Sample records for youngest toba tuff

  1. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia

    USGS Publications Warehouse

    Reid, Mary R; Vazquez, Jorge A.

    2017-01-01

    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  2. Are there Tuffs from Toba Supereruptions in Singapore?

    NASA Astrophysics Data System (ADS)

    Bergal-Kuvikas, O.; Bouvet de Maisonneuve, C.; Vazquez, J. A.

    2016-12-01

    Singapore is a dense transportation hub and the most highly populated area of SE Asia. In order to assess volcanic hazards for Singapore, we compiled a database of Quaternary eruptions from neighboring volcanoes and we investigated samples from 20 boreholes collected across 11 reservoirs and several natural outcrops in the NW parts of the city. We identified a deposit of white to slightly yellow clay with a visible thickness of 6-8 meters in the western part of Singapore. This deposit of very fine ash is silicic (SiO2 72-75 wt.%) and calk-alkaline (K2O 3.7-4.5 wt.%). The ash layer is clearly weathered as the LOI is around 5 wt.% and SEM images show the presence of clay minerals almost exclusively. Geochemical mapping shows that quartz crystals are characterized by textures similar to volcanic deposits. N-MORB normalized spiderdiagrams of whole-rocks show minimums in Nb and Ti, enrichments in LREE, and depletions of HREE. This suggests a subduction origin. One possible source for this voluminous weathered ash layer is the Toba caldera, which produced several super eruptions in the Quaternary (the Young Toba Tuff at 0.074 Ma, Middle Toba Tuff at 0.5 Ma, Old Toba Tuff at 0.84 Ma, and Haranggoal Dacite Tuff at 1.2 Ma). Recognizing distal Toba tuffs is problematic because most deposits are underwater. Most of the analyzed samples have geochemical compositions that are statistically similar to the Toba tuffs and characterized by high contents of HREE elements (e.g. Y, Er, Yb) and some REE (e.g. Eu, Ba, La, Th). Preliminary dating shows the presence of Triassic zircons, possibly due to geologic contamination. Additional dating is needed to ascertain the source and age of this ash. Our new geochemical data of likely distal Toba deposits will be an important component for tephrochronological and paleoenvironmental studies in addition to being of importance for hazards assessments in Singapore.

  3. Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesner, C.A.; Rose, W.I.; Drake, R.

    1991-03-01

    Single-grain laser-fusion {sup 40}Ar/{sup 39}Ar analyses of individual sanidine phenocrysts from the two youngest Toba (Indonesia) tuffs yield mean ages of 73{plus minus}4 and 501{plus minus}5 ka. In addition, glass shards from Toba ash deposited in Malaysia were dated at 68{plus minus}7 ka by the isothermal plateau fission-track technique. These new determinations, in conjunction with previous ages for the two oldest tuffs at Toba, establish the chronology of four eruptive events from the Toba caldera complex over the past 1.2 m.y. Ash-flow tuffs were erupted from the complex every 0.34 to 0.43 m.y., culminating with the enormous (2500-3000 km{sup 3})more » Youngest Toba tuff eruption, caldera formation, and subsequent resurgence of Samosir Island. Timing of this last eruption at Toba is coincident with the early Wisconsin glacial advance. The high-precision {sup 40}Ar/{sup 39}Ar age eruption of such magnitude may provide an important marker horizon useful as a baseline for research and modeling of the worldwide climatic impact of exceptionally large explosive eruptions.« less

  4. Humans thrived in South Africa through the Toba eruption about 74,000 years ago

    NASA Astrophysics Data System (ADS)

    Smith, Eugene I.; Jacobs, Zenobia; Johnsen, Racheal; Ren, Minghua; Fisher, Erich C.; Oestmo, Simen; Wilkins, Jayne; Harris, Jacob A.; Karkanas, Panagiotis; Fitch, Shelby; Ciravolo, Amber; Keenan, Deborah; Cleghorn, Naomi; Lane, Christine S.; Matthews, Thalassa; Marean, Curtis W.

    2018-03-01

    Approximately 74 thousand years ago (ka), the Toba caldera erupted in Sumatra. Since the magnitude of this eruption was first established, its effects on climate, environment and humans have been debated. Here we describe the discovery of microscopic glass shards characteristic of the Youngest Toba Tuff—ashfall from the Toba eruption—in two archaeological sites on the south coast of South Africa, a region in which there is evidence for early human behavioural complexity. An independently derived dating model supports a date of approximately 74 ka for the sediments containing the Youngest Toba Tuff glass shards. By defining the input of shards at both sites, which are located nine kilometres apart, we are able to establish a close temporal correlation between them. Our high-resolution excavation and sampling technique enable exact comparisons between the input of Youngest Toba Tuff glass shards and the evidence for human occupation. Humans in this region thrived through the Toba event and the ensuing full glacial conditions, perhaps as a combined result of the uniquely rich resource base of the region and fully evolved modern human adaptation.

  5. Geochemistry and Temperatures Recorded by Zircon During the Final Stages of the Youngest Toba Tuff Magma Chamber, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Gaither, T.; Reid, M. R.; Vazquez, J. A.

    2009-12-01

    The ~74 ka eruption of the Youngest Toba Tuff (YTT) in Sumatra, Indonesia, was one of the largest single volcanic eruptions in geologic history, on par with other voluminous silicic eruptions such as the Huckleberry Ridge Tuff of Yellowstone and the Bishop Tuff of Long Valley, California. We are exploring how zircon and other accessory mineral phases record compositional and thermal changes that occurred in the YTT magma, and the important clues these crystal scale records hold for magma chamber dynamics and processes that lead up to supervolcano eruptions. In this study, we report trace element (REE, U, Th, Ti, and Hf) characteristics, Ti-in-zircon crystallization temperatures, and apparent REE partition coefficients obtained for YTT zircon rims. Twenty-nine zircons from pumices with a compositional range of 70-76 wt% SiO2 were analyzed on the UCLA Cameca ims 1270 ion microprobe. The grains were mounted so that only the outermost ~1.5 microns of the crystals were analyzed. Median Zr/Hf ratios of 34 to 38 characterize zircons from the pumices; the high silica rhyolite grains have lower Zr/Hf. Chondrite-normalized REE patterns are strongly LREE-depleted. Positive Ce anomalies are large (Ce/Ce* ranges up to 88) and Eu/Eu* varies by a factor of four (0.05 to 0.21). Eu/Eu*, Nd/Yb, and Th/U decrease with decreasing Zr/Hf, showing that the variation in zircon rim compositions may be related by co-precipitation of feldspar and allanite along with zircon. Titanium contents also decrease with decreasing Zr/Hf, suggesting that the chemical differences could be related to temperature changes. REE partition coefficients calculated from zircon rim compositions and pumice glass compositions give a good fit to a lattice strain model. They are also quite similar to the partition coefficients of Sano et al. (2002) which have been shown to be successful at reproducing melt compositions in other settings. Temperatures of crystallization calculated using the Ti

  6. Titanium zoning and diffusion chronometry reveal dynamic and late-stage quartz growth in the Youngest Toba Tuff, Indonesia

    NASA Astrophysics Data System (ADS)

    Tierney, C. R.; Reid, M. R.; Burns, D. H.; Costa Rodriguez, F.; Chesner, C. A.

    2017-12-01

    The enormous 74 ka Youngest Toba Tuff (YTT) ejected 2800 km3 of compositionally zoned (68-77 wt.% SiO2) ignimbrite and co-ignimbrite ash. Titanium zoning within YTT quartz records a dynamic growth history, and sometimes concludes with a final growth stage under different conditions. We investigated the timescales of quartz growth using diffusion chronometry, and determined whether the last stage of crystallization was the result of a discrete and chamber-wide magmatic event. This work offers insight into the dynamics and timescales of storage and remobilization of voluminous silicic magmas - an important consideration for hazards assessment. High-resolution (1 µm steps) hyperspectral CL was mapped from 5-20 quartz crystals from each of five pumices spanning the YTT compositional spectrum. CL intensity was calibrated to Ti concentration via EPMA, and numerically modeled time-dependent diffusional relaxation curves where fit to concentration profiles across zone boundaries. CL-bright/high-Ti rims are found in quartz from all samples, but become less common and have lower Ti concentrations with increasing host pumice silica content (e.g., 70 ppm vs 50 ppm). Some large crystals contain distinct CL-bright interior zones with similar Ti concentration to the rims. Onset of growth of CL-bright rims commenced between 15 and 100 years before eruption, and interior bands between 30 and 1500 years. Neither rim nor interior ages correlate significantly with host pumice silica. Rim growth on quartz evidently occurred closer to eruption than a previous estimate of several decades to centuries for quartz from a single YTT pumice (Matthews et al., 2012). The similar timing for the onset of high-Ti quartz rim growth across all samples suggests a marked and temporally discrete magmatic event in the years to decades prior to eruption and may be recording the chamber-wide influence of magmatic recharge or remobilization. High-Ti interior zones likely record older recharge events that

  7. Widely Dispersed Tephra of Toba Mega-Eruptions in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, M.; Iizuka, Y.; Dehn, J.; Song, S.; Yang, F.

    2001-12-01

    The tephra layers recovered in the Quaternary sediments of Ocean Drilling Program (ODP) Leg 121 Site 758 provide the best record of Toba mega-eruptions in Sumatra, Indonesia. Site 758, located at 5o23.05¡œN, 90o21.67¡œE on the crest of Ninetyeast Ridge with 2924 m water depth, is approximately 1000 km west from the Toba caldera. Four tephra layers in the last 1.5 Ma were recognized as the products of the Toba caldera eruptions, based on chemical and isotopic compositions of the glass shards and minerals. These four tephra layers are named as A, C, D and F layers by Dehn et al. (1991), respectively. The glass shards in these tephra layers related to Toba eruptions showed much higher K2O (>4.5%) and lower CaO (<0.8%) contents, therefore pointing out great differences from the corresponding values of other ashes originating in the Philippines (e.g. glass in the SCS from Mt Pinatubo, K2O<3.0% and CaO>1.1%, SiO2 ~77% Wiesner et al., 1995). Moreover, the biotite grains in these tephra layers showed that the FeO content was higher than the MgO content. The isotopic composition of glass shards is the best fingerprint to trace the source rock. The glass shard fragments revealed extremely high 87Sr/86Sr values (0.71384-0.71869); As for the Sr isotopic values, the Youngest Toba Tuff (YTT) and the Oldest Toba Tuff (OTT) in the Sumatra and the IMAGES Cores in the South China Sea also showed high values from 0.7128-0.7152 (Chesner, 1988; Song et al., 2000; Chen et al., 2000, 2001). The tephrochronology of four tephra layers was re-estimated, based on the new Oxygen proxies. The ages of the A, C, D and F layers in the Site 758 were 0.075 Ma, 0.49 Ma, 0.80 Ma and 1.41 Ma, respectively, which could well correspond to the YTT, the Middle Toba Tuff (MTT), the OTT and the Haranggoal Dacite Tuff (HDT), respectively. This unique set of four wildly dispersed ash layers in the Indian Ocean will provide not only the important key beds in marine sedimentary sequence study in the

  8. Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Shyam Prasad, M.; Babu, E. V. S. S. K.

    2010-08-01

    We have identified an ash layer in association with Australasian microtektites of ˜0.77 Ma old in two sediment cores which are ˜450 km apart in the central Indian Ocean Basin (CIOB). Morphology and chemical composition of glass shards and associated microtektites have been used to trace their provenance. In ODP site 758 from Ninetyeast Ridge, ash layer-D (13 cm thick, 0.73-0.75 Ma) and layer-E (5 cm thick, 0.77-0.78 Ma) were previously correlated to the oldest Toba Tuff (OTT) eruptions of the Toba caldera, Sumatra. In this investigation, we found tephra ˜3100 km to the southwest of Toba caldera that is chemically identical to layer D of ODP site 758 and ash in the South China Sea correlated to the OTT. Layer E is not present in the CIOB or other ocean basins. The occurrence of tephra correlating to layer D suggests a widespread distribution of OTT tephra (˜3.6 × 107 km2), an ash volume of at least ˜1800 km3, a total OTT volume of 2300 km3, and classification of the OTT eruption as a super-eruption.

  9. Possible Intercontinental Dispersal of Microorganisms from a Paleolake Toba in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Chesner, C. A.; Barbee, O. A.

    2014-12-01

    Geochemical fingerprinting of glass shards and minerals have clearly demonstrated that ash from the 74 ka Toba eruption was distributed over a vast area including parts of the Indian Ocean, South China Sea, Indian sub-continent, and eastern Africa. The great dispersal has been attributed to eruption column height, co-ignimbrite ash, shard morphology, and volume of the Youngest Toba Tuff (YTT) eruption. New evidence suggests that another contributing factor may have been a phreatomagmatic component of the eruption whereby portions of the YTT interacted with a paleolake Toba during the eruption. This evidence consists of an accretionary lapilli ash fall bed at the base of the YTT, friable lake sediment lithic fragments found within the proximal YTT ignimbrite, and organic remains in distal ash exposures. Notably, diatom frustules and sponge spicules similar to those that occur in post-YTT lacustrine sediments at Toba have now been identified in the proximal YTT ash fall bed and ignimbrite, as well as distal ash exposures in Malaysia and India. Our findings support the observations of J.B.Scrivenor (1930, 1943) who first described such microfossil occurrences in the Toba ash from sites in Malaysia, and speculated that they may have originated from Toba. Species characterization is currently underway to determine if the microflora/faunal assemblages of the Malaysian and Indian ashes are consistent with a Toba source. The preliminary results of our study lends further credence to Van Eaton et al.'s (2013) suggestion that microbiological cargo carried by phreatomagmatic tephra can provide a new tool in deciphering volcanological, paleoenvironmental, and biologic dispersal models.

  10. Multiple Magma Batches Recorded in Tephra Deposits from the Toba Complex, Sumatra.

    NASA Astrophysics Data System (ADS)

    Pearce, N. J. G.; Westgate, J.; Gatti, E.

    2015-12-01

    The Toba Caldera Complex is the largest Quaternary caldera on Earth, and has generated three voluminous and compositionally similar rhyolitic tuffs, viz. the Oldest (OTT, 800 ka), Middle (MTT, ~500 ka) and Youngest Toba Tuffs (YTT, 75 ka). These tephra deposits are widespread across Indonesia, Malaysia, South China Sea, Sea of Bengal, India and Indian Ocean and provide useful stratigraphic markers in oceanic, lacustrine and terrestrial environments. Single shard trace element analysis of these deposits reveals the changing availability of different batches of magma through time, with Sr, Ba and Y contents defining 5 discrete magma populations in YTT, 4 populations in MTT and only a single, low Ba population in OTT. Within an individual eruption these populations are clearly distinct, but between eruptions (e.g. MTT and YTT) some of these populations overlap while others do not, indicating both the longevity (and/or continuous supply of fresh material) and evolution of these magma batches in the Toba Complex. Major element compositions of the different groups show equilibration at different pressures (based on Q'-Ab'-Or'), with the equilibration of low Ba populations at ~160 MPa, increasing to depths of ~210 MPa for the highest Ba population. The proportions of different populations of glass in distal YTT shows that relatively little of the high Ba population makes it into the distal record across India, and that this population appears to be over-represented in the proximal free glass and pumice from the caldera walls. This data may shed light on magma availability and tephra dispersal during the YTT eruption. Similarly, the glass composition of individual pumices from proximal deposits record regional, compositional and temporal differences in the erupted products. These show, for example, the apparent mingling of some of the magma batches and also that the high Ba population appears early (i.e. stratigraphically lower) in the northern caldera wall.

  11. The Toba Volcanic Event and Interstadial/Stadial Climates at the Marine Isotopic Stage 5 to 4 Transition in the Northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Schulz, Hartmut; Emeis, Kay-Christian; Erlenkeuser, Helmut; von Rad, Ulrich; Rolf, Christian

    2002-01-01

    The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5-4 boundary with the chemical composition of the "Youngest Toba Tuff." Time series of the U k'37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.

  12. Highly evolved rhyolitic glass compositions from the Toba Caldera, Sumatra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesner, C.A.

    1985-01-01

    The quartz latite to rhyolitic ash flow tuffs erupted form the Toba Caldera, perhaps the largest caldera on earth (100 by 30 kms), provide the unique opportunity to study a highly differentiated liquid in equilibrium with numerous mineral phases. Not only are the rocks very crystal rich (30-50%), but at present a minimum of 15 co-existing mineral phases have been identified. Both whole-rock and glass analyses were made by XRF techniques providing data on both major and trace elements. Whole rock chemistry of individual pumices from the youngest eruption at Toba (75,000 years ago), are suggestive of the eruption ofmore » two magma compositions across a boundary layer in the magma chamber. Glass chemistry of the pumices also show two distinct liquid compositions. The more silicic pumices, which have the most evolved glass compositions, are similar to the whole rock chemistry of the few aplitic pumices and cognate granitic xenoliths that were collected. This highly evolved composition resulted from the removal of up to 15 mineral phases and may be a fractionation buffered, univariant composition. The glasses from the less silicic pumices are similar to the whole rock chemistry of the more silicic pumice, thus falling nicely on a fractionation trend towards the univariant composition for these rocks. This set of glass compositions allows an independent test for the origin of distal ashes thought to have erupted from Toba and deposited in Malaysia, the Indian Ocean, and as far away as India.« less

  13. First Toba supereruption revival

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Yang; Chen, Chang-Hwa; Wei, Kuo-Yen; Iizuka, Yoshiyuki; Carey, Steven

    2004-01-01

    Little has been known about the earliest Toba eruptive episodes that created the largest-known caldera complex of Quaternary age. Here we report evidence for the eastward dispersal of the oldest Toba tuff in South China Sea sediments to 2500 km away from the source. The tephra deposits occur below the Brunhes-Matuyama geomagnetic boundary (778 ka) and slightly above the Australasian microtektite layer (793 ka). Calibrated by astronomically tuned oxygen isotope stratigraphy, the middle Pleistocene Toba eruption occurred during the deglaciation at 788 ± 2.2 ka, according to the tephra occurrence between marine isotope stages 20 and 19. This refined age is in good agreement with the 40Ar/39Ar date of 800 ± 20 ka for the Toba tephra (layer D) from Ocean Drilling Program (ODP) Site 758, but significantly younger than the commonly cited Ar/Ar age of 840 ± 30 ka. The eruption expelled at least 800 1000 km3 dense-rock-equivalent of rhyolitic magma on the basis of the widespread tephra-fall deposit in the basins of the Indian Ocean and the South China Sea. In spite of its exceptional magnitude, the timing of this major eruption does not indicate a causal linkage between this event and a long-term global climatic deterioration.

  14. Cryptotephra from the 74 ka BP Toba super-eruption in the Billa Surgam caves, southern India

    NASA Astrophysics Data System (ADS)

    Lane, Christine; Haslam, Michael; Petraglia, Michael; Ditchfield, Peter; Smith, Victoria; Korisettar, Ravi

    2011-07-01

    The ˜74 ka BP Youngest Toba Tuff (YTT), from the largest known Quaternary volcanic eruption, has been found for the first time as a non-visible ( crypto-) tephra layer within the Billa Surgam caves, southern India. The occurrence of the YTT layer in Charnel House Cave provides the first calendrical age estimate for this much debated Pleistocene faunal sequence and demonstrates the first successful application of cryptotephrochronology within a cave sequence. The YTT layer lies ˜50 cm below a major sedimentological change, which is related to global cooling around the MIS 5 to MIS 4 transition. Using this isochronous event layer the Billa Surgam Cave record can be directly correlated with other archaeological sites in peninsular India and palaeoenvironmental archives across southern Asia.

  15. Borneo stalagmites reveal climatic excursions associated with Toba ash layers prior to Greenland Stadial 20

    NASA Astrophysics Data System (ADS)

    Cobb, K. M.; Orland, I. J.; Carolin, S.; Adkins, J. F.; Valley, J. W.; Jersild, A.; LeGrande, A. N.; Colose, C.

    2017-12-01

    The Toba super-eruption occurred in close association with an abrupt climate transition from Greenland Interstadial (GI-) 20 to Greenland Stadial (GS-) 20, roughly 74 thousand years ago. However, recent attempts to characterize either the regional or global climate response to Toba have been limited by a lack of age control, geographic proximity, and/or convincing marker of the major eruption in most high-resolution paleoclimate archives. Here, we use a suite of micro-scale analytical techniques to evaluate the oxygen isotopic and geochemical composition of multiple stalagmites that grew across the Toba interval in Gunung Mulu National Park, northern Borneo. New timeseries of stalagmite d18O at 50-micron scales across the Toba horizon revleal a large (>1‰), rapid (<200 yr) increase in d18O values within age-error of the 40Ar/39Ar age of the Youngest Toba Tuff (73.9±0.6 ky BP; Storey et al., 2012). We supplement these traditional mass spectrometric measurements with d18O timeseries made on 9-micron spots using the WiscSIMS CAMECA ims 1280 ion microprobe in time-transgressive segments across the Toba horizon in two well-dated stalagmites previously published in Carolin et al., 2013 and Caroline et al., 2014. The SIMS d18O data reveal high-frequency d18O excursions of +2 and -2 per mil during the transition from GI-20 (warm conditions) to Greenland Stadial GS-20 (cool conditions), suggesting that this period was characterized by large fluctuations in regional hydroclimate in the western tropical Pacific, with potentially profound impacts on global atmospheric circulation. We also present results from synchrotron analyses of ash-related elements (S, P, Si, and Al) to resolve the number and relative magnitude of Toba-related eruptions as recorded in several different stalagmites from Borneo, where ash layers likely exceeded 2cm on the overlying terrain. Together, these results indicate that large, rapid ( 10yr-long) environmental changes with marked effects on both

  16. Insights into the Toba Super-Eruption using SEM Analysis of Ash Deposits

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Achyuthan, H.; Durant, A. J.; Gibbard, P.; Mokhtar, S.; Oppenheimer, C.; Raj, R.; Shridar, A.

    2010-12-01

    The ~74 ka Youngest Toba Tuff (YTT) super-eruption of Toba volcano, Northern Sumatra, was the largest eruption of the Quaternary (magnitude M= 8.8) and injected massive quantities of volcanic gases and ash into the stratosphere. YTT deposits covered at least 40,000,000 km2 of Southeast Asia and are preserved in river valleys across peninsular India and Malaysia, and in deep-sea tephra layers in the Indian Ocean, Bay of Bengal and South China Sea. Initial studies hypothesized the eruption caused immediate and substantial global cooling during the ~ 1 kyr between Dansgaard-Oeschger events 19 and 20 which devastated ecosystems and hominid populations. A more recent review argues against severe post-YTT climatic deterioration and cannot find clear evidence for considerable impacts on ecosystems or bio-diversity. The determination of the eruptive parameters is crucial in this issue to document the eruption and understand the potential impacts from future super-volcanic eruptions. Volcanic ash deposits can offer dramatic insights into key eruptive parameters, including magnitude, duration and plume height. The composition and shape of volcanic ashes can be used to interpret physical properties of an erupting magma and tephra transport, while textural characteristics such as grain roughness and surface vescicularity can provide insights into degassing history, volatile content and explosive activity of the volcano. We present a stratigraphic and sedimentological analysis of YTT deposits in stratified contexts at three localities in India, at two sites in Peninsular Malaysia, and at several localities around Lake Toba and on Samosir Island, Sumatra. These sites offer excellent constraints on the spatial distribution of YTT deposits which can be used to infer dispersal directions of the cloud, and provide insights into environmental controls on preservation of tephra beds. The research aims at a systematic interpretation of the Toba tephra to understand the volcanic

  17. K-Ar age of the late Pleistocene eruption of Toba, north Sumatra

    USGS Publications Warehouse

    Ninkovich, D.; Shackleton, N.J.; Abdel-Monem, A. A.; Obradovich, J.D.; Izett, G.

    1978-01-01

    The late Pleistocene eruption of Toba is the largest magnitude explosive eruption documented from the Quaternary. K-Ar dating of the uppermost unit of the Toba Tuff gives an age of [~amp]sim; 75,000 yr. A chemically and petrographically equivalent ash layer in deep-sea cores helps calibrate the Stage 4-5 boundary of the standard oxygen isotope stratigraphy. A similar ash in Malaya that overlies finds of Tampan Palaeolithic tools indicates that they are older than 75,000 yr. ?? 1978 Nature Publishing Group.

  18. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka

    PubMed Central

    Lane, Christine S.; Chorn, Ben T.; Johnson, Thomas C.

    2013-01-01

    The most explosive volcanic event of the Quaternary was the eruption of Mt. Toba, Sumatra, 75,000 y ago, which produced voluminous ash deposits found across much of the Indian Ocean, Indian Peninsula, and South China Sea. A major climatic downturn observed within the Greenland ice cores has been attributed to the cooling effects of the ash and aerosols ejected during the eruption of the Youngest Toba Tuff (YTT). These events coincided roughly with a hypothesized human genetic bottleneck, when the number of our species in Africa may have been reduced to near extinction. Some have speculated that the demise of early modern humans at that time was due in part to a dramatic climate shift triggered by the supereruption. Others have argued that environmental conditions would not have been so severe to have such an impact on our ancestors, and furthermore, that modern humans may have already expanded beyond Africa by this time. We report an observation of the YTT in Africa, recovered as a cryptotephra layer in Lake Malawi sediments, >7,000 km west of the source volcano. The YTT isochron provides an accurate and precise age estimate for the Lake Malawi paleoclimate record, which revises the chronology of past climatic events in East Africa. The YTT in Lake Malawi is not accompanied by a major change in sediment composition or evidence for substantial temperature change, implying that the eruption did not significantly impact the climate of East Africa and was not the cause of a human genetic bottleneck at that time. PMID:23630269

  19. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka.

    PubMed

    Lane, Christine S; Chorn, Ben T; Johnson, Thomas C

    2013-05-14

    The most explosive volcanic event of the Quaternary was the eruption of Mt. Toba, Sumatra, 75,000 y ago, which produced voluminous ash deposits found across much of the Indian Ocean, Indian Peninsula, and South China Sea. A major climatic downturn observed within the Greenland ice cores has been attributed to the cooling effects of the ash and aerosols ejected during the eruption of the Youngest Toba Tuff (YTT). These events coincided roughly with a hypothesized human genetic bottleneck, when the number of our species in Africa may have been reduced to near extinction. Some have speculated that the demise of early modern humans at that time was due in part to a dramatic climate shift triggered by the supereruption. Others have argued that environmental conditions would not have been so severe to have such an impact on our ancestors, and furthermore, that modern humans may have already expanded beyond Africa by this time. We report an observation of the YTT in Africa, recovered as a cryptotephra layer in Lake Malawi sediments, >7,000 km west of the source volcano. The YTT isochron provides an accurate and precise age estimate for the Lake Malawi paleoclimate record, which revises the chronology of past climatic events in East Africa. The YTT in Lake Malawi is not accompanied by a major change in sediment composition or evidence for substantial temperature change, implying that the eruption did not significantly impact the climate of East Africa and was not the cause of a human genetic bottleneck at that time.

  20. TOBA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Travis

    2007-01-26

    Toba is an extensible personal information retrieval system. It supports various plugins which the user uses to create and store bits of information. It comes configured to store meeting notes, task items, issue, and business development opportunities. Plugins could be written to support almost any kind of digital information. So with the right plugins, Toba could become a full fledged contact manager, project management application, programmer's toolkit, or almost any other type of data storage/search/retrieval application imaginable. Toba comes with a built in command line interface and via a plugin it has a fully scripting language (jython). The information storedmore » can be searched by keyword or through SQL queries.« less

  1. Constraining Resurgence through Lake Sediment Paleomagnetism on Resurgent Dome Samosir Island in Toba Caldera, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Solada, K.; de Silva, S. L.; Stoner, J. S.; Mucek, A. E.; Reilly, B. T.; Hatfield, R. G.; Pratomo, I.; Bowers, J.; Jamil, R.; Setianto, B.

    2017-12-01

    Around 74 ka, a supervolcano, Toba Caldera in Sumatra, Indonesia erupted, producing the Youngest Toba Tuff and its associated caldera. After this catastrophic eruption, a lake filled the caldera, sedimentation within the lake occurred, and the process known as resurgence began. Today, the resurgent dome, Samosir Island, is uplifted 700 m above the lake with the upper 100 m composed of these post eruption lake sediments. These sediments and their ages offer insight to the resurgent uplift history. To constrain sediment chronology, we collected discrete paleomagnetic 8 cm3 cubes and 43 radiocarbon samples from 10 sites around the island. Bulk organic carbon 14C ages provide an initial chronostratigraphic framework, which is improved by correlating paleomagnetic signals between site sections. Additionally, nearby marine sediment paleomagnetic records show large amplitude changes in inclination over the past 74 ka, providing a good template to compare the sediment chronology. 27 radiocarbon samples have already been dated, with the oldest dating at 38 ka. However, our radiocarbon and paleomagnetic correlation suggest that this record extends even older. Natural and laboratory magnetizations on discrete samples were studied using alternating field (AF) demagnetization at the Oregon State University P-Mag Lab. Although there is variability in magnetic susceptibility between study sites and natural remanant magnetization intensities are often relatively low ( 10-4 (A/m)), AF demagnetization behavior suggests a primary magnetization is recorded. Characteristic remanent magnetizations are reasonably well-defined using a principal component analysis with maximum angular deviation values < 15°, though stronger samples typically have better resolved magnetizations. Data from 4 sites with 14C ages ranging from 23 ka to 38 ka, show low inclination values, averaging around -5° compared with geocentric axial dipole prediction for the site location of approximately 4°. This is

  2. Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption.

    PubMed

    Yost, Chad L; Jackson, Lily J; Stone, Jeffery R; Cohen, Andrew S

    2018-03-01

    The temporal proximity of the ∼74 ka Toba supereruption to a putative 100-50 ka human population bottleneck is the basis for the volcanic winter/weak Garden of Eden hypothesis, which states that the eruption caused a 6-year-long global volcanic winter and reduced the effective population of anatomically modern humans (AMH) to fewer than 10,000 individuals. To test this hypothesis, we sampled two cores collected from Lake Malawi with cryptotephra previously fingerprinted to the Toba supereruption. Phytolith and charcoal samples were continuously collected at ∼3-4 mm (∼8-9 yr) intervals above and below the Toba cryptotephra position, with no stratigraphic breaks. For samples synchronous or proximal to the Toba interval, we found no change in low elevation tree cover, or in cool climate C 3 and warm season C 4 xerophytic and mesophytic grass abundance that is outside of normal variability. A spike in locally derived charcoal and xerophytic C 4 grasses immediately after the Toba eruption indicates reduced precipitation and die-off of at least some afromontane vegetation, but does not signal volcanic winter conditions. A review of Toba tuff petrological and melt inclusion studies suggest a Tambora-like 50 to 100 Mt SO 2 atmospheric injection. However, most Toba climate models use SO 2 values that are one to two orders of magnitude higher, thereby significantly overestimating the amount of cooling. A review of recent genetic studies finds no support for a genetic bottleneck at or near ∼74 ka. Based on these previous studies and our new paleoenvironmental data, we find no support for the Toba catastrophe hypothesis and conclude that the Toba supereruption did not 1) produce a 6-year-long volcanic winter in eastern Africa, 2) cause a genetic bottleneck among African AMH populations, or 3) bring humanity to the brink of extinction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Post-supereruption recovery at Toba Caldera

    PubMed Central

    Mucek, Adonara E.; Danišík, Martin; de Silva, Shanaka L.; Schmitt, Axel K.; Pratomo, Indyo; Coble, Matthew A.

    2017-01-01

    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ∼74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14C, zircon U–Th crystallization and (U–Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ∼2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions. PMID:28508876

  4. Post-supereruption recovery at Toba Caldera

    NASA Astrophysics Data System (ADS)

    Mucek, Adonara E.; Danišík, Martin; de Silva, Shanaka L.; Schmitt, Axel K.; Pratomo, Indyo; Coble, Matthew A.

    2017-05-01

    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ~74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7+/-4.5 ka and continued until at least ~2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions.

  5. Post-supereruption recovery at Toba Caldera.

    PubMed

    Mucek, Adonara E; Danišík, Martin; de Silva, Shanaka L; Schmitt, Axel K; Pratomo, Indyo; Coble, Matthew A

    2017-05-16

    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ∼74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14 C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ∼2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions.

  6. Astronomical calibration of the first Toba super-eruption from deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Lee, M.; Chen, C.; Wei, K.; Iizuka, Y.

    2003-04-01

    Correlations between tephra layers interbedded within deep-sea cores and radiometrically dated volcanic eruptions provide an independent means of verifying dating techniques developed for sediment cores. Alternatively, the chronostratigraphic framework developed from marine sediments can be used to calibrate ages of land-base eruptions, if geochemical correlations can be established. In this study, we examined three deep-sea cores along an east-west transection across the South China Sea, with a distance of ~1800 to 2500 km away from the Toba caldera. The occurrence of the Oldest Toba Tuff was recognized on the basis of its geochemical characteristics, such as a high-silicate, high-potassium content and a distinct strontium isotope composition. The correlative tephra layer occurs slightly above the Australasian microtektite layer and below the Brunhes/Matuyama boundary, which in constitute three time-parallel markers for correlation and dating of Quaternary stratigraphic records. Against the astronomically tuned oxygen isotope chronostratigraphy, the rhyolitic ignimbrite erupted during the transition from marine isotope stage 20 (glacial) to stage 19 (interglacial) with an estimated age of 788 ka. The refined age is in good agreement with the radiometric age of 800+20 ka for Layer D of ODP Site 758 (Hall and Farrell, 1995), but significantly younger than the commonly referred age of 840+30 ka (Diehl et al., 1987). The mid-Pleistocene eruption expelled at least 800-1000 km3 dense-rock-equivalent of rhyolitic magma taking into account the widespread ashfall deposits in the Indian Ocean and the South China Sea basins. In spite of its exceptional magnitude, the timing of the first Toba super-eruption disputes a possible causal linkage between a major volcanic eruption and a long-term global climatic deterioration.

  7. New insight on the Toba volcano super eruption (Sumatra Island, Indonesia) from BAR-9425 core.

    NASA Astrophysics Data System (ADS)

    Caron, B.; del Manzo, G.; Moreno, E.; Annachiara, B.; Baudin, F.; Bassinot, F. C.; Villemant, B.

    2017-12-01

    The famous 73 ka Toba eruption has produced about 2800 km3 of magma and is considered as one of the largest known eruptions during the Quaternary (Rose and Chesner, 1990). The BAR-9425 piston core collected during the 1994 joint French-Indonesian BARAT Cruise in the north Sumatra Island has recorded the volcano history of Toba from 60 to 100 ka (including the 73 ka Young Toba Tuff (YTT)). Tephra layers within this sediment core have been systematically studied using a combined analysis including stable isotope (δ18O, van der Kaars et al., 2012), high resolution tephrostratigraphic, morphological and a major-trace element studies. Our preliminary results show that not only one major eruption occurred between 60 and 100 ka but probably 11 distinct eruptions occurred. The 11 eruptions display an homogeneous major element composition. The oldest tephra with an estimated age of 101 ka, have a rhyolitic composition and 30% of relative abundance of volcanic glass shards. The other eruptive phases are dated at: 91,5-89,2 ka with a maximum of 16% of volcanic tephra; 85,7-84,8 ka with 64%; 81,8 ka with 22%; 74,4 ka with 43%, 72,3 ka with 89%, 71,4 ka with 92%; 68,9% with 96%; 66,5 ka with 94%; 65,2 ka with 75% and 63,1-60,3 ka with a maximum of 96% of volcanic tephra respectively (ages were calculated with a constant sediment rate of 4,3 cm/ka from data from van der Kaars et al., 2012). Some of these eruptions have had direct effect on regional vegetation as suggested by Van der Kaars et al. (2012) who propose that the gradual expansion of pine cover for the 7000 years following the eruption, is a consequence of the ash deposit from the 89 ka eruption. Our detailed tephrostratigraphy study of Toba eruptions will help to understand the impact on the ecosystems of northern Sumatra and on global climate change. Moreover, we expect to correlate the new tephra layers of Toba volcano to other sites by using AL-ICP-MS traces analyses and to use it as chronological makers.

  8. Mid-tertiary ash flow tuff cauldrons, southwestern New Mexico

    NASA Technical Reports Server (NTRS)

    Elston, W. E.

    1984-01-01

    Characteristics of 28 known or suspected mid-Tertiary ash-flow tuff cauldrons in New Mexico are described. The largest region is 40 km in diameter, and erosional and block faulting processes have exposed levels as far down as the plutonic roots. The study supports a five-stage process: precursor, caldera collapse, early post-collapse, volcanism, major ring-fracture volcanism, and hydrothermal activity. The stages can repeat or the process can stop at any stage. Post-collapse lavas fell into two categories: cauldron lavas, derived from shallow defluidized residues of caldera-forming ash flow tuff eruption, and framework lavas, evolved from a siliceous pluton below the cauldron complex. The youngest caldera was shallow and formed from asymmetric subsidence and collapse of the caldera walls.

  9. Local wisdom in preservation of Lake Toba ecosystems (study on Toba Lake community in the Village of Silalahi I, Sub District of Silahisabungan, Dairi Regency, North Sumatera Province)

    NASA Astrophysics Data System (ADS)

    Hamdani Harahap, R.; Humaizi

    2018-03-01

    This study aims to analyze the perception of Batak Toba community in Silalahi I Village, Silahisabungan Subdistrict to the existence of Lake Toba, local wisdom owned by Batak Toba community in Silalahi I Village, Silahisabungan Sub District in order to preserve Lake Toba and recommend policy to revitalize it which is still running, which runs partially or which has not been done at all. The type of research used in this research is descriptive research with qualitative analysis. Data collection was conducted by interviews with key informants and informants i.e. community leaders, religious leaders and customary leaders in the study sites. The results showed that the perception of the Silalahi I Village community of Silahiabungan subdistrict to the existence of Lake Toba is a source of life. That means Lake Toba is a source of sustenance, a source of livelihood such as a place to fish, where to put floating net cages and as a sustenance of tourism activities. The form of local wisdom in preserving the area of Lake Toba is the existence of some sacred places such as Nauli basa, Partonunan stone (Deang Namora), that the entire area of Lake Toba called Tao Silalahi controlled by aunty (Namboru) Deang Namora is a purified area so prohibited spit, wearing jewelry, doing immoral, bathing over 6 o’clock, bringing and eating pork or dogs, bathing naked in the lake, laughing until laughing, and for women if there is a long hair should tie and If you want to take a bath must first permit the grandmother (oppung) guard lake. All local wisdom is still done because they still believe, although there is also rarely done. An effective way to revitalize the existing wisdom locals is to continue to perform the ritual or ceremony of the Statue of Silahisabungan once a year, and continue to obey the advice given by the King of Silahisabungan called Poda sagu-sagu marlangan.

  10. Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP)

    NASA Astrophysics Data System (ADS)

    Svensson, A.; Bigler, M.; Blunier, T.; Clausen, H. B.; Dahl-Jensen, D.; Fischer, H.; Fujita, S.; Goto-Azuma, K.; Johnsen, S. J.; Kawamura, K.; Kipfstuhl, S.; Kohno, M.; Parrenin, F.; Popp, T.; Rasmussen, S. O.; Schwander, J.; Seierstad, I.; Severi, M.; Steffensen, J. P.; Udisti, R.; Uemura, R.; Vallelonga, P.; Vinther, B. M.; Wegner, A.; Wilhelms, F.; Winstrup, M.

    2013-03-01

    The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic

  11. Potential area for floating net fishery in Lake Toba

    NASA Astrophysics Data System (ADS)

    Rustini, H. A.; Harsono, E.; Ridwansyah, I.

    2018-02-01

    Lake Toba in North Sumatera, Indonesia, is now designated to be a world-class tourism destination. Aside from its infrastructure development, this largest lake in the Southeast Asia needs to be restored, especially its water quality. While an oligotrophic status is required for tourism purposes, several studies showed that Toba is mesotrophic at its best and hyper-eutrophic at its worst. Numerous studies and reports blame floating net fishery (FNF) for water quality decline in Lake Toba and propose limitation for its production. While the central government allowed FNF to be positioned in certain areas according to its depth and distance from the lakeshore, increasing number of FNF means adding more nutrients to the lake and thus may inhibit the lake’s restoration process. Hence, it is important to identify which areas are potential for FNF location to assist the authorities to regulate FNF. This study used SPOT-6, SPOT-7, and Pleiades satellite imagery to locate the position of existing FNF and to analyse the result to identify a potential location for FNF.

  12. Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2012-09-01

    The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.

  13. Developing tourism facilities based on geotourism in Silalahi Village, Geopark Toba Caldera

    NASA Astrophysics Data System (ADS)

    Ginting, Nurlisa; Sasmita, Anggun

    2018-03-01

    Toba Caldera is one of the biggest lakes in Indonesia with supervolcano geology phenomenon, and its result amazing natural resources. It makes Toba Lake become the number one tourism in North Sumatera. However, tourism in Toba Lake is still needed development. Geotourism is one of the concept that suitable for this case. It is because geotourism is a new development tourism concept that focuses on the natural and geological phenomenon. Silalahi Village is one of the areas in Toba Caldera that still needs development, especially in tourism facilities sector. This research aims to investigation the facilities concept based on geotourism in Silalahi Village that would be analyzed by three element of tourism facilities namely, accommodation, support facilities and tourism auxiliary facilities. The method used for this research is mixed methods by distributing 100 questionnaires, observations directly to the area and interviews with three informants related parties interested in tourism, such as local people, government, and academics. The data would be processed and analyzed with techniques of exploration. The result shows that the three elements of tourism facilities are still lacking and needs to improve to increase the economy and tourism in the area.

  14. Recurrent eruption and subsidence at the Platoro caldera complex, southeastern San Juan volcanic field, Colorado: New tales from old tuffs

    USGS Publications Warehouse

    Lipman, P.W.; Dungan, M.A.; Brown, L.L.; Deino, A.

    1996-01-01

    Reinterpretation of a voluminous regional ash-flow sheet (Masonic Park Tuff) as two separate tuff sheets of similar phenocryst-rich dacite erupted from separate source calderas has important implications for evolution of the multicyclic Platoro caldera complex and for caldera-forming processes generally. Masonic Park Tuff in central parts of the San Juan field, including the type area, was erupted from a concealed source at 28.6 Ma, but widespread tuff previously mapped as Masonic Park Tuff in the southeastern San Juan Mountains is the product of the youngest large-volume eruption of the Platoro caldera complex at 28.4 Ma. This large unit, newly named the "Chiquito Peak Tuff," is the last-erupted tuff of the Treasure Mountain Group, which consists of at least 20 separate ash-flow sheets of dacite to low-silica rhyolite erupted from the Platoro complex during a 1 m.y. interval (29.5-28.4 Ma). Two Treasure Mountain tuff sheets have volumes in excess of 1000 km3 each, and five more have volumes of 50-150 km3. The total volume of ash-flow tuff exceeds 2500 km3, and caldera-related lavas of dominantly andesitic composition make up 250-500 km3 more. A much greater volume of intermediate-composition magma must have solidified in subcaldera magma chambers. Most preserved features of the Platoro complex - including postcollapse asymmetrical trap-door resurgent uplift of the ponded intracaldera tuff and concurrent infilling by andesitic lava flows - postdate eruption of the Chiquito Peak Tuff. The numerous large-volume pre-Chiquito Peak ash-flow tuffs document multiple eruptions accompanied by recurrent subsidence; early-formed caldera walls nearly coincide with margins of the later Chiquito Peak collapse. Repeated syneruptive collapse at the Platoro complex requires cumulative subsidence of at least 10 km. The rapid regeneration of silicic magmas requires the sustained presence of an andesitic subcaldera magma reservoir, or its rapid replenishment, during the 1 m.y. life

  15. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    PubMed Central

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core−rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems. PMID:28120860

  16. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    NASA Astrophysics Data System (ADS)

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum Δcore-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  17. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz.

    PubMed

    Budd, David A; Troll, Valentin R; Deegan, Frances M; Jolis, Ester M; Smith, Victoria C; Whitehouse, Martin J; Harris, Chris; Freda, Carmela; Hilton, David R; Halldórsson, Sæmundur A; Bindeman, Ilya N

    2017-01-25

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ 18 O values. Overall, Toba quartz crystals exhibit comparatively high δ 18 O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ 18 O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆ core-rim  = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ 18 O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ 18 O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  18. Trace and rare-earth element characteristics of acidic tuffs from southern Peru and northern Bolivia and a fission-track age for the sillar of Arequipa

    NASA Astrophysics Data System (ADS)

    Vatin-Perignon, N.; Poupeau, G.; Oliver, R. A.; La Venu, A.; Labrin, F.; Keller, F.; Bellot-Gurlet, L.

    1996-03-01

    Trace-element and REE data of glass and pumices of acidic tuffs and related fall deposits erupted in southern Peru and northern Bolivia between 20 and 0.36 Ma display typical characteristics of subduction related continental arc magmatism of the CVZ with strong LILE/HFSE enrichment and non enrichment of HREE and Y. Geochemical variations of these tuffs are linked to subduction processes and controlled by changes in tectonic regimes which occured with each Quechua tectonic pulse and affected the astenospheric wedge and both the dowgoing and the overriding lithospheres. During Neogene — Pleistocene times, tuffs erupted in northern Bolivia are typically enriched in Zr, Hf, Th, Ba, LREEs and other incompatible elements and incompatible /Yb ratios are much higher relative to those erupted from southern Peru, at a given SiO 2 content (65-67 wt. for dacites, 72-73 wt.% for rhyolites). {Zr}/{Hf} ratios increase eastward from 27 to 30 and {Ce}/{Yb N} ratios from 11 to 19 reflecting the variation of degree of wedge contribution. Fractionation of the LREE over the HREE and fractionation of incompatible elements may be due to their heterogeneous distribution in the magma source. More highly fractionated REE patterns of Bolivian tuffs than Peruvian tuffs are attributed to variable amounts of contamination of magmas by lower crust. After the Quechua compressional event at 7 Ma, {Sr}/{Y} ratios of tuffs of the same age, erupted at 150-250 km or 250-400 km from the Peru-Chile trench, increase from southern Peru to northern Bolivia. These differences may be attributed to the subduction of a swarm oceanic lithosphere under the Bolivian Alti-plano, leading to partial melting of the sudbucted lithosphere. New FT dating of obsidian fragments of the sillar of Arequipa at 2.42 ± 0.11 Ma. This tuff dates the last Quechua compressional upper Pliocene phase ( 2.5 Ma) and confirms that the sillar is not contemporaneous with the Toba 76 tuff or the Perez ignimbrite of northern Bolivia

  19. Morphometry and Lens of Eyes Bilih Fish (mystacoleucus padangensis, Bleeker) from Lake Toba, North Sumatra and Lake Singkarak, West Sumatra

    NASA Astrophysics Data System (ADS)

    Razak, A.

    2018-04-01

    This research has been carried out 2015. Bilih fish today need conservation and attention for sustainability. Habitat this fish is treated by human activities in Lake Singkarak, West Sumatera and Lake Toba in North Sumatera. The objectives of the research are describes morphometry of the body and relation with lens of eyes. The methods of the reasearch for measure all parts of surface body fish according www.fishbase.org. For measure and chemical composition of lens of eyes Bilih Fish (M. padangensis) are according Razak (2005). T he result of the research are indicated the size of morphology body Bilih Fish from Lake Toba and from Lake Singkarak is diffrent. Furthermore, diameter of lens is trend linier follow the growth of the body Bilih Fish from Lake Singkarak and Lake Toba. The chemical composition of lens of eyes Bilih Fish from Lake Singkarak contains Sulfur until 73.77% per 100 ppm, another substances like Calcium, Silicone, Magnesium, Phosporus 4.09%-4.83% per 100 ppm. The chemical composition of lens of eyes Bilih Fish from Lake Toba contains Sulfur only 50.08% per 100 ppm, another substances like Kalium, Calcium, Silicone, Magnesium, Phosporus 1.09%-10.43% per 100 ppm. Kalium substance only found in lens of eyes Bilih Fish from Lake Toba. As conclusion, morphometry body Bilih Fish from Lake Toba is bigger better than Bilih Fish from Lake Singkarak and chemical composition lens of eyes Bilih Fish from Lake Toba is influenced by environmental waters factors.

  20. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U-Pb and 40Ar/39Ar age determinations

    NASA Astrophysics Data System (ADS)

    Wilson, Colin J. N.; Stelten, Mark E.; Lowenstern, Jacob B.

    2018-06-01

    The youngest major caldera-forming event at Yellowstone was the 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U-Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< 3 km) for some of the tuffs

  1. The influence of social capital towards the quality of community tourism services in Lake Toba Parapat North Sumatera

    NASA Astrophysics Data System (ADS)

    Revida, Erika; Yanti Siahaan, Asima; Purba, Sukarman

    2018-03-01

    The objective of the research was to analyze the influence of social capital towards the quality of community tourism service In Lake Toba Parapat North Sumatera. The method used the combination between quantitative and qualitative research. Sample was taken from the Community in the area around Lake Toba Parapat North Sumatera with sample of 150 head of the family. The sampling technique was Simple Random Sampling. Data collection techniques used documentary studies, questionnaires, interview and observations, while the data analysis used were Product Moment and Simple Linear Regression analysis. The results of the research showed that there were positive and significant influence between Social Capital and the Quality of Community Tourism Services in Lake Toba Parapat North Sumatera. This research recommend the need to enhance Social Capital such as trust, norms and network and the quality of community tourism services such as Tangibles, Reliability, Responsiveness, Assurance, and Empathy by giving communications, information and education continuously from the families, institutions formal and informal, community leaders, religious figures and all communities in Lake Toba Parapat North Sumatera.

  2. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U–Pb and 40Ar/39Ar age determinations

    USGS Publications Warehouse

    Wilson, Colin J. N.; Stelten, Mark; Lowenstern, Jacob B.

    2018-01-01

    The youngest major caldera-forming event at Yellowstone was the ~ 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the ~ 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U–Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, ~ 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source

  3. Tourism Development Based on Geopark in Bakkara Caldera Toba, Indonesia

    NASA Astrophysics Data System (ADS)

    Ginting, N.; Vinky Rahman, N.; Sembiring, G.

    2017-03-01

    Bakkara Caldera Toba is an outstanding product of natural phenomena of Toba Supervolcano which has fascinating nature and culture. Bakkara has a great potential to develop world tourism further. It requires a model of sustainable planning Geopark to develop Bakkara. This sustainable concept helps to improve the local community and tourist’s quality of life and also still maintain the quality of the environment. through field observation and depth interview. The Collected data with a triangulation method. Development tourism destination such as attractions and environment; facilities and services; accessibility; image; and price to consume. It associated based on Geopark aspects there are; geological heritage; geo-conservation activities; sustainable tourism activities; educational; activities; community involvement products; strong management structure; and secure basis, infrastructure, and activities. The results of this study indicate that the Bakkara has the potential to become a tourist destination by applying the concept of Geotourism which accentuate its natural side, by optimizing the management of its destination attractions, its facilities and services, and its accessibilities.

  4. Geochronology of the mammal-bearing late Cenozoic on the northern Altiplano, Bolivia

    NASA Astrophysics Data System (ADS)

    Marshall, L. G.; Swisher, C. C.; Lavenu, A.; Hoffstetter, R.; Curtis, G. H.

    1992-01-01

    Samples of seven tuff or ignimbrite units associated with known land mammal faunas of late Miocene and Pliocene age were collected from 17 localities on the northern Altiplano of western Bolivia. Mineral separates dated by the classic 40K- 40Ar technique (35 dates) and by single crystal laser fusion (SCLF) 40Ar/ 39Ar analysis (84 dates) indicate the following preferred ages based on SCLF 40Ar/ 39Ar dates on sanidine for six of these units: Ulloma Tuff, 10.35±0.06 Ma; Callapa Tuff, 9.03±0.07 Ma; Toba 76, 5.348±0.003 Ma; Ayo Ayo Tuff, 2.896±0.006 Ma; Perez Ignimbrite, 2.815±0.005 Ma; and Chijini Tuff, 2.650±0.012 Ma. Land mammal faunas of early Huayquerian age are bracketed below by the Callapa Tuff (9.0 Ma) and above the base of the Cerke Formation (7.6 Ma); faunas of Montehermosan age are bracketed below by the Toba 76 and Cota Cota Tuffs ( ca. 5.4 Ma), and above by the Ayo Ayo and Chijini Tuffs ( ca. 2.8 Ma) of the Umala and La Paz Formations, respectively; and faunas of Ensenadan and Lujanian age occur in rocks younger than 1.6 Ma. Hiatuses identified by the absence of late Huayquerian and Chapadmalalan-Uquian faunas correlate with unconformities which are interpreted as deformation phases: the first with Q3 (8.0-5.5 Ma) and the second with Q4 (2.8-1.6 Ma) of the Quechua Orogeny.

  5. Bipolar volcanic events in ice cores and the Toba eruption at 74 ka BP (Invited)

    NASA Astrophysics Data System (ADS)

    Svensson, A.

    2013-12-01

    Acidity spikes in Greenland and Antarctic ice cores are applied as tracers of past volcanic activity. Besides providing information on the timing and magnitude of past eruptions, the acidity spikes are also widely used for synchronization of ice cores. All of the deep Greenland ice cores are thus synchronized throughout the last glacial cycle based on volcanic markers. Volcanic matching of ice cores from the two Hemispheres is much more challenging but it is feasible in periods of favourable conditions. Over the last two millennia, where ice cores are precisely dated, some 50 bipolar volcanic events have thus been identified. In order for an eruption to express a bipolar fingerprint it generally needs to be a low latitude eruption with stratospheric injection. Sometimes tephra is associated with the ice-core acidity spikes, but most often there is no tephra present in the ice. As yet, an unknown eruption occurring in 1259 AD is the only event reported to have deposited tephra in both Greenland and Antarctica. During the last glacial period bipolar volcanic matching is very challenging and very little work has been done, but recent high-resolution ice core records have the potential to provide bipolar ice core matching for some periods. Recently, Greenland and Antarctic ice cores have been linked by acidity spikes in the time window of the most recent eruption (the YTT eruption) of the Indonesian Toba volcano that is situated close to equator in Sumatra. Ash from this Toba event is widespread over large areas in Asia and has been identified as far west as Africa, but no corresponding tephra has been found in polar ice cores despite several attempts. The age of the YTT eruption is well constrained by recent Ar-Ar dating to have occurred some 74 ka ago close to the Marine Isotope Stage 4/5 boundary and close to the onset of the cold Greenland Stadial 20 and the corresponding mild Antarctic Isotopic Maxima 19 and 20. Surprisingly, no single outstanding acidity spike

  6. Micro-scale δ18O analyses of a Borneo stalagmite across the Toba super-eruption

    NASA Astrophysics Data System (ADS)

    Orland, I. J.; Cobb, K. M.; Carolin, S.; Linzmeier, B.; Valley, J. W.; Adkins, J. F.

    2016-12-01

    The Toba super-eruption occurred in close association with an abrupt climate transition from Greenland Interstadial (GI-) 20 to Greenland Stadial (GS-) 20, roughly 74 ky BP. As such, it is conceivable that the eruption played a role, whether direct or indirect, in shaping global-scale climate in the years, decades, and/or centuries that followed. Understanding the climatic response to Toba is important not only because the eruption represents an extreme atmospheric perturbation that is relevant to modeling future climate change, but also because the climate response may have slowed human population growth. Recent attempts to characterize either the regional or global climate response to Toba have been limited by a lack of age control, geographic proximity, and/or a convincing marker of the major eruption. Multiple U-Th-dated calcite stalagmites from Gunung Mulu National Park (Borneo; 4°N, 115°E) reveal a 1,000-year long period with elevated oxygen isotope values (δ18O; Carolin et al. 2013) that began abruptly and within error of the 40Ar/39Ar-dated Toba eruption (Storey et al., 2012). The δ18O shift is interpreted as a change in regional rainfall δ18O, and perhaps reflects a prolonged shift in the mean state of tropical climate. Microdrill analysis of the Mulu stalagmites showed that the abrupt onset of this period is marked by a large (>1‰) monotonic increase in δ18O. Here, we examine the structure of the abrupt δ18O increase at high-resolution in Mulu stalagmite "SC03". The WiscSIMS CAMECA IMS 1280 was used to measure δ18O in 857 spots along a 5.5 mm ( 1300 yr) linear, growth-axis traverse that is centered on the microdrilled δ18O shift. SIMS spot diameters are 6 mm in the growth dimension, 2 yr temporal resolution, with spot-to-spot δ18O reproducibility of ±0.3‰ (2 s.d.). The SIMS data reveal four δ18O excursions of ±2-3‰ over 6-10 spot intervals ( 10-20 yrs) during the 300 yr transition from GI-20 to GS-20, likely caused by fluctuations in

  7. An investigation of volcanic depressions. Part 3: Maars, tuff-rings, tuff-cones, and diatremes

    NASA Technical Reports Server (NTRS)

    Lorenz, V.; Mcbirney, A. R.; Williams, H.

    1970-01-01

    A classification of maars, tuff-rings, tuff-cones, and diatremes is given along with a summary of their lithologic and structural characteristics at the surface and at depth, and their probable manner of formation. Particular emphasis is placed on the roles of fluidization and groundwater.

  8. Geotrail development to connect the dots in Muara Caldera Toba, Indonesia

    NASA Astrophysics Data System (ADS)

    Ginting, Nurlisa; Siregar, Narosu

    2018-03-01

    The growth of awareness in sustainable tourism has led to the development of geotourism all around the world, in which geotourism promotes conservation of geoheritage, appreciation of geosites, and interpretation of geoscience. The Toba Caldera in Indonesia is a genuine evidence of geological phenomena, and at present, the remaining geosites in its surrounding are potential as the tourism attraction. Previous works on geotourism have shown several perspectives in geology, however, research for geotourism planning in destinations is limited. Using the principle of tourism attraction, this paper introduces geotrail concept by connecting the values of each geosite in the Toba Caldera, particularly in Muara. Through qualitative approach, the prospect of initiating a geotrail in Muara is explored using panels, viewpoints, timeline, and stops. Collected data from observations and interviews were analysed with triangular method. The result indicates that natural element is dominant, built element can complement the nature, and it is suggested to strengthen cultural and social elements to optimize the geotrail development.

  9. Age, composition, and areal distribution of the Pliocene Lawlor Tuff, and three younger Pliocene tuffs, California and Nevada

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Deino, Alan L.; Fleck, Robert J.; McLaughlin, Robert J.; Wagner, David; Wan, Elmira; Wahl, David B.; Hillhouse, John W.; Perkins, Michael

    2011-01-01

    The Lawlor Tuff is a widespread dacitic tephra layer produced by Plinian eruptions and ash flows derived from the Sonoma Volcanics, a volcanic area north of San Francisco Bay in the central Coast Ranges of California, USA. The younger, chemically similar Huichica tuff, the tuff of Napa, and the tuff of Monticello Road sequentially overlie the Lawlor Tuff, and were erupted from the same volcanic field. We obtain new laser-fusion and incremental-heating 40Ar/39Ar isochron and plateau ages of 4.834 ± 0.011, 4.76 ± 0.03, ≤4.70 ± 0.03, and 4.50 ± 0.02 Ma (1 sigma), respectively, for these layers. The ages are concordant with their stratigraphic positions and are significantly older than those determined previously by the K-Ar method on the same tuffs in previous studies.Based on offsets of the ash-flow phase of the Lawlor Tuff by strands of the eastern San Andreas fault system within the northeastern San Francisco Bay area, total offset east of the Rodgers Creek–Healdsburg fault is estimated to be in the range of 36 to 56 km, with corresponding displacement rates between 8.4 and 11.6 mm/yr over the past ∼4.83 Ma.We identify these tuffs by their chemical, petrographic, and magnetic characteristics over a large area in California and western Nevada, and at a number of new localities. They are thus unique chronostratigraphic markers that allow correlation of marine and terrestrial sedimentary and volcanic strata of early Pliocene age for their region of fallout. The tuff of Monticello Road is identified only near its eruptive source.

  10. Nonmarine facies in the Late Triassic(?) to Early Jurassic Horn Mountain Tuff member of the Talkeetna Formation, Horn Mountain, lower Cook Inlet basin, Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.

    2016-01-01

    The Talkeetna Formation is a prominent lithostratigraphic unit in south-central Alaska. In the Iniskin–Tuxedni area, Detterman and Hartsock (1966) divided the formation into three mappable units including, from oldest to youngest, the Marsh Creek Breccia, the Portage Creek Agglomerate, and the Horn Mountain Tuff Members. The Horn Mountain Tuff Member was thought to include rocks deposited in a nonmarine setting based on the presence of “tree stumps in an upright position” (Detterman and Hartsock, 1966, p. 19) near the top of the type section at Horn Mountain. Bull (2015) recognized possible nonmarine volcaniclastic rocks in the member during the 2014 field season in a saddle on the north side of Horn Mountain (figs. 2-1 and 2-2). The authors visited this location in 2015 and measured a short stratigraphic section to document facies, interpret depositional setting, and constrain age. This report summarizes our field observations and presents preliminary interpretations.

  11. A 74 or 75 ka Age for the Toba Super-eruption? Resolving the Debate.

    NASA Astrophysics Data System (ADS)

    Storey, M.; Roberts, R. G.; Haslam, M.

    2015-12-01

    The Toba super-eruption in Sumatra, ~74,000 years ago, was the largest terrestrial volcanic event of the Quaternary. Some have proposed that the eruption produced widespread perturbations of climate and ecosystems. Evaluation of the environmental impact of the eruption and linkage to rapid climate oscillations recorded in ice core, sediment and speleothem records requires an accurate and precise age for the event, with uncertainties at the centurial level. Two recent studies, however, have proposed quite different 40Ar/39Ar ages for this volcanic event of 73.88 ± 0.32 ka (Storey et al., 2012) and 75.0 ± 0.9 ka (Mark et al, 2014), with both uncertainties expressed at 1σ, leading to radically different interpretations of its global impact. 40Ar/39Ar is a relative dating method, in which the unknown is run against a mineral standard of known age. Storey et al (2012) obtained their age estimate using a new-generation, multi-collector noble gas mass spectrometer (NU Instruments Noblesse) equipped with ion-counters, while Mark et al. (2014) used an earlier generation of lower resolution, single-collector mass spectrometer (MAP 215-50). Both studies used the same mineral standard (Alder Creek sanidine, ACs), except that Mark et al. (2014) used an older value, which accounts for the discrepancy in ages between the two studies. The value used by Mark et al. for ACs is geologically implausible, because it results in older 40Ar/39Ar dates than the youngest co-existing zircon U/Pb CATIMS ages (e.g., Rivera et al., 2013, 2014). Use of the same value for ACs as used by Storey et al. (2012) results in an identical, but less precise, astronomically calibrated age of 73.9 ± 0.9 ka for the Mark et al. data. Here, we review combined U/Pb and 40Ar/39Ar age data (both published and unpublished) for a number of Quaternary and older volcanic ash deposits, and U/Th ages for late Quaternary speleothems. These data strongly support the age assigned to ACs by Storey et al. (2012) and

  12. Revised ages for tuffs of the Yellowstone Plateau volcanic field: Assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event

    USGS Publications Warehouse

    Lanphere, M.A.; Champion, D.E.; Christiansen, R.L.; Izett, G.A.; Obradovich, J.D.

    2002-01-01

    40Ar/39Ar ages were determined on the three major ash-flow tuffs of the Yellowstone Plateau volcanic field in the region of Yellowstone National Park in order to improve the precision of previously determined ages. Total-fusion and incremental-heating ages of sanidine yielded the following mean ages: Huckleberry Ridge Tuff-2.059 ?? 0.004 Ma; Mesa Falls Tuff-1.285 ?? 0.004 Ma; and Lava Creek Tuff-0.639 ?? 0.002 Ma. The Huckleberry Ridge Tuff has a transitional magnetic direction and has previously been related to the Reunion Normal-Polarity Subchron. Dating of the Reunion event has been reviewed and its ages have been normalized to a common value for mineral standards. The age of the Huckleberry Ridge Tuff is significantly younger than lava flows of the Reunion event on Re??union Island, supporting other evidence for a normal-polarity event younger than the Reunion event.

  13. Some climatological factors of pine in the lake toba catchment area

    NASA Astrophysics Data System (ADS)

    Nasution, Z.

    2018-02-01

    The article deals with climatological factors of Pine at the Lake Toba Catchment Area also called drained basin, Pinus merkusii is a plant endemic in Sumatra. A central population of Pine in North Sumatra is located in the Tapanuli region to south of Lake Toba. Junghuhn discovered the species in the mountains range of Sipirok. He provisionally named the species as Pinus sumatrana. The article presents a detail analysis of approaches to climate factors, considers rainfall, air temperature, humidity, stemflow, throughfall and Interception following calculation of regression to determine relationship between precipitation with stemflow and interception. Stemflow, it is highly significant with significance of difference between correlation coefficients and z normal distribution. Temperature and relative humidity are the important components in the climate. These components influence the evaporation process and rainfall in the catchment. Pinus merkusii has the big crown interception. Stemflow and Interception has an opposite relation. Increasing of interception capacity will decrease stemflow. This type of Pine also has rough bark however significant channels so that, it flows water even during the wet season and caused the stemflow in Pinus merkusii relatively bigger.

  14. Geology and Geochemistry of the 25.0 Ma Underdown Caldera Tuffs and tuff of Clipper Gap, Western Nevada Volcanic Field caldera belt, north-central Nevada

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Klausen, K. B.; Henry, C.

