Sample records for yqja encoding related

  1. Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH

    PubMed Central

    Kumar, Sujeet

    2015-01-01

    ABSTRACT The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. IMPORTANCE The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family

  2. Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH.

    PubMed

    Kumar, Sujeet; Doerrler, William T

    2015-07-01

    The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family is a highly conserved

  3. Unconscious relational encoding depends on hippocampus

    PubMed Central

    Duss, Simone B.; Reber, Thomas P.; Hänggi, Jürgen; Schwab, Simon; Wiest, Roland; Müri, René M.; Brugger, Peter; Gutbrod, Klemens

    2014-01-01

    Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23–60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system. PMID:25273998

  4. When encoding yields remembering: insights from event-related neuroimaging.

    PubMed Central

    Wagner, A D; Koutstaal, W; Schacter, D L

    1999-01-01

    To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153

  5. Voluntary control over prestimulus activity related to encoding

    PubMed Central

    Gruber, Matthias J.; Otten, Leun J.

    2010-01-01

    A new development in our understanding of human long-term memory is that effective memory formation relies on neural activity just before an event. It is unknown whether such prestimulus activity is under voluntary control or a reflection of random fluctuations over time. In the present study, we addressed two issues: (i) whether prestimulus activity is influenced by an individual's motivation to encode, and (ii) at what point in time encoding-related activity emerges. Electrical brain activity was recorded while healthy male and female adults memorized series of words. Each word was preceded by a cue, which indicated the monetary reward that would be received if the following word was later remembered. Memory was tested after a short delay with a five-way recognition task to separate different sources of recognition. Electrical activity elicited by the reward cue predicted later memory of a word. Crucially, however, this was only observed when the incentive to memorize a word was high. Encoding-related activity preceded high reward words that were later recollected. This activity started shortly after cue onset and persisted until word onset. Prestimulus activity thus not only signals cue-related processing, but also an ensuing preparatory state. In contrast, reward-related activity was limited to the time period immediately following the reward cue. These findings indicate that engaging neural activity that benefits the encoding of an upcoming event is under voluntary control, reflecting a strategic preparatory state in anticipation of processing an event. PMID:20660262

  6. Age-related effects on perceptual and semantic encoding in memory.

    PubMed

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-07

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Endogenous opioids encode relative taste preference.

    PubMed

    Taha, Sharif A; Norsted, Ebba; Lee, Lillian S; Lang, Penelope D; Lee, Brian S; Woolley, Joshua D; Fields, Howard L

    2006-08-01

    Endogenous opioid signaling contributes to the neural control of food intake. Opioid signaling is thought to regulate palatability, the reward value of a food item as determined by orosensory cues such as taste and texture. The reward value of a food reflects not only these sensory properties but also the relative value of competing food choices. In the present experiment, we used a consummatory contrast paradigm to manipulate the relative value of a sucrose solution for two groups of rats. Systemic injection of the nonspecific opioid antagonist naltrexone suppressed sucrose intake; for both groups, however, this suppression was selective, occurring only for the relatively more valuable sucrose solution. Our results indicate that endogenous opioid signaling contributes to the encoding of relative reward value.

  8. Age-related changes in frequency of mind-wandering and task-related interferences during memory encoding and their impact on retrieval.

    PubMed

    Maillet, David; Rajah, M Natasha

    2013-01-01

    During the performance of cognitive tasks such as memory encoding, attention can become decoupled from the external environment and instead focused on internal thoughts related to the appraisal of the current task (task-related interferences; TRI), or personal thoughts unrelated to the task at hand (mind-wandering; MW). However, the association between the frequency of these thoughts experienced at encoding and retrieval accuracy in young and older adults remains poorly understood. In this study young and older adults encoded lists of words using one of two encoding tasks: judging whether words are man-made/natural (objective task), or whether they are pleasant/neutral (subjective task). We measured the frequency of TRI and MW at encoding, and related them to retrieval accuracy in both age groups. We found that encoding task influenced the type of internal thoughts experienced by young, but not older, adults: young exhibited greater MW in the subjective vs the objective task, and greater TRI in the objective vs subjective encoding task. Second, across both tasks we found marked age-related decreases in both MW and TRI at encoding, and frequency of these thoughts negatively impacted memory retrieval in young adults only. We discuss these findings in relation to current theories of ageing, attention and memory.

  9. Influence of encoding focus and stereotypes on source monitoring event-related-potentials.

    PubMed

    Leynes, P Andrew; Nagovsky, Irina

    2016-01-01

    Source memory, memory for the origin of a memory, can be influenced by stereotypes and the information of focus during encoding processes. Participants studied words from two different speakers (male or female) using self-focus or other-focus encoding. Source judgments for the speaker׳s voice and Event-Related Potentials (ERPs) were recorded during test. Self-focus encoding increased dependence on stereotype information and the Late Posterior Negativity (LPN). The results link the LPN with an increase in systematic decision processes such as consulting prior knowledge to support an episodic memory judgment. In addition, other-focus encoding increased conditional source judgments and resulted in weaker old/new recognition relative to the self-focus encoding. The putative correlate of recollection (LPC) was absent during this condition and this was taken as evidence that recollection of partial information supported source judgments. Collectively, the results suggest that other-focus encoding changes source monitoring processing by altering the weight of specific memory features. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Expected reward modulates encoding-related theta activity before an event.

    PubMed

    Gruber, Matthias J; Watrous, Andrew J; Ekstrom, Arne D; Ranganath, Charan; Otten, Leun J

    2013-01-01

    Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Encoding-related brain activity and accelerated forgetting in transient epileptic amnesia.

    PubMed

    Atherton, Kathryn E; Filippini, Nicola; Zeman, Adam Z J; Nobre, Anna C; Butler, Christopher R

    2018-05-17

    The accelerated forgetting of newly learned information is common amongst patients with epilepsy and, in particular, in the syndrome of transient epileptic amnesia (TEA). However, the neural mechanisms underlying accelerated forgetting are poorly understood. It has been hypothesised that interictal epileptiform activity during longer retention intervals disrupts normally established memory traces. Here, we tested a distinct hypothesis-that accelerated forgetting relates to the abnormal encoding of memories. We studied a group of 15 patients with TEA together with matched, healthy control subjects. Despite normal performance on standard anterograde memory tasks, patients showed accelerated forgetting of a word list over one week. We used a subsequent memory paradigm to compare encoding-related brain activity in patients and controls. Participants studied a series of visually presented scenes whilst undergoing functional MRI scanning. Recognition memory for these scenes was then probed outside the scanner after delays of 45 min and of 4 days. Patients showed poorer memory for the scenes compared with controls. In the patients but not the controls, subsequently forgotten stimuli were associated with reduced hippocampal activation at encoding. Furthermore, patients demonstrated reduced deactivation of posteromedial cortex regions upon viewing subsequently remembered stimuli as compared to subsequently forgotten ones. These data suggest that abnormal encoding-related activity in key memory areas of the brain contributes to accelerated forgetting in TEA. We propose that abnormally encoded memory traces may be particularly vulnerable to interference from subsequently encountered material and hence be forgotten more rapidly. Our results shed light on the mechanisms underlying memory impairment in epilepsy, and offer support to the proposal that accelerated forgetting may be a useful marker of subtle dysfunction in memory-related brain systems. Copyright © 2018 The

  12. Grapheme-color synesthesia can enhance immediate memory without disrupting the encoding of relational cues.

    PubMed

    Gibson, Bradley S; Radvansky, Gabriel A; Johnson, Ann C; McNerney, M Windy

    2012-12-01

    Previous evidence has suggested that grapheme-color synesthesia can enhance memory for words, but little is known about how these photisms cue retrieval. Often, the encoding of specific features of individual words can disrupt the encoding of ordered relations between words, resulting in an overall decrease in recall accuracy. Here we show that the photisms arising from grapheme-color synesthesia do not function like these item-specific cues. The influences of high and low word frequency on the encoding of ordered relations and the accuracy of immediate free recall were compared across a group of 10 synesthetes and 48 nonsynesthetes. The main findings of Experiment 1 showed that the experience of synesthesia had no adverse effect on the encoding of ordered relations (as measured by input-output correspondence); furthermore, it enhanced recall accuracy in a strictly additive fashion across the two word frequency conditions. Experiment 2 corroborated these findings by showing that the synesthetes only outperformed the nonsynesthetes when the materials involved words and letters, not when they involved digits and spatial locations. Altogether, the present findings suggest that synesthesia can boost immediate memory performance without disrupting the encoding of ordered relations.

  13. Two are not better than one: Combining unitization and relational encoding strategies.

    PubMed

    Tu, Hsiao-Wei; Diana, Rachel A

    2016-01-01

    In recognition memory, recollection is defined as retrieval of the context associated with an event, whereas familiarity is defined as retrieval based on item strength alone. Recent studies have shown that conventional recollection-based tasks, in which context details are manipulated for source memory assessment at test, can also rely on familiarity when context information is "unitized" with the relevant item information at encoding. Unlike naturalistic episodic memories that include many context details encoded in different ways simultaneously, previous studies have focused on unitization and its effect on the recognition of a single context detail. To further understand how various encoding strategies operate on item and context representations, we independently assigned unitization and relational association to 2 context details (size and color) of each item and tested the contribution of recollection and familiarity to source recognition of each detail. The influence of familiarity on retrieval of each context detail was compared as a function of the encoding strategy used for each detail. Receiver operating characteristic curves suggested that the unitization effect was not additive and that similar levels of familiarity occurred for 1 or multiple details when unitization was the only strategy applied during encoding. On the other hand, a detrimental effect was found when relational encoding and unitization were simultaneously applied to 1 item such that a salient nonunitized context detail interfered with the effortful processing required to unitize an accompanying context detail. However, this detrimental effect was not reciprocal and possibly dependent on the nature of individual context details. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Motivated encoding selectively promotes memory for future inconsequential semantically-related events.

    PubMed

    Oyarzún, Javiera P; Packard, Pau A; de Diego-Balaguer, Ruth; Fuentemilla, Lluis

    2016-09-01

    Neurobiological models of long-term memory explain how memory for inconsequential events fades, unless these happen before or after other relevant (i.e., rewarding or aversive) or novel events. Recently, it has been shown in humans that retrospective and prospective memories are selectively enhanced if semantically related events are paired with aversive stimuli. However, it remains unclear whether motivating stimuli, as opposed to aversive, have the same effect in humans. Here, participants performed a three phase incidental encoding task where one semantic category was rewarded during the second phase. A memory test 24h after, but not immediately after encoding, revealed that memory for inconsequential items was selectively enhanced only if items from the same category had been previously, but not subsequently, paired with rewards. This result suggests that prospective memory enhancement of reward-related information requires, like previously reported for aversive memories, of a period of memory consolidation. The current findings provide the first empirical evidence in humans that the effects of motivated encoding are selectively and prospectively prolonged over time. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Relative cue encoding in the context of sophisticated models of categorization: Separating information from categorization.

    PubMed

    Apfelbaum, Keith S; McMurray, Bob

    2015-08-01

    Traditional studies of human categorization often treat the processes of encoding features and cues as peripheral to the question of how stimuli are categorized. However, in domains where the features and cues are less transparent, how information is encoded prior to categorization may constrain our understanding of the architecture of categorization. This is particularly true in speech perception, where acoustic cues to phonological categories are ambiguous and influenced by multiple factors. Here, it is crucial to consider the joint contributions of the information in the input and the categorization architecture. We contrasted accounts that argue for raw acoustic information encoding with accounts that posit that cues are encoded relative to expectations, and investigated how two categorization architectures-exemplar models and back-propagation parallel distributed processing models-deal with each kind of information. Relative encoding, akin to predictive coding, is a form of noise reduction, so it can be expected to improve model accuracy; however, like predictive coding, the use of relative encoding in speech perception by humans is controversial, so results are compared to patterns of human performance, rather than on the basis of overall accuracy. We found that, for both classes of models, in the vast majority of parameter settings, relative cues greatly helped the models approximate human performance. This suggests that expectation-relative processing is a crucial precursor step in phoneme categorization, and that understanding the information content is essential to understanding categorization processes.

  16. Relative cue encoding in the context of sophisticated models of categorization: Separating information from categorization

    PubMed Central

    McMurray, Bob

    2014-01-01

    Traditional studies of human categorization often treat the processes of encoding features and cues as peripheral to the question of how stimuli are categorized. However, in domains where the features and cues are less transparent, how information is encoded prior to categorization may constrain our understanding of the architecture of categorization. This is particularly true in speech perception, where acoustic cues to phonological categories are ambiguous and influenced by multiple factors. Here, it is crucial to consider the joint contributions of the information in the input and the categorization architecture. We contrasted accounts that argue for raw acoustic information encoding with accounts that posit that cues are encoded relative to expectations, and investigated how two categorization architectures—exemplar models and back-propagation parallel distributed processing models—deal with each kind of information. Relative encoding, akin to predictive coding, is a form of noise reduction, so it can be expected to improve model accuracy; however, like predictive coding, the use of relative encoding in speech perception by humans is controversial, so results are compared to patterns of human performance, rather than on the basis of overall accuracy. We found that, for both classes of models, in the vast majority of parameter settings, relative cues greatly helped the models approximate human performance. This suggests that expectation-relative processing is a crucial precursor step in phoneme categorization, and that understanding the information content is essential to understanding categorization processes. PMID:25475048

  17. Event-related Potentials Reveal Age Differences in the Encoding and Recognition of Scenes

    PubMed Central

    Gutchess, Angela H.; Ieuji, Yoko; Federmeier, Kara D.

    2009-01-01

    The present study used event-related potentials (ERPs) to investigate how the encoding and recognition of complex scenes change with normal aging. Although functional magnetic resonance imaging (fMRI) studies have identified more drastic age impairments at encoding than at recognition, ERP studies accumulate more evidence for age differences at retrieval. However, stimulus type and paradigm differences across the two literatures have made direct comparisons difficult. Here, we collected young and elderly adults’ encoding- and recognition-phase ERPs using the same materials and paradigm as a previous fMRI study. Twenty young and 20 elderly adults incidentally encoded and then recognized photographs of outdoor scenes. During encoding, young adults showed a frontocentral subsequent memory effect, with high-confidence hits exhibiting greater positivity than misses. Elderly adults showed a similar subsequent memory effect, which, however, did not differ as a function of confidence. During recognition, young adults elicited a widespread old/new effect, and high-confidence hits were distinct from both low-confidence hits and false alarms. Elderly adults elicited a smaller and later old/new effect, which was unaffected by confidence, and hits and false alarms were indistinguishable in the waveforms. Consistent with prior ERP work, these results point to important age-related changes in recognition-phase brain activity, even when behavioral measures of memory and confidence pattern similarly across groups. We speculate that memory processes with different time signatures contribute to the apparent differences across encoding and retrieval stages, and across methods. PMID:17583986

  18. Drawing skill is related to the efficiency of encoding object structure.

    PubMed

    Perdreau, Florian; Cavanagh, Patrick

    2014-01-01

    Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details.

  19. Drawing skill is related to the efficiency of encoding object structure

    PubMed Central

    Perdreau, Florian; Cavanagh, Patrick

    2014-01-01

    Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details. PMID:25469216

  20. The role of semantically related distractors during encoding and retrieval of words in long-term memory.

    PubMed

    Meade, Melissa E; Fernandes, Myra A

    2016-07-01

    We examined the influence of divided attention (DA) on recognition of words when the concurrent task was semantically related or unrelated to the to-be-recognised target words. Participants were asked to either study or retrieve a target list of semantically related words while simultaneously making semantic decisions (i.e., size judgements) to another set of related or unrelated words heard concurrently. We manipulated semantic relatedness of distractor to target words, and whether DA occurred during the encoding or retrieval phase of memory. Recognition accuracy was significantly diminished relative to full attention, following DA conditions at encoding, regardless of relatedness of distractors to study words. However, response times (RTs) were slower with related compared to unrelated distractors. Similarly, under DA at retrieval, recognition RTs were slower when distractors were semantically related than unrelated to target words. Unlike the effect from DA at encoding, recognition accuracy was worse under DA at retrieval when the distractors were related compared to unrelated to the target words. Results suggest that availability of general attentional resources is critical for successful encoding, whereas successful retrieval is particularly reliant on access to a semantic code, making it sensitive to related distractors under DA conditions.

  1. Digital memory encoding in Chinese dyscalculia: An event-related potential study.

    PubMed

    Wang, Enguo; Qin, Shutao; Chang, MengYan; Zhu, Xiangru

    2014-10-22

    This study reports the neurophysiological and behavioral correlates of digital memory encoding features in Chinese individuals with and without dyscalculia. Eighteen children with dyscalculia (ages 11.5-13.5) and 18 matched controls were tested, and their event-related potentials (ERPs) were digitally recorded simultaneously with behavioral measures. The results showed that both groups had a significant Dm effect, and this effect was greater in the control group. In the 300-400-ms, 400-500-ms, and 600-700-ms processing stages, both groups showed significant differences of digital memory encoding in the frontal, central, and parietal regions. In the 500-600-ms period, the Dm effect in the control group was significantly greater than that in the dyscalculia group only in the parietal region. These results suggest that individuals with dyscalculia exhibit impaired digital memory encoding and deficits in psychological resource allocation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Developmental Changes in Memory Encoding: Insights from Event-Related Potentials

    ERIC Educational Resources Information Center

    Rollins, Leslie; Riggins, Tracy

    2013-01-01

    The aim of the present study was to investigate developmental changes in encoding processes between 6-year-old children and adults using event-related potentials (ERPs). Although episodic memory ("EM") effects have been reported in both children and adults at retrieval and subsequent memory effects have been established in adults, no…

  3. Why Distinctive Information Reduces False Memories: Evidence for Both Impoverished Relational-Encoding and Distinctiveness Heuristic Accounts

    ERIC Educational Resources Information Center

    Hege, Amanda C. G.; Dodson, Chad S.

    2004-01-01

    Two accounts explain why studying pictures reduces false memories within the Deese-Roediger-McDermott paradigm (J. Deese, 1959; H. L. Roediger & K. B. McDermott, 1995). The impoverished relational-encoding account suggests that studying pictures interferes with the encoding of relational information, which is the primary basis for false memories…

  4. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    PubMed

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  5. The associative memory deficit in aging is related to reduced selectivity of brain activity during encoding

    PubMed Central

    Saverino, Cristina; Fatima, Zainab; Sarraf, Saman; Oder, Anita; Strother, Stephen C.; Grady, Cheryl L.

