mutants and wild type microalgae in mass cultures. Using a kinetic model and literature-derived experimental data from wild type Chlorella sorokiniana, the productivity and competition of wild type cells and antenna size mutants were simulated. Cultivation was simulated in an outdoor microalgal raceway pond production system which was assumed to be limited by light only. Light conditions were based on a Mediterranean location (Tunisia) and a more temperate location (the Netherlands). Several wild type contamination levels were simulated in each mutant culture separately to predict the effect on the productivity over the cultivation time of a hypothetical summer season of 100days. The simulations demonstrate a good potential of antenna size reduction to increase the biomass productivity of microalgal cultures. However, it was also found that after a contamination with wild type cells the mutant cultures will be rapidly overgrown resulting in productivity loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Genetic analysis and characterization of wild poliovirus type 1 during sustained transmission in a population with >95% vaccine coverage, Israel 2013.

    PubMed

    Shulman, Lester M; Martin, Javier; Sofer, Danit; Burns, Cara C; Manor, Yossi; Hindiyeh, Musa; Gavrilin, Eugene; Wilton, Thomas; Moran-Gilad, Jacob; Gamzo, Ronni; Mendelson, Ella; Grotto, Itamar

    2015-04-01

    Israel has >95% polio vaccine coverage with the last 9 birth cohorts immunized exclusively with inactivated polio vaccine (IPV). Using acute flaccid paralysis and routine, monthly countrywide environmental surveillance, no wild poliovirus circulation was detected between 1989 and February 2013, after which wild type 1 polioviruses South Asia genotype (WPV1-SOAS) have persistently circulated in southern Israel and intermittently in other areas without any paralytic cases as determined by intensified surveillance of environmental and human samples. We aimed to characterize antigenic and neurovirulence properties of WPV1-SOAS silently circulating in a highly vaccinated population. WPV1-SOAS capsid genes from environmental and stool surveillance isolates were sequenced, their neurovirulence was determined using transgenic mouse expressing the human poliovirus receptor (Tg21-PVR) mice, and their antigenicity was characterized by in vitro neutralization using human sera, epitope-specific monoclonal murine anti-oral poliovirus vaccine (OPV) antibodies, and sera from IPV-immunized rats and mice. WPV1 amino acid sequences in neutralizing epitopes varied from Sabin 1 and Mahoney, with little variation among WPV1 isolates. Neutralization by monoclonal antibodies against 3 of 4 OPV epitopes was lost. Three-fold lower geometric mean titers (Z = -4.018; P < .001, Wilcoxon signed-rank test) against WPV1 than against Mahoney in human serum correlated with 4- to 6-fold lower neutralization titers in serum from IPV-immunized rats and mice. WPV1-SOAS isolates were neurovirulent (50% intramuscular paralytic dose in Tg21-PVR mice: log10(7.0)). IPV-immunized mice were protected against WPV1-induced paralysis. Phenotypic and antigenic profile changes of WPV1-SOAS may have contributed to the intense silent transmission, whereas the reduced neurovirulence may have contributed to the absence of paralytic cases in the background of high population immunity. © The Author 2014. Published by

  6. Wheel running in the wild.

    PubMed

    Meijer, Johanna H; Robbers, Yuri

    2014-07-07

    The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

  7. Prodepressant- and anxiogenic-like effects of serotonin-selective, but not noradrenaline-selective, antidepressant agents in mice lacking α2-containing GABAA receptors.

    PubMed

    Benham, Rebecca S; Hewage, Nishani B; Suckow, Raymond F; Engin, Elif; Rudolph, Uwe