    2016-12-01

    The 25.0 Ma Underdown Caldera of the Shoshone Mountains near Austin, Nevada, is part of the Ignimbrite Flare-up suite of calderas in north-central Nevada. Our goal is to characterize the geochemistry and geochronology of the tuffs, determine magma sources, and contrast Underdown with nearby contemporaneous caldera suites. The caldera is contained within a single, mildly west-tilted fault block (Bonham, 1970). The basement rocks are altered intermediate volcanic rocks, rarely intruded by rhyolite veins. The lowermost caldera unit, exposed only on the east side of the fault block, is the sparsely qtz-feld-phyric Underdown Tuff, a high-silica rhyolite (Bonham, 1970) that is columnar-jointed, densely welded, commonly includes aphyric pumice, but locally includes porphyritic pumice. Stretched pumice, flow folds, and foliations that reach nearly vertical demonstrate significant rheomorphism. A densely-welded porphyritic tuff is also present along the southeast side of the exposed caldera, and may be either blocks of an older tuff or a porphyritic phase of the Underdown Tuff. Correlative outflow, the tuff of Clipper Gap, emplaced east of the caldera, is petrographically similar with the same two pumice types. Overlying the Underdown Tuff is the Bonita Canyon Formation, which is moderately welded, commonly lithic- and pumice-rich with minor biotite, quartz and feldspar crystals, and contains reworked lenses; megabreccia of intermediate volcanic rocks and abundantly porphyritic tuff are common. This formation may be an upper part of the Underdown Tuff. On the west side of the Shoshone Mountains, the Bonita Canyon units are overlain by a more porphyritic, variably pumiceous, commonly vitrophyric, and densely welded tuff. At 24.7 Ma, this tuff is petrographically similar to and may be a younger part of the 25.2 Ma tuff of Arc Dome exposed to the east in the Toiyabe Range. Ongoing dating and geochemical analyses will constrain the timing and relationships between the tuffs.

  15. Spatial distribution and assessment of nutrient pollution in Lake Toba using 2D-multi layers hydrodynamic model and DPSIR framework

    NASA Astrophysics Data System (ADS)

    Sunaryani, A.; Harsono, E.; Rustini, H. A.; Nomosatryo, S.

    2018-02-01

    Lake Toba is the largest lake in Indonesia utilized as a source of life-support for drinking and clean water, energy sources, aquaculture and tourism. Nowadays the water quality in Lake Toba has decreased due to the presence of excessive nutrient (nitrogen: N and phosphorus: P). This study aims to describe the spatial distribution of nutrient pollution and to develop a decision support tool for the identification and evaluation of nutrient pollution control in Lake Toba. Spatial distribution method was conducted by 2D-multi layers hydrodynamic model, while DPSIR Framework is used as a tool for the assessment. The results showed that the concentration of nutrient was low and tended to increase along the water depth, but nutrient concentration in aquaculture zones was very high and the trophic state index has reached eutrophic state. The principal anthropogenic driving forces were population growth and the development of aquaculture, livestock, agriculture, and tourism. The main environmental pressures showed that aquaculture and livestock waste are the most important nutrient sources (93% of N and 87% of P loads). State analysis showed that high nutrient concentration and increased algal growth lead to oxygen depletion. The impacts of these conditions were massive fish kills, loss of amenities and tourism value, also decreased usability of clean water supply. This study can be a useful information for decision-makers to evaluate nutrient pollution control. Nutrient pollution issue in Lake Toba requires the attention of local government and public society to maintain its sustainability.

  16. Slanic Tuff and associated Miocene evaporite deposits, Eastern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Halas, Stanislaw; Barbu, Victor; Bojar, Hans-Peter; Wojtowicz, Artur; Duliu, Octavian

    2017-04-01

    Miocene tuffs of calcalkaline composition are widespread in the Carpathians, Pannonian and Eastern Alpine realm. Their occurrences are described in outcrops as well as in the subsurface. The presence of such tuffs may offer important criteria for stratigraphic correlations and help to establish the absolute age of deposits and associated climatic and environmental changes. The Green Stone Hill (Muntele Piatra Verde) is situated to the north of Slanic-Prahova salt mine, in the bend region of the Eastern Carpathians, Romania. From bottom to top the section is composed of: marls with Globigerina followed by the so called Slanic tuff, gypsum and salt breccia and, on the top, radiolarian bearing shales. The stratigraphic age of the section is Middle to Upper Badenian (nannoplankton zones NN5 to NN6). XRD investigations of the green Slanic tuff show that the main mineralogical component is clinoptilolite (zeolite) followed by quartz and plagioclase. For this type of tuff there is no crystalline phase, which may be used for radiometric dating. In the middle part of the green tuff interval, we found discrete layers of a much coarser white tuff, with mineralogy consisting of quartz, plagioclase, biotite and clinoptilolite. The white tuff forming distinct layers within the green tuff, has an andesitic composition. 40Ar/39Ar dating of biotite concentrates from the white tuff gives an age of 13.6±0.2Ma, the dated layer being situated below the gypsum and salt breccia. We consider that the age is well constraining the time when the green tuffs were formed at the border of the basin. From this level upwards discrete gypsum layers occurs within the green tuffs, the age may be considered as indicating the base of the evaporitic sequence. To the south-east, from this level upwards evaporites, mainly salt formed. The age suggests that evaporitic deposits formed after the Mid Badenian climatic optimum, evaporitic formation being related to restricted circulation due the drop of sea

  17. The feeder system of the Toba supervolcano from the slab to the shallow reservoir

    PubMed Central

    Koulakov, Ivan; Kasatkina, Ekaterina; Shapiro, Nikolai M.; Jaupart, Claude; Vasilevsky, Alexander; El Khrepy, Sami; Al-Arifi, Nassir; Smirnov, Sergey

    2016-01-01

    The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ∼150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ∼50,000 km3 reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions. PMID:27433784

  18. Inclusive business model in tapioca starch industry in Lake Toba area: a case study

    NASA Astrophysics Data System (ADS)

    Tampubolon, S.; Manik, Y.

    2018-04-01

    The notion of inclusive business calls for additional focus and innovation in the way companies do business which seeks to contribute to poverty alleviation by including Bottom of the Pyramids (BoP) communities within its value chain while not losing sight of the ultimate goal of business. Lake Toba Area has potentials in providing chances for doing businesses. On the other hand, the growth of market size is rather slow and demographically still dominated by BoP. This is a case study which seeks to investigate to what extent the Inclusive Business Model (IBM) is adopted in the strategic planning and applied in the operational management of companies that operate in Lake Toba Area. The study was conducted in qualitative basis. The observation was conducted by gathering data and information through a series of interviews with the top management and desk study of the business plan in a tapioca starch industry in Toba Samosir Regency. The collected data and information were then analyzed qualitatively by comparing them with criteria and parameters of IBM suggested in a vast body of literature. The reference by which the IBM is referred in this study is a series of criteria which is synthesized from a literature review on a vast body of literature about IBM. From data analysis, it is evident that IBM has been incorporated in the strategic plan and applied in the operational activities of the object of this study. However, we also found some rooms for improvement such as expanding the involvement of BoP in their value chain as consumers, by which some innovation in the product diversification is required.

  19. Degraded dryland rehabilitation: boosting seedling survival using zeolitic tuff

    NASA Astrophysics Data System (ADS)

    Alhamad, Mohammad Noor; Alrbabah, Mohammad; Athamneh, Hana

    2016-04-01

    More than 90% of Jordan is broadly defined as rangelands. Most rangelands are located within the arid zone of the country. Extensive grazing occurs across much of the natural pastures resulting in serious environmental degradation of natural resources in these rangelands. Several programs were carried out for rangeland conservation and rehabilitation in the country. However, these programs face a major challenge of the low survival rate of transplanted shrub seedlings. Seeking innovative approaches to assure healthy establishment of seedling is a big challenge to achieve successful rehabilitation programs. Drought is considered one of the major problems in rehabilitation. Promoting survival and growth, using zeolitic tuff added to planting holes is suggested to be a possible solution. The experiment was conducted on a factorial arrangement within RCBD design. Two shrub species (Atriplex halimus, Atriplex nummularia) were transplanted into holes prepared with three levels of tuff treatments (mulching, mixing and control) under rainfed condition. The result showed insignificant effect of tuff on seedling survival percentage, when mixing tuff with plantation soil or adding tuff as mulch. Also, the two species showed similar survival percentages over two measured dates. However, mixing tuff with soil during hole preparation significantly enhanced seedling heights. Furthers, The Australian atriplex (Atriplex nummularia) species significantly grow higher than Atriplex halimus. The study results suggested that mixing zeoltic tuff with soil during transplantation of seedling is promising in improving the success of rangeland rehabilitation in dry areas in Jordan.

  20. Identification of mineral composition and weathering product of tuff using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyun, C.; Park, H.

    2009-12-01

    Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard

  1. Specific surface area of a crushed welded tuff before and after aqueous dissolution

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.

    1994-01-01

    Specific surface areas were measured for several reference minerals (anorthoclase, labradorite and augite), welded tuff and stream sediments from Snowshoe Mountain, near Creede, Colorado. Crushed and sieved tuff had an unexpectedly small variation in specific surface area over a range of size fractions. Replicate surface area measurements of the largest and smallest tuff particle size fractions examined (1-0.3 mm and <0.212 mm) were 2.3 ?? 0.2 m2/g for each size fraction. Reference minerals prepared in the same way as the tuff had smaller specific surface areas than that of the tuff of the same size fraction. Higher than expected tuff specific surface areas appear to be due to porous matrix. Tuff, reacted in solutions with pH values from 2 to 6, had little change in specific surface area in comparison with unreacted tuff. Tuff, reacted with solutions having high acid concentrations (0.1 M hydrochloric acid or sulfuric-hydrofluoric acid), exhibited a marked increase in specific surface area compared to unreacted tuff. ?? 1994.

  2. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  3. Newberry Volcano's youngest lava flows

    USGS Publications Warehouse

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    The central caldera is visible in the lower right corner of the center map, outlined by the black dashed line. The caldera collapsed about 75,000 years ago when massive explosions sent volcanic ash as far as the San Francisco Bay area and created a 3,000-ft-deep hole in the center of the volcano. The caldera is now partly refilled by Paulina and East Lakes, and the byproducts from younger eruptions, including Newberry Volcano’s youngest rhyolitic lavas, shown in red and orange. The majority of Newberry Volcano’s many lava flows and cinder cones are blanketed by as much as 5 feet of volcanic ash from the catastrophic eruption of Mount Mazama that created Crater Lake caldera approximately 7,700 years ago. This ash supports abundant tree growth and obscures the youthful appearance of Newberry Volcano. Only the youngest volcanic vents and lava flows are well exposed and unmantled by volcanic ash. More than one hundred of these young volcanic vents and lava flows erupted 7,000 years ago during Newberry Volcano’s northwest rift zone eruption.

  4. Spectroscopic examinations of hydro- and glaciovolcanic basaltic tuffs: Modes of alteration and relevance for Mars

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Wright, S. P.; Glotch, T. D.; Schröder, C.; Sklute, E. C.; Dyar, M. D.

    2018-07-01

    Hydro- and glaciovolcanism are processes that have taken place on both Earth and Mars. The amount of materials produced by these processes that are present in the martian surface layer is unknown, but may be substantial. We have used Mars rover analogue analysis techniques to examine altered tuff samples collected from multiple hydrovolcanic features, tuff rings and tuff cones, in the American west and from glaciovolcanic hyaloclastite ridges in Washington state and in Iceland. Analysis methods include VNIR-SWIR reflectance, MWIR thermal emissivity, thin section petrography, XRD, XRF, and Mössbauer spectroscopy. We distinguish three main types of tuff that differ prominently in petrography and VNIR-SWIR reflectance: minimally altered sideromelane tuff, gray to brown colored smectite-bearing tuff, and highly palagonitized tuff. Differences are also observed between the tuffs associated with hydrovolcanic tuff rings and tuff cones and those forming glaciovolcanic hyaloclastite ridges. For the locations sampled, hydrovolcanic palagonite tuffs are more smectite and zeolite rich while the palagonitized hyaloclastites from the sampled glaciovolcanic sites are largely devoid of zeolites and relatively lacking in smectites as well. The gray to brown colored tuffs are only observed in the hydrovolcanic deposits and appear to represent a distinct alteration pathway, with formation of smectites without associated palagonite formation. This is attributed to lower temperatures and possibly longer time scale alteration. Altered hydro- or glaciovolcanic materials might be recognized on the surface of Mars with rover-based instrumentation based on the results of this study.

  5. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less

  6. Geoengineering characterization of welded tuffs from laboratory and field investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of the joints found in the field. 14 references, 1 table.« less

  7. Geoengineering characterization of welded tuffs from laboratory and field investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of joints found in the field. 14 refs., 1 tab.« less

  8. Re-collection of Fish Canyon Tuff for fission-track standardization

    USGS Publications Warehouse

    Naeser, C.W.; Cebula, G.T.

    1984-01-01

    The PURPOSE of this note is to announce the availability of apatite and zircon from a third collection of the Oligocene Fish Canyon Tuff (FC-3). Apatite and zircon separated from the Fish Canyon Tuff have prove to be a useful standard for fission-track dating, both for interlaboratory comparisons and for checking procedures within a laboratory. In May 1981, about 540 kg of Fish Canyon Tuff were collected for mineral separation. Approximately 7. 5 g of apatite, 6. 5 g of zircon, and 89 g of sphene were recovered from this collection. This new material is now ready for distribution.

  9. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records

    PubMed Central

    Storey, Michael; Roberts, Richard G.; Saidin, Mokhtar

    2012-01-01

    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated 40Ar/39Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our 40Ar/39Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard–Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our 40Ar/39Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of 14C dating. PMID:23112159

  10. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records

    NASA Astrophysics Data System (ADS)

    Storey, Michael; Roberts, Richard G.; Saidin, Mokhtar

    2012-11-01

    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated 40Ar/39Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our 40Ar/39Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard-Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our 40Ar/39Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of 14C dating.

  11. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records.

    PubMed

    Storey, Michael; Roberts, Richard G; Saidin, Mokhtar

    2012-11-13

    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated (40)Ar/(39)Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our (40)Ar/(39)Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard-Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our (40)Ar/(39)Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of (14)C dating.

  12. Explosive shaped charge penetration into tuff rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  13. Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya

    USGS Publications Warehouse

    Hurford, A.J.; Gleadow, A.J.W.; Naeser, C.W.

    1976-01-01

    Fission-track dating of zircon separated from two pumice samples from the KBS Tuff in the Koobi Fora Formation, in Area 131, East Rudolf, Kenya, gives an age of 2.44??0.08 Myr for the eruption of the pumice. This result is compatible with the previously published K-Ar and 40Ar/ 39Ar age spectrum estimate of 2.61??0.26 Myr for the KBS Tuff in Area 105, but differs from the more recently published K-Ar date of 1.82??0.04 Myr for the KBS Tuff in Area 131. This study does not support the suggestion that pumice cobbles of different ages occur in the KBS Tuff. ?? 1976 Nature Publishing Group.

  14. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  15. Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Scofield, K.M.

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.

  16. Flowering and fruiting phenology of Kemenyan toba (Styrax sumatrana J.J.Sm.) in AekNauli forest, North Sumatra

    NASA Astrophysics Data System (ADS)

    Kholibrina, C. R.; Aswandi; Susilowati, A.

    2018-02-01

    The observation on flowering, fruiting phenology and germination of Kemenyan toba (Styrax sumatrana) has not been widely reported. It isrequired to support the breeding activities for this tree improvement, the most Non-Timber Forest Product commodity in Lake Toba Catchment Area, North Sumatra. The objectives of the research were to identify the development of flowering, fruiting andto calculate the number of fruits that germinate for S. sumatrana in certain cycle period. The flowering and fruiting observation were conducted on ten sample trees in Aek Nauli forest from July 2012 to February 2013. The seeds viability was observed from January to November 2014 in the greenhouse. The study showed that the flowering development occurred for 30 to 152 days, began from the growing of generative buds, the flower’s shoots and bursts were developed, and young fruits were matured. All of processes proceeded for 30 to 152 days. The average percentage of flowering is 53.5%, and 72.8% for flowering to fruiting, and 47.3% for young to mature fruit. The percentage of mature fruit to germinate was 89.3%.

  17. Magnetic properties and emplacement of the Bishop tuff, California

    USGS Publications Warehouse

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence

  18. Suitability of aquatic biomass from Lake Toba (North Sumatra, Indonesia) for energy generation by combustion process

    NASA Astrophysics Data System (ADS)

    Brunerová, A.; Roubík, H.; Herák, D.

    2017-09-01

    Several aquatic plant species were identified as aquatic pollution of Lake Toba, North Sumatra (Indonesia); specifically, water hyacinth Eichhornia crassipes and aquatic weeds Hydrilla verticillata and Myriophyllum spicatum due to their high biomass yield which causes impenetrable mats at the bottom and surface of the lake. That complicates other vegetation growth and utilization of water areas for fishing or recreation. In attempt to clean the lake and prevent plants expansion, great amount of plants populations are removed from water but subsequent efficient utilization of such aquatic biomass is not ensured. Present research investigated energy potential of aquatic biomass originated from mentioned aquatic plants from Lake Toba and its possible utilization for energy production by direct combustion. Performed chemical analysis contained from determination of moisture, ash and volatile matter contents and calorific values. Evaluation of results proved highest suitability and energy potential of Eichhornia crassipes with gross calorific value (GCV) 16.31 MJ·kg-1, followed by Hydrilla verticillata with GCV 15.24 MJ·kg-1. Samples of Myriophyllum spicatum exhibited unsatisfactory results due to its low GCV (11.27 MJ·kg-1) in combination with high ash content (36.99%) which indicates complications during combustion, thus, low energy production efficiency and overall unsuitability for combustion purposes.

  19. Methods for determination of the age of Pleistocene tephra, derived from eruption of Toba, in central India

    NASA Astrophysics Data System (ADS)

    Westaway, Rob; Mishra, Sheila; Deo, Sushama; Bridgland, David R.

    2011-06-01

    Tephra, emplaced as a result of Pleistocene eruption of the Indonesian `supervolcano' Toba, occurs at many localities in India. However, the ages of these deposits have hitherto been contentious; some workers have argued that these deposits mark the most recent eruption (eruption A, ca 75 ka), although at some sites they are stratigraphically associated with Acheulian (Lower Palaeolithic) artefacts. Careful examination of the geochemical composition of the tephras, which are composed predominantly of shards of rhyolitic glass, indicates that discrimination between the products of eruption A and eruption D (ca 790 ka) of Toba is difficult. Nonetheless, this comparison favours eruption D as the source of the tephra deposits at some sites in India, supporting the long-held view that the Lower Palaeolithic of India spans the late Early Pleistocene. In principle, these tephra deposits should be dateable using the K-Ar system; however, previous experience indicates contamination by a small proportion of ancient material, resulting in apparent ages that exceed the true ages of the tephras. We have established the optimum size-fraction in which the material from Toba is concentrated, 53-61 μm, and have considered possible origins for the observed contamination. We also demonstrate that Ar-Ar analysis of four out of five of our samples has yielded material with an apparent age similar to that expected for eruption D. These numerical ages, of 809 ± 51, 714 ± 62, 797 ± 45 and 827 ± 39 ka for the tephras at Morgaon, Bori, Gandhigram and Simbhora, provide a weighted mean age for this eruption of 799 ± 24 ka (plus-or-minus two standard deviations). However, these numerical ages are each derived from no more than 10-20% of the argon release in each sample, which is not ideal. Nonetheless, our results demonstrate that it is feasible, in principle, to date this difficult material using the Ar-Ar technique; future follow-up studies will therefore be able to refine our

  20. Perched Ground Water in Zeolitized-Bedded Tuff, Rainier Mesa and Vicinity, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Thordarson, William

    1965-01-01

    Rainier Mesa--site of the first series of underground nuclear detonations--is the highest of a group of ridges and mesas within the Nevada Test Site. The mesa is about 9.5 square miles in area and reaches a maximum altitude of 7,679 feet. The mesa is underlain by welded tuff, friable-bedded tuff, and zeolitized-bedded tuff of the Piapi Canyon Group and the Indian Trail Formation of Tertiary age. The tuff--2,000 to 9,000 feet thick--rests unconformably upon thrust-faulted miogeosynclinal rocks of Paleozoic age. Zeolitic-bedded tuff at the base of the tuff sequence controls the recharge rate of ground water to the underlying and more permeable Paleozoic aquifers. The zeolitic tuff--600 to 800 feet thick--is a fractured aquitard with high interstitial porosity, but with very low interstitial permeability and fracture transmissibility. The interstitial porosity ranges from 29 to 38 percent, the interstitial permeability is generally less than 0.009 gpd/ft3, and the fracture transmissibility ranges from 10 to 100 gpd/ft for 900 feet of saturated rock. The tuff is generally fully saturated interstitially hundreds of feet above the regional water table, yet no appreciable volume of water moves through the interstices because of the very low permeability. The only freely moving water observed in miles of underground workings occurred in fractures, usually fault zones.

  1. Welded tuff porosity characterization using mercury intrusion, nitrogen and ethylene glycol monoethyl ether sorption and epifluorescence microscopy

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.; Rutherford, D.W.; Chiou, C.T.

    1994-01-01

    Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01-0.02??m. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075-0.0187 ??m. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05??m. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock. ?? 1994.

  2. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2014-12-01

    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits

  3. Removal of ammonium from aqueous solutions with volcanic tuff.

    PubMed

    Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L

    2006-10-11

    This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.

  4. Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2010-12-01

    The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.

  5. The Struggle of Being Toba in Contemporary Argentina: Processes of Ethnic Identification of Indigenous Children in Contexts of Language Shift

    ERIC Educational Resources Information Center

    Hecht, Ana Carolina

    2012-01-01

    The aim of this article is to study how children experience their ethnic identifications in relation to their knowledge of the Toba language through daily interactions with peers and adults (both indigenous and non-indigenous). The study is focused on an urban setting in Buenos Aires (Argentina) where monolingual (Spanish) practices are replacing…

  6. Magnetic properties and emplacement of the Bishop tuff, California

    NASA Astrophysics Data System (ADS)

    Palmer, H. C.; MacDonald, W. D.; Gromme, C. S.; Ellwood, B. B.

    1996-09-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525 570 °C Curie temperatures, and maghemite with 610° 640 °C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic

  7. Stratigraphic and volcano-tectonic relations of Crater Flat Tuff and some older volcanic units, Nye County, Nevada

    USGS Publications Warehouse

    Carr, W.J.; Byers, F.M.; Orkild, Paul P.

    1984-01-01

    The Crater Flat Tuff is herein revised to include a newly recognized lowest unit, the Tram Member, exposed at scattered localities in the southwest Nevada Test Site region, and in several drill holes in the Yucca Mountain area. The overlying Bullfrog and Prow Pass Members are well exposed at the type locality of the formation near the southeast edge of Crater Flat, just north of U.S. Highway 95. In previous work, the Tram Member was thought to be the Bullfrog Member, and therefore was shown as Bullfrog or as undifferentiated Crater Flat Tuff on published maps. The revised Crater Flat Tuff is stratigraphically below the Topopah Spring Member of the Paintbrush Tuff and above the Grouse Canyon Member of the Belted Range Tuff, and is approximately 13.6 m.y. old. Drill holes on Yucca Mountain and near Fortymile Wash penetrate all three members of the Crater Flat as well as an underlying quartz-poor unit, which is herein defined as the Lithic Ridge Tuff from exposures on Lithic Ridge near the head of Topopah Wash. In outcrops between Calico Hills and Yucca Flat, the Lithic Ridge Tuff overlies a Bullfrog-like unit of reverse magnetic polarity that probably correlates with a widespread unit around and under Yucca Flat, referred to previously as Crater Flat Tuff. This unit is here informally designated as the tuff of Yucca Flat. Although older, it may be genetically related to the Crater Flat Tuff. Although the rocks are poorly exposed, geophysical and geologic evidence to date suggests that (1) the source of the Crater Flat Tuff is a caldera complex in the Crater Flat area between Yucca Mountain and Bare Mountain, and (2) there are at least two cauldrons within this complex--one probably associated with eruption of the Tram, the other with the Bullfrog and Prow Pass Members. The complex is named the Crater Flat-Prospector Pass caldera complex. The northern part of the Yucca Mountain area is suggested as the general location of the source of pre-Crater Flat tuffs, but a

  8. Xanthogranulomatous Salpingooophoritis: The Youngest Documented Case Report

    PubMed Central

    Tanwar, Harshawardhan; Joshi, Avinash; Wagaskar, Vinayak; Kini, Siddharth; Bachhav, Manoj

    2015-01-01

    Background. Xanthogranulomatous inflammation is an uncommon affection of the female genital tract. The youngest case reported of xanthogranulomatous salpingooophoritis in literature was by Shilpa et al. in 2013 in an eighteen-year-old female. Case Report. We report a case of 2-year-old female child with right-sided xanthogranulomatous salpingooophoritis presented as mass in abdomen. This is a case report of the youngest documented case of xanthogranulomatous salpingooophoritis in literature. As per abdominal examination, there was generalized distention of abdomen and a mass was palpable which was arising out of pelvis more on the right side. The ultrasonography (USG) abdomen and pelvis revealed a thick-walled mass measuring 9.2 cm × 6.0 cm × 7.6 cm in pelvis. We did right salpingooophorectomy of the patient. On histopathology, the diagnosis of xanthogranulomatous salpingooophoritis was confirmed. Conclusion. Clinical presentation, radiological appearance, and gross features of xanthogranulomatous lesions of ovary can mimic neoplastic lesions and lead to misdiagnosis. Though, it is very rare in pediatric age group, xanthogranulomatous salpingooophoritis as one of the differential diagnoses should be kept in mind while dealing with tuboovarian masses in this age group. PMID:26114000

  9. HIGH EXPLOSIVE CRATER STUDIES: TUFF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphey, B.F.

    1961-04-01

    Spherical charges of TNT, each weighing 256 pounds, were exploded at various depths in tuff to determine apparent crater dimensions in a soft rock. No craters were obtained for depths of burst equal to or greater than 13.3 feet. It was deduced that rock fragments were sufficiently large that charges of greater magnitude should be employed for crater experiments intended as models of nuclear explosions. (auth)

  10. Child Care Arrangements for Toddlers and Preschoolers: Are They Different for Youngest Children?

    ERIC Educational Resources Information Center

    Joesch, Jutta M.; Maher, Erin J.; Durfee, Alesha

    2006-01-01

    Many extant studies on the use of non-parental child care are based on data from the youngest child in the household. To date, it has not been addressed whether this approach introduces bias. We present reasons why child care arrangements for youngest children may differ from those of same-age older children and examine whether the use of child…

  11. Joint body and surface wave tomography applied to the Toba caldera complex (Indonesia)

    NASA Astrophysics Data System (ADS)

    Jaxybulatov, Kairly; Koulakov, Ivan; Shapiro, Nikolai

    2016-04-01

    We developed a new algorithm for a joint body and surface wave tomography. The algorithm is a modification of the existing LOTOS code (Koulakov, 2009) developed for local earthquake tomography. The input data for the new method are travel times of P and S waves and dispersion curves of Rayleigh and Love waves. The main idea is that the two data types have complementary sensitivities. The body-wave data have good resolution at depth, where we have enough crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution. The surface wave dispersion curves can be retrieved from the correlations of the ambient seismic noise and in this case the sampled path distribution does not depend on the earthquake sources. The contributions of the two data types to the inversion are controlled by the weighting of the respective equations. One of the clearest cases where such approach may be useful are volcanic systems in subduction zones with their complex magmatic feeding systems that have deep roots in the mantle and intermediate magma chambers in the crust. In these areas, the joint inversion of different types of data helps us to build a comprehensive understanding of the entire system. We apply our algorithm to data collected in the region surrounding the Toba caldera complex (north Sumatra, Indonesia) during two temporary seismic experiments (IRIS, PASSCAL, 1995, GFZ, LAKE TOBA, 2008). We invert 6644 P and 5240 S wave arrivals and ~500 group velocity dispersion curves of Rayleigh and Love waves. We present a series of synthetic tests and real data inversions which show that joint inversion approach gives more reliable results than the separate inversion of two data types. Koulakov, I., LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bull. seism. Soc. Am., 99(1), 194-214, 2009, doi:10.1785/0120080013

  12. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, Richard W.; Peterman, Zell E.; ,

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 ppm in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppm in the older tuffs. Zr concentrations are about 100 ppm in the Topopah Spring Member and also increase with depth to about 150 ppm in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87Sr/86Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87Sr/86Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx of Sr from water derived from a Paleozoic carbonate aquifer.

  13. Fault evolution in volcanic tuffs and quartz-rich eolian sandstone as mechanical analogs for faulting in Martian pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2014-12-01

    In order to establish a foundation for studies of faulting in Martian rocks and soils in volcanic terrain, the distribution of brittle strain around faults within the North Menan Butte Tuff in the eastern Snake River Plain, Idaho and the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, has been recently described. These studies employed a combination of macroscopic and microscopic observations, including measurements of in situ permeability as a proxy for non-localized brittle deformation of the host rock. In areas where the tuff retained its primary granular nature at the time of deformation, initial plastic yielding in both tuffs occurred along deformation bands. Both compactional and dilational types of deformation bands were observed, and faulting occurred along clusters of deformation bands. Where secondary alteration processes imparted a massive texture to the tuff, brittle deformation was accommodated along fractures. Host-rock permeability exhibits little variation from non-deformed values in the North Menan Butte Tuff, whereas host rock permeability is reduced by roughly an order of magnitude through compaction alone (no alteration) in the Joe Lott Tuff. To create a bridge between these observations in tuff and the more substantial body of work centered on deformation band formation and faulting in quartz-rich sandstones, the same techniques employed in the North Menan Butte Tuff and the Joe Lott Tuff have also been applied to a kilometer-scale fault in the Jurassic Navajo Sandstone in the Waterpocket Fold, Utah. These observations demonstrate that the manifestation of strain and evolution of faulting in the Mars-analog tuffs are comparable to that in quartz-rich sandstones. Therefore, current understanding of brittle deformation in quartz-rich sandstones can be used to inform investigations into fault growth within porous tuffs on Mars. A discussion of these observations, practical limitations, and directions for future work are presented here.

  14. Head, Heart, and Hands for Our Youngest Children.

    ERIC Educational Resources Information Center

    Southeastern Regional Vision for Education (SERVE), Tallahassee, FL.

    This document details a strategy to bring together state and community leaders in the southeastern United States to establish dialogue, set priorities, and make system-wide changes for supporting literacy for the youngest children and their families. The Head, Heart, and Hands campaign has three focal points: (1) Head--understanding research and…

  15. Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon

    USGS Publications Warehouse

    Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.

    1993-01-01

    Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.

  16. Chloride Diffusion and Acid Resistance of Concrete Containing Zeolite and Tuff as Partial Replacements of Cement and Sand

    PubMed Central

    Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi

    2017-01-01

    In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff. PMID:28772737

  17. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    USGS Publications Warehouse

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  18. Batch sorption results for neptunium transport through Yucca Mountain tuffs. Yucca Mountain Site Characterization Program milestone 3349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Cotter, C.R.; Huddleston, M.H.

    1996-09-01

    We studied the sorption of neptunium onto tuffs characteristic of the proposed nuclear waste repository at Yucca Mountain, Nevada. The neptunium was in the Np(V) oxidation state under oxidizing conditions in groundwaters from two wells located close to the repository site (J-13 and UE-25 p No.1). We used devitrified, vitric, zeolitic (with emphasis on clinoptilolite-rich samples), and calcite-rich tuffs characteristic of the geology of the site. Neptunium sorbed well onto calcite and calcite-rich tuffs, indicating that a significant amount of neptunium retardation can be expected under fractured-flow scenarios because of calcite coating of the fractures. Neptunium sorption onto clinoptilolite-rich zeoliticmore » tuffs in J-13 well water (pH from 7 to 8.5) was moderate, increased with decreasing pH, and correlated to surface area and amount of clinoptilolite. Neptunium sorbed poorly onto zeolitic tuffs from UE-25 p No.1 groundwater (pH from 7 to 9) and onto devitrified and vitric tuffs from J-13 and UE-25 p No.1 waters (pH from 7 to 9). Iron oxides appeared to be passivated in tuffs, not seeming to contribute to the observed neptunium sorption, even though neptunium sorption onto synthetic iron oxide is significant.« less

  19. Drift pumice in the Central Indian Ocean Basin: Geochemical evidence

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Mudholkar, A. V.; Jai Sankar, S.; Ilangovan, D.

    2008-03-01

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which allow one to define two different origins linked to two separate eruptions. One group of pumice is a dacitic type characterized by high Fe, Ti, Mg, Al and Ca with comparatively low contents of Si, rare-earth elements (∑REE, 69 ppm), Rb, Sr, U, Th, Ba, V, Nb, Sc, Mo and Co, which strongly suggest an origin from the 1883 Krakatau eruption. The other group is rhyolitic and is characterized by low contents of Fe, Ti, Mg and Ca and high Si, ∑REE content (121 ppm), Rb, Sr, U, Th, Ba, V, Nb, Mo, Co, and Sc and correlates well with the composition of the Youngest Toba Tuff (YTT) eruption of ˜74 ka from Northern Sumatra and is being reported for the first time. Therefore, correlation of the pumice to the 1883 Krakatau and YTT eruptions indicates that the pumice drifted to the CIOB and eventually sank when it became waterlogged. However, physical properties such as density, specific gravity, porosity and degree of saturation required for sinking of pumice for both 1883 Krakatau and YTT are almost similar.

  20. Experimental study on the Neapolitan Yellow Tuff: Salt weathering and consolidation

    NASA Astrophysics Data System (ADS)

    La Russa, Mauro Francesco; Ruffolo, Silvestro Antonio; Alvarez de Buergo, Monica; Ricca, Michela; Belfiore, Cristina Maria; Pezzino, Antonino; Mirocle Crisci, Gino

    2016-04-01

    Salt crystallization is one of the major weathering agents in porous building materials due to the crystallization pressure exerted by salt crystals growing in confined pores. The consolidation of such degraded stone materials is a crucial issue in the field of Cultural Heritage restoration. This contribution deals with laboratory experimentation carried out on the Neapolitan Tuff, a pyroclastic rock largely used in the Campanian architecture. Several specimens, collected from a historical quarry nearby the city of Naples, were treated with two different consolidating products: a suspension of nanosilica in water (Syton X30®) and ethyl silicate (Estel 1000®) dispersed in organic solvent (TEOS). Then, in order to assess the effectiveness of consolidation treatments, both treated and untreated samples underwent accelerated degradation through salt crystallization tests. A multi-analytical approach, including mercury intrusion porosimetry, peeling tests and point load test, was employed to evaluate the correlation between the salt crystallization and the micro-structural features of the examined tuff specimens. In addition, the calculation of the crystallization pressures was also performed in order to make a correlation between the porous structure of the tuff and its susceptivity to salt crystallization. Obtained results show that both the tested products increase the resistance of tuff to salt crystallization, although inducing an increase of crystallization pressure. Ethyl silicate, however, shows a better behaviour in terms of superficial cohesion, even after several degradation cycles.

  1. Carbonatite tuffs in the Laetolil Beds of Tanzania and the Kaiserstuhl in Germany

    USGS Publications Warehouse

    Hay, R.L.; O'Neil, J.R.

    1983-01-01

    Carbonatite lava and tephra are now well known. The only modern eruptive carbonatites, from Oldoinyo Lengai, Tanzania, are of alkali carbonatite, whereas all of the pre-modern examples are of calcite or dolomite. Chemical and stable isotope analyses were made of separate phases of Pliocene carbonatite tuffs of the Laetolil Beds in Tanzania and of Miocene carbonatite tuffs of the Kaiserstuhl in Germany in order to understand the reasons for this major difference. The Laetolil Beds contain numerous carbonatite and melilitite-carbonatite tuffs. It is proposed that the carbonatite ash was originally of alkali carbonate composition and that the alkali component was dissolved, leaving a residuum of calcium carbonate. The least recrystallized melilitite-carbonatite tuff contains early-deposited calcite cement and calcite pseudomorphs after nyerereite (?) that have contents of strontium and barium and ??18O and ??13C values suggestive of incomplete chemical and isotopic exchange during alteration and replacement of alkali carbonatite ash. Carbonatite tuffs of the Kaiserstuhl contain globules composed of calcite phenocrysts and microphenocrysts in a groundmass of calcite with a small amount of clay, apatite, and magnetite. The SrO contents of phenocrysts, microphenocrysts, and groundmass calcite average 0.90, 1.42, and 0.59 percent, respectively. The average ??18O and ??13C values of globules (+14.3 and -9.0, respectively) fall between those of coarse-grained intrusive Kaiserstuhl carbonatite (avg. +6.6, -5.8) and those of low-temperature calcite cement in the carbonatite tuffs (+21.8, -14.9). The phenocrysts and microphenocrysts are primary magmatic calcite, but several features indicate that the groundmass has been recrystallized and altered in contact with meteoric water, resulting in weathering of silicate to clay, leaching of strontium, and isotopic exchange. The weight of evidence favors an original high content of alkali carbonatite in the groundmass, with

  2. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    NASA Astrophysics Data System (ADS)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding

  3. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.

    1994-01-01

    Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7

  4. Influences of Sedimentary Environments and Volcanic Sources on Diagenetic Alteration of Volcanic Tuffs in South China.

    PubMed

    Gong, Nina; Hong, Hanlie; Huff, Warren D; Fang, Qian; Bae, Christopher J; Wang, Chaowen; Yin, Ke; Chen, Shuling

    2018-05-16

    Permian-Triassic (P-Tr) altered volcanic ashes (tuffs) are widely distributed within the P-Tr boundary successions in South China. Volcanic altered ashes from terrestrial section-Chahe (CH) and marine section-Shangsi (SS) are selected to further understand the influence of sedimentary environments and volcanic sources on diagenetic alterarion on volcanic tuffs. The zircon 206 Pb/ 238 U ages of the corresponding beds between two sections are almost synchronous. Sedimentary environment of the altered tuffs was characterized by a low pH and did not experience a hydrothermal process. The dominant clay minerals of all the tuff beds are illite-smectite (I-S) minerals, with minor chlorite and kaolinite. I-S minerals of CH (R3) are more ordered than SS (R1), suggesting that CH also shows a higher diagenetic grade and more intensive chemical weathering. Besides, the nature of the volcanism of the tuff beds studied is derived from different magma sources. The clay mineral compositions of tuffs have little relation with the types of source volcanism and the depositional environments. Instead, the degree of the mixed-layer clay minerals and the REE distribution are mainly dependent upon the sedimentary environments. Thus, the mixed-layer clay minerals ratio and their geochemical index can be used as the paleoenvironmental indicator.

  5. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, I.C.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less

  6. Two examples of subaqueously welded ash-flow tuffs: the Visean of southern Vosges (France) and the Upper Cretaceous of northern Anatolia (Turkey)

    NASA Astrophysics Data System (ADS)

    Schneider, Jean-Luc; Fourquin, Claude; Paicheler, Jean-Claude

    1992-02-01

    Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial. The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base. In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation

  7. Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Halford, Keith J.; Laczniak, Randell J.; Galloway, Devin L.

    2005-01-01

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  8. Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2013-12-01

    The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy

  9. Possible Tuff Cones In Isidis Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Seabrook, A. M.; Rothery, D. A.; Bridges, J. C.; Wright, I. P.

    The Beagle 2 lander of the ESA Mars Express mission will touch down on the martian surface in December 2003 to conduct a primarily exobiological mission. The landing site will be within Isidis Planitia, an 1100 km diameter impact basin. Isidis contains many sub-kilometre-sized cones. These can be found singly, in clusters, and in straight or arcuate chains extending many kilometres. In some areas of the basin these cones can occupy over 10% of the surface, with the most densely populated areas being in the older western half of the basin. There are few cones around the basin rim. There is also variation in the erosional state of the cones both across the basin, and within smaller areas, implying a range in time of formation for the cones. We currently favour a tuff cone origin as an explanation for these features. Tuff cones on Earth are rooted volcanic features formed at vents by the interaction between magma or magmatic heat and surface or near-surface water. Lava flows likely to be associated with at least some of the cones if they had a cinder cone (rooted eruptions at vents in a dry environment) origin are absent. This suggests the involvement of suffi- cient volatiles both to explosively fragment the erupting magma, and to cool the ejecta enough to prevent the formation of clastogenic flows. If our tuff cone interpretation is correct, this has implications for the presence, abundance and long-term persistence of sub-surface volatiles (water or carbon dioxide) on Mars. An understanding of the mechanism of formation of the Isidis cones will assist the characterisation of the basin in preparation for the landing of Beagle 2, by providing information about the history of volatiles and volcanism in the basin, and the processes that resulted in the surface we see today.

  10. Radioelements and their occurrence with secondary minerals in heated and unheated tuff at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flexser, S.; Wollenberg, H.A.

    1992-06-01

    Samples of devitrified welded tuff near and away from the site of a heater test in Rainier Mesa were examined with regard to whole-rock radioelement abundances, microscopic distribution of U, and oxygen isotope ratios. Wholerock U averages between 4 and 5 ppM, and U is concentrated at higher levels secondary opaque minerals as well as in accessory grains. U in primary and secondary sites is most commonly associated with Mn phases, which average {approximately}30 ppM U in more uraniferous occurrences. This average is consistent and apparently unaffected by proximity to the heater. The Mn phases differ compositionally from Mn mineralsmore » in other NTS tuffs, usually containing abundant Fe, Ti, and sometimes Ce, and are often poorly crystalline. Oxygen isotope ratios show some depletion in {delta}{sup 18}O in tuff samples very close to the heater; this depletion is consistent with isotopic exchange between the tuff and interstitial water, but it may also reflect original heterogeneity in isotopic ratios of the tuff unrelated to the heater test. Seismic properties of several tuff samples were measured. Significant differences correlating with distance from the heater occur in P- and S-wave amplitudes; these may be due to loss of bound water. Seismic velocities are nearly constant and indicate a lack of significant microcracking. The absence of clearer signs of heater-induced U mobilization or isotopic variations may be due to the short duration of the heater test, and to insufficient definition of pre-heater-test heterogeneities in the tuff.« less

  11. Physical properties of Campi Flegrei tuff from variable depths

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Sergio; Del Gaudio, Pierdomenico; Iarocci, Alessandro; Mollo, Silvio; Scarlato, Piergiorgio; Freda, Carmela

    2010-05-01

    A number of measurements on physical properties of volcanic tuff from different volcanic Italian districts (Campi Flegrei, Colli Albani, Lago di Vico) has been performed in the recent years. Petrophysical investigations carried out at increasing/decreasing effective pressure (Vinciguerra et al., 2005; 2008) revealed how, within the same lithology, the different degree of lithification and presence of clasts can affect significantly physical property values. Microstructural analyses revealed that the pressurization and depressurization cycles generate inelastic crack damage/pore collapse and permanent reduction of voids space. When cores from boreholes were investigated, significant variations of physical properties have been found even within the same tuff lithologies (Vinciguerra et al., 2008), which significantly influence the modelling of the overall physics and mechanics, as well as the input parameters for ground deformation and seismicity modelling. In this study we analysed the physical properties of Campi Flegrei tuff (12ka) cores from depths down to 100m, which is the most abundant and widely distributed lithology in the caldera (Rosi and Sbrana, 1987). CF tuff is a strongly heterogeneous pyroclastic flow material, which include cavities, pumice and crystals of sanidine, pyroxene and biotite (Vanorio et al., 2002; Vinciguerra et al., 2005). Total porosity was measured, after drying samples at 80°C for 24 hours, throughout a helium pycnometer (AccuPyc II 1340, Micromeritics Company) with ±0.01% accuracy. Initial total porosity of 52% was found for cores coming from 30m of depth. Total porosity decreases to 46% , when cores from 100m depth are considered. Bench measurements of P-wave and S-wave velocities carried out in dry conditions are of 1.8 and 1.2 km/s respectively for the 30m depth cores and increase up to 2.1 km/s and 1.35 km/s at depth of 100m. Taken together, the measurements of porosity and seismic velocities of P and S wave velocities revealed

  12. Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda

    NASA Astrophysics Data System (ADS)

    Skinner, S. M.; Stock, J. M.; Martin Barajas, A.

    2013-05-01

    The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction, on the scale of hundreds of meters. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.

  13. Absolute Paleointensity Study of Miocene Tiva Canyon Tuff, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Patiman, A.; Bowles, J.

    2014-12-01

    Unoriented samples from the ~12.7 Ma Tiva Canyon (TC) tuff from Yucca Mountain, Nevada are studied in terms of magnetic properties and geomagnetic paleointensity. The magnetic mineralogy and magnetic properties of the TC tuff have previously been well documented, and the remanence-carrier in ~15-m thick zones at the top and bottom of the unit is dominantly is single domain (SD) to superparamagnetic (SP) magnetite, which may be considered ideal for absolute paleointensity studies. Among one of the several episodic volcanic eruptions of the Southwestern Nevada Volcanic Field (SWNVF), the welded TC tuff belongs to the Paintbrush Group. Here we present magnetic properties from two previously unreported sections of the TC tuff, as well as Thellier-type absolute paleointensity estimates. Samples were collected from the lower ~7 m at the base of the flow. Magnetic properties studied include hysteresis, bulk magnetic susceptibility, frequency-dependent susceptibility, and anhysteretic remanent magnetization acquisition. Magnetic property results are consistent with earlier work, showing that the main magnetic mineral is magnetite. SP samples are dominant from the lower ~1 m to ~3.6 m basal unit while the middle unit of ~3.7 m to 7.0 m mainly consists of SD samples. The paleointensity results are closely tied to the stratigraphic height and magnetic properties linked to domain state. The SD samples have consistent absolute paleointensity values 32.40±0.22 uT, VADM 5.74*1022 A.m2 and behaved ideally during paleointensity experiments. The SP samples have consistently higher paleointensity and less ideal behavior, but would likely pass many traditional quality-control tests. Since the magnetite has been interpreted to form by precipitation out of the glass post-emplacement, but at temperatures higher than the Curie temperature, we tentatively interpret the SD remanence to be a primary thermal remanent magnetization and the paleointensity result to be a valid estimate of

  14. Potential atmospheric impact of the Toba mega-eruption {approx}71,000 years ago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinski, G.A.; Mayewski, P.A.; Meeker, L.D.

    1996-04-15

    An {approx}6 year-long period of volcanic sulfate recorded in the GISP2 ice core about 71,000 {+-} 5000 years ago may provide detailed information on the atmospheric and climate impact in the Toba mega-eruption. Deposition of these aerosols occur beginning of an {approx}1000-year long stadial event, but not immediately before the longer glacial period beginning {approx}67,500 years ago. Total stratospheric loading estimates over this {approx}6 year period range from 2200 to 4400 Mt of H{sub 2}SO{sub 4} aerosols. The range in values is given to compensate for uncertainties in aerosol transport. Magnitude and longevity of the atmospheric loading may have ledmore » directly to enhanced cooling during the initial two centuries of this {approx}1000-year cooling event. 25 refs., 2 fig., 1 tab.« less

  15. Green-tuff landslide areas are beneficial for rice nutrition in Japan.

    PubMed

    Tazaki, Kazue

    2006-12-01

    Japanese Islands are covered with weathered volcanic rocks and soils. Terraced rice field are located in green-tuff areas which are very fertile but where landslides occur associated to strong earthquakes. The Xray diffraction and X-ray fluorescence analyses of the soils in landslide area identified predominant smectite and Mg, Al, Si, K, Ti, Mn and Fe are main components. The rice leaf showed that S, Cl, K and Ca play important roles for nutrients in the area. Drainpipe systems have set up in the green- tuff areas to reduce the risks of landslides. Reddish brown microbial mats inhabited bacteria and diatom in the drainpipe outlets. The microbial mats are rich in Fe and PO4(3-). The iron bacteria in the ground water have a high metabolic rate suggesting that the weathering materials were produced by not only physical and chemical influence but also by microorganism. Many microorganisms attach to mineral surfaces and show their high impact in the water mineral chemistry in the landslide area. Bacteria in the green-tuff over landslide area play important roles for sustainable agriculture including rice nutrition.

  16. Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda

    NASA Astrophysics Data System (ADS)

    Skinner, S. M.; Stock, J. M.; Martin, A.

    2013-12-01

    The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction. The azimuth of flow directions observed at 27 sites over 1.5 square kilometers ranges from 8° to 355° with a mean direction of 195° and an α95 of 27°. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.

  17. Status Report on the 40Ar/39Ar and U/Pb Dating of Tuffs in the Dewey Lake Formation of West Texas Towards Constraining the Permo-Triassic Magnetostratigraphic Time Scale

    NASA Astrophysics Data System (ADS)

    Chang, S.; Renne, P. R.; Mundil, R.

    2007-12-01

    A detailed magnetic polarity time scale for the Permo-Triassic Boundary interval, critical for correlating events in marine and terrestrial paleoenvironments, is not yet well-established. Recently, late Permian magnetostratigraphic studies have been reported for non-marine sections in Europe and South Africa (Szurlies et al., 2003; Nawrocki, 2004; Ward et al., 2005). However, these sections are devoid of index fossil suitable for correlation with marine successions and also lack age constraints from radioisotopic dating methods. In other words, it is dubious to correlate these magnetostratigraphic data with the GSSP Permo-Triassic boundary and mass extinction. The Dewey Lake red beds formation of West Texas, believed to be the youngest Permian formation in North America, has yielded high-quality paleomagnetic data (Molina-Garza et al., 1989; Steiner, 2001) and contains several silicic tuffs potentially enabling high-resolution calibration of the magnetic polarity time scale in this critical age range. The tuffs have yet to be placed into a regional stratigraphic or magnetostratigraphic framework, and it is unclear exactly how many distinct eruptive units are represented by the 7 distinct samples collected to date from widely separated (>160 km) localities. 40Ar/39Ar (sanidine and biotite) and U/Pb (zircon) studies reveal that all 7 sampled tuffs were probably erupted within several hundred ka of the Permo-Triassic boundary as dated at the Meishan GSSP section (Renne et al., 1995; Mundil et al., 2004) but results thus far are inadequate to convincingly resolve age differences between the various samples. U/Pb dating of some samples is severely challenged by Pb-loss from the zircons despite application of the Mattinson (2005) annealing/chemical abrasion technique. 40Ar/39Ar data have been obtained from as many as four different irradiations in order to reduce neutron fluence related error. We observe the familiar ~1% bias between U/Pb and 40Ar/39Ar ages. Biotite

  18. A field method for making a quantitative estimate of altered tuff in sandstone

    USGS Publications Warehouse

    Cadigan, R.A.

    1954-01-01

    The use of benzidine to identify altered tuff in sandstone is practical for field or field laboratory studies associated with stratigraphic correlations, mineral deposit investigations, or paleogeographic interpretations. The method is based on the ability of saturated benzidine (C12H12N2) solution to produce a blue stain on montmorillonite-bearing tuff grains. The method is substantiated by the results of microscopic, X-ray spectrometer, and spectrographic tests which lead to the conclusion that: (1) the benzidine stain test differentiates grains of different composition, (2) the white or gray grains which are stained a uniform blue color are fragments of altered tuff, and (3) white or gray grains which stain in a few small spots are probably silicified tuff. The amount of sand grains taken from a hand specimen or an outcrop which will be held by a penny is spread out on a nonabsorbent white surface and soaked with benzidine for 5 minutes. The approximate number blue grains and the average grain size are used in a chart to determine a reference number which measures relative order of abundance. The chart, based on a volume relationship, corrects for the variation in the number of grains in the sample as the grain size varies. Practical use of the method depends on a knowledge of several precautionary measures as well as an understanding of the limitations of benzidine staining tests.

  19. Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.

    PubMed

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.

  20. The oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate

    USGS Publications Warehouse

    Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Gromme, C.S.; Deino, A.L.; Tingey, D.G.

    2002-01-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (> 1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02 ?? 0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase > quartz ??? hornblende > biotite > Fe-Ti oxides ??? sanidine > titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We

  1. Radio Telescopes Reveal Youngest Stellar Corpse

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Astronomers using a global combination of radio telescopes to study a stellar explosion some 30 million light-years from Earth have likely discovered either the youngest black hole or the youngest neutron star known in the Universe. Their discovery also marks the first time that a black hole or neutron star has been found associated with a supernova that has been seen to explode since the invention of the telescope nearly 400 years ago. M51 An artist's impression of Supernova 1986J. The newly discovered nebula around the black hole or neutron star in the center is shown in blue, and is in the center of the expanding, fragmented shell of material thrown off in the supernova explosion, which is shown in red. CREDIT: Norbert Bartel and Michael F. Bietenholz, York University; Artist: G. Arguner (Click on image for larger version) Image Files Artist's Conception (above image, 836K) Galaxy and Supernova (47K) A VLA image (left) of the galaxy NGC 891, showing the bright supernova explosion below the galaxy's center. At right, a closer view of the supernova, made with a global array of radio telescopes. CREDIT: Miguel A. Perez-Torres, Antxon Alberdi and Lucas Lara, Instituto de Astrofisica de Andalucia - CSIC, Spain, Jon Marcaide and Jose C. Guirado, Universidad de Valencia, Spain Franco Mantovani, IRA-CNR, Italy, Eduardo Ros, MPIfR, Germany, and Kurt W. Weiler, Naval Research Laboratory, USA Multi-Frequency Closeup View (201K) Blue and white area shows the nebula surrounding the black hole or neutron star lurking in the center of the supernova. This nebula is apparent at a higher radio frequency (15 GHz). The red and also the contours show the distorted, expanding shell of material thrown off in the supernova explosion. This shell is seen at a lower radio frequency (5 GHz). CREDIT: Michael F. Bietenholz and Norbert Bartel, York University, Michael Rupen, NRAO, NRAO/AUI/NSF A supernova is the explosion of a massive star after it exhausts its supply of nuclear fuel and

  2. Valuing lives and allocating resources: a defense of the modified youngest first principle of scarce resource distribution.

    PubMed

    Tallman, Ruth

    2014-06-01

    In this paper, I argue that the 'modified youngest first' principle provides a morally appropriate criterion for making decisions regarding the distribution of scarce medical resources, and that it is morally preferable to the simple 'youngest first' principle. Based on the complete lives system's goal of maximizing complete lives rather than individual life episodes, I argue that essential to the value we see in complete lives is the first person value attributed by the experiencer of that life. For a life to be 'complete' or 'incomplete,' the subject of that life must be able to understand the concept of a complete life, to have started goals and projects, and to know what it would be for that life to be complete. As the very young are not able to do this, it can reasonably be said that their characteristically human lives have not yet begun, giving those accepting a complete lives approach good reason to accept the modified youngest first principle over a simple 'youngest first' approach. © 2012 John Wiley & Sons Ltd.

  3. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    USGS Publications Warehouse

    Miller, David M.; Leslie, Shannon R.; Hillhouse, John W.; Wooden, Joseph L.; Vazquez, Jorge A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Barstovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages indicate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 million

  4. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    USGS Publications Warehouse

    Miller, D.M.; Leslie, S.R.; Hillhouse, J.W.; Wooden, J.L.; Vazquez, J.A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Bartovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages inficate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 millions

  5. [Book review] The youngest science: notes of a medicine-watcher, by Lewis Thomas

    USGS Publications Warehouse

    Johnson, D.H.

    1984-01-01

    Review of: The youngest science: notes of a medicine-watcher. Alfred P. Sloan Foundation Series. Lewis Thomas. Penguin Books, 1995. Pennsylvania State University. 270 pp. ISBN: 0140243275, 9780140243277.

  6. Brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Okubo, Chris H.

    2014-01-01

    The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.

  7. The distribution and mobility of uranium in glassy and zeolitized tuff, Keg Mountain area, Utah, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Lindsey, D.A.; Rosholt, J.N.

    1980-01-01

    The distribution and mobility of uranium in a diagenetically altered, 8 Ma old tuff in the Keg Mountain area, Utah, are modelled in this study. The modelling represents an improvement over similar earlier studies in that it: (1) considers a large number of samples (76) collected with good geologic control and exhibiting a wide range of alteration; (2) includes radiometric data for Th, K and RaeU (radium equivalent uranium) as well as U; (3) considers mineralogic and trace-element data for the same samples; and (4) analyzes the mineral and chemical covariation by multivariate statistical methods. The variation of U in the tuff is controlled mainly by its primary abundance in glass and by the relative abundance of non-uraniferous detritus and uraniferous accessory minerals. Alteration of glass to zeolite, even though extensive, caused no large or systematic change in the bulk concentration of U in the tuff. Some redistribution of U during diagenesis is indicated by association of U with minor alteration products such as opal and hydrous Fe-Mn oxide minerals. Isotopic studies indicate that the zeolitized tuff has been open to migration of U decay products during the last 0.8 Ma. The tuff of Keg Mountain has not lost a statistically detectable fraction of its original U, even though it has a high (??? 9 ppm) trace U content and has been extensively altered to zeolite. Similar studies in a variety of geological environments are required in order to identify the particular combination of conditions most favorable for liberation and migration of U from tuffs. ?? 1980.

  8. Sonication Enables Effective Iron Leaching from Green Tuff at Low Temperature

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Okawa, Hirokazu; Kawamura, Youhei; Sugawara, Katsuyasu

    2011-07-01

    Ultrasound irradiation (28 and 200 kHz) was applied to iron leaching from green tuff into a low temperature solution (20 °C) using oxalic acid. Ultrasound irradiation increased the amount of iron leached from the green tuff and was greater than that leached by stirring. It is thought that the jet flow caused by the collapse of cavities during ultrasound irradiation prevents and strips the deposits of iron oxalate from the green tuff particles. The extraction of iron at 28 kHz displayed better performance than that at 200 kHz for three reasons. The first is that the jet flow generated by cavitation bubble collapse at 28 kHz is thought to be stronger than that at 200 kHz. The second is that the crushing action of ultrasound irradiation at 28 kHz is greater than that at 200 kHz. The third is that 200 kHz irradiation generates OH radicals, which prevents the generation of FeH(C2O4)+ and oxidizes FeH(C2O4)+ to Fe(C2O4), creating a cover layer on the surface of the stone. Thus, to leach iron from the ore, it is effective to use ultrasound irradiation at 28 kHz, which prevents the creation of radicals and breaks down the grain size.

  9. Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite

    PubMed Central

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636

  10. Developing Energy Technology Course for Undergraduate Engineering Management Study Program in Lake Toba Area with Particular Focus to Sustainable Energy Systems in Development Context

    NASA Astrophysics Data System (ADS)

    Manik, Yosef; Sinaga, Rizal; Saragi, Hadi

    2018-02-01

    Undergraduate Engineering Management Study Program of Institut Teknologi Del is one of the pioneers for its field in Indonesia. Located in Lake Toba Area, this study program has a mission to provide high quality Engineering Management education that produces globally competitive graduates who in turn will contribute to local development. Framing the Energy Technology course—one of the core subjects in Engineering Management Body of Knowledge—in the context of sustainable development of Lake Toba Area is very essential. Thus, one particular focus in this course is sustainable energy systems in local development context that incorporates identification and analysis of locally available energy resources. In this paper we present our experience in designing such course. In this work, we introduce the domains that shape the Engineering Management Body of Knowledge. Then, we explain the results of our evaluation on the key considerations to meet the rapidly changing needs of society in local context. Later, we present the framework of the learning outcomes and the syllabus as a result of mapping the road map with the requirement. At the end, the summary from the first two semesters of delivering this course in academic year 2015/2016 and 2016/2017 are reported.

  11. Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea)

    NASA Astrophysics Data System (ADS)

    Sohn, Y. K.; Son, M.; Jeong, J. O.; Jeon, Y. M.

    2009-10-01

    The Cretaceous Kusandong Tuff, Korea, is a thin (1-5 m thick) but laterally extensive (~ 200 km) silicic ignimbrite emplaced in a fluviolacustrine basin adjacent to a continental volcanic arc. The tuff has been used as an excellent key bed because of its great lateral continuity and unique lithology, characterized by the virtual absence of juvenile clasts and an abundance of quartz and feldspar crystals (up to 55-73 vol.%). The tuff is mostly massive and ungraded and locally shows crude internal layering, basal inverse grading and near-top normal grading of crystals, either erosional or non-erosional lower surfaces, and flat-lying to imbricated grain fabrics. Fragile intraformational clasts of mudstone and tuff are also included. These features provide only ambiguous information on the properties of the responsible pyroclastic density currents: i.e. whether they were dense and laminar or dilute and turbulent. The overall lateral continuity and sheet-like geometry of the tuff suggests, however, that the transport system of the currents was highly expanded, dilute, and turbulent. A plug-flow or slab-flow model cannot explain the origin of crude internal layering, imbricated grain fabrics, and the high crystal content, which is most likely the result of vigorous sorting processes within a dilute and turbulent current. Features indicative of deposition from a dense and laminar transporting medium are locally present, suggesting that a dense and laminar depositional system could develop locally at the base of the dilute and turbulent transport system. The virtual absence of juvenile clasts in the tuff is interpreted to be due to rapid ascent, sudden decompression, and full fragmentation of silicic magma into fine glass shards and crystals. Scarcity of basement-derived accidental components together with the absence of pumiceous fallout deposits beneath the tuff is interpreted to be due to shallow-level fragmentation of magma followed by immediate generation of

  12. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    USGS Publications Warehouse

    Christopher D. Henry,; John, David A.

    2013-01-01

    The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the

  13. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage.

    PubMed

    Andersen, Nathan L; Jicha, Brian R; Singer, Brad S; Hildreth, Wes

    2017-11-21

    Accurate and precise ages of large silicic eruptions are critical to calibrating the geologic timescale and gauging the tempo of changes in climate, biologic evolution, and magmatic processes throughout Earth history. The conventional approach to dating these eruptive products using the 40 Ar/ 39 Ar method is to fuse dozens of individual feldspar crystals. However, dispersion of fusion dates is common and interpretation is complicated by increasingly precise data obtained via multicollector mass spectrometry. Incremental heating of 49 individual Bishop Tuff (BT) sanidine crystals produces 40 Ar/ 39 Ar dates with reduced dispersion, yet we find a 16-ky range of plateau dates that is not attributable to excess Ar. We interpret this dispersion to reflect cooling of the magma reservoir margins below ∼475 °C, accumulation of radiogenic Ar, and rapid preeruption remobilization. Accordingly, these data elucidate the recycling of subsolidus material into voluminous rhyolite magma reservoirs and the effect of preeruptive magmatic processes on the 40 Ar/ 39 Ar system. The youngest sanidine dates, likely the most representative of the BT eruption age, yield a weighted mean of 764.8 ± 0.3/0.6 ka (2σ analytical/full uncertainty) indicating eruption only ∼7 ky following the Matuyama-Brunhes magnetic polarity reversal. Single-crystal incremental heating provides leverage with which to interpret complex populations of 40 Ar/ 39 Ar sanidine and U-Pb zircon dates and a substantially improved capability to resolve the timing and causal relationship of events in the geologic record.

  14. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage

    NASA Astrophysics Data System (ADS)

    Andersen, Nathan L.; Jicha, Brian R.; Singer, Brad S.; Hildreth, Wes

    2017-11-01

    Accurate and precise ages of large silicic eruptions are critical to calibrating the geologic timescale and gauging the tempo of changes in climate, biologic evolution, and magmatic processes throughout Earth history. The conventional approach to dating these eruptive products using the 40Ar/39Ar method is to fuse dozens of individual feldspar crystals. However, dispersion of fusion dates is common and interpretation is complicated by increasingly precise data obtained via multicollector mass spectrometry. Incremental heating of 49 individual Bishop Tuff (BT) sanidine crystals produces 40Ar/39Ar dates with reduced dispersion, yet we find a 16-ky range of plateau dates that is not attributable to excess Ar. We interpret this dispersion to reflect cooling of the magma reservoir margins below ˜475 °C, accumulation of radiogenic Ar, and rapid preeruption remobilization. Accordingly, these data elucidate the recycling of subsolidus material into voluminous rhyolite magma reservoirs and the effect of preeruptive magmatic processes on the 40Ar/39Ar system. The youngest sanidine dates, likely the most representative of the BT eruption age, yield a weighted mean of 764.8 ± 0.3/0.6 ka (2σ analytical/full uncertainty) indicating eruption only ˜7 ky following the Matuyama‑Brunhes magnetic polarity reversal. Single-crystal incremental heating provides leverage with which to interpret complex populations of 40Ar/39Ar sanidine and U-Pb zircon dates and a substantially improved capability to resolve the timing and causal relationship of events in the geologic record.

  15. In-Situ Tuff Water Migration/Heater Experiment: posttest thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Johnstone, J.K.; Nunziato, J.W.