    2016-01-01

    Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity, or dedifferentiation, has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used functional magnetic resonance imaging (fMRI) to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental-encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole brain patterns of activation that predicted item vs. associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared to young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory. PMID:27082043

  6. An Event Related Potentials Study of Semantic Coherence Effect during Episodic Encoding in Schizophrenia Patients

    PubMed Central

    Blanchet, Alain; Lockman, Hazlin

    2018-01-01

    The objective of this electrophysiological study was to investigate the processing of semantic coherence during encoding in relation to episodic memory processes promoted at test, in schizophrenia patients, by using the N400 paradigm. Eighteen schizophrenia patients and 15 healthy participants undertook a recognition memory task. The stimuli consisted of pairs of words either semantically related or unrelated to a given category name (context). During encoding, both groups exhibited an N400 external semantic coherence effect. Healthy controls also showed an N400 internal semantic coherence effect, but this effect was not present in patients. At test, related stimuli were accompanied by an FN400 old/new effect in both groups and by a parietal old/new effect in the control group alone. In the patient group, external semantic coherence effect was associated with FN400, while, in the control group, it was correlated to the parietal old/new effect. Our results indicate that schizophrenia patients can process the contextual information at encoding to enhance familiarity process for related stimuli at test. Therefore, cognitive rehabilitation therapies targeting the implementation of semantic encoding strategies can mobilize familiarity which in turn can overcome the recollection deficit, promoting successful episodic memory performance in schizophrenia patients. PMID:29535872

  7. Lexical stress encoding in single word production estimated by event-related brain potentials.

    PubMed

    Schiller, Niels O

    2006-09-27

    An event-related brain potentials (ERPs) experiment was carried out to investigate the time course of lexical stress encoding in language production. Native speakers of Dutch viewed a series of pictures corresponding to bisyllabic names which were either stressed on the first or on the second syllable and made go/no-go decisions on the lexical stress location of those picture names. Behavioral results replicated a pattern that was observed earlier, i.e. faster button-press latencies to initial as compared to final stress targets. The electrophysiological results indicated that participants could make a lexical stress decision significantly earlier when picture names had initial than when they had final stress. Moreover, the present data suggest the time course of lexical stress encoding during single word form formation in language production. When word length is corrected for, the temporal interval for lexical stress encoding specified by the current ERP results falls into the time window previously identified for phonological encoding in language production.

  8. Developmental differences in the neural correlates of relational encoding and recall in children: An event-related fMRI study

    PubMed Central

    Güler, O. Evren; Thomas, Kathleen M.

    2012-01-01

    Despite vast knowledge on the behavioral processes mediating the development of episodic memory, little is known about the neural mechanisms underlying these changes. We used event-related fMRI to examine the neural correlates of both encoding and recall processes during an episodic memory task in two different groups of school age children (8–9 & 12–13 years). The memory task was composed of an encoding phase in which children were presented with a series of unrelated pictorial pairs, and a retrieval phase during which one of these items acted as a cue to prompt recall of the paired item. Age-related differences in activations were observed for both encoding and recall. Younger children recruited additional regions in the right dorsolateral prefrontal and right temporal cortex compared to older children during successful encoding of the pairs. During successful recall, older children recruited additional regions in the left ventrolateral prefrontal and left inferior parietal cortex compared to younger children. The results suggest that the prefrontal cortex contributes to not only the formation of memories but also access to them, and this contribution changes with development. The protracted development of the prefrontal cortex has implications for our understanding of the development of episodic memory. PMID:22884992

  9. Event-related rTMS at encoding affects differently deep and shallow memory traces.

    PubMed

    Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone

    2010-10-15

    The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by

  10. Imbalance of incidental encoding across tasks: an explanation for non-memory-related hippocampal activations?

    PubMed

    Reas, Emilie T; Brewer, James B

    2013-11-01

    Functional neuroimaging studies have increasingly noted hippocampal activation associated with a variety of cognitive functions--such as decision making, attention, perception, incidental learning, prediction, and working memory--that have little apparent relation to declarative memory. Such findings might be difficult to reconcile with classical hippocampal lesion studies that show remarkable sparing of cognitive functions outside the realm of declarative memory. Even the oft-reported hippocampal activations during confident episodic retrieval are not entirely congruent with evidence that hippocampal lesions reliably impair encoding but inconsistently affect retrieval. Here we explore the conditions under which the hippocampus responds during episodic recall and recognition. Our findings suggest that anterior hippocampal activity may be related to the imbalance of incidental encoding across tasks and conditions rather than due to retrieval per se. Incidental encoding and hippocampal activity may be reduced during conditions where retrieval requires greater attentional engagement. During retrieval, anterior hippocampal activity decreases with increasing search duration and retrieval effort, and this deactivation corresponds with a coincident impaired encoding of the external environment (Israel, Seibert, Black, & Brewer, 2010; Reas & Brewer, 2013; Reas, Gimbel, Hales, & Brewer, 2011). In light of this emerging evidence, we discuss the proposal that some hippocampal activity observed during memory retrieval, or other non-memory conditions, may in fact be attributable to concomitant encoding activity that is regulated by the attentional demands of the principal task. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. When Does Memory Monitoring Succeed versus Fail? Comparing Item-Specific and Relational Encoding in the DRM Paradigm

    ERIC Educational Resources Information Center

    Huff, Mark J.; Bodner, Glen E.

    2013-01-01

    We compared the effects of item-specific versus relational encoding on recognition memory in the Deese-Roediger-McDermott paradigm. In Experiment 1, we directly compared item-specific and relational encoding instructions, whereas in Experiments 2 and 3 we biased pleasantness and generation tasks, respectively, toward one or the other type of…

  12. Traits, States, and Encoding Speed: Support for a Top-Down View of Neuroticism/State Relations

    PubMed Central

    Robinson, Michael D.; Clore, Gerald L.

    2008-01-01

    Recent theories suggest that trait neuroticism gains its pernicious power particularly among individuals less capable of making distinctions concerning present reality. Four studies, involving 272 undergraduates, sought to provide some basic, assessment-related support for such theories in the context of individual differences in choice reaction time, which reflect abilities to make distinctions at encoding. Studies 1–3 focused on somatic symptoms, whereas Study 4 focused on neurotic behaviors and negative affect. As predicted, neuroticism consistently interacted with categorization speed in predicting these dependent measures. Specifically, neuroticism/outcome relations were robust among individuals slow to make distinctions at encoding; by contrast, neuroticism did not predict the dependent measures among individuals fast to make distinctions. Such data reinforce suggestions that neuroticism is particularly pernicious among individuals less capable of making distinctions at encoding. PMID:17214593

  13. The Importance of Encoding-Related Neural Dynamics in the Prediction of Inter-Individual Differences in Verbal Working Memory Performance

    PubMed Central

    Majerus, Steve; Salmon, Eric; Attout, Lucie

    2013-01-01

    Studies of brain-behaviour interactions in the field of working memory (WM) have associated WM success with activation of a fronto-parietal network during the maintenance stage, and this mainly for visuo-spatial WM. Using an inter-individual differences approach, we demonstrate here the equal importance of neural dynamics during the encoding stage, and this in the context of verbal WM tasks which are characterized by encoding phases of long duration and sustained attentional demands. Participants encoded and maintained 5-word lists, half of them containing an unexpected word intended to disturb WM encoding and associated task-related attention processes. We observed that inter-individual differences in WM performance for lists containing disturbing stimuli were related to activation levels in a region previously associated with task-related attentional processing, the left intraparietal sulcus (IPS), and this during stimulus encoding but not maintenance; functional connectivity strength between the left IPS and lateral prefrontal cortex (PFC) further predicted WM performance. This study highlights the critical role, during WM encoding, of neural substrates involved in task-related attentional processes for predicting inter-individual differences in verbal WM performance, and, more generally, provides support for attention-based models of WM. PMID:23874935

  14. Semantic encoding of relational databases in wireless networks

    NASA Astrophysics Data System (ADS)

    Benjamin, David P.; Walker, Adrian

    2005-03-01

    Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.

  15. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins

    PubMed Central

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes. PMID:19951405

  16. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation

    PubMed Central

    Webber, Emily S.; Mankin, David E.

    2016-01-01

    Abstract The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats (Rattus norvegicus) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility. PMID:27822506

  17. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.

    PubMed

    Webber, Emily S; Mankin, David E; Cromwell, Howard C

    2016-01-01

    The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats ( Rattus norvegicus ) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.

  18. Wavelength-encoded optical psychrometer for relative humidity measurement.

    PubMed

    Montanini, Roberto

    2007-02-01

    In this article an optical psychrometer, in which temperature measurements are performed by means of two fiber Bragg grating sensors used as dry-bulb and wet-bulb thermometers, is introduced. The adopted design exploits both the high accuracy of psychrometric-based relative humidity measurements with acknowledged advantages of wavelength-encoded fiber optic sensing. Important metrological issues that have been addressed in the experimental work include calibration of the fiber Bragg grating temperature sensors, evaluation of response time, sensitivity, hysteresis, linearity, and accuracy. The calibration results give confidence that, with the current experimental setup, measurement of temperature can be done with an uncertainty of +/- 0.2 degrees C and a resolution of 0.1 degrees C. A detailed uncertainty analysis is also presented in the article to investigate the effects produced by different sources of error on the combined standard uncertainty uc(U) of the relative humidity measurement, which has been estimated to be roughly within +/-2% in the range close to saturation.

  19. Functional and Neuroanatomical Specificity of Episodic Memory Dysfunction in Schizophrenia: An fMRI study of the Relational and Item-Specific Encoding Task

    PubMed Central

    Ragland, J. Daniel; Ranganath, Charan; Harms, Michael P.; Barch, Deanna M.; Gold, James M.; Layher, Evan; Lesh, Tyler A.; MacDonald, Angus W.; Niendam, Tara A.; Phillips, Joshua; Silverstein, Steven M.; Yonelinas, Andrew P.; Carter, Cameron S.

    2015-01-01

    Importance Individuals with schizophrenia (SZ) can encode item-specific information to support familiarity-based recognition, but are disproportionately impaired encoding inter-item relationships (relational encoding) and recollecting information. The Relational and Item-Specific Encoding (RiSE) paradigm has been used to disentangle these encoding and retrieval processes, which may be dependent on specific medial temporal lobe (MTL) and prefrontal cortex (PFC) subregions. Functional imaging during RiSE task performance could help to specify dysfunctional neural circuits in SZ that can be targeted for interventions to improve memory and functioning in the illness. Objectives To use functional magnetic resonance imaging (fMRI) to test the hypothesis that SZ disproportionately affects MTL and PFC subregions during relational encoding and retrieval, relative to item-specific memory processes. Imaging results from healthy comparison subjects (HC) will also be used to establish neural construct validity for RiSE. Design, Setting, and Participants This multi-site, case-control, cross-sectional fMRI study was conducted at five CNTRACS sites. The final sample included 52 clinically stable outpatients with SZ, and 57 demographically matched HC. Main Outcomes and Measures Behavioral performance speed and accuracy (d’) on item recognition and associative recognition tasks. Voxelwise statistical parametric maps for a priori MTL and PFC regions of interest (ROI), testing activation differences between relational and item-specific memory during encoding and retrieval. Results Item recognition was disproportionately impaired in SZ patients relative to controls following relational encoding. The differential deficit was accompanied by reduced dorsolateral prefrontal cortex (DLPFC) activation during relational encoding in SZ, relative to HC. Retrieval success (hits > misses) was associated with hippocampal (HI) activation in HC during relational item recognition and associative

  20. The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape.

    PubMed

    Rojas-Hortelano, Eduardo; Concha, Luis; de Lafuente, Victor

    2014-10-15

    We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects. Copyright © 2014 the American Physiological Society.

  1. Memory in pregnancy and post-partum: Item specific and relational encoding processes in recall and recognition.

    PubMed

    Spataro, Pietro; Saraulli, Daniele; Oriolo, Debora; Costanzi, Marco; Zanetti, Humberto; Cestari, Vincenzo; Rossi-Arnaud, Clelia

    2016-08-01

    It has been recently proposed that pregnant women would perform memory tasks by focusing more on item-specific processes and less on relational processing, compared to post-partum women (Mickes, Wixted, Shapiro & Scarff, ). The present cross-sectional study tested this hypothesis by directly manipulating the type of encoding employed in the study phase. Pregnant, post-partum and control women either rated the pleasantness of word meaning (which induced item-specific elaboration) or named the semantic category to which they belonged (which induced relational elaboration). Memory for the encoded words was later tested in free recall (which emphasizes relational processing) and in recognition (which emphasizes item-specific processing). In line with Mickes et al.'s () conclusions, pregnant women in the item-specific condition performed worse than post-partum women in the relational condition in free recall, but not in recognition. However, compared to the other two groups, pregnant women also exhibited lower recognition accuracy in the item-specific condition. Overall, these results confirm that pregnant women rely on relational encoding less than post-partum women, but additionally suggest that the former group might use item-specific processes less efficiently than post-partum and control women. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  2. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    PubMed Central

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  3. Wavelength-encoded optical psychrometer for relative humidity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanini, Roberto

    2007-02-15

    In this article an optical psychrometer, in which temperature measurements are performed by means of two fiber Bragg grating sensors used as dry-bulb and wet-bulb thermometers, is introduced. The adopted design exploits both the high accuracy of psychrometric-based relative humidity measurements with acknowledged advantages of wavelength-encoded fiber optic sensing. Important metrological issues that have been addressed in the experimental work include calibration of the fiber Bragg grating temperature sensors, evaluation of response time, sensitivity, hysteresis, linearity, and accuracy. The calibration results give confidence that, with the current experimental setup, measurement of temperature can be done with an uncertainty of {+-}0.2more » deg. C and a resolution of 0.1 deg. C. A detailed uncertainty analysis is also presented in the article to investigate the effects produced by different sources of error on the combined standard uncertainty u{sub c}(U) of the relative humidity measurement, which has been estimated to be roughly within {+-}2% in the range close to saturation.« less

  4. Morphological Encoding in German Children's Language Production: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Jessen, Anna; Fleischhauer, Elisabeth; Clahsen, Harald

    2017-01-01

    This study reports developmental changes in morphological encoding across late childhood. We examined event-related brain potentials (ERPs) during the silent production of regularly vs. irregularly inflected verb forms (viz. "-t" vs. "-n" participles of German) in groups of eight- to ten-year-olds, eleven- to…

  5. Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: a subsequent-memory study.

    PubMed

    Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan

    2012-07-01

    The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    PubMed Central

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  7. The Saccharomyces cerevisiae enolase-related regions encode proteins that are active enolases.

    PubMed

    Kornblatt, M J; Richard Albert, J; Mattie, S; Zakaib, J; Dayanandan, S; Hanic-Joyce, P J; Joyce, P B M

    2013-02-01

    In addition to two genes (ENO1 and ENO2) known to code for enolase (EC4.2.1.11), the Saccharomyces cerevisiae genome contains three enolase-related regions (ERR1, ERR2 and ERR3) which could potentially encode proteins with enolase function. Here, we show that products of these genes (Err2p and Err3p) have secondary and quaternary structures similar to those of yeast enolase (Eno1p). In addition, Err2p and Err3p can convert 2-phosphoglycerate to phosphoenolpyruvate, with kinetic parameters similar to those of Eno1p, suggesting that these proteins could function as enolases in vivo. To address this possibility, we overexpressed the ERR2 and ERR3 genes individually in a double-null yeast strain lacking ENO1 and ENO2, and showed that either ERR2 or ERR3 could complement the growth defect in this strain when cells are grown in medium with glucose as the carbon source. Taken together, these data suggest that the ERR genes in Saccharomyces cerevisiae encode a protein that could function in glycolysis as enolase. The presence of these enolase-related regions in Saccharomyces cerevisiae and their absence in other related yeasts suggests that these genes may play some unique role in Saccharomyces cerevisiae. Further experiments will be required to determine whether these functions are related to glycolysis or other cellular processes. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.

    PubMed

    Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M

    2016-11-15

    Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The effect of encoding manipulation on word-stem cued recall: an event-related potential study.

    PubMed

    Fay, Séverine; Isingrini, Michel; Ragot, Richard; Pouthas, Viviane

    2005-08-01

    The purpose of the present study was to find out whether the neural correlates of explicit retrieval from episodic memory would vary according to conditions at encoding when the words were presented in separate study/test blocks. Event-related potentials (ERPs) were recorded while participants performed a word-stem cued-recall task. Deeply (semantically) studied words were associated with higher levels of recall and faster response times than shallowly (lexically) studied words. Robust ERP old/new effects were observed for each encoding condition. They varied in magnitude, being largest in the semantic condition. As expected, scalp distributions also differed: for deeply studied words, the old/new effect resembled that found in previous ERP studies of word-stem cued-recall tasks (parietal and right frontal effects, between 400-800 and 800-1100 ms post-stimulus), whereas for shallowly studied words, the parietal old/new effect was absent in the latter latency window. These results can be interpreted as reflecting access to different kinds of memory representation depending on the nature of the processing engaged during encoding. Furthermore, differences in the ERPs elicited by new items indicate that subjects adopted different processing strategies in the test blocks following each encoding condition.

  10. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.

    PubMed

    Wegman, Joost; Tyborowska, Anna; Janzen, Gabriele

    2014-07-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants actively navigated in an open-field virtual environment. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the removed target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. Participants were informed in blocks about which type of retrieval trial was most likely to occur, thereby modulating expectations of having to rely on a single landmark or on a configuration of landmarks. How the spatial learning systems in the hippocampus and caudate nucleus were involved in these landmark-based encoding and retrieval processes were investigated. Landmark configurations can create a geometry similar to boundaries in an environment. It was found that the hippocampus was involved in encoding when relying on configurations of landmarks, whereas the caudate nucleus was involved in encoding when relying on single landmarks. This might suggest that the observed hippocampal activation for configurations of objects is linked to a spatial representation observed with environmental boundaries. Retrieval based on configurations of landmarks activated regions associated with the spatial updation of object locations for reorientation. When only a single landmark was available during retrieval, regions associated with updating the location of oneself were activated. There was also evidence that good between-participant performance was predicted by right hippocampal activation. This study therefore sheds light on how the brain deals with changing demands on spatial processing related purely

  11. Neural Similarity Between Encoding and Retrieval is Related to Memory Via Hippocampal Interactions

    PubMed Central

    Ritchey, Maureen; Wing, Erik A.; LaBar, Kevin S.; Cabeza, Roberto

    2013-01-01

    A fundamental principle in memory research is that memory is a function of the similarity between encoding and retrieval operations. Consistent with this principle, many neurobiological models of declarative memory assume that memory traces are stored in cortical regions, and the hippocampus facilitates the reactivation of these traces during retrieval. The present investigation tested the novel prediction that encoding–retrieval similarity can be observed and related to memory at the level of individual items. Multivariate representational similarity analysis was applied to functional magnetic resonance imaging data collected during encoding and retrieval of emotional and neutral scenes. Memory success tracked fluctuations in encoding–retrieval similarity across frontal and posterior cortices. Importantly, memory effects in posterior regions reflected increased similarity between item-specific representations during successful recognition. Mediation analyses revealed that the hippocampus mediated the link between cortical similarity and memory success, providing crucial evidence for hippocampal–cortical interactions during retrieval. Finally, because emotional arousal is known to modulate both perceptual and memory processes, similarity effects were compared for emotional and neutral scenes. Emotional arousal was associated with enhanced similarity between encoding and retrieval patterns. These findings speak to the promise of pattern similarity measures for evaluating memory representations and hippocampal–cortical interactions. PMID:22967731

  12. Experiments in encoding multilevel images as quadtrees

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.