    2017-08-14

    Deficits in neuronal inhibition via gamma-aminobutyric acid (GABA) type A receptors (GABAA-Rs) are implicated in the pathophysiology of major depressive disorder and the therapeutic effects of current antidepressant treatments, however, the relevant GABAA-R subtype as defined by its alpha subunit is still unknown. We previously reported anxiety- and depressive-like behavior in alpha2+/- and alpha2-/- mice, respectively (Vollenweider, 2011). We sought to determine whether this phenotype could be reversed by chronic antidepressant treatment. Adult male mice received 4 or 8mg/kg fluoxetine or 53mg/kg desipramine in their drinking water for four weeks before undergoing behavioral testing. In the novelty suppressed feeding test, desipramine had anxiolytic-like effects reducing the latencies to bite and to eat the pellet in both wild-type and alpha2+/- mice. Surprisingly, 4mg/kg fluoxetine had anxiogenic-like effects in alpha2+/- mice increasing latency to bite and to eat while 8mg/kg fluoxetine increased the latency to eat in both wild-type and alpha2+/- mice. In the forced swim and tail suspension tests, chronic desipramine treatment increased latency to immobility in wild-type and alpha2-/- mice. In contrast, chronic fluoxetine treatment increased immobility in alpha2-/- mice in both tasks while generally having no effect in wild-type mice. These findings suggest that in preclinical paradigms of anxiety and behavioral despair the antidepressant-like effects of desipramine are independent of alpha2-containing GABAA-Rs, while a reduction in alpha2 expression leads to an increased sensitivity to anxiogenic- and prodepressant-like effects with chronic fluoxetine treatment, pointing to a potential role of alpha2-containing GABAA-Rs in the response to serotonin-selective antidepressants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    PubMed Central

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  9. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System.

    PubMed

    Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M

    2015-01-24

    Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is

  10. Different effects of oral administration of synthetic trypsin inhibitor on the pancreas between cholecystokinin-A receptor gene knockout mice and wild type mice.

    PubMed

    Sato, Norikazu; Suzuki, Shinji; Kanai, Setsuko; Ohta, Minoru; Jimi, Atsuo; Noda, Tetsuo; Takiguchi, Souichi; Funakoshi, Akihiro; Miyasaka, Kyoko

    2002-07-01

    The synthetic trypsin inhibitor camostat has been used for the treatment of acute and chronic pancreatitis in Japan based on the evidences obtained from a rat experimental model. However, rats differ from other rodents and from humans in terms of lacking a gallbladder and no response of pancreatic bicarbonate secretion to cholecystokinin (CCK). In the present study, we determined whether oral administration of camostat showed a trophic effect in mice as observed in rats and whether the trophic effect, if substantial, was mediated via the CCK-A receptor, using CCK-A receptor gene targeting mice. The chow containing 0.1% camostat was fed to 8-month-old mice. Three- and seven-day treatments with camostat did not affect pancreatic wet weight in CCK-A receptor (+/-) mice. After 14-day treatment, the ratio of pancreatic wet weight/body weight was significantly lower in CCK-A receptor (-/-) than (+/+) mice. The protein and chymotrypsin contents were lower and amylase content was higher in CCK-A receptor (-/-) mice, compared to (+/+) mice. No pathological findings were observed by histological examination. Camostat has a trophic effect on the pancreas in mice and this effect is mediated via the CCK-A receptor, but is less potent than in rats.

  11. Characterization of the Genetic Program Linked to the Development of Atrial Fibrillation in CREM-IbΔC-X Mice.

    PubMed

    Seidl, Matthias D; Stein, Juliane; Hamer, Sabine; Pluteanu, Florentina; Scholz, Beatrix; Wardelmann, Eva; Huge, Andreas; Witten, Anika; Stoll, Monika; Hammer, Elke; Völker, Uwe; Müller, Frank U

    2017-08-01

    Reduced expression of genes regulated by the transcription factors CREB/CREM (cAMP response element-binding protein/modulator) is linked to atrial fibrillation (AF) susceptibility in patients. Cardiomyocyte-directed expression of the inhibitory CREM isoform CREM-IbΔC-X in transgenic mice (TG) leads to spontaneous-onset AF preceded by atrial dilatation and conduction abnormalities. Here, we characterized the altered gene program linked to atrial remodeling and development of AF in CREM-TG mice. Atria of young (TGy, before AF onset) and old (TGo, after AF onset) TG mice were investigated by mRNA microarray profiling in comparison with age-matched wild-type controls (WTy/WTo). Proteomic alterations were profiled in young mice (8 TGy versus 8 WTy). Annotation of differentially expressed genes revealed distinct differences in biological functions and pathways before and after onset of AF. Alterations in metabolic pathways, some linked to altered peroxisome proliferator-activated receptor signaling, muscle contraction, and ion transport were already present in TGy. Electron microscopy revealed significant loss of sarcomeres and mitochondria and increased collagen and glycogen deposition in TG mice. Alterations in electrophysiological pathways became prominent in TGo, concomitant with altered gene expression of K + -channel subunits and ion channel modulators, relevant in human AF. The most prominent alterations of the gene program linked to CREM-induced atrial remodeling were identified in the expression of genes related to structure, metabolism, contractility, and electric activity regulation, suggesting that CREM transgenic mice are a valuable experimental model for human AF pathophysiology. © 2017 American Heart Association, Inc.