    This report describes posttest laboratory experiments and thermal computations for the In-Situ Tuff Water Migration/Heater Experiment that was conducted in Grouse Canyon Welded Tuff in G-Tunnel, Nevada Test Site. Posttest laboratory experiments were designed to determine the accuracy of the temperatures measured by the rockwall thermocouples during the in-situ test. The posttest laboratory experiments showed that the measured in-situ rockwall temperatures were 10 to 20{sup 0}C higher than the true rockwall temperatures. The posttest computational results, obtained with the thermal conduction code COYOTE, were compared with the experimentally obtained data and with calculated pretest results. Daily heater output power fluctuationsmore » (+-4%) caused by input power line variations and the sensitivity of temperature to heater output power required care in selecting the average heater output power values used in the code. The posttest calculated results compare reasonably well with the experimental data. 10 references, 14 figures, 5 tables.« less

  16. Oligocene lacustrine tuff facies, Abu Treifeya, Cairo-Suez Road, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Motelib, Ali; Kabesh, Mona; El Manawi, Abdel Hamid; Said, Amir

    2015-02-01

    Field investigations in the Abu Treifeya area, Cairo-Suez District, revealed the presence of Oligocene lacustrine volcaniclastic deposits of lacustrine sequences associated with an Oligocene rift regime. The present study represents a new record of lacustrine zeolite deposits associated with saponite clay minerals contained within reworked clastic vitric tuffs. The different lithofacies associations of these clastic sequences are identified and described: volcaniclastic sedimentary facies represent episodic volcaniclastic reworking, redistribution and redeposition in a lacustrine environment and these deposits are subdivided into proximal and medial facies. Zeolite and smectite minerals are mainly found as authigenic crystals formed in vugs or crusts due to the reaction of volcanic glasses with saline-alkaline water or as alteration products of feldspars. The presence of abundant smectite (saponite) may be attributed to a warm climate, with alternating humid and dry conditions characterised by the existence of kaolinite. Reddish iron-rich paleosols record periods of non-deposition intercalated with the volcaniclastic tuff sequence.

  17. Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Cotter, C.R.; Kraus, S.M.

    1996-08-01

    We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do notmore » sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10{sup -7} to 3 X 10{sup -5} M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10{sup -8} to 1 X 10{sup -4} M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz.« less

  18. Graphite in the Bishop Tuff and its effect on postcaldera oxygen fugacity

    USGS Publications Warehouse

    Hildreth, Edward; Ryan-Davis, Juliet; Harlow, Benjamin

    2017-01-01

    Several cubic kilometers of Paleozoic graphite-bearing argillitic country rocks are present as lithic fragments in Bishop Tuff ignimbrite and fallout. The lithics were entrained by the 650 km3 of rhyolite magma that vented during the 5- to 6-day-long, caldera-forming eruption at Long Valley, California. The caldera is floored by a 350 km2 roof plate that collapsed during the eruption and consists in large part of the Paleozoic strata that provided the abundant hornfelsed metapelitic lithic clasts in the tuff. Graphite has been identified by Raman spectroscopy, electron-dispersive spectroscopy, and X-ray diffraction as an irregularly dispersed component in the small fraction of Bishop Tuff pumice that is dark-colored. Carbon concentration has been determined in pumice, lithics, and wall rocks. Values of δ13C range from –21‰ to –29‰ Vienna Peedee Belemnite (VPDB) for pumice, lithics, and argillitic wall rocks, reflecting the biogenic origin of the reduced carbon in oxygen-limited black Paleozoic marine mudrocks. Carbonate contents, measured separately, are negligible in fresh pumice and lithics. Microprobe analyses of titanomagnetite-ilmenite pairs show that oxygen-fugacity values of numerous batches of postcaldera Early Rhyolite (750–640 ka; ~100 km3) are up to one log unit more reduced than those of the temperature–oxygen fugacity (T-fO2) array of the Bishop Tuff (767 ka), despite similar major-element compositions and Fe-Ti–oxide temperature ranges. All of the many batches of Early Rhyolite, which erupted episodically over an interval of ~125,000 years, yield the reduced fO2 values, indicating that reaction with graphite lowered magmatic fO2 after the caldera-forming eruption but before the first eruption of Early Rhyolite. It is inferred that reaction of postcaldera rhyolite magma with the reduced carbon in a great mass of subsided roof rocks lowered its fO2. It is suggested that comparable effects could have attended caldera collapse of other

  19. Habitat characteristic of macrozoobenthos in Naborsahan River of Toba Lake, North Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Lubis, M. S.; Suryanti, A.

    2018-02-01

    This research described the relative abundance, dominance index, and index of macrozoobenthos equitability in Naborsahan River of Toba Lake, North Sumatra, Indonesia. The purposive random sampling at three stations was used to characterize the biological, chemical, and physical parameters of macrozoobenthos. The highest relative abundance of macrozoobenthos found at station 2 (99.96%). By contrast, the highest dominance index was at station 3 (0.31), and the maximum equitability index found at station 1 (0.94). The present results showed diversity parameters among the stations. A principal component analysis (PCA) was used to determine the habitat characteristics of macrozoobenthos. PCA analysis depicted that six parameters studied, brightness, turbidity, depth, temperature, dissolved oxygen (DO) and biochemical oxygen demand (BOD5) play a significant role on the relative abundance, dominance index, and equitability index. PCA analysis suggested that station 3 was suitable habitat characteristic for the life of macro-zoobenthos indicating of the negative axis. The present study demonstrated the six parameters should be conserved to support the survival of macrozoobenthos.

  20. Biogas cleaning and upgrading with natural zeolites from tuffs.

    PubMed

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.

  1. Eruptive style and construction of shallow marine mafic tuff cones in the Narakay Volcanic Complex (Proterozoic, Hornby Bay Group, Northwest Territories, Canada)

    NASA Astrophysics Data System (ADS)

    Ross, Gerald M.

    1986-03-01

    The Early Proterozoic (1663 Ma) Narakay Volcanic Complex, exposed in Great Bear Lake (Northwest Territories, Canada), is a bimodal suite of basalt and rhyolite erupted in a continental setting and consisting largely of pyroclastic rocks interlayered with shallow marine sedimentary rocks of the Hornby Bay Group. Mafic pyroclastic rocks consist of lapilli tuff, tuff, tuff breccia and agglomerate that represent the remnants of small subaerial tuff cones (0.5 to 2 km in diameter) that in most cases have subsided into the volcanic conduit. Stratification styles, sedimentary structures and grain morphologies in pyroclastic rocks reflect variations in the water:magma ratio during eruptions and have been used to help elucidate eruptive mechanisms and reconstruct volcanic edifices. Basaltic pyroclasts are commonly bounded by fracture surfaces and are morphologically similar to modern pyroclasts produced by thermal quench fragmentation or steam-blast disruption of magma. Most fragments have low vesicularity and scoria is only locally abundant which indicates that eruptive energy was supplied mostly by water—melt interaction rather than exsolution of magmatic gases. Cored bombs and lapilli, fusiform bombs, and pyroclasts similar in texture to those of Strombolian cinder and agglutinate spatter, are uncommon but are stratigraphically widespread and imply the occurrence of Strombolian eruptions, presumably when water access to the vent was impeded. Massive bedding is typical of the tuffs and, in addition to the poorly sorted ash-rich nature of the tuffs, implies deposition from water- and/or steam-rich hydrovolcanic eruption clouds and cypressoid jets by airfall and dense pyroclastic flows. Uncommon well-stratified and sorted ash and lapilli tuff record airfall and pyroclastic flow(?) deposition from eruption clouds rich in magmatic gases. Base surge deposits are uncommon and occur only in the subaerial portion of a sequence of tuffs inferred to record the progradation of a

  2. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  3. Eruption and deposition of the Fisher Tuff (Alaska)--Evidence for the evolution of pyroclastic flows

    USGS Publications Warehouse

    Burgisser, Alain; Gardner, J.E.; Stelling, P.

    2007-01-01

    Recognition that the Fisher Tuff (Unimak Island, Alaska) was deposited on the leeside of an ∼500–700‐m‐high mountain range (Tugamak Range) more than 10 km away from its source played a major role in defining pyroclastic flows as momentum‐driven currents. We reexamined the Fisher Tuff to evaluate whether deposition from expanded turbulent clouds can better explain its depositional features. We studied the tuff at 89 sites and sieved bulk samples from 27 of those sites. We find that the tuff consists of a complex sequence of deposits that record the evolution of the eruption from a buoyant plume (22 km) that deposited ∼0.2 km3 of dacite magma as a pyroclastic fall layer to erupting ∼10–100 km3 of andesitic magma as Scoria‐rich pyroclastic falls and flows that were mainly deposited to the north and northwest of the caldera, including those in valleys within the Tugamak Range. The distribution of the flow deposits and their welding, internal stratification, and the occurrence of lithic breccia all suggest that the pyroclastic flows were fed from a fountaining column that vented from an inclined conduit, the first time such a conduit has been recognized during a large‐volume caldera eruption. Pyroclastic flow deposits before and after the mountain range and thin veneer deposits high in the range are best explained by a flow that was stratified into a dense undercurrent and an overriding dilute turbulent cloud, from which deposition before the range was mainly from the undercurrent. When the flow ran into the mountain range, however, the undercurrent was blocked, but the turbulent cloud continued on. As the flow continued north, it restratified, forming another undercurrent. The Fisher Tuff thus records the passing of a flow that was significantly higher (800–1100 m thick) than the mountain range and thus did not require excessive momentum.

  4. Geochronologic and paleomagnetic evidence defining the relationship between the Miocene Hiko and Racer Canyon tuffs, eccentric outflow lobes from the Caliente caldera complex, southeastern Great Basin, USA

    USGS Publications Warehouse

    Gromme, S.; Deino, A.M.; Best, M.G.; Hudson, M.R.

    1997-01-01

    Outflow sheets of the Hiko tuff and the Racer Canyon tuff, which together extend over approximately 16000 km2 around the Caliente caldera complex in southeastern Nevada, have long been considered to be products of simultaneous or near-simultaneous eruptions from inset calderas in the west and east ends, respectively, of the caldera complex. New high-precision 40Ar/39Ar geochronology and paleomagnetic data demonstrate that emplacement of the uppermost part of the Racer Canyon tuff at 18.33??0.03 Ma was nearly synchronous with emplacement of the single outflow cooling unit of the much larger overlying Hiko tuff at 18.32??0.04 Ma. Based on comparison with the geomagnetic polarity time scale derived from the sea-floor spreading record, we conclude that emplacement of the first of several outflow cooling units of the Racer Canyon tuff commenced approximately 0.5 m.y. earlier. Only one paleomagnetic polarity is found in the Hiko tuff, but at least two paleomagnetic reversals have been found in the Racer Canyon tuff. The two formations overlap in only one place, at and near Panaca Summit northeast of the center of the Caliente caldera complex; here the Hiko tuff is stratigraphically above the Racer Canyon tuff. This study demonstrates the power of combining 40Ar/39Ar and paleomagnetic data in conjunction with phenocryst compositional modes to resolve problematic stratigraphic correlations in complex ash-flow sequences where use of one method alone might not eliminate ambiguities.

  5. Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, N.L.; Officer, C.B.; Chesner, C.A.

    1986-05-01

    Plagioclase and biotite phenocrysts in ignimbrites erupted from the Toba caldera, Sumatra, show microstructures and textures indicative of shock stress levels higher than 10 GPa. Strong dynamic deformation has resulted in intense kinking in biotite and, with increasing shock intensity, the development of plagioclase of planar features, shock mosaicism, incipient recrystallization, and possible partial melting. Microstructures in quartz indicative of strong shock deformation are rare, however, and many shock lamellae, if formed, may have healed during post-shock residence in the hot ignimbrite; they might be preserved in ash falls. Peak shock stresses from explosive silicic volcanism and other endogenous processesmore » may be high and if so would obviate the need for extraterrestrial impacts to produce all dynamically deformed structures, possibly including shock features observed near the Cretaceous/Tertiary boundary. 38 references, 3 figures.« less

  6. Thermal conductivity, bulk properties, and thermal stratigraphy of silicic tuffs from the upper portion of hole USW-G1, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.

    1982-03-01

    Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280{sup 0}C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1.more » Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible.« less

  7. The youngest children in each school cohort are overrepresented in referrals to mental health services.

    PubMed

    Berg, Shipra; Berg, Erlend

    2014-05-01

    To investigate whether the youngest children in each school cohort are overrepresented as users of specialist mental health services. Dates of birth were obtained for all 9,157 children and adolescents referred to specialist mental health services in 3 London boroughs from 2008 to 2011. The actual frequency of referrals by month of birth is compared to the expected frequency of referrals as determined by birth statistics for the relevant age group. August-born children, who are the youngest in their cohorts in England, represent 9.38% of referrals but only 8.59% of the population in the relevant age segment. Hence, August-born children are overrepresented in referrals to specialist mental health services (P value = .007). September- and October-born children, who are the oldest in their cohorts, are underrepresented: September-born children represent 8.62% of the population but 7.99% of referrals to mental health services (P value = .032), and October-born children are 8.56% of the population but 7.86% of referrals (P value = .016). Being among the youngest in a school cohort is associated with a higher risk of referral to mental health services, while being among the oldest is a protective factor. © Copyright 2014 Physicians Postgraduate Press, Inc.

  8. Diatreme evolution during the phreatomagmatic eruption of the Songaksan tuff ring, Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Go, S. Y.; Kim, G. B.; Jeong, J. O.; Sohn, Y. K.

    2017-03-01

    The Songaksan tuff ring, Jeju Island, Korea, which erupted ca. 3.7 ka BP in a coastal setting, provides an unusual opportunity to study the processes of phreatomagmatic eruption and the formation of a diatreme because of the exceptionally well-preserved ejecta beds and well-known subsurface geology. The tuff sequence can be divided into four units (A to D), which have distinctly different accidental componentry (quartz-rich vs. quartz-poor), grain surface features (abraded and ash-coated vs. unabraded and uncoated), and chemical compositions of juvenile particles. The basal tephra bed of unit A, which probably erupted after the removal of the relatively hard shallow-level (<120 m deep) substrate by initial cratering, comprises only unabraded and uncoated grains and contains abundant relatively deep-derived (>120 m deep) accidental grains, suggesting that the early erupted tephra had not yet experienced recycling and pre-eruption mixing in the diatreme. On the other hand, the overlying tephra beds of units A, B, and D contain an abundance of abraded and ash-coated juvenile/accidental grains, suggesting that the tephra comprised significant proportions of "recycled" or "premixed" materials from previous eruptions or subsurface explosions, which participated in the explosion-driven mixing in the diatreme before eventual ejection from the diatreme. Unit C is unusual in that it comprises extremely rare accidental grains and ash-coated juvenile/accidental grains. We interpret that the supply of solid materials, either accidental or juvenile, to the diatreme was greatly reduced because of temporary stabilization of the diatreme and the reduction in magma flux to the diatreme. The diatreme is therefore envisaged to have been filled with a water-saturated slurry, in which particle abrasion and adhesion were inhibited. We also infer that the diatreme fill was temporarily removed by a powerful explosion before eruption of unit C on the basis of the near absence of the tephra

  9. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, In C.

    1994-07-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone watermore » on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.« less

  10. Neogene Fallout Tuffs from the Yellowstone Hotspot in the Columbia Plateau Region, Oregon, Washington and Idaho, USA

    PubMed Central

    Nash, Barbara P.; Perkins, Michael E.

    2012-01-01

    Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16–4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG), and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas. PMID:23071494

  11. Neogene fallout tuffs from the Yellowstone hotspot in the Columbia Plateau region, Oregon, Washington and Idaho, USA.

    PubMed

    Nash, Barbara P; Perkins, Michael E

    2012-01-01

    Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16-4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG), and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas.

  12. A Remotely Sensed and Paleomagnetic Perspective on the Bonelli Tuff of NW AZ and SE CA

    NASA Astrophysics Data System (ADS)

    Gomez, C. D.

    2015-12-01

    The southern Black and Cerbat Mountains of NW AZ and the Sacramento Mountains of SE CA preserve ignimbrites associated with multiple episodes of volcanic activity that span at least a million years. Unraveling the stratrigraphy of these deposits, as well as their eruptive centers, is critical for constraining the volcanic history of this ignimbrite, the 18.8 Ma Peach Spring Tuff, is the recently identified 17.7 Ma Tuff of Bonelli House (TB) (Ferguson & Cook 2015) and may also occur in the southern Black and Sacramento Mountains. To help determine the extent and possible source of the TB, we have performed a combined remote sensing and paleomagnetic study of this unit, including possible correlatives. Paleomagnetic work involved Remanence and anisotropic magnetic susceptibility methods. Drill samples were collected and processed at Scripps Institute of Oceanography & Pomona College. An AC current was run to obtain the Paleomag current, as opposed to the traditional of heating up the cores at specific intervals. Sacramento Mountains samples produced an average direction of 200.9 / -26.4, which contrasts the Peach Spring Tuff paleodirection of 036.4/33 (Wells & Hillhouse, 1989). An AMS direction was determined using a MFK1 Kappabridge instrument and consistently showed similar flow direction to that of the PST. In compiling our data on a map, we took into account the Whipple Detachment Fault, ~40 km westward (Lister & Davis, 1989). We were able to identify a spectral signature and remnant paleomagnetic direction for the TB and identify potential additional outcrops in the southern Black mountains. AMS showed us that the ignimbrites originated from a source in the Silver Creek Caldera, which may indicate the PST at TB were produced from a similar source. The remnant paleomagnetic direction allows us to closely correlate these tuff units as occurring within a similar timeframe. The contrasting paleodirection of the TB and the PST allows us to confidently say that the

  13. Paleomagnetism and Lithostratigraphy of the Miocene Tuff of Huntoon Creek Type Section

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Pluhar, C. J.; Lindeman, J. R.

    2014-12-01

    Here we define the Tuff of Huntoon Creek (THC), previously identified and mapped in Mono Basin, CA by Gilbert et al. (1968) as "latite ignimbrite" (K-Ar date of 11.1-11.9 Ma). Formally defining this formation and its paleomagnetic characteristics, can help reveal the spatial and temporal relationships of the Walker Lane and Mina Deflection structural features, including distribution of vertical axis rotation. THC is composed of four tuffs with an intercalated volcaniclastic sandstone giving a total stratigraphic thickness of ~300 m. We define THC in a gorge of Huntoon Creek, where the stratigraphic section is capped by Pliocene basalt. The lowest and most extensive stratigraphic unit, the Huntoon Valley member of THC, is ~243 m thick and can be distinguished from other units by the presence of sanidine and biotite phenocrysts and normal polarity. A 7-meter-thick volcaniclastic sandstone overlies the Huntoon Valley member, straddling a magnetic polarity reversal within the section. The 3 overlying members of THC are reversed-polarity, biotite-bearing, sanidine-free tuffs of variable degrees of welding. Their paleomagnetic directions are each statistically distinguishable from the others, indicating that the deposition of each tuff is separated by a significant amount of time and can be used as a geologically instantaneous measure of Earth's magnetic field for purposes of averaging out secular variation. The capping Pliocene olivine basalt was emplaced over an erosional unconformity of significant relief, as evidenced by the complete absence at some locations of the uppermost biotite-bearing THC member. The tilt corrected mean paleomagnetic direction for the 4 members of THC indicate a clockwise rotation magnitude of 77.5°±40.3°. The absolute rotation results of this locality are statistically indistinguishable from the relative rotation results of this locality compared to Cowtrack Mountain (Lindeman et al. 2013). The corroboration of these data suggests that

  14. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less

  15. Petrology and geochemistry of the Grouse Canyon Member of the Belted Range Tuff, Rock-Mechanics Drift, U12g Tunnel, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.; Mansker, W.L.; Hicks, R.

    1983-04-01

    G-Tunnel at Nevada Test Site (NTS) is the site of thermal and thermomechanical experiments examining the feasibility of emplacing heat-producing nuclear wastes in silicic tuffs. This report describes the general stratigraphy, mineralogy, and bulk chemistry of welded portions of the Grouse Canyon Member of the Belted Range Tuff, the unit in which most of these experiments will be performed. The geologic characteristics of the Grouse Canyon Member are compared with those of the Topopah Spring Member of the Paintbrush Tuff, presently the preferred horizon for an actual waste repository at Yucca Mountain, near the southwest boundary of Nevada Test Site.more » This comparison suggests that test results obtained in welded tuff from G-Tunnel are applicable, with limitations, to evaluation of the Topopah Spring Member at Yucca Mountain.« less

  16. Chemical correlation of some late Cenozoic tuffs of Northern and Central California by neutron activation analysis of glass and comparison with X-ray fluorescence analysis

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Bowman, Harry W.; Russell, Paul C.

    1979-01-01

    Glasses separated from several dacitic and rhyolitic late Cenozoic tuffs of northern and central California were analyzed by neutron activation for more than 43 elemental abundances. Eighteen elements--scandiurn, manganese, iron, zinc, rubidium, cesium, barium, lanthanum, cerium, samarium, europium, terbiurn, dysprosiurn, ytterbiurn, hafniurn, tantalurn, thorium and uranium--were selected as most suitable for purposes of chemical correlation on the basis of their natural variability in silicic tuffs and the precision obtainable in analysis. Stratigraphic relations between tuffs and replicate chemical analyses on individual tuffs make it possib1e to calibrate a quantitative parameter, the similarity coefficient, which indicates the degree of correlation for the tuffs studied. The highest similarity coefficient (0.99) was obtained for analyses of two tuffs (potassium-argon dated at about' 6.0 m.y.) exposed in the Merced(?) and Petaluma Formations of Sonoma County, which represent different paleoenvironments, shallow-water marine and fresh water or brackish marine, respectively. Corre1ation of these formations on the basis of criteria other than tephrochronoloqy would be difficult. Results of neutron activation analysis in general confirm earlier correlations made on the basis of analysis by X-ray fluorescence but also make it possible to resolve small compositional differences between chemically simi1ar tuffs in stratigraphic proximity. The Lawlor Tuff (potassium-argon dated at about 4.0 m.y.) is identified at two new localities: in a core sample obtained from a bore hole east of Suisun Bay, and from the Kettleman Hills of western San Joaquin Valley. This identification permits correlation of the uppermost part of the marine Etchegoin Formation in the San Joaquin Valley with the continental Livermore Gravels of Clark, the Tassajara Formation, and the upper part of the Sonoma Volcanics in the cel1tral Coast Ranges of California. A younger tuff near the top of the

  17. Major element and oxygen isotope geochemistry of vapour-phase garnet from the Topopah Spring Tuff at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Moscati, Richard J.; Johnson, Craig A.

    2014-01-01

    Twenty vapour-phase garnets were studied in two samples of the Topopah Spring Tuff of the Paintbrush Group from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350 m thick, devitrified, moderately to densely welded ash-flow tuff that is zoned compositionally from high-silica rhyolite to latite. During cooling of the tuff, escaping vapour produced lithophysae (former gas cavities) lined with an assemblage of tridymite (commonly inverted to cristobalite or quartz), sanidine and locally, hematite and/or garnet. Vapour-phase topaz and economic deposits associated commonly with topaz-bearing rhyolites (characteristically enriched in F) were not found in the Topopah Spring Tuff at Yucca Mountain. Based on their occurrence only in lithophysae, the garnets are not primary igneous phenocrysts, but rather crystals that grew from a F-poor magma-derived vapour trapped during and after emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter and fractured. The garnets also contain inclusions of tridymite. Electron microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol.%, respectively), have an average composition of (Fe1.46Mn1.45Mg0.03Ca0.10)(Al1.93Ti0.02)Si3.01O12 and are comparatively homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have δ18O values of 7.2 and 7.4‰. The associated quartz (after tridymite) has δ18O values of 17.4 and 17.6‰, values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a δ18O of 11.1‰ which, when coupled with the garnet δ18O values in a quartz-garnet fractionation equation, indicates isotopic equilibration (vapour-phase crystallization) at temperatures of ~600°C. This high-temperature mineralization, formed during cooling of the tuffs, is distinct from the later and commonly recognized

  18. Neonatal Lemierre Syndrome: Youngest Reported Case and Literature Review.

    PubMed

    Raggio, Blake S; Grant, Maria C; Rodriguez, Kimsey; Cripe, Patrick J

    2018-03-01

    A previously healthy 5-week-old female was admitted for sepsis secondary to methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. After several days of hospitalization, she experienced acute decompensation in mental status despite having received targeted antibiotic therapy. Imaging revealed left peritonsillar/parapharyngeal space abscess, left venous thrombophlebitis of the internal jugular vein, and septic emboli of the lungs and brain consistent with Lemierre syndrome. Bedside needle aspiration of the parapharyngeal abscess confirmed MRSA involvement. Unfortunately, the patient continued to deteriorate over the next several days and life support was withdrawn on hospital day 16. We present the youngest reported case of Lemierre syndrome and review the literature.

  19. Physical and Thermal Structure of the Bishop Tuff, California

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Hildreth, W.

    2001-12-01

    The 0.76 Ma Bishop Tuff, California, includes an ignimbrite constructed from a series of overlapping packages of material erupted sequentially and simultaneously from multiple sources around the ring fracture of Long Valley caldera (Wilson, C.J.N., Hildreth, W., 1997, Journal of Geology 105, 407-439). Exceptionally good continuous exposures of the ignimbrite in the walls of Owens Gorge to the east of Long Valley provide a cross-section through the east-side packages (Ig1E and Ig2E). We have measured 10 sections up the gorge walls to draw up a cross section of the ignimbrite down Owens Gorge, using lithic abundances and lithologies to define the physical eruptive packages and their subdivisions, and measurements of tuff bulk density (as an easily measured proxy for welding intensity) to define the thermal eruptive packages. The physically emplaced bodies of ignimbrite represent an overlapping, shingling suite of material such that successively later ignimbrite occurs most prominently farther away from source. Two major and two lesser zones of maximum density (welding) are present, the lower two (in Ig1Ea and lower Ig1Eb) in upper Owens Gorge, and the two most prominent (upper Ig1Eb and Ig2Eb) in middle and lower parts of the gorge. Welding fluctuations are controlled by bulk temperatures of individual batches of hotter and cooler material, but the intensity of the welding also depends on deposit thickness (i.e. load stress). Physically defined contacts between ignimbrite packages show that time breaks inferred to be of hours may not result in formation of any visible parting or flow unit boundary. Furthermore, positions of density (welding) minima between zones of higher density tuff do not coincide with horizons of stratigraphic significance. These observations lead to two conclusions. (1) The absence of clear partings or flow unit boundaries in an ignimbrite sequence is not diagnostic either of the material representing a single flow unit, or of the material being

  20. Impact of super-distal ash fallout on tropical hydrology and landscape: a case study from the YTT deposits of the Perak river, Malaysia

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Saidin, M.; Gibbard, P.; Oppenheimer, C.

    2011-12-01

    The Younger Toba Tuff eruption, approximately 73 ka ago, is the largest known for the Quaternary and its climate, environmental and human consequences are keenly debated (Oppenheimer, 2011).While the distribution (Rose and Chesner, 1987; Rose and Chesner, 1990; Chesner et al., 1991; Schulz et al., 2002; Von Rad et al., 2002) , geochemical properties (Shane et al., 1995; Westgate et al., 1998) and volcanic significance (Rampino and Self, 1982; Rampino and Self, 1993; Rampino and Ambrose, 2000; Oppenheimer, 2002; Mason et al., 2004)of the YTT have been widely studied, few attention has been given to the significance of the distal volcanic ash deposits within their receiving basin context. Although several studies exist on the impact of pyroclastic flows on proximal rivers and lakes (Collins and Dunne, 1986; Thompson et al., 1986; Hayes et al., 2002; Németh and Cronin, 2007), only few address the issues of the dynamic of preservation of super-distal fine ash deposits in rivers (also due to the lack of direct data on super-eruptions). It has also been demonstrated that models of the styles and timing of distal volcanoclastic re-sedimentation are more complicated than those developed for proximal settings of stratovolcanoes (Kataoka et al., 2009). We present an analysis of the taphonomy (intended as accumulation and preservation) of distal volcanic ash in fluvial and lacustrian contexts in newly discovered Toungest Toba Tuff sites in the Lenggong valley, western Peninsular Malaysia. The paper aims to characterise the nature of distal tephras in fluvial environments towards a stratigraphic distinction between primary ash and secondary ash, characterisation of the pre-ash fall receiving environment in term of fluvial dynamic and landscape morphology, and assessment of the time of recovery.

  1. Whole genome sequencing of the fish pathogen Francisella noatunensis subsp. orientalis Toba04 gives novel insights into Francisella evolution and pathogenecity

    PubMed Central

    2012-01-01

    Background Francisella is a genus of gram-negative bacterium highly virulent in fishes and human where F. tularensis is causing the serious disease tularaemia in human. Recently Francisella species have been reported to cause mortality in aquaculture species like Atlantic cod and tilapia. We have completed the sequencing and draft assembly of the Francisella noatunensis subsp. orientalisToba04 strain isolated from farmed Tilapia. Compared to other available Francisella genomes, it is most similar to the genome of Francisella philomiragia subsp. philomiragia, a free-living bacterium not virulent to human. Results The genome is rearranged compared to the available Francisella genomes even though we found no IS-elements in the genome. Nearly 16% percent of the predicted ORFs are pseudogenes. Computational pathway analysis indicates that a number of the metabolic pathways are disrupted due to pseudogenes. Comparing the novel genome with other available Francisella genomes, we found around 2.5% of unique genes present in Francisella noatunensis subsp. orientalis Toba04 and a list of genes uniquely present in the human-pathogenic Francisella subspecies. Most of these genes might have transferred from bacterial species through horizontal gene transfer. Comparative analysis between human and fish pathogen also provide insights into genes responsible for pathogenecity. Our analysis of pseudogenes indicates that the evolution of Francisella subspecies’s pseudogenes from Tilapia is old with large number of pseudogenes having more than one inactivating mutation. Conclusions The fish pathogen has lost non-essential genes some time ago. Evolutionary analysis of the Francisella genomes, strongly suggests that human and fish pathogenic Francisella species have evolved independently from free-living metabolically competent Francisella species. These findings will contribute to understanding the evolution of Francisella species and pathogenesis. PMID:23131096

  2. Eruptive history, petrology, and petrogenesis of the Joe Lott Tuff Member of the Mount Belknap Volcanics, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Budding, Karin E.

    1982-01-01

    The Joe Lott Tuff Member of the Mount Belknap Volcanics is the largest rhyolitic ash-flow tuff sheet in the Marysvale volcanic field. It was erupted 19 m.y. ago, shortly after the changeover from intermediate-composition calc-alkalic volcanism to bimodal basalt-rhyolite volcanism. Eruption of the tuff resulted in the formation of the Mount Belknap Caldera whose pyroclastic intracaldera stratigraphy parallels that in the outflow facies. The Joe Loft Tuff Member is a composite ash-flow sheet that changes laterally from a simple cooling unit near the source to four distinct cooling units toward the distal end. The lowest of these units is the largest and most widespread; it is 64 m thick and contains a basal vitrophyre. Eruption of the lower unit led to the initial collapse of the caldera. The lower unit is followed upward by a 43 m middle unit, a 26 m pink-colored unit which is separated by a prominent air- fall layer, and a 31 m upper unit. The Joe Loft Tuff Member is an alkali rhyolite with 75.85-77.31 wt. % silica and 8.06-9.32 wt. % K2O+Na2O; the agpaitic index (Na2O+ K2O/Al2O3) is .77-.98. The tuff contains about I% phenocrysts of quartz, sanidine, oligoclase, augite, apatite, zircon, sphene, biotite, and oxidized Fe-Ti oxides. The basal vitrophyre contains accessory allanite, chevkinite, and magnesiohastingsite. The main cooling units are chemically and mineralogically zoned indicating that the magma chamber restratified prior to each major eruption. Within each of the two thickest cooling units, the mineralogy changes systematically upwards; the Or content and relative volume of sanidine decreases and An content of plagioclase increases. The basal vitrophyre of the lower unit has a bulk composition that lies in the thermal trough near the minima of Or-Ab-Q at 1 kb PH2O. Microprobe analyses of feldspar and chemical modeling on experimental systems indicate that pre-eruption temperatures were near 750?C and that the temperature increased during the eruption of

  3. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, B.; Bodvarsson, G.S.; Salve, R.

    2002-04-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variationsmore » of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff

  4. Petrographic and geochemical characteristics of a section through the Tiva Canyon Tuff at Antler Ridge, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, F.R.; Widmann, B.L.; Dickerson, R.P.

    1994-12-31

    The Tiva Canyon Tuff of the Paintbrush Group of Miocene age caps much of Yucca Mountain, Nevada and is a compositionally zoned, compound cooling, pyroclastic flow that ranges from a dominantly high-silica rhyolitic base to a quartz-latitic caprock. Petrographic and geochemical studies have focused on rigorously defining the internal stratigraphy of this unit to support the detailed mapping of the Ghost Dance fault and other structures in the central fault block of Yucca Mountain. This study shows that devitrification textures and vapor phase mineralogy, in addition to other physical attributes such as pumice variability (flattening) and crystal content, can bemore » used as distinguishing criteria to better define lithologic zones within the Tiva Canyon Tuff. In addition, the study also shows that the petrographic textures and chemistry of the groundmass vary systematically within recognizable lithologic zones and may be used to characterize and vertically divide litho-stratigraphic zones within the Tiva Canyon Tuff.« less

  5. Stochastic Model of Fracture Frequency Heterogeneity in a Welded Tuff EGS reservoir, Snake River Plain, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Moody, A.; Fairley, J. P., Jr.

    2014-12-01

    In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60˚ C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.

  6. In defense of Magnetite-Ilmenite Thermometry in the Bishop Tuff and its implication for gradients in silicic magma reservoirs

    USGS Publications Warehouse

    Evans, Bernard W; Hildreth, Edward; Bachmann, Olivier; Scaillet, Bruno

    2016-01-01

    Despite claims to the contrary, the compositions of magnetite and ilmenite in the Bishop Tuff correctly record the changing conditions of T and fO2 in the magma reservoir. In relatively reduced (∆NNO < 1) siliceous magmas (e.g., Bishop Tuff, Taupo units), Ti behaves compatibly (DTi ≈ 2-3.5), leading to a decrease in TiO2 activity in the melt with cooling and fractionation. In contrast, FeTi-oxides are poorer in TiO2 in more oxidized magmas (∆NNO > 1, e.g., Fish Canyon Tuff, Pinatubo), and the d(aTiO2)/dT slope can be negative. Biotite, FeTi-oxides, liquid, and possibly plagioclase largely maintained equilibrium in the Bishop Tuff magma (unlike the pyroxenes, and cores of quartz, sanidine, and zircon) prior ro and during a mixing event triggered by a deeper recharge, which, based on elemental diffusion profiles in minerals, took place at least several decades before eruption. Equilibrating phases and pumice compositions show evolving chemical variations that correlate well with mutually consistent temperatures based on the FeTi-oxides, sanidine-plagioclase, and ∆18O quartz-magnetite pairs. Early Bishop Tuff (EBT) temperatures are lower (700 to ~780‎°C) than temperatures (780 to >820°C) registered in Late Bishop Tuff (LBT), the latter defined here not strictly stratigraphically, but by the presence of orthopyroxene and reverse-zoned rims on quartz and sanidine. The claimed similarity in compositions, Zr-saturation temperatures and thermodynamically calculated temperatures (730-740°C) between EBT and less evolved LBT reflect the use of glass inclusions in quartz cores in LBT that were inherited from the low temperature rhyolitic part of the reservoir characteristic of the EBT. LBT temperatures as high as 820°C, the preservation of orthopyroxene, and the presence of reverse-zoned minerals (quartz, sanidine, zircons) are consistent with magma recharge at the base of the zoned reservoir, heating the cooler rhyolitic melt, partly remelting cumulate mush

  7. In Situ Measurement of Permeability in the Vicinity of Faulted Nonwelded Bishop Tuff, Bishop, CA

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; Fedors, R. W.; Ferrill, D. A.; Bradbury, K. K.

    2002-12-01

    The nonwelded Bishop Tuff includes matrix-supported massive ignimbrites and clast-supported bedded deposits. Fluid flow through such faulted nonwelded tuff is likely to be influenced by a combination of host rock properties and the presence of deformation features, such as open fractures, mineralized fractures, and fault zones that exhibit comminuted fault rock and clays. Lithologic contacts between fine- and coarse-grained sub-units of nonwelded tuff may induce formation of capillary and/or permeability barriers within the unsaturated zone, potentially leading to down-dip lateral diversion of otherwise vertically flowing fluid. However, discontinuities (e.g., fractures and faults) may lead to preferential sub-vertical fast flow paths in the event of episodic infiltration rates, thus disrupting the potential for both (1) large-scale capillary and/or permeability barriers to form and for (2) redirection of water flow over great lateral distances. This study focuses on an innovative technique for measuring changes in matrix permeability near faults in situ--changes that may lead to enhancement of vertical fluid flow and disruption of lateral fluid flow. A small-drillhole minipermeameter probe provides a means to eliminate extraction of fragile nonwelded tuffs as a necessity for permeability measurement. Advantages of this approach include (1) a reduction of weathering-effects on measured permeability, and (2) provision of a superior sealing mechanism around the gas injection zone. In order to evaluate the effect of faults and fault zone deformation on nonwelded tuff matrix permeability, as well as to address the potential for disruption of lithologic barrier-induced lateral diversion of flow, data were collected from two fault systems and from unfaulted host rock. Two hundred and sixty-seven gas-permeability measurements were made at 89 locations; i.e. permeability measurements were made in triplicate at each location with three flow rates. Data were collected at the

  8. Stratigraphy, correlation, depositional setting, and geophysical characteristics of the Oligocene Snowshoe Mountain Tuff and Creede Formation in two cored boreholes

    USGS Publications Warehouse

    Larsen, Daniel; Nelson, Philip H.

    2000-01-01

    Core descriptions and geophysical logs from two boreholes (CCM-1 and CCM-2) in the Oligocene Snowshoe Mountain Tuff and Creede Formation, south-central Colorado, are used to interpret sedimentary and volcanic facies associations and their physical properties. The seven facies association include a mixed sequence of intracaldera ash-flow tuffs and breccias, alluvial and lake margin deposits, and tuffaceous lake beds. These deposits represent volcanic units related to caldera collapse and emplacement of the Snowshoe Mountain Tuff, and sediments and pyroclastic material deposited in the newly formed caldera basin, Early sedimentation is interpreted to have been rapid, and to have occurred in volcaniclastic fan environments at CCM-1 and in a variery of volcaniclastic fan, braided stream shallow lacustrine, and mudflat environments at CCM-2. After an initial period of lake-level rise, suspension settling, turbidite, and debris-flow sedimentation occurred in lacustrine slope and basin environments below wave base. Carbonate sedimentation was initially sporadic, but more continuous in the latter part of the recorded lake history (after the H fallout tuff). Sublacustrine-fan deposition occurred at CCM-1 after a pronounced lake-level fall and subsequent rise that preceded the H tuff. Variations in density, neutron, gamma-ray, sonic, and electrical properties of deposits penetrated oin the two holes reflect variations in lithology, porosity, and alteration. Trends in the geophysical properties of the lacustrine strata are linked to downhole changes in authigenic mineralology and a decrease in porosity interpreted to have resulted primarily from diagenesis. Lithological and geophysical characteristics provide a basis for correlation of the cores; however, mineralogical methods of correlation are hampered by the degree of diagenesis and alteration.

  9. Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico

    USGS Publications Warehouse

    Teasdale, W.E.; Pemberton, R.R.

    1984-01-01

    This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)

  10. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  11. Tuff of Bridge Spring: A mid-Miocene ash-flow tuff, northern Colorado River extensional corridor, Nevada and Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, E.I.; Morikawa, S.A.; Martin, M.W.

    1993-04-01

    The Tuff of Bridge Spring (TBS) (15.19[+-]0.02 Ma; Gans, 1991) is a compositionally variable dacite to rhyolite ash-flow tuff that crops out over 1800 sq. km in the northern Colorado River extensional corridor. The TBS varies in composition from 59.5 to 74 wt. % SiO[sub 2] and typically contains phenocrysts of sanidine, plagioclase, biotite, clinopyroxene, [+-] sphene, [+-] apatite, [+-] zircon, and [+-] hornblende. The TBS is thickest and displays its greatest compositional range in the center of its area of exposure. The McCullough Range section contains at least three chemically distinct flow units that vary in composition from dacitemore » to rhyolite. The basal and uppermost units are normally zoned and the middle unit is reversely zoned. The complex chemical zonation and zoning reversals in the TBS indicate that it erupted from a magma chamber that was periodically injected by both mafic and felsic magmas. Sections at the edge of the exposure area are thin, contain only one or two chemically definable flow units and have a limited compositional range. To the west at Sheep Mountain, TBS is 2.9 m thick and ranges from 70.2--71.7 wt % SiO[sub 2]. To the east in the White Hills, TBS is 14 m thick and ranges from 59.5--65.3 wt % SiO[sub 2]. This chemical and field data indicate that although the TBS is regionally extensive, individual flow units are not. Isotopic data and chemistry suggest that all sections of the TBS are cogenetic. Comparisons of chemical, geochronological and isotopic data between the TBS and nearby coeval plutons indicate that the Aztec Wash (Eldorado Mts., Nevada) and Mt. Perkins (Black Mountain, Arizona) plutons are possible source for the TBS. Both plutons exhibit ample evidence of magma mixing and commingling, processes that may produce compositional zonation such as that observed in the TBS.« less

  12. The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Farquharson, Jamie I.; Kushnir, Alexandra R. L.; Lavallée, Yan; Baud, Patrick; Gilg, H. Albert; Reuschlé, Thierry

    2018-06-01

    Neapolitan Yellow Tuff (NYT) has been used in construction in Naples (Italy) since the Greeks founded the city—then called Neapolis—in the sixth century BCE. We investigate here whether this popular building stone is weaker when saturated with water, an issue important for assessments of weathering damage and monument preservation. To this end, we performed 28 uniaxial compressive strength measurements on dry and water-saturated samples cored from a block of the lithified Upper Member of the NYT. Our experiments show that the strength of the zeolite-rich NYT is systematically reduced when saturated with water (the ratio of wet to dry strength is 0.63). Complementary experiments show that two other common Neapolitan building stones—Piperno Tuff and the grey Campanian Ignimbrite (both facies of the Campanian Ignimbrite deposit devoid of zeolites)—do not weaken when wet. From these data, and previously published data for tuffs around the globe, we conclude that the water-weakening in NYT is a consequence of the presence of abundant zeolites (the block tested herein contains 46 wt.% of zeolites). These data may help explain weathering damage in NYT building stones (due to rainfall, rising damp, and proximity to the sea or water table) and the observed link between rainfall and landslides, rock falls, and sinkhole formation in Naples, and the weathering of other buildings built from zeolite-rich tuffs worldwide.

  13. Paleomagnetism and tectonic rotation of the lower Miocene Peach Springs Tuff: Colorado Plateau, Arizona, to Barstow, California

    USGS Publications Warehouse

    Wells, Ray E.; Hillhouse, John W.

    1989-01-01

    We have determined remanent magnetization directions of the lower Miocene Peach Springs Tuff at 41 localities in western Arizona and southeastern California. An unusual northeast and shallow magnetization direction confirms the proposed geologic correlation of isolated outcrops of the tuff from the Colorado Plateau to Barstow, California, a distance of 350 km. The Peach Springs Tuff was apparently emplaced as a single cooling unit about 18 or 19 Ma and is now exposed in 4 tectonic provinces west of the Plateau, including the Transition Zone, Basin and Range, Colorado River extensional corridor, and central Mojave Desert strike-slip zone. As such, the tuff is an ideal stratigraphic and structural marker for paleomagnetic assessment of regional variations in tectonic rotations about vertical axes. From 4 sites on the stable Colorado Plateau, we have determined a reference direction of remanent magnetization (I = 36.4°, D = 33.0°, α95 = 3.4°) that we interpret as a representation of the ambient magnetic field at the time of eruption. A steeper direction of magnetization (I = 54.8°, D = 22.5°, α95 = 2.3°) was observed at Kingman where the tuff is more than 100 m thick, and similar directions were determined at 7 other thick exposures of the Peach Springs Tuff. The steeper component is presumably a later-stage magnetization acquired after prolonged cooling of the ignimbrite. When compared to the Plateau reference direction, tilt-corrected directions from 3 of 6 sites in the central Mojave strike-slip zone show localized rotations up to 13° in the vicinity of strike-slip faults. The other three sites show no significant rotations with respect to the Colorado Plateau. Both clockwise and counterclockwise rotations were measured, and no systematic regional pattern is evident. Our results do not support kinematic models which require consistent rotation of large regions to accommodate the cumulative displacement of major post-middle Miocene strike-slip faults in

  14. Correlation of ash-flow tuffs.

    USGS Publications Warehouse

    Hildreth, W.; Mahood, G.

    1985-01-01

    Discrimination and correlation of ash-flow sheets is important in structurally complex, long-lived volcanic fields where such sheets provide the best keys to the regional stratigraphic framework. Three-dimensional complexities resulting from pulsatory eruptions, sectorial emplacement, mechanical sorting during outflow, thermal and compositional zoning of magmas, the physical zoning of cooling units, and structural and erosional disruption can make such correlation and discrimination difficult. When lithologic, magnetic, petrographic, chemical, and isotopic criteria for correlating ash-flow sheets are critically evaluated, many problems and pitfalls can be identified. Distinctive phenocrysts, pumice clasts, and lithic fragments are among the more reliable criteria, as are high-precision K-Ar ages and thermal remanent magnetization (TRM) directions in unaltered welded tuff. Chemical correlation methods should rely principally upon welded or nonwelded pumice blocks, not upon the ash-flow matrix, which is subject to fractionation, mixing, and contamination during emplacement. Compositional zoning of most large sheets requires that many samples be analyzed before phenocryst, glass or whole-rock chemical trends can be used confidently as correlation criteria.-Authors

  15. The effect of dilatancy on the unloading behavior of Mt. Helen tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attia, A.V.; Rubin, M.B.

    1993-11-01

    In order to understand the role of rock dilatancy in modeling the response of partially saturated rock formations to underground nuclear explosions, we have developed a thermodynamically consistent model for a porous material, partially saturated with fluid. This model gives good predictions of the unloading behavior of dry, partially saturated, and fully saturated Mt. Helen tuff, as measured by Heard.

  16. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    USGS Publications Warehouse

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that

  17. Youngest case of ductal carcinoma in situ arising within a benign phyllodes tumour: A case report.

    PubMed

    Chopra, Sharat; Muralikrishnan, Vummiti; Brotto, Maurizio

    2016-01-01

    Phyllodes tumour (PT) is a rare tumour of the female breast. The tumour clinically and radiologically mimics the features of a fibroadenoma. Ductal carcinoma in situ (DCIS) in the epithelial component of PT is a very rare finding. We present youngest ever case of a 23-year-old nulliparous woman with high-grade ductal carcinoma in situ arising within a benign phyllodes tumor. Macroscopically, it is a homogeneous tumour with solid components. Microscopically, it features typical leaf-like pattern with hypercellular stroma with high-grade ductal carcinoma in situ. To date, eight such rare cases of benign phyllodes tumour with ductal carcinoma in situ have been documented. We report the youngest case known in literature so far. As this is a very rare presentation, it poses several challenges in regard to both management and follow-up. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    USGS Publications Warehouse

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  19. Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: Age constraints and common characteristics

    NASA Astrophysics Data System (ADS)

    López-Gamundí, Oscar

    2006-12-01

    Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian-through Middle Permian (280-260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.

  20. Paleogeographic insights based on new U-Pb dates for altered tuffs in the Miocene Barstow Formation, California

    USGS Publications Warehouse

    Miller, David; Rosario, Jose E.; Leslie, Shannon R.; Vazquez, Jorge A.

    2013-01-01

    The type section of the Barstow Formation in the Mud Hills, north of Barstow, is a reference section for early to middle Miocene paleontology, magnetostratigraphy, and dated volcanic episodes. Thanks to this robust chronologic framework, much of the interpretation of the paleogeography of the region from about 18 Ma to 13 Ma is based on study of the rocks in the Mud Hills. Eastward from the type section, the Barstow Formation typically is altered and structurally complex, and therefore it is hard to fit into the patterns inferred for sedimentation at the type section. We have studied ten tuff beds in five locations, extracting zircons that are partly eruptive components of the volcanic ash and partly detrital. Ion microprobe dating of the zircons associated with the ashes allows us to improve stratigraphic correlations. Dated tuffs range from 19.3 Ma to ~14.8 Ma. In several of the sections, we dated tuffs in the range 16.2-16.5 Ma, about the same age as the ~16.3 Ma Rak Tuff in the type section. The beginning of lacustrine limestone, shale, and siltstone deposition varies significantly, from ~16.3 Ma in the type section to ~18.5 Ma in hills to the east and the Calico Mountains, and greater than 19.3 Ma at Harvard Hill. At ~16.3 Ma, the sedimentary rocks ranged (west to east) from silty sandstone and limestone, to mudstone with gypsum, to massive mudstone, and then to sandstone. If the sections have not been greatly shuffled by subsequent faulting, the picture that emerges is one of a broad basin whose center near the Yermo Hills was occupied by a lake that was much longer lived and deeper than to the east and west.

  1. Research Spotlight: New evidence could let supereruption off the hook

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-02-01

    It’s a case of forensic analysis on the grandest scale: the possible near-extinction of the entire human race at the hands of one volcanic supereruption. The Younger Toba Tuff (YTT) eruption 74,000 years ago has been accused of blanketing the sky with sulfate aerosols and driving the world into a long-lasting winter. In a new study, Timmreck et al. have given the Sumatran volcano a climatological alibi. The authors used a global circulation model to simulate the YTT eruption, including for the first time an analysis of the small-scale interactions between sulfate particles. Sulfate particles in the upper atmosphere strongly reflect incoming solar radiation, which has a cooling effect on the Earth. (Geophysical Research Letters, doi:10.1029/2010GL045464, 2010)

  2. Multiple episodes of zeolite deposition in fractured silicic tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos, B.A.; Chipera, S.J.; Snow, M.G.

    Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.

  3. Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.

    1984-01-01

    Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)

  4. Removal and recovery of p-phenylenediamines developing compounds from photofinishing lab-washwater using clinoptilolite tuffs from Greece.

    PubMed

    Vlessidis, A G; Triantafillidis, C S; Evmiridis, N P

    2001-04-01

    Clinoptilolite tuffs from areas in Thrace region of Greece are compared with synthetic zeolites NaY and NH4Y for the uptake of N4-ethyl-N4-(2-methansulphonamidoethyl)-2-methyl-1,4-phenylenediamin (sesquisulphate, monohydrate) with the trade name CD-3 for the purpose to be used for clean-up and recycling photo-finishing and photo-developing washwaters. The cation-exchange capacity is found to be 6.15-11.1 mg/g for zeoliferous tuffs at equilibrium concentration of 50 ppm CD-3 in aqueous solution compared to 65.0 mg/g of NaY and 48.2 mg/g for NH4Y synthetic zeolites corresponding to the removal of CD-3 from 120 to 2001 of 50 ppm aqueous solution per kg of natural zeoliferous tuff; this capacity is only 6-10 times lower than type-Y synthetic zeolite. Initial rates of uptake are 20.8 mg/l/min for natural and 38.5 mg/l/min for synthetic zeolites. Regeneration levels of 55, 23, 35, and 33% are obtained for MCH, SF, NaY, and NH4Y, respectively. The rapid and almost complete uptake of CD-3 from its aqueous solutions at low CD-3 concentrations by the natural zeolites is promising for such an application.

  5. Age of the youngest volcanism at Eagle Lake, northeastern California—40Ar/39Ar and paleomagnetic results

    USGS Publications Warehouse

    Clynne, Michael A.; Calvert, Andrew T.; Champion, Duane E.; Muffler, L.J.P.; Sawlan, Michael G.; Downs, Drew T.

    2017-03-22

    The age of the youngest volcanism at Eagle Lake, California, was investigated using stratigraphic, paleomagnetic, and 40Ar/39Ar techniques. The three youngest volcanic lava flows at Eagle Lake yielded ages of 130.0±5.1, 127.5±3.2 and 123.6±18.7 ka, and are statistically indistinguishable. Paleomagnetic results demonstrate that two of the lava flows are very closely spaced in time, whereas the third is different by centuries to at most a few millennia. These results indicate that the basalt lava flows at Eagle Lake are not Holocene in age, and were erupted during an episode of volcanism at about 130–125 ka that is unlikely to have spanned more than a few thousand years. Thus, the short-term potential for subsequent volcanism at Eagle Lake is considered low. 

  6. Vegetation during UMBI and deposition of Tuff IF at Olduvai Gorge, Tanzania (ca. 1.8 Ma) based on phytoliths and plant remains.

    PubMed

    Albert, Rosa Maria; Bamford, Marion K

    2012-08-01

    As part of ongoing research at Olduvai Gorge, Tanzania, to determine the detailed paleoenvironmental setting during Bed I and Bed II times and occupation of the basin by early hominins, we present the results of phytolith analyses of Tuff IF which is the uppermost unit of Bed I. Phytoliths were identified in most of the levels and localities on the eastern paleolake margin, but there are not always sufficient numbers of identifiable morphologies to infer the specific type of vegetation due to dissolution. Some surge surfaces and reworked tuff surfaces were vegetated between successive ash falls, as indicated by root-markings and the presence of a variety of phytolith morphotypes. Dicotyledonous wood/bark types were dominant except at the FLK N site just above Tuff IF when monocots are dominant and for the palm-dominated sample from the reworked channel cutting down into Tuff IF at FLK N. The area between the two fault scarps bounding the HWK Compartment, approximately 1 km wide, was vegetated at various time intervals between some of the surges and during the reworking of the Tuff. By lowermost Bed II times the eastern margin was fully vegetated again. Climate and tectonic activity probably controlled the fluctuating lake levels but locally the paleorelief and drainage were probably the controlling factors for the vegetation changes. These data support a scenario of small groups of hominins making brief visits to the paleolake during uppermost Bed I times, followed by a more desirable vegetative environment during lowermost Bed II times. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Cerro Xalapaxco: An Unusual Tuff Cone with Multiple Explosion Craters, in Central Mexico (Puebla)

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Siebe, C.

    1994-01-01

    The Xalapaxco tuff cone is located on the northeast flank of La Malinche stratovolcano in central Mexico. An unusually large number (10) of explosion craters, concentrated on the central and on the uphill side of the cone, expose alternating beds of stratified surge deposits and massive fall deposits.

  8. The "Youngest" Illinoisans: A Statistical Look at Infants and Toddlers in Illinois. Publication #2013-53

    ERIC Educational Resources Information Center

    Murphey, David; Cooper, Mae; Forry, Nicole

    2014-01-01

    Illinois' youngest children--nearly half-a-million infants and toddlers--are at the leading edge of a demographic transformation. They herald a state, and a nation, more diverse with respect to race/ethnicity, country of origin, language, and family type than at any time in recent history. Yet, this is a generation notable for marked inequities,…

  9. Are Parental Welfare Work Requirements Good for Disadvantaged Children? Evidence from Age-of-Youngest-Child Exemptions

    ERIC Educational Resources Information Center

    Herbst, Chris M.

    2017-01-01

    This paper assesses the impact of welfare reform's parental work requirements on low-income children's cognitive and social-emotional development. The identification strategy exploits an important feature of the work requirement rules--namely, age-of-youngest-child exemptions--as a source of quasi-experimental variation in first-year maternal…

  10. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of bothmore » vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.« less

  11. (40)Ar/(39)Ar dating of Bed I, Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change.

    PubMed

    Deino, Alan L

    2012-08-01

    (40)Ar/(39)Ar dating of tuffs and lavas of the late Pleistocene volcanic and sedimentary sequence of Olduvai Gorge, north-central Tanzania, provides the basis for a revision of Bed I chronostratigraphy. Bed I extends from immediately above the Naabi Ignimbrite at 2.038 ± 0.005 Ma to Tuff IF at 1.803 ± 0.002 Ma. Tuff IB, a prominent widespread marker tuff in the basin and a key to understanding hominin evolutionary chronologies and paleoclimate histories, has an age of 1.848 ± 0.003 Ma. The largest lake expansion event in the closed Olduvai lake basin during Bed I times encompassed the episode of eruption and emplacement of this tuff. This lake event is nearly coincident with the maximum precessional insolation peak of the entire Bed I/Lower Bed II interval, calculated from an astronomical model of the boreal summer orbital insolation time-series. The succeeding precessional peak also apparently coincides with the next youngest expansion of paleo-Lake Olduvai. The extreme wet/dry climate shifts seen in the upper part of Bed I occur during an Earth-orbital eccentricity maximum, similar to episodic lake expansions documented elsewhere in the East African Rift during the Neogene. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Transient calcite fracture fillings in a welded tuff, Snowshoe Mountain, Colorado

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Heymans, M.J.

    2000-01-01

    The core from two boreholes (13.1 and 19.2 m depth) drilled 500 m apart in the fractured, welded tuff near the summit of the Snowshoe Mountain, Colorado (47??30'N, 106??55'W) had unique petrographic and hydrodynamic properties. Borehole SM-4 had highly variable annual water levels, in contrast to SM-1a, whose water level remained near the land surface. Core samples from both boreholes (n = 10 and 11) were examined petrographically in thin sections impregnated with epoxy containing rhodamine to mark the pore system features, and were analyzed for matrix porosity and permeability. Core from the borehole sampling the vadose zone was characterized by open fractures with enhanced porosity around phenocrysts due to chemical weathering. Fractures within the borehole sampling the phreatic zone were mineralized with calcite and had porosity characteristics similar to Unweathered and unfractured rock. At the top of the phreatic zone petrography indicates that calcite is dissolving, thereby changing the hydrogeochemical character of the rock (i.e. permeability, porosity, reactive surface area, and mineralogy). Radiocarbon ages and C and O stable isotopes indicate that calcite mineralization occurred about 30 to 40 ka ago and that there was more than one mineralization event. Results of this study also provide some relationships between primary porosity development from 3 types of fracture in a welded tuff. (C) 2000 Elsevier Science Ltd.

  13. Rockfall hazard assessment of nearly vertical rhyolite tuff cliff faces by using terrestrial laser scanner, UAV and FEM analyses

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Görög, Péter; Lovas, Tamás; Bögöly, Gyula; Czinder, Balázs; Vásárhelyi, Balázs; Molnár, Bence; József Somogyi, Árpád

    2017-04-01

    Nearly vertical rhyolite tuff cliff faces are located in NE-Hungary representing rock fall hazard in the touristic region of Sirok. Larger blocks of the cliff have fallen in recent years menacing tourists and human lives. The rhyolite tuff, that forms the Castle Hill was formed during Miocene volcanism and comprises of brecciated lapilli tuffs and tuffs with intercalating ignimbritic horizons. The paper focuses on the 3D mapping of cliff faces and modeling of rock fall hazard. The topography and 3D model of the cliff was obtained by using GNSS supported terrestrial laser scanner and UAV. With imaging techniques of UAV a Triangulated Irregular Network (TIN) model was developed that contained triangles with 5-10 cm side lengths. GNSS supported terrestrial laser scanning allowed the observation with a resolution 1-5 cm of point spacing. The point clouds were further processed and with the combination of laser scanner and UAV data a 3D model of the studied cliff faces were obtained. Geological parameters for rock fall analyses included both field observations and laboratory tests. The lithotypes were identified on the field and were sampled for rock mechanical laboratory analyses. Joint- and fault system was mapped and visualized by using Rocscience Dip. EN test methods were used to obtain the density properties of various lithotypes of rhyolite tuff. Other standardized EN tests included ultrasonic pulse velocity, water absorption, indirect tensile strength (Brasilian), uniaxial compressive strength and modulus of elasticity of air dry and of water saturated samples. GSI values were denoted based on filed observations and rock mass properties. The stability analyses of cliff faces were made by using 2D FEM software (Phase 2). Cross sections were evaluated and global factor of safety was also calculated. The modeled displacements were in the order of few centimeters; however several locations were pinpointed where wedge failure and planar slip surfaces were identified

  14. Single-crystal 40Ar/39Ar incremental heating reveals bimodal sanidine ages in the Bishop Tuff

    NASA Astrophysics Data System (ADS)

    Andersen, N. L.; Jicha, B. R.; Singer, B. S.

    2015-12-01

    The 650 km3 Bishop Tuff (BT) is among the most studied volcanic deposits because it is an extensive marker bed deposited just after the Matuyama-Brunhes boundary. Reconstructions of the vast BT magma reservoir from which high-silica rhyolite erupted have long influenced thinking about how large silicic magma systems are assembled, crystallized, and mixed. Yet, the longevity of the high silica rhyolitic melt and exact timing of the eruption remain controversial due to recent conflicting 40Ar/39Ar sanidine vs. SIMS and ID-TIMS U-Pb zircon dates. We have undertaken 21 40Ar/39Ar incremental heating ages on 2 mm BT sanidine crystals from pumice in 3 widely separated outcrops of early-erupted fall and flow units. Plateau ages yield a bimodal distribution: a younger group has a mean of 766 ka and an older group gives a range between 772 and 782 ka. The younger population is concordant with the youngest ID-TIMS and SIMS U-Pb zircon ages recently published, as well as the astronomical age of BT in marine sediment. Of 21 crystals, 17 yield older, non-plateau, steps likely affected by excess Ar that would bias traditional 40Ar/39Ar total crystal fusion ages. The small spread in older sanidine ages, together with 25+ kyr of pre-eruptive zircon growth, suggest that the older sanidines are not partially outgassed xenocrysts. A bimodal 40Ar/39Ar age distribution implies that some fraction of rhyolitic melt cooled below the Ar closure temperature at least 10 ky prior to eruption. We propose that rapid "thawing" of a crystalline mush layer released older crystals into rhyolitic melt from which sanidine also nucleated and grew immediately prior to the eruption. High precision 40Ar/39Ar dating can thus provide essential information on thermo-physical processes at the millenial time scale that are critical to interpreting U-Pb zircon age distributions that are complicated by large uncertainties associated with zircon-melt U-Th systematics.

  15. Initial sustainability assessment of tapioca starch production system in Lake Toba area

    NASA Astrophysics Data System (ADS)

    Situmorang, Asido; Manik, Yosef

    2018-04-01

    This study aims to explore to what extent the principles of sustainability have been applied in a tapioca industry located in Lake Toba area and to explore the aspects that open the opportunities for system improvement. In conducting such assessment, we adopted the life-cycle approach using Mass Flow Analysis methods that covers all cassava starch production processes from fresh cassava root till dry cassava starch. The inventory data were collected from the company, in the form of both production record and interviews. From data analysis the authors were able to present a linked flow that describes the production process of tapioca starch that quantifies into the functional unit of one pack marketable tapioca starch weighs 50 kg. In order to produce 50 kg of tapioca, 200 kg cassava root and 800 kg of water are required. This production efficiency translates to 25% yield. This system generates 40 kg of cassava peel, 60 kg of pulp and 850 kg of waste water. For starch drying 208.8 MJ of thermal energy is required in the form of heating fuel. The material flow analysis is employed for impact assessment. Several options in improving the operation are proposed includes utilization of pulp into more valuable co-products, integration of waste treatment plant to enable the use of water recycled from the extraction operation for the washing process, and to application of a waste water treatment system that produces biogas as a renewable energy, which reduces the consumption of fuel in dryer unit.

  16. Post-middle Miocene Tuffs of Bodie Hills and Mono Basin, California: Paleomagnetic Reference Directions and Vertical Axis Rotation

    NASA Astrophysics Data System (ADS)

    Lindeman, J. R.; Pluhar, C. J.; Farner, M. J.

    2013-12-01

    The relative motions of the Pacific and North American plates about the Sierra Nevada-North American Euler pole is accommodated by dextral slip along the San Andreas Fault System (~75%) and the Walker Lane-Eastern California Shear Zone system of faults, east of the Sierra Nevada microplate (~25%). The Bodie Hills and Mono Basin regions lie within the Walker Lane and partially accommodate deformation by vertical axis rotation of up to 60o rotation since ~9.4 Ma. This region experienced recurrent eruptive events from mid to late Miocene, including John et al.'s (2012) ~12.05 Ma Tuff of Jack Springs (TJS) and Gilbert's (1968) 11.1 - 11.9 Ma 'latite ignimbrite' east of Mono Lake. Both tuffs can be identified by phenocrysts of sanidine and biotite in hand specimens, with TJS composed of a light-grey matrix and the latite ignimbrite composed of a grey-black matrix. Our paleomagnetic results show these units to both be normal polarity, with the latite ignimbrite exhibiting a shallow inclination. TJS's normal polarity is consistent with emplacement during subchron C5 An. 1n (12.014 - 12.116 Ma). The X-ray fluorescence analyses of fiamme from TJS in Bodie Hills and the latite ignimbrite located east of Mono Lake reveal them both to be rhyolites with the latite ignimbrite sharing elevated K composition seen in the slightly younger Stanislaus Group (9.0 - 10.2 Ma). We establish a paleomagnetic reference direction of D = 352.8o I = 42.7o α95 = 7.7o n = 5 sites (42 samples) for TJS in the Bodie Hills in a region hypothesized by Carlson (2012) to have experienced low rotation. Our reference for Gilbert's latite ignimbrite (at Cowtrack Mountain) is D = 352.9o I = 32.1o α95 = 4.7o. This reference locality is found on basement highland likely to have experienced less deformation then the nearby Mono Basin since ignimbrite emplacement. Paleomagnetic results from this latite ignimbrite suggests ~98.2o × 5.5o of clockwise vertical axis rotation of parts of eastern Mono Basin since

  17. The Lake Forest Tuff Ring, Lake Tahoe, CA: Age and Geochemistry of a Post-arc Phreatomagmatic Eruption

    NASA Astrophysics Data System (ADS)

    Cousens, B. L.; Henry, C. D.; Pauly, B. D.