    1987-01-01

    Image storage requirements for several encoding methods are investigated and the use of quadtrees with multigray level or multicolor images are explored. The results of encoding a variety of images having up to 256 gray levels using three schemes (full raster, runlength and quadtree) are presented. Although there is considerable literature on the use of quadtrees to store and manipulate binary images, their application to multilevel images is relatively undeveloped. The potential advantage of quadtree encoding is that an entire area with a uniform gray level may be encoded as a unit. A pointerless quadtree encoding scheme is described. Data are presented on the size of the quadtree required to encode selected images and on the relative storage requirements of the three encoding schemes. A segmentation scheme based on the statistical variation of gray levels within a quadtree quadrant is described. This parametric scheme may be used to control the storage required by an encoded image and to preprocess a scene for feature identification. Several sets of black and white and pseudocolor images obtained by varying the segmentation parameter are shown.

  13. A Relational Encoding of a Conceptual Model with Multiple Temporal Dimensions

    NASA Astrophysics Data System (ADS)

    Gubiani, Donatella; Montanari, Angelo

    The theoretical interest and the practical relevance of a systematic treatment of multiple temporal dimensions is widely recognized in the database and information system communities. Nevertheless, most relational databases have no temporal support at all. A few of them provide a limited support, in terms of temporal data types and predicates, constructors, and functions for the management of time values (borrowed from the SQL standard). One (resp., two) temporal dimensions are supported by historical and transaction-time (resp., bitemporal) databases only. In this paper, we provide a relational encoding of a conceptual model featuring four temporal dimensions, namely, the classical valid and transaction times, plus the event and availability times. We focus our attention on the distinctive technical features of the proposed temporal extension of the relation model. In the last part of the paper, we briefly show how to implement it in a standard DBMS.

  14. Effect of emotional valence on retrieval-related recapitulation of encoding activity in the ventral visual stream

    PubMed Central

    Kark, Sarah M.; Kensinger, Elizabeth A.

    2015-01-01

    While prior work has shown greater retrieval-related reactivation in the ventral visual stream for emotional stimuli compared to neutral stimuli, the effects of valence on retrieval-related recapitulation of successful encoding processes (Dm effects) have yet to be investigated. Here, seventeen participants (aged 19–35) studied line drawings of negative, positive, or neutral images followed immediately by the complete photo. After a 20-minute delay, participants performed a challenging recognition memory test, distinguishing the studied line drawing outlines from novel ones. First, results replicated earlier work by demonstrating that negative and positive hits elicited greater ventral occipito-temporal cortex (VOTC) activity than neutral hits during both encoding and retrieval. Moreover, the amount of activation in portions of the VOTC correlated with the magnitude of participants’ emotional memory enhancement. Second, results revealed significant retrieval-related recapitulation of Dm effects (Hits > Misses) in VOTC (anterior inferior temporal gyri) only for negative stimuli. Third, connectivity between the amygdala and fusiform gyrus during the encoding of negative stimuli increased the likelihood of fusiform activation during successful retrieval. Together, these results suggest that recapitulation in posterior VOTC reflects memory for the affective dimension of the stimuli (Emotional Hits > Neutral Hits) and the magnitude of activation in some of these regions is related to superior emotional memory. Moreover, for negative stimuli, recapitulation in more anterior portions of the VOTC is greater for remembered than forgotten items. The current study offers new evidence for effects of emotion on recapitulation of activity and functional connectivity in support of memory. PMID:26459096

  15. Effect of emotional valence on retrieval-related recapitulation of encoding activity in the ventral visual stream.

    PubMed

    Kark, Sarah M; Kensinger, Elizabeth A

    2015-11-01

    While prior work has shown greater retrieval-related reactivation in the ventral visual stream for emotional stimuli compared to neutral stimuli, the effects of valence on retrieval-related recapitulation of successful encoding processes (Dm effects) have yet to be investigated. Here, seventeen participants (aged 19-35) studied line drawings of negative, positive, or neutral images followed immediately by the complete photo. After a 20-min delay, participants performed a challenging recognition memory test, distinguishing the studied line drawing outlines from novel ones. First, results replicated earlier work by demonstrating that negative and positive hits elicited greater ventral occipito-temporal cortex (VOTC) activity than neutral hits during both encoding and retrieval. Moreover, the amount of activation in portions of the VOTC correlated with the magnitude of participants' emotional memory enhancement. Second, results revealed significant retrieval-related recapitulation of Dm effects (Hits>Misses) in VOTC (anterior inferior temporal gyri) only for negative stimuli. Third, connectivity between the amygdala and fusiform gyrus during the encoding of negative stimuli increased the likelihood of fusiform activation during successful retrieval. Together, these results suggest that recapitulation in posterior VOTC reflects memory for the affective dimension of the stimuli (Emotional Hits>Neutral Hits) and the magnitude of activation in some of these regions is related to superior emotional memory. Moreover, for negative stimuli, recapitulation in more anterior portions of the VOTC is greater for remembered than forgotten items. The current study offers new evidence for effects of emotion on recapitulation of activity and functional connectivity in support of memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Thermal and acid tolerant beta-xylosidases, genes encoding, related organisms, and methods

    DOEpatents

    Thompson, David N [Idaho Falls, ID; Thompson, Vicki S [Idaho Falls, ID; Schaller, Kastli D [Ammon, ID; Apel, William A [Jackson, WY; Lacey, Jeffrey A [Idaho Falls, ID; Reed, David W [Idaho Falls, ID

    2011-04-12

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof are provided. Further provided are methods of at least partially degrading xylotriose and/or xylobiose using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof.

  17. Deep and shallow encoding effects on face recognition: an ERP study.

    PubMed

    Marzi, Tessa; Viggiano, Maria Pia

    2010-12-01

    Event related potentials (ERPs) were employed to investigate whether and when brain activity related to face recognition varies according to the processing level undertaken at encoding. Recognition was assessed when preceded by a "shallow" (orientation judgement) or by a "deep" study task (occupation judgement). Moreover, we included a further manipulation by presenting at encoding faces either in the upright or inverted orientation. As expected, deeply encoded faces were recognized more accurately and more quickly with respect to shallowly encoded faces. The ERP showed three main findings: i) as witnessed by more positive-going potentials for deeply encoded faces, at early and later processing stage, face recognition was influenced by the processing strategy adopted during encoding; ii) structural encoding, indexed by the N170, turned out to be "cognitively penetrable" showing repetition priming effects for deeply encoded faces; iii) face inversion, by disrupting configural processing during encoding, influenced memory related processes for deeply encoded faces and impaired the recognition of faces shallowly processed. The present study adds weight to the concept that the depth of processing during memory encoding affects retrieval. We found that successful retrieval following deep encoding involved both familiarity- and recollection-related processes showing from 500 ms a fronto-parietal distribution, whereas shallow encoding affected only earlier processing stages reflecting perceptual priming. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Age-related changes in the three-way correlation between anterior hippocampus volume, whole-brain patterns of encoding activity and subsequent context retrieval.

    PubMed

    Maillet, David; Rajah, M Natasha

    2011-10-28

    Age-related declines in memory for context have been linked to volume loss in the hippocampal head (HH) with age. However, it remains unclear how this volumetric decline correlates with age-related changes in whole-brain activity during context encoding, and subsequent context retrieval. In the current study we examine this. We collected functional magnetic resonance imaging data in young and older adults during the encoding of item, spatial context and temporal context. HH volume and subsequent retrieval performance was measured in all participants. In young adults only there was a positive three-way correlation between larger HH volumes, better memory retrieval, and increased activity in right hippocampus, right ventrolateral prefrontal cortex (VLPFC) and midline brain regions during episodic encoding. In contrast, older adults exhibited a positive three-way association between HH volume, generalized activity in bilateral hippocampus and dorsolateral PFC across all encoding tasks, and subsequent spatial context retrieval. Young adults also engaged this network, but only during the most difficult temporal context encoding task and activity in this network correlated with subsequent temporal context retrieval. We conclude that age-related volumetric reductions in HH disrupted the structure-function association between the hippocampus and activity in the first general encoding network recruited by young adults. Instead, older adults recruited those brain regions young adults only engaged for the most difficult temporal task, at lower difficulty levels. This altered pattern of association correlated with spatial context retrieval in older adults, but was not sufficient to maintain context memory abilities overall. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. Hall effect encoding of brushless dc motors

    NASA Technical Reports Server (NTRS)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  20. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress

    PubMed Central

    Ritchey, Maureen; McCullough, Andrew M.; Ranganath, Charan; Yonelinas, Andrew P.

    2016-01-01

    Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding “tags” for determining the impact of consolidation manipulations on memory. Here, we used fMRI in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. PMID:27774683

  1. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    PubMed

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  2. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Two Closely Related Genes of Arabidopsis Encode Plastidial Cytidinediphosphate Diacylglycerol Synthases Essential for Photoautotrophic Growth1[C

    PubMed Central

    Haselier, André; Akbari, Hana; Weth, Agnes; Baumgartner, Werner; Frentzen, Margrit

    2010-01-01

    Cytidinediphosphate diacylglycerol synthase (CDS) catalyzes the formation of cytidinediphosphate diacylglycerol, an essential precursor of anionic phosphoglycerolipids like phosphatidylglycerol or -inositol. In plant cells, CDS isozymes are located in plastids, mitochondria, and microsomes. Here, we show that these isozymes are encoded by five genes in Arabidopsis (Arabidopsis thaliana). Alternative translation initiation or alternative splicing of CDS2 and CDS4 transcripts can result in up to 10 isoforms. Most of the cDNAs encoding the various plant isoforms were functionally expressed in yeast and rescued the nonviable phenotype of the mutant strain lacking CDS activity. The closely related genes CDS4 and CDS5 were found to encode plastidial isozymes with similar catalytic properties. Inactivation of both genes was required to obtain Arabidopsis mutant lines with a visible phenotype, suggesting that the genes have redundant functions. Analysis of these Arabidopsis mutants provided further independent evidence for the importance of plastidial phosphatidylglycerol for structure and function of thylakoid membranes and, hence, for photoautotrophic growth. PMID:20442275

  4. fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly.

    PubMed

    Mandzia, Jennifer L; Black, Sandra E; McAndrews, Mary Pat; Grady, Cheryl; Graham, Simon

    2004-01-01

    Functional MRI (fMRI) was used to examine the neural correlates of depth of processing during encoding and retrieval of photographs in older normal volunteers (n = 12). Separate scans were run during deep (natural vs. man-made decision) and shallow (color vs. black-and-white decision) encoding and during old/new recognition of pictures initially presented in one of the two encoding conditions. A baseline condition consisting of a scrambled, color photograph was used as a contrast in each scan. Recognition accuracy was greater for the pictures on which semantic decisions were made at encoding, consistent with the expected levels of processing effect. A mixed-effects model was used to compare fMRI differences between conditions (deep-baseline vs. shallow-baseline) in both encoding and retrieval. For encoding, this contrast revealed greater activation associated with deep encoding in several areas, including the left parahippocampal gyrus (PHG), left middle temporal gyrus, and left anterior thalamus. Increased left hippocampal, right dorsolateral, and inferior frontal activations were found for recognition of items that had been presented in the deep relative to the shallow encoding condition. We speculate that the modulation of activity in these regions by the depth of processing manipulation shows that these regions support effective encoding and successful retrieval. A direct comparison between encoding and retrieval revealed greater activation during retrieval in the medial temporal (right hippocampus and bilateral PHG), anterior cingulate, and bilateral prefrontal (inferior and dorsolateral). Most notably, greater right posterior PHG was found during encoding compared to recognition. Focusing on the medial temporal lobe (MTL) region, our results suggest a greater involvement of both anterior MTL and prefrontal regions in retrieval compared to encoding. Copyright 2003 Wiley-Liss, Inc.

  5. Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation.

    PubMed

    Spaniol, Julia; Davidson, Patrick S R; Kim, Alice S N; Han, Hua; Moscovitch, Morris; Grady, Cheryl L

    2009-07-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of episodic memory in healthy young adults, published between 1998 and 2007, to a voxel-wise quantitative meta-analysis using activation likelihood estimation [Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., & Pardo, J. V., et al. (2005). A comparison of label-based review and ALE meta-analysis in the stroop task. Human Brain Mapping, 25, 6-21]. We conducted separate meta-analyses for four contrasts of interest: episodic encoding success as measured in the subsequent-memory paradigm (subsequent Hit vs. Miss), episodic retrieval success (Hit vs. Correct Rejection), objective recollection (e.g., Source Hit vs. Item Hit), and subjective recollection (e.g., Remember vs. Know). Concordance maps revealed significant cross-study overlap for each contrast. In each case, the left hemisphere showed greater concordance than the right hemisphere. Both encoding and retrieval success were associated with activation in medial-temporal, prefrontal, and parietal regions. Left ventrolateral prefrontal cortex (PFC) and medial-temporal regions were more strongly involved in encoding, whereas left superior parietal and dorsolateral and anterior PFC regions were more strongly involved in retrieval. Objective recollection was associated with activation in multiple PFC regions, as well as multiple posterior parietal and medial-temporal areas, but not hippocampus. Subjective recollection, in contrast, showed left hippocampal involvement. In summary, these results identify broadly consistent activation patterns associated with episodic encoding and retrieval, and subjective and objective recollection, but also subtle

  6. Event-Related fMRI Studies of Episodic Encoding and Retrieval: Meta-Analyses Using Activation Likelihood Estimation

    ERIC Educational Resources Information Center

    Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.

    2009-01-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…

  7. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study.

    PubMed

    Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A

    2007-01-01

    The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.

  8. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    PubMed

    Hitz, Benjamin C; Rowe, Laurence D; Podduturi, Nikhil R; Glick, David I; Baymuradov, Ulugbek K; Malladi, Venkat S; Chan, Esther T; Davidson, Jean M; Gabdank, Idan; Narayana, Aditi K; Onate, Kathrina C; Hilton, Jason; Ho, Marcus C; Lee, Brian T; Miyasato, Stuart R; Dreszer, Timothy R; Sloan, Cricket A; Strattan, J Seth; Tanaka, Forrest Y; Hong, Eurie L; Cherry, J Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.

  9. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata

    PubMed Central

    Podduturi, Nikhil R.; Glick, David I.; Baymuradov, Ulugbek K.; Malladi, Venkat S.; Chan, Esther T.; Davidson, Jean M.; Gabdank, Idan; Narayana, Aditi K.; Onate, Kathrina C.; Hilton, Jason; Ho, Marcus C.; Lee, Brian T.; Miyasato, Stuart R.; Dreszer, Timothy R.; Sloan, Cricket A.; Strattan, J. Seth; Tanaka, Forrest Y.; Hong, Eurie L.; Cherry, J. Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package. PMID:28403240

  10. Molecular cloning of ADIR, a novel interferon responsive gene encoding a protein related to the torsins.

    PubMed

    Dron, Michel; Meritet, Jean François; Dandoy-Dron, Françoise; Meyniel, Jean-Philippe; Maury, Chantal; Tovey, Michael G

    2002-03-01

    The expression of the previously uncharacterized gene Adir (for ATP dependent interferon responsive gene) was increased by 5- to 15-fold in tissue of the oral cavity or in spleen and liver of mice treated orally or intraperitoneally with IFN-alpha, and in mouse cells treated in vitro with IFN-alpha or IFN-gamma. The level of Adir mRNA was also increased 20- to 40-fold in the brains of animals infected with encephalomyocarditis virus. Adir is expressed ubiquitously in mouse tissues as 1.9-, 2.4-, and 3.5-kb mRNA transcripts encoding a 385-amino-acid protein with a conserved ATP binding domain containing typical nucleotide and Mg(2+) binding sites. We also characterized the human ortholog, ADIR, which is located on chromosome 1q25-q31 and contains six exons encoding a 397-amino-acid protein with 80% homology to the mouse protein. A single 2.3-kb mRNA was detected in all human tissues examined, except for placenta, which also contained a 1.25-kb tissue-specific transcript generated by alternative splicing and encoding a putative 336-amino-acid protein. Although ADIR exhibits low homology to DYT1 and TOR1B, the deduced ADIR protein sequences are highly homologous to torsin A and torsin B and more distantly related to members of the Clp/HSP100 family of proteins, suggesting that ADIR, like torsins, is related to the AAA chaperone-like family of ATPases. An ADIR-EGFP fusion protein expressed in HeLa cells was shown to be associated with the endoplasmic reticulum.

  11. Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages

    PubMed Central

    Krizman, Jennifer; Marian, Viorica; Shook, Anthony; Skoe, Erika; Kraus, Nina

    2012-01-01

    Bilingualism profoundly affects the brain, yielding functional and structural changes in cortical regions dedicated to language processing and executive function [Crinion J, et al. (2006) Science 312:1537–1540; Kim KHS, et al. (1997) Nature 388:171–174]. Comparatively, musical training, another type of sensory enrichment, translates to expertise in cognitive processing and refined biological processing of sound in both cortical and subcortical structures. Therefore, we asked whether bilingualism can also promote experience-dependent plasticity in subcortical auditory processing. We found that adolescent bilinguals, listening to the speech syllable [da], encoded the stimulus more robustly than age-matched monolinguals. Specifically, bilinguals showed enhanced encoding of the fundamental frequency, a feature known to underlie pitch perception and grouping of auditory objects. This enhancement was associated with executive function advantages. Thus, through experience-related tuning of attention, the bilingual auditory system becomes highly efficient in automatically processing sound. This study provides biological evidence for system-wide neural plasticity in auditory experts that facilitates a tight coupling of sensory and cognitive functions. PMID:22547804

  12. Thermal and acid tolerant beta xylosidases, arabinofuranosidases, genes encoding, related organisms, and methods

    DOEpatents

    Thompson, David N; Thompson, Vicki S; Schaller, Kastli D; Apel, William A; Reed, David W; Lacey, Jeffrey A

    2013-04-30

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof are provided. Further provided are methods of at least partially degrading xylotriose, xylobiose, and/or arabinofuranose-substituted xylan using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof.

  13. Available processing resources influence encoding-related brain activity before an event

    PubMed Central

    Galli, Giulia; Gebert, A. Dorothea; Otten, Leun J.

    2013-01-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual and auditory words for later recall. Each word was preceded by a cue that indicated the modality of the upcoming word. The degree to which processing resources were available before word onset was manipulated by asking participants to make an easy or difficult perceptual discrimination on the cue. Brain activity before word onset predicted later recall of the word, but only in the easy discrimination condition. These findings indicate that anticipatory influences on long-term memory are limited in capacity and sensitive to the degree to which attention is divided between tasks. Prestimulus activity that affects later encoding can only be engaged when the necessary cognitive resources can be allocated to the encoding process. PMID:23219383

  14. Role of sleep for encoding of emotional memory.

    PubMed

    Kaida, Kosuke; Niki, Kazuhisa; Born, Jan

    2015-05-01

    Total sleep deprivation (TSD) has been consistently found to impair encoding of information during ensuing wakefulness, probably through suppressing NonREM (non-rapid eye movement) sleep. However, a possible contribution of missing REM sleep to this encoding impairment after TSD has so far not been systematically examined in humans, although such contribution might be suspected in particular for emotional information. Here, in two separate experiments in young healthy men, we compared effects of TSD and of selective REM sleep deprivation (REMD), relative to respective control conditions of undisturbed sleep, on the subsequent encoding of neutral and emotional pictures. The pictures were presented in conjunction with colored frames to also assess related source memory. REMD was achieved by tones presented contingently upon initial signs of REM sleep. Encoding capabilities were examined in the evening (18:00h) after the experimental nights, by a picture recognition test right after encoding. TSD significantly decreased both the rate of correctly recognized pictures and of recalled frames associated with the pictures. The TSD effect was robust and translated into an impaired long term memory formation, as it was likewise observed on a second recognition testing one week after the encoding phase. Contrary to our expectation, REMD did not affect encoding in general, or particularly of emotional pictures. Also, REMD did not affect valence ratings of the encoded pictures. However, like TSD, REMD distinctly impaired vigilance at the time of encoding. Altogether, these findings indicate an importance of NonREM rather than REM sleep for the encoding of information that is independent of the emotionality of the materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. High-order multiband encoding in the heart.