  12. Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice

    PubMed Central

    Ryazanova, Lillia V.; Hu, Zhixian; Suzuki, Sayuri; Chubanov, Vladimir; Fleig, Andrea; Ryazanov, Alexey G.

    2014-01-01

    TRPM7 is an unusual bi-functional protein containing an ion channel covalently linked to a protein kinase domain. TRPM7 is implicated in regulating cellular and systemic magnesium homeostasis. While the biophysical properties of TRPM7 ion channel and its function are relatively well characterized, the function of the TRPM7 enzymatically active kinase domain is not understood yet. To investigate the physiological role of TRPM7 kinase activity, we constructed mice carrying an inactive TRPM7 kinase. We found that these mice were resistant to dietary magnesium deprivation, surviving three times longer than wild type mice; also they displayed decreased chemically induced allergic reaction. Interestingly, mutant mice have lower magnesium bone content compared to wild type mice when fed regular diet; unlike wild type mice, mutant mice placed on magnesium-depleted diet did not alter their bone magnesium content. Furthermore, mouse embryonic fibroblasts isolated from TRPM7 kinase-dead animals exhibited increased resistance to magnesium deprivation and oxidative stress. Finally, electrophysiological data revealed that the activity of the kinase-dead TRPM7 channel was not significantly altered. Together, our results suggest that TRPM7 kinase is a sensor of magnesium status and provides coordination of cellular and systemic responses to magnesium deprivation. PMID:25534891

  13. Wild-Type Measles Viruses with Non-Standard Genome Lengths

    PubMed Central

    Bankamp, Bettina; Liu, Chunyu; Rivailler, Pierre; Bera, Jayati; Shrivastava, Susmita; Kirkness, Ewen F.; Bellini, William J.; Rota, Paul A.

    2014-01-01

    The length of the single stranded, negative sense RNA genome of measles virus (MeV) is highly conserved at 15,894 nucleotides (nt). MeVs can be grouped into 24 genotypes based on the highly variable 450 nucleotides coding for the carboxyl-terminus of the nucleocapsid protein (N-450). Here, we report the genomic sequences of 2 wild-type viral isolates of genotype D4 with genome lengths of 15,900 nt. Both genomes had a 7 nt insertion in the 3′ untranslated region (UTR) of the matrix (M) gene and a 1 nt deletion in the 5′ UTR of the fusion (F) gene. The net gain of 6 nt complies with the rule-of-six required for replication competency of the genomes of morbilliviruses. The insertions and deletion (indels) were confirmed in a patient sample that was the source of one of the viral isolates. The positions of the indels were identical in both viral isolates, even though epidemiological data and the 3 nt differences in N-450 between the two genomes suggested that the viruses represented separate chains of transmission. Identical indels were found in the M-F intergenic regions of 14 additional genotype D4 viral isolates that were imported into the US during 2007–2010. Viral isolates with and without indels produced plaques of similar size and replicated efficiently in A549/hSLAM and Vero/hSLAM cells. This is the first report of wild-type MeVs with genome lengths other than 15,894 nt and demonstrates that the length of the M-F UTR of wild-type MeVs is flexible. PMID:24748123

  14. Mild deficits in mice lacking pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory tasks.

    PubMed

    Sauvage, M; Brabet, P; Holsboer, F; Bockaert, J; Steckler, T

    2000-12-08

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.

  15. Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice

    PubMed Central

    Roncal-Jimenez, Carlos A.; Lanaspa-Garcia, Miguel A.; Oppelt, Sarah A.; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E.; Johnson, Ginger; MacLean, Paul S.; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R.; Johnson, Richard J.

    2016-01-01

    Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. NEW & NOTEWORTHY This study increases our

  16. Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice.