    2007-12-01

    The Lake Tahoe region of the northern Sierra Nevada consists of Mesozoic plutonic rocks blanketed by Mio- Pliocene arc volcanic rocks and locally overlain by < 2.5 Ma post-arc lavas. Several volcanic features along the Lake Tahoe shoreline indicate that magmas commonly erupted into shallow regions of the lake during the last 2.5 Ma, including the Eagle Rock vent (Kortemeier and Schweickert 2007), Tahoe City pillow lavas and palagonite layers, and the Lake Forest tuff ring (Sylvester et al., 2007). Here we report on the age and composition of the rocks at Lake Forest, aiming to identify the source of the volcanic rocks compared to arc and post-arc lavas in the area. The low-relief Lake Forest tuff ring, located on the lakeshore west of Dollar Point, consists of radially outward-dipping layers composed primarily of loosely-cemented angular, microvesicular lava fragments with minor basaltic bombs and a scoria pile at the east end of the exposed ring. Most fragments are poorly phyric, and two samples are andesites similar to post-arc lavas sampled at higher elevations. The bombs are vesicular, poorly olivine/plagioclase-phyric basaltic andesites with chilled margins and glassy matrices. Scoria in the scoria pile, which we tentatively interpret as a slump, are similar texturally to the bombs but are more silica-rich. Chemically, the fragments, bombs and scoria are more primitive (higher Mg number) than local post-arc and arc lavas, and have trace element ratios and normalized incompatible element patterns similar to, but not identical to, local post-arc lava flows. Thus the Lake Forest tuff ring was the product of a shoreline eruptive event and did not form from lavas flowing downslope into the water. The fragments, bombs and scoria each have different radiogenic isotopic compositions and incompatible element ratios, indicating that primary magma compositions varied during the eruption(s) that produced the tuff ring. Our ongoing geochronological analyses will help

  18. Uranium-series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years

    USGS Publications Warehouse

    Gascoyne, M.; Miller, N.H.; Neymark, L.A.

    2002-01-01

    Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of 'bomb' 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th/234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95??0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10??0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean = 0.94??0.07). These data indicate that 234U has been removed from the rock samples in the last ???350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock, More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U

  19. Spatial variability of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, southwestern Utah: An analog to faulting in tuff on Mars

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2011-12-01

    The equatorial layered deposits on Mars exhibit abundant evidence for the sustained presence of groundwater, and therefore insight into past water-related processes may be gained through the study of these deposits. Pyroclastic and evaporitic sediments are two broad lithologies that are known or inferred to comprise these deposits. Investigations into the effects of faulting on fluid flow potential through such Mars analog lithologies have been limited. Thus a study into the effects of faulting on fluid flow pathways through fine-grained pyroclastic sediments has been undertaken, and the results of this study are presented here. Faults and their damage zones can influence the trapping and migration of fluids by acting as either conduits or barriers to fluid flow. In clastic sedimentary rocks, the conductivity of fault damage zones is primarily a function of the microstructure of the host rock, stress history, phyllosilicate content, and cementation. The chemical composition of the host rock influences the mechanical strength of the grains, the susceptibility of the grains to alteration, and the availability of authigenic cements. The spatial distribution of fault-related damage is investigated within the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. Damage is characterized by measuring fracture densities along the fault, and by mapping the gas permeability of the surrounding rock. The Joe Lott Tuff is a partially welded, crystal-poor, rhyolite ash-flow tuff of Miocene age. While the rhyolitic chemical composition of the Joe Lott Tuff is not analogous to the basaltic compositions expected for Mars, the mechanical behavior of a poorly indurated mixture of fine-grained glass and pumice is pertinent to understanding the fundamental mechanics of faulting in Martian pyroclastic sediments. Results of mapping around two faults are presented here. The first fault is entirely exposed in cross-section and has a down-dip height of ~10 m. The second fault is

  20. High-resolution 40Ar 39Ar chronology of Oligocene volcanic rocks, San Juan Mountains, Colorado

    USGS Publications Warehouse

    Lanphere, M.A.

    1988-01-01

    The central San Juan caldera complex consists of seven calderas from which eight major ash-flow tuffs were erupted during a period of intense volcanic activity that lasted for approximately 2 m.y. about 26-28 Ma. The analytical precision of conventional K-Ar dating in this time interval is not sufficient to unambiguously resolve this complex history. However, 40Ar 39Ar incremental-heating experiments provide data for a high-resolution chronology that is consistent with stratigraphie relations. Weighted-mean age-spectrum plateau ages of biotite and sanidine are the most precise with standard deviations ranging from 0.08 to 0.21 m.y. The pooled estimate of standard deviation for the plateau ages of 12 minerals is about 0.5 percent or about 125,000 to 135,000 years. Age measurements on coexisting minerals from one tuff and on two samples of each of two other tuffs indicate that a precision in the age of a tuff of better than 100,000 years can be achieved at 27 Ma. New data indicate that the San Luis caldera is the youngest caldera in the central complex, not the Creede caldera as previously thought. ?? 1988.

  1. Influence of temperature on the adsorption of α-tocopherol from ethanol solutions on acid-activated clinoptilolite tuff

    NASA Astrophysics Data System (ADS)

    Kotova, D. L.; Vasilyeva, S. Yu.; Krysanova, T. A.

    2014-08-01

    Patterns in the adsorption of α-tocopherol on acid-activated clinoptilolite tuff at 283, 295, 305, and 333 K are established and explained. It is found that the selectivity of the sorbent toward the vitamin rises as the temperature of the process falls. The adsorption of α-tocopherol from dilute solutions is described in terms of the Langmuir adsorption theory. It is shown that the fixing of vitamin E monolayers in the structural matrix of clinoptilolite tuff is due to the formation of hydrogen bonds between isolated silanol groups of the adsorbent and oxygen atoms of the chromane ring and the phenol residue of α-tocopherol. The thermodynamic functions of monolayer adsorption of the vitamin are estimated. It is concluded that the formation of polymolecular layers in the form of associates is due to hydrophobic interactions between side substituents of α-tocopherol.

  2. Experimental and textural investigation of welding: effects of compaction, sintering, and vapor-phase crystallization in the rhyolitic Rattlesnake Tuff

    NASA Astrophysics Data System (ADS)

    Grunder, Anita L.; Laporte, Didier; Druitt, Tim H.

    2005-04-01

    The abrupt changes in character of variably welded pyroclastic deposits have invited decades of investigation and classification. We conducted two series of experiments using ash from the nonwelded base of the rhyolitic Rattlesnake Tuff of Oregon, USA, to examine conditions of welding. One series of experiments was conducted at atmospheric pressure (1 At) in a muffle furnace with variable run times and temperature and another series was conducted at 5 MPa and 600 °C in a cold seal apparatus with variable run times and water contents. We compared the results to a suite of incipiently to densely welded, natural samples of the Rattlesnake Tuff. Experiments at 1 At required a temperature above 900 °C to produce welding, which is in excess of the estimated pre-eruptive magmatic temperature of the tuff. The experiments also yielded globular clast textures unlike the natural tuff. During the cold-seal experiments, the gold sample capsules collapsed in response to sample densification. Textures and densities that closely mimic the natural suite were produced at 5 MPa, 600 °C and 0.4 wt.% H 2O, over run durations of hours to 2 days. Clast deformation and development of foliation in 2-week runs were greater than in natural samples. Both more and less water reduced the degree of welding at otherwise constant run conditions. For 5 MPa experiments, changes in the degree of foliation of shards and of axial ratios of bubble shards and non-bubble (mainly platy) shards, are consistent with early densification related to compaction and partial rotation of shards into a foliation. Subsequent densification was associated with viscous deformation as indicated by more sintered contacts and deformation of shards. Sintering (local fusion of shard-shard contacts) was increasingly important with longer run times, higher temperatures, and greater pressures. During runs with high water concentrations, sintering was rare and adhesion between clasts was dominated by precipitation of

  3. Youngest radiocarbon age for Jefferson's ground sloth, Megalonyx jeffersonii (Xenarthra, Megalonychidae)

    NASA Astrophysics Data System (ADS)

    Gregory McDonald, H.; Stafford, Thomas W.; Gnidovec, Dale M.

    2015-03-01

    A partial skeleton of the extinct ground sloth, Megalonyx jeffersonii, recovered from a farm near Millersburg, Ohio in 1890, was radiocarbon dated for the first time. The ungual dated is part of a skeleton mounted for exhibit at the Orton Geological Museum at Ohio State University and was the first mounted skeleton of this animal. From its initial discovery the bones were treated with multiple organic compounds that had the potential to compromise the radiocarbon age and the specimen required special treatments in order to obtain a valid radiocarbon age. The 14C measurement on the ungual from this skeleton (11,235 ± 40 14C yr BP = 13,180-13,034 cal yr BP) is the youngest 14C age presently determined for M. jeffersonii.

  4. Views from Inside a Pediatric Clinic: How Arizona's Political Climate Has Impacted Arizona's Youngest Latino Learners

    ERIC Educational Resources Information Center

    Jimenez-Silva, Margarita; Cheatham, Gregory A.; Gomez, Laura

    2013-01-01

    It is critical that we examine impacts that recent immigration policies such as SB1070 are having on Arizona's youngest Latino learners.The large number of Latinos under the age of five, and the impact that this upcoming generation of Latinos will have on all aspects of life in Arizona merits a closer look. In this qualitative study, we examined…

  5. Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from?

    USGS Publications Warehouse

    Lipman, P.W.; McIntosh, W.C.

    2008-01-01

    The northeastern San Juan Mountains, the least studied portion of this well-known segment of the Southern Rocky Mountains Volcanic Field are the site of several newly identified and reinterpreted ignimbrite calderas. These calderas document some unique eruptive features not described before from large volcanic systems elsewhere, as based on recent mapping, petrologic data, and a large array of newly determined high-precision, laser-fusion 40Ar/39Ar ages (140 samples). Tightly grouped sanidine ages document exceptionally brief durations of 50-100 k.y. or less for individual Oligocene caldera cycles; biotite ages are more variable and commonly as much as several hundred k.y. older than sanidine from the same volcanic unit. A previously unknown ignimbrite caldera at North Pass, along the Continental Divide in the Cochetopa Hills, was the source of the newly distinguished 32.25-Ma Saguache Creek Tuff (???400-500 km3). This regionally, distinctive crystal-poor alkalic rhyolite helps fill an apparent gap in the southwestward migration from older explosive activity, from calderas along the N-S Sawatch locus in central Colorado (youngest, Bonanza Tuff at 33.2 Ma), to the culmination of Tertiary volcanism in the San Juan region, where large-volume ignimbrite eruptions started at ca. 29.5 Ma and peaked with the enormous Fish Canyon Tuff (5000 km3) at 28.0 Ma. The entire North Pass cycle, including caldera-forming Saguache Creek Tuff, thick caldera-filling lavas, and a smaller volume late tuff sheet, is tightly bracketed at 32.25-32.17 Ma. No large ignimbrites were erupted in the interval 32-29 Ma, but a previously unmapped cluster of dacite-rhyolite lava flows and small tuffs, areally associated with a newly recognized intermediate-composition intrusion 5 ?? 10 km across (largest subvolcanic intrusion in San Juan region) centered 15 km north of the North Pass caldera, marks a near-caldera-size silicic system active at 29.8 Ma. In contrast to the completely filled North Pass

  6. Numerical Simulation of Tuff Dissolution and Precipitation Experiments: Validation of Thermal-Hydrologic-Chemical (THC) Coupled-Process Modeling

    NASA Astrophysics Data System (ADS)

    Dobson, P. F.; Kneafsey, T. J.

    2001-12-01

    As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used

  7. Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor

    2015-02-01

    The Auckland Volcanic Field (AVF) comprises at least 52 monogenetic eruption centres dispersed over ˜360 km2. Eruptions have occurred sporadically since 250 ka, predominantly when glacio-eustatic sea levels were lower than today. Now that around 35 % of the field is covered by shallow water (up to 30 m depth), any eruption occurring in the present or near future within this area may display Surtseyan dynamics. The North Head tuff cone evidences eruptive dynamics caused by magma interaction with seawater. The first stages of the eruption comprise a phreatomagmatic phase that built a 48-m-high tuff cone. North Head tuff deposits contain few lithic fragments (<10 vol%) and are characterized by deposits from collapsing tephra jets and fall from relatively wet tephra columns. The conditions needed for this eruption existed between 128 and 116 ka, when the sea level in the Auckland area was at least 10-12 m above the pre-eruptive surface. The hazards associated with this type of eruption pose a risk to the densely populated coastal residential zones and the activities of one of the busiest harbours in New Zealand.

  8. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians

    NASA Astrophysics Data System (ADS)

    Bąk, Krzysztof; Bąk, Marta

    2013-06-01

    Bąk, K. and Bąk M. 2013. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians. Acta Geologica Polonica, 63 (2), 223-237. Warszawa. The foraminiferal and radiolarian biostratigraphy of selected sections of the Zabijak Formation, the youngest sediments of the Tatra massif (Central Western Carpathians), have been studied. Benthic foraminifers, mainly agglutinated species, occur abundantly and continuously throughout the studied succession, while planktic foraminifers are generally sparse. Five planktic and two benthic foraminiferal zones have been recognized. The marly part of the Zabijak Formation comprises the Pseudothalmanninella ticinensis (Upper Albian) through the Rotalipora cushmani (Upper Cenomanian) planktic foraminiferal zones, and the Haplophragmoides nonioninoides and Bulbobaculites problematicus benthic foraminiferal zones. The radiolarians were recognized exclusively in the Lower Cenomanian part of the formation.

  9. Freeze-Thaw Cycle Test on Basalt, Diorite and Tuff Specimens with the Simulated Ground Temperature of Antarctica

    NASA Astrophysics Data System (ADS)

    Park, J.; Hyun, C.; Cho, H.; Park, H.

    2010-12-01

    Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).

  10. Water and CO2 content of melt inclusions from the high-silica rhyolite Bandelier Tuff super-eruptions, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Waelkens, C. M.; Gonzalez, C.; Martineau, D.; Goff, F. E.; Stix, J.

    2017-12-01

    Large silicic caldera-forming eruptions are some of the most destructive events on our planet, which makes silicic calderas important systems to study. Volatiles play an important role in determining the nature and behaviour of magmas, and can trigger eruptions when changes in volatile content and exsolution of fluid phases lead to overpressure in the magma chamber. A separate fluid phase will be exsolved if the magma is fluid saturated; whether the magma is fluid saturated depends on its H2O and CO2 content. We measured H2O and CO2 in melt inclusions of the Valles Caldera supervolcano system in New Mexico. This system had super-eruptions at 1.64 Ma and 1.25 Ma, depositing respectively the Lower (Otowi Member) and the Upper (Tshirege Member) Bandelier Tuff. Previous studies have reported H2O values for the Bandelier Tuff and the Cerro Toledo Formation - erupted between the two Bandelier super-eruptions from the same magma reservoir. We expanded this dataset and added CO2 analyses, which gives a more complete image of the volatile saturation state of the magma. Both H2O and CO2 were measured by transmission FTIR on doubly-polished melt inclusions hosted in quartz and feldspar crystals. While we found only limited variation within H2O contents, CO2 values were found to vary strongly. Our preliminary results indicate H2O values of 4 to 6 wt % throughout both the Lower and Upper Bandelier Tuff, consistent with previous studies. In contrast, we found CO2 values vary strongly, from below 50 ppm (maximum measured 60 ppm, minimum 7 ppm, median 33 ppm) in the base of the Lower Bandelier Tuff to 100 - 200 ppm CO2 (maximum measured 234 ppm, minimum 44, median 118 ppm) in the top of the basal Plinian fall deposit (Guaje Pumice). By the end of the Cerro Toledo Rhyolite and beginning of the Upper Bandelier, CO2 values in the magma were low again, around 50 ppm (maximum measured 91 ppm, minimum 23 ppm, median 42 ppm). No substantial difference is observed in H2O and CO2 values

  11. The numerical approach adopted in toba computer code for mass and heat transfer dynamic analysis of metal hydride hydrogen storage beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Osery, I.A.

    1983-12-01

    Modelling studies of metal hydride hydrogen storage beds is a part of an extensive R and D program conducted in Egypt on hydrogen energy. In this context two computer programs; namely RET and RET1; have been developed. In RET computer program, a cylindrical conduction bed model is considered and an approximate analytical solution is used for solution of the associated mass and heat transfer problem. This problem is solved in RET1 computer program numerically allowing more flexibility in operating conditions but still limited to cylindrical configuration with only two alternatives for heat exchange; either fluid is passing through tubes imbeddedmore » in the solid alloy matrix or solid rods are surrounded by annular fluid tubes. The present computer code TOBA is more flexible and realistic. It performs the mass and heat transfer dynamic analysis of metal hydride storage beds using a variety of geometrical and operating alternatives.« less

  12. Trondhjemite and metamorphosed quartz keratophyre tuff of the Ammonoosuc volcanics (Ordovician), western New Hampshire and adjacent Vermont and Massachusetts.

    USGS Publications Warehouse

    Leo, G.W.

    1985-01-01

    These volcanic rocks consist of a lower, mainly mafic unit of hornblende-plagioclase amphibolite and an upper, mainly felsic metamorphosed quartz keratophyre tuff. They are intruded by sills, dykes and plugs of trondhjemite; which is highly silicic (SiO2, 73-81%), low in Al2O3 (11.3-13.5%) and generally contains <1% K2O. Both trondhjemite and volcanics are calc-alkaline. The major- and minor-element geochemistry of the trondhjemites is closely similar to that of the quartz keratophyre tuff. These rocks were probably produced by partial melting of basaltic source rocks, rather than by fractional crystallization, in view of the virtually bimodal nature of the Ammonoosuc assemblage. The generation of the felsic rocks occurred at deeper levels along a subduction zone dipping eastward.-L.C.H.

  13. New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary

    USGS Publications Warehouse

    Sarna-Wojcicki, A. M.; Pringle, M.S.; Wijbrans, J.

    2000-01-01

    Precise dating of sanidine from proximal ash flow Bishop Tuff and air fall Bishop pumice and ash, California, can be used to derive an absolute age of the Matuyama Reversed-Brunhes Normal (M-B) paleomagnetic transition, identified stratigraphically close beneath the Bishop Tuff and ash at many sites in the western United States. An average age of 758.9 ?? 1.8 ka, standard error of the mean (SEM), was obtained for individual sanidine crystals or groups of several crystals, determined from ???70 individual analyses of sanidine separates from 11 sample groups obtained at five localities. The basal air fall pumice (757.7 ?? 1.8 ka) and overlying ash flow tuff (762.2 ?? 4.7 ka) from near the source yield essentially the same dates within errors of analysis, suggesting that the two units were emplaced close in time. A date on distal Bishop air fall ash bed at Friant, California, ???100 km to the west of the source area, is younger, 750.1 ?? 4.3 ka, but not significantly different within analytical error (??1 standard deviation). Previous dates of the Bishop Tuff, obtained by others using conventional K-Ar and the fission track method on zircons, ranged from ???650 ka to ???1.0 Ma. The most recent, generally accepted date by the K-Ar method on sanidine was 738 ?? 3 ka. We infer, as others before, that many K-Ar dates on sanidine feldspar are too young owing to incomplete degassing of radiogenic Ar during fusion in the K-Ar technique and that many older K-Ar dates are too old owing to detrital or xenocrystic contamination in the larger samples that are necessary for the technique. The new dates are similar to recent 40Ar/39Ar ages of the Bishop Tuff determined on individual samples by others but are derived from a larger proximal sample population and from multiple analysis of each sample. The results provide a definitive and precise age calibration of this widespread chronostratigraphic marker in the western United States and northeastern Pacific Ocean. We calculated the

  14. What is so important about completing lives? A critique of the modified youngest first principle of scarce resource allocation.

    PubMed

    Gamlund, Espen

    2016-04-01

    Ruth Tallman has recently offered a defense of the modified youngest first principle of scarce resource allocation [1]. According to Tallman, this principle calls for prioritizing adolescents and young adults between 15-40 years of age. In this article, I argue that Tallman's defense of the modified youngest first principle is vulnerable to important objections, and that it is thus unsuitable as a basis for allocating resources. Moreover, Tallman makes claims about the badness of death for individuals at different ages, but she lacks an account of the loss involved in dying to support her claims. To fill this gap in Tallman's account, I propose a view on the badness of death that I call 'Deprivationism'. I argue that this view explains why death is bad for those who die, and that it has some advantages over Tallman's complete lives view in the context of scarce resource allocation. Finally, I consider some objections to the relevance of Deprivationism to resource allocation, and offer my responses.

  15. Neutron and gamma (density) logging in welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W

    This Technical Implementation Procedure (TIP) describes the field operation, and the management of data records pertaining to neutron logging and density logging in welded tuff. This procedure applies to all borehole surveys performed in support of Engineered Barrier System Field Tests (EBSFT), including the Earge Block Tests (LBT) and Initial Engineered Barrier System Field Tests (IEBSFT) - WBS 1.2.3.12.4. The purpose of this TIP is to provide guidelines so that other equally trained and qualified personnel can understand how the work is performed or how to repeat the work if needed. The work will be documented by the use ofmore » Scientific Notebooks (SNs) as discussed in 033-YMP-QP 3.4. The TIP will provide a set of guidelines which the scientists will take into account in conducting the mea- surements. The use of this TIP does not imply that this is repetitive work that does not require profes- sional judgment.« less

  16. Late Leonardian plants from West Texas: The youngest Paleozoic plant megafossils in North America

    USGS Publications Warehouse

    Mamay, S.H.; Miller, J.M.; Rohr, D.M.

    1984-01-01

    Abundant Permian plant megafossils were discovered in the Del Norte Mountains of Brewster County, Trans-Pecos Texas. The flora is dominated by a new and distinctive type of gigantopteroid leaves. Marine invertebrates are closely associated, and this admixture of continental and marine fossils indicates a deltaic depositional setting, probably on the southern margin of the Permian Basin. Conodonts indicate correlation with the uppermost Leonardian Road Canyon Formation in the Glass Mountains. These are the youngest Paleozoic plant megafossils known in North America; they add an important paleontological element to the classic Permian area of this Continent.

  17. VizieR Online Data Catalog: FIR data of IR-bright dust-obscured galaxies (DOGs) (Toba+, 2017)

    NASA Astrophysics Data System (ADS)

    Toba, Y.; Nagao, T.; Wang, W.-H.; Matsuhara, H.; Akiyama, M.; Goto, T.; Koyama, Y.; Ohyama, Y.; Yamamura, I.

    2017-11-01

    We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, (i-[22])AB>7.0. Combining an IR-bright DOG sample with the flux at 22μm>3.8mJy discovered by Toba & Nagao (2016ApJ...820...46T) with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07

  18. [Water and health-related problems, local perception and quality of water sources in a Toba (qom) community in the Impenetrable (Chaco, Argentina)].

    PubMed

    Martínez, Gustavo J; Beccaglia, Ana M; Llinares, Analía

    2014-08-01

    We present a transdisciplinary study centering on aspects of environmental health of the Toba (qom) communities that relate to water and health problems of the Impenetrable Chaco region. Information was obtained through the methods and tools of participatory research, household participant observation, and ethnobotanical documentation of species related to water management and use. Vernacular terms referring to the suitability and taste of the water, as well as representations, attitudes and practices related to water collection and purification were recorded. In addition, a microbiological and physicochemical analysis of the water was performed and compared with the perceptual categories. It was observed that perceptual aspects were in tension with the hygienic quality of water. We documented phreatophyte plants, indicative of the presence of water, as well as plants that store water, act as flocculants, refresh the water or improve taste. The results of this research are discussed from an ecosystem approach and its relationship to the development of proposals for intervention.

  19. Petrogenesis and U-Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequences

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener

    2015-01-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, which is one of the key areas of the Alpine-Himalayan system, is still controversial due to lack of systematic geological, geophysical, geochemical and chronological data. The prevailing interpretation is that this belt represents the southern margin of Eurasia during the Mesozoic and its geodynamic evolution is related to northward subduction of oceanic lithosphere. This paper reports the first detailed geological, geochemical and chronological data from felsic tuffs interbedded with late Cretaceous turbidites in the Southern Zone of the Eastern Pontides Orogenic Belt. Individual tuff layers are thin, mostly < 2 m in thickness, implying that these are dominantly air-fall tuffs. Petrographic data indicate that the felsic tuffs, which exhibit various degrees of alteration, can be classified as crystal-rich and crystal-poor tuffs. The crystal-poor tuffs consist mainly of 45-65% devitrified glass shards and 10-20% broken quartz crystals, whereas the crystal-rich tuffs consist of > 50% crystals. The zircon U-Pb data show three statistically distinct ages at 84, 81 and 77 Ma, with uncertainties of about 1 Ma, suggesting that tuff-forming late Cretaceous magmatism started about 84 Ma ago and was episodically active over a minimum of 7 Ma. The age data also indicate that the average accumulation rate of the turbiditic sequence that hosts the felsic tuffs remained constant between 36 and 40 cm/10 ky. Their enrichment in LIL and LRE elements relative to HFS and HRE elements, and also strongly negative Nb, Ta and Ti anomalies, are consistent with those of magmas generated by subduction-related processes. The tuffs have relatively low initial ratios of 143Nd/144Nd (0.512296-0.512484; εNd: - 2.1 and - 7.2) and 87Sr/86Sr (0.704896-0.706159). Their initial Pb isotopic compositions range from 18.604 to 18.646 for 206Pb/204Pb, from 15.644 to 15.654 for 207Pb/206Pb and from 38.712 to 38.763 for 208Pb/204

  20. A tuff cone erupted under frozen-bed ice (northern Victoria Land, Antarctica): linking glaciovolcanic and cosmogenic nuclide data for ice sheet reconstructions

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Rocchi, S.; Johnson, J. S.; Di Vincenzo, G.; Schaefer, J. M.

    2018-01-01

    The remains of a small volcanic centre are preserved on a thin bedrock ridge at Harrow Peaks, northern Victoria Land, Antarctica. The outcrop is interpreted as a monogenetic tuff cone relict formed by a hydrovolcanic (phreatomagmatic) eruption of mafic magma at 642 ± 20 ka (by 40Ar-39Ar), corresponding to the peak of the Marine Isotope Stage 16 (MIS16) glacial. Although extensively dissected and strewn with glacial erratics, the outcrop shows no evidence for erosion by ice. From interpretation of the lithofacies and eruptive mechanisms, the weight of the evidence suggests that eruptions took place under a cold-based (frozen-bed) ice sheet. This is the first time that a tuff cone erupted under cold ice has been described. The most distinctive feature of the lithofacies is the dominance of massive lapilli tuff rich in fine ash matrix and abraded lapilli. The lack of stratification is probably due to repeated eruption through a conduit blasted through the ice covering the vent. The ice thickness is uncertain but it might have been as little as 100 m and the preserved tephra accumulated mainly as a crater (or ice conduit) infill. The remainder of the tuff cone edifice was probably deposited supraglacially and underwent destruction by ice advection and, particularly, collapse during a younger interglacial. Dating using 10Be cosmogenic exposure of granitoid basement erratics indicates that the erratics are unrelated to the eruptive period. The 10Be ages suggest that the volcanic outcrop was most recently exposed by ice decay at c. 20.8 ± 0.8 ka (MIS2) and the associated ice was thicker than at 642 ka and probably polythermal rather than cold-based, which is normally assumed for the period.

  1. Correlation of the KHS Tuff of the Kibish Formation to volcanic ash layers at other sites, and the age of early Homo sapiens (Omo I and Omo II).

    PubMed

    Brown, Francis H; McDougall, Ian; Fleagle, John G

    2012-10-01

    Hominin specimens Omo I and Omo II from Member I of the Kibish Formation, Ethiopia are attributed to early Homo sapiens, and an age near 196 ka has been suggested for them. The KHS Tuff, within Member II of the Kibish Formation has not been directly dated at the site, but it is believed to have been deposited at or near the time of formation of sapropel S6 in the Mediterranean Sea. Electron microprobe analyses suggest that the KHS Tuff correlates with the WAVT (Waidedo Vitric Tuff) at Herto, Gona, and Konso (sample TA-55), and with Unit D at Kulkuletti in the Ethiopian Rift Valley. Konso sample TA-55 is older than 154 ka, and Unit D at Kulkuletti is dated at 183 ka. These correlations and ages provide strong support for the age originally suggested for the hominin remains Omo I and Omo II, and for correlation of times of deposition in the Kibish region with formation of sapropels in the Mediterranean Sea. The Aliyo Tuff in Member III of the Kibish Formation is dated at 104 ka, and correlates with Gademotta Unit 15 in the Ethiopian Rift Valley. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Indigenous populations in transition: An evaluation of metabolic syndrome and its risk factors among the Toba of northern Argentina

    PubMed Central

    Lagranja, Elena Sofía; Phojanakong, Pam; Navarro, Alicia; Valeggia, Claudia R.

    2015-01-01

    Background The health problems associated with rapidly changing lifestyles in indigenous populations, e.g., cardiovascular disease, are becoming a public health concern. Aim The objective of this study was to evaluate the prevalence of metabolic syndrome and analyze the metabolic conditions that define this syndrome, in an indigenous Toba community of northern Argentina. Subjects and Methods A total of 275 adults participated in this study. Anthropometric (BMI, body fat percentage, waist circumference) and clinical measures (blood pressure, cholesterol, glucose, and triglycerides) were taken. Pearson and logistic regressions were used in the statistical analysis of risk factors for metabolic syndrome by sex and by reproductive status in women. Results The overall prevalence of metabolic syndrome was 38%. Nearly a third (31%) of the population was overweight and 45%, obese. Men had significantly higher blood pressure and levels of triglycerides than women, while women had higher percentages of body fat. BMI was significantly associated with most of the risk factors for metabolic syndrome. Menopausal women had a higher prevalence of metabolic syndrome than women of reproductive age. Conclusion Metabolic syndrome was highly prevalent in this indigenous community, which places them at an increased risk for cardiovascular disease PMID:25004443

  3. Ash-flow tuffs of the Galiuro Volcanics in the northern Galiuro Mountains, Pinal County, Arizona

    USGS Publications Warehouse

    Krieger, Medora Louise Hooper

    1979-01-01

    The upper Oligocene and lower Miocene Galiuro Volcanics in the northern part of the Galiuro Mountains contains two distinctive major ash-flow tuff sheets, the Holy Joe and Aravaipa Members. These major ash-flows illustrate many features of ash-flow geology not generally exposed so completely. The Holy Joe Member, composed of a series of densely welded flows of quartz latite composition that make up a simple cooling unit. is a rare example of a cooling unit that has a vitrophyre at the top as well as at the base. The upper vitrophyre does not represent a cooling break. The Aravaipa Member. a rhyolite, is completely exposed in Aravaipa and other canyons and on Table Mountain. Remarkable exposures along Whitewash Canyon exhibit the complete change from a typical stacked-up interior zonation of an ash flow to a non welded distal margin. Vertical and horizontal changes in welding, crystallization, specific gravity, and lithology are exposed. The ash flow can be divided into six lithologic zones. The Holy Joe and Aravaipa Members of the Galiuro Volcanics are so well exposed and so clearly show characteristic features of ash-flow tuffs that they could be a valuable teaching aid and a source of theses for geology students.

  4. 3D seismic structures in different subduction zones (Central Java, Toba Caldera, Central Chile, Costa-Rica and others): common and particular features

    NASA Astrophysics Data System (ADS)

    Koulakov, I.

    2009-12-01

    We present several seismic models for different subduction zones derived using the LOTOS tomographic code based on travel times from local earthquakes. The quality and reliability of all these models are supported by various tests (odd/even test, reconstructions with different starting models and free parameters, synthetic modeling with realistic setup, etc). For two datasets (Central Chile and Costa-Rica) we present the results of anisotropic inversion, which determines the orientations and values of fastest and slowest velocities in each point of the study volume. Comparing the velocity models for all considered subduction zones reveals some common features and differences. For example, in all cases we observe a clear low velocity anomaly which appears to link the cluster of intermediate seismicity in the Benioff zone with the volcanoes of the main arc. This pattern is interpreted as paths of ascending fluids and melts which are related to phase transitions in the slab. However, the depths of the seismicity clusters and dipping angle of the low-velocity anomaly are considerably different. For example, beneath Toba the cluster is at 100-130 km depth, and the anomaly is vertical. In Central Java the anomaly is strongly inclined to the direction of the slab, while beneath Central Chile it has the opposite orientation. The amplitudes of velocity anomalies are considerably different. The strongest heterogeneity (up to 30% of negative anomaly) is observed in the crust beneath Central Java, while much lower amplitudes (~15%) are found beneath the Toba Caldera, where a catastrophic super-eruption took place about 70000 years ago. The anisotropic inversion reveal similar features in Costa-Rica and Central Java: trench perpendicular fast velocity orientations in the subducting plate and trench parallel orientations in the mantle wedge. This is consistent with shear wave splitting results obtained for many other subduction zones. Such anisotropy in the corner flow may be

  5. Familial polythelia over three generations with polymastia in the youngest girl.

    PubMed

    Galli-Tsinopoulou, A; Krohn, C; Schmidt, H

    2001-06-01

    Supernumerary nipples or polythelia are developmental abnormalities located along the embryonic mammary lines. It is the most common form of accessory breast tissue malformation and usually occurs sporadically but familial aggregation has been reported. Polythelia has been reported in association with congenital malformations, in particular with renal anomalies. Polymastia in female patients has been reported to manifest usually during pregnancy or lactation. We report on a pedigree with six cases of polythelia over three generations and one case of polythelia and polymastia in the youngest member of this family. The girl (11 years old ) had in addition to six supernumerary nipples, an accessory breast gland located under the normal left breast. No other congenital malformations could be detected. This girl will remain under follow-up until the end of puberty when the accessory breast gland will be removed. Manifestation of polymastia during puberty rarely has been reported. Polymastia may appear with familial polythelia even without renal anomalies.

  6. Salt efflorescence due to water-rock interaction on the surface of tuff cave in the Yoshimi-Hyakuana Historic Site, central Japan

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Kodama, Shogo; Mohammad, Rajib; Tharanga Udagedara, Dashan

    2016-04-01

    Artificial cave walls in Yoshimi Hyakuana Historic Site have been suffering from salt weathering since 1945 when the caves were made. To consider the processes of weathering and subsequent crystallization of secondary minerals, water-rock experiment using tuff from this area was performed. Rocks, surface altered materials, groundwater and rainwater were collected, and chemical and mineralogical characteristics of those samples were investigated. The XRD and SEM-EDS analyses were carried out for the solid samples and ICP-OES analysis was performed for the solution generated from the experiment, groundwater and rainwater. Gypsum is detected in original tuff, and on grey and whiter coloured altered materials. General chemical changes were observed on this rock. However, it is found that purple and black altered materials were mainly made due to microbiological processes.

  7. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    USGS Publications Warehouse

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  8. Gravitational slope-deformation of a resurgent caldera: New insights from the mechanical behaviour of Mt. Nuovo tuffs (Ischia Island, Italy)

    NASA Astrophysics Data System (ADS)

    Marmoni, G. M.; Martino, S.; Heap, M. J.; Reuschlé, T.

    2017-10-01

    Ischia Island (Italy) is an impressive example of the rare phenomenon of caldera resurgence. The emplacement and replenishment of magmas at shallow depth resulted in a vertical uplift of about 900 m, concentrated in the western portion of Mt. Epomeo (789 m a.s.l.). As a consequence of this uplift, the island has experienced several slope instabilities at different scales since the Holocene, from shallow mass movements to large rock and debris avalanches. These mass wasting events, which mobilised large volumes of greenish alkali-trachytic tuff (the Mt. Epomeo Green Tuff, MEGT), were strictly related to volcano-tectonic activity and the interaction between the volcanic slopes and the hydrothermal system beneath the island. Deep-Seated Gravitational Slope Deformation (DSGSD) at Mt. Nuovo, located adjacent to densely populated coastal villages, is an ongoing process that covers an area of 1.6 km2. The Mt. Nuovo DSGSD involves a rock mass volume of 190 Mm3 and is accommodated by a main shear zone and a series of sub-vertical fault zones associated with high-angle joint sets. To improve our understanding of this gravity-induced process, we performed a physical (porosity and permeability) and mechanical (uniaxial and triaxial deformation experiments) characterisation of two ignimbrite deposits - both from the MEGT - that form a significant component of the NW sector of Mt. Epomeo. The main conclusions drawn from our experiments are twofold. First, the presence of water dramatically reduces the strength of the tuffs, suggesting that the movement of fluids within the hydrothermal system could greatly impact slope stability. Second, the transition from brittle (dilatant) to ductile (compactant) behaviour in the tuffs of the MEGT occurs at a very low effective pressure, analogous to a depth of a couple of hundred metres, and that this transition is likely moved closer to the surface in the presence of water. We hypothesise that compactant (porosity decreasing) behaviour at

  9. Experimental Analyses of Yellow Tuff Spandrels of Post-medieval Buildings in the Naples Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderoni, B.; Cordasco, E. A.; Lenza, P.

    2008-07-08

    Experimental analyses have been carried out on tuff masonry specimens in order to investigate the structural behaviour of historical buildings in the Naples area (Southern Italy). Spandrels of post-medieval buildings (late XVI to early XX century) have been analysed, with emphasis on morphological characteristics according to chronological indicators. Results of the experimentation on scaled models (1:10) are discussed and the better behaviour of historical masonry typologies on respect to the modern one is highlighted. Comparison with theoretical formulations of ultimate shear resistance are provided too.

  10. The Menengai Tuff: A 36 ka widespread tephra and its chronological relevance to Late Pleistocene human evolution in East Africa

    NASA Astrophysics Data System (ADS)

    Blegen, Nick; Brown, Francis H.; Jicha, Brian R.; Binetti, Katie M.; Faith, J. Tyler; Ferraro, Joseph V.; Gathogo, Patrick N.; Richardson, Jonathan L.; Tryon, Christian A.

    2016-11-01

    The East African Rift preserves the world's richest Middle and Late Pleistocene (∼780-12 ka) geological, archaeological and paleontological archives relevant to the emergence of Homo sapiens. This region also provides unparalleled chronological control for many important sites through tephrochronology, the dating and correlation of volcanic ashes as widespread isochronous markers in the geological record. There are many well-characterized Pliocene-Early Pleistocene tephras that are widespread across East Africa. A comparable framework is lacking for the Middle and Late Pleistocene; a period characterized by spatially and temporally complex patterns of climate change, as well as the emergence of modern Homo sapiens and the dispersal of this species across and out of Africa. Unraveling relationships among these spatial and temporally complex phenomena requires a precise chronology. To this end we report the Menengai Tuff, a widespread volcanic ash produced by the large-scale caldera-forming eruption in Kenya and 40Ar/39Ar dated to 35.62 ± 0.26 ka. Geochemical characterization of 565 glass shards from 36 samples by wavelength-dispersive electron probe microanalysis show the Menengai Tuff was deposited over >115,000 km2 and is found in the Baringo, Chalbi, Elmenteita, Nakuru, Olorgesailie, Turkana, and Victoria basins, all of which preserve rich Late Pleistocene paleoenvironmental and archaeological archives. Correlation and dating of the Menengai Tuff demonstrate that it is the most widespread tephra and largest eruption currently known from the Late Pleistocene of East Africa. As such, it is a valuable marker in establishing a Late Pleistocene chronology for paleoclimatic, archeological, and paleontological records relevant to the study of human evolution.

  11. Compositional zoning of the bishop tuff

    USGS Publications Warehouse

    Hildreth, W.; Wilson, C.J.N.

    2007-01-01

    Compositional data for >400 pumice clasts, organized according to eruptive sequence, crystal content, and texture, provide new perspectives on eruption and pre-eruptive evolution of the >4600 km3 of zoned rhyolitic magma ejected as the BishopTuff during formation of Long Valley caldera. Proportions and compositions of different pumice types are given for each ignimbrite package and for the intercalated plinian pumice-fall layers that erupted synchronously. Although withdrawal of the zoned magma was less systematic than previously realized, the overall sequence displays trends toward greater proportions of less evolved pumice, more crystals (0-5 24 wt %), and higher FeTi-oxide temperatures (714-818??C). No significant hiatus took place during the 6 day eruption of the BishopTuff, nearly all of which issued from an integrated, zoned, unitary reservoir. Shortly before eruption, however, the zoned melt-dominant portion of the chamber was invaded by batches of disparate lower-silica rhyolite magma, poorer in crystals than most of the resident magma but slightly hotter and richer in Ba, Sr, andTi. Interaction with resident magma at the deepest levels tapped promoted growth ofTi-rich rims on quartz, Ba-rich rims on sanidine, and entrapment of near-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber, led to the dark gray and swirly crystal-poor pumices sparsely present in all ashflow packages. As shown by FeTi-oxide geothermometry, the zoned rhyolitic chamber was hottest where crystal-richest, rendering any model of solidification fronts at the walls or roof unlikely.The main compositional gradient (75-195 ppm Rb; 0.8-2.2 ppm Ta; 71-154 ppm Zr; 0.40-1.73% FeO*) existed in the melt, prior to crystallization of the phenocryst suite observed, which included zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned, generally reflect magma temperature and

  12. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    NASA Astrophysics Data System (ADS)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand

  13. Evidence of Rapid Localized Groundwater Transport in Volcanic Tuffs Beneath Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Freifeld, B.; Walker, J.; Doughty, C.; Kryder, L.; Gilmore, K.; Finsterle, S.; Sampson, J.

    2006-12-01

    At Yucca Mountain, Nevada, the proposed location for a national high-level nuclear waste repository radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Crater Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP- 24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux

  14. Spatial variability of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, southwestern Utah

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2012-12-01

    In order to yield new insight into the process of faulting in fine-grained, poorly indurated volcanic ash, the distribution of strain around faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, is investigated. Several distinct styles of inelastic strain are identified. Deformation bands are observed in tuff that is porous and granular in nature, or is inferred to have been so at the time of deformation. Where silicic alteration is pervasive, fractures are the dominant form of localized strain. Non-localized strain within the host rock is manifest as pore space compaction, including crushing of pumice clasts. Distinct differences in fault zone architecture are observed at different magnitudes of normal fault displacement, in the mode II orientation. A fault with cm-scale displacements is manifest as a single well-defined surface. Off-fault damage occurs as pore space compaction near the fault tips and formation of deformation band damage zones that are roughly symmetric about the fault. At a fault with larger meter-scale displacements, a fault core is present. A recognizable fault-related deformation band damage zone is not observed here, even though large areas of the host rock remain porous and granular and deformation bands had formed prior to faulting. The host rock is instead fractured in areas of pervasive alteration and shows possible textural evidence of fault pulverization. The zones of localized and distributed strain have notably different spatial extents around the causative fault. The region of distributed deformation, as indicated by changes in gas permeability of the macroscopically intact rock, extends up to four times farther from the fault than the highest densities of localized deformation (i.e., fractures and deformation bands). This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in poorly indurated tuff. Not surprisingly, the type of

  15. Ce-Fe-modified zeolite-rich tuff to remove Ba(2+)-like (226)Ra(2+) in presence of As(V) and F(-) from aqueous media as pollutants of drinking water.

    PubMed

    Olguín, María Teresa; Deng, Shuguang

    2016-01-25

    The sorption behavior of the Ba(2+)-like (226)Ra(2+) in the presence of H2AsO4(-)/HAsO4(2-) and F(-) from aqueous media using Ce-Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl3-FeCl3 solutions to obtain the Na- and Ce-Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba(2+)-like (226)Ra(2+) sorption isotherms and the distribution coefficients (Kd) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F(-) affected this parameter when the Ba(2+)-like (226)Ra(2+)-As(V)-F(-) solutions were in contact with ZUSCeFe. The H2AsO4(-)/HAsO4(2-) and F(-) were adsorbed by ZUSCeFe in the same amount, independent of the concentration of Ba(2+)-like (226)Ra(2+) in the initial solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Paleomagnetic and Anisotropy of Magnetic Susceptibility (AMS) Documentation of the Formation of Large-Scale Rheomorphic Structures in the 2.06 Ma Huckleberry Ridge Tuff, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Holm, D.; Harlan, S. S.

    2006-12-01

    In the Teton River Valley, east of Rexburg, Idaho, the ca. 2.06 Ma Huckleberry Ridge Tuff is about 130 m thick, exceedingly well-exposed, and displays large-scale (100-150 m+ amplitude) rheomorphic folds, with eutaxitic fabrics that are parallel to inferred primary internal zonation (e.g. boundary between basal vitrophyre and overlying devitrified part of the pyroclastic deposit) as well as the basal contact with older deposits defining the fold geometries. One 150 m amplitude fold , is well-exposed on the north side of the valley about 2.5 km east of Teton Dam, has a NW trending fold axis and has a southwest limb that is overturned by about 45o. Samples were collected from 16 sites in this fold, on both limbs and the hinge area, to test the hypothesis that folding took place above maximum TRM blocking temperatures (about 580C). Progressive AF and thermal demagnetization both yield characteristic magnetizations of southwest to south-southwest declination and shallow inclination removed over a range of peak fields (typically between 20 and 80 mT) and laboratory unblocking temperatures (typically between 350 and 580C). The preliminary determination of an in situ mean based on the 16 sites is about D = 215°, I = -5°, a95= 5°, N = 16 site means). The direction of this ChRM is statistically indistinguishable from that reported by previous studies of the tuff (e.g. Reynolds, 1977, JGR; Byrd et al., 1994, JGR). The trend of the fold axis is orthogonal to this declination; the paleomagnetic fold test applied to these data is negative, with k values continuously decreasing upon unfolding, thus indicating that the entire structure in the tuff formed after the well-developed compaction fabric was acquired, at a temperature above maximum blocking temperatures of the ChRM. Post-compaction, high temperature deformation is consistent with field evidence indicating plastic secondary deformation of much of the tuff prior to devitrification. Rapid strain rates probably

  17. Erratum: Signatures of the Youngest Starbursts: Optically Thick Thermal Bremsstrahlung Radio Sources in Henize 2-10

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Johnson, Kelsey E.

    2000-08-01

    In the article ``Signatures of the Youngest Starbursts: Optically Thick Thermal Bremsstrahlung Radio Sources in Henize 2-10'' by Henry A. Kobulnicky and Kelsey E. Johnson (ApJ, 527, 154 [1999]), equation (4) was incorrect in the original submitted manuscript and thus appears incorrect in print. Equation (4) should read,EM(cm-6 pc)=12.1[Te(K)]1.35[ν(GHz)]2.1τ .(4)The following sentence should read, ``These knots yield emission measures in excess of 106 cm-6 pc at 8 GHz.'' These errors are of a typographical nature and do not affect other aspects of the analysis or discussion.

  18. Lithostratigraphy and shear-wave velocity in the crystallized Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Buesch, D.C.; Stokoe, K.H.; Won, K.C.; Seong, Y.J.; Jung, J.L.; Schuhen, M.D.

    2006-01-01

    Evaluation of the potential future response to seismic events of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities; rims on lithophysae and some fractures; spots (which are similar to rims but without an associated cavity or aperture); amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization; and fractures. Seismic properties, including shear-wave velocity (Vs), have been measured on 38 pieces of core, and there is a good "first order" correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger Vs values compared to samples from lithophysal zones. Some samples have Vs values that are outside the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, "large" lithophysal cavities, or "missing pieces" relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as Vs data from small-scale samples (typical and "flawed" core) to larger scale transects in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties.

  19. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium

    NASA Astrophysics Data System (ADS)

    Smythe, Duane J.; Brenan, James M.

    2016-11-01

    Using a newly-calibrated relation for cerium redox equilibria in silicate melts (Smythe and Brenan, 2015), and an internally-consistent model for zircon-melt partitioning of Ce, we provide a method to estimate the prevailing redox conditions during crystallization of zircon-saturated magmas. With this approach, oxygen fugacities were calculated for samples from the Bishop tuff (USA), Toba tuff (Indonesia) and the Nain plutonic suite (Canada), which typically agree with independent estimates within one log unit or better. With the success of reproducing the fO2 of well-constrained igneous systems, we have applied our Ce-in-zircon oxygen barometer to estimating the redox state of Earth's earliest magmas. Using the composition of the Jack Hills Hadean zircons, combined with estimates of their parental magma composition, we determined the fO2 during zircon crystallization to be between FMQ -1.0 to +2.5 (where FMQ is the fayalite-magnetite-quartz buffer). Of the parental magmas considered, Archean tonalite-trondhjemite-granodiorite (TTG) compositions yield zircon-melt partitioning most similar to well-constrained modern suites (e.g., Sano et al., 2002). Although broadly consistent with previous redox estimates from the Jack Hills zircons, our results provide a more precise determination of fO2, narrowing the range for Hadean parental magmas by more than 8 orders of magnitude. Results suggest that relatively oxidized magmatic source regions, similar in oxidation state to that of 3.5 Ga komatiite suites, existed by ∼4.4 Ga.

  20. A long-recommended but seldom-used method of analysis for fall injuries found a unique pattern of risk factors in the youngest-old.

    PubMed

    Legrand, Helen; Pihlsgård, Mats; Nordell, Eva; Elmståhl, Sölve

    2015-08-01

    Few studies on fall risk factors use long-recommended methods for analysis of recurrent events. Previous falls are the biggest risk factor for future falls, but few fall studies focus on the youngest-old. This study's objective was to apply Cox regression for recurrent events to identify factors associated with injurious falls in the youngest-old. Participants were community-dwelling residents of southern Sweden (n = 1,133), aged 59-67 at baseline (median 61.2), from the youngest cohorts of the larger Good Aging in Skåne (GÅS) study. Exposure variable data were collected from baseline study visits and medical records. Injurious falls, defined as emergency, inpatient, or specialist visits associated with ICD-10 fall codes during the follow-up period (2001-2011), were gathered from national and regional registries. Analysis was conducted using time to event Cox Regression for recurrent events. A majority (77.1 %) of injurious falls caused serious injuries such as fractures and open wounds. Exposure to nervous system medications [hazard ratio (HR) 1.40, 95 % confidence interval (CI) 1.03-1.89], central nervous system disease (HR 1.79, CI 1.18-2.70), and previous injurious fall(s) (HR 2.00, CI 1.50-2.68) were associated with increased hazard of injurious fall. Regression for recurrent events is feasible with typical falls' study data. The association of certain exposures with increased hazard of injurious falls begins earlier than previously studied. Different patterns of risk factors by age can provide insight into the progression of frailty. Tailored fall prevention screening and intervention may be of value in populations younger than those traditionally screened.

  1. Energy Dissipation in Calico Hills Tuff due to Pore Collapse

    NASA Astrophysics Data System (ADS)

    Lockner, D. A.; Morrow, C. A.

    2008-12-01

    Laboratory tests indicate that the weakest portions of the Calico Hills tuff formation are at or near yield stress under in situ conditions and that the energy expended during incremental loading can be more than 90 percent irrecoverable. The Calico Hills tuff underlies the Yucca Mountain waste repository site at a depth of 400 to 500 m within the unsaturated zone. The formation is highly variable in the degree of both vitrification and zeolitization. Since 1980, a number of boreholes penetrated this formation to provide site characterization for the YM repository. In the past, standard strength measurements were conducted on core samples from the drillholes. However, a significant sampling bias occurred in that tests were preferentially conducted on highly vitrified, higher-strength samples. In fact, the most recent holes were drilled with a dry coring technique that would pulverize the weakest layers, leaving none of this material for testing. We have re-examined Calico Hills samples preserved at the YM Core Facility and selected the least vitrified examples (some cores exceeded 50 percent porosity) for mechanical testing. Three basic tests were performed: (i) hydrostatic crushing tests (to 350 MPa), (ii) standard triaxial deformation tests at constant effective confining pressure (to 70 MPa), and (iii) plane strain tests with initial conditions similar to in situ stresses. In all cases, constant pore pressure of 10 MPa was maintained using argon gas as a pore fluid and pore volume loss was monitored during deformation. The strongest samples typically failed along discrete fractures in agreement with standard Mohr-Coulomb failure. The weaker, high porosity samples, however, would fail by pure pore collapse or by a combined shear-induced compaction mechanism similar to failure mechanisms described for porous sandstones and carbonates. In the plane-strain experiments, energy dissipation due to pore collapse was determined for eventual input into dynamic wave

  2. Experimental investigation of time dependent behavior of welded Topopah Spring Tuff

    NASA Astrophysics Data System (ADS)

    Ma, Lumin

    Four types of laboratory tests have been performed. Specimens were attained from four lithophysal zones of the welded Topopah Spring Tuff unit at Yucca Mountain, Nevada: upper lithophysal, middle nonlithophysal, lower lithophysal and lower nonlithophysal zones. Two types of tests are conducted to study time-dependent behavior: constant strain rate and creep tests. Sixty-five specimens from the middle nonlithophysal zone were tested at six strain rates: 10-2, 10-4, 10-5, 10-6, 10-7, and 10-8 s-1. Test durations range from 2 seconds to 7 days. Fourteen specimens from middle nonlithophysal, lower lithophysal and lower nonlithophysal zones are creep tested by incremental stepwise loading. All the tests are conducted under uniaxial compression at room temperature and humidity. Specimens exhibit extremely brittle fracture and fail by axial splitting, and show very little dilatancy if any. It is assumed that microfracturing dominates the inelastic deformation and failure of the tuff. Nonlinear regression is applied to the results of the constant strain rate tests to estimate the relations between peak strength, peak axial strain, secant modulus and strain rate. All three these parameters decrease with a decrease of strain rate and follow power functions: sigmapeak = 271.37 3˙0.0212 0.0212, epsilonpeak = 0.006 3˙0.0083 , ES = 41985.4 3˙0.015 . Secant modulus is introduced mainly as a tool to analyze strain rate dependent axial strain. Two threshold stresses define creep behavior. Below about 50% of peak strength, a specimen does not creep. Above about 94% of peak strength, a specimen creeps at an accelerating rate. Between the two threshold stresses, a power law relates strain rate and stress. One hundred fifty-eight Brazilian (Indirect tensile splitting) tests have been performed at six different constant strain rates. Nineteen lithophysal specimens were tested in uniaxial compression to study their fracture pattern. These specimens have a far less brittle failure mode

  3. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  4. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system

    NASA Astrophysics Data System (ADS)

    Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara

    2015-02-01

    The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and

  5. Surface complexation modeling of americium sorption onto volcanic tuff.

    PubMed

    Ding, M; Kelkar, S; Meijer, A

    2014-10-01

    Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.

  6. Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona

    USGS Publications Warehouse

    LeCain, G.D.

    1995-01-01

    Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.

  7. Emplacement of the youngest flood lava on Mars: A short, turbulent story

    USGS Publications Warehouse

    Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.

    2010-01-01

    Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision. ?? 2009.

  8. Emplacement of the youngest flood lava on Mars: A short, turbulent story

    USGS Publications Warehouse

    Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.

    2009-01-01

    Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision.

  9. Geochronology, stratigraphy and geochemistry of Cindery Tuff in Pliocene hominid-bearing sediments of the Middle Awash, Ethiopia.

    PubMed

    Hall, C M; Walter, R C; Westgate, J A; York, D

    Cindery Tuff is a subalkaline, rhyolitic air-fall deposit that was probably produced by a mixed-magma eruption. It is a distinctive, datable, regional isochronous marker bed within the Pliocene sediments of the Middle Awash district, and is stratigraphically situated between two new fossil hominid discoveries. Based on 40Ar/39Ar analyses of plagioclase, rhyolitic glass and basaltic glass, as well as fission-track analyses of zircons, we estimate its age to be 3.8-4.0 Myr. This implies that associated hominid skull fragments are at least 3.9 Myr old.

  10. Deep installations of monitoring instrumentation in unsaturated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, S.

    1985-12-31

    The major goal of this research is to develop low cost techniques to measure matric potential, moisture content, and to sample liquid and vapor for chemical analysis in the deep unsaturated zones of the arid areas of Nevada. This work has been prompted by the high level waste repository proposed in the unsaturated zone of Yucca Mountain. The work presented focuses on two deep (250 meter) boreholes planned for completion at the southern end of Yucca Mountain in fractured tuff. One borehole will be drilled without water and cased to slightly below the zone of saturation in order to measuremore » the depth to saturation and to collect water samples for analysis. This hole will also be used for routine quarterly neutron logging. Between loggings, vapor liquid water samplers will be suspended in the borehole and packed off at selective screened intervals to collect water vapor for isotopic analysis. The second borehole will be drilled to slightly above the water table and serve as a multiple interval psychrometer installation. Thermocouple psychrometers will be placed in isolated screened intervals within the casing. These boreholes will be used for instrument testing, interference and permeability testing, and to monitor short term fluctuations of soil and rock moisture due to precipitation and recharge.« less

  11. Patchy distribution of magma that fed the Bishop Tuff supereruption: Evidence from matrix glass major and trace-element compositions

    NASA Astrophysics Data System (ADS)

    Gualda, G. A. R.; Ghiorso, M. S.; Hurst, A. A.; Allen, M. C.; Bradshaw, R. W.

    2017-12-01

    For more than 40 years, the Bishop Tuff has been the archetypical example of a singular, zoned magma body that fed a supereruption. Early-erupted material is pyroxene-free and crystal poor (<20 wt. %), presumably erupted from the upper parts of the magma body; late-erupted material is orthopyroxene and clinopyroxene-bearing, commonly more crystal rich (up to 30 wt. % crystals), and presumably tapped magma from the lower portions of the magma body. Fe-Ti oxide compositions suggest higher crystallization temperatures for late-erupted magmas (as high as 820 °C) than for early-erupted magmas (as low as 700 °C). Pressures and temperatures derived from major element compositions of glass inclusions led Gualda & Ghiorso (2013, CMP) to suggest an alternative model of lateral juxtaposition of two main magma bodies - each one feeding early-erupted and late-erupted units. Chamberlain et al. (2015, JPet) and Evans et al. (2016, AmMin) recently disputed this interpretation. We present a large dataset of matrix glass compositions for 161 pumice clasts that span the stratigraphy of the deposit. We calculate crystallization pressures based on major-element glass compositions using rhyolite-MELTS geobarometry, and crystallization temperatures based on Zr in glass using zircon saturation geothermometry. We apply the same methods to 1538 major-element and 615 trace-element analyses from Chamberlain et al. The results overwhelmingly demonstrate that there is no difference in crystallization temperature or pressure between early and late-erupted magmas. Crystallization pressures and temperatures are unimodal, with modes of 150 MPa and 730 °C (calibration of Watson & Harrison). Our results strongly support lateral juxtaposition of two main magma bodies. Smaller units recognized by Chamberlain et al. crystallized at the same pressures as the main bodies - this suggests the coexistence of larger and smaller magma bodies at the time of the Bishop Tuff supereruption. We compare our

  12. Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Martí, Joan; Geyer, Adelina

    2013-07-01

    The tuff cone of El Golfo on the western coast of Lanzarote (Canary Islands) is a typical hydrovolcanic edifice. Along with other edifices of the same age, it was constructed along a fracture oriented NEE-SWW that coincides with the main structural trend of recent volcanism in this part of the island. We conducted a detailed stratigraphic study of the succession of deposits present in this tuff cone and here interpret them in light of the depositional processes and eruptive dynamics that we were able to infer. The eruptive sequence is represented by a succession of pyroclastic deposits, most of which were emplaced by flow, plus a number of air-fall deposits and ballistic blocks and bombs. We distinguished five different eruptive/depositional stages on the basis of differences in inferred current flow regimes and fragmentation efficiencies represented by the resulting deposits; the different stages may be related to variations in the explosive energy. Eight lithofacies were identified based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms. The volcanic edifice was constructed very rapidly around the vent, and this is inferred to have controlled the amount of water that was able to enter the eruption conduit. The sedimentological characteristics of the deposits and the nature and distribution of palagonitic alteration suggest that most of the pyroclastic succession in El Golfo was deposited in a subaerial environment. This type of hydrovolcanic explosive activity is common in the coastal zones of Lanzarote and the other Canary Islands and is one of the main potential hazards that could threaten the human population of this archipelago. Detailed studies of these hydrovolcanic eruptions such as the one we present here can help volcanologists understand the hazards that this type of eruption can generate and provide essential information for undertaking risk assessment in similar volcanic environments.

  13. Contrasting types of surtseyan tuff cones on Marion and Prince Edward islands, southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Verwoerd, W. J.; Chevallier, L.

    1987-02-01

    Ten surtseyan tuff cones on Marion island (46° 54' S, 37° 46' E) and seven on Prince Edward island (46° 38' S, 37° 57' E) were erupted on shallow submerged coastal plains related to normal faulting. They range from Pleistocene to Holocene in age and exhibit a variable degree of erosion by the sea. Fundamental differences, irrespective of age, exist between two types: Type I cones have diameters of 1 1.5 km, rim heights of about 200 m and steep (27°) outer slopes. Deposits are plastered against nearby cliffs. Beds are thin, including layers of accretionary lapilli and less than 10 % lithic clasts. Numerous bomb sags, soft sediment deformation structures and gravity slides occur. On one of these cones mudflows formed small tunnels which resemble lava tubes, associated with channels sometimes having oversteepened walls. These cones reflect comparatively low energy conditions and probably resulted from extremely wet surges interspersed with mudflows and ballistic falls. Type II cones have smaller diameters (˜0.5 km) but widespread fallout/surge aprons. Rim heights are about 100 m and average slope angles are 18°. Bedding is massive with variable lapilli/matrix ratio and more than 10 % lithic clasts without bomb sags. These cones formed under drier, perhaps hotter and more violently explosive conditions than Type I, though not as energetic as the phreatomagmatic eruptions of terrestrial tuff rings. The two types of surtseyan eruptions are explained by invoking not only different water/magma ratios in the conduit but also different mechanisms of water/magma interaction. The slurry model of Kokelaar is favoured for Type I and a fuel-coolant model for Type II. The decisive factor is considered to be rate of effusion, with rim closure and exclusion of sea water playing a secondary role.

  14. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  15. Evaluation of Pleistocene groundwater flow through fractured tuffs using a U-series disequilibrium approach, Pahute Mesa, Nevada, USA

    USGS Publications Warehouse

    Paces, James B.; Nichols, Paul J.; Neymark, Leonid A.; Rajaram, Harihar

    2013-01-01

    Groundwater flow through fractured felsic tuffs and lavas at the Nevada National Security Site represents the most likely mechanism for transport of radionuclides away from underground nuclear tests at Pahute Mesa. To help evaluate fracture flow and matrix–water exchange, we have determined U-series isotopic compositions on more than 40 drill core samples from 5 boreholes that represent discrete fracture surfaces, breccia zones, and interiors of unfractured core. The U-series approach relies on the disruption of radioactive secular equilibrium between isotopes in the uranium-series decay chain due to preferential mobilization of 234U relative to 238U, and U relative to Th. Samples from discrete fractures were obtained by milling fracture surfaces containing thin secondary mineral coatings of clays, silica, Fe–Mn oxyhydroxides, and zeolite. Intact core interiors and breccia fragments were sampled in bulk. In addition, profiles of rock matrix extending 15 to 44 mm away from several fractures that show evidence of recent flow were analyzed to investigate the extent of fracture/matrix water exchange. Samples of rock matrix have 234U/238U and 230Th/238U activity ratios (AR) closest to radioactive secular equilibrium indicating only small amounts of groundwater penetrated unfractured matrix. Greater U mobility was observed in welded-tuff matrix with elevated porosity and in zeolitized bedded tuff. Samples of brecciated core were also in secular equilibrium implying a lack of long-range hydraulic connectivity in these cases. Samples of discrete fracture surfaces typically, but not always, were in radioactive disequilibrium. Many fractures had isotopic compositions plotting near the 230Th-234U 1:1 line indicating a steady-state balance between U input and removal along with radioactive decay. Numerical simulations of U-series isotope evolution indicate that 0.5 to 1 million years are required to reach steady-state compositions. Once attained, disequilibrium 234U/238U

  16. The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    USGS Publications Warehouse

    Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.

    2016-01-01

    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the

  17. Sorption Kinetics Of Selected Heavy Metals Adsorption To Natural And Fe(III) Modified Zeolite Tuff Containing Clinoptilolite Mineral

    NASA Astrophysics Data System (ADS)

    Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica

    2015-06-01

    In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.

  18. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies

    USGS Publications Warehouse

    Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.

    1991-01-01

    Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites

  19. Lava dome morphometry and geochronology of the youngest eruptive activity in Eastern Central Europe: Ciomadul (Csomád), East Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Telbisz, T.; Harangi, Sz.; Magyari, E.; Kiss, B.; Dunkl, I.; Veres, D.; Braun, M.