    PubMed

    Cunningham, Charles H; Wright, Graham A; Wood, Michael L

    2002-10-01

    Spatial encoding with multiband selective excitation (e.g., Hadamard encoding) has been restricted to a small number of slices because the RF pulse becomes unacceptably long when more than about eight slices are encoded. In this work, techniques to shorten multiband RF pulses, and thus allow larger numbers of slices, are investigated. A method for applying the techniques while retaining the capability of adaptive slice thickness is outlined. A tradeoff between slice thickness and pulse duration is shown. Simulations and experiments with the shortened pulses confirmed that motion-induced excitation profile blurring and phase accrual were reduced. The connection between gradient hardware limitations, slice thickness, and flow sensitivity is shown. Excitation profiles for encoding 32 contiguous slices of 1-mm thickness were measured experimentally, and the artifact resulting from errors in timing of RF pulse relative to gradient was investigated. A multiband technique for imaging 32 contiguous 2-mm slices, with adaptive slice thickness, was developed and demonstrated for coronary artery imaging in healthy subjects. With the ability to image high numbers of contiguous slices, using relatively short (1-2 ms) RF pulses, multiband encoding has been advanced further toward practical application. Copyright 2002 Wiley-Liss, Inc.

  16. Emotional arousal and memory after deep encoding.

    PubMed

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  17. Prefrontal-Hippocampal-Fusiform Activity During Encoding Predicts Intraindividual Differences in Free Recall Ability: An Event-Related Functional-Anatomic MRI Study

    PubMed Central

    Dickerson, B.C.; Miller, S.L.; Greve, D.N.; Dale, A.M.; Albert, M.S.; Schacter, D.L.; Sperling, R.A.

    2009-01-01

    The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which pre-frontal activity was greater for all items of the list and hippocampal and fusi-form activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance. PMID:17604356

  18. Chemical Space of DNA-Encoded Libraries.

    PubMed

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  19. Dissociable roles of default-mode regions during episodic encoding.

    PubMed

    Maillet, David; Rajah, M Natasha

    2014-04-01

    We investigated the role of distinct regions of the default-mode network (DMN) during memory encoding with fMRI. Subjects encoded words using either a strategy that emphasized self-referential (pleasantness) processing, or one that emphasized semantic (man-made/natural) processing. During encoding subjects were intermittently presented with thought probes to evaluate if they were concentrated and on-task or exhibiting task-unrelated thoughts (TUT). After the scanning session subjects performed a source retrieval task to determine which of two judgments they performed for each word at encoding. Source retrieval accuracy was higher for words encoded with the pleasantness vs. the man-made/natural task and there was a trend for higher performance for words preceding on-task vs. TUT reports. fMRI results show that left anterior medial PFC and left angular gyrus activity was greater during successful vs. unsuccessful encoding during both encoding tasks. Greater activity in left anterior cingulate and bilateral lateral temporal cortex was related successful vs. unsuccessful encoding only in the pleasantness task. In contrast, posterior cingulate, right anterior cingulate and right temporoparietal junction were activated to a greater extent in unsuccessful vs. successful encoding across tasks. Finally, activation in posterior cingulate and bilateral dorsolateral prefrontal cortex was related to TUT across tasks; moreover, we observed a conjunction in posterior cingulate between encoding failure and TUT. We conclude that DMN regions play dissociable roles during memory formation, and that their association with subsequent memory may depend on the manner in which information is encoded and retrieved. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  20. Selective rehearsal is affected by the emotionality of the encoding context in item-method directed forgetting: An event-related potential study.

    PubMed

    Liu, Tzu-Ling; Chen, Nai-Feng; Cheng, Shih-Kuen

    2017-02-01

    Emotional items are often remembered more clearly than neutral items. However, whether stimuli embedded in an emotional context are more resistant to directed forgetting than those presented in a neutral context remains unclear. This question was tested by recording event-related potentials (ERPs) in an item-method directed forgetting paradigm involving neutral words that were embedded in neutral or negative contexts. During the study phase, participants were asked to associate a neutral word with a negative or neutral picture. A remember (R) or forget (F) cue was then designated to indicate whether the word was a to-be-remembered (TBR) or to-be-forgotten (TBF) word. In the test phase, participants were asked to identify all previously presented old words regardless of the R/F cues. The behavioral results indicated a significant interaction between the valence of the encoding contexts and the R/F cues. The hit rate was lower for the TBR words encoded in negative contexts relative to those encoded in neutral contexts. No such valence effect was observed in the hit rates of the TBF words. For the ERP data, the R cues elicited a P3b-like effect that has been linked to the selective rehearsal of the TBR items. This effect was more sustained in the negative encoding context than in the neutral context. The F cues elicited a frontal positivity that has been linked to the active inhibition of the TBF words; however, this positivity was not modulated by the valence of the encoding context. The sustained P3b-like effect for the R cues in the negative encoding context might reflect a compensative encoding for the TBR words caused by the attention-capturing negative contexts. Therefore, we argue that the emotional context affected the selective elaboration of the TBR words; however, we also argue that there was no supportive evidence of an emotional effect on the forgetting of TBF items. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The Text Encoding Initiative: Flexible and Extensible Document Encoding.

    ERIC Educational Resources Information Center

    Barnard, David T.; Ide, Nancy M.

    1997-01-01

    The Text Encoding Initiative (TEI), an international collaboration aimed at producing a common encoding scheme for complex texts, examines the requirement for generality versus the requirement to handle specialized text types. Discusses how documents and users tax the limits of fixed schemes requiring flexible extensible encoding to support…

  2. Beyond Initial Encoding: Measures of the Post-Encoding Status of Memory Traces Predict Long-Term Recall during Infancy

    ERIC Educational Resources Information Center

    Pathman, Thanujeni; Bauer, Patricia J.

    2013-01-01

    The first years of life are witness to rapid changes in long-term recall ability. In the current research we contributed to an explanation of the changes by testing the absolute and relative contributions to long-term recall of encoding and post-encoding processes. Using elicited imitation, we sampled the status of 16-, 20-, and 24-month-old…

  3. Olfactory short-term memory encoding and maintenance - an event-related potential study.

    PubMed

    Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan

    2014-09-01

    This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Developmental fMRI study of episodic verbal memory encoding in children.

    PubMed

    Maril, A; Davis, P E; Koo, J J; Reggev, N; Zuckerman, M; Ehrenfeld, L; Mulkern, R V; Waber, D P; Rivkin, M J

    2010-12-07

    Understanding the maturation and organization of cognitive function in the brain is a central objective of both child neurology and developmental cognitive neuroscience. This study focuses on episodic memory encoding of verbal information by children, a cognitive domain not previously studied using fMRI. Children from 7 to 19 years of age were scanned at 1.5-T field strength using event-related fMRI while performing a novel verbal memory encoding paradigm in which words were incidentally encoded. A subsequent memory analysis was performed. SPM2 was utilized for whole brain and region-of-interest analyses of data. Both whole-sample intragroup analyses and intergroup analyses of the sample divided into 2 subgroups by age were conducted. Importantly, behavioral memory performance was equal across the age range of children studied. Encoding-related activation in the left hippocampus and bilateral basal ganglia declined as age increased. In addition, while robust blood oxygen level-dependent signal was found in left prefrontal cortex with task performance, no encoding-related age-modulated prefrontal activation was observed in either hemisphere. These data are consistent with a developmental pattern of verbal memory encoding function in which left hippocampal and bilateral basal ganglionic activations are more robust earlier in childhood but then decline with age. No encoding-related activation was found in prefrontal cortex which may relate to this region's recognized delay in biologic maturation in humans. These data represent the first fMRI demonstration of verbal encoding function in children and are relevant developmentally and clinically.

  5. Confabulation in healthy aging is related to poor encoding and retrieval of over-learned information.

    PubMed

    Attali, Eve; Dalla Barba, Gianfranco

    2013-01-01

    Normal aging is characterized by deficits that cross multiple cognitive domains including episodic memory and attention. Compared to young adults (YA), older adults (OA) not only show reduction in true memories, but also an increase in false memories. In this study we aim to elucidate how the production of confabulation is influenced by encoding and retrieval processes. We hypothesized that in OA, compared to YA, over-learned information interferes with the recall of specific, unique past episodes and this interference should be more prominent when a concurrent task perturbs the encoding of the episodes to be recalled. We tested this hypothesis using an experimental paradigm in which a group of OA and a group of YA had to recall three different types of story: a previously unknown story, a well-known fairy tale (Snow White), and a modified well-known fairy tale (Little Red Riding Hood is not eaten by the wolf), in three different experimental conditions: (1) free encoding and free retrieval; (2) Divided attention (DA) at encoding and free retrieval; and (3) free encoding and DA at retrieval. Results showed that OA produced significantly more confabulations than YA, particularly, in the recall of the modified fairy tale. Moreover, DA at encoding markedly increased the number of confabulations, whereas DA at retrieval had no effect on confabulation. Our findings reveal the implications of two phenomena in the production of confabulation in normal aging: the effect of poor encoding and the interference of strongly represented, over-learned information in episodic memory recall.

  6. Cellobiohydrolase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  7. Face Encoding and Recognition in the Human Brain

    NASA Astrophysics Data System (ADS)

    Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.

    1996-01-01

    A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

  8. The effects of age on the neural correlates of episodic encoding.

    PubMed

    Grady, C L; McIntosh, A R; Rajah, M N; Beig, S; Craik, F I

    1999-12-01

    Young and old adults underwent positron emission tomographic scans while encoding pictures of objects and words using three encoding strategies: deep processing (a semantic living/nonliving judgement), shallow processing (size judgement) and intentional learning. Picture memory exceeded word memory in both young and old groups, and there was an age-related decrement only in word recognition. During the encoding tasks three brain activity patterns were found that differentiated stimulus type and the different encoding strategies. The stimulus-specific pattern was characterized by greater activity in extrastriate and medial temporal cortices during picture encoding, and greater activity in left prefrontal and temporal cortices during encoding of words. The older adults showed this pattern to a significantly lesser degree. A pattern distinguishing deep processing from intentional learning of words and pictures was identified, characterized mainly by differences in prefrontal cortex, and this pattern also was of significantly lesser magnitude in the old group. A final pattern identified areas with increased activity during deep processing and intentional learning of pictures, including left prefrontal and bilateral medial temporal regions. There was no group difference in this pattern. These results indicate age-related dysfunction in several encoding networks, with sparing of one specifically involved in more elaborate encoding of pictures. These age-related changes appear to affect verbal memory more than picture memory.

  9. Beyond initial encoding: measures of the post-encoding status of memory traces predict long-term recall during infancy.

    PubMed

    Pathman, Thanujeni; Bauer, Patricia J

    2013-02-01

    The first years of life are witness to rapid changes in long-term recall ability. In the current research we contributed to an explanation of the changes by testing the absolute and relative contributions to long-term recall of encoding and post-encoding processes. Using elicited imitation, we sampled the status of 16-, 20-, and 24-month-old infants' memory representations at various time points after experience of events. In Experiment 1, infants were tested immediately, 1 week after encoding, and again after 1 month. The measure of 1-week trace status was a unique predictor of 1-month delayed recall. In Experiment 2, infants were tested immediately, 15 min, 48 h, and 2 weeks after encoding and again 1 month later. The measures of 15-min and 48-h trace strength contributed unique variance in 1-month delayed recall. The findings highlight the need to consider post-encoding processes in explanations of variability in long-term memory during infancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  11. Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco.

    PubMed Central

    Payne, G; Ahl, P; Moyer, M; Harper, A; Beck, J; Meins, F; Ryals, J

    1990-01-01

    Complementary DNA clones encoding two isoforms of the acidic endochitinase (chitinase, EC 3.2.1.14) from tobacco were isolated. Comparison of amino acid sequences deduced from the cDNA clones and the sequence of peptides derived from purified proteins show that these clones encode the pathogenesis-related proteins PR-P and PR-Q. The cDNA inserts were not homologous to either the bacterial form of chitinase or the form from cucumber but shared significant homology to the basic form of chitinase from tobacco and bean. The acidic isoforms of tobacco chitinase did not contain the amino-terminal, cysteine-rich "hevein" domain found in the basic isoforms, indicating that this domain, which binds chitin, is not essential for chitinolytic activity. The accumulation of mRNA for the pathogenesis-related proteins PR-1, PR-R, PR-P, and PR-Q in Xanthi.nc tobacco leaves following infection with tobacco mosaic virus was measured by primer extension. The results indicate that the induction of these proteins during the local necrotic lesion response to the virus is coordinated at the mRNA level. Images PMID:2296608

  12. Review of Random Phase Encoding in Volume Holographic Storage

    PubMed Central

    Su, Wei-Chia; Sun, Ching-Cherng

    2012-01-01

    Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  13. Human Genomic Signatures of Brain Oscillations During Memory Encoding.

    PubMed

    Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve

    2018-05-01

    Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.

  14. Encoding the world around us: motor-related processing influences verbal memory.

    PubMed

    Madan, Christopher R; Singhal, Anthony

    2012-09-01

    It is known that properties of words such as their imageability can influence our ability to remember those words. However, it is not known if other object-related properties can also influence our memory. In this study we asked whether a word representing a concrete object that can be functionally interacted with (i.e., high-manipulability word) would enhance the memory representations for that item compared to a word representing a less manipulable object (i.e., low-manipulability word). Here participants incidentally encoded high-manipulability (e.g., CAMERA) and low-manipulability words (e.g., TABLE) while making word judgments. Using a between-subjects design, we varied the depth-of-processing involved in the word judgment task: participants judged the words based on personal experience (deep/elaborative processing), word length (shallow), or functionality (intermediate). Participants were able to remember high-manipulability words better than low-manipulability words in both the personal experience and word length groups; thus presenting the first evidence that manipulability can influence memory. However, we observed better memory for low- than high-manipulability words in the functionality group. We explain this surprising interaction between manipulability and memory as being mediated by automatic vs. controlled motor-related cognition. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The attentional blink reveals serial working memory encoding: evidence from virtual and human event-related potentials.

    PubMed

    Craston, Patrick; Wyble, Brad; Chennu, Srivas; Bowman, Howard

    2009-03-01

    Observers often miss a second target (T2) if it follows an identified first target item (T1) within half a second in rapid serial visual presentation (RSVP), a finding termed the attentional blink. If two targets are presented in immediate succession, however, accuracy is excellent (Lag 1 sparing). The resource sharing hypothesis proposes a dynamic distribution of resources over a time span of up to 600 msec during the attentional blink. In contrast, the ST(2) model argues that working memory encoding is serial during the attentional blink and that, due to joint consolidation, Lag 1 is the only case where resources are shared. Experiment 1 investigates the P3 ERP component evoked by targets in RSVP. The results suggest that, in this context, P3 amplitude is an indication of bottom-up strength rather than a measure of cognitive resource allocation. Experiment 2, employing a two-target paradigm, suggests that T1 consolidation is not affected by the presentation of T2 during the attentional blink. However, if targets are presented in immediate succession (Lag 1 sparing), they are jointly encoded into working memory. We use the ST(2) model's neural network implementation, which replicates a range of behavioral results related to the attentional blink, to generate "virtual ERPs" by summing across activation traces. We compare virtual to human ERPs and show how the results suggest a serial nature of working memory encoding as implied by the ST(2) model.

  16. Cognitive and Neural Effects of Semantic Encoding Strategy Training in Older Adults

    PubMed Central

    Anderson, B. A.; Barch, D. M.; Jacoby, L. L.

    2012-01-01

    Prior research suggests that older adults are less likely than young adults to use effective learning strategies during intentional encoding. This functional magnetic resonance imaging (fMRI) study investigated whether training older adults to use semantic encoding strategies can increase their self-initiated use of these strategies and improve their recognition memory. The effects of training on older adults' brain activity during intentional encoding were also examined. Training increased older adults' self-initiated semantic encoding strategy use and eliminated pretraining age differences in recognition memory following intentional encoding. Training also increased older adults' brain activity in the medial superior frontal gyrus, right precentral gyrus, and left caudate during intentional encoding. In addition, older adults' training-related changes in recognition memory were strongly correlated with training-related changes in brain activity in prefrontal and left lateral temporal regions associated with semantic processing and self-initiated verbal encoding strategy use in young adults. These neuroimaging results demonstrate that semantic encoding strategy training can alter older adults' brain activity patterns during intentional encoding and suggest that young and older adults may use the same network of brain regions to support self-initiated use of verbal encoding strategies. PMID:21709173

  17. Event Congruency Enhances Episodic Memory Encoding through Semantic Elaboration and Relational Binding

    PubMed Central

    Staresina, Bernhard P.; Gray, James C.

    2009-01-01

    Behavioral research consistently shows that congruous events, that is, events whose constituent elements match along some specific dimension, are better remembered than incongruous events. Although it has been speculated that this “congruency subsequent memory effect” (cSME) results from enhanced semantic elaboration, empirical evidence for this account is lacking. Here, we report a set of behavioral and neuroimaging experiments demonstrating that congruous events engage regions along the left inferior frontal gyrus (LIFG)—consistently related to semantic elaboration—to a significantly greater degree than incongruous events, providing evidence in favor of this hypothesis. Critically, we additionally report 3 novel findings in relation to event congruency: First, congruous events yield superior memory not only for a given study item but also for associated source details. Second, the cSME is evident not only for events that matched a semantic context but also for those that matched a subjective aesthetic schema. Finally, functional magnetic resonance imaging brain/behavior correlation analysis reveals a strong link between 1) across-subject variation in the magnitude of the cSME and 2) differential right hippocampal activation, suggesting that episodic memory for congruous events is effectively bolstered by the extent to which semantic associations are generated and relationally integrated via LIFG-hippocampal–encoding mechanisms. PMID:18820289

  18. How Infants Encode Spatial Extent

    ERIC Educational Resources Information Center

    Duffy, Sean; Huttenlocher, Janellen; Levine, Susan; Duffy, Renee

    2005-01-01

    This study explores how infants encode an object's spatial extent. We habituated 6.5-month-old infants to a dowel inside a container and then tested whether they dishabituate to a change in absolute size when the relation between dowel and container is held constant (by altering the size of both container and dowel) and when the relation changes…

  19. Source-constrained retrieval influences the encoding of new information.

    PubMed

    Danckert, Stacey L; MacLeod, Colin M; Fernandes, Myra A

    2011-11-01

    Jacoby, Shimizu, Daniels, and Rhodes (Psychonomic Bulletin & Review, 12, 852-857, 2005) showed that new words presented as foils among a list of old words that had been deeply encoded were themselves subsequently better recognized than new words presented as foils among a list of old words that had been shallowly encoded. In Experiment 1, by substituting a deep-versus-shallow imagery manipulation for the levels-of-processing manipulation, we demonstrated that the effect is robust and that it generalizes, also occurring with a different type of encoding. In Experiment 2, we provided more direct evidence for context-related encoding during tests of deeply encoded words, showing enhanced priming for foils presented among deeply encoded targets when participants made the same deep-encoding judgments on those items as had been made on the targets during study. In Experiment 3, we established that the findings from Experiment 2 are restricted to this specific deep judgment task and are not a general consequence of these foils being associated with deeply encoded items. These findings provide support for the source-constrained retrieval hypothesis of Jacoby, Shimizu, Daniels, and Rhodes: New information can be influenced by how surrounding items are encoded and retrieved, as long as the surrounding items recruit a coherent mode of processing.