    PubMed

    Song 宋志林, Zhilin; Roncal-Jimenez, Carlos A; Lanaspa-Garcia, Miguel A; Oppelt, Sarah A; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E; Johnson, Ginger; MacLean, Paul S; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R; Johnson, Richard J

    2017-02-01

    Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. This study increases our understanding of the

  17. Thrombospondin-2 overexpression in the skin of transgenic mice reduces the susceptibility to chemically induced multistep skin carcinogenesis.

    PubMed

    Kunstfeld, Rainer; Hawighorst, Thomas; Streit, Michael; Hong, Young-Kwon; Nguyen, Lynh; Brown, Lawrence F; Detmar, Michael

    2014-05-01

    We have previously reported stromal upregulation of the endogenous angiogenesis inhibitor thrombospondin-2 (TSP-2) during multistep carcinogenesis, and we found accelerated and enhanced skin angiogenesis and carcinogenesis in TSP-2 deficient mice. To investigate whether enhanced levels of TSP-2 might protect from skin cancer development. We established transgenic mice with targeted overexpression of TSP-2 in the skin and subjected hemizygous TSP-2 transgenic mice and their wild-type littermates to a chemical skin carcinogenesis regimen. TSP-2 transgenic mice showed a significantly delayed onset of tumor formation compared to wild-type mice, whereas the ratio of malignant conversion to squamous cell carcinomas was comparable in both genotypes. Computer-assisted morphometric analysis of blood vessels revealed pronounced tumor angiogenesis already in the early stages of carcinogenesis in wild type mice. TSP-2 overexpression significantly reduced tumor blood vessel density in transgenic mice but had no overt effect on LYVE-1 positive lymphatic vessels. The percentage of desmin surrounded, mature tumor-associated blood vessels and the degree of epithelial differentiation remained unaffected. The antiangiogenic effect of transgenic TSP-2 was accompanied by a significantly increased number of apoptotic tumor cells in transgenic mice. Our results demonstrate that enhanced levels of TSP-2 in the skin result in reduced susceptibility to chemically-induced skin carcinogenesis and identify TSP-2 as a new target for the prevention of skin cancer. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice*

    PubMed Central

    Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H. Henry

    2016-01-01

    Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. PMID:27226540

  19. Wild-type p53 reactivation by small-molecule Minnelide™ in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma.

    PubMed

    Caicedo-Granados, Emiro; Lin, Rui; Fujisawa, Caitlin; Yueh, Bevan; Sangwan, Veena; Saluja, Ashok

    2014-12-01

    The incidence of high-risk human papillomavirus (HR-HPV) head and neck squamous cell carcinoma (HNSCC) continues to increase, particularly oropharyngeal squamous cell carcinoma (OPSCC) cases. The inactivation of the p53 tumor suppressor gene promotes a chain of molecular events, including cell cycle progression and apoptosis resistance. Reactivation of wild-type p53 function is an intriguing therapeutic strategy. The aim of this study was to investigate whether a novel compound derived from diterpene triepoxide (Minnelide™) can reactivate wild-type p53 function in HPV-positive HNSCC. For all of our in vitro experiments, we used 2 HPV-positive HNSCC cell lines, University of Michigan squamous cell carcinoma (UM-SCC) 47 and 93-VU-147, and 2 HPV-positive human cervical cancer cell lines, SiHa and CaSki. Cells were treated with different concentrations of triptolide and analyzed for p53 activation. Mice bearing UM-SCC 47 subcutaneous xenografts and HPV-positive patient-derived tumor xenografts were treated with Minnelide and evaluated for tumor growth and p53 activation. In HPV-positive HNSCC, Minnelide reactivated p53 by suppressing E6 oncoprotein. Activation of apoptosis followed, both in vitro and in vivo. In 2 preclinical HNSCC animal models (a subcutaneous xenograft model and a patient-derived tumor xenograft model), Minnelide reactivated p53 function and significantly decreased tumor progression and tumor volume. Triptolide and Minnelide caused cell death in vitro and in vivo in HPV-positive HNSCC by reactivating wild-type p53 and thus inducing apoptosis. In addition, in 2 HPV-positive HNSCC animal models, Minnelide decreased tumor progression and induced apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Isobe, Mitsuaki

    2016-02-01

    The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a(-/-)) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a(-/-) mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a(-/-)-C, WT-OL, and AT1a(-/-)-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.