    2012-04-01

    Volcanic evolution of the Ciomadul (Csomád) lava dome complex, site of the youngest (Late Pleistocene, late Marine Isotope Stage 3) eruptive activity in the Carpathians, has been studied by advanced morphometry and radiometric (U/Pb, U/He and 14C) geochronology. The volcano produced alternating effusive and intermittent explosive eruptions from individual domes, typical of common andesitic-dacitic lava domes. A comparative morphometry shows steep ≥30° mean slopes of domes' upper flank and the Csomád domes fit well to the 100-200 ka domes worldwide. Morphometric ages obtained from the mean slope vs age precipitation correlation results in ≤100 ka ages. The morphometric approach is supported by U/Pb and U/He chronology: preliminary results of zircon dating indicate ages ranging between 200(250) and 30 ka. The youngest ages of the data set obtained both from lavas and pumiceous pyroclastics argue for a more or less coeval effusive and explosive volcanism. Based also on volcanological data, we propose vulcanian eruptions and explosive dome collapses especially toward the end of volcanic activity. Moreover, radiometric chronology suggests that, possibly subsequently to the peripheral domes, a central lava dome complex built up ≤100 ka ago. This dome complex, exhibiting even more violent, up to sub-plinian explosions, emplaced pumiceous pyroclastic flow and fall deposits as far as 17 km. We propose that the explosive activity produced caldera-forming eruptions as well, creating a half-caldera. This caldera rim is manifested by the asymmetric morphology of the central edifice: the present-day elevated ridge of Ciomadul Mare (Nagy Csomád), encompassing the twin craters of Mohoş (Mohos) peat bog and Sf. Ana (Szent [St.] Anna). These latter craters may have been formed subsequently, ca. ~100-30 ka ago, after the caldera formation. Drilling of lacustrine sediments in the St. Anna crater shows that beneath the Holocene gyttja several meters of Late Pleistocene

  20. The palaeogeographic setting and the local environmental impact of the 130 ka Falconiera tuff-cone eruption (Ustica island, Italy)

    NASA Astrophysics Data System (ADS)

    de Vita, Sandro; Foresta Martin, Franco

    2017-04-01

    This research focuses on the effects of the last eruption at Ustica (Suthern Tyrrhenian Sea, Italy), which formed the Falconiera tuff-cone at around 130 ka BP in the north-eastern tip of the island. This eruption was mainly explosive and phreatomagmatic, and emplaced a series of pyroclastic surge beds that formed an asymmetric tuff cone. This is the most easily recognizable volcanic edifice on Ustica, although its north-eastern sector has been partially eroded. A section of the feeding conduit is exposed northward, and is composed of lavas that fed the last stages of the eruption characterized by an intracrateric lava lake and a Strombolian scoria-fallout deposit. The eruption occurred during Upper Pleistocene Marine Isotopic Substage 5.5, a warm period characterized by a high sea-level stand (6±3 m above the present sea level in stable areas) and the diffusion of subtropical flora and fauna across the Mediterranean sea. This eruption slightly modified the morphology of Ustica, but impacted both marine and terrestrial environments, burying beach deposits rich in mollusk shells (i.e. Strombus bubonius, Conus testudinarius, Brachidontes puniceus), colonies of corals (Cladocora caespitosa) and subaerial plants (Chamaerops humilis). These organisms, found in some cases in their life position, along with other lines of evidence, provide information on the palaeogeography of this sector of the island at the time of the eruption, and on the local impact of this event on the environment.

  1. Physical and hydrologic properties of outcrop samples from a nonwelded to welded tuff transition, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Rautman, C.A.; Flint, L.E.; Flint, A.L.; Istok, J.D.

    1995-01-01

    Quantitative material-property data are needed to describe lateral and vertical spatial variability of physical and hydrologic properties and to model ground-water flow and radionuclide transport at the potential Yucca Mountain nuclear-waste repository site in Nevada. As part of ongoing site characterization studies of Yucca Mountain directed toward this understanding of spatial variability, laboratory measurements of porosity, bull* and particle density, saturated hydraulic conductivity, and sorptivity have been obtained for a set of outcrop samples that form a systematic,two dimensional grid that covers a large exposure of the basal Tiva Canyon Tuff of the Paintbrush Group of Miocene age at Yucca Mountain. The samples form a detailed vertical grid roughly parallel to the transport direction of the parent ash flows, and they exhibit material-property varia- tions in an interval of major lithologic change overlying a potential nuclear-waste repository at Yucca Mountain. The observed changes in hydrologic properties were systematic and consistent with the changes expected for the nonwelded to welded transition at the base of a major ash-flow sequence. Porosity, saturated hydraulic conductivity, and sorptivity decreased upward from the base of the Tiva Canyon Tuff, indicating the progressive compaction of ash- rich volcanic debris and the onset of welding with increased overburden pressure from the accumulating ash-flow sheet. The rate of decrease in the values of these material properties varied with vertical position within the transition interval. In contrast, bulk-density values increased upward, a change that also is consistent with progressive compaction and the onset of welding. Particle-density values remained almost constant throughout the transition interval, probably indicating compositional (chemical) homogeneity.

  2. Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA

    NASA Astrophysics Data System (ADS)

    Sliwinski, J. T.; Bachmann, O.; Dungan, M. A.; Huber, C.; Deering, C. D.; Lipman, P. W.; Martin, L. H. J.; Liebske, C.

    2017-05-01

    Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up ( 50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic ( 62-65 wt% SiO2) ignimbrite with an estimated erupted volume of 500 km3 and an average of 45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from 750 to >800 °C) of an upper crustal mush in response to hotter recharge from below. Zircon U-Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location 0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures ( 710-760 °C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.

  3. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Ho, C.K.; Glass, RJ.

    1996-09-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon infiltration of water observed in the experiment was subsequently modeled using measured Fran Ridgemore » fracture frequencies, and a specified fracture aperture of 285 {micro}m. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, al fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies.« less

  4. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.

    1996-01-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridgemore » fracture frequencies, and a specified fracture aperture of 285 {mu}m. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies.« less

  5. Revised stratigraphy of Area 123, Koobi Fora, Kenya, and new age estimates of its fossil mammals, including hominins.

    PubMed

    Gathogo, Patrick N; Brown, Francis H

    2006-11-01

    Recent geologic study shows that all hominins and nearly all other published mammalian fossils from Paleontological Collection Area 123, Koobi Fora, Kenya, derive from levels between the KBS Tuff (1.87+/-0.02 Ma) and the Lower Ileret Tuff (1.53+/-0.01 Ma). More specifically, the fossils derive from 53 m of section below the Lower Ileret Tuff, an interval in which beds vary markedly laterally, especially those units containing molluscs and algal stromatolites. The upper Burgi Member (approximately 2.00-1.87 Ma) crops out only in the southwestern part of Area 123. Adjacent Area 110 contains larger exposures of the member, and there the KBS Tuff is preserved as an airfall ash in lacustrine deposits and also as a fluvially redeposited ash. We observed no mammalian fossils in situ in this member in Area 123, but surface specimens have been documented in some monographic treatments. Fossil hominins from Area 123 were attributed to strata above the KBS Tuff in the 1970s, but later they were assigned to strata below the KBS Tuff (now called the upper Burgi Member). This study definitively places the Area 123 hominins in the KBS Member. Most of these hominins are between 1.60 and 1.65 myr in age, but the youngest may date to only 1.53 Ma, and the oldest, to 1.75 Ma. All are 0.15-0.30 myr younger than previously estimated. The new age estimates, in conjunction with published taxonomic attributions of fossils, suggest that at least two species of Homo coexisted in the region along with A. boisei until at least 1.65 Ma. Comparison of crania KNM-ER 1813 and KNM-ER 1470, which were believed to be of comparable age, is at the focus of the debate over whether Homo habilis sensu lato is in fact composed of two species: Homo habilis and Homo rudolfensis. These two crania are separated in time by approximately 0.25 myr, and therefore, arguments for their conspecificity no longer need to confront the issue of unusually high contemporaneous variation within a single species.

  6. Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2014-01-01

    We report measurements of the X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60 along the X-ray bright SE-NW axis from 0.84 plus or minus 0.06% yr(exp -1) to 0.52% plus or minus 0.03 yr(exp -1). This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3 and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% plus or minus 0.4% yr(exp -1). We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either the ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as may be found at a wind termination shock, requiring strong mass loss in the progenitor.

  7. Paleomagnetism of the Oligocene Kalamazoo Tuff: implications for middle Tertiary extension in east central Nevada

    USGS Publications Warehouse

    Hagstrum, J.T.; Gans, P.B.

    1989-01-01

    The Oligocene Kalamazoo Tuff (???35 Ma) was sampled for paleomagnetic analysis across a 100-km-wide zone of highly extended crust in east central Nevada to estimate between-site vertical axis rotations and thus the relative importance of strike-slip faulting to the mechanism of extension. The tilt-corrected data, with sources of error reduced or eliminated, exhibit a 28?? ?? 12?? clockwise rotation of the Schell Creek Range relative to the Kern Mountains region. This rotation implies differential extension accommodated by strike-slip faulting or N-S shortening. The paleomagnetic results also suggest that large changes in strike of layered units near faults with presumed strike-slip movement need not be the result of oroclinal bending, but could result from superimposed sets of orthogonal normal faults. -from Authors

  8. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

    NASA Astrophysics Data System (ADS)

    Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine

    2018-03-01

    The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.

  9. Volcanoes of the passive margin: The youngest magmatic event in eastern North America

    USGS Publications Warehouse

    Mazza, Sarah E; Gazel, Esteban; Johnson, Elizabeth A; Kunk, Michael J.; McAleer, Ryan J.; Spotila, James A; Bizimis, Michael; Coleman, Drew S

    2014-01-01

    The rifted eastern North American margin (ENAM) provides important clues to the long-term evolution of continental margins. An Eocene volcanic swarm exposed in the Appalachian Valley and Ridge Province of Virginia and West Virginia (USA) contains the youngest known igneous rocks in the ENAM. These magmas provide the only window into the most recent deep processes contributing to the postrift evolution of this margin. Here we present new 40Ar/39Ar ages, geochemical data, and radiogenic isotopes that constrain the melting conditions and the timing of emplacement. Modeling of the melting conditions on primitive basalts yielded an average temperature and pressure of 1412 ± 25 °C and 2.32 ± 0.31 GPa, corresponding to a mantle potential temperature of ∼1410 °C, suggesting melting conditions slightly higher than average mantle temperatures beneath mid-ocean ridges. When compared with magmas from Atlantic hotspots, the Eocene ENAM samples share isotopic signatures with the Azores and Cape Verde. This similarity suggests the possibility of a large-scale dissemination of similar sources in the upper mantle left over from the opening of the Atlantic Ocean. Asthenosphere upwelling related to localized lithospheric delamination is a possible process that can explain the intraplate signature of these magmas that lack evidence of a thermal anomaly. This process can also explain the Cenozoic dynamic topography and evidence of rejuvenation of the central Appalachians.

  10. Quantification of carbon dioxide emissions of Ciomadul, the youngest volcano of the Carpathian-Pannonian Region (Eastern-Central Europe, Romania)

    NASA Astrophysics Data System (ADS)

    Kis, Boglárka-Mercédesz; Ionescu, Artur; Cardellini, Carlo; Harangi, Szabolcs; Baciu, Călin; Caracausi, Antonio; Viveiros, Fátima

    2017-07-01

    We provide the first high-resolution CO2 flux data for the Neogene to Quaternary volcanic regions of the entire Carpathian-Pannonian Region, Eastern-Central Europe, and estimate the CO2 emission of the seemingly inactive Ciomadul volcanic complex, the youngest volcano of this area. Our estimate includes data from focused and diffuse CO2 emissions from soil. The CO2 fluxes of focused emissions range between 277 and 8172 g d- 1, corresponding to a CO2 output into the atmosphere between 0.1 and 2.98 t per year. The investigated areas for diffuse soil gas emissions were characterized by wide range of CO2 flux values, at Apor Baths, ranging from 1.7 × 101 to 8.2 × 104 g m- 2 d- 1, while at Lăzărești ranging between 1.43 and 3.8 × 104 g m- 2 d- 1. The highest CO2 focused gas fluxes at Ciomadul were found at the periphery of the youngest volcanic complex, which could be explained either by tectonic control across the brittle older volcanic edifices or by degassing from a deeper crustal zone resulting in CO2 flux at the periphery of the supposed melt-bearing magma body beneath Ciomadul. The estimate of the total CO2 output in the area is 8.70 × 103 t y- 1, and it is consistent with other long (> 10 kyr) dormant volcanoes with similar age worldwide, such as in Italy and USA. Taking into account the isotopic composition of the gases that indicate deep origin of the CO2 emissions, this yields further support that Ciomadul may be considered indeed a dormant, or PAMS volcano (volcano with potentially active magma storage) rather than an inactive one. Furthermore, hazard of CO2 outpourings has to be taken into account and it has to be communicated to the visitors. Finally, we suggest that CO2 output of dormant volcanic systems has to be also accounted in the estimation of the global volcanic CO2 budget.

  11. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China

    NASA Astrophysics Data System (ADS)

    Du, Qiuding; Wang, Zhengjiang; Wang, Jian; Deng, Qi; Yang, Fei

    2016-03-01

    Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U-Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U-Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.

  12. Minerals produced during cooling and hydrothermal alteration of ash flow tuff from Yellowstone drill hole Y-5

    USGS Publications Warehouse

    Keith, T.E.C.; Muffler, L.J.P.

    1978-01-01

    A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + ??-cristobalite ?? tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic ??-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz. Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling. Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been

  13. Voluminous lava-like precursor to a major ash-flow tuff: Low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2000-01-01

    The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (~5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40-60%) of juvenile clasts (to 3-4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5-10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75 x 35 km2 La Garita

  14. Genesis of the post-caldera eastern Upper Basin Member rhyolites, Yellowstone, WY: from volcanic stratigraphy, geochemistry, and radiogenic isotope modeling

    NASA Astrophysics Data System (ADS)

    Pritchard, Chad J.; Larson, Peter B.

    2012-08-01

    An array of samples from the eastern Upper Basin Member of the Plateau Rhyolite (EUBM) in the Yellowstone Plateau, Wyoming, were collected and analyzed to evaluate styles of deposition, geochemical variation, and plausible sources for low δ18O rhyolites. Similar depositional styles and geochemistry suggest that the Tuff of Sulphur Creek and Tuff of Uncle Tom's Trail were both deposited from pyroclastic density currents and are most likely part of the same unit. The middle unit of the EUBM, the Canyon flow, may be composed of multiple flows based on a wide range of Pb isotopic ratios (e.g., 206Pb/204Pb ranges from 17.54 to 17.86). The youngest EUBM, the Dunraven Road flow, appears to be a ring fracture dome and contains isotopic ratios and sparse phenocrysts that are similar to extra-caldera rhyolites of the younger Roaring Mountain Member. Petrologic textures, more radiogenic 87Sr/86Sr in plagioclase phenocrysts (0.7134-0.7185) than groundmass and whole-rock ratios (0.7099-0.7161), and δ18O depletions on the order of 5‰ found in the Tuff of Sulphur Creek and Canyon flow indicate at least a two-stage petrogenesis involving an initial source rock formed by assimilation and fractional crystallization processes, which cooled and was hydrothermally altered. The source rock was then lowered to melting depth by caldera collapse and remelted and erupted. The presence of a low δ18O extra-caldera rhyolite indicates that country rock may have been hydrothermally altered at depth and then assimilated to form the Dunraven Road flow.

  15. Titanite petrochronology in the Fish Canyon Tuff

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Crowley, J. L.

    2014-12-01

    The petrologic complexity of the archtypical 'monotonous intermediate' Fish Canyon Tuff (FCT) has been previously established by a variety of mineralogical and geochemical proxies [1-2], and the unusual storage and eruptive dynamics of the FCT have been delineated by several geochronological studies [3-5]. Titanite is an apparent equilibrium phase in the penultimate FCT magma, and can be linked petrographically to hornblende crystals that preserve up-temperature core-to-rim zoning profiles. As a reactive, trace element-rich phase, we hypothesized that titanite may record an intracrystalline record of magma chamber dynamics. Titanite crystals from the same separate analyzed in [4] were oriented and doubly-polished to yield characteristic wedge-shaped cross-sectional wafers approximately 300 µm in thickness. BSE imaging guided LA-ICPMS analyses of a full suite of trace elements using a 25 µm beam diameter and crater depth on multiple locations across both sides of the wafer. Most titanite crystals are characterized by large variations in trace elements, including at least two generations of REE-enriched, actinide-poor, low Sr, large Eu anomaly cores overgrown by REE-depleted, actinide-rich, high Sr domains with small Eu anomalies and distinctive concave-up middle to heavy REE patterns. Trace element contents and patterns correlate strongly with Eu anomaly; intermediate compositions are abundant and spatially correlated to reaction zones between core and rim domains. Within the context of the batholithic rejuvenation model for the FCT magma [1-2], these trace element variations are interpreted to record the partial melting of a differentiated crystalline FCT precursor and its hybridization with a more 'mafic' flux. ID-TIMS dating of end-member titanites confirm older ages (ca 28.4 to 29.0 Ma) for cores and define a younger age for rejuvenation of ca 28.2 Ma, consistent with recent U-Pb zircon and 40Ar/39Ar studies [5-7]. [1] Bachmann & Dungan (2002) Am Mineral 87

  16. Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions

    NASA Astrophysics Data System (ADS)

    Campagnola, S.; Romano, C.; Mastin, L. G.; Vona, A.

    2016-06-01

    Numerical simulations are useful tools to illustrate how flow parameters and physical processes may affect eruption dynamics of volcanoes. In this paper, we present an updated version of the Conflow model, an open-source numerical model for flow in eruptive conduits during steady-state pyroclastic eruptions (Mastin and Ghiorso in A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open File Report 00-209, 2000). In the modified version, called Confort 15, the rheological constraints are improved, incorporating the most recent constitutive equations of both the liquid viscosity and crystal-bearing rheology. This allows all natural magma compositions, including the peralkaline melts excluded in the original version, to be investigated. The crystal-bearing rheology is improved by computing the effect of strain rate and crystal shape on the rheology of natural magmatic suspensions and expanding the crystal content range in which rheology can be modeled compared to the original version ( Conflow is applicable to magmatic mixtures with up to 30 vol% crystal content). Moreover, volcanological studies of the juvenile products (crystal and vesicle size distribution) of the investigated eruption are directly incorporated into the modeling procedure. Vesicle number densities derived from textural analyses are used to calculate, through Toramaru equations, maximum decompression rates experienced during ascent. Finally, both degassing under equilibrium and disequilibrium conditions are considered. This allows considerations on the effect of different fragmentation criteria on the conduit flow analyses, the maximum volume fraction criterion ("porosity criterion"), the brittle fragmentation criterion and the overpressure fragmentation criterion. Simulations of the pantelleritic and trachytic phases of the Green Tuff (Pantelleria) and of the Plinian Etna 122 BC eruptions are performed to test the upgrades in

  17. Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya; Valley, John

    2002-07-01

    Products of voluminous pyroclastic eruptions with eruptive draw-down of several kilometers provide a snap-shot view of batholith-scale magma chambers, and quench pre-eruptive isotopic fractionations (i.e., temperatures) between minerals. We report analyses of oxygen isotope ratio in individual quartz phenocrysts and concentrates of magnetite, pyroxene, and zircon from individual pumice clasts of ignimbrite and fall units of caldera-forming 0.76 Ma Bishop Tuff (BT), pre-caldera Glass Mountain (2.1-0.78 Ma), and post-caldera rhyolites (0.65-0.04 Ma) to characterize the long-lived, batholith-scale magma chamber beneath Long Valley Caldera in California. Values of δ18O show a subtle 1‰ decrease from the oldest Glass Mountain lavas to the youngest post-caldera rhyolites. Older Glass Mountain lavas exhibit larger ( 1‰) variability of δ18O(quartz). The youngest domes of Glass Mountain are similar to BT in δ18O(quartz) values and reflect convective homogenization during formation of BT magma chamber surrounded by extremely heterogeneous country rocks (ranging from 2 to +29‰). Oxygen isotope thermometry of BT confirms a temperature gradient between "Late" (815 °C) and "Early" (715 °C) BT. The δ18O(quartz) values of "Early" and "Late" BT are +8.33 and 8.21‰, consistent with a constant δ18O(melt)=7.8+/-0.1‰ and 100 °C temperature difference. Zircon-melt saturation equilibria gives a similar temperature range. Values of δ18O(quartz) for different stratigraphic units of BT, and in pumice clasts ranging in pre-eruptive depths from 6 to 11 km (based on melt inclusions), and document vertical and lateral homogeneity of δ18O(melt). Worldwide, five other large-volume rhyolites, Lava Creek, Lower Bandelier, Fish Canyon, Cerro Galan, and Toba, exhibit equal δ18O(melt) values of earlier and later erupted portions in each of the these climactic caldera-forming eruptions. We interpret the large-scale δ18O homogeneity of BT and other large magma chambers as evidence

  18. Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Walker, A. J.; McGarvie, D. W.; Burgess, R.

    2016-08-01

    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations.

  19. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology.

    PubMed

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W

    2017-09-29

    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  20. Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimerz J.; Gwynne, Peter; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca

    2017-01-01

    The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded approximately 1900 CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011-2015) of 0.58% per yr, but large spatial variations are present. Using the nonparametric 'Demons' method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0.''09 to 0.''44 per yr. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities v(sub s) as low as 3600 km per sec (for an assumed distance of 8.5 kpc), much less than v(sub s) = 12,000-13,000 km per sec along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 yr, we measure its increase at 1.3% +/- 0.8% per yr. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.

  1. Male and female Ethiopian and Kenyan runners are the fastest and the youngest in both half and full marathon.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T; Onywera, Vincent O; Zingg, Matthias A; Rosemann, Thomas; Rüst, Christoph A

    2016-01-01

    In major marathon races such as the 'World Marathon Majors', female and male East African runners particularly from Ethiopia and Kenya are the fastest. However, whether this trend appears for female and male Ethiopians and Kenyans at recreational level runners (i.e. races at national level) and in shorter road races (e.g. in half-marathon races) has not been studied yet. Thus, the aim of the present study was to examine differences in the performance and the age of female and male runners from East Africa (i.e. Ethiopians and Kenyans) between half- and full marathons. Data from 508,108 athletes (125,894 female and 328,430 male half-marathoners and 10,205 female and 43,489 male marathoners) originating from 126 countries and competing between 1999 and 2014 in all road-based half-marathons and marathons held in one country (Switzerland) were analysed using Chi square (χ(2)) tests, mixed-effects regression analyses and one-way analyses of variance. In half-marathons, 48 women (0.038 %) and 63 men (0.019 %) were from Ethiopia and 80 women (0.063 %) and 134 men (0.040 %) from Kenya. In marathons, three women (0.029 %) and 15 men (0.034 %) were from Ethiopia and two women (0.019 %) and 33 men (0.075 %) from Kenya. There was no statistically significant association between the nationality of East Africans and the format of a race. In both women and men, the fastest race times in half-marathons and marathons were achieved by East African runners (p < 0.001). Ethiopian and Kenyan runners were the youngest in both sexes and formats of race (p < 0.001). In summary, women and men from Ethiopia and Kenya, despite they accounted for <0.1 % in half-marathons and marathons, achieved the fastest race times and were the youngest in both half-marathons and marathons. These findings confirmed in the case of half-marathon the trend previously observed in marathon races for a better performance and a younger age in East African runners from Ethiopia and Kenya.

  2. Correlation of the Miocene Peach Spring Tuff with the geomagnetic polarity time scale and new constraints on tectonic rotations in the Mojave Desert, California

    USGS Publications Warehouse

    Hillhouse, John W.; Miller, David M.; Turrin, Brent D.

    2010-01-01

    We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Wash, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N = 40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6–C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with

  3. Correlation of the Miocene Peach Spring Tuff with the geomagnetic polarity time scale and new constraints on tectonic rotations in the Mojave Desert, California

    USGS Publications Warehouse

    Hillhouse, John W.; Miller, David M.; Turrin, Brent D.; Reynolds, Robert E.; Miller, David M.

    2010-01-01

    We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Walsh, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N=40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6-C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with

  4. Oxygen isotope and trace element evidence for three-stage petrogenesis of the youngest episode (260-79 ka) of Yellowstone rhyolitic volcanism

    NASA Astrophysics Data System (ADS)

    Loewen, Matthew W.; Bindeman, Ilya N.

    2015-10-01

    We report the first high-precision δ18O analyses of glass, δ18O of minerals, and trace element concentrations in glass and minerals for the 260-79 ka Central Plateau Member (CPM) rhyolites of Yellowstone, a >350 km3 cumulative volume of lavas erupted inside of 630 ka Lava Creek Tuff (LCT) caldera. The glass analyses of these crystal-poor rhyolites provide direct characterization of the melt and its evolution through time. The δ18Oglass values are low and mostly homogeneous (4.5 ± 0.14 ‰) within and in between lavas that erupted in four different temporal episodes during 200 ka of CPM volcanism with a slight shift to lower δ18O in the youngest episode (Pitchstone Plateau). These values are lower than Yellowstone basalts (5.7-6 ‰), LCT (5.5 ‰), pre-, and extracaldera rhyolites (~7-8 ‰), but higher than the earliest 550-450 ka post-LCT rhyolites (1-2 ‰). The glass δ18O value is coupled with new clinopyroxene analyses and previously reported zircon analyses to calculate oxygen isotope equilibration temperatures. Clinopyroxene records >900 °C near-liquidus temperatures, while zircon records temperatures <850 °C similar to zircon saturation temperature estimates. Trace element concentrations in the same glass analyzed for oxygen isotopes show evidence for temporal decreases in Ti, Sr, Ba, and Eu—related to Fe-Ti oxide and sanidine (±quartz) crystallization control, while other trace elements remain similar or are enriched through time. The slight temporal increase in glass Zr concentrations may reflect similar or higher temperature magmas (via zircon saturation) through time, while previosuly reported temperature decreases (e.g., Ti-in-quartz) might reflect changing Ti concentrations with progressive melt evolution. Multiple analyses of glass across single samples and in profiles across lava flow surfaces document trace element heterogeneity with compatible behavior of all analyzed elements except Rb, Nb, and U. These new data provide evidence for a

  5. Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Gwynne, Peter; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca

    2017-03-01

    The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded ˜1900 CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011-2015) of 0.58% yr-1, but large spatial variations are present. Using the nonparametric “Demons” method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0\\buildrel{\\prime\\prime}\\over{.} 09 to 0\\buildrel{\\prime\\prime}\\over{.} 44 yr-1. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities v s as low as 3600 km s-1 (for an assumed distance of 8.5 kpc), much less than v s = 12,000-13,000 km s-1 along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 yr, we measure its increase at 1.3 % +/- 0.8 % yr-1. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.

  6. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer

    USGS Publications Warehouse

    Reid, M.R.; Vazquez, J.A.; Schmitt, A.K.

    2011-01-01

    Zircon has the outstanding capacity to record chronological, thermal, and chemical information, including the storage history of zoned silicic magma reservoirs like the one responsible for the Bishop Tuff of eastern California, USA. Our novel ion microprobe approach reveals that Bishop zircon rims with diverse chemical characteristics surround intermediate domains with broadly similar compositions. The highest Y, REE, U, and Th concentrations tend to accompany the largest excesses in Y + REE3+:P beyond what can be explained by xenotime substitution in zircon. Apparent Ti-in-zircon temperatures of <720??C for zircon rims are distinctly lower than most of the range in eruption temperatures, as estimated from FeTi-oxide equilibria and zircon solubility at quench. While permissive of crystallization of zircon at near-solidus conditions, the low Ti-in-zircon temperatures are probably better explained by sources of inaccuracy in the temperature estimates. After apparently nucleating from different melts, zircons from across the Bishop Tuff compositional spectrum may have evolved to broadly similar chemical and thermal conditions and therefore it is possible that there was no significant thermal gradient in the magma reservoir at some stage in its evolution. There is also no compelling evidence for punctuated heat ?? chemical influxes during the intermediate stages of zircon growth. Judging by the zircon record, the main volume of the erupted magma evolved normally by secular cooling but the latest erupted portion is characterized by a reversal in chemistry that appears to indicate perfusion of the magma reservoir by-or zircon entrainment in-a less evolved melt from the one in which the zircons had previously resided. ?? 2010 Springer-Verlag.

  7. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    USGS Publications Warehouse

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range

  8. Astronomy4Kids: Extending STEM learning to the youngest student through an online educational outreach program

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L.; Pearson, Sarah R.

    2017-06-01

    Astronomy4Kids is an online video series aimed at filling the void of effective and engaging education tools within early childhood learning. Much discussion and research has been conducted on the significance of early learning, with general trends showing significant benefits to early introductions to language, mathematics, and general science concepts. Ultimately, when ideas are introduced to a child at a young age, that child is better prepared for when the concept is re-introduced in its entirety later. National agencies—such as the AAS and NSF—have implemented Science, Technology, Engineering, and Math (STEM) initiatives to expand learning in these areas. However, despite these many resources, the education outreach available to the youngest learners (under the age of 8 or those from pre-school to about 2nd-grade) is seriously lacking. Astronomy4Kids was created to bridge this gap and provide succinct, creative-learning videos following the principles of Fred Rogers, the founder of preschool education video. We present ways to incorporate the freely accessible YouTube videos within various classroom ages and discuss how to use simple activities to promote physics, astronomy, and math learning. Current development, video statistics, and future work will be discussed. The freely accessible videos can be found at www.astronomy4kids.net.

  9. SHARAD Penetrates Only the Youngest Geological Units on Mars

    NASA Astrophysics Data System (ADS)

    Stillman, D.; Grimm, R. E.

    2009-12-01

    The SHAllow RADar (SHARAD) instrument on the Mars Reconnaissance Orbiter was intended to receive echoes from up to 1 km deep in the rocky martian subsurface. Such deep penetration only occurs in the icy polar caps and in certain ice-rich units. In fact, over the majority of the rocky units of Mars, only surface echoes are detected. Therefore, rocky units are more attenuating than expected. To gain insight into the cause of this attenuation, we correlated SHARAD subsurface reflectors with a geologic map of the northern plains of Mars [Tanaka et al., 2005]. Our survey was restricted to this area due to general smoother topography and hence less potential influence of surface scattering (clutter). All released SHARAD data (approximately 1,500 radargrams) overlying the geologic map were individually interpreted. Geologic units were categorized by their map description into ice-rich, pristine volcanic, and water-altered units. The last category comprises units interpreted to be fluvial, lacustrine, or periglacial in origin, as well as volcanic and other units that were subsequently altered by water or ice. Radar reflections in each unit were further categorized as abundant, occasional, or none. We found that abundant reflections are only detected in geologic units that are Amazonian in age, and ice-rich or pristine volcanic. No reflections are seen in water altered units. Occasional reflections are detected in Hesperian-aged pristine volcanic units. We propose two endmember hypotheses for this attenuation behavior, scattering and absorption, but they could act jointly. The young pristine volcanic units that SHARAD penetrates consist of thick (about 50 m) flood basalts or tuff. These units are expected to have cooling joints in them, but little if any other heterogeneity; therefore their scattering loss should be small. With increasing age and thermoelastic stress due to global cooling and contraction, these previously homogeneous volcanics could become increasingly

  10. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.

  11. The Widespread Distribution of Komatiitic Tuffs in the 3.3 Ga Weltevreden Formation, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Thompson, M. E.; Lowe, D. R.; Byerly, G. R.

    2007-12-01

    The 3.5-3.2 Ga Barberton greenstone belt is a heavily deformed, 10-15 km thick succession of volcanic and sedimentary rocks representing one of the best preserved Paleoarchean supracrustal sequences known. It consists of the basal volcanic-dominated Onverwacht Group and the overlying sedimentary-dominated Fig Tree and Moodies Groups. Major volcanic rocks in the BGB include komatiites, tholeiitic basalts, and dacites. Although flow rocks and fragmental deposits have been identified representing all extrusive magma types, the abundance of komatiitic volcaniclastic units is remarkable considering the mechanical difficulties in explosively erupting low viscosity ultramafic lava. In the Onverwacht Group, most komatiitic tuffs contain 85-95 wt% SiO2, due to early silicification, and very low concentrations of most other elements, making original compositions somewhat uncertain. However, in the northernmost part of the BGB, north of the Inyoka Fault, the ~ 3.3 Ga Weltevreden Formation is composed largely of komatiitic flow rocks, tuffs, layered ultramafic complexes, and subordinate black and banded cherts. Previous studies have established the extrusive nature of the komatiites, but there are also many thick interlayered slaty units, previously interpreted as sheared flow rocks, which show cross-bedding, soft-sediment deformation, and other features indicating an alternate derivation. These units range from 2 to 80 m thick and may represent 10% or more of the overall stratigraphy of the Weltevreden Formation. They are characterized by low-temperature serpentinization that has commonly preserved original elemental abundances, enabling a more precise determination of primary komatiitic liquid composition. These rocks are magnesium rich, with MgO ranging from 23 to 36 wt%, and high Ni (~1500 ppm) and Cr (~2600 ppm) contents typical of komatiites. Several possible mechanisms could have produced these rocks, including (1) erosion and transport of pre-existing komatiitic flow

  12. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Konynenburg, R.A.; Kundig, K.J.A.; Lyman, W.S.

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  13. Probing Cloud-Driven Variability on Two of the Youngest, Lowest-Mass Brown Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Schneider, Adam; Cushing, Michael; Kirkpatrick, J. Davy

    2016-08-01

    Young, late-type brown dwarfs share many properties with directly imaged giant extrasolar planets. They therefore provide unique testbeds for investigating the physical conditions present in this critical temperature and mass regime. WISEA 1147-2040 and 2MASS 1119-1137, two recently discovered late-type (~L7) brown dwarfs, have both been determined to be members of the ~10 Myr old TW Hya Association (Kellogg et al. 2016, Schneider et al. 2016). Each has an estimated mass of 5-6 MJup, making them two of the youngest and lowest-mass free floating objects yet found in the solar neighborhood. As such, these two planetary mass objects provide unparalleled laboratories for investigating giant planet-like atmospheres far from the contaminating starlight of a host sun. Condensate clouds play a critical role in shaping the emergent spectra of both brown dwarfs and gas giant planets, and can cause photometric variability via their non-uniform spatial distribution. We propose to photometrically monitor WISEA 1147-2040 and 2MASS 1119-1137 in order to search for the presence of cloud-driven variability to 1) investigate the potential trend of low surface gravity with high-amplitude variability in a previously unexplored mass regime and 2) explore the angular momentum evolution of isolated planetary mass objects.

  14. Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba

    NASA Astrophysics Data System (ADS)

    Glass, Billy P.; Koeberl, Christian

    2006-02-01

    thickness of the ejecta layer at each site and distance from the proposed source. A volcanic ash layer occurs just above the Australasian microtektite layer, which some authors suggest is from a supereruption of the Toba caldera complex. We estimate that deposition of the ash occurred ˜800 ka ago and that it is spread over an area of at least 3.7 × 107 km2.

  15. An ion microprobe study of individual zircon phenocrysts from voluminous post-caldera rhyolites of the Yellowstone caldera

    NASA Astrophysics Data System (ADS)

    Watts, K. E.; Bindeman, I. N.; Schmitt, A. K.

    2010-12-01

    Following the formation of the Yellowstone caldera from the 640 ka supereruption of the Lava Creek Tuff (LCT), a voluminous episode of post-caldera volcanism filled the caldera with >600 km3 of low-δ18O rhyolite. Such low-δ18O signatures require remelting of 100s of km3 of hydrothermally altered (18O-depleted) rock in the shallow crust. We present a high resolution oxygen isotope and geochronology (U-Th and U-Pb) study of individual zircon crystals from seven of these voluminous post-caldera rhyolites in order to elucidate their genesis. Oxygen isotope and geochronology analyses of zircon were performed with an ion microprobe that enabled us to doubly fingerprint 25-30 µm diameter spots. Host groundmass glasses and coexisting quartz were analyzed in bulk for oxygen isotopes by laser fluorination. We find that zircons from the youngest (200-80 ka) post-caldera rhyolites have oxygen isotopic compositions that are in equilibrium with low-δ18O host groundmass glasses and quartz and are unzoned in oxygen and U-Th age. This finding is in contrast to prior work on older (500-250 ka) post-caldera rhyolites, which exhibit isotopic disequilibria and age zoning, including the presence of clearly inherited zircon cores. Average U-Th crystallization ages and δ18O zircon values for Pitchstone Plateau flow (81±7 ka, 2.8±0.2‰), West Yellowstone flow (118±8 ka, 2.8±0.1‰), Elephant Back flow (175±22 ka, 2.7±0.2‰) and Tuff of Bluff Point (176±20 ka, 2.7±0.1‰) are overlapping or nearly overlapping in age and identical in oxygen isotope composition within uncertainty (2 SE). New U-Pb geochronology and oxygen isotope data for the North Biscuit Basin flow establish that it has an age (188±33 ka) and δ18O signature (2.8±0.2‰) that is distinctive of the youngest post-caldera rhyolites. Conversely, the South Biscuit Basin flow has a heterogeneous zircon population with ages that range from 550-250 ka. In this unit, older and larger (200-400 µm) zircons have more

  16. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska

    USGS Publications Warehouse

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.

    1983-01-01

    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  17. Properties of Vulcanized Polyisoprene Rubber Composites Filled with Opalized White Tuff and Precipitated Silica

    PubMed Central

    Zeković, Ivana; Marinović-Cincović, Milena

    2014-01-01

    Opalized white tuff (OWT) with 40 μm average particle size and 39.3 m2/g specific surface area has been introduced into polyisoprene rubber (NR). Their reinforcing effects were evaluated by comparisons with those from precipitated silica (PSi). The cure characteristic, apparent activation energy of cross-link (E ac) and reversion (E ar), and mechanical properties of a variety of composites based on these rubbers were studied. This was done using vulcanization techniques, mechanical testing, and scanning electron microscopy (SEM). The results showed that OWT can greatly improve the vulcanizing process by shortening the time of optimum cure (t c90) and the scorch time (t s2) of cross-linked rubber composites, which improves production efficiency and operational security. The rubber composites filled with 50 phr of OWT were found to have good mechanical and elastomeric properties. The tensile strengths of the NR/OWT composites are close to those of NR/PSi composites, but the tear strength and modulus are not as good as the corresponding properties of those containing precipitated silica. Morphology results revealed that the OWT is poorly dispersed in the rubber matrix. According to that, the lower interactions between OWT and polyisoprene rubber macromolecules are obtained, but similar mechanical properties of NR/OWT (100/50) rubber composites compared with NR/PSi (100/50) rubber composites are resulted. PMID:24672391

  18. Erratum to ``Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture (Southern Italy): The Monticchio Lakes Formation'' [Journal of Volcanology and Geothermal Research 78 (1997) 251 265

    NASA Astrophysics Data System (ADS)

    Stoppa, Francesco; Principe, Claudia

    1998-01-01

    The Monticchio Lakes Formation (MLF) is a newly identified carbonatite-melilitite tuff sequence which is exposed in the southwestern sector of the Vulture volcano. It is the youngest example (ca. 0.13 m.y.) of this type of volcanism in Italy, although other carbonatites of smaller volume, but with similar characteristics, have been discovered recently. This volcanic event occurred in isolation after a 0.35 m.y. period of inactivity at Vulture. The eruption produced two maar-type vents and formed tuff aprons mainly composed of dune beds of lapilli. Depositional features suggest that a dry surge mechanism, possibly triggered by CO 2 expansion, was dominant during tuff emplacement. The MLF event involved a mixture of carbonatite and melilitite liquids which were physically separated before the eruption. Abundant mantle xenoliths are direct evidence of the deep-seated origin of the parental magma and its high velocity of propagation towards the surface. Often, these nodules form the core of lapilli composed of concentric shells of melilitite and/or porphyritic carbonatite. Coarse-ash beds alternate with lapilli beds and consist of abundant lumps and spherulae of very fine-grained calcite immersed in a welded, highly compacted carbonatite matrix. Porphyritic carbonatite shells of the lapilli and fine-grained spherulae of calcite in the tuff matrix suggest incipient crystallisation of a carbonatite liquid in subvolcanic conditions and eruption of carbonatite-spray droplets. Dark coloured juvenile fragments mainly consist of melilite, phlogopite, calcite, apatite, perovskite, and häuyne crystals in a carbonatite or melilitite matrix. The rocks have an extremely primitive, ultramafic composition with very high Mg# (> 85) and Cr and Ni content (1500 ppm). The calcite contains high SrO, BaO and REE of up to 1.5 wt.%. Similar compositions are typical of primary, magmatic carbonates which are found in both intrusive and extrusive carbonatites. The high modal Sr

  19. The bishop tuff: New insights from eruptive stratigraphy

    USGS Publications Warehouse

    Wilson, C.J.N.; Hildreth, W.

    1997-01-01

    The 0.76 Ma Bishop Tuff, from Long Valley caldera in eastern California, consists of a widespread fall deposit and voluminous partly welded ignimbrite. The fall deposit (F), exposed over an easterly sector below and adjacent to the ignimbrite, is divided into nine units (F1-F9), with no significant time breaks, except possibly between F8 and F9. Maximum clast sizes are compared with other deposits where accumulation rates are known or inferred to estimate an accumulation time for F1-F8 as ca. 90 hrs. The ignimbrite (Ig) is divided into chronologically and/or geographically distinct packages of material. Earlier packages (Ig1) were emplaced mostly eastward, are wholly intraplinian (coeval with fall units F2-F8), lack phenocrystic pyroxenes, and contain few or no Glass Mountain-derived rhyolite lithic fragments. Later packages (Ig2) were erupted mostly to the north and east, are at least partly intraplinian (interbedded with fall unit F9 to the east), contain pyroxenes, and have lithic fractions rich in Glass Mountain-derived rhyolite or other lithologies exposed on the northern caldera rim. Recognition of the intraplinian nature of Ig1 east of the caldera and use of the fall deposit chronometry yields accumulation estimates of ca. 25 hrs for an earlier, less-welded subpackage and ca. 36 hrs for a later, mostly welded subpackage. Average accumulation rates range up to ???1 mm/s of densewelded massive ignimbrite, equivalent to ???2.5 mm/s of non-welded material. Comparisons of internal stratification in Ig1 and northern Ig2 lobes suggest the thickest northern ignimbrite accumulated in ???35 hrs. Identifiable vent positions migrated from an initial site previously proposed in the south-central part of the caldera (F1-8, Ig1) in complex fashion; one vent set (for eastern Ig2) migrated east and north toward Glass Mountain, while another set (for northern Ig2) opened from west to east across the northern caldera margin. Vent locations for Ig1 and Ig2 southwest of the

  20. Compaction and gas loss in welded pyroclastic deposits as revealed by porosity, permeability, and electrical conductivity measurements of the Shevlin Park Tuff

    USGS Publications Warehouse

    Wright, Heather M.; Cashman, Katharine V.

    2014-01-01

    Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and

  1. Comparing pre- and post-chemical abrasion ages for Miocene Peach Springs Tuff zircon from ID-TIMS and SIMS analyses

    NASA Astrophysics Data System (ADS)

    Lidzbarski, M. I.; Mundil, R.; Miller, J. S.; Vazquez, J. A.

    2012-12-01

    The Miocene Peach Spring Tuff (PST) is a voluminous (>600 km3), zoned ignimbrite (trachyte to high-SiO2 rhyolite) that is exposed widely in eastern California, western Arizona, and southernmost Nevada, which was erupted from the Silver Creek caldera in the southwestern Black Mountains, AZ. PST serves as a regionally widespread marker unit and its eruption age has been determined to 18.8 to 18.9 Ma by 40Ar/39Ar methods, when corrected for systematic bias and normalized to the U-Pb system (Renne et al., 2010,). We performed ion-microprobe (SIMS) U-Pb dating of zircon from individual pumice clasts from PST to evaluate the growth history of zircon in the PST magma system. Sectioned, polished zircon from conventional epoxy mounts allows dating of internal growth domains (e.g. cores, interiors, and near-rim), whereas mounting unpolished zircon in indium and analyzing unpolished crystal faces provides a means to selectively sample the final increments of crystal growth (Reid and Coath, 2000). Combining U-Pb ages of unpolished zircon rims with near-rim interior analyses on sectioned grains yields a mean age of ca. 18.3 Ma, whereas ages of cores of sectioned crystals yield a mean of ca. 18.9 Ma. Several zircons have rim and/or core ages that are several hundred thousand years older or younger than these means (up to 1 m.y. total spread), although the uncertainties for individual SIMS ages are 2 to 5% (2 sigma uncertainty). Therefore, the distribution of ages is challenging to resolve. A modest number of the older grains are plausibly recycled antecrysts, but we suspect that the youngest zircons may have experienced Pb-loss. Failure to account for the possibility of inheritance and Pb-loss may lead to erroneous interpretations about crystallization in the PST system. In order to evaluate and mitigate the effects of Pb-loss, we employed the chemical abrasion (CA) technique of Mattinson (2005), which effectively eliminates domains in zircon that have suffered Pb-loss, and

  2. Flow-path textures and mineralogy in tuffs of the unsaturated zone

    USGS Publications Warehouse

    Levy, Schön; Chipera, Steve; WoldeGabriel, Giday; Fabryka-Martin, June; Roach, Jeffrey; Sweetkind, Donald S.; Haneberg, William C.; Mozley, Peter S.; Moore, J. Casey; Goodwin, Laurel B.

    1999-01-01

    The high concentration of chlorine-36 (36Cl) produced by above-ground nuclear tests (bomb-pulse) provides a fortuitous tracer for infiltration during the last 50 years, and is used to detect fast flow in the unsaturated zone at Yucca Mountain, Nevada, a thick deposit of welded and nonwelded tuffs. Evidence of fast flow as much as 300 m into the mountain has been found in several zones in a 7.7-km tunnel. Many zones are associated with faults that provide continuous fracture flow paths from the surface. In the Sundance fault zone, water with the bomb-pulse signature has moved into subsidiary fractures and breccia zones. We found no highly distinctive mineralogic associations of fault and fracture samples containing bomb-pulse 36Cl. Bomb-pulse sites are slightly more likely to have calcite deposits than are non-bomb-pulse sites. Most other mineralogic and textural associations of fast-flow paths reflect the structural processes leading to locally enhanced permeability rather than the effects of ground-water percolation. Water movement through the rock was investigated by isotopic analysis of paired samples representing breccia zones and fractured wall rock bounding the breccia zones. Where bomb-pulse 36Cl is present, the waters in bounding fractures and intergranular pores of the fast pathways are not in equilibrium with respect to the isotopic signal. In structural domains that have experienced extensional deformation, fluid flow within a breccia is equivalent to matrix flow in a particulate rock, whereas true fracture flow occurs along the boundaries of a breccia zone. Where shearing predominated over extension, the boundary between wall rock and breccia is rough and irregular with a tight wallrock/breccia contact. The absence of a gap between the breccia and the wall rock helps maintain fluid flow within the breccia instead of along the wallrock/breccia boundary, leading to higher 36Cl/Cl values in the breccia than in the wall rock.

  3. A field guide to Newberry Volcano, Oregon

    USGS Publications Warehouse

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  4. A cross correlation method for chemical profiles in minerals, with an application to zircons of the Kilgore Tuff (USA)

    NASA Astrophysics Data System (ADS)

    Probst, L. C.; Sheldrake, T. E.; Gander, M. J.; Wallace, G.; Simpson, G.; Caricchi, L.

    2018-03-01

    Magmatic crystals are characterised by chemical zonation patterns that reflect the thermal and chemical conditions within magma reservoirs in which they grew. Crystals that exhibit similar patterns of zonation are often interpreted to have experienced similar conditions of growth. These patterns of zonation may represent continuous processes such as cooling, or more instantaneous events such as magma injection, and provide an insight into the structure and evolution of a magmatic system, both temporally and spatially. We have developed an algorithm that is objectively able to quantify the similarity within and between suites of magmatic crystals from different samples. Significantly, the algorithm is able to identify correlation that occurs between the interiors of two crystals, but does not extend to the rim, which provides an opportunity to understand the long-term evolution of magmatic systems. We develop and explain the mathematical basis for our algorithm and introduce its application using cathodoluminescence images of zircons from the Kilgore Tuff (USA). The results allow us to correlate samples from two different outcrops that are found over 80 km apart.

  5. Point prevalence of bovine fascioliasis and the influence of chemotherapy on the milk yield in a lactating bovine population from the district of Toba Tek Singh, Pakistan.

    PubMed

    Khan, M K; Sajid, M S; Khan, M N; Iqbal, Z; Arshad, M; Hussain, A

    2011-09-01

    This paper provides an estimation of the point prevalence of fascioliasis and its economic impact in terms of increased milk yield after chemotherapy of a bovine population from the district of Toba Tek Singh, Punjab, Pakistan. A total of 2400 cattle and buffaloes were examined quantitatively using the McMaster egg-counting technique. Infected cattle and buffaloes (50 of each) were randomly selected and each divided into two groups of 25 animals. Groups A (buffaloes) and C (cattle) were treated with oxyclozanide (orally, 16.6 mg kg- 1 body weight). Groups B and D served as negative controls for buffaloes and cattle, respectively. Pre- and post-treatment milk yield was recorded to determine if there were any changes in milk yield after treatment. Of 2400 faecal samples analysed, 654 (27.25%) were positive for Fasciola spp. with a mean number of eggs per gram (EPG) of 503.2. The point prevalence and worm burden of fascioliasis was significantly higher (OR = 2.13; P < 0.05) in buffaloes (34.58%; 415/1200; mean EPG maximum likelihood = 521.4) as compared to that of cattle (19.92%; 239/1200; mean EPG maximum likelihood = 415.8). Among the parasite species, F. gigantica (19.88%; 477/2400) was predominant (OR = 3.12; P < 0.05) as compared to F. hepatica (7.38%; 177/2400). An average daily increase of 0.67 and 0.87 litres of milk, with 0.41% and 0.37% more fat per animal, was observed in oxyclozanide-treated buffaloes and cattle, respectively. The economic value of reduced production of infected animals was estimated as US$0.33 and 0.32 per animal per day for cattle and buffaloes, respectively.

  6. Preliminary evaluation of hydrologic properties of cores of unsaturated tuff, test well USW H-1, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Weeks, E.P.; Wilson, W.E.

    1984-01-01

    Analyses were made on 19 core samples of unsaturated tuff from test well USW H-1. Moisture-characteristic curves relating saturation and moisture tension were developed from results of mercury-injection tests. Ambient moisture tension estimated from these curves generally was 1 to 2 bars. Values of relative permeability ranging from about 0.002 to 0.1 were determined by fitting an analytical expression to eight of the moisture-characteristic curves, and then integrating to solve for relative permeability. These values of relative permeability were applied to values of saturated hydraulic conductivity of core from a nearby test well to obtain effective hydraulic conductivities of about 8 x 10 to the minus twelfth power to 7 x 10 to the minus tenth power centimeter per second. If a unit hydraulic-head gradient is assumed, these values convert to a vertial matrix flux of 0.003 to 0.2 millimeter per year. The validity of this assumption was not verified due to the sparseness of data and uncertainties in their reliability. Consequently, the results of this study are preliminary and need to be used principally as a guide for future studies. (USGS)

  7. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles.

    PubMed

    Montiel, E E; Badenhorst, D; Tamplin, J; Burke, R L; Valenzuela, N

    2017-02-01

    Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8-20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1-a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.

  8. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less

  9. Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    NASA Technical Reports Server (NTRS)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; deBruyn, A. G.; hide

    2012-01-01

    On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M(raised dot) less than or equal to 10(exp -8) (w /100 kilometers per second ) solar mass yr(exp -1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.

  10. Measurements of matric and water potentials in unsaturated tuff at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thamir, F.; McBride, C.M.

    1985-12-31

    Two types of instruments were installed in a borehole in order to monitor matric and water potentials of various hydrogeologic units consisting of tuff. The borehole was drilled as part of a study to provide information to the US Department of Energy for their use in evaluating Yucca Mountain, Nevada, for a repository for high-level radioactive waste. Heat-dissipation probes were used to monitor matric potentials and thermocouple psychrometers were used to monitor water potentials. Two major concerns regarding the use of these instruments in deep boreholes are: (1) the effect of length of the lead wires, and (2) the inabilitymore » to recalibrate the instruments after installation. The length of the lead wire contributes to the source resistance and lead capacitance, which affects the signal settling time. Both instruments tested proved to be insensitive to lead-wire length, except when connected to smaller input-impedance data loggers. Thermocouple wires were more sensitive than heat-dissipation probe wires because of their greater resistance and quality of voltmeters used. Two thermocouple psychrometers were installed at every instrument station for backup and verification of data, because the instruments could not be recalibrated in situ. Multiple scanning rather than single-point scanning of the evaporation curve of a thermocouple psychrometer could give more reliable data, especially in differentiating between very wet and very dry environments. An isolated power supply needs to be used for each heat dissipation probe rather than a single power supply for a group of probes to avoid losing data from all probes when one probe malfunctions. This type of system is particularly desirable if the site is unattended by an operator for as long as a month. 20 refs., 13 figs., 2 tabs.« less

  11. Evolution Of An Upper Crustal Plutonic-Volcanic Plumbing System:Insights From High Precision U-Pb Zircon Geochronology Of Intracaldera Tuff And Intrusions In Silver Creek Caldera, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Mundil, R.; Miller, C. F.; Miller, J. S.; Paterson, S. R.

    2010-12-01

    Study of both plutonic and volcanic regimes in one single magmatic system is a powerful approach towards obtaining a more complete view of the long-term evolution of magma systems. The recently discovered Silver Creek caldera is the source of the voluminous Peach Spring Tuff (PST) (Ferguson, 2008) and presents a unique opportunity to study a field laboratory of a linked plutonic-volcanic system. This relict west-facing half caldera is predominantly filled with trachytic intracaldera tuff with the caldera margin intruded by several petrologically distinct hypabyssal intrusions. These include porphyritic granite with granophyric texture, felsic leucogranite, porphyritic monzonite exposed on NE side of the caldera that is zoned from more felsic to more mafic, and quartz-phyric dikes that intrude the caldera fill. We present preliminary single zircon ages from 4 samples that have been analyzed using the CA-TIMS method after thermal annealing and chemical leaching (Mattinson 2005), including 1 sample from intracaldera tuff and 3 samples from caldera-related intrusions. 3-D total U/Pb isochron ages from all four samples fall within a range of 18.32-18.90 Ma with uncertainties between 0.09 and 0.39 Ma, although some of them lack precision and are compromised by elevated common Pb. For example, zircon from the dated porphyritic monzonite yields an age of 18.32±0.42 Ma (MSWD=2.7) where the excess scatter may result from real age dispersion and/or different compositions of the common Pb contribution. The PST had been dated to ~18.5 Ma by 40Ar/39Ar techniques (Nielson et al., 1990). In order to be compared to U/Pb ages the 40Ar/39Ar age must be adjusted for a revised age for the then used flux monitor (MMbh-1) and corrected for the now quantified systematic bias between 40Ar/39Ar and U/Pb ages (Renne et al., 2010), which results in a corrected age of 18.8 Ma. Thus, the ages for our samples match that of the PST within error. Based on current results, the age difference

  12. Hydrovolcanic and Hydrothermal Biomediated Mineral Growth in Basaltic Tuff, Surtsey Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, M. D.; Couper, S.; Ivarsson, M.; Stan, C. V.; Tamura, N.; Miyagi, L. M.; Moore, J. G.

    2017-12-01

    Fine-scale analyses of hydroclasts in 1979 Surtsey basaltic tuff drill core provide new methods for examining hydrovolcanic and hydrothermal magma-rock influences on biomediated alteration in palagonitized submarine tephra. Synchrotron source X-ray microdiffraction and microfluorescence studies from Advanced Light Source beamline 12.3.2, epifluorescent UVA illumination microscopy, S/TEM EDX compositional analyses, and Raman spectroscopy define diverse nanocrystalline clay mineral structures at 137.9 m depth (93.8 °C (1980)) and 102.6 m depth (141.3 °C (1980)). At 137.9 m, olivine contains endolithic microborings; vermicular microstructures in altered glass contain nontronite exhibiting crystallographic preferred orientation; and 75-150 µm sub-circular microstructures in altered glass contain Al-tobermorite, a calcium-silicate-hydrate with 11.3 Å interlayer spacing, zeolite, and epifluorescent, thread-like structures. At 102.6 m depth, concentrically-layered microstructures occur in altered glass and altered olivine. These have nontronite crystallographic preferred orientations that rotate around a longitudinal axis commonly occupied by a 10-80 µm long, epifluorescent thread-like structure. Pronounced carbon concentrations detected by S/TEM EDX trace layer boundaries. First-order Raman bands at 1370 cm-1 (disorder-related) and at 1580 cm-1 (order-related), and second-order bands at 2500-3300 cm-1 (overtone scattering) detect degraded organic carbonaceous matter, a strong indication of biological origin. Sub-circular nanostructures in altered glass at 137.9 m depth show similar spectra. Borehole fluid temperatures at 102.6 m, 141.3 °C in 1980, exceeded 130 °C, the assumed limit for growth of microorganisms, however. Previous analyses suggest an early low temperature episode in submarine deposits, prior to development of a hydrothermal system driven by 1964-1967 magmatic intrusions. The abundant traces of biomediated nanocrystalline clay mineral growth validate

  13. Employing volcanic tuff minerals in interior architecture design to reduce microbial contaminants and airborne fungal carcinogens of indoor environments.

    PubMed

    Gedikoglu, Yaman; Gedikoglu, Gunduz; Berkin, Genco; Ceyhan, Taskin; Altinoz, Meric A

    2012-09-01

    Indoor volatile organic compounds (VOCs) have posed significant risks to human health since people have both shifted to a life spent, for the most part, indoors. Further, changes in materials used in the construction of buildings, furnishings, and tools either leak or encourage the production of VOCs. Whether these enclosed areas are residences, hospitals or workplaces (specifically composting facilities or closed farm buildings for raising livestock), VOCs can rise to levels that threaten people's health. VOCs can either originate from phenolic and benzene-like compounds in building materials and office furniture or from molds (fungi) growing inside improperly ventilated or sealed buildings. Regardless of the source, exposure to VOCs could lead to significant health concerns from sick-building syndrome, 'leukemia houses,' in-hospital fungemia cases or occupation-associated cancer epidemics due to aflatoxicosis. Innovative 21st-century building materials could offer solutions to these challenges. We propose that volcanic materials, clays and minerals (volcanic tuff, modified clay montmorillonite and mineral clinoptilolite), in their original or chemically modified form, could act like synthetic lungs in building walls, breathing and filtering VOCs, and thus limiting human exposure to disease.

  14. Youngest Stellar Explosion in Our Galaxy Discovered

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have found the remains of the youngest supernova, or exploded star, in our Galaxy. The supernova remnant, hidden behind a thick veil of gas and dust, was revealed by the National Science Foundation's Very Large Array (VLA) and NASA's Chandra X-Ray Observatory, which could see through the murk. The object is the first example of a "missing population" of young supernova remnants. 1985 and 2008 VLA Images Move cursor over image to blink. VLA Images of G1.9+0.3 in 1985 and 2008: Circle for size comparison. CREDIT: Green, et al., NRAO/AUI/NSF From observing supernovae in other galaxies, astronomers have estimated that about three such stellar explosions should occur in our Milky Way every century. However, the most recent one known until now occurred around 1680, creating the remnant called Cassiopeia A. The newly-discovered object is the remnant of an explosion only about 140 years ago. "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions in the Milky Way that are younger than Cassiopeia A," said David Green of the University of Cambridge in the UK, who led the VLA study. "It's great to finally track one of them down." Supernova explosions, which mark the violent death of a star, release tremendous amounts of energy and spew heavy elements such as calcium and iron into interstellar space. They thus seed the clouds of gas and dust from which new stars and planets are formed and, through their blast shocks, can even trigger such formation. The lack of evidence for young supernova remnants in the Milky Way had caused astronomers to wonder if our Galaxy, which appears otherwise normal, differed in some unknown way from others. Alternatively, scientists thought that the "missing" Milky Way supernovae perhaps indicated that their understanding of the relationship between supernovae and other galactic processes was in error. The astronomers made their discovery by measuring the expansion of the debris from

  15. U-Pb ages of secondary silica at Yucca Mountain, Nevada: Implications for the paleohydrology of the unsaturated zone

    USGS Publications Warehouse

    Neymark, L.A.; Amelin, Y.; Paces, J.B.; Peterman, Z.E.

    2002-01-01

    Uranium, Th and Pb isotopes were analyzed in layers of opal and chalcedony from individual mm- to cm-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of 206Pb/204Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotope systems in opal samples at Yucca Mountain are complicated by the incorporation of excess 234U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the 207PB/235U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, 207Pb/235U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. 234U and 230Th in most silica layers deeper in the coatings are in secular equilibrium with 238U, which is consistent with their old age and closed system behavior during the past -0.5 Ma. The ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average growth rates of 1 to 5 mm/Ma. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability

  16. Dating the Naisiusiu Beds, Olduvai Gorge, by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Skinner, A. R.; Hay, R. L.; Masao, F.; Blackwell, B. A. B.

    2003-05-01

    The lower beds at Olduvai Gorge are well known for containing early hominid fossils and Oldowan stone tools, and their ages have been established by 40Ar/ 39Ar dating and paleomagnetic stratigraphy. Ages are generally less certain for the upper deposits at Olduvai Gorge because of the scarcity of datable tuffs. The youngest archaeologically significant site at Olduvai is microlithic LSA, which lies in the type section of the Naisiusiu Beds. The age for the site is controversial, with 14C dates of 17,000-17,550 (Hay, R.L., 1976 Geology of Olduvai Gorge, University of California Press, Berkeley) and >42,000 BP (Manega, P.C., 1993. Geochronology, geochemistry, and isotopic study of the Plio-Pleistocene Hominid sites and the Ngorongoro Volcanic Highland in Northern Tanzania. Unpublished Ph.D. Thesis, University of Colorado, Boulder, CO). The tuff bed in the zone with artifacts does not contain materials datable by 40Ar/ 39Ar, and some other dating method was needed. In the summer of 2001, five equid teeth were collected from the type Naisiusiu site. Another tooth had previously been collected. ESR ages have been determined for three teeth from the archaeological level and their ages cluster around 62±5 ka, assuming linear uranium uptake. Another tooth from a level without artifacts and believed to be significantly younger dated to 39±5 ka, again assuming LU. These dates are considerably older than previous estimates and suggest that the East African MSA/LSA transition occurred very early.

  17. Facies analysis of Tertiary basin-filling rocks of the Death Valley regional ground-water system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Fridrich, Christopher J.; Taylor, Emily

    2001-01-01

    Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and clay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories.

  18. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    South, D.L.; Daemen, J.J.K.

    1986-10-01

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer thanmore » the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.« less

  19. Wave transport in the South Australian Basin

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; James, Charles

    2018-02-01

    The specification of the dynamics of the air-sea boundary layer is of fundamental importance to oceanography. There is a voluminous literature on the subject, however a strong link between the velocity profile due to waves and that due to turbulent processes in the wave boundary layer does not appear to have been established. Here we specify the velocity profile due to the wave field using the Toba spectrum, and the velocity profile due to turbulence at the sea surface by the net effect of slip and wave breaking in which slip is the dominant process. Under this specification, the inertial coupling of the two fluids for a constant viscosity Ekman layer yields two independent estimates for the frictional parameter (which is a function of the 10 m drag coefficient and the peak wave period) of the coupled system, one of which is due to the surface Ekman current and the other to the peak wave period. We show that the median values of these two estimates, evaluated from a ROMS simulation over the period 2011-2012 at a station on the Southern Shelf in the South Australian Basin, are similar in strong support of the air-sea boundary layer model. On integrating over the planetary boundary layer we obtain the Ekman transport (w*2/f) and the wave transport due to a truncated Toba spectrum (w*zB/κ) where w* is the friction velocity in water, f is the Coriolis parameter, κ is von Karman's constant and zB = g T2/8 π2 is the depth of wave influence in which g is the acceleration of gravity and T is the peak wave period. A comparison of daily estimates shows that the wave transports from the truncated Toba spectrum and from the SWAN spectral model are highly correlated (r = 0.82) and that on average the Toba estimates are about 86% of the SWAN estimates due to the omission of low frequency tails of the spectra, although for wave transports less than about 0.5 m2 s-1 the estimates are almost equal. In the South Australian Basin the Toba wave transport is on average about 42% of

  20. Asymmetric expansion of the youngest Galactic supernova remnant G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.

    2016-06-01

    The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) Type Ia SN that exploded around CE 1900, is strongly asymmetric at radio wavelengths, with a single bright maximum in its shell, but exhibits a bilaterally symmetric morphology in X-rays. It has been difficult to understand the origin of these contrasting morphologies. We present the results of expansion measurements of G1.9+0.3 that illuminate the origin of the radio asymmetry. These measurements are based on a comparison of our 2015 400-ks Chandra observation with earlier Chandra observations, including a 1-Ms observation in 2011. The mean expansion rate from 2011 to 2015 is 0.58% per yr, in agreement with previous measurements. We also confirm that the expansion decreases radially away from the remnant's center along the major E-W axis, from 0.77% per yr to 0.53% per yr. Large variations in expansion are also present along the minor N-S axis, but expansion there is strongly asymmetric and varies on small spatial scales. We use the “Demons” method to study the complex motions within G1.9+0.3. This method provides a nonparametric way for measuring these motions globally. We find motions varying by a factor of 5, from 0.09" to 0.44" per year. The slowest shocks are in the north, at the outer boundary of the bright radio emission, with speeds there as low as 3,600 km/s (for an assumed distance of 8.5 kpc), much less than the average shock speed of 12,000 km/s. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. The presence of this asymmetric ambient medium naturally explains the radio asymmetry. The SN ejecta have also been strongly decelerated in the N, but they expand faster than the blast wave. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially-integrated X-ray flux continues to increase with time. As with Kepler

  1. Phylogeny of kemenyan (Styrax sp.) from North Sumatra based on morphological characters

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Kholibrina, C. R.; Rachmat, H. H.; Munthe, M. A.