  20. Grammatical constraints on phonological encoding in speech production.

    PubMed

    Heller, Jordana R; Goldrick, Matthew

    2014-12-01

    To better understand the influence of grammatical encoding on the retrieval and encoding of phonological word-form information during speech production, we examine how grammatical class constraints influence the activation of phonological neighbors (words phonologically related to the target--e.g., MOON, TWO for target TUNE). Specifically, we compare how neighbors that share a target's grammatical category (here, nouns) influence its planning and retrieval, assessed by picture naming latencies, and phonetic encoding, assessed by word productions in picture names, when grammatical constraints are strong (in sentence contexts) versus weak (bare naming). Within-category (noun) neighbors influenced planning time and phonetic encoding more strongly in sentence contexts. This suggests that grammatical encoding constrains phonological processing; the influence of phonological neighbors is grammatically dependent. Moreover, effects on planning times could not fully account for phonetic effects, suggesting that phonological interaction affects articulation after speech onset. These results support production theories integrating grammatical, phonological, and phonetic processes.

  1. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  2. Discovery of Herpes B Virus-Encoded MicroRNAs▿

    PubMed Central

    Besecker, Michael I.; Harden, Mallory E.; Li, Guanglin; Wang, Xiu-Jie; Griffiths, Anthony

    2009-01-01

    Herpes B virus (BV) naturally infects macaque monkeys and is a close relative of herpes simplex virus. BV can zoonotically infect humans to cause a rapidly ascending encephalitis with ∼80% mortality. Therefore, BV is a serious danger to those who come into contact with these monkeys or their tissues and cells. MicroRNAs are regulators of gene expression, and there have been reports of virus-encoded microRNAs. We hypothesize that BV-encoded microRNAs are important for the regulation of viral and cellular genes. Herein, we report the discovery of three herpes B virus-encoded microRNAs. PMID:19144716

  3. Impaired memory for material related to a problem solved prior to encoding: suppression at learning or interference at recall?

    PubMed

    Kowalczyk, Marek

    2017-07-01

    Earlier research by the author revealed that material encoded incidentally in a speeded affective classification task and related to the demands of a divergent problem tends to be recalled worse in participants who solved the problem prior to encoding than in participants in the control, no-problem condition. The aim of the present experiment was to replicate this effect with a new, size-comparison orienting task, and to test for possible mechanisms of impaired recall. Participants either solved a problem before the orienting task or not, and classified each item in this task either once or three times. There was a reliable effect of impaired recall of problem-related items in the repetition condition, but not in the no-repetition condition. Solving the problem did not influence repetition priming for these items. These results support an account that attributes the impaired recall to inhibitory processes at learning and speak against a proactive interference explanation. However, they can be also accommodated by an account that refers to inefficient context cues and competitor interference at retrieval.

  4. Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.

    PubMed

    Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-01-11

    As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active

  5. Age-related deficits in selective attention during encoding increase demands on episodic reconstruction during context retrieval: An ERP study.

    PubMed

    James, Taylor; Strunk, Jonathan; Arndt, Jason; Duarte, Audrey

    2016-06-01

    Previous event-related potential (ERP) and neuroimaging evidence suggests that directing attention toward single item-context associations compared to intra-item features at encoding improves context memory performance and reduces demands on strategic retrieval operations in young and older adults. In everyday situations, however, there are multiple event features competing for our attention. It is not currently known how selectively attending to one contextual feature while attempting to ignore another influences context memory performance and the processes that support successful retrieval in the young and old. We investigated this issue in the current ERP study. Young and older participants studied pictures of objects in the presence of two contextual features: a color and a scene, and their attention was directed to the object's relationship with one of those contexts. Participants made context memory decisions for both attended and unattended contexts and rated their confidence in those decisions. Behavioral results showed that while both groups were generally successful in applying selective attention during context encoding, older adults were less confident in their context memory decisions for attended features and showed greater dependence in context memory accuracy for attended and unattended contextual features (i.e., hyper-binding). ERP results were largely consistent between age groups but older adults showed a more pronounced late posterior negativity (LPN) implicated in episodic reconstruction processes. We conclude that age-related suppression deficits during encoding result in reduced selectivity in context memory, thereby increasing subsequent demands on episodic reconstruction processes when sought after details are not readily retrieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Encoding negative events under stress: high subjective arousal is related to accurate emotional memory despite misinformation exposure.

    PubMed

    Hoscheidt, Siobhan M; LaBar, Kevin S; Ryan, Lee; Jacobs, W Jake; Nadel, Lynn

    2014-07-01

    Stress at encoding affects memory processes, typically enhancing, or preserving, memory for emotional information. These effects have interesting implications for eyewitness accounts, which in real-world contexts typically involve encoding an aversive event under stressful conditions followed by potential exposure to misinformation. The present study investigated memory for a negative event encoded under stress and subsequent misinformation endorsement. Healthy young adults participated in a between-groups design with three experimental sessions conducted 48 h apart. Session one consisted of a psychosocial stress induction (or control task) followed by incidental encoding of a negative slideshow. During session two, participants were asked questions about the slideshow, during which a random subgroup was exposed to misinformation. Memory for the slideshow was tested during the third session. Assessment of memory accuracy across stress and no-stress groups revealed that stress induced just prior to encoding led to significantly better memory for the slideshow overall. The classic misinformation effect was also observed - participants exposed to misinformation were significantly more likely to endorse false information during memory testing. In the stress group, however, memory accuracy and misinformation effects were moderated by arousal experienced during encoding of the negative event. Misinformed-stress group participants who reported that the negative slideshow elicited high arousal during encoding were less likely to endorse misinformation for the most aversive phase of the story. Furthermore, these individuals showed better memory for components of the aversive slideshow phase that had been directly misinformed. Results from the current study provide evidence that stress and high subjective arousal elicited by a negative event act concomitantly during encoding to enhance emotional memory such that the most aversive aspects of the event are well remembered and

  7. Polynucleotides encoding polypeptides having beta-glucosidase activity

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  8. Nucleic acid encoding DS-CAM proteins and products related thereto

    DOEpatents

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  9. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE.

    PubMed

    Trinh, Quang M; Jen, Fei-Yang Arthur; Zhou, Ziru; Chu, Kar Ming; Perry, Marc D; Kephart, Ellen T; Contrino, Sergio; Ruzanov, Peter; Stein, Lincoln D

    2013-07-22

    Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.

  10. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE

    PubMed Central

    2013-01-01

    Background Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. Results In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Conclusions Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around. PMID:23875683

  11. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  12. Encoding techniques for complex information structures in connectionist systems

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1990-01-01

    Two general information encoding techniques called relative position encoding and pattern similarity association are presented. They are claimed to be a convenient basis for the connectionist implementation of complex, short term information processing of the sort needed in common sense reasoning, semantic/pragmatic interpretation of natural language utterances, and other types of high level cognitive processing. The relationships of the techniques to other connectionist information-structuring methods, and also to methods used in computers, are discussed in detail. The rich inter-relationships of these other connectionist and computer methods are also clarified. The particular, simple forms are discussed that the relative position encoding and pattern similarity association techniques take in the author's own connectionist system, called Conposit, in order to clarify some issues and to provide evidence that the techniques are indeed useful in practice.

  13. Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool.

    PubMed

    Auerbach, Raymond K; Chen, Bin; Butte, Atul J

    2013-08-01

    Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. abutte@stanford.edu Supplementary material is available at Bioinformatics online.

  14. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  15. Neural correlates of the spacing effect in explicit verbal semantic encoding support the deficient-processing theory.

    PubMed

    Callan, Daniel E; Schweighofer, Nicolas

    2010-04-01

    Spaced presentations of to-be-learned items during encoding leads to superior long-term retention over massed presentations. Despite over a century of research, the psychological and neural basis of this spacing effect however is still under investigation. To test the hypotheses that the spacing effect results either from reduction in encoding-related verbal maintenance rehearsal in massed relative to spaced presentations (deficient processing hypothesis) or from greater encoding-related elaborative rehearsal of relational information in spaced relative to massed presentations (encoding variability hypothesis), we designed a vocabulary learning experiment in which subjects encoded paired-associates, each composed of a known word paired with a novel word, in both spaced and massed conditions during functional magnetic resonance imaging. As expected, recall performance in delayed cued-recall tests was significantly better for spaced over massed conditions. Analysis of brain activity during encoding revealed that the left frontal operculum, known to be involved in encoding via verbal maintenance rehearsal, was associated with greater performance-related increased activity in the spaced relative to massed condition. Consistent with the deficient processing hypothesis, a significant decrease in activity with subsequent episodes of presentation was found in the frontal operculum for the massed but not the spaced condition. Our results suggest that the spacing effect is mediated by activity in the frontal operculum, presumably by encoding-related increased verbal maintenance rehearsal, which facilitates binding of phonological and word level verbal information for transfer into long-term memory. Copyright 2009 Wiley-Liss, Inc.

  16. Cerebellar re-encoding of self-generated head movements

    PubMed Central

    Dugué, Guillaume P; Tihy, Matthieu; Gourévitch, Boris; Léna, Clément

    2017-01-01

    Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats. DOI: http://dx.doi.org/10.7554/eLife.26179.001 PMID:28608779

  17. False memory and importance: can we prioritize encoding without consequence?

    PubMed

    Bui, Dung C; Friedman, Michael C; McDonough, Ian M; Castel, Alan D

    2013-10-01

    Given the large amount of information that we encounter, we often must prioritize what information we attempt to remember. Although critical for everyday functioning, relatively little research has focused on how people prioritize the encoding of information. Recent research has shown that people can and do selectively remember information assigned with higher, relative to lower, importance. However, the mechanisms underlying this prioritization process and the consequences of these processes are still not well understood. In the present study, we sought to better understand these prioritization processes and whether implementing these processes comes at the cost of memory accuracy, by increasing false memories. We used a modified form of the Deese/Roediger-McDermott (DRM) paradigm, in which participants studied DRM lists, with each list paired with low, medium, or high point values. In Experiment 1, encoding higher values led to more false memories than did encoding lower values, possibly because prioritizing information enhanced relational processing among high-value words. In Experiment 2, disrupting relational processing selectively reduced false memories for high-value words. Finally, in Experiment 3, facilitating relational processing selectively increased false memories for low-value words. These findings suggest that while prioritizing information can enhance true memory, this process concomitantly increases false memories. Furthermore, the mechanism underlying these prioritization processes depends on the ability to successfully engage in relational processing. Thus, how we prioritize the encoding of incoming information can come at a cost in terms of accurate memory.

  18. Content-Specific Source Encoding in the Human Medial Temporal Lobe

    ERIC Educational Resources Information Center

    Awipi, T.; Davachi, L.

    2008-01-01

    Although the medial temporal lobe (MTL) is known to be essential for episodic encoding, the contributions of individual MTL subregions remain unclear. Data from recognition memory studies have provided evidence that the hippocampus supports relational encoding important for later episodic recollection, whereas the perirhinal cortex has been linked…

  19. Plasmonic Encoding

    DTIC Science & Technology

    2014-10-06

    The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of thiolated small...counterfeiting purposes. The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of...environments ( like the surface of human hair). 2. Nanoflares In 2007, we first introduced the concept of nanoflares. Nanoflares are a new class of

  20. Encoding processes during retrieval tasks.

    PubMed

    Buckner, R L; Wheeler, M E; Sheridan, M A

    2001-04-01

    Episodic memory encoding is pervasive across many kinds of task and often arises as a secondary processing effect in tasks that do not require intentional memorization. To illustrate the pervasive nature of information processing that leads to episodic encoding, a form of incidental encoding was explored based on the "Testing" phenomenon: The incidental-encoding task was an episodic memory retrieval task. Behavioral data showed that performing a memory retrieval task was as effective as intentional instructions at promoting episodic encoding. During fMRI imaging, subjects viewed old and new words and indicated whether they remembered them. Relevant to encoding, the fate of the new words was examined using a second, surprise test of recognition after the imaging session. fMRI analysis of those new words that were later remembered revealed greater activity in left frontal regions than those that were later forgotten - the same pattern of results as previously observed for traditional incidental and intentional episodic encoding tasks. This finding may offer a partial explanation for why repeated testing improves memory performance. Furthermore, the observation of correlates of episodic memory encoding during retrieval tasks challenges some interpretations that arise from direct comparisons between "encoding tasks" and "retrieval tasks" in imaging data. Encoding processes and their neural correlates may arise in many tasks, even those nominally labeled as retrieval tasks by the experimenter.

  1. Enhanced Right Amygdala Activity in Adolescents during Encoding of Positively-Valenced Pictures

    PubMed Central

    Vasa, Roma A.; Pine, Daniel S.; Thorn, Julia M.; Nelson, Tess E.; Spinelli, Simona; Nelson, Eric; Maheu, Francoise S.; Ernst, Monique; Bruck, Maggie; Mostofsky, Stewart H.

    2010-01-01

    While studies among adults implicate the amygdala and interconnecting brain regions in encoding emotional stimuli, few studies have examined whether developmental changes occur within this emotional-memory network during adolescence. The present study examined whether adolescents and adults differentially engaged the amygdala and hippocampus during successful encoding of emotional pictures, with either positive or negative valence. Eighteen adults and twelve adolescents underwent event-related fMRI while encoding emotional pictures. Approximately 30 minutes later, outside the scanner, subjects were asked to recall the pictures seen during the scan. Age group differences in brain activity in the amygdala and hippocampus during encoding of the pictures that were later successfully and unsuccessfully recalled were separately compared for the positive and negative pictures. Adolescents, relative to adults, demonstrated enhanced activity in the right amygdala during encoding of positive pictures that were later recalled compared to not recalled. There were no age group differences in amygdala or hippocampal activity during successful encoding of negative pictures. The findings of preferential activity within the adolescent right amygdala during successful encoding of positive pictures may have implications for the increased reward and novelty seeking behavior, as well as elevated rates of psychopathology, observed during this distinct developmental period. PMID:21127721

  2. Recent advances on the encoding and selection methods of DNA-encoded chemical library.

    PubMed

    Shi, Bingbing; Zhou, Yu; Huang, Yiran; Zhang, Jianfu; Li, Xiaoyu

    2017-02-01

    DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez de Leon, Alfredo; Rey, Michael

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2012-09-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2010-12-14

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Lopez de Leon, Alfredo [Davis, CA; Rey, Micheal [Davis, CA; Ding, Hanshu [Davis, CA; Vlasenko, Elena [Davis, CA

    2012-02-21

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  11. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-06-28

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2016-05-31

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-02-10

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-02-23

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Ding, Hanshu

    2013-04-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Hanshu, Ding

    2012-10-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-11-20

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-01-27

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-21

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-03-10

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2017-05-02

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-03-31

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Brown, Kimberly [Elk Grove, CA; Harris, Paul [Carnation, WA; Lopez De Leon, Alfredo [Davis, CA; Merino, Sandra [West Sacremento, CA

    2007-05-22

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  4. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Harris, Paul; Tang, Lan; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Harris, Paul; Wu, Wenping

    2012-10-02

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2013-06-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    2016-12-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-14

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-07-14

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. N-Consecutive-Phase Encoder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Lee, Ho-Kyoung; Weber, Charles

    1995-01-01

    N-consecutive-phase encoder (NCPE) is conceptual encoder for generating alphabet of N consecutive full-response continuous-phase-modulation (CPM) signals. Enables use of binary preencoder of higher rate than used with simple continuous-phase encoder (CPE). NCPE makes possible to achieve power efficiencies and bandwidth efficiencies greater than conventional trellis coders with continuous-phase frequency-shift keying (CPFSK).

  12. Loss of functional K+ channels encoded by ether-à-go-go-related genes in mouse myometrium prior to labour onset

    PubMed Central

    Greenwood, I A; Yeung, S Y; Tribe, R M; Ohya, S

    2009-01-01

    There is a growing appreciation that ion channels encoded by the ether-à-go-go-related gene family have a functional impact in smooth muscle in addition to their accepted role in cardiac myocytes and neurones. This study aimed to assess the expression of ERG1–3 (KCNH1–3) genes in the murine myometrium (smooth muscle layer of the uterus) and determine the functional impact of the ion channels encoded by these genes in pregnant and non-pregnant animals. Quantitative RT-PCR did not detect message for ERG2 and 3 in whole myometrial tissue extracts. In contrast, message for two isoforms of mERG1 were readily detected with mERG1a more abundant than mERG1b. In isometric tension studies of non-pregnant myometrium, the ERG channel blockers dofetilide (1 μm), E4031 (1 μm) and Be-KM1 (100 nm) increased spontaneous contractility and ERG activators (PD118057 and NS1643) inhibited spontaneous contractility. In contrast, neither ERG blockade nor activation had any effect on the inherent contractility in myometrium from late pregnant (19 days gestation) animals. Moreover, dofetilide-sensitive K+ currents with distinctive ‘hooked’ kinetics were considerably smaller in uterine myocytes from late pregnant compared to non-pregnant animals. Expression of mERG1 isoforms did not alter throughout gestation or upon delivery, but the expression of genes encoding auxillary subunits (KCNE) were up-regulated considerably. This study provides the first evidence for a regulation of ERG-encoded K+ channels as a precursor to late pregnancy physiological activity. PMID:19332483

  13. Rapidly-Indexing Incremental-Angle Encoder

    NASA Technical Reports Server (NTRS)

    Christon, Philip R.; Meyer, Wallace W.

    1989-01-01

    Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.

  14. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false EAS Encoder. 11.32 Section 11.32....32 EAS Encoder. (a) EAS Encoders must at a minimum be capable of encoding the EAS protocol described... must additionally provide the following minimum specifications: (1) Encoder programming. Access to...

  15. Beta-glucosidase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Harris, Paul; Osborn, David

    The present invention relates to beta-glucosidase variants, e.g. beta-glucosidase variants of a parent Family GH3A beta-glucosidase from Aspergillus fumigatus. The present invention also relates to polynucleotides encoding the beta-glucosidase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the beta-glucosidase variants.

  16. VLSI single-chip (255,223) Reed-Solomon encoder with interleaver

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (Inventor); Deutsch, Leslie J. (Inventor); Truong, Trieu-Kie (Inventor); Reed, Irving S. (Inventor)

    1990-01-01

    The invention relates to a concatenated Reed-Solomon/convolutional encoding system consisting of a Reed-Solomon outer code and a convolutional inner code for downlink telemetry in space missions, and more particularly to a Reed-Solomon encoder with programmable interleaving of the information symbols and code correction symbols to combat error bursts in the Viterbi decoder.