    2018-02-01

    Kemenyan is the most famous local tree species from North Sumatra. Kemenyan is known as rosin producer that very valuable for pharmacheutical, cosmetic, food preservatives and vernis. Based on its history, there were only two species of kemenyan those were kemenyan durame and toba, but in its the natural distribution we also found others species showing different characteristics with previously known ones. The objectives of this research were:The objectives of this research were: (1). To determine the morphological diversity of kemenyan in North Sumatra and (2). To determine phylogeny clustering based on the morphological characters. Data was collected from direct observation and morphological characterization, based on purposive sampling technique to those samples trees atPakpak Bharat, North Sumatra. Morphological characters were examined using descriptive analysis, phenotypic variability using standard deviation, and cluster analysis. The result showed that there was a difference between 4 species kemenyen (batak, minyak, durame and toba) according to 75 observed characters including flower, fruits, leaf, stem, bark, crown type, wood and the resin. Analysis and both quantitative and qualitative characters kemenyan clustered into two groups. In which, kemenyan toba separated with other clusters.

  2. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México)

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Pooja; Siebe, Claus; Guilbaud, Marie Noëlle; Salinas, Sergio

    2016-05-01

    The 28,300 year BP (cal 32,300 BP) El Caracol tuff cone complex is one of the few phreatomagmatic volcanoes in the scoria-cone dominated Plio-Quaternary Michoacán-Guanajuato Volcanic Field (MGVF). It displays a shallow circular crater of ~ 1 km in diameter that is filled with several meter-thick lava flows and is located between two NE-SW trending normal faults dipping NW. It lies directly on top of Pliocene lavas of the San Lorenzo shield volcano that forms part of a tectonic horst (topographic high) separating the Zacapu lake basin (1980 m) in the south from the Río Angulo river valley (1760 m) to the north. Detailed study of the tephra sequence indicates that the eruption occurred in two stages: 1) Weak phreatomagmatic, in which about 0.1-0.5 km3 dense rock equivalent (DRE) of magma was issued within ~ 1 to 3 months at the rate of 4-40 m3/s, and 2) purely magmatic (Strombolian-effusive) during which the vent shifted slightly its position toward the NW, forming a small scoria cone (~ 100 m high) on the crater rim of the tuff cone. From this scoria cone lava flows were issued, first into the tuff cone crater occupying its bottom, and subsequently toward the NW, down the outer flank of the tuff cone and into the plain, where they reached a distance of ~ 3.5 km. During this stage ~ 0.6 km3 DRE of magma was produced at the rate of ~ 4 m3/s in a period of ~ 5 months. Although El Caracol displays many features that are characteristic for a phreatomagmatic vent, its morphology, types of deposits, and its complex process of formation makes it strikingly different from the more typical case of the ~ 21,000 year BP (cal 25,300 BP) Alberca de Guadalupe maar volcano, situated not far at the SE margin of the Zacapu basin. The latter was solely phreatomagmatic during the course of its eruption and is formed in its entirety by surge and fallout breccias consisting largely of xenolithic material. In contrast, at El Caracol the hydrogeological environment (namely the low

  3. Tracer Transport Along a Vertical Fault Located in Welded Tuffs

    NASA Astrophysics Data System (ADS)

    Salve, R.; Liu, H.; Hu, Q.

    2002-12-01

    A near-vertical fault that intercepts the fractured welled tuff formation in the underground Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada, has provided a unique opportunity to evaluate important hydrological parameters associated with faults (e.g., flow velocity, matrix diffusion, fault-fracture-matrix interactions). Alcove 8, which intersects the fault is located in the cross drift of the ESF, has been excavated for liquid releases through this fault and a network of fractures. Located 25 m below Alcove 8 in the main drift of the ESF, Niche 3 which also intercepts the fault, serves as the site for monitoring the wetting front and for collecting seepage following liquid releases in Alcove 8. To investigate the importance of matrix diffusion and the extent of area subject to fracture-matrix interactions, we released a mix of conservative tracers (pentafluorobenzoic acid [PFBA] and lithium bromide [LiBr]) along the fault. The ceiling of Niche 3 was blanketed with an array of trays to capture seepage, and seepage rates were continuously monitored by a water collection system connected to the trays. Additionally, a water sampling device, the passive-discreet water sampler (PDWS), was connected to three of the collections trays in Niche 3 into which water was seeping. The PDWS, designed to isolate continuous seepage from each tray into discreet samples for chemical analysis, remained connected to the trays over a period of three months. During this time, all water that seeped into the three trays was captured sequentially into sampling bottles and analyzed for concentrations of PFBA and LiBr. Water released along the fault initially traveled the 25 m vertical distance over a period of 36 days (at a velocity ~0.7 m/day). The seepage recovered in Niche 3 was less than 10% of the injected water with significant spatial and temporal fluctuations in seepage rates. Along a fast flow path, the benzoic tracer (PFBA) and LiBr were first detected ~12 days after

  4. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place sealsmore » are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.« less

  5. Youngest Radio Pulsar Revealed with Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    2002-04-01

    Astronomers using the National Science Foundation's (NSF) newly commissioned Robert C. Byrd Green Bank Telescope (GBT) have detected remarkably faint radio signals from an 820 year-old pulsar, making it the youngest radio-emitting pulsar known. This discovery pushes the boundaries of radio telescope sensitivity for discovering pulsars, and will enable scientists to conduct observations that could lead to a better understanding of how these stars evolve. The Robert C. Byrd Green Bank Telescope Robert C. Byrd Green Bank Telescope "Important questions about pulsars may be answered by long-term monitoring of objects such as the one we just detected," said Fernando Camilo of Columbia University in New York City. "Young pulsars are particularly rare, and being able to study such a young one at radio wavelengths provides an outstanding opportunity to learn critical facts about their evolution and workings." The results of this research, based on observations conducted on February 22-23, 2002, were accepted for publication in the Astrophysical Journal Letters. Scientists have long suspected that a pulsar - a rapidly spinning, superdense neutron star - was born when a giant star ended its life in a cataclysmic supernova explosion observed in late summer of 1181, as suggested by Japanese and Chinese historical records. For the past 20 years, astronomers have searched this supernova remnant (3C58), located 10,000 light-years away in the constellation Cassiopeia, for the telltale pulsations of a newly born pulsar. Late in 2001, data from NASA's Chandra X-ray satellite confirmed its existence, but it remained an elusive quarry for radio telescopes. "We believed from historical records and certainly knew from recent X-ray observations that this star was there," Camilo remarked, "but despite many attempts, no one had been able to find any radio pulsations from it because the signals are, it turns out, incredibly weak." For comparison, this pulsar's radio emission is some 250

  6. Mechanisms for the formation and growth of nanometer-sized particles in the Amazon: New insights from GoAmazon2014 and the Tapajos Upwind Forest Flux Study (TUFFS).

    NASA Astrophysics Data System (ADS)

    Smith, J. N.; Park, J. H.; Kuang, C.; Bustillos, J. O. V.; Souza, R. A. F. D.; Wiedemann, K. T.; Munger, J. W.; Wofsy, S. C.; Rizzo, L. V.; Artaxo, P.; Martin, S. T.; Seco, R.; Kim, S.; Guenther, A. B.; Batalha, S. S. A.; Alves, E. G.; Tota, J.

    2014-12-01

    The Amazon rainforest is a unique and important place for studying aerosol formation and its impacts on atmospheric chemistry and climate. In remote areas, the atmosphere is characterized by low particle number concentrations and high humidity; perturbations in the particle number concentrations and climate-relevant physical and chemical properties could therefore have a great impact on cloud formation and thus on regional climate and precipitation. While it was previously believed that new particle formation occurs rarely in the Amazon, observations in the Amazon of a sustained steady-state particle number concentration, along with an abundance of dry and wet surfaces upon which particles may deposit, imply that sources of new particles must exist in this region. We present observations from two studies, GOAmazon2014 and Tapajos Upwind Forest Flux Study (TUFFS), which seek to identify and quantify the sources of aerosol particles in the Amazon. Measurements of the chemical composition of 20 - 100 nm diameter aerosol particles at the T3 measurement site during the wet and dry season campaigns of GOAmazon2014 show the presence of inorganic ions such as potassium ion and sulfate, as well as organic ion such as oxalate, in ambient nanoparticles. These observations, combined with 1.5 - 300 nm diameter particle number size distributions and trace gas measurements of organic compounds and sulfuric acid, are used to determine the relative importance of sulfuric acid, organic compounds, and primary biological particle emissions to nanoparticle formation and growth. Observations of 3 - 100 nm diameter particle number size distributions at the KM67 tower site during TUFFS show frequent new particle formation events during the wet season in April, transitioning to a scenario of less frequent events in July at the onset of the dry season. These observations highlight the regional nature of new particle formation in the Amazon, and suggest that additional observations at a

  7. Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, James T.; Sobolik, Steven R.; Lee, Moo Y.

    The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range ofmore » temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.« less

  8. Thermocouple psychrometer measurements of in situ water potential changes in heated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Nai-hsien; Wang, H.F.

    1991-05-01

    Ten thermocouple psychrometers (TCPs) to measure water potential (WP) were installed in three holes in G-Tunnel at the Nevada Test Site as part of the Prototype Engineered Barrier System Field Tests. These integrated tests measured several parameters as a function of location and time within a few meters of a heater emplaced in welded tuff. The primary goal of the TCP experiment was to find out whether the combination of laboratory calibration and field use of the TCP can provide useful data for determining the change of moisture condition in the field. We calibrated the TCPs in NaCl solutions upmore » to 80{degree}C(176{degree}F) in the laboratory. In two holes, we used rubber sleeves and packers to house TCPs, and in the third hole, we used foam. All three holes were grouted behind the TCP assemblages. Field results of the heater test showed that small temperature gradients were present for all measurements. Nevertheless, the WP calibration made the necessary correction for the nonisothermal condition. A drying and re-wetting cycle peaked at about day 140 with a WP of -65 bar in borehole P3, located below the heater. A similar cycle but reduced in scale was found at about day 175 with a WP of -45 bar in borehole P2, above the heater. This difference in drying behavior above and below the heater was also observed from neutron data and was explained as a gravity effect. As temperatures increased, the evaporation rate of pore water increased, In unfractured rock, the gas-phase flow was primarily outward. Water condensed above the heater would drain back to keep the boiling region wet, but water condensed below the heater would drain away from the boiling region. This conceptual model explained both the time and magnitude differences for data from holes above and below the heater. 7 refs., 14 figs., 2 tabs.« less

  9. Distinguishing and correlating deposits from large ignimbrite eruptions using paleomagnetism: The Cougar Point Tuffs (mid-Miocene), southern Snake River Plain, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Finn, David R.; Coe, Robert S.; Brown, Ethan; Branney, Michael; Reichow, Marc; Knott, Thomas; Storey, Michael; Bonnichsen, Bill

    2016-09-01

    In this paper, we present paleomagnetic, geochemical, mineralogical, and geochronologic evidence for correlation of the mid-Miocene Cougar Point Tuff (CPT) in southwest Snake River Plain (SRP) of Idaho. The new stratigraphy presented here significantly reduces the frequency and increases the scale of known SRP ignimbrite eruptions. The CPT section exposed at the Black Rock Escarpment along the Bruneau River has been correlated eastward to the Brown's Bench escarpment (six common eruption units) and Cassia Mountains (three common eruption units) regions of southern Idaho. The CPT records an unusual pattern of geomagnetic field directions that provides the basis for robust stratigraphic correlations. Paleomagnetic characterization of eruption units based on geomagnetic field variation has a resolution on the order of a few centuries, providing a strong test of whether two deposits could have been emplaced from the same eruption or from temporally separate events. To obtain reliable paleomagnetic directions, the anisotropy of anhysteretic remanence was measured to correct for magnetic anisotropy, and an efficient new method was used to remove gyroremanence acquired during alternating field demagnetization.

  10. Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Tuff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ~60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction).

  11. Long-Term Mechanical Behavior of Yucca Mountain Tuff and its Variability, Final Technical Report for Task ORD-FY04-021

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daemen, Jaak J.K.; Ma, Lumin; Zhao, Guohua

    The study of the long term mechanical behavior of Yucca Mountain tuffs is important for several reasons. Long term stability of excavations will affect accessibility (e.g. for inspection purposes), and retrievability. Long term instabilities may induce loading of drip shields and/or emplaced waste, thus affecting drip shield and/or waste package corrosion. Failure of excavations will affect airflow, may affect water flow, and may affect temperature distributions. The long term mechanical behavior of rocks remains an elusive topic, loaded with uncertainties. A variety of approaches have been used to improve the understanding of this complex subject, but it is doubtful thatmore » it has reached a stage where firm predictions can be considered feasible. The long term mechanical behavior of "soft" rocks, especially evaporites, and in particular rock salt, has been the subject of numerous investigations (e.g. Cristescu and Hunsche, 1998, Cristescu et al, 2002), and basic approaches towards engineering taking into account the long term behavior of such materials have long been well established (e.g. Dreyer, 1972, 1982). The same is certainly not true of "hard" rocks. While it long has been recognized that the long term strength of ?hard? rocks almost certainly is significantly less than that measured during "short", i.e. standard (ASTM D 2938), ISRM suggested (Bieniawski et al, 1978) and conventionally used test procedures (e.g. Bieniawski, 1970, Wawersik, 1972, Hoek and Brown, 1980, p. 150), what limited approaches have been taken to develop strategies toward determining the long term mechanical behavior of "hard" rock remain in the early research and investigation stage, at best. One early model developed specifically for time dependent analysis of underground "hard" rock structures is the phenomenological model by Kaiser and Morgenstern (1981). Brady and Brown (1985, p. 93) state that over a wide range of strain rates, from 10^-8 to 10^2/s the difference in strength

  12. A Systematic Comparison of the Anisotropy of Magnetic Susceptibility (AMS) and Anisotropy of Remanence (ARM) Fabrics of Ignimbrites: Examples from the Quaternary Bandelier Tuff, Jemez Mountains, New Mexico and Miocene Ignimbrites Near Gold Point, Nevada

    NASA Astrophysics Data System (ADS)

    Lycka, Ranyah

    Anisotropy of magnetic susceptibility (AMS) has been widely used to define petrofabrics in silicic, elevated-temperature pyroclastic deposits (i.e., ignimbrites) and these fabrics have been successfully utilized to infer pyroclastic emplacement, or transport, directions in many cases. Selected exposures of the Quaternary Bandelier Tuff, exposed in the Jemez Mountains, New Mexico, have been studied to systematically compare anisotropy of remanence (mainly anhysteretic remanent magnetization, AARM) with AMS data from the same sites. In addition, as part of a broad study to understand the Neogene history of deformation associated with a displacement transfer system in the western Great Basin, paleomagnetic and magnetic fabric data have been collected from ignimbrites that originated from the Timber Mountain Caldera complex, active from about 14 to 11.5 Ma. Here, AMS and AARM are compared for 21 (9-12 samples per site) sites in the Quaternary Bandelier Tuff, and 15 (9-10 samples per site) sites in Timber Mountain ignimbrites, with each chosen to examine the effects of varying degrees of welding and crystal content on the fabrics obtained. The relationships between AARM and AMS fabrics for the selected sites are not uniform, and include normal, intermediate, reverse, and oblique fabrics. The differences may be controlled by the degree of welding and/or crystal content, which requires further explanation. Ultimately, the fabrics identified in both suites of rocks are compared with anisotropy of isothermal remanent magnetization (AIRM) data, along with other rock magnetic data, to more fully evaluate the domain state control on the fabrics.

  13. Ages of Quaternary Rio Grande terrace-fill deposits, Albuquerque area, New Mexico

    USGS Publications Warehouse

    ,; Mahan, Shannon; Stone, Byron D.; Shroba, Ralph R.

    2007-01-01

    Results from luminescence dating on 13 samples from the Albuquerque area show that major-drainage fluvial deposits represent significant periods of aggradation that formed paired, correlatable terraces on the east and west margins of the Rio Grande valley . The youngest terrace fills (Primero Alto) formed during late Pleistocene as a result of streamflow variations with climate cooling during Marine Oxygen-Isotope Stage 3; our ages suggest aggradation of the upper part of the fill occurred at about 47–40 ka . Deposits of the second (Segundo Alto) terraces reached maximum height during climate cooling in the early part of Marine Oxygen-Isotope Stage 5 as late as 90–98 ka (based on dated basalt flows) . Our luminescence ages show considerable scatter and tend to be younger (range from 63 ka to 162 ka) . The third (Tercero Alto) and fourth (Cuarto Alto) terraces are dated on the basis of included volcanic tephra. Tercero Alto terrace-fill deposits contain the Lava Creek B tephra (639 ka), and Cuarto Alto terrace-fill deposits contain tephra of the younger Bandelier Tuff eruption (1 .22 Ma), the Cerro Toledo Rhyolite (1 .47 Ma), and the older Bandelier Tuff eruption (1 .61 Ma). These periods of aggradation culminated in fluvial terraces that are preserved at maximum heights of 360 ft (Cuarto Alto), 300 ft. (Tercero Alto), 140 ft (Segundo Alto), and 60 ft. (Primero Alto) above the modern floodplain. Despite lithologic differences related to local source-area contributions, these terracefill deposits can be correlated across the Rio Grande and up- and down-valley for tens of miles based on maximum height of the terrace above the modern floodplain.

  14. Associations between high levels of conduct problems and co-occurring problems among the youngest boys and girls in schools: a cross-sectional study.

    PubMed

    Kirkhaug, Bente; Drugli, May Britt; Lydersen, Stian; Mørch, Willy-Tore

    2013-08-01

    Few studies have focused on conduct problems and co-occurring problems among the youngest children in schools, such as social, internalizing and attention problems. In particular, there is a lack of studies that differentiate between boys and girls in terms of such problems. The aim of the current study was to test associations between conduct problems and social, internalizing and attention problems, as well as adaptive school functioning, which was rated by the teachers of boys and girls in grades 1-3. In a cross-sectional study, 103 boys and 108 girls in grades 1-3 at six schools participated in a national Norwegian study of child conduct problems in the normal population. Linear regression analysis was used to test the associations between conduct problems, social skills, problems of internalization, attention problems and adaptation to school among boys and girls. There were significant associations between high levels of conduct problems and social skills problems, attention problems and low adaptive school functioning scores among boys and girls. Attention problems had the most powerful associations with conduct problems for both genders. Young schoolchildren with high levels of conduct problems also had co-occurring problems. Schools and teachers need to adopt a comprehensive approach to help these children during their first years in school.

  15. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, K.; Galloway, D.

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes ismore » such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.« less

  16. Preliminary hydrogeologic assessment of boreholes UE-25c #1, UE-25c #2, and UE-25c #3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Geldon, A.L.

    1993-01-01

    Boreholes UE-25c #1, UE-25c #2, and UE-25c #3 (collectively called the C-holes) each were drilled to a depth of 914.4 meters at Yucca Mountain, on the Nevada Test Site, in 1983 and 1984 for the purpose of conducting aquifer and tracer tests. Each of the boreholes penetrated the Paintbrush Tuff and the tuffs and lavas of Calico Hills and bottomed in the Crater Flat Tuff. The geologic units penetrated consist of devitrified to vitrophyric, nonwelded to densely welded, ash-flow tuff, tuff breccia, ash-fall tuff, and bedded tuff. Below the water table, which is at an average depth of 401.6 meters below land surface, the rocks are argillic and zeolitic. The geologic units at the C-hole complex strike N. 2p W. and dip 15p to 21p NE. They are cut by several faults, including the Paintbrush Canyon Fault, a prominent normal fault oriented S. 9p W., 52.2p NW. The rocks at the C-hole complex are fractured extensively, with most fractures oriented approximately perpendicular to the direction of regional least horizontal principal stress. In the Crater Flat Tuff and the tuffs and lavas of Calico Hills, fractures strike predominantly between S. 20p E. and S. 20p W. and secondarily between S. 20p E. and S. 60p E. In the Topopah Spring Member of the Paintbrush Tuff, however, southeasterly striking fractures predominate. Most fractures are steeply dipping, although shallowly dipping fractures occur in nonwelded and reworked tuff intervals of the Crater Flat Tuff. Mineral-filled fractures are common in the tuff breccia zone of the Tram Member of the Crater Flat Tuff, and, also, in the welded tuff zone of the Bullfrog Member of the Crater Flat Tuff. The fracture density of geologic units in the C-holes was estimated to range from 1.3 to 7.6 fractures per cubic meter. Most of these estimates appear to be the correct order of magnitude when compared to transect measurements and core data from other boreholes 1.3 orders of magnitude too low. Geophysical data and laboratory analyses were

  17. A summary of the geology and petrology of the Sierra La Primavera, Jalisco, Mexico

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    1981-11-01

    The Sierra La Primavera, near Guadalajara, Mexico, is a Late Pleistocene rhyolitic center consisting of lava flows and domes, ash flow tuff, air fall pumice, and caldera lake sediments. All eruptive units are high-silica rhyolites, but systematic compositional differences correlate with age and eruptive mode. The earliest lavas erupted approximately 145,000 years ago and were followed approximately 95,000 years ago by the eruption of about 20 km3 of magma as ash flows that form the Tala Tuff. The Tala Tuff is zoned from a mildly peralkaline first-erupted portion enriched in Na, Rb, Cs, Cl, F, Zn, Y, Zr, Nb, Sb, HREE, Hf, Ta, Pb, Th, and U to a metaluminous last-erupted part enriched in K, LREE, Sc, and Ti; Al, Ca, Mg, Mn, Fe, and Eu are constant within analytical errors. Collapse of the roof zone of the magma chamber led to the formation of a shallow 11-km-diameter caldera in which lake sediments began to collect. The earliest postcaldera lava, the south-central dome, is nearly identical to the last-erupted portion of the Tala Tuff, whereas the slightly younger north-central dome is chemically transitional from the south-central dome to later, more mafic, ring domes. This sequence of ash flow tuff and domes represents the tapping of progressively deeper levels of a zoned magma chamber 95,000 ± 5,000 years ago. Sedimentation continued and a period of volcanic quiescence was marked by the deposition of some 30 m of fine-grained ashy sediments. Approximately 75,000 years ago a new group of ring domes erupted at the southern margin of the lake. These domes are lapped by only 10-20 m of sediments as uplift resulting from renewed insurgence of magma brought an end to the lake. This uplift culminated in the eruption, beginning approximately 60,000 years ago, of aphyric lavas along a southern arc. The youngest of these lavas erupted approximately 30,000 years ago. The lavas that erupted 75,000, 60,000, and 30,000 years ago became decreasingly peralkaline and progressively

  18. Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Cook, Geoffrey W.; Wolff, John A.; Self, Stephen

    2016-02-01

    The 1.60 Ma caldera-forming eruption of the Otowi Member of the Bandelier Tuff produced Plinian and coignimbrite fall deposits, outflow and intracaldera ignimbrite, all of it deposited on land. We present a detailed approach to estimating and reconstructing the original volume of the eroded, partly buried large ignimbrite and distal ash-fall deposits. Dense rock equivalent (DRE) volume estimates for the eruption are 89 + 33/-10 km3 of outflow ignimbrite and 144 ± 72 km3 of intracaldera ignimbrite. Also, there was at least 65 km3 (DRE) of Plinian fall when extrapolated distally, and 107 + 40/-12 km3 of coignimbrite ash was "lost" from the outflow sheet to form an unknown proportion of the distal ash fall. The minimum total volume is 216 km3 and the maximum is 550 km3; hence, the eruption overlaps the low end of the super-eruption spectrum (VEI ˜8.0). Despite an abundance of geological data for the Otowi Member, the errors attached to these estimates do not allow us to constrain the proportions of intracaldera (IC), outflow (O), and distal ash (A) to better than a factor of three. We advocate caution in applying the IC/O/A = 1:1:1 relation of Mason et al. (2004) to scaling up mapped volumes of imperfectly preserved caldera-forming ignimbrites.

  19. Paleomagnetism in the Determination of the Emplacement Temperature of Cerro Colorado Tuff Cone, El Pinacate Volcanic Field, Sonora, Mexico.

    NASA Astrophysics Data System (ADS)

    Rodriguez Trejo, A.; Alva-Valdivia, L. M.; Vidal Solano, J. R.; Garcia Amador, B.; Gonzalez-Rangel, J. A.

    2014-12-01

    Cerro Colorado Maar is located at the World Heritage Site, biosphere reserve El Pinacate and Gran Desierto del Altar, at the NNW region of Sonora, Mexico (in El Pinacate Volcanic Field). It is a tuff cone, about 1 km diameter, result of several phreatomagmatic episodes during the late Quaternary. We report paleomagnetic and rock magnetic properties from fusiform volcanic bombs obtained from the borders of Cerro Colorado. This study is based in the thermoremanent magnetization TRM normally acquired by volcanic rocks, which can be used to estimate the emplacement temperature range. We performed the experiments on 20 lithic fragments (10 cm to 20 cm approximately), taking 6-8 paleomagnetic cores from each. Rock magnetic experiments (magnetic susceptibility vs. temperature (k-T), hysteresis curves and FORC analysis, shows that the main magnetic mineral carriers of magnetization are titanomagnetite and titanohematite in different levels of intergrowth. The k-T curves suggest in many cases, only one magnetic phase, but also in other cases a second magnetic phase. Thermal demagnetization was used to demagnetize the specimens in detailed short steps and make a well-defined emplacement temperature determination ranges. We found that temperature emplacement determination range for these two magnetic phases is between 350-450 °C, and 550-580 °C, respectively. These results are consistent with those expected in an eruption of Surtsey type, showing a distinct volcanic activity compared to the other craters from El Pinacate volcanic field.

  20. Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Kume, Jack; Hammermeister, D.P.

    1990-01-01

    This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)

  1. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity

    USGS Publications Warehouse

    Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C.

    2011-01-01

    The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.

  2. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  3. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.J.Lewis; A.Lavine; S.L.Reneau

    2002-12-01

    -west-striking faults. We consider all structures to be Quaternary in that they postdate the Tshirege Member (1.22 million years old) of the Bandelier Tuff. Older mesa-top alluvial deposits (Qoal), which may have a large age range but are probably in part about 1.13 million years old, are clearly faulted or deformed by many structures. At two localities, younger alluvial units (Qfo and Qfi) appear to be truncated by faults, but field relations are obscure, and we cannot confirm the presence of fault contacts. The youngest known faulting in the study area occurred in Holocene time on a down-to-the-west fault, recently trenched at the site of a new LANL Emergency Operations Center (Reneau et al. 2002).« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramdhan, Mohamad; Nugraha, Andri Dian

    Toba area has complex tectonic setting attracting many earth scientists to study and understand tectonic and geological process or setting. The area is affected by oblique subduction zone, Renun Sumatran fault sub segment and some volcanoes that are near it. The earthquake catalogue provided by BMKG from April, 2009 to December, 2011 must be relocated firstly to get the precise hypocenter. We used catalogue data of P and S phase or P phase only and double-difference method to relocate the earthquakes. The results show hypocenter position enhancement that can be interpreted tectonically. The earthquakes after relocation relating to the Sumatranmore » fault, subduction zone, volcanoes and seismic activities beneath Toba caldera can be mapped clearly. The relocated hypocenters in this study are very important to provide information for seismic hazard assessment and disaster mitigation study.« less

  5. Thermohydrologic modeling of the large-block test in partially saturated fractured tuff at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Lee, K.; Buscheck, T. A.; Glascoe, L. G.; Gansemer, J.; Sun, Y.

    2002-12-01

    In support of the characterization of Yucca Mountain as a potential site for as a geologic repository for high-level nuclear waste, the US Department of Energy conducted the Large Block Test (LBT) at nearby Fran Ridge. The LBT was conducted in an excavated 3x 3x 4.5m block of partially saturated, fractured nonlithophysal Topopah Spring tuff, which is one of the host-rock units for the potential repository at Yucca Mountain. The LBT was one of a series of field-scale thermohydrologic tests conducted in the repository host-rock units. The LBT was heated by line heaters installed in five boreholes lying in a horizontal plane 2.75 m below the upper surface of the block. The field-scale thermal tests were designed to help investigators better understand the coupled thermohydrologic-mechanical-chemical processes that would occur in the host rock in response to the radioactive heat of decay from emplaced waste packages. The tests also provide data for the calibration and validation of numerical models used to analyze the thermohydrologic response of the near-field host rock and Engineered Barrier System (EBS). Using the NUFT code and the dual-permeability approach to representing fracture-matrix interaction, we simulated the thermohydrologic response of the block to a heating and cooling cycle. The primary goals of the analysis were to study the heat-flow mechanisms and water redistribution patterns in the boiling and sub-boiling zones, and to compare model results with measured temperature and liquid saturation data, and thereby evaluate two rock property data sets available for modeling thermohydrologic behavior in the rock. Model results were also used for model calibration and validation. We obtained a good to excellent match between model and observed temperatures, and found that the distinct dryout and condensation zones modeled above and below the heater level agreed fairly well with the liquid-saturation measurements. We identified the best-fit data set by using a

  6. Smoke over Lake Toba, Indonesia

    NASA Image and Video Library

    1997-10-03

    As the Space Shuttle Atlantis flew over the Indonesian archipelago on Saturday, Sept. 27, 1997, middle school students across the country used NASA Kidsat camera to photograph the fires and smoke that blanket the island of Sumatra.

  7. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  8. Determining an age for the Inararo Tuff eruption of Mt. Pinatubo, based on correlation with a distal ash layer in core MD97-2142, South China Sea

    USGS Publications Warehouse

    Ku, Y.-P.; Chen, C.-H.; Newhall, C.G.; Song, S.-R.; Yang, T.F.; Iizuka, Y.; McGeehin, J.

    2008-01-01

    The largest known eruption of Mt. Pinatubo in the late Quaternary was the Inararo Tuff Formation (ITF) eruption, roughly estimated as five times larger than the 1991 eruption. The precise age of the ITF eruption has been uncertain. Here, a correlative of the ITF eruption, Layer D, is identified in marine sediments, and an age obtained. Tephras were identified in core MD97-2142 of Leg II of the IMAGES III cruise in northern offshore of Palawan, southeastern South China Sea (12??41.33???N, 119??27.90???E). On the basis of the geochemical and isotopic fingerprints, Layer D can be correlated with the ITF eruption of the modern Pinatubo-eruption sequence. By means of the MD97-2142 SPECMAP chronology, Layer D was dated at around 81??2 ka. This estimated age of the ITF eruption and tephra Layer D coincides with an anomalously high SO4-2 spike occurring within the 5 millennia from 79 to 84 ka in the GISP2 ice core record. ?? 2007.

  9. Hydrothermal Rock-Fluid Interactions in 15-year-old Submarine Basaltic Tuff at Surtsey Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, M. D.; Couper, S.; Li, Y.; Stan, C. V.; Tamura, N.; Stefansson, A.; Moore, J. G.; Wenk, H. R.

    2016-12-01

    Basaltic tephra at Surtsey volcano, produced by 1963-1967 eruptions in the offshore SE Icelandic rift zone, record the complex interplay of factors that determine rates of palagonitization and crystallization of authigenic minerals in seafloor basalts worldwide. We investigate how formation of nanocrystalline clay mineral in fresh sideromelane glass influenced crystallization of mineral cements in submarine tuff from a 181 m core drilled in 1979. Synchrotron-based microdiffraction and microfluorescence maps (2x5 µm X-ray beam spot size) at beamline 12.3.2, Advanced Light Source, SEM-EDS compositional analyses, and fluid geochemical models compare processes in lapilli-sized glass fragments, vitric cementing matrix, and fine ash accretions. In lapilli at 137.9 m (100°C), nanocrystalline clay mineral in gel-palagonite has asymetric 14.9-12.6 Å (001) reflections, with Fe and Ti enrichment relative to Si, Al and Ca, compared with adjacent sideromelane. Neighboring fibro-palagonite has symmetric (001) and greater Fe and Ti enrichment. Al-tobermorite, a rare calcium-silicate-hydrate, crystallized in nearby vesicles. The 11.30-11.49 Å (002) interlayer and Ca/(Si+Al) ratio of 0.9-1.0 record release of Si, Al, and Ca in a chemical system relatively isolated from submarine hydrothermal fluid flow. In vitric matrix relatively open to fluid flow, however, phillipsite zeolite cement predominates. Al-tobermorite formed at 88.45 m (130°C) and 102.6 m (140°C), but is associated with fibro-palagonite and analcite, reflecting more rapid palagonitization, and changing cation solubility and pH at higher temperature. Tubular palagonite microstructures show nanocrystalline clay mineral with (001) preferred orientations that wrap around relict microchannels, produced perhaps through biogenic activity. Nanocrystalline clay mineral d-spacings suggest similarities with nontronite, but zeolite in palagonite diffraction patterns and 6-9 wt% MgO suggest a polycrystalline composite with

  10. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, Larissa; Mukhin, Pavel; Wang, Qin; Wirth, Richard; O'Bannon, Earl; Zhao, Wenxia; Eppelbaum, Lev; Sokhonchuk, Tatiana

    2018-06-01

    Here, we present studies of natural SiC that occurs in situ in tuff related to the Miocene alkaline basalt formation deposited in northern part of Israel. Raman spectroscopy, SEM and FIB-assisted TEM studies revealed that SiC is primarily hexagonal polytypes 4H-SiC and 6H-SiC, and that the 4H-SiC polytype is the predominant phase. Both SiC polytypes contain crystalline inclusions of silicon (Sio) and inclusions of metal-silicide with varying compositions (e.g. Si58V25Ti12Cr3Fe2, Si41Fe24Ti20Ni7V5Zr3, and Si43Fe40Ni17). The silicides crystal structure parameters match Si2TiV5 (Pm-3m space group, cubic), FeSi2Ti (Pbam space group, orthorhombic), and FeSi2 (Cmca space group, orthorhombic) respectively. We hypothesize that SiC was formed in a local ultra-reduced environment at respectively shallow depths (60-100 km), through a reaction of SiO2 with highly reducing fluids (H2O-CH4-H2-C2H6) arisen from the mantle "hot spot" and passing through alkaline basalt magma reservoir. SiO2 interacting with the fluids may originate from the walls of the crustal rocks surrounding this magmatic reservoir. This process led to the formation of SiC and accompanied by the reducing of metal-oxides to native metals, alloys, and silicides. The latter were trapped by SiC during its growth. Hence, interplate "hot spot" alkali basalt volcanism can now be included as a geological environment where SiC, silicon, and silicides can be found.

  11. Eruptive history of the youngest Mexican Shield and Mexico's most voluminous Holocene eruption: Cerro El Metate

    NASA Astrophysics Data System (ADS)

    Oryaëlle Chevrel, Magdalena; Guilbaud, Marie-Noelle; Siebe, Claus

    2016-04-01

    Small to medium-sized shield volcanoes are an important component of many volcanic fields on Earth. The Trans-Mexican Volcanic Belt, one of the most complex and active continental arcs worldwide, displays a large number of such medium-sized volcanoes. In particular the Michoacán-Guanajuato Volcanic Field (MGVF) situated in central Mexico, is the largest monogenetic volcanic field in the world and includes more than 1000 scoria cones and about four hundred medium-sized volcanoes, also known as Mexican shields. The Mexican shields nevertheless represent nearly 70% of the total volume erupted since 1 Ma and hence played a considerable role in the formation of the MGVF. However, the source, storage, and transport as well as the physical properties (density, viscosity, volatile content, etc.) of the magmas involved in these eruptions remain poorly constrained. Here, we focus on Cerro El Metate, the youngest monogenetic andesite shield volcano of the field. New C14 dates for the eruption yield a young age (~AD 1250), which briefly precedes the initial rise of the Tarascan Empire (AD 1350-1521) in this region. This volcano has a minimum volume of ~9.2 km3 DRE, and its viscous lava flows were emplaced during a single eruption over a period of ~35 years covering an area of 103 km2. By volume, this is certainly the largest eruption during the Holocene in Mexico, and it is the largest andesitic effusive eruption known worldwide for this period. Such a large volume of lava erupted in a relatively short time had a significant impact on the environment (modification of the hydrological network, forest fires, etc.), and hence, nearby human populations probably had to migrate. Its eruptive history was reconstructed through detailed mapping, and geochemical and rheological analyses of its thick hornblende-bearing andesitic flows. Early and late flows have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by

  12. Task IV: Groundshock-Induced Hydrogeologic Response: Volume 2. Hydrologic Response of Deep Based Systems to Blast Loading

    DTIC Science & Technology

    1994-09-01

    north-south. Width of the cap rock is approximately 1.5 miles, length about 3 miles and area about 4.4 square miles. According to Thordarson (1965...The volcanic tuffs making up the mesa are of moderately recent (Miocene) to very recent (Pliocene) origin. Thordarson (1965) identifies 11 layered tuff...various degrees of welded or partially welded tuff can be formed during cooling. The tuff units identified by Thordarson (1965) making up Rainier

  13. Hydrogeology of rocks penetrated by test well JF-3, Jackass Flats, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plume, R.W.; La Camera, R.J.

    1996-12-31

    The U.S. Department of Energy and U.S. Geological Survey are monitoring water levels in southern Nevada and adjacent parts of California in response to concern about the potential effects of pumping ground water to support the Yucca Mountain Site-Characterization Program. Well JF-3 was drilled in the western part of Jackass Flats for monitoring water levels, for determining the likelihood of a hydraulic connection between well JF-3 and production wells J-12 and J-13, and for measuring the hydraulic properties of the Topopah Spring Tuff. The borehole for JF-3 penetrated about 480 feet of alluvium and 818 feet of underlying volcanic rock.more » The well was finished at a depth of 1,138 feet below land surface near the base of the Topopah Spring Tuff, which is the principal volcanic-rock aquifer in the area. The Topopah Spring Tuff at well JF-3 extends from depths of 580 feet to 1,140 feet and consists of about 10 feet of partly to moderately welded ash-flow tuff; 10 feet of vitrophyre; 440 feet of devitrified, moderately to densely welded ash-flow tuff; 80 feet of densely welded ash-flow tuff; 10 feet of vitric, nonwelded to partly welded ash-flow tuff; and 10 feet of ashfall tuff. Fractures and lithophysae are most common in the devitrified tuff, especially between depths of 600 feet and 1,040 feet. Much of the water produced in well JF-3 probably comes from the sequence of these devitrified tuffs that is below the water table. The transmissivity of the aquifer is an estimated 140,000-160,000 feet squared per day and hydraulic conductivity is 330-370 feet per day. These values exceed estimates made at well J-13 by two orders of magnitude. Such large differences may be accounted for by differences in the development of fractures and lithophysae in the Topopah Spring Tuff at the two wells.« less

  14. The Youngest Crater on Charon?

    NASA Image and Video Library

    2015-10-29

    NASA's New Horizons scientists have discovered a striking contrast between one of the fresh craters on Pluto's largest moon Charon and a neighboring crater dotting the moon's Pluto-facing hemisphere. The crater, informally named Organa, caught scientists' attention as they were studying New Horizons' highest-resolution infrared compositional scan of Charon. Organa and portions of the surrounding material ejected from it show infrared absorption at wavelengths of about 2.2 microns, indicating that the crater is rich in frozen ammonia -- and, from what scientists have seen so far, unique on Pluto's largest moon. The infrared spectrum of nearby Skywalker crater, for example, is similar to the rest of Charon's craters and surface, with features dominated by ordinary water ice. This composite image is based on observations from the New Horizons Ralph/LEISA instrument made at 10:25 UT (6:25 a.m. EDT) on July 14, 2015, when New Horizons was 50,000 miles (81,000 kilometers) from Charon. The spatial resolution is 3 miles (5 kilometers) per pixel. The LEISA data were downlinked Oct. 1-4, 2015, and processed into a map of Charon's 2.2 micron ammonia-ice absorption band. Long Range Reconnaissance Imager (LORRI) panchromatic images used as the background in this composite were taken about 8:33 UT (4:33 a.m. EDT) July 14 at a resolution of 0.6 miles (0.9 kilometers) per pixel and downlinked Oct. 5-6. The ammonia absorption map from LEISA is shown in green on the LORRI image. The region covered by the yellow box is 174 miles across (280 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20036

  15. Geography for Our Youngest Learners

    ERIC Educational Resources Information Center

    Hinde, Elizabeth R.

    2012-01-01

    In the earliest days of American education, leaders in educational theory and practice believed that the curriculum should revolve around the child's lived experiences. Geography, therefore, should hold a prominent place in the curriculum since it is through geographic concepts that children first experience the world around them. Reading and…

  16. Paleomagnetism and Anisotropy of Magnetic Susceptibility study of the Miocene Jack Springs Tuff (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.

    2014-12-01

    The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and

  17. Pleistocene Indian Monsoon rainfall variability dominated by obliquity

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Nuernberg, D.; Frank, M.

    2015-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea while Quaternary proxy records of Indian monsoon precipitation are still lacking. Here we utilize scanning x-ray fluorescence (XRF) data from a sediment core obtained by the IODP vessel JOIDES Resolution in the Andaman Sea (Site 17) to investigate changes in sediment supply from the peak monsoon precipitation regions to the core site. We use Ti/Ca and K/Rb ratios to trace changes in terrigenous flux and weathering regime, respectively, while Zr/Rb ratios suggest grain size variations. The age model of Site 17 is based on correlation of benthic C. wuellerstorfi/C. mundulus δ18O data to the LR04 global benthic δ18O stack at a resolution of ~3 kyr (Lisiecki and Raymo, 2005) for the last 2 Myrs. In its youngest part the age model is supported by five 14C ages on planktic foraminifera and the youngest Toba ash layer (Ali et al., 2015) resulting in a nearly constant sedimentation rate of ~6.5 cm/kyr. Frequency analysis of the 4 mm resolution Ti/Ca, K/Rb, and Zr/Rb time series using the REDFIT program (Schulz and Mudelsee, 2002), reveals the three main Milankovitch orbital cycles above the 90% confidence level. Depth domain spectral analysis reveals the presence of significant cyclicity at wavelengths of 28.5 and 2.8 m corresponding to the ~400 kyr and ~41 kyr cycles, respectively, during the last 2 Myr. These records suggest that Indian monsoon variability has varied in the obliquity and eccentricity bands, the latter in particular after the mid Pleistocene transition (MPT), while strong precession forcing is lacking in this super-high resolution record. Northern summer insolation and Southern Hemisphere latent heat export are out of phase during precessional cycles, but in phase in the obliquity band, which indicates that Indian monsoon precipitation has likely been more sensitive to both NH pull and SH push mechanisms (Clemens and Prell, 2003). References Ali

  18. Multiple ash layers in late Quaternary sediments from the Central Indian Basin

    NASA Astrophysics Data System (ADS)

    Mascarenhas-Pereira, M. B. L.; Nagender Nath, B.; Iyer, S. D.; Borole, D. V.; Parthiban, G.; Jijin, R.; Khedekar, V.

    2016-04-01

    We have investigated three sediment cores collected from water depths > 5000 m along the transect 76°30‧E in close proximity to a fracture zone in the Central Indian Basin (CIB). The cores yielded five volcanic horizons of which four have visual and dispersed shards. Rhyolitic glass shards of bubble wall, platy, angular and blocky types were retrieved from various stratigraphic horizons in the cores. The abundance of glass shards, composition of bulk sediments, and 230Thexcess ages of the host sediments were used to distinguish the volcanic horizons. Of the four volcanic horizons, three are now newly reported and correspond to ages of ~ 85, 107-109 and 142-146 ka while the fourth horizon is of 70-75 ka. By using trace element ratios and Cr and Nb-based normative calculations, cryptotephra has been identified for the first time from the CIB sediment. The cryptotephra forms the fifth ash horizon and is of ~ 34 ka. A comparison with the published data on volcanic tephra in and around the Indian Ocean indicate the shard rich horizon (SRH) of 70-75 ka to resemble the Younger Toba Tuffs (YTT), while the other volcanic horizons that were deposited during different time periods do not correlate with any known marine or terrestrial records. These tephra layers have produced a tephrostratigraphic framework across the tectonically and volcanically complex regions of the CIB. Due to the lack of terrestrial equivalents of these tephra, it is hypothesized that the newly found volcanic horizons may have been derived from submarine volcanic eruptions. Multiple layers of submarine volcaniclastic deposits found at water depths as great as 5300 m reaffirm the growing belief that submarine phreatomagmatic eruptions are much more common in the intraplate region of the Indian Ocean than previously reported.

  19. Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb mineral ages from the 27.5 Ma fish canyon tuff reference standard

    USGS Publications Warehouse

    Lanphere, M.A.; Baadsgaard, H.

    2001-01-01

    The accuracy of ages measured using the 40Ar/39Ar technique is affected by uncertainties in the age of radiation fluence-monitor minerals. At present, there is lack of agreement about the ages of certain minerals used as fluence monitors. The accuracy of the age of a standard may be improved if the age can be measured using different decay schemes. This has been done by measuring ages on minerals from the Oligocene Fish Canyon Tuff (FCT) using the K-Ar, 40Ar/39Ar. Rb-Sr and U/Pb methods. K-Ar and 40Ar/39Ar total fusion ages of sanidine, biotite and hornblende yielded a mean age of 27.57 ?? 0.36 Ma. The weighted mean 40Ar/39Ar plateau age of sanidine and biotite is 27.57 ?? 0.18 Ma. A biotite-feldspar Rb-Sr isochron yielded an age of 27.44 ?? 0.16 Ma. The U-Pb data for zircon are complex because of the presence of Precambrian zircons and inheritance of radiogenic Pb. Zircons with 207Pb/235U < 0.4 yielded a discordia line with a lower concordia intercept of 27.52 ?? 0.09 Ma. Evaluation of the combined data suggests that the best age for FCT is 27.51 Ma. Published by Elsevier Science B.V.

  20. H2O-CO2-S-Cl partitioning and mixing in rhyolitic melts and fluid - Implications on closed-system degassing in rhyolite

    NASA Astrophysics Data System (ADS)

    Ding, S.; Webster, J. D.

    2017-12-01

    Bishop tuff, Toba tuff and Pinatubo to better understand the degassing process, to estimate fluid compositions, and thus, to evaluate the potential environmental impacts of these super eruptions. [1] Ghiorso amd Gualda, 2015, CMP; [2] Liu et al., 2005, J. Volcanol. Geotherm. Res.; [3] Newman and Lowenstern, 2002, Comput. Geosci.; [3] Tamic et al., 2001, Chem. Geol..

  1. A spectroscopic survey of the youngest field stars in the solar neighborhood . II. The optically faint sample

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Guillout, P.; Klutsch, A.; Ferrero, R. Freire; Marilli, E.; Biazzo, K.; Gandolfi, D.; Montes, D.

    2018-05-01

    Context. Star formation in the solar neighborhood is mainly traced by young stars in open clusters, associations, and in the field, which can be identified, for example, by their X-ray emission. The determination of stellar parameters for the optical counterparts of X-ray sources is crucial for a full characterization of these stars. Aims: This work extends the spectroscopic study of the RasTyc sample, obtained by the cross-correlation of the Tycho and ROSAT All-Sky Survey catalogs, to stars fainter than V = 9.5 mag and aims to identify sparse populations of young stars in the solar neighborhood. Methods: We acquired 625 high-resolution spectra for 443 presumably young stars with four different instruments in the northern hemisphere. The radial and rotational velocity (vsini) of our targets were measured by means of the cross-correlation technique, which is also helpful to discover single-lined (SB1), double-lined spectroscopic binaries (SB2), and multiple systems. We used the code ROTFIT to perform an MK spectral classification and to determine the atmospheric parameters (Teff, logg, [Fe/H]) and vsini of the single stars and SB1 systems. For these objects, we used the spectral subtraction of slowly rotating templates to measure the equivalent widths of the Hα and Li I 6708 Å lines, which enabled us to derive their chromospheric activity level and lithium abundance. We made use of Gaia DR1 parallaxes and proper motions to locate the targets in the Hertzsprung-Russell (HR) diagram and to compute the space velocity components of the youngest objects. Results: We find a remarkable percentage (at least 35%) of binaries and multiple systems. On the basis of the lithium abundance, the sample of single stars and SB1 systems appears to be mostly ( 60%) composed of stars younger than the members of the UMa cluster. The remaining sources are in the age range between the UMa and Hyades clusters ( 20%) or older ( 20%). In total, we identify 42 very young (PMS-like) stars

  2. Tephrochronology of Bed II, Olduvai Gorge, Tanzania, and placement of the Oldowan-Acheulean transition.

    PubMed

    McHenry, Lindsay J; Stanistreet, Ian G

    2018-04-12

    Tuffaceous marker beds, derived from volcanic products from the Ngorongoro Volcanic Highlands, help define a stratigraphic framework for the world-renowned fossil and stone tool record exposed at Olduvai Gorge, Tanzania. However, previous efforts to constrain this tuff record, especially for Olduvai Bed II, have been limited because of erosion, contamination, reworking, and the alteration of volcanic glass under saline-alkaline conditions. This paper applies previously defined geochemical and mineralogical "fingerprints" for several major Bed II marker tuffs, based on glass (where available) and phenocrysts more resistant to alteration (feldspar, hornblende, augite, and titanomagnetite), to tuffs from stratigraphic sections in the Olduvai Junction Area, including previously and recently excavated Acheulean and Oldowan sites (HWK EE (Locality (Loc) 42), EF-HR (Loc 12a), FLK (Loc 45), and MNK (Loc 88)). The Middle Bed II Bird Print Tuff (BPT) is found to be more compositionally variable than previously reported but is still valuable as a stratigraphic marker over short distances. The confirmation of blocks of Tuff IID in conglomerate helps constrain Upper Bed II stratigraphy at sites where in-situ tuffs are absent. This paper also compiles the results of published geochronological research, providing stratigraphic context and updating previously reported dates using a consistent 40 Ar/ 39 Ar reference standard age. The results of this work support the following paleoanthropologically relevant conclusions: 1) the early Acheulean site EF-HR (Loc 12a) is situated above the level of Hay's Tuff IIC, and thus sits in Upper rather than Middle Bed II, (2) the HWK EE (Loc 42) Oldowan site is constrained between Tuff IIA and Tuff IIB, just above the boundary between Lower and Middle Bed II, and 3) the Acheulean site at FLK W most likely lies within the Middle Augitic Sandstone, above Tuff IIB, similar to the placements by Leakey and Hay for the earliest Acheulean at Olduvai

  3. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    USGS Publications Warehouse

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years

  4. Structural control on the CO2 release west of Mt. Epomeo resurgent block (Ischia, Italy)

    NASA Astrophysics Data System (ADS)

    de Vita, S.; Marotta, E.; Ventura, G.; Chiodini, G.

    2003-04-01

    Volcanism at Ischia started more than 150 ka B.P. and continued until the last eruption occurred in 1302 A.D. Ischia is dominated by the caldera forming eruption of Mt. Epomeo Green Tuff (55 ka), which was followed by block resurgence inside the caldera from 33 ka B.P. Resurgence influenced the volcanic activity determining the conditions for magma ascent mainly along the eastern edge of the resurgent block. The resurgent area has a poligonal shape resulting from reactivation of regional faults and by activation of faults related to volcanotectonism. The western sector is bordered by inward dipping, high angle strike-slip/reverse faults testifying a compressional stress regime in this area. These features are cut by late outward dipping normal faults due to gravitational stress. The activity of the volcanic system is testified by seismicity and thermal manifestations. Fumarolic activity concentrates along the faults that borders westward the Mt. Epomeo resurgent block, where the Green Tuff overlies fractured lavas. The structural data show that, outside the most active degassing zone, fractures show a NNW-SSE strike and dip toward Mt. Epomeo. These fractures delimit the northern sector of Mt. Epomeo and show strike and dip consistent with the inward dipping reverse faults. Inside the degassing area fractures show a NW-SE strike and dip outward Mt. Epomeo. These gravity-related faults cut the lavas where the hydrothermal circulation is active. The dip direction of the NW-SE striking fractures within the degassing zone is not consistent with that of the strike-slip/reverse faults (i.e. towards NE) but agrees well with that of the gravity-induced faults (dip direction towards SW). Inside the degassing zone, NW-SE striking faults with lengths not exceeding the hydrothermalized extension occur. This arrangement indicate that the syn-resurgence faults act as permeability barriers, whereas the youngest faults act as the main fluid pathway.

  5. Primal Alternatives to Talk Therapy: The Batak "Tondi" of North Sumatra.

    ERIC Educational Resources Information Center

    Pedersen, Paul B.

    1993-01-01

    Notes that the Toba Batak of North Sumatra provide internalized means of mediating mental health through religious-based notion of the tondi, or source of power, inside the person as the source of mental-physical health and illness. Discusses rituals necessary for maintaining health with rationale supporting those rituals. Describes applications…

  6. Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit

    USGS Publications Warehouse

    Levy, S.S.; O'Neil, J.R.

    1989-01-01

    The locally zeolitized Topopah Spring Member of the Paintbrush Tuff (13 Myr.), Yucca Mountain, Nevada, U.S.A., is part of a thick sequence of zeolitized pyroclastic units. Most of the zeolitized units are nonwelded tuffs that were altered during low-temperature diagenesis, but the distribution and textural setting of zeolite (heulandite-clinoptilolite) and smectite in the densely welded Topopah Spring tuff suggest that these hydrous minerals formed while the tuff was still cooling after pyroclastic emplacement and welding. The hydrous minerals are concentrated within a transition zone between devitrified tuff in the central part of the unit and underlying vitrophyre. Movement of liquid and convected heat along fractures from the devitrified tuff to the ritrophyre caused local devitrification and hydrous mineral crystallization. Oxygen isotope geothermometry of cogenetic quartz confirms the nondiagenetic moderate temperature origin of the hydrous minerals at temperatures of ??? 40-100??C, assuming a meteoric water source. The Topopah Spring tuff is under consideration for emplacement of a high-level nuclear waste repository. The natural rock alteration of the cooling pyroclastic deposit may be a good natural analog for repository-induced hydrothermal alteration. As a result of repository thermal loading, temperatures in the Topopah Spring vitrophyre may rise sufficiently to duplicate the inferred temperatures of natural zeolitic alteration. Heated water moving downward from the repository into the vitrophyre may contribute to new zeolitic alteration. ?? 1989.

  7. Lithology, age and structure of early proterozoic greenstone belts, West African shield

    NASA Technical Reports Server (NTRS)

    Attoh, K.

    1986-01-01

    Lithologic and chemical data have been compiled for belts in the Proterozoic terrane. Available stratigraphic information from geologic maps of these areas indicate that a typical sequence is comprised of predominately mafic lava flows (basalt-andesite) at the base, which are overlain by felsic volcanic rocks including pyroclastic rocks and lavas. Lithostratigraphic data indicate the volcanic succession is 6-8 km thick. This is followed by 3-4 km of basaltic lava flows which are locally pillowed, the top of the unit is marked by a distinctive manganese formation (MF) consisting of Mn-Fe rich cherts up to 200 m thick. The youngest volcanic unit consists of mafic tuffs and breccia with a distinctive fragmental texture. Of about 100 chemical analyses reported calc-alkaline rocks constitute 55% and tholeiites 45%. Quartz-normative basalt constitutes 99% of the rock type in the tholeiitic suite. In the calc-alkaline suite, 9% of the analyses is basalt, 45% andesite and the rest is dacite and rhyodacite. The available data lead to the conclusion that the minimum age for the volcanic activity must be between 2200 and 2100 million years. It is significant that Archean ages have not been reported from any of the volcanic belts (1-10).

  8. Is secretion of IFN-gamma in response to Mycobacterium tuberculosis antigens in youngest children sufficient to play a role in TB diagnostics?

    PubMed

    Bielecka, Teresa; Komorowska-Piotrowska, Anna; Krenke, Katarzyna; Feleszko, Wojciech; Kulus, Marek

    2018-02-01

    To assess whether children ≤5 years of age, produce sufficient amounts of interferon gamma (IFN-ɣ) in response to phytohaemagglutinin (mitogen), and Mycobacterium tuberculosis antigens (TB antigens) in the QuantiFERON-TB Gold in-Tube test (QFT-GIT), (Cellestis Ltd., Australia). Is TB-antigen-induced IFN-ɣ response in children ≤5 years sufficient to consider QFT-GIT a possible tool for TB diagnostics? Study design, patient-subject selection, and methods: We recruited children 0-17 years old suspected of TB infection to this cross-sectional study, in whom QFT-GIT and TST were performed. We analyzed the median IFN-ɣ levels in mitogen and TB antigen tubes in children ≤5 years and >5 years, and the correlation between IFN-ɣ level in both tubes and age. A total of 153 children were enrolled, age median was 7.8 (IQR:8), 45 (29.4%) aged ≤5 years (median 3.4, IQR:1.7), 108 > 5 years (median 10.55, IQR:5.93). In the mitogen tubes, the median IFN-ɣ level was higher in children >5 years (median 17.87, IQR:2.1 vs 16.77, IQR:7.6), but surprisingly in the TB antigen tubes it was higher in the younger group (median 0.12, IQR:0.21vs 0.06, IQR:0.09, P = 0.04). We proved a positive correlation between IFN-ɣ level and age in mitogen tubes (r = 0.18, P = 0.03) and a negative correlation in TB antigen tubes (r = -0.17, P = 0.04). In latent tuberculosis infection patients, the latter correlation was found to be even stronger (r = -0.39, P = 0.01). The youngest children release sufficient amount of IFN-ɣ in response to TB antigens thus QFT-GIT might be a useful tool for TB diagnostics in this age group. © 2017 Wiley Periodicals, Inc.

  9. The role of tephra studies in African paleoanthropology as exemplified by the Sidi Hakoma Tuff

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Endale, Tamrat; White, Tim D.; Thouveny, Nicolas; Hart, William K.; Renne, Paul R.; Asfaw, Berhane

    2013-01-01

    Beginning in the 1960s, geological and paleoanthropological exploration of the Ethiopian rift system's basins have led to the discovery and assembly of the most comprehensive record of human biological and technological change during the last 6 million years. The hominid fossils, including partial skeletons, were primarily discovered in the Afar Rift, the Main Ethiopian Rift, and in the Omo Basin of the broadly rifted zone of SW Ethiopia. The paleoanthropological research areas within the SW Afar Rift that have yielded many diverse hominid species and the oldest stone tools are, from north to south, Woranso-Mille (aff. Ardipithecus and Au. afarensis), Hadar (Au. afarensis, Homo sp.), Dikika (Au. afarensis), Gona (Ar. kadabba, Ar. ramidus, H. erectus, and oldest stone tools), Middle Awash (Ar. kadabba, Ar. ramidus, Au. anamensis, Au. afarensis, Au. garhi, H. erectus, H. rhodesiensis, H. sapiens idaltu, and the oldest paleo-butchery locality), and Galili (Au. afarensis). Additional hominid remains were discovered at Melka Kunture on the banks of the Awash River near its source along the western margin of the central part of the Main Ethiopian Rift (H. erectus), at Konso (H. erectus and A. boisei), and at the southern end of the MER, and in the Omo Basin (Au. anamensis, Au. afarensis, Au. aethiopicus, Au. boisei, H. habilis, and H. erectus). Distal and sometimes proximal tephra units interbedded within fossilifeous sedimentary deposits have become key elements in this work by providing chronological and correlative control and depositional contexts. Several regional tephra markers have been identified within the northern half of the eastern African rift valley in Ethiopia and Kenya, and in marine sediments of the Gulf of Aden Rift and the NW Indian Ocean. Out of the many regional tephra stratigraphic markers that range in age from the early Pliocene (3.97 Ma) to the late Pleistocene (0.16 Ma), the Sidi Hakoma Tuff (SHT) has been more widely identified and thoroughly

  10. Youngest Brown Dwarf Yet in a Multiple Stellar System

    NASA Astrophysics Data System (ADS)

    2000-07-01

    ... and the Sharpest Optical Image (0.18 arcsec) from the VLT so far...! Astronomers are eager to better understand the formation of stars and planets - with an eye on the complex processes that lead to the emergence of our own solar system some 4600 million years ago. Brown Dwarfs (BDs) play a special role in this context. Within the cosmic zoo, they represent a class of "intermediate" objects. While they are smaller than normal stars, they shine by their own energy for a limited time, in contrast to planets. Recent observations with the ESO Very Large Telescope (VLT) of a "young" Brown Dwarf in a multiple stellar system are taking on a particular importance in this connection. An evaluation of the new data by an international team of astronomers [1] shows that it is by far the youngest of only four such objects found in a stellar system so far. The results are now providing new insights into the stellar formation process. This small object is known as TWA-5 B and with a mass of only 15 - 40 times that of Jupiter, it is near the borderline between planets and Brown Dwarfs, cf. the explanatory Appendix to this Press Release. However, visible and infrared VLT spectra unambiguously classify it in the latter category. Accurate positional measurements with the Hubble Space Telescope (HST) and the VLT hint that it is orbiting the central, much heavier and brighter star in this system, TWA-5 A (itself a close double star of which each component presumably has a mass of 0.75 solar masses), with a period that may be as long as 900 years. And, by the way, an (I-band) image of the TWA-5 system is the sharpest delivered by the VLT so far, with an image size of only 0.18 arcsec [2]! Brown Dwarfs: a cool subject In current astronomical terminology, Brown Dwarfs (BDs) are objects whose masses are below those of normal stars - the borderline is believed to be about 8% of the mass of our Sun - but larger than those of planets, cf. [3]. Unlike normal stars, Brown Dwarfs are unable

  11. Determining the physical and chemical processes behind four caldera-forming eruptions in rapid succession in the San Juan caldera cluster, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Curry, A. C.; Caricchi, L.; Lipman, P. W.

    2017-12-01

    A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE

  12. Recrystallization and anatexis along the plutonic-volcanic contact of the Turkey Creek caldera, Arizona

    USGS Publications Warehouse

    du Bray, E.A.; Pallister, J.S.

    1999-01-01

    Unusual geologic and geochemical relations are preserved along the contact between intracaldera tuff and a resurgent intrusion within the 26.9 Ma Turkey Creek caldera of southeast Arizona. Thick intracaldera tuff is weakly argillically altered throughout, except in zones within several hundred meters of its contact with the resurgent intrusion, where the groundmass of the tuff has been variably converted to granophyre and unaltered sanidine phenocrysts are present. Dikes of similarly granophyric material originate at the tuff-resurgent intrusion contact and intrude overlying intracaldera megabreccia and tuff. Field relations indicate that the resurgent intrusion is a laccolith and that it caused local partial melting of adjacent intracaldera tuff. Geochemical and petrographic relations indicate that small volumes of partially melted intracaldera tuff assimilated and mixed with dacite of the resurgent intrusion along their contact, resulting in rocks that have petrographic and compositional characteristics transitional between those of tuff and dacite. Some of this variably contaminated, second-generation magma coalesced, was mobilized, and was intruded into overlying intracaldera rocks. Interpretation of the resurgent intrusion in the Turkey Creek and other calderas as intracaldera laccoliths suggests that intrusions of this type may be a common, but often unrecognized, feature of calderas. Development of granophyric and anatectic features such as those described here may be equally common in other calderas. The observations and previously undocumented processes described here can be applied to identification and interpretation of similarly enigmatic relations and rocks in other caldera systems. Integration of large-scale field mapping with detailed petrographic and chemical data has resulted in an understanding of otherwise intractable but petrologically important caldera-related features.

  13. Early miocene bimodal volcanism, Northern Wilson Creek Range, Lincoln County, Nevada

    USGS Publications Warehouse

    Willis, J.B.; Willis, G.C.

    1996-01-01

    Early Miocene volcanism in the northern Wilson Creek Range, Lincoln County, Nevada, produced an interfingered sequence of high-silica rhyolite (greater than 74% SiO2) ash-flow tuffs, lava flows and dikes, and mafic lava flows. Three new potassium-argon ages range from 23.9 ?? 1.0 Ma to 22.6 ?? 1.2 Ma. The rocks are similar in composition, stratigraphic character, and age to the Blawn Formation, which is found in ranges to the east and southeast in Utah, and, therefore, are herein established as a western extension of the Blawn Formation. Miocene volcanism in the northern Wilson Creek Range began with the eruption of two geochemically similar, weakly evolved ash-flow tuff cooling units. The lower unit consists of crystal-poor, loosely welded, lapilli ash-flow tuffs, herein called the tuff member of Atlanta Summit. The upper unit consists of homogeneous, crystal-rich, moderately to densely welded ash-flow tuffs, herein called the tuff member of Rosencrans Peak. This unit is as much as 300 m thick and has a minimum eruptive volume of 6.5 km3, which is unusually voluminous for tuffs in the Blawn Formation. Thick, conspicuously flow-layered rhyolite lava flows were erupted penecontemporaneously with the tuffs. The rhyolite lava flows have a range of incompatible trace element concentrations, and some of them show an unusual mixing of aphyric and porphyritic magma. Small volumes of alkaline, vesicular, mafic flows containing 50 weight percent SiO2 and 2.3 weight percent K2O were extruded near the end of the rhyolite volcanic activity. The Blawn Formation records a shift in eruptive style and magmatic composition in the northern Wilson Creek Range. The Blawn was preceded by voluminous Oligocene eruptions of dominantly calc-alkaline orogenic magmas. The Blawn and younger volcanic rocks in the area are low-volume, bimodal suites of high-silica rhyolite tuffs and lava flows and mafic lava flows.

  14. Male lineages in South American native groups: evidence of M19 traveling south.

    PubMed

    Toscanini, Ulises; Gusmão, Leonor; Berardi, Gabriela; Gomes, Verónica; Amorim, António; Salas, Antonio; Raimondi, Eduardo

    2011-10-01

    With this study, we aimed to determine the different male ancestral components of two Native American communities from Argentina, namely Toba and Colla. The analysis of 27 Y-chromosome SNPs allowed us to identify seven different haplogroups in both samples. Chromosomes carrying the M3 mutation, which typically defines the Native American haplogroup Q1a3a, were seen most frequently in the Toba community (90%). Conversely, Q1a3a was represented in 34% of the Colla Y-chromosomes, whereas haplogroup R1b1, the main representative of western European populations, exhibited the highest frequency in this population (41%). Different M3 sublineages in the Toba community could be identified by observing point mutations at both DYS385 and M19 loci. A microvariant at DYS385, named 16.1, has been characterized, which helps to further subdivide Q1a3a. It is the first time the M19 mutated allele is described in a population from Argentina. This finding supports the old age of the lineages carrying the M19 mutation, but it contradicts the previous hypothesis that the M19 mutated allele is confined to only two Equatorial-Tucano population groups from the north region of South America. The detection of M19 further south than previously thought allows questioning of the hypothesis that this lineage serves as an example of isolation after colonization. This observation also affirms the strong genetic drift to which Native Americans have been subjected. Moreover, our study illustrates a heterogeneous contribution of Europeans to these populations and supports previous studies showing that most Native American groups were subjected to European admixture that primarily involved immigrant men. Copyright © 2011 Wiley-Liss, Inc.

  15. pXRF quantitative analysis of the Otowi Member of the Bandelier Tuff: Generating large, robust data sets to decipher trace element zonation in large silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Van Hoose, A. E.; Wolff, J.; Conrey, R.

    2013-12-01

    Advances in portable X-Ray fluorescence (pXRF) analytical technology have made it possible for high-quality, quantitative data to be collected in a fraction of the time required by standard, non-portable analytical techniques. Not only do these advances reduce analysis time, but data may also be collected in the field in conjunction with sampling. Rhyolitic pumice, being primarily glass, is an excellent material to be analyzed with this technology. High-quality, quantitative data for elements that are tracers of magmatic differentiation (e.g. Rb, Sr, Y, Nb) can be collected for whole, individual pumices and subsamples of larger pumices in 4 minutes. We have developed a calibration for powdered rhyolite pumice from the Otowi Member of the Bandelier Tuff analyzed with the Bruker Tracer IV pXRF using Bruker software and influence coefficients for pumice, which measures the following 19 oxides and elements: SiO2, TiO2, Al2O3, FeO*, MnO, CaO, K2O, P2O5, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, and Th. With this calibration for the pXRF and thousands of individual powdered pumice samples, we have generated an unparalleled data set for any single eruptive unit with known trace element zonation. The Bandelier Tuff of the Valles-Toledo Caldera Complex, Jemez Mountains, New Mexico, is divided into three main eruptive events. For this study, we have chosen the 1.61 Ma, 450 km3 Otowi Member as it is primarily unwelded and pumice samples are easily accessible. The eruption began with a plinian phase from a single source located near center of the current caldera and deposited the Guaje Pumice Bed. The initial Unit A of the Guaje is geochemically monotonous, but Units B through E, co-deposited with ignimbrite show very strong chemical zonation in trace elements, progressing upwards through the deposits from highly differentiated compositions (Rb ~350 ppm, Nb ~200 ppm) to less differentiated (Rb ~100 ppm, Nb ~50 ppm). Co-erupted ignimbrites emplaced during column collapse show

  16. The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Petricca, Eleonora; Bachmann, Olivier; Mollo, Silvio; De Astis, Gianfilippo; Piochi, Monica

    2018-06-01

    Understanding the mechanisms responsible for the generation of chemical gradients in high-volume ignimbrites is key to retrieve information on the processes that control the maturation and eruption of large silicic magmatic reservoirs. Over the last 60 ky, two large ignimbrites showing remarkable zoning were emplaced during caldera-forming eruptions at Campi Flegrei (i.e., Campanian Ignimbrite, CI, 39 ka and Neapolitan Yellow Tuff, NYT, 15 ka). While the CI displays linear compositional, thermal and crystallinity gradients, the NYT is a more complex ignimbrite characterized by crystal-poor magmas ranging in composition from trachy-andesites to phonolites. By combining major and trace element compositions of matrix glasses and mineral phases from juvenile clasts located at different stratigraphic heights along the NYT pyroclastic sequence, we interpret such compositional gradients as the result of mixing/mingling between three different magmas: (1) a resident evolved magma showing geochemical characteristics of a melt extracted from a cumulate mush dominated by clinopyroxene, plagioclase and oxides with minor sanidine and biotite; (2) a hotter and more mafic magma from recharge providing high-An plagioclase and high-Mg clinopyroxene crystals and (3) a compositionally intermediate magma derived from remelting of low temperature mineral phases (i.e., sanidine and biotite) within the cumulate crystal mush. We suggest that the presence of a refractory crystal mush, as documented by the occurrence of abundant crystal clots containing clinopyroxene, plagioclase and oxides, is the main reason for the lack of erupted crystal-rich material in the NYT. A comparison between the NYT and the CI, characterized by both crystal-poor extracted melts and crystal-rich magmas representing remobilized portions of a "mature" (i.e., sanidine dominated) cumulate residue, allows evaluation of the capability of crystal mushes of becoming eruptible upon recharge.

  17. Heterogeneities in the Ecoepidemiology of Trypanosoma cruzi Infection in Rural Communities of the Argentinean Chaco

    PubMed Central

    Cardinal, M. Victoria; Orozco, M. Marcela; Enriquez, Gustavo F.; Ceballos, Leonardo A.; Gaspe, María Sol; Alvarado-Otegui, Julián A.; Gurevitz, Juan M.; Kitron, Uriel; Gürtler, Ricardo E.

    2014-01-01

    We conducted a cross-sectional survey of Trypanosoma cruzi infection of Triatoma infestans as well as dogs and cats in 327 households from a well-defined rural area in northeastern Argentina to test whether the household distribution of infection differed between local ethnic groups (Tobas and Creoles) and identify risk factors for host infection. Overall prevalence of infection of bugs (27.2%; 95% confidence interval = 25.3–29.3%), dogs (26.0%; 95% confidence interval = 23.3–30.1%), and cats examined (28.7%; 95% confidence interval = 20.2–39.0%) was similar. A multimodel inference approach showed that infection in dogs was associated strongly with the intensity and duration of local exposure to infected bugs and moderately with household ethnic background. Overall, Toba households were at a substantially greater risk of infection than Creole households. The strong heterogeneities in the distribution of bug, dog, and cat infections at household, village, and ethnic group levels may be used for targeted vector and disease control. PMID:24732461

  18. Permian to recent volcanism in northern sumatra, indonesia: a preliminary study of its distribution, chemistry, and peculiarities

    NASA Astrophysics Data System (ADS)

    Rock, N. M. S.; Syah, H. H.; Davis, A. E.; Hutchison, D.; Styles, M. T.; Lena, Rahayu

    1982-06-01

    Sumatra has been a ‘volcanic arc’, above an NE-dipping subduction zone, since at least the Late Permian. The principal volcanic episodes in Sumatra N of the Equator have been in the Late Permian, Late Mesozoic, Palaeogene, Miocene and Quaternary. Late Permian volcanic rocks, of limited extent, are altered porphyritic basic lavas interstratified with limestones and phyllites. Late Mesozoic volcanic rocks, widely distributed along and W of the major transcurrent. Sumatra Fault System (SFS), which axially bisects Sumatra, include ophiolite-related spilites, andesites and basalts. Possible Palaeogene volcanic rocks include an altered basalt pile with associated dyke-swarm in the extreme NW, intruded by an Early Miocene (19 my) dioritic stock; and variable pyroxene rich basic lavas and agglomerates ranging from alkali basaltic to absarokitic in the extreme SW. Miocene volcanic rocks, widely distributed (especially W of the SFS), and cropping out extensively along the W coast, include calc-alkaline to high-K calc-alkaline basalts, andesites and dacites. Quaternary volcanoes (3 active, 14 dormant or extinct) are irregularly distributed both along and across the arc; thus they lie fore-arc of the SFS near the Equator but well back-arc farther north. The largest concentration of centres, around Lake Toba, includes the >2000 km3 Pleistocene rhyolitic Toba Tuffs. Quaternary volcanics are mainly calc-alkaline andesites, dacites and rhyolites with few basalts; they seem less variable, but on the whole more acid, than the Tertiary. The Quaternary volcanism is anomalous in relation to both southern Sumatra and adjacent Java/Bali: in southern Sumatra, volcanoes are regularly spaced along and successively less active away from the SFS, but neither rule holds in northern Sumatra. Depths to the subduction zone below major calc-alkaline volcanoes in Java/Bali are 160-210 km, but little over 100 km in northern Sumatra, which also lacks the regular K2O-depth correlations seen in

  19. The Grainsize Characteristics of Coignimbrite Deposits

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; Eychenne, Julia

    2015-04-01

    Due to their long atmospheric residence time, identifying the source and understanding the dispersion processes of fine-grained ash is of great importance when considering volcanic hazard and risk. An exceptionally efficient mechanism to supply large volumes of fine-grained ash to the stratosphere is the formation of co-ignimbrite plumes. Such plumes form as air is entrained at the top of propagating pyroclastic density currents, allowing a neutrally buoyant package of gas and ash to loft to high altitudes, consequently dispersing over large areas. The study of ash deposits on land and in deep sea cores has demonstrated that such events have played a major role during ignimbrite-forming eruptions, including the Tambora 1815, the Minoan (Santorini), the Campanian Ignimbrite, and the Younger Toba Tuff eruptions, as well as during more recent, pyroclastic flow-forming, intermediate sized eruptions (Vulcanian to Plinian in style), e.g. Mount St. Helens 1980, Fugen-dake (Unzen) 1991, Pinatubo 1991, Montserrat 1997 and Tungurahua 2006 eruptions. Published, as well as new results from the study of co-ignimbrite deposits, show that co-ignimbrite plumes can rise to high altitudes into the atmosphere (the co-ignimbrite plumes from the May 18, 1980 Mount St Helens blast and the Campanian Ignimbrite eruptions reached 30 - 35 km a.s.l,), potentially distribute enormous volumes of ash (the 75 ka Toba eruption and the Minoan eruption of Santorini settled >800 km3 and >25 km3 of co-ignimbrite ash, respectively), and contribute much of the ash to very large (60±6 vol% of the Campanian fallout deposit 130 to 900 km from vent), as well as intermediate size (up to 58 wt% and 52 wt% in the 2006 Tungurahua and May 18, 1980 Mount St. Helens fallout deposits, respectively) explosive eruptions. Comparison of new data with those from the published record shows that co-ignimbrite deposits are strikingly similar, regardless of eruption conditions, and have distinct grain size characteristics

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a{number_sign}1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy,more » and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates.« less

  1. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.

    2011-02-01

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristicsmore » of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).« less

  2. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  3. Geological monitoring of Surtsey, Iceland, 1967-1998

    USGS Publications Warehouse

    Jakobsson, Sveinn P.; Gudmundsson, Gudmundur; Moore, James G.

    2000-01-01

    Aspects of the geological monitoring of the volcanic island of Surtsey 1967-1998, are described. A hydrothermal system was developed within the tephra craters in late 1966 to early 1967. Temperatures in a drill hole, situated at the eastern border of the hydrothermal area, indicate that the hydrothermal system at that site has been cooling at an average rate of ≤ 1°C per year since 1980. The tephra was altered rapidly within the hydrothermal area, producing the first visible palagonite tuff in 1969. A substantial part of the tephra pile above sea level was probably converted to tuff by 1972. The visible area of tuff has gradually increased since then, primarily due to erosion of tephra at the surface. By 1998 52% of the exposed tephra area had been converted to palagonite tuff. By volume, however, some 80-85% of the tephra pile above sea level has been converted to tuff in 1998. The area of Surtsey has shrunk from its original 2.65 km2 (1967) to 1.47 km2 (1998) due to marine abrasion. The geological formations on Surtsey have, however, responded quite variably to erosion. The tephra pile was easily eroded, but marine abrasion. The central core of palagonite tuff is estimated to be ≤0.39 km2. Statistical estimation of models of the decreases of Surtsey indicate that it will last for a long time. The numerical experiments indicate that it will take over 100 years until only the palagonite tuff core is left. It is postulated that the final remnany of Surtsey before complete destruction will be a palagonite tuff crag, comparable to those of the other islands in the Vestmannaeyjar archipelago.

  4. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks in the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Maldonado, Florian; Koether, S.L.

    1983-01-01

    A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic

  5. Paleo-geomorphic evolution of the Ciomadul volcano (East Carpathians, Romania) using integrated volcanological, stratigraphical and radiometric data

    NASA Astrophysics Data System (ADS)

    Karátson, Dávid; Wulf, Sabine; Veres, Daniel; Gertisser, Ralf; Telbisz, Tamás; Magyari, Enikö

    2016-04-01

    Ciomadul volcano is the youngest eruptive center of the Carpatho-Pannonian Region (CPR), located at the southernmost end of the Intra-Carpathian Volcanic Range, and within this, the Harghita Mountains in the East Carpathians. As a result of multi-disciplinary, ongoing studies (Karátson et al. 2013 and in review; Magyari et al. 2014; Veres et al. in prep.; Wulf et al. in review), we have obtained a number of constraints on the paleo-geomorphic evolution of the volcano. Our studies clarified that this volcano, a lava dome complex with a twin-crater (i.e. the older Mohos peat bog and the younger St. Ana lake), produced frequent explosive eruptions between 50 and 29 ky. As a result, a set of superimposed volcanic landforms were created, the chronology of which in some cases can be well constrained, in other cases further studies are required to infer their timing. Ciomadul evolved as a moderately explosive dacitic dome complex possibly for several hundred ka (see controversial chronology in Karátson et al. 2013, Harangi et al. 2015 and Szakács et al. 2015), resulting in a set of adjoining lava domes and a central complex. There is no evidence for crater-forming eruptions during that time, although the possibility of moderate explosions cannot be ruled out. Field relations show that the first exposive products are phreatomagmatic tuff series, called Turia type, dated at ca. 50 ka. These tephra units could be linked to the formation of a "Paleo-Mohos" crater, and possibly to the northern half-caldera rim which consists of massive lava dome rock and hosts Ciomadul Mare, the highest point of the volcano (1300 m). After this first explosive activity, volcanism seems to have migrated toward the W, at the site of the later St. Ana crater. Following plinian eruption(s) at ca. 47-43 ka, the explosive activity went dormant, and a lava dome might have grown up in a possibly small "Proto-St. Ana" crater. At 31-32 ka, a succession of violent magmatic explosive eruptions occurred

  6. Sedimentary conditions of Upper Permian volcano-clastic rocks of Ayan-Yrahskiy anticlinorium (Verhoyansk-Kolyma orogen)

    NASA Astrophysics Data System (ADS)

    Astakhova, Anna; Khardikov, Aleksandr

    2013-04-01

    Sedimentation conditions of upper Permian volcano-clastic rocks of Ayan-Yurakhsky anticlinorium are the reason of discussions between researchers. It is important to correctly solve this problem. Investigation allows us to conclude that upper Permian sediments was formed due to high rate deltaic sedimentation on shelf and continental slope of epicontinental sea basin. More than 45 outcrops of upper Permian sediments were described within Ayan-Yurakhsky anticlinorium. Termochemical and X-ray phase, lithological facies, stadial, paleogeographic and others were applied. Investigation allows to classify following types: tuffs, tuffites of andesites, andesi-dacites, sandstone tuffs, siltstone tuffs and claystone tuffs. Two facies were deliniated in the research area: 1) delta channel facies 2) epicontinental sea shelf edge and continental slope. Delta channel facies are located on the south-west part of Aian-Yrahskiy anticlinorium. It is composed of silty packsand and psammitic tuff-siltstone alternation and gravel-psammitic andesi-dacitic tuffute and tuff-breccia bands. Sediments have cross-bedding, through cross-bedding, curvilinear lamination structures. Facies occurred during high rate deltaic sedimentation on the shelf of epicontinental sea. Epicontinental sea shelf edge and continental slope facies are located on the south-west part. Sediments are represented by large thickness tuff-siltstone with tuff-sandstone, tuff-madstone, tuff, tuffite bands and lenses. Large number of submarine landslides sediments provide evidence that there was high angle sea floore environment. 30-50 m diametr eruption centers were described by authors during geological traverses. They are located in Kulu river basin. Their locations are limited by deep-seated pre-ore fault which extended along Ayan-Yurakhsky anticlinorium. U-Pb SHRIMP method showed that the average age of circons, taken from eruption centers, is Permian (256,3±3,7 ma). This fact confirms our emphasis that eruption

  7. Child care and our youngest children.

    PubMed

    Phillips, D; Adams, G

    2001-01-01

    Studies of child development confirm that experiences with people mold an infant's mind and personality. Caregiving is, therefore, central to development, whether the caregiver is a parent, a grandmother, or a teacher in a child care center. This article uses data from new, national studies of families to examine the state of child care for infants and toddlers. The story it tells is complex, as the authors outline the overlapping impacts that diverse child care settings and home situations have on children. Early exposure to child care can foster children's learning and enhance their lives, or it can leave them at risk for troubled relationships. The outcome that results depends largely on the quality of the child care setting. Responsive caregivers who surround children with language, warmth, and chances to learn are the key to good outcomes. Other quality attributes (like training and staff-to-child ratios) matter because they foster positive caregiving. Diversity and variability are hallmarks of the American child care supply. Both "wonderful and woeful" care can be found in all types of child care but, overall, settings where quality is compromised are distressingly common. Children whose families are not buoyed by good incomes or government supports are the group most often exposed to poor-quality care. Given this balanced but troubling look at the status of child care for infants and toddlers, the authors conclude that there is a mismatch between the rhetoric of parental choice and the realities facing parents of young children in the United States. They call on communities, businesses, foundations, and government to play a larger role in helping parents secure good care for their infants and toddlers.

  8. Our Youngest Learners: The Infant School

    ERIC Educational Resources Information Center

    Grade Teacher, 1969

    1969-01-01

    An approach to teaching based on the English infant school where "youngsters aged from five to 10 work in specially adapted, child sized environments, doing whatever they want. Part of a longer special report which is available from: Grade Teacher Reprints, 23 Leroy Ave., Darien, Conn. 06820 (No. 91291, 75J) (Author/AP)

  9. Foster care's youngest: a preliminary report.

    PubMed

    Klee, L; Kronstadt, D; Zlotnick, C

    1997-04-01

    The impact of welfare reform on foster care is examined in relation to children's mental health. Initial assessment of 125 young foster children randomly assigned to a special program found that half rated below normal on mental and psychomotor development, with two-thirds below normal on emotional regulation and motor quality. Implications for social policy and program planning, and the need for ongoing research, are discussed.

  10. Kinematic Model for the Sierra Nevada Frontal Fault Zone, California: Paleomagnetism of the Eureka Valley Tuff

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.

    2005-12-01

    region may be an accommodation zone between two linking faults, possibly an active fold that accommodates N-S shortening at a large-scale left step in the range front fault system. We collected ~200 paleomagnetic samples from the Late Miocene Eureka Valley Tuff of the Stanislaus Group at 21 sites over a 125-km-long, E-W transect (from the Sierra Nevada foothills to east of Mono Basin). Stepwise AF demagnetization reveals a stable characteristic remnant magnetization. Our preliminary data suggest 20-40 degrees of clockwise rotation adjacent to faults of the SNFFZ. An expanded dataset aims to identify specific structural domains, quantify differential vertical axis block rotations, and test geometric models of transrotation (i.e. block-specific versus gradational) during transtensional lithospheric deformation.

  11. A Record of Uranium-Series Transport in Fractured, Unsaturated Tuff at Nopal I, Sierra Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Denton, J.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.

    2015-12-01

    In this study we utilize U-series disequilibria measurements to investigate mineral fluid interactions and the role fractures play in the geochemical evolution of an analogue for a high level nuclear waste repository, the Nopal I uranium ore deposit. Samples of fracture-fill materials have been collected from a vertical drill core and surface fractures. High uranium concentrations in these materials (12-7700 ppm) indicate U mobility and transport from the deposit in the past. U concentrations generally decrease with horizontal distance away from the ore deposit but show no trend with depth. Isotopic activity ratios indicate a complicated geochemical evolution in terms of the timing and extent of actinide mobility, possibly due to changing environmental (redox) conditions over the history of the deposit. 234U/238U activity ratios are generally distinct from secular equilibrium and indicate some degree of open system U behavior during the past 1.2 Ma. However, calculated closed system 238U-234U-230Th model ages are generally >313 ka and >183 ka for the surface fracture and drill core samples respectively, suggesting closed system behavior for U and Th over this most recent time period. Whole rock isochrons drawn for the drill core samples show that at two of three depths fractures have remained closed with respect to U and Th mobility for >200 ka. However, open system behavior for U in the last 350 ka is suggested at 67 m depth. 231Pa/235U activity ratios within error of unity suggest closed system behavior for U and Pa for at least the past 185 ka. 226Ra/230Th activity ratios are typically <1 (0.7-1.2), suggesting recent (<8 ka) radium loss and mobility due to ongoing fluid flow in the fractures. Overall, the mainly closed system behavior of U-Th-Pa over the past ~200 ka provides one indicator of the geochemical immobility of these actinides over long time-scales for potential nuclear waste repositories sited in fractured, unsaturated tuff.

  12. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: implications for the origin of lithium-rich brines

    USGS Publications Warehouse

    Hofstra, Albert H.; Todorov, T.I.; Mercer, C.N.; Adams, D.T.; Marsh, E.E.

    2013-01-01

    To evaluate whether anatectic and/or highly fractionated lithophile element-enriched rhyolite tuffs deposited in arid lacustrine basins lose enough lithium during eruption, lithification, and weathering to generate significant Li brine resources, pre-eruptive melt compositions, preserved in inclusions, and the magnitude of post-eruptive Li depletions, evident in host rhyolites, were documented at six sites in the western United States. Each rhyolite is a member of the bimodal basalt-rhyolite assemblage associated with extensional tectonics that produced the Basin and Range province and Rio Grande rift, an evolving pattern of closed drainage basins, and geothermal energy or mineral resources. Results from the 0.8 Ma Bishop tuff (geothermal) in California, 1.3 to 1.6 Ma Cerro Toledo and Upper Bandelier tephra (geothermal) and 27.9 Ma Taylor Creek rhyolite (Sn) in New Mexico, 21.7 Ma Spor Mountain tuff (Be, U, F) and 24.6 Ma Pine Grove tuff (Mo) in Utah, and 27.6 Ma Hideaway Park tuff (Mo) in Colorado support the following conclusions. Melt inclusions in quartz phenocrysts from rhyolite tuffs associated with hydrothermal deposits of Sn, Mo, and Be are extremely enriched in Li (1,000s of ppm); those from Spor Mountain have the highest Li abundance yet recorded (max 5,200 ppm, median 3,750 ppm). Forty-five to 98% of the Li present in pre-eruptive magma was lost to the environment from these rhyolite tuffs. The amount of Li lost from the small volumes (1–10 km3) of Li-enriched rhyolite deposited in closed basins is sufficient to produce world-class Li brine resources. After each eruption, meteoric water leaches Li from tuff, which drains into playas, where it is concentrated by evaporation. The localized occurrence of Li-enriched rhyolites may explain why brines in arid lacustrine basins seldom have economic concentrations of Li. Considering that hydrothermal deposits of Sn, Mo, Be, U, and F may indicate potential for Li brines in nearby basins, we surmise that the

  13. Ages and Origins of Calcite and Opal in the Exploratory Studies Facility Tunnel, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Paces, James B.; Neymark, Leonid A.; Marshall, Brian D.; Whelan, Joseph F.; Peterman, Zell E.

    2001-01-01

    Deposits of calcite and opal are present as coatings on open fractures and lithophysal cavities in unsaturated-zone tuffs at Yucca Mountain, Nevada, site of a potential high-level radioactive waste repository. Outermost layers of calcite and opal have radiocarbon ages of 16,000 to 44,000 years before present and thorium-230/uranium ages of 28,000 to more than 500,000 years before present. These ages are young relative to the 13-million-year age of the host rocks. Multiple subsamples from the same outer layer typically show a range of ages with youngest ages from the thinnest subsamples. Initial uranium-234/uranium-238 activity ratios between 1 and 9.5 show a distinct negative correlation with thorium-230/uranium age and are greater than 4 for all but one sample younger than 100,000 years before present. These data, along with micrometer-scale layering and distinctive crystal morphologies, are interpreted to indicate that deposits formed very slowly from water films migrating through open cavities. Exchanges of carbon dioxide and water vapor probably took place between downward-migrating liquids and upward-migrating gases at low rates, resulting in oversaturation of mineral constituents at crystal extremities and more or less continuous deposition of very thin layers. Therefore, subsamples represent mixtures of older and younger layers on a scale finer than sampling techniques can resolve. Slow, long-term rates of deposition (less than about 5 millimeters of mineral per million years) are inferred from subsamples of outermost calcite and opal. These growth rates are similar to those calculated assuming that total coating thicknesses of 10 to 40 millimeters accumulated over 12 million years. Calcite has a wide range of delta carbon-13 values from about -8.2 to 8.5 per mil and delta oxygen-18 values from about 10 to 21 per mil. Systematic microsampling across individual mineral coatings indicates basal (older) calcite tends to have the largest delta carbon-13 values

  14. Mountain ranges in western Pakistan as seen from the Apollo 7 spacecraft

    NASA Image and Video Library

    1968-10-15

    AS07-07-1832 (15 Oct. 1968) --- Toba, Kakar, Fort Sandeman, Sulaiman Range area in (West) Pakistan, as seen from the Apollo 7 spacecraft during its 84th revolution of Earth. Note geological features such as folded mountain structures, anticlines and synclines. Photographed from an altitude of 108 nautical miles, at ground elapsed time of 132 hours and 30 minutes.

  15. Cenozoic Ignimbrites, Source Calderas, Relict Magma Chambers, and Tectonic Settings: Perspectives from Cordilleran North America (Invited)

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.

    2009-12-01

    In the early 1960s, new concepts and innovative techniques coalesced spectacularly to improve understanding of Tertiary pyroclastic volcanism in North America. Spotty recognition of welded tuff, among rocks mostly described as silicic lava flows, exploded with identification of individual ignimbrite sheets, some having volumes >103 km3 and extending >100 km from source calderas. R.l. Smith, during study of the Bandelier Tuff in New Mexico, documented complexities of welding and crystallization zones that provided a genetic framework (cooling units) for ignimbrite studies (even while confusion continues in some areas where talus and vegetation obscure bench-forming contact zones between densely welded cliffs). Also in the 1960s, application of isotopic age determinations (initially K-Ar, now largely superceded by 40Ar/39Ar laser fusion) and precise paleomagnetic pole directions became key tools for correlating ignimbrites, deciphering eruptive histories, and determining volcano-tectonic patterns. Dated ignimbrites provide unique stratigraphic markers within volcanic field, as well as datums for regional structures and the shifting patterns of volcanism related to global plate motions--another happy coincidence in the 1960s as plate-tectonic models were formulated. Tertiary ignimbrite flare-ups along the Cordilleran margin increasingly are recognized as coinciding with inception of regional extension, especially during transitions from episodes of low-angle convergence. Many large caldera sources for the Tertiary ignimbrites have now been identified, in place of prior vague concepts of “volcano-tectonic depressions”, especially as the contrasts between thin outflow and thickly ponded intracaldera ignimbrite with interleaved collapse breccia became appreciated. Multi-km-thick fills in many calderas document that collapse begins early during large ignimbrite eruptions, and downsag inception was succeeded by breakage along ring faults. Resurgent uplift has been

  16. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  17. Effect of the addition of by-product ash of date palms on the mechanical characteristics of gypsum-calcareous materials used in road construction

    NASA Astrophysics Data System (ADS)

    Khellou, A.; Kriker, A.; Hafssi, A.; Belbarka, K.; Baali, K.

    2016-07-01

    The gypsum-calcareous materials, also known as the crusting tuff, are used in the pavement layers of low -traffic road and considered as the materials of first choice in the Saharan region of Algeria. The objective of this paper is to study the mechanical characteristics of tuff of Ouargla town that is situated in the Southeast of Algeria, by adding different percentage of ash resulted from the combustion of by-products of date palms, such as 4%, 8% and l2%, to the tuff. The results obtained have shown a remarkable improvement both in compressive strength at different ages and in the bearing index in the two cases immediate and after immersion in water. These characteristics of the mixture (tuff+ash) reach their maximum values at the 8% of ash addition.

  18. The concept of the geoportal for the youngest generation on the example of Koszalin. (Polish Title: Koncepcja portalu geoinformacyjnego dla najmlodszego pokolenia na przykladzie miasta Koszalin)

    NASA Astrophysics Data System (ADS)

    Szczepaniak-Kołtun, Z.

    2015-12-01

    General access to the Internet and the facility of obtaining spatial data contribute to the existence of geoportals. The diversity of such portals relate not only to their administrative range (national, regional, communal) but also to a wide range of themes (for instance for mushroom pickers, globetrotters...). It allows the usage of geoportals by a larger and diverse group of society. Despite such diversity it can be observed that these portals are directed at adult society and young people who already have a certain amount of geographical knowledge. Considering that from an early age children have contact with the Internet, a good practice for them would be a geoinformational portal created for children. Such early learning would lead to the creation of children's "geo-intellect" by developing their visual and spatial intelligence. Exploring the world, including in a virtual form, it is a way of shaping the imagination of children. It is a type of learning through play, and therefore children can assimilate "geo-knowledge" in an imperceptible way. In this article the author, with the help of his 8-year-old daughter and her peers wants to present the concepts of geoportal for children, which would include the most important objects for little recipients. By using the colour pictograms the portal shows the places where children can play (playgrounds, sports fields), eat a "little something" (ice cream parlour), or take the family to "attractive points" (parks, cinemas, railway station). To achieve better spatial identification the children's geoinformational portal also shows characteristic buildings (town hall, churches) as well as natural objects (rivers, lakes).The Geoportal for the youngest generation is a way for shaping good habits in surfing the Internet, but also it can be a counterweight to social networks being in common use.

  19. Petrologic evolution of the Caetano magmatic system: What can we learn from a dissected, 34 Ma caldera in the northern Great Basin, western U.S.A.?

    NASA Astrophysics Data System (ADS)

    Watts, K. E.; Colgan, J. P.; John, D. A.; Henry, C. D.

    2012-12-01

    Eruption of the >1,100 km3 Caetano Tuff and formation of the Caetano caldera occurred during the mid-Tertiary ignimbrite flare-up in the Great Basin. Post-collapse extension and faulting created a series of tilted fault blocks that expose >4 km thick intracaldera tuff, two generations of resurgent granitic plutons, silicic ring-fracture intrusions, a tuff dike that fed the early eruption, and pre- and post-caldera andesites. We integrate new petrologic data for extrusive and intrusive Caetano units with geologic mapping and geochronology to provide an exceptional view into the inner workings of a large caldera center. The Caetano Tuff is a phenocryst-rich (~30-50%) ignimbrite with a mineralogy of plagioclase + sanidine + quartz + biotite + orthopyroxene + Fe-Ti oxides ± hornblende + accessory zircon and allanite. Plagioclase crystals in the Caetano Tuff and cogenetic intrusive units span a wide compositional range (>30 mol% An) and have diverse petrographic textures ranging from euhedral phenocrysts to anhedral, sieved crystals with melt-rich cores. Plagioclase compositions measured by electron microprobe for whole rock thin sections are consistent with compositional zoning of the intracaldera tuff shown by XRF whole rock analyses, oligoclase (~10-30 mol% An) and andesine (~30-50 mol% An) in the most evolved (75-77% SiO2) and least evolved (72-74% SiO2) tuff units, respectively. However, orthopyroxene compositions are apparently decoupled from the host tuff composition, with the highest Mg#s (~60-70%) occurring in the most evolved tuff samples. In the Caetano Tuff, equilibrium pairs of Fe-Ti oxides yield an average eruption temperature of 745°C, which is consistent with the average Ti-in-zircon temperature of 750±70°C (1 stdev, n=90 spots) obtained from Ti concentrations measured by SHRIMP for single zircons. Application of Al-in-hornblende geobarometry indicates an average equilibration pressure of 4.5±0.1 kbar, corresponding to mid-crustal magma storage

  20. Geologic map of the Vigo NE quadrangle, Lincoln County, Nevada

    USGS Publications Warehouse

    Scott, Robert B.; Harding, Anne E.

    2006-01-01

    This map of the Vigo NE quadrangle, Lincoln County, Nevada records the distribution, stratigraphy, and structural relationships of Tertiary intracaldera lavas and tuffs in the southeastern part of the Kane Springs Wash caldera, extracaldera Tertiary and upper Paleozoic rocks, and late Cenozoic surficial deposits both within and outside the caldera. The alkaline to peralkaline Kane Springs Wash caldera is the youngest (14 Ma) of three chemically related metaluminous to peralkaline calderas (Boulder Canyon caldera, 15 Ma; Narrow Canyon caldera, 16 Ma) of the nested Kane Springs Wash caldera complex. The chemistry of this caldera complex became progressively more alkalic with time, in contrast to the older calc-alkalic calderas and caldera complexes to the north that migrated progressively southward in eastern Nevada. The increasingly peralkaline eruptions from the Kane Springs Wash caldera complex reached a climax that was simultaneous with the end of both rapid extension and magmatism in this part of the Basin and Range. Using the assumption that degree of tilting is related to the degree of extension, the rate of extension increased until the abrupt halt at about 14 Ma. Silicic volcanism terminated at the Kane Springs Wash caldera followed only by local sporadic basaltic eruptions that ended by about 8 Ma. The northern boundary of an east-west-trending amagmatic corridor appears in the Vigo NE quadrangle south of the Kane Springs Wash caldera.

  1. Short-lived eruptive episodes during the construction of a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania)

    NASA Astrophysics Data System (ADS)

    Seghedi, Ioan; Popa, Răzvan-Gabriel; Panaiotu, Cristian G.; Szakács, Alexandru; Pécskay, Zoltán

    2016-10-01

    The Perşani Mts. basaltic field covers >176 km2 (~22 × 8 km) and is one of the youngest and biggest monogenetic volcanic fields in Southeastern Europe. It consists of 21 monogenetic volcanic centers, most of which were built on a basement of Miocene rhyolitic tuffs and Mesozoic sedimentary rocks. 40Ar/39Ar dating shows that the eruptions took place in five episodes: 1220, 1142, 1060, 800, and 683 ka. An additional undated episode at 1060-800 ka has been identified using volcanological observations. Initial phreatomagmatic activity was commonly followed by explosive Strombolian/Hawaiian phases that deposited agglutinated spatter around the vents along with massive-to-bedded unconsolidated scoria and lapilli. Some volcanoes lack evidence for magmatic explosive activity, while others lack evidence for the initial phreatomagmatic phase. During most eruptions, the final activity was the effusion of lava flows that in some cases deformed (or partially destroyed) the volcanic edifices. The erupted volumes varied greatly from one episode to other, without showing any pattern: the highest volumes are recorded in deposits from the third pulse (1060 ka). The volcanoes are located close to faults and always on their footwall blocks, and it is inferred that the regional tectonic stress regime controlled both the timing and spacing of volcanic activity in the volcanic field.

  2. On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff: 1. Simulation studies with explicit consideration of fracture effects

    NASA Astrophysics Data System (ADS)

    Pruess, K.; Wang, J. S. Y.; Tsang, Y. W.

    1990-06-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated, fractured porous rock. Formation parameters were chosen as representative of the potential nuclear waste repository site in the Topopah Spring unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects believed to be important in multiphase fluid and heat flow. It has provisions for handling the extreme nonlinearities that arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. Thermohydrologic conditions in the vicinity of the waste packages are found to depend strongly on relative permeability and capillary pressure characteristics of the fractures, which are unknown at the present time. If liquid held on the rough walls of drained fractures is assumed to be mobile, strong heat pipe effects are predicted. Under these conditions the host rock will remain in two-phase conditions right up to the emplacement hole, and formation temperatures will peak near 100°C. If it is assumed that liquid cannot move along drained fractures, the region surrounding the waste packages is predicted to dry up, and formation temperatures will rise beyond 200°C. A substantial fraction of waste heat can be removed if emplacement holes are left open and ventilated, as opposed to backfilled and sealed emplacement conditions. Comparing our model predictions with observations from in situ heater experiments reported by Zimmerman and coworkers, some intriguing similarities are noted. However, for a quantitative evaluation, additional carefully controlled laboratory and field experiments

  3. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia.

    PubMed

    Mellars, Paul; Gori, Kevin C; Carr, Martin; Soares, Pedro A; Richards, Martin B

    2013-06-25

    It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic "supereruption" of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)-possibly as early as 120,000 y B.P. We show here that this "pre-Toba" dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60-50 thousand years ago (ka). This was associated with distinctively African microlithic and "backed-segment" technologies analogous to the African "Howiesons Poort" and related technologies, together with a range of distinctively "modern" cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of "archaic" Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date.

  4. Evaluation of land suitability for shallot (A. ascalonicum L.) and orange (Orange sp.) at Harian District of Samosir Regency

    NASA Astrophysics Data System (ADS)

    Bintang; Supriadi; Tampubolon, E.

    2018-02-01

    Evaluation of land suitability for shallot (Allium ascalonicum L.) and lemon (Citrus sp.) aimed to determine the level of suitability to the plants that would be cultivated at Harian District, Samosir Regency. Operation of soil type, altitude map and slope maps with scale of 1:50000 obtained nine Land Map Units namely LMU1 and 2 - Sampur Toba village; LMU3 - Janji Martahan village; LMU4 - Turpuk Limbong village; LMU5 - Sosor Dolok village; LMU6,7,8 and 9 in Partungkox Na Ginjang village. Land suitability assessment criteria based on Bogor Soil Research Center Staff 1983 and the limit method by Djaenuddin 2011. The results showed that shallot crop, there is only on LMU 2 (Sampur Toba) that has barier that can be overcome, such as actual class S3 (n, r); S2 (eh) had an inhibiting factor pH and slope that can be managed with liming and terracing. Orange crop on LMU 1 can be overcome by giving organic material; it might be overcome with terracing on LMU 3; and managed by liming and terracing on LMU 8. On the other LMU (4, 5, 6, 7, 9) are not suggested for orange cultivation.

  5. Geohydrology of Monitoring Wells Drilled in Oasis Valley near Beatty, Nye County, Nevada, 1997

    USGS Publications Warehouse

    Robledo, Armando R.; Ryder, Philip L.; Fenelon, Joseph M.; Paillet, Frederick L.

    1999-01-01

    Twelve monitoring wells were installed in 1997 at seven sites in and near Oasis Valley, Nevada. The wells, ranging in depth from 65 to 642 feet, were installed to measure water levels and to collect water-quality samples. Well-construction data and geologic and geophysical logs are presented in this report. Seven geologic units were identified and described from samples collected during the drilling: (1) Ammonia Tanks Tuff; (2) Tuff of Cutoff Road; (3) tuffs, not formally named but informally referred to in this report as the 'tuff of Oasis Valley'; (4) lavas informally named the 'rhyolitic lavas of Colson Pond'; (5) Tertiary colluvial and alluvial gravelly deposits; (6) Tertiary and Quaternary colluvium; and (7) Quaternary alluvium. Water levels in the wells were measured in October 1997 and February 1998 and ranged from about 18 to 350 feet below land surface. Transmissive zones in one of the boreholes penetrating volcanic rock were identified using flowmeter data. Zones with the highest transmissivity are at depths of about 205 feet in the 'rhyolitic lavas of Colson Pond' and 340 feet within the 'tuff of Oasis Valley.'

  6. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    USGS Publications Warehouse

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  7. Volcano-ice age link discounted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1996-05-10

    Speculation that huge volcanic eruptions may have caused an immediate `volcanic winter` that devastated early humans and accelerated a slide into the Ice Age. However, further information from the Greenland ice sheet about the Toba errumption on the island of Sumatra 70,000 years ago, seems to indicate that such volcanic actions wasn`t a major climatic catalyst. This article discusses the evidence and further possibilities.

  8. Scoria Cone and Tuff Ring Stratigraphy Interpreted from Ground Penetrating Radar, Rattlesnake Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Kruse, S. E.; McNiff, C. M.; Marshall, A. M.; Courtland, L. M.; Connor, C.; Charbonnier, S. J.; Abdollahzadeh, M.; Connor, L.; Farrell, A. K.; Harburger, A.; Kiflu, H. G.; Malservisi, R.; Njoroge, M.; Nushart, N.; Richardson, J. A.; Rookey, K.

    2013-12-01

    Numerous recent studies have demonstrated that detailed investigation of scoria cone and maar morphology can reveal rich details the eruptive and erosion histories of these volcanoes. A suite of geophysical surveys were conducted to images Rattlesnake Crater in the San Francisco Volcanic Field, AZ, US. We report here the results of ~3.4 km of ground penetrating radar (GPR) surveys that target the processes of deposition and erosion on the pair of cinder cones that overprint the southeast edge of Rattlesnake crater and on the tuff ring that forms the crater rim. Data were collected with 500, 250, 100, and 50 MHz antennas. The profiles were run in a radial direction down the northeast flanks of the cones (~1 km diameter, ~120 meters height) , and on the inner and outer margins of the oblong maar rim (~20-80 meters height). A maximum depth of penetration of GPR signal of ~15m was achieved high on the flanks of scoria cones. A minimum depth of essentially zero penetration occurred in the central crater. We speculate that maximum penetration occurs near the peaks of the cones and crater rim because ongoing erosion limits new soil formation. Soil formation would tend to increase surface conductivity and hence decrease GPR penetration. Soil is probably better developed within the crater, precluding significant radar penetration there. On the northeast side of the gently flattened rim of the easternmost scoria cone, the GPR profile shows internal layering that dips ~20 degrees northeast relative to the current ground surface. This clearly indicates that the current gently dipping surface is not a stratigraphic horizon, but reflects instead an erosive surface into cone strata that formed close to the angle of repose. Along much of the cone flanks GPR profiles show strata dipping ~4-5 degrees more steeply than the current surface, suggesting erosion has occurred over most of the height of the cone. An abrupt change in strata attitude is observed at the gradual slope

  9. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes

    USGS Publications Warehouse

    Wotzlaw, J.F.; Bindeman, I.N.; Watts, Kathryn E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U.

    2014-01-01

    The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ∼1800 km3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low-δ18O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206Pb/238U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40Ar/39Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (103–104 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the

  10. Volcanotectonic history of Crater Flat, southwestern Nevada, as suggested by new evidence from drill hole USW-VH-1 and vicinity

    USGS Publications Warehouse

    Carr, W.J.

    1982-01-01

    New evidence for a possible resurgent dome in the caldera related to eruption of the Bullfrog Member of the Crater Flat Tuff has been provided by recent drilling of a 762-meter (2,501-foot) hole in central Crater Flat. Although no new volcanic units were penetrated by the drill hole (USW-VH-1), the positive aeromagnetic anomaly in the vicinity of the drill hole appears to result in part from the unusually thick, densely welded tuff of the Bullfrog. Major units penetrated include alluvium, basalt of Crater Flat, Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, and Prow Pass and Bullfrog Members of the Crater Flat Tuff. In addition, the drill hole provided the first subsurface hydrologic information for the area. The water table in the hole is at about 180 meters (600 feet), and the temperature gradient appears slightly higher than normal for the region.

  11. Comparison of neptunium sorption results using batch and column techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments undermore » static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.« less

  12. Publications - GMC 145 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 145 Publication Details Title: Analytical results of x-ray diffraction studies on tuff beds , Analytical results of x-ray diffraction studies on tuff beds from core of the following 5 NPRA wells: U.S

  13. Geohydrology of test well USW H-3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Thordarson, William; Rush, F.E.; Waddell, S.J.

    1985-01-01

    Test well USW H-3 is one of several wells drilled in the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy. The rocks penetrated by the well to a total depth of 1,219 meters were volcanic tuffs of Tertiary age. The most transmissive zone in this well is in the upper part of the Tram Member of the Crater Flat Tuff that was penetrated at a depth from 809 to 841 meters; transmissivity is about 7 x 10 -1 meter squared per day. The remainder of the rocks penetrated between the depths of 841 to 1,219 meters have a transmissivity of about 4 x 10 -1 meter squared per day and are predominatly in the Tram Member of the Crater Flat Tuff and the Lithic Ridge Tuff in the depths from 841 to 1,219 meters. (USGS)

  14. The Mineralogy of the Youngest Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Staid, M. I.; Pieters, C. M.

    1999-01-01

    The last stage of lunar volcanism produced spectrally distinct basalts on the western nearside of the Moon, which remain unsampled by landing missions. The spectral properties of these late-stage basalts are examined using high-spatial-resolution Clementine images to constrain their mineralogic composition. The young high-Ti basalts in the western Procellarum and Imbrium Basins display a significantly stronger ferrous absorption than earlier mare basalts, suggesting that they may be the most Fe-rich deposits on the Moon. The distinct long-wavelength shape of this ferrous absorption is found to be similar for surface soils and materials excavated from depth. The pervasive character of this absorption feature supports the interpretation of abundant olivine within these late-stage lunar deposits. Important distinctions exist between the early-stage eastern maria and the late-stage western basalts, even though both appear to be Ti-rich. For example, the western maria are more radiogenic than eastern deposits. Telescopic spectra of the high-Ti western maria also exhibit a unique combination of a strong 1 micron feature and a relatively weak or attenuated 2-micron absorption. Pieters et al. concluded that the unusual strength and shape of the 1-micron absorption in western basalts results from an additional absorption from abundant olivine and/or Fe-bearing glass. Either mineralogy could produce the strong long wavelength 1-micron band, but a glassy Fe-rich surface could only form by rapid cooling along the exterior surfaces of flows. Clementine UV-VIS data of late-stage basalts are examined for regions in Oceanus Procellarum and Mare Imbrium. The spectral properties of western regions are compared to the sampled Apollo 11 basalts in Mare Tranquillitatis, which contain similar albedos and UV-VIS spectral properties. For reference, the western basalts are also compared to the low-Ti and Fe-rich basalts in Mare Serenitatis (mISP). Serenitatis basalts have the strongest mafic absorption of any eastern nearside maria in Clementine imagery. Unlike previous Earth-based and Galileo imagery, Clementine data resolve the spectral properties of immature crater deposits small enough to sample individual volcanic flows. A strategy has been developed to reevaluate lunar basalt types using Clementine imagery of such fresh mare craters and their associated soils. To allow direct comparisons between regions, scatter plots of useful spectral parameters were constructed by sampling a fixed number of evenly spaced pixels from each mare region. Scatter plots comparing the mare study areas are shown. Since mature soils dominate the surfaces exposed, the density distribution of each data cloud has been presented after a root stretch to enhance the visibility of the less-abundant immature materials. Five-color spectra were also collected for all fresh craters within each mare region and grouped according to size. The UV-VIS ratio has been used extensively to estimate Ti in mature soils and plots of this parameter against 0.75-micron reflectance are included for each mare region. The UV-VIS ratio coupled with the 0.75-micron parameter has been applied more recently to estimate Ti content across many lunar materials. High-Ti basalts plot in the upper left portion because of their low-albedo and high-UV-VIS ratio values. Clementine UV-VIS ratio values for the Procellarum HDSA unit are similar to, but slightly lower than, HDWA Apollo 11 basalts. These values are consistent with previous evaluations of the western high Ti basalts using telescopic and Apollo gamma-ray data, which suggest only a minor difference in TiO, contents between these mare deposits. The Imbrium hDSA and Serenitatis mISP basalts are seen to be progressively less dark and blue, consistent with the previously noted decreasing amount of weight percent TiO2. The scatter plot captures the micron absorption strength and albedo of large areas for each study region over a range of optical maturities. This scatter plot allows trends related to maturity to be evaluated. Materials whose soil surfaces have not achieved optical maturity are slightly brighter and display a stronger ferrous band. For each basalt type, the result is a roughly parallel range of values for these spectral parameters forming a distinct "weathering cloud" of data. The western HDSA and hDSA basalts, show a much stronger mafic ratio than the Tranquillitatis basalts for both mature soils and immature crater materials. Despite a higher abundance of opaques (which should subdue absorption features) the western HDSA and hDSA mare units also exhibit a stronger mafic ratio than the Fe-rich Serenitatis basalts. These combined properties indicate an exceptionally high abundance of mafic minerals and suggest that the Eratosthenian deposits within Procellarum may be the most Fe-rich basalts extruded on the surface of the Moon. It is difficult to estimate the FeO content of these young basalts since returned samples demonstrate that all lunar soils contain a fraction of foreign materials and mare soils have a lower weight percent FeO than their associated basalts. We are in the process of considering such sample information and mixing issues in order to estimate the actual FeO abundances of the mafic-rich western basalts. Regions that represent the most immature materials within each mare area were selected by identifying pixels that correspond to the lower-right limit of each mare unit's 1 micron vs. 0.75 micron scatter plot cloud. These spectra, shown, allow comparisons of the strong ferrous absorption for the most crystalline materials within each basalt type. The shape of the 1 micron feature is much flatter and centered at a longer wavelength in the spectra of the western Procellarum basalts compared to the eastern Serenitatis and Tranquillitatis basalts. Additional information contained in original.

  15. Shaping Youngest Minds. Study Guide [and Videotape].

    ERIC Educational Resources Information Center

    Schrank, Louise Welsh

    Noting research indicating that the flow of interaction with infants influences their brain development, this viewer's guide and videotape examine characteristics of early brain development and how parents can positively affect the infant's development in a number of areas. The first part of the viewer's guide provides an overview of the…

  16. Correlation of Pliocene and Pleistocene tephra layers between the Turkana Basin of East Africa and the Gulf of Aden

    USGS Publications Warehouse

    Brown, F.H.; Sarna-Wojcicki, A. M.; Meyer, C.E.; Haileab, B.

    1992-01-01

    Electron-microprobe analyses of glass shards from volcanic ash in Pliocene and Pleistocene deep-sea sediments in the Gulf of Aden and the Somali Basin demonstrate that most of the tephra layers correlate with tephra layers known on land in the Turkana Basin of northern Kenya and southern Ethiopia. Previous correlations are reviewed, and new correlations proposed. Together these data provide correlations between the deep-sea cores, and to the land-based sections at eight levels ranging in age from about 4 to 0.7 Ma. Specifically, we correlate the Moiti Tuff (???4.1 Ma) with a tephra layer at 188.6 m depth in DSDP hole 231 and with a tephra layer at 150 m depth in DSDP hole 241, the Wargolo Tuff with a tephra layer at 179.7 m in DSDP Hole 231 and with a tephra layer at 155.3 m depth in DSDP Hole 232, the Lomogol Tuff (defined here) with a tephra layer at 165 m in DSDP Hole 232A, the Lokochot Tuff with a tephra layer at 140.1 m depth in DSDP Hole 232, the Tulu Bor Tuff with a tephra layer at 160.8 m depth in DSDP Hole 231, the Kokiselei Tuff with a tephra layer at 120 m depth in DSDP Hole 231 and with a tephra layer at 90.3 m depth in DSDP Hole 232, the Silbo Tuff (0.74 Ma) with a tephra layer at 35.5 m depth in DSDP Hole 231 and possibly with a tephra layer at 10.9 m depth in DSDP Hole 241. We also present analyses of other tephra from the deep sea cores for which correlative units on land are not yet known. The correlated tephra layers provide eight chronostratigraphic horizons that make it possible to temporally correlate paleoecological and paleoclimatic data between the terrestrial and deep-sea sites. Such correlations may make it possible to interpret faunal evolution in the Lake Turkana basin and other sites in East Africa within a broader regional or global paleoclimatic context. ?? 1992.

  17. A kinematic study of 0509-67.5, the second youngest supernova remnant in the Large Magellanic Cloud, and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Hovey, Luke

    2016-05-01

    Supernova remnants are the lasting interactions of shock waves that develop in the wake of supernovae. These remnants, especially those in our galaxy and our companion galaxies, allow us to study supernovae for thousands of years after the initial stellar explosions. Remnants that are formed from Ia supernovae, which are the explosions and complete annihilation of white dwarf stars, are of particular interest due to the explosions' value as standard candles in cosmological studies. The shock waves in these young supernova remnants offer an unparalleled look into the physical processes that take place there, especially since these shocks are often simpler to study than shocks with strong radiative components that are present in remnants that are formed from the core-collapse supernovae of massive stars. I will detail the work of my kinematic study of the second youngest remnant in the Large Magellanic Cloud, 0509--67.5, which has been confirmed to be the result of a Ia supernova. Chapter 2 details the proper motion measurements made on the forward shock of this remnant, which has led to many key results. I was able to use the results of ii the global shock speed in the remnant to measure the density of neutral hydrogen in the ambient medium into which these shocks expand. In addition, I use the measurements of the shock speed for select portions of the forward shock to search for signatures of efficient cosmic-ray acceleration. Hydrodynamic simulations are then employed to constrain the age and ambient medium density of 0509--67.5, as well as to place limits on the compression factor at the immediate location of the blast wave. Chapter 3 uses the proper motion results from chapter 2 to determine possible asymmetries in the expansion of the remnant for the eastern and western limbs. These measurements are then used as constraints in hydrodynamic simulations to assess the possible dynamical offset of the explosion site compared to the geometric center of 0509

  18. Assessment of the geothermal potential of southwestern New Mexico. Final report, July 1, 1978-April 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elston, W.E.

    1981-07-01

    Results are reported of geologic mapping of geothermal anomalies in the Gila Hot Springs KGRA/Mimbres Hot Springs area, Grant County. They suggest that both hot-spring occurrences are structurally controlled by the intersection of a major Basin and Range fault and the disturbed margin of an ash-flow tuff cauldron. Hydrothermal alteration in both areas is related to mid-Tertiary volcanism, not to modern hot springs. At Gila Hot Springs, the geothermal aquifer is a zone at the contact between the unwelded top of a major ash-flow tuff sheet (Bloodgood Canyon Rhyolite Tuff) and a succession of interlayered vesicular basaltic andesite flows andmore » thin sandstone beds (Bearwallow Mountain Formation). Scattered groups of natural hot springs occur at intersections of this zone and the faults bordering the northeastern side of the Gila Hot Springs graben. Hydrothermal alteration of Bloodgood Canyon Rhyolite Tuff near major faults seems to have increased its permeability. At Mimbres Hot Springs, a single group of hot springs is controlled by the intersection of the Mimbres Hot Springs fault and a fractured welded ash-flow tuff that fills the Emory cauldron (Kneeling Nun Tuff). Gila Hot Springs and Mimbres Hot Springs do not seem to be connected by throughgoing faults. At both localities, hot spring water is used locally for space heating and domestic hot water; at Gila Hot Springs, water of 65.6/sup 0/C (150/sup 0/F) is used to generate electricity by means of a 10 kw freon Rankine Cycle engine. This is the first such application in New Mexico.« less

  19. Integrated U-Pb zircon and palynological/palaeofloristic age determinations of a Bashkirian palaeofjord fill, Quebrada Grande (Western Argentina)

    NASA Astrophysics Data System (ADS)

    Valdez Buso, Victoria; di Pasquo, Mercedes; Milana, Juan Pablo; Kneller, Benjamin; Fallgatter, Claus; Junior, Farid Chemale; Gomes Paim, Paulo Sérgio

    2017-01-01

    This work presents a new age framework for the main Bashkirian glacio-eustatic transgression in Argentina, including the first absolute age for the Jejenes Formation, San Juan Province, based on radiometric dating of a crystal-rich tuff, supported by palynological and palaeofloristic studies, and presented within a revised palaeogeographic setting. The Jejenes Formation represents the glacial to postglacial fill of the Quebrada Grande palaeofjord carved in the Eastern Precordillera. The succession has been subdivided into five stages, the youngest of which suggests a previously unrecognised glacial event for this locality. Six productive levels for palynology were found within proglacial strata, and in the base and top of the succeeding interglacial stage. Palynoassemblages are characterized by poorly preserved trilete spores and monosaccate pollen grains along with a large amount of terrestrial phytoclasts. Main species indicating the Raistrickia densa-Convolutispora muriornata SubZone (DMa SZ) are Vallatisporites ciliaris, Cristatisporites rollerii, C. stellatus, C. chacoparanensis, C. inconstans and monosaccates such as Circumplicatipollis plicatus. This DMa SZ is estimated as Serpukhovian/Bashkirian and characterizes the glacial-related Guandacol Formation and equivalents units of the western Paganzo Basin. A tuffaceous level in the proglacial unit, bearing platyspermic seeds, plant remains and palynomorphs, yielded first-cycle volcanic zircons that were analysed by SHRIMP. An absolute age of 321.3 ± 5.3 Ma confirms a Bashkirian age for the main postglacial transgression in the Paganzo Basin, and offers a novel calibration for the palynoassemblages of DMa SZ that occurs elsewhere in Western Argentina.

  20. Geology and ground-water resources of upper Grande Ronde River Basin, Union County, Oregon

    USGS Publications Warehouse

    Hampton, E.R.; Brown, S.G.

    1964-01-01

    The upper Grande Ronde River basin is a 1,400-square-mile area in northeastern Oregon, between the Blue Mountains to the west and the Wallowa Mountains to the east. The area is drained by the Grande Ronde River, which flows northeast through this region and is tributary to the Snake River. The climate is generally moderate; temperature extremes recorded at La Grande are 22?F. below zero and 108?F. above. The average annual precipitation ranges from 13 to 20 inches in the Grande Ronde Valley to . more than 35 inches in the mountain highlands surrounding the valley. The topography of. the area is strongly controlled by the geologic structures, principally those related to block faulting. The terrain ranges from the nearly flat floors of the Grande Ronde and Indian Valleys, whose elevations are 2,600 to about 2,750 feet, to the mountainous uplands, whose average elevations are about 5,000 feet and which have local prominences exceeding 6,500 feet. The rocks in the upper Grande Ronde River basin, from oldest to youngest, are metamorphic rocks of pre-Tertiary age; igneous masses of diorite and granodiorite that intruded the metamorphic rocks; tuff-breccia, welded and silicified tuff, and andesite and dacite flows, of Tertiary age; the Columbia River basalt of Miocene and possibly early Pliocene age; fanglomerate and lacustrine deposits of Pliocene and Pleistocene age; and younger deposits . of alluvium, colluvium, and welded tuff. In the graben known as the Grande Ronde Valley, which is the principal populated district in the area, the valley fill deposits are as thick as 2,000 feet. The valley is bordered by the scarps of faults, the largest of which have displacements of more than 4.000 feet. Most of the wells in the area obtain small to moderate supplies of water from unconfined aquifers in the val1ey fill and alluvial fan deposits. Moderate to large quantities of water are obtained from aquifers carrying artesian water in the fan alluvium and the Columbia River

  1. Miocene calc-alkaline magmatism, calderas, and crustal extension in the Kofa and Castle Dome Mountains, southwestern Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubensky, M.J.; Bagby, W.C.

    1990-11-10

    Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains.more » A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.« less

  2. Berriasian (Early Cretaceous) radiometric ages from the Grindstone Creek Section, Sacramento Valley, California

    USGS Publications Warehouse

    Bralower, T.J.; Ludwig, K. R.; Obradovich, J.D.

    1990-01-01

    The Grindstone Creek Section, Glenn County, Northern California is a sequence of hemipelagic mudstone, siltstone and sandstone interbedded with concretionary limestone and a few thin tuffs and bentonites. Two tuffs have been collected from a narrow interval of this sequence and subjected to mineralogical and isotopic analyses. UPb isotopic analyses of zircon fractions from these volcanic horizons indicate an age of 137.1 + 1.6/-0.6 Ma. A detailed investigation has been conducted on the calcareous nannofossil stratigraphy of this section based on numerous samples with moderately preserved assemblages. The nannoflora is largely of Tethyan affinity, and allows direct correlation with the Berriasian stratotype section, with sections with published magnetostratigraphies and with a DSDP site drilled between known magnetic anomalies. The dated tuffs lie in the lower part of the upper Berriasian Cretarhabdus angustiforatus Zone (Assipetra infracretacea Subzone) and within the narrow range of Rhagodiscus nebulosus. At three different sections, this subzone can be correlated with M-sequence Polarity Zones M16 and M16n. An independent magnetostratigraphic correlation is provided at DSDP Site 387, drilled between anomalies M15 and M16, where basal sediments contain R. nebulosus. Buchia collected within a meter of the lower tuff lie within the B. uncitoides Zone which is Berriasian in age. The upper tuff level, which occurs 65 m above the lower tuff, is situated within the overlying B. pacifica Zone. This zone had previously been correlated with the early Valanginian, but is clearly also partly of Berriasian age based on nannofossil stratigraphy. Our results allow an estimate of the age of the Berriasian-Valanginian and Jurassic-Cretaceous boundaries of 135.1 Ma and 141.1 Ma, respectively, and these fall within the range of, but differ significantiy from, several published time-scales. ?? 1990.

  3. Geochronology and Regional Correlation of Continental Permo-Triassic Sediments in West Texas

    NASA Astrophysics Data System (ADS)

    Mitchell, W.; Renne, P. R.; Mundil, R.; Chang, S.; Geissman, J. W.; Tabor, N. J.; Mack, G.

    2011-12-01

    Although many aspects of marine sections spanning the Permian-Triassic boundary (PTB) have been studied in great detail across a broad paleogeographic area, less is known about the timing, pace, and extent of environmental changes and extinctions across this boundary in continental environments, particularly along the Panthalassa margin. Extensive outcrops in the Ochoan Series of west Texas provide an opportunity to investigate the terrestrial record spanning the PTB. The presence of several silicic tuffs in these sections allows for precise radioisotopic dating using both U-Pb and 40Ar/39Ar techniques. Dated strata then serve as a calibration basis for paleomagnetic and lithostratigraphic studies and facilitate stratigraphic correlation across the few to hundreds of kilometers separating study sites. Depending on the possible correlations, as many as seven tuffs have been identified in this region, the ages of which are within about a million years of the chronometrically-defined PTB at the Meishan section in China at ca. 252 Ma. Data obtained thus far indicate that the PTB occurs within the Quartermaster/Dewey Lake Formation. With the aims of determining the number and ages of distinct tuffs found and facilitating a well-correlated regional stratigraphy among the studied sections, we present preliminary radioisotopic age determinations of, and correlations among, these tuffs using the zircon U-Pb system, 40Ar/39Ar dating where possible, as well as mineral chemistry. Our results include the first dated tuff in the Ochoan Series that lies within the Alibates Formation which underlies the Dewey Lake Fm. Other samples in progress from the various tuffs in the region, in combination with results from magneto- and chemostratigraphy, will significantly expand the areal coverage of these strata and lead towards a greatly improved chronostratigraphic framework.

  4. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation

    USGS Publications Warehouse

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund

    2014-01-01

    Question 2—Does basin and range normal faulting observed in the hills north of Frenchman Flat continue southward under alluvium and possibly disrupt the Topopah Spring Tuff of the Paintbrush Group (the Topopah Spring welded tuff aquifer or TSA) east of the Pin Stripe underground nuclear test, which was conducted in Emplacement hole U11b?

  5. Secondary Mineral Deposits and Evidence of Past Seismicity and Heating of the Proposed Repository Horizon at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, Josheph F.

    2004-01-01

    The Drift Degradation Analysis (DDA) (BSC, 2003) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, describes model simulations of the effects of pre- and post-closure seismicity and waste-induced heating on emplacement drifts. Based on probabilistic seismic hazard analyses of the intensity and frequency of future seismic events in the region (CRWMS M&O, 1998), the DDA concludes that future seismicity will lead to substantial damage to emplacement drifts, particularly those in the lithophysal tuffs, where some simulations predict complete collapse of the drift walls. Secondary mineral studies conducted by the U.S. Geological Survey since 1995 indicate that secondary calcite and silica have been deposited in some fractures and lithophysal cavities in the unsaturated zone (UZ) at Yucca Mountain during at least the past 10 million years (m.y.), and probably since the tuffs cooled to less than 100?C. Tuff fragments, likely generated by past seismic activity, have commonly been incorporated into the secondary mineral depositional sequences. Preliminary observations indicate that seismic activity has generated few, if any, tuff fragments during the last 2 to 4 m.y., which may be inconsistent with the predictions of drift-wall collapse described in the DDA. Whether or not seismicity-induced tuff fragmentation occurring at centimeter to decimeter scales in the fracture and cavity openings relates directly to failure of tuff walls in the 5.5-m-diameter waste emplacement drifts, the deposits do provide a potential record of the spatial and temporal distribution of tuff fragments in the UZ. In addition, the preservation of weakly attached coatings and (or) delicate, upright blades of calcite in the secondary mineral deposits provides an upper limit for ground motion during the late stage of deposition that might be used as input to future DDA simulations. Finally, bleaching and alteration at a few of the secondary mineral sites indicate that

  6. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    NASA Astrophysics Data System (ADS)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of

  7. Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States

    NASA Astrophysics Data System (ADS)

    Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.

    2018-05-01

    Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are

  8. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    USGS Publications Warehouse

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  9. Volcanic ash: a potential hazard for aviation in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Whelley, P. L.; Newhall, C. G.