  17. Characteristic and intermingled neocortical circuits encode different visual object discriminations.

    PubMed

    Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I

    2017-07-28

    Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Semantic congruence reverses effects of sleep restriction on associative encoding.

    PubMed

    Alberca-Reina, Esther; Cantero, Jose L; Atienza, Mercedes

    2014-04-01

    Encoding and memory consolidation are influenced by factors such as sleep and congruency of newly learned information with prior knowledge (i.e., schema). However, only a few studies have examined the contribution of sleep to enhancement of schema-dependent memory. Based on previous studies showing that total sleep deprivation specifically impairs hippocampal encoding, and that coherent schemas reduce the hippocampal consolidation period after learning, we predict that sleep loss in the pre-training night will mainly affect schema-unrelated information whereas sleep restriction in the post-training night will have similar effects on schema-related and unrelated information. Here, we tested this hypothesis by presenting participants with face-face associations that could be semantically related or unrelated under different sleep conditions: normal sleep before and after training, and acute sleep restriction either before or after training. Memory was tested one day after training, just after introducing an interference task, and two days later, without any interference. Significant results were evident on the second retesting session. In particular, sleep restriction before training enhanced memory for semantically congruent events in detriment of memory for unrelated events, supporting the specific role of sleep in hippocampal memory encoding. Unexpectedly, sleep restriction after training enhanced memory for both related and unrelated events. Although this finding may suggest a poorer encoding during the interference task, this hypothesis should be specifically tested in future experiments. All together, the present results support a framework in which encoding processes seem to be more vulnerable to sleep loss than consolidation processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  20. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  1. Electrophysiological correlates of encoding and retrieving emotional events.

    PubMed

    Koenig, Stefanie; Mecklinger, Axel

    2008-04-01

    This study examined the impact of emotional content on encoding and retrieval processes. Event-related potentials were recorded in a source recognition memory task. During encoding, a posterior positivity for positive and negative pictures (250-450 ms) that presumably reflects attentional capturing of emotionally valenced stimuli was found. Additionally, positive events, which were also rated as less arousing than negative events, gave rise to anterior and posterior slow wave activity as compared with neutral and negative events and also showed enhanced recognition memory. It is assumed that positive low-arousing events enter controlled and elaborated encoding processes that are beneficial for recognition memory performance. The high arousal of negative events may interfere with controlled encoding mechanisms and attenuate item recognition and the quality of remembering. Moreover, topographically distinct late posterior negativities were obtained for the retrieval of the context features location and time that support the view that this component reflects processes in service of reconstructing the study episode by binding together contextual details with an item and that varies with the kind of episodic detail to be retrieved. (Copyright) 2008 APA.

  2. Body Image in Dyadic and Solitary Sexual Desire: The Role of Encoding Style and Distracting Thoughts.

    PubMed

    Dosch, Alessandra; Ghisletta, Paolo; Van der Linden, Martial

    2016-01-01

    This study explored the link between body image and desire to engage in sexual activity (dyadic and solitary desire) in adult women living in a long-term couple relationship. Moreover, it considered two psychological factors that may underlie such a link: the occurrence of body-related distracting thoughts during sexual activity and encoding style (i.e., the tendency to rely on preexisting internal schemata versus external information at encoding). A total of 53 women (29 to 47 years old) in heterosexual relationships completed questionnaires assessing sexual desire (dyadic, solitary), body image, body-related distracting thoughts during sexual activity, and encoding style. Results showed that poor body image was associated with low dyadic and solitary sexual desire. Body-related distracting thoughts during sexual activity mediated the link between body image and solitary (but not dyadic) sexual desire. Finally, the mediation of body-related distracting thoughts between body image and solitary sexual desire was moderated by encoding style. A negative body image promoted the occurrence of body-related distracting thoughts during sexual activity, especially in internal encoders. Our study highlights the importance of body image, distracting thoughts, and encoding style in women's solitary sexuality and suggests possible factors that may reduce the impact of those body-related factors in dyadic sexual desire.

  3. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  4. Instruction-specific brain activations during episodic encoding. a generalized level of processing effect.

    PubMed

    Petersson, Karl Magnus; Sandblom, Johan; Elfgren, Christina; Ingvar, Martin

    2003-11-01

    In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.

  5. Neural correlates of encoding processes predicting subsequent cued recall and source memory.

    PubMed

    Angel, Lucie; Isingrini, Michel; Bouazzaoui, Badiâa; Fay, Séverine

    2013-03-06

    In this experiment, event-related potentials were used to examine whether the neural correlates of encoding processes predicting subsequent successful recall differed from those predicting successful source memory retrieval. During encoding, participants studied lists of words and were instructed to memorize each word and the list in which it occurred. At test, they had to complete stems (the first four letters) with a studied word and then make a judgment of the initial temporal context (i.e. list). Event-related potentials recorded during encoding were segregated according to subsequent memory performance to examine subsequent memory effects (SMEs) reflecting successful cued recall (cued recall SME) and successful source retrieval (source memory SME). Data showed a cued recall SME on parietal electrode sites from 400 to 1200 ms and a late inversed cued recall SME on frontal sites in the 1200-1400 ms period. Moreover, a source memory SME was reported from 400 to 1400 ms on frontal areas. These findings indicate that patterns of encoding-related activity predicting successful recall and source memory are clearly dissociated.

  6. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the

  7. The Influence of Encoding Strategy on Episodic Memory and Cortical Activity in Schizophrenia

    PubMed Central

    Haut, Kristen; Csernansky, John G.; Barch, Deanna M.

    2005-01-01

    Background: Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Methods: Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Results: Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Conclusions: Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied. PMID:15992522

  8. The influence of encoding strategy on episodic memory and cortical activity in schizophrenia.

    PubMed

    Bonner-Jackson, Aaron; Haut, Kristen; Csernansky, John G; Barch, Deanna M

    2005-07-01

    Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied.

  9. Evolutionary Characteristics of Missing Proteins: Insights into the Evolution of Human Chromosomes Related to Missing-Protein-Encoding Genes.

    PubMed

    Xu, Aishi; Li, Guang; Yang, Dong; Wu, Songfeng; Ouyang, Hongsheng; Xu, Ping; He, Fuchu

    2015-12-04

    Although the "missing protein" is a temporary concept in C-HPP, the biological information for their "missing" could be an important clue in evolutionary studies. Here we classified missing-protein-encoding genes into two groups, the genes encoding PE2 proteins (with transcript evidence) and the genes encoding PE3/4 proteins (with no transcript evidence). These missing-protein-encoding genes distribute unevenly among different chromosomes, chromosomal regions, or gene clusters. In the view of evolutionary features, PE3/4 genes tend to be young, spreading at the nonhomology chromosomal regions and evolving at higher rates. Interestingly, there is a higher proportion of singletons in PE3/4 genes than the proportion of singletons in all genes (background) and OTCSGs (organ, tissue, cell type-specific genes). More importantly, most of the paralogous PE3/4 genes belong to the newly duplicated members of the paralogous gene groups, which mainly contribute to special biological functions, such as "smell perception". These functions are heavily restricted into specific type of cells, tissues, or specific developmental stages, acting as the new functional requirements that facilitated the emergence of the missing-protein-encoding genes during evolution. In addition, the criteria for the extremely special physical-chemical proteins were first set up based on the properties of PE2 proteins, and the evolutionary characteristics of those proteins were explored. Overall, the evolutionary analyses of missing-protein-encoding genes are expected to be highly instructive for proteomics and functional studies in the future.

  10. Gene 2 of the sigma rhabdovirus genome encodes the P protein, and gene 3 encodes a protein related to the reverse transcriptase of retroelements.

    PubMed

    Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D

    1995-11-10

    The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.

  11. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Shaghasi, Tarana

    The present invention relates to hybrid polypeptides having cellobiohydrolase activity. The present invention also relates to polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  12. Interaction of apicoplast-encoded elongation factor (EF) EF-Tu with nuclear-encoded EF-Ts mediates translation in the Plasmodiumfalciparum plastid.

    PubMed

    Biswas, Subir; Lim, Erin E; Gupta, Ankit; Saqib, Uzma; Mir, Snober S; Siddiqi, Mohammad Imran; Ralph, Stuart A; Habib, Saman

    2011-03-01

    Protein translation in the plastid (apicoplast) of Plasmodium spp. is of immense interest as a target for potential anti-malarial drugs. However, the molecular data on apicoplast translation needed for optimisation and development of novel inhibitors is lacking. We report characterisation of two key translation elongation factors in Plasmodium falciparum, apicoplast-encoded elongation factor PfEF-Tu and nuclear-encoded PfEF-Ts. Recombinant PfEF-Tu hydrolysed GTP and interacted with its presumed nuclear-encoded partner PfEF-Ts. The EF-Tu inhibitor kirromycin affected PfEF-Tu activity in vitro, indicating that apicoplast EF-Tu is indeed the target of this drug. The predicted PfEF-Ts leader sequence targeted GFP to the apicoplast, confirming that PfEF-Ts functions in this organelle. Recombinant PfEF-Ts mediated nucleotide exchange on PfEF-Tu and homology modeling of the PfEF-Tu:PfEF-Ts complex revealed PfEF-Ts-induced structural alterations that would expedite GDP release from PfEF-Tu. Our results establish functional interaction between two apicoplast translation factors encoded by genes residing in different cellular compartments and highlight the significance of their sequence/structural differences from bacterial elongation factors in relation to inhibitor activity. These data provide an experimental system to study the effects of novel inhibitors targeting PfEF-Tu and PfEF-Tu.PfEF-Ts interaction. Our finding that apicoplast EF-Tu possesses chaperone-related disulphide reductase activity also provides a rationale for retention of the tufA gene on the plastid genome. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  13. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R

    2016-09-21

    The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and

  14. Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest

    PubMed Central

    Schlichting, Margaret L.; Preston, Alison R.

    2015-01-01

    Learning occurs in the context of existing memories. Encountering new information that relates to prior knowledge may trigger integration, whereby established memories are updated to incorporate new content. Here, we provide a critical test of recent theories suggesting hippocampal (HPC) and medial prefrontal (MPFC) involvement in integration, both during and immediately following encoding. Human participants with established memories for a set of initial (AB) associations underwent fMRI scanning during passive rest and encoding of new related (BC) and unrelated (XY) pairs. We show that HPC-MPFC functional coupling during learning was more predictive of trial-by-trial memory for associations related to prior knowledge relative to unrelated associations. Moreover, the degree to which HPC-MPFC functional coupling was enhanced following overlapping encoding was related to memory integration behavior across participants. We observed a dissociation between anterior and posterior MPFC, with integration signatures during post-encoding rest specifically in the posterior subregion. These results highlight the persistence of integration signatures into post-encoding periods, indicating continued processing of interrelated memories during rest. We also interrogated the coherence of white matter tracts to assess the hypothesis that integration behavior would be related to the integrity of the underlying anatomical pathways. Consistent with our predictions, more coherent HPC-MPFC white matter structure was associated with better performance across participants. This HPC-MPFC circuit also interacted with content-sensitive visual cortex during learning and rest, consistent with reinstatement of prior knowledge to enable updating. These results show that the HPC-MPFC circuit supports on- and offline integration of new content into memory. PMID:26608407

  15. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having xylanase activity and polynucleotides encoding the same

    DOEpatents

    Spodsberg, Nikolaj [Bagsvaed, DK

    2014-01-07

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The inventino also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity.

    PubMed

    Demb, J B; Desmond, J E; Wagner, A D; Vaidya, C J; Glover, G H; Gabrieli, J D

    1995-09-01

    Prefrontal cortical function was examined during semantic encoding and repetition priming using functional magnetic resonance imaging (fMRI), a noninvasive technique for localizing regional changes in blood oxygenation, a correlate of neural activity. Words studied in a semantic (deep) encoding condition were better remembered than words studied in both easier and more difficult nonsemantic (shallow) encoding conditions, with difficulty indexed by response time. The left inferior prefrontal cortex (LIPC) (Brodmann's areas 45, 46, 47) showed increased activation during semantic encoding relative to nonsemantic encoding regardless of the relative difficulty of the nonsemantic encoding task. Therefore, LIPC activation appears to be related to semantic encoding and not task difficulty. Semantic encoding decisions are performed faster the second time words are presented. This represents semantic repetition priming, a facilitation in semantic processing for previously encoded words that is not dependent on intentional recollection. The same LIPC area activated during semantic encoding showed decreased activation during repeated semantic encoding relative to initial semantic encoding of the same words. This decrease in activation during repeated encoding was process specific; it occurred when words were semantically reprocessed but not when words were nonsemantically reprocessed. The results were apparent in both individual and averaged functional maps. These findings suggest that the LIPC is part of a semantic executive system that contributes to the on-line retrieval of semantic information.

  18. Differences in the Efficiency of Pattern Encoding in Relation to Autistic-Like Traits: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Takahashi, Junichi; Yasunaga, Daichi; Gyoba, Jiro

    2014-01-01

    We examined the effects of complexity on the efficiency of pattern encoding in the general population differing on autism-spectrum quotient (AQ) scores. We compared brain activity (electroencephalography) during a same-different task for High and Low AQ groups. The task was composed of identical comparison and categorical comparison (CC)…

  19. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

    PubMed

    Landt, Stephen G; Marinov, Georgi K; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E; Bickel, Peter; Brown, James B; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J; Hoffman, Michael M; Iyer, Vishwanath R; Jung, Youngsook L; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V; Li, Qunhua; Liu, Tao; Liu, X Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M; Park, Peter J; Pazin, Michael J; Perry, Marc D; Raha, Debasish; Reddy, Timothy E; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A; Tolstorukov, Michael Y; White, Kevin P; Xi, Simon; Farnham, Peggy J; Lieb, Jason D; Wold, Barbara J; Snyder, Michael

    2012-09-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.

  20. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

    PubMed Central

    Landt, Stephen G.; Marinov, Georgi K.; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E.; Bickel, Peter; Brown, James B.; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I.; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J.; Hoffman, Michael M.; Iyer, Vishwanath R.; Jung, Youngsook L.; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V.; Li, Qunhua; Liu, Tao; Liu, X. Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M.; Park, Peter J.; Pazin, Michael J.; Perry, Marc D.; Raha, Debasish; Reddy, Timothy E.; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A.; Tolstorukov, Michael Y.; White, Kevin P.; Xi, Simon; Farnham, Peggy J.; Lieb, Jason D.; Wold, Barbara J.; Snyder, Michael

    2012-01-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals. PMID:22955991

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lan; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo [Davis, CA; Ding, Hanshu [Davis, CA; Brown, Kimberly [Elk Grove, CA

    2011-10-25

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-11-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan [Beijing, CN; Liu, Ye [Beijing, CN; Duan, Junxin [Beijing, CN; Zhang, Yu [Beijing, CN; Jorgensen, Christian Isak [Bagsvaerd, DK; Kramer, Randall [Lincoln, CA

    2012-04-03

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin [Beijing, CN; Liu, Ye [Beijing, CN; Tang, Lan [Beijing, CN; Wu, Wenping [Beijing, CN; Quinlan, Jason [Albany, CA; Kramer, Randall [Lincoln, CA

    2012-03-27

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2016-11-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2014-09-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2014-10-21

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2007-07-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  13. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2011-06-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  15. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-04-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin; Tang, Lan; Liu, Ye; Wu, Wenping; Quinlan, Jason; Kramer, Randall

    2013-06-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Time dependent effects of stress prior to encoding on event-related potentials and 24 h delayed retrieval.

    PubMed

    Quaedflieg, Conny W E M; Schwabe, Lars; Meyer, Thomas; Smeets, Tom

    2013-12-01

    Stress can exert profound effects on memory encoding. Here, we investigated whether (sub)cortical information processing during encoding and memory retrieval at a 24 h delayed test are affected by the temporal proximity between stress and memory encoding. Sixty-four participants engaged in the Maastricht Acute Stress Test (MAST) or a no-stress control condition either immediately before (i.e., proximate condition) or 30 min before (i.e., distant condition) a picture encoding task. In general, stress decreased the number of freely recalled and recognized pictures and increased the number of false alarms. However, timing of stress exposure did not differentially affect picture recall, recognition or selective attention processes (i.e., LPP). Nevertheless, stress-induced cortisol responses and correctly recognized neutral pictures were positively associated within the proximate stress condition but negatively associated within the distant stress condition. These findings suggest that the time at which a stressor is applied might differentially impact the association between stress-induced cortisol elevations and memory formation and indicate the need for a finer delineation of the time window during which glucocorticoids affect memory formation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Re-engaging with the past: recapitulation of encoding operations during episodic retrieval

    PubMed Central

    Morcom, Alexa M.

    2014-01-01

    Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection. PMID:24904386

  1. Performance on an episodic encoding task yields further insight into functional brain development.

    PubMed

    McAuley, Tara; Brahmbhatt, Shefali; Barch, Deanna M

    2007-01-15

    To further characterize changes in functional brain development that are associated with the emergence of cognitive control, participants 14 to 28 years of age were scanned while performing an episodic encoding task with a levels-of-processing manipulation. Using data from the 12 youngest and oldest participants (endpoint groups), 18 regions were identified that showed group differences in task-related activity as a function of processing depth. One region, located in left inferior frontal gyrus, showed enhanced activity in deep relative to shallow encoding that was larger in magnitude for the older group. Seventeen regions showed enhanced activity in shallow relative to deep encoding that was larger in magnitude for the youngest group. These regions were distributed across a broad network that included both cortical and subcortical areas. Regression analyses using the entire sample showed that age made a significant contribution to the difference in beta weights between deep and shallow encoding for 17 of the 18 identified regions in the direction predicted by the endpoint analysis. We conclude that the patterns of brain activation associated with deep and shallow encoding differ between adolescents and young adults in a manner that is consistent with the interactive specialization account of functional brain development.

  2. Landscape Encodings Enhance Optimization

    PubMed Central

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  3. PNA-encoded chemical libraries.

    PubMed

    Zambaldo, Claudio; Barluenga, Sofia; Winssinger, Nicolas

    2015-06-01

    Peptide nucleic acid (PNA)-encoded chemical libraries along with DNA-encoded libraries have provided a powerful new paradigm for library synthesis and ligand discovery. PNA-encoding stands out for its compatibility with standard solid phase synthesis and the technology has been used to prepare libraries of peptides, heterocycles and glycoconjugates. Different screening formats have now been reported including selection-based and microarray-based methods that have yielded specific ligands against diverse target classes including membrane receptors, lectins and challenging targets such as Hsp70. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Learning from number board games: you learn what you encode.

    PubMed

    Laski, Elida V; Siegler, Robert S

    2014-03-01

    We tested the hypothesis that encoding the numerical-spatial relations in a number board game is a key process in promoting learning from playing such games. Experiment 1 used a microgenetic design to examine the effects on learning of the type of counting procedure that children use. As predicted, having kindergartners count-on from their current number on the board while playing a 0-100 number board game facilitated their encoding of the numerical-spatial relations on the game board and improved their number line estimates, numeral identification, and count-on skill. Playing the same game using the standard count-from-1 procedure led to considerably less learning. Experiment 2 demonstrated that comparable improvement in number line estimation does not occur with practice encoding the numerals 1-100 outside of the context of a number board game. The general importance of aligning learning activities and physical materials with desired mental representations is discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Dotson, William D.; Greenier, Jennifer; Ding, Hanshu

    2007-09-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated nucleic acids encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acids as well as methods for producing and using the polypeptides.

  6. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj; Shaghasi, Tarana

    The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.

  7. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj; Shagasi, Tarana

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  8. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringer, Mary Ann; McBrayer, Brett

    2016-11-29

    The present invention relates to isolated polypeptides having cellobiohydrolase activity, catalytic domains, and cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains, and cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, or cellulose binding domains.

  9. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj; Shagasi, Tarana

    2015-06-30

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  10. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc

    2014-01-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase, or beta-glucosidase activity and isolated polynucleotides encoding polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Anticipation of electric shocks modulates low beta power and event-related fields during memory encoding.

    PubMed

    Bauch, Eva M; Bunzeck, Nico

    2015-09-01

    In humans, the temporal and oscillatory dynamics of pain anticipation and its effects on long-term memory are largely unknown. Here, we investigated this open question by using a previously established behavioral paradigm in combination with magnetoencephalography (MEG). Healthy human subjects encoded a series of scene images, which was combined with cues predicting an aversive electric shock with different probabilities (0.2, 0.5 or 0.8). After encoding, memory for the studied images was tested using a remember/know recognition task. Behaviorally, pain anticipation did not modulate recollection-based recognition memory per se, but interacted with the perceived unpleasantness of the electric shock [visual analogue scale rating from 1 (not unpleasant) to 10 (highly unpleasant)]. More precisely, the relationship between pain anticipation and recollection followed an inverted u-shaped function the more unpleasant the shocks were rated by a subject. At the physiological level, this quadratic effect was mimicked in the event-related magnetic fields associated with successful memory formation ('DM-effect') ∼450ms after image onset at left frontal sensors. Importantly, across all subjects, shock anticipation modulated oscillatory power in the low beta frequency range (13-20Hz) in a linear fashion at left temporal sensors. Taken together, our findings indicate that beta oscillations provide a generic mechanism underlying pain anticipation; the effect on subsequent long-term memory, on the other hand, is much more variable and depends on the level of individual pain perception. As such, our findings give new and important insights into how aversive motivational states can drive memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Hippocampal place cell encoding of sloping terrain.

    PubMed

    Porter, Blake S; Schmidt, Robert; Bilkey, David K

    2018-05-21

    Effective navigation relies on knowledge of one's environment. A challenge to effective navigation is accounting for the time and energy costs of routes. Irregular terrain in ecological environments poses a difficult navigational problem as organisms ought to avoid effortful slopes to minimize travel costs. Route planning and navigation have previously been shown to involve hippocampal place cells and their ability to encode and store information about an organism's environment. However, little is known about how place cells may encode the slope of space and associated energy costs as experiments are traditionally carried out in flat, horizontal environments. We set out to investigate how dorsal-CA1 place cells in rats encode systematic changes to the slope of an environment by tilting a shuttle box from flat to 15° and 25° while minimizing external cue change. Overall, place cell encoding of tilted space was as robust as their encoding of flat ground as measured by traditional place cell metrics such as firing rates, spatial information, coherence, and field size. A large majority of place cells did, however, respond to slope by undergoing partial, complex remapping when the environment was shifted from one tilt angle to another. The propensity for place cells to remap did not, however, depend on the vertical distance the field shifted. Changes in slope also altered the temporal coding of information as measured by the rate of theta phase precession of place cell spikes, which decreased with increasing tilt angles. Together these observations indicate that place cells are sensitive to relatively small changes in terrain slope and that terrain slope may be an important source of information for organizing place cell ensembles. The terrain slope information encoded by place cells could be utilized by efferent regions to determine energetically advantageous routes to goal locations. This article is protected by copyright. All rights reserved. © 2018 Wiley

  13. The neural correlates of self-referential memory encoding and retrieval in schizophrenia.

    PubMed

    Jimenez, Amy M; Lee, Junghee; Wynn, Jonathan K; Green, Michael F

    2018-01-31

    Enhanced memory for self-oriented information is known as the self-referential memory (SRM) effect. fMRI studies of the SRM effect have focused almost exclusively on encoding, revealing selective engagement of the medial prefrontal cortex (mPFC) during "self" relative to other processing conditions. Other critical areas for self-processing include ventrolateral prefrontal cortex (vlPFC), temporo-parietal junction (TPJ) and posterior cingulate/precuneus (PCC/PC). Previous behavioral studies show that individuals with schizophrenia fail to benefit from this memory boost. However, the neural correlates of this deficit, at either encoding or retrieval, are unknown. Twenty individuals with schizophrenia and 16 healthy controls completed an event-related fMRI SRM paradigm. During encoding, trait adjectives were judged in terms of structural features ("case" condition), social desirability ("other" condition), or as self-referential ("self" condition). Participants then completed an unexpected recognition test (retrieval phase). We examined BOLD activation during both encoding and retrieval within mPFC, vlPFC, TPJ, and PCC/PC regions-of-interest (ROIs). During encoding, fMRI data indicated both groups had greater activation during the "self" relative to the "other" condition across ROIs. Controls showed this primarily in mPFC whereas patients showed this in PCC/PC. During retrieval, fMRI data indicated controls showed differentiation across ROIs between "self" and "other" conditions, but patients did not. Results suggest regional differences in the neural processing of self-referential information in individuals with schizophrenia, perhaps because representation of the self is not as well established in patients relative to controls. The current study presents novel findings that add to the literature implicating impaired self-oriented processing in schizophrenia. Published by Elsevier Ltd.

  14. Video time encoding machines.

    PubMed

    Lazar, Aurel A; Pnevmatikakis, Eftychios A

    2011-03-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value.

  15. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K [Idaho Falls, ID

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  16. Distinctiveness and encoding effects in online sentence comprehension

    PubMed Central

    Hofmeister, Philip; Vasishth, Shravan

    2014-01-01

    In explicit memory recall and recognition tasks, elaboration and contextual isolation both facilitate memory performance. Here, we investigate these effects in the context of sentence processing: targets for retrieval during online sentence processing of English object relative clause constructions differ in the amount of elaboration associated with the target noun phrase, or the homogeneity of superficial features (text color). Experiment 1 shows that greater elaboration for targets during the encoding phase reduces reading times at retrieval sites, but elaboration of non-targets has considerably weaker effects. Experiment 2 illustrates that processing isolated superficial features of target noun phrases—here, a green word in a sentence with words colored white—does not lead to enhanced memory performance, despite triggering longer encoding times. These results are interpreted in the light of the memory models of Nairne, 1990, 2001, 2006, which state that encoding remnants contribute to the set of retrieval cues that provide the basis for similarity-based interference effects. PMID:25566105

  17. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    PubMed

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  18. Neural Correlates of Encoding Predict Infants' Memory in the Paired-Comparison Procedure

    ERIC Educational Resources Information Center

    Snyder, Kelly A.

    2010-01-01

    The present study used event-related potentials (ERPs) to monitor infant brain activity during the initial encoding of a previously novel visual stimulus, and examined whether ERP measures of encoding predicted infants' subsequent performance on a visual memory task (i.e., the paired-comparison task). A late slow wave component of the ERP measured…

  19. Semantic and Phonological Encoding in Adults Who Stutter: Silent Responses to Pictorial Stimuli

    ERIC Educational Resources Information Center

    Vincent, Irena

    2017-01-01

    Purpose: Research on language planning in adult stuttering is relatively sparse and offers diverging arguments about a potential causative relationship between semantic and phonological encoding and fluency breakdowns. This study further investigated semantic and phonological encoding efficiency in adults who stutter (AWS) by means of silent…

  20. Children's associative learning: automatic and deliberate encoding of meaningful associations.

    PubMed

    Guttentag, R

    1995-01-01

    Three experiments were conducted examining 10- and 11-year-old children's deliberate and automatic encoding of meaningful associative relationships on a paired-associate learning task. Subjects in Experiment 1 were presented pairs of related and unrelated words under deliberate memorization and item-specific incidental-learning conditions. Cued-recall performance was superior with related relative to unrelated pairs under both instructional conditions, suggesting that the encoding of an association between items occurred automatically with meaningfully related words. In Experiment 2, it was found that execution of a verbal elaboration strategy required more time with unrelated than with related pairs, suggesting greater ease of elaboration strategy execution with related materials. Experiment 3 monitored strategy use online using a think-aloud procedure. Cued-recall performance was superior with related pairs when subjects used rehearsal. In contrast, elaboration produced equivalent levels of recall with both types of items, but subjects executed the strategy successfully more often with related than with unrelated pairs. These findings are discussed in terms of the role of automatic processes and the effort demands of strategy execution in children's strategy use.

  1. The Role of Memory Activation in Creating False Memories of Encoding Context

    ERIC Educational Resources Information Center

    Arndt, Jason

    2010-01-01

    Using 3 experiments, I examined false memory for encoding context by presenting Deese-Roediger-McDermott themes (Deese, 1959; Roediger & McDermott, 1995) in usual-looking fonts and by testing related, but unstudied, lure items in a font that was shown during encoding. In 2 of the experiments, testing lure items in the font used to study their…

  2. Encoder: A Connectionist Model of How Learning to Visually Encode Fixated Text Images Improves Reading Fluency

    ERIC Educational Resources Information Center

    Martin, Gale L.

    2004-01-01

    This article proposes that visual encoding learning improves reading fluency by widening the span over which letters are recognized from a fixated text image so that fewer fixations are needed to cover a text line. Encoder is a connectionist model that learns to convert images like the fixated text images human readers encode into the…

  3. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  4. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2013-11-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  6. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2017-09-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2010-06-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  8. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    DOEpatents

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-12-24

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-10-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Acute Effects of Alcohol on Encoding and Consolidation of Memory for Emotional Stimuli

    PubMed Central

    Weafer, Jessica; Gallo, David A.; De Wit, Harriet

    2016-01-01

    Objective: Acute doses of alcohol impair memory when administered before encoding of emotionally neutral stimuli but enhance memory when administered immediately after encoding, potentially by affecting memory consolidation. Here, we examined whether alcohol produces similar biphasic effects on memory for positive or negative emotional stimuli. Method: The current study examined memory for emotional stimuli after alcohol (0.8 g/kg) was administered either before stimulus viewing (encoding group; n = 20) or immediately following stimulus viewing (consolidation group; n = 20). A third group received placebo both before and after stimulus viewing (control group; n = 19). Participants viewed the stimuli on one day, and their retrieval was assessed exactly 48 hours later, when they performed a surprise cued recollection and recognition test of the stimuli in a drug-free state. Results: As in previous studies, alcohol administered before encoding impaired memory accuracy, whereas alcohol administered after encoding enhanced memory accuracy. Critically, alcohol effects on cued recollection depended on the valence of the emotional stimuli: Its memory-impairing effects during encoding were greatest for emotional stimuli, whereas its memory-enhancing effects during consolidation were greatest for emotionally neutral stimuli. Effects of alcohol on recognition were not related to stimulus valence. Conclusions: This study extends previous findings with memory for neutral stimuli, showing that alcohol differentially affects the encoding and consolidation of memory for emotional stimuli. These effects of alcohol on memory for emotionally salient material may contribute to the development of alcohol-related problems, perhaps by dampening memory for adverse consequences of alcohol consumption. PMID:26751358

  13. Video Time Encoding Machines

    PubMed Central

    Lazar, Aurel A.; Pnevmatikakis, Eftychios A.

    2013-01-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value. PMID:21296708

  14. Spectrally-encoded color imaging

    PubMed Central

    Kang, DongKyun; Yelin, Dvir; Bouma, Brett E.; Tearney, Guillermo J.

    2010-01-01

    Spectrally-encoded endoscopy (SEE) is a technique for ultraminiature endoscopy that encodes each spatial location on the sample with a different wavelength. One limitation of previous incarnations of SEE is that it inherently creates monochromatic images, since the spectral bandwidth is expended in the spatial encoding process. Here we present a spectrally-encoded imaging system that has color imaging capability. The new imaging system utilizes three distinct red, green, and blue spectral bands that are configured to illuminate the grating at different incident angles. By careful selection of the incident angles, the three spectral bands can be made to overlap on the sample. To demonstrate the method, a bench-top system was built, comprising a 2400-lpmm grating illuminated by three 525-μm-diameter beams with three different spectral bands. Each spectral band had a bandwidth of 75 nm, producing 189 resolvable points. A resolution target, color phantoms, and excised swine small intestine were imaged to validate the system's performance. The color SEE system showed qualitatively and quantitatively similar color imaging performance to that of a conventional digital camera. PMID:19688002

  15. Encoding and Retrieval Interference in Sentence Comprehension: Evidence from Agreement

    PubMed Central

    Villata, Sandra; Tabor, Whitney; Franck, Julie

    2018-01-01

    Long-distance verb-argument dependencies generally require the integration of a fronted argument when the verb is encountered for sentence interpretation. Under a parsing model that handles long-distance dependencies through a cue-based retrieval mechanism, retrieval is hampered when retrieval cues also resonate with non-target elements (retrieval interference). However, similarity-based interference may also stem from interference arising during the encoding of elements in memory (encoding interference), an effect that is not directly accountable for by a cue-based retrieval mechanism. Although encoding and retrieval interference are clearly distinct at the theoretical level, it is difficult to disentangle the two on empirical grounds, since encoding interference may also manifest at the retrieval region. We report two self-paced reading experiments aimed at teasing apart the role of each component in gender and number subject-verb agreement in Italian and English object relative clauses. In Italian, the verb does not agree in gender with the subject, thus providing no cue for retrieval. In English, although present tense verbs agree in number with the subject, past tense verbs do not, allowing us to test the role of number as a retrieval cue within the same language. Results from both experiments converge, showing similarity-based interference at encoding, and some evidence for an effect at retrieval. After having pointed out the non-negligible role of encoding in sentence comprehension, and noting that Lewis and Vasishth’s (2005) ACT-R model of sentence processing, the most fully developed cue-based retrieval approach to sentence processing does not predict encoding effects, we propose an augmentation of this model that predicts these effects. We then also propose a self-organizing sentence processing model (SOSP), which has the advantage of accounting for retrieval and encoding interference with a single mechanism. PMID:29403414

  16. Lateral and medial prefrontal contributions to emotion generation by semantic elaboration during episodic encoding.

    PubMed

    Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi

    2017-02-01

    Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.

  17. Encoding and Retrieval During Bimanual Rhythmic Coordination

    ERIC Educational Resources Information Center

    Shockley, Kevin; Turvey, Michael T.

    2005-01-01

    In 2 experiments, bimanual 1:1 rhythmic coordination was performed concurrently with encoding or retrieval of word lists. Effects of divided attention (DA) on coordination were indexed by changes in mean relative phase and recurrence measures of shared activity between the 2 limbs. Effects of DA on memory were indexed by deficits in recall…

  18. The effect of encoding strategy on the neural correlates of memory for faces.

    PubMed

    Bernstein, Lori J; Beig, Sania; Siegenthaler, Amy L; Grady, Cheryl L

    2002-01-01

    Encoding and recognition of unfamiliar faces in young adults were examined using positron emission tomography to determine whether different encoding strategies would lead to encoding/retrieval differences in brain activity. Three types of encoding were compared: a 'deep' task (judging pleasantness/unpleasantness), a 'shallow' task (judging right/left orientation), and an intentional learning task in which subjects were instructed to learn the faces for a subsequent memory test but were not provided with a specific strategy. Memory for all faces was tested with an old/new recognition test. A modest behavioral effect was obtained, with deeply-encoded faces being recognized more accurately than shallowly-encoded or intentionally-learned faces. Regardless of encoding strategy, encoding activated a primarily ventral system including bilateral temporal and fusiform regions and left prefrontal cortices, whereas recognition activated a primarily dorsal set of regions including right prefrontal and parietal areas. Within encoding, the type of strategy produced different brain activity patterns, with deep encoding being characterized by left amygdala and left anterior cingulate activation. There was no effect of encoding strategy on brain activity during the recognition conditions. Posterior fusiform gyrus activation was related to better recognition accuracy in those conditions encouraging perceptual strategies, whereas activity in left frontal and temporal areas correlated with better performance during the 'deep' condition. Results highlight three important aspects of face memory: (1) the effect of encoding strategy was seen only at encoding and not at recognition; (2) left inferior prefrontal cortex was engaged during encoding of faces regardless of strategy; and (3) differential activity in fusiform gyrus was found, suggesting that activity in this area is not only a result of automatic face processing but is modulated by controlled processes.

  19. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Andrews, Kenneth; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    In this paper, we present two encoding methods for block-circulant LDPC codes. The first is an iterative encoding method based on the erasure decoding algorithm, and the computations required are well organized due to the block-circulant structure of the parity check matrix. The second method uses block-circulant generator matrices, and the encoders are very similar to those for recursive convolutional codes. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and operate at 100 Msymbols/second.

  20. Prefrontal Engagement during Source Memory Retrieval Depends on the Prior Encoding Task

    PubMed Central

    Kuo, Trudy Y.; Van Petten, Cyma

    2008-01-01

    The prefrontal cortex is strongly engaged by some, but not all, episodic memory tests. Prior work has shown that source recognition tests—those that require memory for conjunctions of studied attributes—yield deficient performance in patients with prefrontal damage and greater prefrontal activity in healthy subjects, as compared to simple recognition tests. Here, we tested the hypothesis that there is no intrinsic relationship between the prefrontal cortex and source memory, but that the prefrontal cortex is engaged by the demand to retrieve weakly encoded relationships. Subjects attempted to remember object/color conjunctions after an encoding task that focused on object identity alone, and an integrative encoding task that encouraged attention to object/color relationships. After the integrative encoding task, the late prefrontal brain electrical activity that typically occurs in source memory tests was eliminated. Earlier brain electrical activity related to successful recognition of the objects was unaffected by the nature of prior encoding. PMID:16839287

  1. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    PubMed

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  2. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  3. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  4. Pneumatic binary encoder replaces multiple solenoid system

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Pneumatic binary encoder replaces solenoid system in the pilot stage of a digital actuator. The encoder operates in flip-flop manner to valve gas at either high or low pressures. By rotating the disk in a pinion-to-encoding gear ratio, six to eight adder circuits may be operated from single encoder.

  5. Weak encoding of faces predicts socially influenced judgments of facial attractiveness.

    PubMed

    Schnuerch, Robert; Koppehele-Gossel, Judith; Gibbons, Henning

    2015-01-01

    Conforming to the majority can be seen as a heuristic type of judgment, as it allows the individual to easily choose the most accurate or most socially acceptable type of behavior. People who process the currently to-be-judged items in a superficial, heuristic way should tend to conform to group judgment more than people processing these items in a systematic and elaborate way. We investigated this hypothesis using electroencephalography (EEG), analyzing whether the strength of neural encoding of faces was related to the tendency to adopt a group's evaluative judgments regarding these faces. As expected, we found that the amplitude of the N170, a specific neural correlate of face encoding, was inversely related to conformity across participants: The weaker the faces were encoded, the more the majority response regarding the faces' attractiveness was adopted instead of relying on the actual qualities of the faces. Applying neurophysiological methodology, we thus provide support for previous claims, based on behavioral data and theorizing, that social conformity is a heuristic type of judgment. We propose that weak encoding of judgment-relevant information is a typical, possibly even necessary, precursor of socially adjusted judgments, irrespective of one's current motivational goal (i.e., to be accurate or accepted).