    2012-12-01

    There are more than 400 volcanoes in Southeast Asia. Ash from eruptions of Volcanic Explosivity Index 3 (VEI 3) and larger pose local hazards and eruptions of VEI 4 or greater could disrupt trade, travel, and daily life in large parts of the region. To better manage and understand the risk volcanic ash poses to Southeast Asia, this study quantifies the long-term probability of a large eruption sending ash into the Singapore Flight Information Region (FIR), which is a 1,700 km long, quasi-rectangular zone from the Strait of Malacca to the South China Sea. Southeast Asian volcanoes are classified into 6 groups, using satellite data, by their morphology, and where known, their eruptive history. 'Laguna' type are fields of maars, cinder cones and spatter cones, named for the Laguna Volcanic Field, Philippines (13.204, 123.525). 'Kembar' type are broad, gently sloping shield volcanoes with extensive lava flows (Kembar Volcano, Indonesia: 3.850, 097.664). 'Mayon' type volcanoes are open-vent, frequently active, steep sided stratocones with small summit craters, spatter ramparts, small pyroclastic fans (typically < 3 km but up to 5 km) and lava flows (Mayon Volcano, Philippines: 13.257, 123.685). 'Kelut' type are semi-plugged composite cones with dome complexes, pyroclastic fans, and/or debris avalanche deposits (Kelut Volcano, Indonesia: -7.933, 112.308). 'Pinatubo' type are large plugged stratovolcanoes with extensive (tens of km) pyroclastic fans and large summit craters or calderas up to 5 km in diameter (Pinatubo Volcano, Philippines: 15.133, 120.350). 'Toba' type are calderas with long axes > 5 km and surrounded by ignimbrite sheets (Toba Caldera, Indonesia: 02.583, 098.833). In addition silicic dome complexes that might eventually produce large caldera-forming eruptions are also classified as Toba type. The eruptive histories of most volcanoes in Southeast Asia are poorly constrained. Assuming that volcanoes with similar morphologies have had similar eruption

  10. Geochronological and Taxonomic Revisions of the Middle Eocene Whistler Squat Quarry (Devil’s Graveyard Formation, Texas) and Implications for the Early Uintan in Trans-Pecos Texas

    PubMed Central

    Campisano, Christopher J.; Kirk, E. Christopher; Townsend, K. E. Beth; Deino, Alan L.

    2014-01-01

    The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b. PMID:24988115

  11. Mega-features at the Table Rock phreatomagmatic complex in Christmas Valley, Oregon; Law of original horizontality need not apply

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; Clarke, A.

    2006-12-01

    The Table Rock Complex (TRC; Pliocene-Pleistocene), first documented and described by (Heiken, 1971, J. Geophy Res, 76, 5615-5626) is a large and well exposed phreatomagmatic complex in the Fort Rock- Christmas Lake Valley Basin, south-central Oregon. It is ~7 by 5 km and contains two large phreatomagmatic edifices; a large southern tuff cone with a capping lava lake (TRC1), and a large broad tuff ring in the northeast (TRC2). At least five additional, smaller tuff rings were identified along the flanks of the complex, yielding a complicated network of tuff ring-tuff cone deposits. Based on the low accidental component and evidence for a lake during this time, the cause of the explosive eruptions is interpreted to be due to interaction of magma with shallow standing water. The TRC1 consists of fining-up sequences, large erosive channel scour and fill deposits, massive tuff breccias, and abundant soft sediment deformation, which suggests deposition within a standing body of water. Subaerial TRC1 deposits are found south of the edifice, but are not exposed in the north. A significant repose period occurred between the TRC1 and TRC2 eruptions, evidenced by a wave-cut terrace and 25-50 cm of diatomitic lake sediments. TRC2 produced multiple, extremely erosive pyroclastic surges, which cut and scour the TRC1 deposits. Surge deposits consist of 50-200 m wavelength cross-beds, in some areas form large U-shaped features (10-100 m deep), and can be seen plastering up and around large obstacles from previous vents. The surge-deposits blanket all other sequences and create a hummocky topography around the edifice. This suggests that TRC2 was the last eruption in the sequence. The weight of the TRC2 sediments caused the water-saturated TRC1 sediments to plastically deform into large ball and pillow features and overturned slump blocks on the order of 20-50 m thick. The smaller flank tuff-ring eruptions likely occurred sometime between the TRC1 and TRC2 events. The inner

  12. Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma batches, shifting vents, and discrete eruptive phases

    NASA Astrophysics Data System (ADS)

    Sohn, Y.; Brenna, M.; Smith, I. E.; Nemeth, K.; White, J. D.; Murtagh, R.; Jeon, Y.; Kwon, C.; Cronin, S. J.

    2010-12-01

    Ilchulbong (Sunrise Peak) tuff cone is a UNESCO World Heritage site that owes its scientific importance to the outstanding coastal exposures that surround it. It is also one of the classic sites that provided the sedimentary evidence for the primary pyroclastic processes that occur during phreatomagmatic basaltic eruptions. It has been long considered, based on the cone morphology, that this classic cone was produced via eruption from a single vent site. Reanalysis of the detailed sedimentary sequence has now revealed that two subtle paraconformities occur in this deposition sequence, one representing a significant time break of perhaps days to weeks or months, during which erosion and compaction of the lower cone occurred, the conduit cooled and solidified and a subsequent resumption of eruption took place in a new vent location. Detailed geochemical study of the juvenile clasts through this cone reveals that three separate alkali basaltic magma batches were erupted, the first and third erupted may be genetically related, with the latter showing evidence for longer periods of shallow-level fractionation. The second magma batch erupted was generated in a different mantle source area. Reconstructing the eruption sequence, the lower Ilchulbong cone was formed by eruption of magma 1. Cessation of eruption was accompanied by erosion to generate a volcano-wide unconformity, associated with reworked deposits in the lower cone flanks. The eruption resumed with magma 2 that, due to the cooled earlier conduit, was forced to erupt in a new site to the west of the initial vent. This formed the middle cone sequence over the initially formed structure. The third magma batch erupted with little or no interval after magma 2 from the same vent location, associated with cone instability and slumping, and making up the deposits of the upper cone. These results demonstrate how critical the examination for sedimentary evidence for time breaks in such eruption sequences is for

  13. Implications of Bishop Tuff zircon U-Pb ages for rates of zircon growth and magma accumulation

    NASA Astrophysics Data System (ADS)

    Reid, M. R.; Schmitt, A. K.

    2012-12-01

    Rates of geologic processes obtained from natural studies rely on accurate geochronologic information. An important benchmark in geochronology as well as a valuable source of insights into the evolution of voluminous explosive eruptions is the >600 km3 Bishop Tuff (BT). A recently determined weighted mean 206Pb/238U date of 767.1±0.9 ka for a BT zircon population [1] is indistinguishable from the recalibrated 40Ar/39Ar sanidine date of 767.4±2.2 ka [2], potentially providing a key intercalibration point between astronomical and radio-isotopic dating approaches. Consequences of these results are linear zircon growth rates of >1×10-14 cm/sec and magma accumulation rates of >200 km3/ka. In contrast, spatially selective SIMS U-Pb dating of BT zircons yielded mean pre-eruption ages of 850 ka [3], a difference that raises questions about the validity of intercalibration between U-Pb and K-Ar dating methods and the history of magma accumulation. We obtained new SIMS analyses of the BT zircons using more spatially and analytically sensitive methods and verifying our accuracy against the TIMS dated Quaternary zircon 61.308A (2.488±0.002 Ma). Analyses were performed on zircon rims and on oriented cross-sections exposed during optical interferometry-calibrated serial sectioning removing the outermost ~31 μm. Sputtering by a 100 nA ion beam versus the normally employed 10-12 nA beam resulted in enhanced radiogenic Pb yields and analytical uncertainties for Quaternary zircon approaching the U-Pb age reproducibility of the primary zircon standard (~1-2 % for AS3). Ages obtained at ~31 μm depth (representing <5% of crystal growth in most cases) average 892±26ka (MSWD=0.29), corroborating previous evidence for residence times of several tens of ka. Rim ages average 781±22 ka (MSWD=0.61), overlapping Ar/Ar determinations of eruption age and corroborating the importance of near-eruption aged zircon growth. Our results confirm the presence of BT zircon domains that predate

  14. Geochemistry and Geochronology of Middle Tertiary Volcanic Rocks of the Central Chiricahua Mountains, Southeast Arizona

    USGS Publications Warehouse

    du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.

    2004-01-01

    Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In

  15. Publications - GMC 146 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    concentrates from the following 2 NPRA core tuff samples: U.S. Navy Umiat Test #1 (510.5 feet); Umiat Test #11 geochronology studies on biotite concentrates from the following 2 NPRA core tuff samples: U.S. Navy Umiat Test #1 (510.5 feet); Umiat Test #11 (488 feet): Alaska Division of Geological & Geophysical Surveys

  16. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    USGS Publications Warehouse

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  17. Early postcaldera rhyolite and structural resurgence at Long Valley Caldera, California

    NASA Astrophysics Data System (ADS)

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew

    2017-04-01

    After the 767-ka caldera-forming eruption of 650 km3 of rhyolite magma as the Bishop Tuff, 90-100 km3 of similar rhyolite erupted in the west-central part of Long Valley caldera in as many as 40 batches spread over the 110,000-year interval from 750 ka to 640 ka. Centrally, this Early Rhyolite (ER) is as thick as 622 m, but it spread radially to cover much of the caldera floor, where half its area is now concealed by post-ER sediments and lavas. At least 75% of the ER is aphyric rhyolite tuff. Drillholes encountered 22 (altered) ER lava flows intercalated in the pyroclastic pile, and another 11 units of (largely fresh) ER lava are exposed on the caldera's resurgent dome and at Lookout Mountain. Exposed units have been distinguished, mapped, studied petrographically and chemically, and radioisotopically dated; each is described in detail. Their phenocryst contents range from 0 to 2.5 wt%. All the phyric units have plagioclase, orthopyroxene, and ilmenite; most have biotite and rare tiny magnetite, and a few contain rare zircon. The compositional range of fresh obsidians is narrow-74.3-75.0% SiO2, 1.21-1.37% FeO*, and 5.12-5.26% K2O, but wider variations in Ti, Ba, Sr, and Zr permit distinction of individual units and eruptive groups. The limited chemical and petrographic variability shown by so many ER batches released episodically for 110,000 years suggests a thermally buffered and well-stirred reservoir. The ER central area, where ER eruptions had taken place, was uplifted 400 m to form a structural dome 10 km in diameter. Most of the inflation is attributable to 10 sills of ER that intrude the Bishop Tuff beneath the uplift, but other processes potentially contributing to resurgence are also considered. As shown by erratics of Mesozoic rocks ice-rafted from the Sierra Nevada and dropped on ER lavas, much of the ER had erupted early enough and at low enough elevation to be inundated by the intracaldera lake and was only later lifted by the resurgence that also

  18. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  19. Preliminary result of P-wave speed tomography beneath North Sumatera region

    NASA Astrophysics Data System (ADS)

    Jatnika, Jajat; Nugraha, Andri Dian; Wandono

    2015-04-01

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  20. Rapid extension in an Eocene volcanic arc: Structure and paleogeography of an intra-arc half graben in central Idaho

    USGS Publications Warehouse

    Janecke, S.U.; Hammond, B.F.; Snee, L.W.; Geissman, J.W.

    1997-01-01

    A study of extension, volcanism, and sedimentation in the middle Eocene Panther Creek half graben in central Idaho shows that it formed rapidly during an episode of voluminous volcanism. The east-southeast-tilted Panther Creek half graben developed across the northeast edge of the largest cauldron complex of the Challis volcanic field and along the northeast-trending Trans-Challis fault zone. Two normal fault systems bound the east side of the half graben. One fault system strikes northeast, parallel to the Trans-Challis fault zone, and the other strikes north to northwest. The geometry of the basin-fill deposits shows that movement on these two normal fault systems was synchronous and that both faults controlled the development of the Panther Creek half graben. Strikes of the synextension volcanic and sedimentary rocks are similar throughout the half graben, whereas dips decrease incrementally upsection from as much as 60?? to less than 10??. Previous K-Ar dates and a new 40Ar/39Ar plateau date from the youngest widespread tuff in the basin suggest that most of basin formation spanned 3 m.y. between about 47.7 Ma and 44.5 Ma. As much as 6.5 km of volcanic and sedimentary rocks were deposited during that time. Although rates of extension and subsidence were very high, intense volcanic activity continually filled the basin with ash-flow tuffs, outpacing subsidence and sedimentation, until the end of basin development. After the abrupt end of Challis volcanism, locally derived pebble to boulder conglomerate and massive, reworked ash accumulated in the half graben. These sedimentary rocks make up a small part of the basin fill in the Panther Creek half graben and were derived mainly from Proterozoic metasedimentary rocks uplifted in the footwall of the basin. The east-southeast tilt of the sedimentary rocks, their provenance and coarse grain size, and the presence of a gravity slide block derived from tilted volcanic rocks in the hanging wall attest to continued

  1. Newly Described Tephra Provide Middle Pleistocene Age Constraints to Stegodon Fossils in West (Indonesian) Timor

    NASA Astrophysics Data System (ADS)

    Jensen, B. J. L.; Dufrane, A.; Mark, D.; Zaim, Y.; Rizal, Y.; Aswan, A.; Hascaryo, A.; Ciochon, R.; Gunnell, G.; Larick, R.; Zonnveld, J. P.

    2017-12-01

    As the Asian proboscidian Stegodon dispersed across Island Southeast Asia during the Pleistocene, multiple forms developed. On Timor, a southerly island east of Wallace's Line, the Ainaro gravels have yielded a highly dwarfed S. timorensis and a larger S. `trigonocephalus.' During a half-century of exploration, the age of the fossil bearing gravels remains in question, with only one age determination of >130 ka derived from six 230Th- 238U dates on a tusk fragment found in the Raebia area (Louys et al. 2016). Here we present radiometric ages for two tephra deposits bracketing Ainaro gravels at Raebia, a S. timorensis fossil locality 8 km northeast of Atambua city. The Raebia ravine exposes 2-10 meters of coarse-grained gravels incised into silt and clay deposits, bracketed by two indurated and largely devitrified tephras. Some intact glass was present to geochemically characterize each unit, which are both high-silica rhyolites. Biotite and zircons for 40Ar/39Ar and laser ablation U-Pb dating were extracted from the upper unit (Raebia Tuff 1; RT1), and zircons from the lower unit (Raebia Tuff 2; RT2). RT1 had zircons with two distinct age populations, but the youngest yield a 230Th deficiency corrected 206Pb/238U age of 665 ± 19 ka, (2s, n = 23, MSWD = 0.81), consistent with the 40Ar/39Ar age 614.9 ± 16.4 ka (2s, full external precision). Preliminary zircon dates on RT2 are more problematic, providing a large range that suggests inheritance by xenoliths and/or locally-sourced detrital zircons. However, a single zircon yielded 230Th deficiency corrected 206Pb/238U age of 708 ± 66 ka (2s, n=17, MSWD = 0.41), which is stratigraphically consistent. These are the first reliable age constraints on a higher elevation Ainaro gravel terrace and fossils they contain. The only other direct ages on the gravels are 230Th- 238U dates on lower terraces interbedded with coral, ranging from 130 ka to Holocene in age (Roosmawati and Harris 2009). These two newly described and

  2. A Revised Clinopyroxene-Liquid Geothermometer for Silicic Igneous Systems with Applications to Diffusion Chronometry of the Scaup Lake Rhyolite, Yellowstone Caldera, WY

    NASA Astrophysics Data System (ADS)

    Brugman, K. K.; Till, C. B.

    2017-12-01

    Eruption of the Scaup Lake Rhyolite (SCL) ended 220,000 years of dormancy at Yellowstone caldera and initiated the volcano's youngest sequence of eruptions [Christiansen et al., USGS, 2007]. SCL contains 14% phenocrysts (e.g., feldspar, quartz, pyroxene, zircon, Fe-Ti oxides) which exhibit disequilbrium textures that indicate multiple rejuvenation events occurred shortly before eruption. Our previous work using NanoSIMS elemental concentration profiles from clinopyroxene (cpx) intracrystalline zone boundaries as a diffusion dating tool supported our hypothesis that different minerals may not record the same series of pre-eruptive events, with the cpx rims recording older magmatic events (100s of years prior to eruption [Brugman et al., AGU, 2016]) relative to the sanidine rims (< 10 months and 10-40 years prior to eruption [Till et al., Geology, 2015]). However, diffusion chronometry results are highly dependent on the temperature at which the concentration profile was modeled, necessitating the employment of an appropriate geothermometer. SCL cpx is moderately high in FeOtot (Mg# = 56) but very low in Al2O3 (0.53-0.73 wt%), which is similar to cpx from other high-silica systems (e.g., Rattlesnake Tuff cpx = 0.35 wt% Al2O3, Bandelier Tuff cpx = 0.28-0.91 wt% Al2O3, Paektu Millenium eruption pumice cpx = 0.14-1.78 wt% Al2O3, and Pantelleria trachyte cpx = 0.25-0.72 wt% Al2O3). This range of cpx compositions is not well represented in historical experimental data, and thus has not been included in existing cpx and cpx-liquid geothermometer calibrations. These geothermometers predict temperatures >40°C in error of low-Al cpx-saturated experiments. A new regression of Putirka's [RiMG, 2008] cpx-liquid geothermometer calibrated with 64 experimentally-derived cpx of a similar composition to that of SCL increases the geothermometer's dependence on the Mg# and Na+K component of the liquid and decreases its dependence on the Ca+Si component of the liquid. This revised

  3. Compilation of Stratigraphic Thicknesses for Caldera-Related Tertiary Volcanic Rocks, East-Central Nevada and West-Central Utah

    USGS Publications Warehouse

    Sweetkind, D.S.; Du Bray, E.A.

    2008-01-01

    The U.S. Geological Survey (USGS), the Desert Research Institute (DRI), and a designee from the State of Utah are currently conducting a water-resources study of aquifers in White Pine County, Nevada, and adjacent areas in Nevada and Utah, in response to concerns about water availability and limited geohydrologic information relevant to ground-water flow in the region. Production of ground water in this region could impact water accumulations in three general types of aquifer materials: consolidated Paleozoic carbonate bedrock, and basin-filling Cenozoic volcanic rocks and unconsolidated Quaternary sediments. At present, the full impact of extracting ground water from any or all of these potential valley-graben reservoirs is not fully understood. A thorough understanding of intermontane basin stratigraphy, mostly concealed by the youngest unconsolidated deposits that blanket the surface in these valleys, is critical to an understanding of the regional hydrology in this area. This report presents a literature-based compilation of geologic data, especially thicknesses and lithologic characteristics, for Tertiary volcanic rocks that are presumably present in the subsurface of the intermontane valleys, which are prominent features of this area. Two methods are used to estimate volcanic-rock thickness beneath valleys: (1) published geologic maps and accompanying descriptions of map units were used to compile the aggregate thicknesses of Tertiary stratigraphic units present in each mountain range within the study areas, and then interpolated to infer volcanic-rock thickness in the intervening valley, and (2) published isopach maps for individual out-flow ash-flow tuff were converted to digital spatial data and thickness was added together to produce a regional thickness map that aggregates thickness of the individual units. The two methods yield generally similar results and are similar to volcanic-rock thickness observed in a limited number of oil and gas exploration

  4. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  5. Research on the Log Interpretation Method of Tuffaceous Sandstone Reservoirs of X Depression in Hailar-Tamtsag Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, B.

    2015-12-01

    The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.

  6. Geohydrologic data and test results from Well J-13, Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.

    Well J-13 was drilled to a depth of 1063.1 meters by using air-hydraulic-rotary drilling equipment. The well penetrated 135.6 meters of alluvium of Quaternary and Tertiary age and 927.5 meters of tuff of Tertiary age. The Topopah Spring Member of the Paintbrush Tuff, the principal aquifer, was penetrated from depths of 207.3 to 449.6 meters; a pumping test indicated its transmissivity is 120 meters squared per day, and its hydraulic conductivity is 1.0 meters per day. Below the Topopah Spring Member, tuff units are confining beds; transmissivities range from 0.10 to 4.5 meters squared per day, and hydraulic conductivities rangemore » from 0.0026 to 0.15 meter per day. Confining beds penetrated below a depth of 719.3 meters had the smallest transmissivities (0.10 to 0.63 meter squared per day) and hydraulic conductivities (0.0026 to 0.0056 meter per day). A static water level of about 282.2 meters was measured for the various water-bearing tuff units above a depth of 645.6 meters. Below a depth of 772.7 meters, the static water level was slightly deeper, 283.3 to 283.6 meters. Ground water sampled from well J-13 is a sodium bicarbonate water containing small concentrations of calcium, magnesium, silica, and sulfate, which is a typical analysis of water from tuff. Apparent age of the ground water, derived from carbon-14 age dating, is 9900 years. 15 references, 24 figures, 13 tables.« less

  7. Substorm wave base felsic hydroclastic deposits in the Archean Lac des Vents volcanic complex, Abitibi belt, Canada

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf; Chown, E. H.; Potvin, Robin

    1994-05-01

    Volcaniclastic deposits of the 2.3-km-thick Archean Lac des Vents volcanic complex are an integral part of major submarine volcanic construction. The volcanic edifice, which formed on a subaqueous basalt plain, is comparable to modern seamounts resting on the ocean floor. The initial 770 m of the mafic-felsic edifice, subject of this study, is composed of massive, brecciated and pillowed basalts, massive to brecciated felsic lava flows and abundant felsic fragmental rocks of hydroclastic origin. Four distinct volcaniclastic lithofacies constitute the latter: (1) the pumice lapilli-tuff lithofacies; (2) the lapilli-tuff breccia lithofacies characterized by two sublithofacies; (3) the turbidite tuff and tuff-breccia lithofacies; and (4) the volcanic sandstone and breccia lithofacies. These four volcaniclastic lithofacies are considered to be the result of explosive and non-explosive hydrovolcanic fragmentation processes operating at depths below storm wave base (> 200 m). Primary deposition or limited remobilization of unconsolidated hydroclastic debris is shown by the preservation of delicate clasts and volcanic textures, and heat retention structures. The principal transport agents are high-concentration sediment gravity flows occurring under laminar and turbulent flow conditions. High- and low-density turbiditic tuffs and fine-grained tuff fallout deposits, are related to either the dissipating stages of volcanic eruptions or slumping of syneruptive volcanic debris on the flanks of a subaqueous volcanic edifice. Ubiquitous interstratification of volcaniclastic turbidites, shale, and pillowed basalt flows with the felsic lava flows and fragmental debris favours subaqueous deposition. These features combined with the absence of wave-induced sedimentary structures, imply deposition in water depths in excess of 200 m. Viscous feldspar-phyric massive and brecciated felsic flows, and associated volcaniclastics cross cut by felsic dykes, suggest vent proximity. The

  8. Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park

    USGS Publications Warehouse

    Christiansen, Robert L.; Blank, H. Richard

    1972-01-01

    The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.

  9. The Youngest Workers: 14- and 15-Year-Olds.

    ERIC Educational Resources Information Center

    Westcott, Diane N.

    1981-01-01

    Despite child labor and school attendance laws, approximately 1.6 million young teens held jobs in 1979. The labor force participation rate of girls is fast approaching that of boys, although the latter are employed in more varied occupations. (LRA)

  10. Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.

    1997-09-01

    The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon

  11. The Laramide Mesa formation and the Ojo de Agua caldera, southeast of the Cananea copper mining district, Sonora, Mexico

    USGS Publications Warehouse

    Cox, Dennis P.; Miller, Robert J.; Woodbourne, Keith L.

    2006-01-01

    The Mesa Formation extends from Cananea, Mexico, southeast to the Sonora River and is the main host rock of Laramide porphyry copper deposits in the Cananea District and at the Alacran porphyry prospect to the east. The Mesa consists of two members-a lower andesite and an upper dacite. The lowest part of the dacite member is a crystal tuff about 100 m thick. This tuff is the outfall of a caldera centered near the village of Ojo de Agua, dated by 40Ar/39Ar at 65.8 Ma ?0.4. The Ojo de Agua Caldera is about 9 km in diameter and is filled by a light gray biotite dacite tuff with abundant flattened pumice fragments. The volume of the caldera is estimated to be 24 km3.

  12. [sup 40]Ar/[sup 39]Ar ages of Challis volcanic rocks and the initiation of Tertiary sedimentary basins in southwestern Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M'Gonigle, J.W.; Dalrymple, G.B.

    1993-10-01

    [sup 40]Ar/[sup 39]Ar ages on single sanidine crystals from rhyolitic tuffs and ash flow tuffs within the uppermost and lowermost parts of the volcanic sequence of the Horse Prairie and Medicine Lodge topographic basins, southwestern Montana, show that these volcanic rocks were emplaced between about 48.8[+-]0.2 Ma and 45.9[+-]0.2 Ma, and are correlative with the Eocene Challis Volcanic Group of central Idaho. Sanidine ages on tuffs at the base of the Tertiary lacustrine, paludal, and fluvial sedimentary sequence, which unconformably overlies the volcanic sequence, suggest that sedimentation within an ancestral sedimentary basin that predated the development of the modern Horsemore » Prairie and Medicine Lodge basins began in the middle Eocene. 22 refs., 3 figs., 2 tabs.« less

  13. The Pioneer Ultramafic Complex of the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Cooper, M. R.; Byerly, G. R.; Lowe, D. R.; Thompson, M. E.

    2005-12-01

    The 3.55-3.22 Ga Barberton Greenstone Belt is an approximately 100km x 30km northeast trending, isoclinally folded, volcanic and sedimentary succession surrounded by intrusive granitic rocks. It is perhaps Earth's best preserved mid-Archean supracrustal sequence and also among the most magnesian, making it an ideal location for studying compositionally distinct rocks of the Archean, such as komatiites. The Pioneer Ultramafic Complex has been interpreted as a komatiitic intrusion but we argue that it is a sequence of layered komatiitic flows and interbedded tuffs correlative with other komatiitic extrusive units of the 3.29 Ga Weltevreden Formation, the uppermost formation of the Onverwacht Group. The Pioneer Ultramafic Complex contains at least 900m of section in the study area, including at least 5 flow sets, with individual flows up to 100 m thick, sections of tuff up to 100m thick and additional thinner tuff units. The base of the sequence is in fault contact with the Sawmill Ultramafic Complex, which is similar to and perhaps correlative with the Pioneer. The top of the sequence is bounded by the Moodies Fault and slightly younger sedimentary rocks of the Fig Tree and Moodies Groups. Typical flows of the Pioneer have highly serpentinized olivine-rich cumulate bases, fresh olivine bearing peridotitic lithologies in central portions, and increasing pyroxene content, pyroxene size, and elongation of grains toward the flow tops. Three of the five flows are capped with random and/or oriented spinifex layers. The tuffs within this and other layered ultramafic complexes of the Barberton Greenstone Belt are mostly fine grained, slaty serpentinites that were previously interpreted as bedding horizontal zones of shearing. However, rare preservation of angular and vesicular lapilli, and more commonly cross-stratification in finer grained layers, provide strong evidence that these layers represent tuffs. High chromium and other trace element contents suggest they are

  14. Unraveling the volcanic and post-volcanic history at Upsal Hogback, Fallon, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Anderson, E.; Cousens, B.

    2013-12-01

    Upsal Hogback is a < 25 ka phreatomagmatic volcanic center situated near Fallon, Nevada. The volcano neighbors two other young volcanic complexes: the Holocene Soda Lakes maars and Rattlesnake Hill, a ~ 1 Ma volcanic neck (Shevenell et al., 2005). These volcanoes lie on the transition between the Sierra Nevada and the Basin and Range province, as well as on the edge of the Walker Lane. Upsal Hogback includes two to four vents, fewer than mapped by Morrison (1964), and can be divided into north (one vent) and south (three potential vents) complexes. The vents all produced phreatomagmatic eruptions resulting in tuff rings composed primarily of coarse, indurated lapilli tuffs with abundant volcanic bombs. Ash tuffs are infrequent, as are structures such as crossbedding. The bombs and lapilli include olivine and plagioclase phenocrysts. The basalts are alkaline and have intraplate-type normalized incompatible element patterns. Both complexes are enriched in LREE compared to HREE, though the north complex overall has lower concentrations of the REE. The flat HREE pattern is indicative of spinel peridotite mantle source. Epsilon Nd values for the north complex are +2.50+/-0.02 and for the south complex are +2.83+/-0.02. The magmas appear to have an enriched asthenospheric mantle source. Bomb samples show that eruptions from the two complexes are geochemically distinguishable both in major and trace elements, suggesting that the two complexes tapped different magma types during eruptions that likely occurred at slightly different times. The proximity of Upsal Hogback to Fallon makes constraining its age important to characterize the hazard to the city. It lies above the Wono ash bed, dated at 25,000 years (Fultz et al., 1983), and tufa deposited over the edifice is dated at 11,100 +/- 100 and 8,600 +/- 200 years (Benson et al., 1992; Broecker and Kaufman, 1965). 40Ar/39Ar total gas age by Shevenell et al. (2005) dated the volcano at 0.60 +/- 0.09 Ma, but with no plateau

  15. Additional results on palaeomagnetic stratigraphy of the Koobi Fora Formation, east of Lake Turkana (Lake Rudolf), Kenya

    USGS Publications Warehouse

    Hillhouse, J.W.; Ndombi, J.W.M.; Cox, A.; Brock, A.

    1977-01-01

    The magnetostratigraphy of the hominid-bearing sediments exposed east of Lake Turkana has been strengthened by new palaeomagnetic results. Ages obtained from several tuffs by the 40Ar/39Ar method suggest an approxmate match between the observed magnetozones and the geomagnetic polarity time scale; however, the palaeomagnetic results are also compatible with a younger chronology suggested by conventional K-Ar dating of the KBS Tuff. ?? 1977 Nature Publishing Group.

  16. 200,000 years of monsoonal history recorded on the lower Bengal Fan - strong response to insolation forcing

    NASA Astrophysics Data System (ADS)

    Weber, Michael E.; Lantzsch, Hendrik; Dekens, Petra; Das, Supriyo K.; Reilly, Brendan T.; Martos, Yasmina M.; Meyer-Jacob, Carsten; Agrahari, Sandip; Ekblad, Alf; Titschack, Jürgen; Holmes, Beth; Wolfgramm, Philipp

    2018-07-01

    relationship between high southern latitude and tropical Asian climate through shifts in position of the Intertropical Convergence Zone. The Bengal Fan monsoonal record shows very clear and strict responses to insolation forcing in the lower part from 200 ka to the Younger Toba Tuff during Marine Isotope Stage (MIS) 7 - 5, and less distinct response patterns after deposition of the ash during MIS 4 - 2, consistent with low-amplitude changes in insolation.

  17. A model of tephra dispersal from an early Palaeogene shallow submarine Surtseyan-style eruption(s), the Red Bluff Tuff Formation, Chatham Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sorrentino, Leonor; Stilwell, Jeffrey D.; Mays, Chris

    2014-03-01

    The Red Bluff Tuff Formation, an early Palaeogene volcano-sedimentary shallow marine succession from the Chatham Islands (New Zealand), provides a unique framework, in eastern 'Zealandia', to explore tephra dispersal processes associated with ancient small phreatomagmatic explosions (i.e. Surtseyan-style eruptions). Detailed sedimentological mapping, logging and sampling integrated with the results of extensive laboratory analyses (i.e. grain-size, componentry and applied palaeontological methods) elucidated the complex mechanisms of transport and deposition of nine identified resedimented fossiliferous volcaniclastic facies. These facies record the subaqueous reworking and deposition of tephra from the erosion and degradation of a proximal, entirely submerged ancient Surtseyan volcanic edifice (Cone II). South of this volcanic cone, the lowermost distal facies provides significant evidence of deposition as water-supported volcanic- or storm-driven mass flows (e.g. turbidity currents and mud/debris flows) of volcaniclastic and bioclastic debris, whereas the uppermost distal facies exhibit features of tractional sedimentary processes caused by shallow subaqueous currents. Further north, within the proximity of the volcanic edifice, the uppermost facies are represented by an abundant, diverse, large, and well preserved in situ fauna of shallow marine sessile invertebrates (e.g. corals and sponges) that reflect the protracted biotic stabiliszation and rebound following pulsed volcanic events. Over a period of time, these stable and wave-eroded volcanic platforms were inhabited by a flourishing and diversifying marine community of benthic and sessile pioneers (corals, bryozoans, molluscs, brachiopods, barnacles, sponges, foraminifera, etc.). This succession exhibits a vertical progression of sedimentary structures (i.e. density, cohesive and mass flows, and cross-bedding) and our interpretations indicate a shallowing upwards succession. This study reports for the first

  18. Experimental determination of phase relationships of a chemically-zoned peralkaline silicic reservoir: the example of Green Tuff eruption at Pantelleria (Italy)

    NASA Astrophysics Data System (ADS)

    Romano, Pierangelo; Andujar, Joan; Scaillet, Bruno; Rotolo, Silvio

    2017-04-01

    Phase equilibrium experiments are recognized as an excellent method to determine the pre-eruptive conditions of magmas inasmuch they are extremely sensitive to small variation in major elements composition in the studied rocks. Trachytes and peralkaline rhyolites (i.e pantellerite and comendite) usually represent the felsic end-member in continental rift systems and oceanic island settings. Pantelleria island, almost entirely made up of trachyte and pantellerite, is well known in the petrological literature as being the type locality of pantellerites. In this study we present the results of phase equilibrium experiments performed on representative peralkaline rhyolite (pantellerite) and metaluminous trachytes of the Green Tuff eruptions of Pantelleria, the sole known compositionally zoned ignimbrite at this volcanic location, which varies from a crystal-poor pantellerite at the base towards a crystal-rich trachyte at the top of the eruptive sequence. Crystallization experiments were performed in the temperature range 750-950°C, pressure 1-1.5 kbar, fluid saturation conditions with XH2O (=H2O/H2O+CO2) between 0 and 1 and redox conditions fixed around the FMQ (Fayalite-Magnetite- Quartz) buffer. Results show that at 900 °C pantelleritic starting compositions are well above their liquidus, regardless their water content. At T < 800°C clinopyroxene is the liquidus phase followed by amphibole and alkali feldspar. Aenigmatite and quartz crystallize at 750°C and XH2O lower than 0.8. In contrast, the trachytic composition at 800°C is highly crystallized regardless its water content. The liquidus phase is clinopyroxene crystallizing at 950°C and XH2O<0.8 followed by iron-rich olivine and alkali feldspar. Iron-bearing minerals record the effect of both H2O and fO2, showing progressive iron enrichment when XH2O decreases. Alkali feldspar becomes the most abundant mineral phase for XH2O<0.8 at 900°C or XH2O<1 at 850°C both at 1 and 1.5 kbar. Experiments reproduced the

  19. Preliminary analysis of thermal-infrared multispectral scanner data of the Iron Hill, Colorado carbonatite-alkalic rock complex

    NASA Technical Reports Server (NTRS)

    Rowan, Lawrence C.; Watson, Kenneth; Miller, Susanne H.

    1992-01-01

    The Iron Hill carbonatite-alkalic igneous rock complex is in the Powderhorn mining district, approximately 40 km south-southwest of Gunnison, Colorado. The complex, which occupies about 30 sq km, was emplaced in metasedimentay and metavolcanic rocks during the later Precambrian or early Cambrian. The main rock types in the complex, from oldest to youngest, are fenite, pyroxenite, uncompahgrite, ijolite, nepheline syenite, and dolomitic carbonatite. The carbonatite is limonitic and forms an elliptially shaped 4 sq km stock. Calcitic and dolomitic carbonatite dikes are also numerous throughout the complex and in the pre-existing rocks. Pyroxenite is the most widespread rock type within the complex, but pyroxene is extensively altered to biotite, phlogopite, and vermiculite. Fenite, which formed through Na, K-metasomatism of the country rocks, typically contains more feldspar and less quartz than the equivalent unaltered country rocks. The other alkalic rock types are less widespread and less well exposed. Parts of the complex are covered by Oligocene ash-flow tuff and alluvial, colluvial, and glacial deposits. Sagebrush and grass cover is moderately dense to very dense at low to intermediate elevations; coniferous tree cover is dense at high elevations and on some north-facing slopes at lower elevations. A new algorithm was used to compute spectral emissivity ratios, independent of any emissivity assumptions. This algorithm has the advantage that any of the possible emissivity ratios can be computed and, thus, a large variety of composite ratio images can be constructed, which permits examination of various geologic hypotheses based on the spectral properties of the surface materials.

  20. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, Dennis W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.

  1. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    USGS Publications Warehouse

    Spengler, Richard W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, restricted log coverage to the lower half of the drill hole.

  2. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  3. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  4. Dynamic tunable notch filters for the Antarctic Impulsive Transient Antenna (ANITA)

    NASA Astrophysics Data System (ADS)

    Allison, P.; Banerjee, O.; Beatty, J. J.; Connolly, A.; Deaconu, C.; Gordon, J.; Gorham, P. W.; Kovacevich, M.; Miki, C.; Oberla, E.; Roberts, J.; Rotter, B.; Stafford, S.; Tatem, K.; Batten, L.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Chen, Y.; Clem, J. M.; Cremonesi, L.; Dailey, B.; Dowkontt, P. F.; Hsu, S.; Huang, J.; Hupe, R.; Israel, M. H.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Ludwig, A. B.; Matsuno, S.; Mulrey, K.; Nam, J.; Nichol, R. J.; Novikov, A.; Prohira, S.; Rauch, B. F.; Ripa, J.; Romero-Wolf, A.; Russell, J.; Saltzberg, D.; Seckel, D.; Shiao, J.; Stockham, J.; Stockham, M.; Strutt, B.; Varner, G. S.; Vieregg, A. G.; Wang, S.; Wissel, S. A.; Wu, F.; Young, R.

    2018-06-01

    The Antarctic Impulsive Transient Antenna (ANITA) is a NASA long-duration balloon experiment with the primary goal of detecting ultra-high-energy (> 1018eV) neutrinos via the Askaryan Effect. The fourth ANITA mission, ANITA-IV, recently flew from Dec 2 to Dec 29, 2016. For the first time, the Tunable Universal Filter Frontend (TUFF) boards were deployed for mitigation of narrow-band, anthropogenic noise with tunable, switchable notch filters. The TUFF boards also performed second-stage amplification by approximately 45 dB to boost the ∼ μV-level radio frequency (RF) signals to ∼ mV-level for digitization, and supplied power via bias tees to the first-stage, antenna-mounted amplifiers. The other major change in signal processing in ANITA-IV is the resurrection of the 90 ° hybrids deployed previously in ANITA-I, in the trigger system, although in this paper we focus on the TUFF boards. During the ANITA-IV mission, the TUFF boards were successfully operated throughout the flight. They contributed to a factor of 2.8 higher total instrument livetime on average in ANITA-IV compared to ANITA-III due to reduction of narrow-band, anthropogenic noise before a trigger decision is made.

  5. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  6. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  7. Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte dei Porri volcano, Salina, Aeolian Islands, southern Italy

    USGS Publications Warehouse

    Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.

    2012-01-01

    The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72−84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57−78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.

  8. MX Siting Investigation. Geotechnical Evaluation. Verification Study - Pahroc Valley, Nevada. Volume I. Synthesis.

    DTIC Science & Technology

    1981-06-30

    Range both consist of Paleozoic limestone and dolomite overlain by Tertiary ash-flow tuffs and undiffer- entiated volcanic rocks. The central portion...andesite, detrital material, volcanic tuff, pumice). FAULT - A plane or zone of fracture along which there has been * I displacement. FAULT BLOCK...D2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic pressure . An

  9. A Cultural Resources Survey of the Proposed Recreational Development Areas and Wildlife Subimpoundments at the B. Everett Jordan Dam and Lake. Volume 1.

    DTIC Science & Technology

    1984-03-01

    containing flow banding, light-gray felsite, felsic- porphyries , crystal tuffs, and rare mafic porphyries and crystal tuffs (Conley and Bain 1965:12Z). The...goods are also present in the form of glass beads, gunflints, iron axes, copper hawk bells and white clay trade pipes. HISTORICAL BACKGROUND The...points manufactured on two rock types occur most frequently: andesitic felsite in the lower valley and grey latite porphyry in the upper valley. The

  10. Geology of the Humboldt region and the Iron King mine, Bigbug mining district, Yavapai County, Arizona

    USGS Publications Warehouse

    Creasey, Saville Cyrus

    1951-01-01

    The Humboldt region is in central Yavapai County, Arizona. The intersection of the 112? 15' meridian and the 34? 30' N parallel is in the approximate geographical center of the region, and the Iron King mine is about 2000 feet west-northwest of the intersection. Pre-Cambrian rocks form the bedrock in the Humboldt region. Late Cenozoic unconsolidated river wash and valley fill, including some interbedded basalt, locally mantle the pre-Cambrian rocks, especially in the north-central part of the region (Lonesome Valley). The pre-Cambrian rocks consist of five newly defined metavolcanic formations derived from flows and tuff s, and of six intrusive units ranging in composition from granite to gabbro or perhaps more mafic types. Relic bedding-and pillow structures are locally prominent in the metavolcanics; geopetal structures are uncommon, but where present, generally indicate that the top is toward the west, though the evidence is too meager to be conclusive. Low-grade dynamothermal metamorphism altered the metavolcanics and to a lesser extent the intrusive rocks, forming textures, structures, and mineral assemblages characteristic of low temperature and moderate stress. The Texas Gulch formation, which is the easternmost metavolcanic formation, consists of five lithologic units. Arranged in the general order of their appearance from east to west they are meta-andesite breccia, purple slate, metarhyolite tuff, meta-andesite, and green slate. The boundary between the Texas Gulch formation and the Iron King meta-andesite is apparently gradational. The Iron King meta-andesite consists of three meta-andesite tuff units, two meta-andesite flow units and one metarhyolite tuff and conglomerate unit. The assemblage chlorite-albite-epitode with or without quartz is dominant in the meta-andesites. Mafic intrusive rocks, which may be approximately contemporaneous with metamorphism, may explain the presence of actinolitic hornblende in the central part of the formation. Toward

  11. Pyroxene thermometry of rhyolite lavas of the Bruneau-Jarbidge eruptive center, Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Cathey, Henrietta E.; Nash, Barbara P.

    2009-11-01

    The Bruneau-Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of <10 km 3 to 200 km 3 each from ~11.2 to 8.1 Ma, most of which follow its climactic phase of large-volume explosive volcanism, represented by the Cougar Point Tuff, from 12.7 to 10.5 Ma. These lavas represent the waning stages of silicic volcanism at a major eruptive center of the Yellowstone hotspot track. Here we provide pyroxene compositions and thermometry results from several lavas that demonstrate that the demise of the silicic volcanic system was characterized by sustained, high pre-eruptive magma temperatures (mostly ≥950 °C) prior to the onset of exclusively basaltic volcanism at the eruptive center. Pyroxenes display a variety of textures in single samples, including solitary euhedral crystals as well as glomerocrysts, crystal clots and annealed microgranular inclusions of pyroxene ± magnetite ± plagioclase. Pigeonite and augite crystals are unzoned, and there are no detectable differences in major and minor element compositions according to textural variety — mineral compositions in the microgranular inclusions and crystal clots are identical to those of phenocrysts in the host lavas. In contrast to members of the preceding Cougar Point Tuff that host polymodal glass and mineral populations, pyroxene compositions in each of the lavas are characterized by single rather than multiple discrete compositional modes. Collectively, the lavas reproduce and extend the range of Fe-Mg pyroxene compositional modes observed in the Cougar Point Tuff to more Mg-rich varieties. The compositionally homogeneous populations of pyroxene in each of the lavas, as well as the lack of core-to-rim zonation in individual crystals suggest that individual eruptions each were fed by compositionally homogeneous magma reservoirs, and similarities with the Cougar Point Tuff suggest consanguinity of such reservoirs to those that

  12. Preliminary result of P-wave speed tomography beneath North Sumatera region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatnika, Jajat; Indonesian Meteorological, Climatological and Geophysical Agency; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was setmore » up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.« less

  13. U-Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo Supergroup) reflect sedimentary recycling and air-fall tuff deposition in the Permo-Triassic Karoo foreland basin

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.

    2018-07-01

    Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.

  14. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    NASA Astrophysics Data System (ADS)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  15. 40Ar/(39)Ar dating of the Kapthurin Formation, Baringo, Kenya.

    PubMed

    Deino, Alan L; McBrearty, Sally

    2002-01-01

    The(40)Ar/(39)Ar radiometric dating technique has been applied to tuffs and lavas of the Kapthurin Formation in the Tugen Hills, Kenya Rift Valley. Two variants of the(40)Ar/(39)Ar technique, single-crystal total fusion (SCTF) and laser incremental heating (LIH) have been employed to date five marker horizons within the formation: near the base, the Kasurein Basalt at 0.61+/-0.04 Ma; the Pumice Tuff at 0.543+/-0.004 Ma; the Upper Kasurein Basalt at 0.552+/-0.015 Ma; the Grey Tuff at 0.509+/-0.009 Ma; and within the upper part of the formation, the Bedded Tuff at 0.284+/-0.012 Ma. The new, precise radiometric age determination for the Pumice Tuff also provides an age for the widespread Lake Baringo Trachyte, since the Pumice Tuff is the early pyroclastic phase of this voluminous trachyte eruption. These results establish the age of fossil hominids KNM-BK 63-67 and KNM-BK 8518 at approximately 0.510-0.512 Ma, a significant finding given that few Middle Pleistocene hominids are radiometrically dated. The Kapthurin hominids are thus the near contemporaries of those from Bodo, Ethiopia and Tanzania. A flake and core industry from lacustrine sediments in the lower part of the formation is constrained by new dates of 0.55-0.52 Ma, a period during which the Acheulian industry, characterized by handaxes, is known throughout East Africa. Points, typical of the Middle Stone Age (MSA), are found in Kapthurin Formation sediments now shown to date to between 0.509+/-0.009 Ma and 0.284+/-0.012 Ma. This date exceeds previous estimates for the age of the MSA elsewhere in East Africa by 49 ka, and establishes the age of Acheulian to MSA transition for the region. Evidence of the use of the Levallois technique for the manufacture of both small flakes and biface preforms, the systematic production of blades, and the use and processing of red ochre also occurs in this interval. The presence of blades and red ochre at this depth is important as blades signify a high degree of technical

  16. Calibration of the Permo-Triassic Magnetostratigraphic Time Scale: Constraints from the Dewey Lake Formation, West Texas

    NASA Astrophysics Data System (ADS)

    Chang, S.; Knight, K. B.; Renne, P. R.

    2005-12-01

    Magnetostratigraphy is potentially a powerful tool for deciphering the high resolution chronostratigraphy of events across the Permo-Triassic boundary, but few well-dated polarity reversals exist to serve as calibration. Red beds of the Dewey Lake Formation (DLF) of West Texas span three reversed polarity intervals (Steiner, 2001) in a section of the DLF at Caprock Canyons State Park, where two tuffs occur. Sanidine separated from these tuffs was analyzed by 40Ar/39Ar methods. Single crystal laser fusion 40Ar/39Ar analyses of 40 grains from the upper tuff yield a weighted mean age of 249.9 ± 2.4 Ma (2σ errors here and throughout). The clustering of single crystal data provides some assurance against xenocrystic contamination. Two age spectra from multigrain sanidine separates from the lower tuff yielded integrated ages of 248.9 ± 2.8 Ma and 249.7 ± 2.8 Ma and consistent plateau ages of 249.2 ± 2.4 Ma and 249.6 ± 2.4 Ma. Two age spectra from multigrain upper tuff sanidines lack strict plateaus but with overall flat age spectra, with integrated ages of 249.7 ± 2.8 Ma and 250.3 ± 2.8 Ma and plateau-like segments (>70% of 39Ar released) with ages of 249.9 ± 2.6 Ma and 249.9 ± 2.6 Ma, respectively. These results, compared with 40Ar/39Ar data (using the same FCs = 28.02 Ma standard calibration) from the GSSP section at Meishan, China, suggest that the Permo-Triassic boundary (249.8 Ma; recalculated from Renne et al., 1995) definitely occurs within the lower Dewey Lake Formation. The two tuffs, which bracket a normal to reverse geomagnetic polarity transition polarity (Steiner, 2001), have indistinguishable ages. The age of this Permo-Triassic polarity transition is thus best represented by the weighed average of their ages, ca. 249.7 Ma (based on accepted calibrations of the 40Ar/39Ar system). Further such constraints will facilitate high-resolution comparison of terrestrial and marine records across this critical time interval.

  17. Effect of reducing groundwater on the retardation of redox-sensitive radionuclides

    PubMed Central

    Hu, QH; Zavarin, M; Rose, TP

    2008-01-01

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and 237Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)4. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk assessment in various

  18. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.; Keil, K.; Mansker, W.L.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworkedmore » zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.« less

  19. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from sevenmore » holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.« less

  20. Low-(18)O Silicic Magmas: Why Are They So Rare?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 valuesmore » between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.« less

  1. Pleistocene hydrovolcanism in the Tule Lake Basin, N. E. California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavine, A.

    1993-04-01

    The Prisoners Rock and The Peninsula tuff cones and the North Crater tuff ring, located in the Tule Lake Basin of northeastern California formed along a north-trending fissure approximately 270 ka when basaltic magma interacted with abundant groundwater or shallow lake water, resulting in phreatomagmatic eruptions. Diatomite inclusions in the tuff ring and correlations with the corresponding depth and diatoms in a drill core taken in the center of the basin, 2.5 km to the west of the cones, indicate shallow, marshy or shallow, alkaline-open conditions at Tule Lake around 270 ka. Deposits at Prisoners Rock and The Peninsula indicatemore » subaerial emplacement, which allowed the deposits to lithify with little erosion by the lake. Subsequent wave erosion caused undercutting and breaking off of large blocks along mainly north-trending fractures forming vertical cliff faces on the east and west sides of the cones. The cones are elongated north-south with a greater thickness of deposits on the north and northeast, probably due to prevailing southwesterly winds at the time of eruptions. Deposits of the tuff cones at Prisoners Rock and The Peninsula resulted from deep explosions caused by water-magma ratios of around 3:1. The deposits are mainly inversely graded planar surge beds, ranging in thickness from 5 to 30 cm, and grading from very fine ash to 2 cm-diameter accretionary lapilli. Emplacement by highly steam-saturated, poorly inflated pyroclastic surges is indicated by the abundance of accretionary lapilli, vesiculated tuffs, soft-sediment deformation structures, steep bedding angles (20 to 40 degrees) lack of structures beneath country rock inclusions, massive bedding, and cementation of the deposits by alteration of basaltic glass to calcite, zeolites, clays, and chlorite.« less

  2. Geochemistry, strontium isotope data, and potassium-argon ages of the andesite-rhyolite association in the Padang area, West Sumatra

    USGS Publications Warehouse

    Leo, G.W.; Hedge, C.E.; Marvin, R.F.

    1980-01-01

    Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ?? 0.12 to 0.83 ?? 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ?? 0.12 m.y. Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 - 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown. The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression. ?? 1980.

  3. Records of Triassic volcanism in Pangean Great Lakes, and implications for reconstructing the distal effects of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.

    2017-12-01

    Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as

  4. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  5. Tertiary fission-track ages from the Bagua syncline (northern Peru): Stratigraphic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Naeser, C. W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sigé, B.

    The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times.

  6. Drill-back studies examine fractured, heated rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences inmore » compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.« less

  7. Geophysical methods as mapping tools in a strata-bound gold deposit: Haile mine, South Carolina slate belt.

    USGS Publications Warehouse

    Wynn, J.C.; Luce, R.W.

    1984-01-01

    The Haile mine is the largest gold producer in the eastern USA. It is postulated to be a strata-bound gold deposit formed by a fumarolic or hot-spring system in felsic tuffs of Cambrian(?) age. Two mineralized zones occur, each composed of a sericitic part overlain by a siliceous part. Au is concentrated in especially silicified horizons and in pyrite horizons in the siliceous part of each mineralized zone. The tuffs are metamorphosed to greenschist facies and intruded by diabase and other mafic dykes. Weathering is deep and the mineralized tuffs are partly covered by coastal-plain sediments. It is suggested that certain geophysical methods may be useful in mapping and exploring Haile-type deposits in the Carolina slate belt. Very low frequency electromagnetic resistivity surveys help define alteration and silicified zones. A magnetic survey found sharp highs that correlate with unexposed mafic and ultramafic dykes. Induced polarization proved useful in giving a two-dimensional view of the structure.-G.J.N.

  8. The age of the Tunas formation in the Sauce Grande basin-Ventana foldbelt (Argentina): Implications for the Permian evolution of the southwestern margin of Gondwana

    NASA Astrophysics Data System (ADS)

    López-Gamundí, Oscar; Fildani, Andrea; Weislogel, Amy; Rossello, Eduardo

    2013-08-01

    New SHRIMP radiogenic isotope dating on zircons in tuffs (280.8 ± 1.9 Ma) confirms the Early Permian (Artinskian) age of the uppermost section of the Tunas Formation. Tuff-rich levels in the Tunas Formation are exposed in the Ventana foldbelt of central Argentina; they are part of a deltaic to fluvial section corresponding to the late overfilled stage of the Late Paleozoic Sauce Grande foreland basin. Recent SHRIMP dating of zircons from the basal Choiyoi volcanics exposed in western Argentina yielded an age of 281.4 ± 2.5 Ma (Rocha-Campos et al., 2011). The new data for the Tunas tuffs suggest that the volcanism present in the Sauce Grande basin can be considered as the distal equivalent of the earliest episodes of the Choiyoi volcanism of western Argentina. From the palaeoclimatic viewpoint the new Tunas SHRIMP age confirms that by early Artinskian glacial conditions ceased in the Sauce Grande basin and, probably, in adajacent basins in western Gondwana.

  9. Rejuvenation Stage Volcanics at Laeo Kilauea, Kauai, Hawaii

    NASA Astrophysics Data System (ADS)

    Thordarson, T.; Garcia, M.; Wanless, D.; Tagami, T.; Sano, H.

    2005-12-01

    The Plio-Pleistocene Koloa volcanic series represents the rejuvenated volcanism on Kauai, one of the oldest main Hawaiian Islands. The Koloa series is made up of highly alkalic basalt and associated sedimentary rocks that rest unconformably on the shield-building Waimea Canyon volcanic series. Koloa vents are dispersed across the eastern two-thirds of the island and typically consist of scoria or lava cones that fed broad lava flow fields blanketing the marginal lowlands on the south, east and north side of the island. The northernmost subaerial Koloa vents are found at Laeo Kilauea on the north shore of the island. At Laeo Kilauea the volcanic succession is unusual in that it contains the only phreatomagmatic vent structures of the Koloa series. Here an ~2-km-long costal cliff face reveals a bedded phreatomagmatic tephra sequence that is >90-m-thick and represents the remnant of an a much large tuff cone (>2-km in diameter). The tuff cone sequence is characterized by decimeter to meters thick layers, where cross-bedded ash beds alternate with massive and poorly sorted lapilli tuff beds. The cross-bedded deposits were produced by dry and wet surges, whereas the poorly sorted beds represent fall deposits produced by sustained eruption column (i.e. continuous up-rush) or tephra jets (i.e. rooster-tail explosions). The juvenile clast population of the tephra consists of olivine-phyric foidite, but it also contains abundant wall-rock lithics, including fragments of reef-limestone. The base of the tuff cone outcrops at Mokolea point on the east side of the outcrop, where phreatomagmatic tephra rests directly on an older Koloa pahoehoe flow, a olivine- and mellelite-phyric foidite lava. The tephra sequence is cut by an ~1-m-thick olivine-bearing basanite dike, which acted as a feeder for the fountain-fed spatter and lava (up to 100-m-thick) that cap the phreatomagmatic tephra sequence. These units are separated by a 2-3 m thick soil horizon formed by weathering of the

  10. Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska

    USGS Publications Warehouse

    Keith, T.E.C.

    1991-01-01

    Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases

  11. Evidence for an abrupt transition in the mantle-derived source to the Long Valley Caldera rhyolites after the climactic eruption: from subduction-modified lithosphere to asthenosphere

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.

    2014-12-01

    Shortly after the climactic eruption of ~600 km3 of Bishop Tuff zoned rhyolitic magma, ~100 km3 of crystal-poor Early Rhyolite erupted inside Long Valley Caldera between ~750-650 ka as domes, glassy lavas, and tuffs (Hildreth, 2004). Despite similarities in bulk composition (e.g., 73-75 wt% SiO2; ~100 ppm Sr), there are marked differences between the Late (≥ 790°C) Bishop Tuff and postcaldera Early Rhyolites. Although crystal-poor (<5%), the Early Rhyolites are often saturated with 7-8 mineral phases (plag + opx + ilm + tmte + biotite + apatite + zircon ± pyrrhotite), but without the quartz, sanidine, and cpx additionally found in the more crystal-rich (12-24%) Late Bishop Tuff. Pre-eruptive temperatures, on the basis of two Fe-Ti oxides, range from 720-860°C, and ΔNNO values range from-0.4 to -0.9 (consistent with abundant ilmenite). Thus the Early Rhyolites record fO2 values that are nearly two orders of magnitude lower than those in the Late Bishop Tuff (ΔNNO = +1; Hildreth and Wilson, 2007). Application of the plagioclase-liquid hygrometer to Early Rhyolites gives pre-eruptive water contents ≤ 4.4 wt% H2O. The phenocrysts in Early Rhyolite obsidians often display euhedral and/or diffusion-limited growth textures, suggesting degassing-induced crystallization during rapid ascent. Isotopic data from the literature (e.g., Simon et al., 2014 and references therein) show that Long Valley rhyolites were derived from both crustal and mantle sources. We hypothesize that the drop in fO2 between the Late Bishop Tuff and Early Rhyolites may reflect a transition in their respective mantle source, from subduction-modified lithosphere to asthenosphere. Such a time-progressive transition in the mantle source of erupted basalts is seen throughout the Great Basin, occurring earliest in its central region and more recently toward its western margin (e.g. Cousens et al., 2012). Although the geochemistry of Quaternary basalts erupted around Long Valley indicate a

  12. Recognition of primary and diagenetic magnetizations to determine the magnetic polarity record and timing of deposition of the moat-fill rocks of the Oligocene Creede Caldera, Colorado

    USGS Publications Warehouse

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.

    2000-01-01

    Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by

  13. Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Foley, S. F.; Pearson, D. G.; Nowell, G. M.; Tappe, S.

    2009-06-01

    Strongly silica-undersaturated potassic lavas (kamafugites) and carbonatitic tuffs are characteristic of the Toro-Ankole volcanic field in southwestern Uganda, forming the youngest and most northward volcanics of the western branch of the East African Rift. Lavas contain exceptionally low SiO 2 (31.8-42.8 wt.%), high CaO (up to 16.6 wt.%) and K 2O (up to 7 wt.%). They exhibit moderately enriched correlated Nd ( ɛNd - 0.1 to - 4.7) and Hf ( ɛHf - 0.1 to - 8.8) isotope signatures, indicating time-integrated enrichment in incompatible elements in the source, attributed to mixing between two metasomatic assemblages, a phlogopite-rich MARID-type and a later carbonate-rich assemblage. The restricted range of 87Sr/ 86Sr (0.704599-0.705402) is due to Sr being dominated by the carbonate-rich assemblage, which also imparts a Nd and Hf signature similar to convecting upper mantle. Os isotopes ( γOs up to 290 and variable Os concentrations of 0.056-1.454 ppb) are curved due to mixing between the carbonate-rich metasome and a second end-member that may be derived from melting peridotite, the MARID assemblage, or a mixture of both. Enrichment of the peridotitic mantle in carbonate and silicate melts at 4-6 GPa occurs also in other areas where geochemically similar ultramafic lamprophyres result. The Ugandan kamafugites thus represent the earliest and deepest-derived magmas in a rift through thick continental lithosphere beneath the continuous Congo-Tanzania craton. The Ugandan rift-related mantle enrichment is older than the earliest known tectonic surface expression of the rift.

  14. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; Forster, Margaret A.; BouDagher-Fadel, Marcelle K.

    2017-01-01

    Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New U-Pb dating of zircons from the Jagoi Granodiorite indicates Triassic magmatism at c. 208 Ma and c. 240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations confirms contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin derived from the magmatic arc at the Sundaland-Pacific margin. West Sarawak and NW Kalimantan are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in the Triassic. One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation indicate that volcanic activity continued until c. 86 to 88 Ma when subduction terminated.

  15. Hydrology of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.

    2001-01-01

    Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

  16. Tertiary fission-track ages from the Bagua syncline (northern Peru): Stratigraphic and tectonic implications

    USGS Publications Warehouse

    Naeser, C.W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sige, B.

    1991-01-01

    The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times. ?? 1991.

  17. Development of Gender Discrimination: Role of Stereotypic and Counterstereotypic Gender Cues.

    ERIC Educational Resources Information Center

    Etaugh, Claire; Duits, Terri

    1990-01-01

    A group of 76 male and female toddlers identified drawings depicting boys and girls alone or with sex-typical or sex-atypical toys by responding "girl" or "boy,""girls' toy" or "boys' toy." The youngest girls outperformed the youngest boys in identifying toys. Otherwise, responses in general improved with…

  18. Parent and Public Interest in Whole Genome Sequencing

    PubMed Central

    Dodson, Daniel S.; Goldenberg, Aaron J.; Davis, Matthew M.; Singer, Dianne C.; Tarini, Beth A.

    2015-01-01

    Objective To assess the baseline interest of the public in whole genome sequencing (WGS) for themselves, parents’ interest in WGS for their youngest children, and factors associated with such interest. Methods A random sample of adults from a probability-based nationally representative online panel was surveyed. All participants were provided basic information about WGS and then asked their interest in WGS for themselves. Those participants who self-identified as parents were asked about their interest in WGS for their children. The order in which parents were asked about their interest in WGS for themselves and their child was randomized. The relationship between parent/child characteristics and interest in WGS was examined. Results Overall response rate was 62% (55% among parents). 58.6% of the total population (parents and non-parents) was interested in WGS for themselves. Similarly, 61.8% of parents were interested in WGS for themselves and 57.8% were interested in WGS for their youngest children. Of note, 84.7% of parents showed an identical interest level in WGS for themselves and their youngest children. Mothers as a whole, and parents whose youngest children had ≥2 health conditions had significantly more interest in WGS for themselves and their youngest children, while those with conservative political ideologies had considerably less. Conclusions While U.S. adults have varying interest levels in WGS, parents appear to have similar interests in genome testing for themselves and their youngest children. As WGS technology becomes available in the clinic and private market, clinicians should be prepared to discuss WGS risks and benefits with their patients. PMID:25765282

  19. Parent and public interest in whole-genome sequencing.

    PubMed

    Dodson, Daniel S; Goldenberg, Aaron J; Davis, Matthew M; Singer, Dianne C; Tarini, Beth A

    2015-01-01

    The aim of this study was to assess the baseline interest of the public in whole-genome sequencing (WGS) for oneself, parents' interest in WGS for their youngest children, and factors associated with such interest. A random sample of adults from a probability-based nationally representative online panel was surveyed. All participants were provided basic information about WGS and then asked about their interest in WGS for themselves. Those participants who were parents were additionally asked about their interest in WGS for their children. The order in which parents were asked about their interest in WGS for themselves and for their child was randomized. The relationship between parent/child characteristics and interest in WGS was examined. The overall response rate was 62% (55% among parents). 58.6% of the total population (parents and nonparents) was interested in WGS for themselves. Similarly, 61.8% of the parents were interested in WGS for themselves and 57.8% were interested in WGS for their youngest children. Of note, 84.7% of the parents showed an identical interest level in WGS for themselves and their youngest children. Mothers as a group and parents whose youngest children had ≥2 health conditions had significantly more interest in WGS for themselves and their youngest children, while those with conservative political ideologies had considerably less. While US adults have varying interest levels in WGS, parents appear to have similar interests in genome testing for themselves and their youngest children. As WGS technology becomes available in the clinic and private market, clinicians should be prepared to discuss WGS risks and benefits with their patients. © 2015 S. Karger AG, Basel.

  20. Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: An example from the Cretaceous Beolgeumri Formation, Wido Volcanics, Korea

    NASA Astrophysics Data System (ADS)

    Ko, Kyoungtae; Kim, Sung Won; Lee, Hong-Jin; Hwang, In Gul; Kim, Bok Chul; Kee, Won-Seo; Kim, Young-Seog; Gihm, Yong Sik

    2017-08-01

    The Cretaceous Beolgeumri Formation is composed of laminated mudstones intercalated with sandstones, chert, and a bed of lapilli tuff that were deposited in a lacustrine environment at the terminal part of a regional strike-slip fault systems on the southwestern Korean Peninsula. The Beolgeumri Formation contains various types of soft sediment deformation (SSD) structures that are characterized by a wide extent (< 4 km), lateral continuity (< 200 m), and vertical repetition. The SSD structures can be classified into six categories based on their morphological features and deformation styles: 1) fold structures, 2) load structures, 3) water-escape structures, 4) rip-down structures, 5) boudin structures, and 6) synsedimentary fault structures. Field examination of SSD structures together with an analysis of the sedimentological records of the Beolgeumri Formation indicate that the SSD structures formed largely by liquefaction and/or fluidization triggered by ground shaking during earthquakes. To constrain the timing of the development of SSD structures in the Beolgeumri Formation, we conducted sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age dating of block sized lithic clasts bearing volcaniclastic deposits that conformably underlie (the Mangryeongbong Tuff) and overlie (the Ttandallae Tuff) the Beolgeumri Formation. The Mangryeongbong and Ttandallae Tuffs have ages of 86.63 ± 0.83 Ma and 87.24 ± 0.36 Ma, respectively, indicating that the Beolgeumri Formation was deposited during a short interval between major volcanic eruptions. The large lithic clasts of volcaniclastic deposits suggest that the Beolgeumri Formation was deposited adjacent to an active volcanic edifice(s). Syndepositional magmatic activities are suggested by the occurrence of a lapilli tuff bed in the Beolgeumri Formation and an igneous intrusion (intermediate sill) that is crosscut by a sand dike, as well as the similar age results of the underlying and overlying volcaniclastic