  6. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding

    PubMed Central

    Maass, Anne; Schütze, Hartmut; Speck, Oliver; Yonelinas, Andrew; Tempelmann, Claus; Heinze, Hans-Jochen; Berron, David; Cardenas-Blanco, Arturo; Brodersen, Kay H.; Enno Stephan, Klaas; Düzel, Emrah

    2014-01-01

    The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC–EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7 T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2–3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC–EC input pathways, the memory fate of a novel stimulus depends more on HC–EC output. PMID:25424131

  7. Altered neural encoding of prediction errors in assault-related posttraumatic stress disorder.

    PubMed

    Ross, Marisa C; Lenow, Jennifer K; Kilts, Clinton D; Cisler, Josh M

    2018-05-12

    Posttraumatic stress disorder (PTSD) is widely associated with deficits in extinguishing learned fear responses, which relies on mechanisms of reinforcement learning (e.g., updating expectations based on prediction errors). However, the degree to which PTSD is associated with impairments in general reinforcement learning (i.e., outside of the context of fear stimuli) remains poorly understood. Here, we investigate brain and behavioral differences in general reinforcement learning between adult women with and without a current diagnosis of PTSD. 29 adult females (15 PTSD with exposure to assaultive violence, 14 controls) underwent a neutral reinforcement-learning task (i.e., two arm bandit task) during fMRI. We modeled participant behavior using different adaptations of the Rescorla-Wagner (RW) model and used Independent Component Analysis to identify timecourses for large-scale a priori brain networks. We found that an anticorrelated and risk sensitive RW model best fit participant behavior, with no differences in computational parameters between groups. Women in the PTSD group demonstrated significantly less neural encoding of prediction errors in both a ventral striatum/mPFC and anterior insula network compared to healthy controls. Weakened encoding of prediction errors in the ventral striatum/mPFC and anterior insula during a general reinforcement learning task, outside of the context of fear stimuli, suggests the possibility of a broader conceptualization of learning differences in PTSD than currently proposed in current neurocircuitry models of PTSD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Comparison of H.265/HEVC encoders

    NASA Astrophysics Data System (ADS)

    Trochimiuk, Maciej

    2016-09-01

    The H.265/HEVC is the state-of-the-art video compression standard, which allows the bitrate reduction up to 50% compared with its predecessor, H.264/AVC, maintaining equal perceptual video quality. The growth in coding efficiency was achieved by increasing the number of available intra- and inter-frame prediction features and improvements in existing ones, such as entropy encoding and filtering. Nevertheless, to achieve real-time performance of the encoder, simplifications in algorithm are inevitable. Some features and coding modes shall be skipped, to reduce time needed to evaluate modes forwarded to rate-distortion optimisation. Thus, the potential acceleration of the encoding process comes at the expense of coding efficiency. In this paper, a trade-off between video quality and encoding speed of various H.265/HEVC encoders is discussed.

  9. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Matt; Wogulis, Mark

    The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  10. Hippocampal Contribution to Context Encoding across Development Is Disrupted following Early-Life Adversity.

    PubMed

    Lambert, Hilary K; Sheridan, Margaret A; Sambrook, Kelly A; Rosen, Maya L; Askren, Mary K; McLaughlin, Katie A

    2017-02-15

    Context can drastically influence responses to environmental stimuli. For example, a gunshot should provoke a different response at a public park than a shooting range. Little is known about how contextual processing and neural correlates change across human development or about individual differences related to early environmental experiences. Children ( N = 60; 8-19 years, 24 exposed to interpersonal violence) completed a context encoding task during fMRI scanning using a delayed match-to-sample design with neutral, happy, and angry facial cues embedded in realistic background scenes. Outside the scanner, participants completed a memory test for context-face pairings. Context memory and neural correlates of context encoding did not vary with age. Larger hippocampal volume was associated with better context memory. Posterior hippocampus was recruited during context encoding, and greater activation in this region predicted better memory for contexts paired with angry faces. Children exposed to violence had poor memory of contexts paired with angry faces, reduced hippocampal volume, and atypical neural recruitment on encoding trials with angry faces, including reduced hippocampal activation and greater functional connectivity between hippocampus and ventrolateral prefrontal cortex (vlPFC). Greater hippocampus-vlPFC connectivity was associated with worse memory for contexts paired with angry faces. Posterior hippocampus appears to support context encoding, a process that does not exhibit age-related variation from middle childhood to late adolescence. Exposure to dangerous environments in childhood is associated with poor context encoding in the presence of threat, likely due to greater vlPFC-dependent attentional narrowing on threat cues at the expense of hippocampus-dependent processing of the broader context. SIGNIFICANCE STATEMENT The ability to use context to guide reactions to environmental stimuli promotes flexible behavior. Remarkably little research has

  11. Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houshmand, Monireh; Hosseini-Khayat, Saied

    2011-02-15

    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation andmore » practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.« less

  12. The memory that’s right and the memory that’s left: Event-related potentials reveal hemispheric asymmetries in the encoding and retention of verbal information

    PubMed Central

    Evans, Karen M.; Federmeier, Kara D.

    2009-01-01

    We examined the nature and timecourse of hemispheric asymmetries in verbal memory by recording event-related potentials (ERPs) in a continuous recognition task. Participants made overt recognition judgments to test words presented in central vision that were either novel (new words) or had been previously presented in the left or right visual field (old words). An ERP memory effect linked to explicit retrieval revealed no asymmetries for words repeated at short and medium retention intervals, but at longer repetition lags (20–50 intervening words) this ‘old/new effect’ was more pronounced for words whose study presentation had been biased to the right hemisphere (RH). Additionally, a repetition effect linked to more implicit recognition processes (P2 amplitude changes) was observed at all lags for words preferentially encoded by the RH but was not observed for left hemisphere (LH)-encoded words. These results are consistent with theories that the RH encodes verbal stimuli more veridically whereas the LH encodes in a more abstract manner. The current findings provide a critical link between prior work on memory asymmetries, which has emphasized general LH advantages for verbal material, and on language comprehension, which has pointed to an important role for the RH in language processes that require the retention and integration of verbal information over long time spans. PMID:17291547

  13. Putting the Pieces Together: The Role of Dorsolateral Prefrontal Cortex in Relational Memory Encoding

    ERIC Educational Resources Information Center

    Blumenfeld, Robert S.; Parks, Colleen M.; Yonelinas, Andrew P.; Ranganath, Charan

    2011-01-01

    Results from fMRI have strongly supported the idea that the ventrolateral PFC (VLPFC) contributes to successful memory formation, but the role the dorsolateral PFC (DLPFC) in memory encoding is more controversial. Some findings suggest that the DLPFC is recruited when one is processing relationships between items in working memory, and this…

  14. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  15. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons.

    PubMed

    Otten, L J; Henson, R N; Rugg, M D

    2001-02-01

    Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.

  16. Effects of distinctive encoding on correct and false memory: a meta-analytic review of costs and benefits and their origins in the DRM paradigm.

    PubMed

    Huff, Mark J; Bodner, Glen E; Fawcett, Jonathan M

    2015-04-01

    We review and meta-analyze how distinctive encoding alters encoding and retrieval processes and, thus, affects correct and false recognition in the Deese-Roediger-McDermott (DRM) paradigm. Reductions in false recognition following distinctive encoding (e.g., generation), relative to a nondistinctive read-only control condition, reflected both impoverished relational encoding and use of a retrieval-based distinctiveness heuristic. Additional analyses evaluated the costs and benefits of distinctive encoding in within-subjects designs relative to between-group designs. Correct recognition was design independent, but in a within design, distinctive encoding was less effective at reducing false recognition for distinctively encoded lists but more effective for nondistinctively encoded lists. Thus, distinctive encoding is not entirely "cost free" in a within design. In addition to delineating the conditions that modulate the effects of distinctive encoding on recognition accuracy, we discuss the utility of using signal detection indices of memory information and memory monitoring at test to separate encoding and retrieval processes.

  17. Syllabic encoding during overt speech production in Cantonese: Evidence from temporal brain responses.

    PubMed

    Wong, Andus Wing-Kuen; Wang, Jie; Ng, Tin-Yan; Chen, Hsuan-Chih

    2016-10-01

    The time course of phonological encoding in overt Cantonese disyllabic word production was investigated using a picture-word interference task with concurrent recording of the event-related brain potentials (ERPs). Participants were asked to name aloud individually presented pictures and ignore a distracting Chinese character. Participants' naming responses were faster, relative to an unrelated control, when the distractor overlapped with the target's word-initial or word-final syllables. Furthermore, ERP waves in the syllable-related conditions were more positive-going than those in the unrelated control conditions from 500ms to 650ms post target onset (i.e., a late positivity). The mean and peak amplitudes of this late positivity correlated with the size of phonological facilitation. More importantly, the onset of the late positivity associated with word-initial syllable priming was 44ms earlier than that associated with word-final syllable priming, suggesting that phonological encoding in overt speech runs incrementally and the encoding duration for one syllable unit is approximately 44ms. Although the size of effective phonological units might vary across languages, as suggested by previous speech production studies, the present data indicate that the incremental nature of phonological encoding is a universal mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to

  19. Effects of Aging on the Neural Correlates of Successful Item and Source Memory Encoding

    PubMed Central

    Dennis, Nancy A.; Hayes, Scott M.; Prince, Steven E.; Madden, David J.; Huettel, Scott A.; Cabeza, Roberto

    2009-01-01

    To investigate the neural basis of age-related source memory (SM) deficits, young and older adults were scanned with fMRI while encoding faces, scenes, and face-scene pairs. Successful encoding activity was identified by comparing encoding activity for subsequently remembered versus forgotten items or pairs. Age deficits in successful encoding activity in hippocampal and prefrontal regions were more pronounced for SM (pairs) compared to item memory (faces and scenes). Age-related reductions were also found in regions specialized in processing faces (fusiform face area) and scenes (parahippocampal place area), but these reductions were similar for item and SM. Functional connectivity between the hippocampus and the rest of the brain was also affected by aging; whereas connections with posterior cortices were weaker in older adults, connections with anterior cortices including prefrontal regions were stronger in older adults. Taken together, the results provide a link between SM deficits in older adults and reduced recruitment of hippocampal and prefrontal regions during encoding. The functional connectivity findings are consistent with a posterior-anterior shift with aging (PASA), previously reported in several cognitive domains and linked to functional compensation. PMID:18605869

  20. Hippocampal-prefrontal input supports spatial encoding in working memory.

    PubMed

    Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A

    2015-06-18

    Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.

  1. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1981-01-01

    The logic structure of a universal VLSI chip called the symbol-slice Reed-Solomon (RS) encoder chip is discussed. An RS encoder can be constructed by cascading and properly interconnecting a group of such VLSI chips. As a design example, it is shown that a (255,223) RD encoder requiring around 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical interconnected VLSI RS encoder chips. Besides the size advantage, the VLSI RS encoder also has the potential advantages of requiring less power and having a higher reliability.

  2. Semantic attributes are encoded in human electrocorticographic signals during visual object recognition.

    PubMed

    Rupp, Kyle; Roos, Matthew; Milsap, Griffin; Caceres, Carlos; Ratto, Christopher; Chevillet, Mark; Crone, Nathan E; Wolmetz, Michael

    2017-03-01

    Non-invasive neuroimaging studies have shown that semantic category and attribute information are encoded in neural population activity. Electrocorticography (ECoG) offers several advantages over non-invasive approaches, but the degree to which semantic attribute information is encoded in ECoG responses is not known. We recorded ECoG while patients named objects from 12 semantic categories and then trained high-dimensional encoding models to map semantic attributes to spectral-temporal features of the task-related neural responses. Using these semantic attribute encoding models, untrained objects were decoded with accuracies comparable to whole-brain functional Magnetic Resonance Imaging (fMRI), and we observed that high-gamma activity (70-110Hz) at basal occipitotemporal electrodes was associated with specific semantic dimensions (manmade-animate, canonically large-small, and places-tools). Individual patient results were in close agreement with reports from other imaging modalities on the time course and functional organization of semantic processing along the ventral visual pathway during object recognition. The semantic attribute encoding model approach is critical for decoding objects absent from a training set, as well as for studying complex semantic encodings without artificially restricting stimuli to a small number of semantic categories. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. The Dorsolateral Prefrontal Cortex Plays a Role in Self-Initiated Elaborative Cognitive Processing during Episodic Memory Encoding: rTMS Evidence

    PubMed Central

    Hawco, Colin; Berlim, Marcelo T.; Lepage, Martin

    2013-01-01

    During episodic memory encoding, elaborative cognitive processing can improve later recall or recognition. While multiple studies examined the neural correlates of encoding strategies, few studies have explicitly focused on the self-initiation of elaborative encoding. Repetitive transcranial magnetic stimulation (rTMS), a method which can transiently disrupt neural activity, was administered during an associative encoding task. rTMS was either applied to the left dorsolateral prefrontal cortex (DLPFC) or to the vertex (a control region not involved in memory encoding) during presentation of pairs of words. Pairs could be semantically related or not related. Two encoding instructions were given, either cueing participants to analyze semantic relationships (cued condition), or to memorize the pair without any specific strategy cues (the self-initiated condition). Participants filled out a questionnaire regarding their use of memory strategies and performed a cued-recall task. We hypothesized that if the DLPFC plays a role in the self-initiation of elaborative encoding we would observe a reduction in memory performance in the self-initiated condition, particularly for related. We found a significant correlation between the effects of rTMS and strategy use, only in the self-initiated condition with related pairs. High strategy users showed reduced performance following DLPFC stimulation, while low strategy users tended to show increased recall following DLPFC stimulation during encoding. These results suggest the left DLPFC may be involved in the self-initiation of memory strategy use, and individuals may utilize different neural networks depending on their use of encoding strategies. PMID:24040072

  4. Incidental Memory Encoding Assessed with Signal Detection Theory and Functional Magnetic Resonance Imaging (fMRI).

    PubMed

    Clemens, Benjamin; Regenbogen, Christina; Koch, Kathrin; Backes, Volker; Romanczuk-Seiferth, Nina; Pauly, Katharina; Shah, N Jon; Schneider, Frank; Habel, Ute; Kellermann, Thilo

    2015-01-01

    In functional magnetic resonance imaging (fMRI) studies that apply a "subsequent memory" approach, successful encoding is indicated by increased fMRI activity during the encoding phase for hits vs. misses, in areas underlying memory encoding such as the hippocampal formation. Signal-detection theory (SDT) can be used to analyze memory-related fMRI activity as a function of the participant's memory trace strength (d(')). The goal of the present study was to use SDT to examine the relationship between fMRI activity during incidental encoding and participants' recognition performance. To implement a new approach, post-experimental group assignment into High- or Low Performers (HP or LP) was based on 29 healthy participants' recognition performance, assessed with SDT. The analyses focused on the interaction between the factors group (HP vs. LP) and recognition performance (hits vs. misses). A whole-brain analysis revealed increased activation for HP vs. LP during incidental encoding for remembered vs. forgotten items (hits > misses) in the insula/temporo-parietal junction (TPJ) and the fusiform gyrus (FFG). Parameter estimates in these regions exhibited a significant positive correlation with d('). As these brain regions are highly relevant for salience detection (insula), stimulus-driven attention (TPJ), and content-specific processing of mnemonic stimuli (FFG), we suggest that HPs' elevated memory performance was associated with enhanced attentional and content-specific sensory processing during the encoding phase. We provide first correlative evidence that encoding-related activity in content-specific sensory areas and content-independent attention and salience detection areas influences memory performance in a task with incidental encoding of facial stimuli. Based on our findings, we discuss whether the aforementioned group differences in brain activity during incidental encoding might constitute the basis of general differences in memory performance between HP and

  5. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: encoding transition.

    PubMed

    Luo, Huan; Wang, Yadong; Poeppel, David; Simon, Jonathan Z

    2007-12-01

    Complex natural sounds (e.g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate f(AM) = 37 Hz) and FM (with varying rates f(FM)), magnetoencephalography (MEG) is used to investigate the elicited auditory steady-state response (aSSR) at relevant frequencies (f(AM), f(FM), f(AM) + f(FM)). Previous work demonstrated that for sounds with slower FM dynamics (f(FM) < 5 Hz), the phase of the aSSR at f(AM) tracked the FM; in other words, AM and FM features were co-tracked and co-represented by "phase modulation" encoding. This study explores the neural coding mechanism for stimuli with faster FM dynamics (< or =30 Hz), demonstrating that at faster rates (f(FM) > 5 Hz), there is a transition from pure phase modulation encoding to a single-upper-sideband (SSB) response (at frequency f(AM) + f(FM)) pattern. We propose that this unexpected SSB response can be explained by the additional involvement of subsidiary AM encoding responses simultaneously to, and in quadrature with, the ongoing phase modulation. These results, using MEG to reveal a possible neural encoding of specific acoustic properties, demonstrate more generally that physiological tests of encoding hypotheses can be performed noninvasively on human subjects, complementing invasive, single-unit recordings in animals.

  6. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety

    PubMed Central

    Kong, Yazhuo; Tracey, Irene

    2017-01-01

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  7. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    PubMed

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  8. Face and object encoding under perceptual load: ERP evidence.

    PubMed

    Neumann, Markus F; Mohamed, Tarik N; Schweinberger, Stefan R

    2011-02-14

    According to the perceptual load theory, processing of a task-irrelevant distractor is abolished when attentional resources are fully consumed by task-relevant material. As an exception, however, famous faces have been shown to elicit repetition modulations in event-related potentials - an N250r - despite high load at initial presentation, suggesting preserved face-encoding. Here, we recorded N250r repetition modulations by unfamiliar faces, hands, and houses, and tested face specificity of preserved encoding under high load. In an immediate (S1-S2) repetition priming paradigm, participants performed a letter identification task on S1 by indicating whether an "X" vs. "N" was among 6 different (high load condition) or 6 identical (low load condition) letters. Letter strings were superimposed on distractor faces, hands, or houses. Subsequent S2 probes were either identical repetitions of S1 distractors, non-repeated exemplars from the same category, or infrequent butterflies, to which participants responded. Independent of attentional load at S1, an occipito-temporal N250r was found for unfamiliar faces. In contrast, no repetition-related neural modulation emerged for houses or hands. This strongly suggests that a putative face-selective attention module supports encoding under high load, and that similar mechanisms are unavailable for other natural or artificial objects. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Programmable Pulse-Position-Modulation Encoder

    NASA Technical Reports Server (NTRS)

    Zhu, David; Farr, William

    2006-01-01

    A programmable pulse-position-modulation (PPM) encoder has been designed for use in testing an optical communication link. The encoder includes a programmable state machine and an electronic code book that can be updated to accommodate different PPM coding schemes. The encoder includes a field-programmable gate array (FPGA) that is programmed to step through the stored state machine and code book and that drives a custom high-speed serializer circuit board that is capable of generating subnanosecond pulses. The stored state machine and code book can be updated by means of a simple text interface through the serial port of a personal computer.

  10. Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding.

    PubMed

    Otten, Leun J

    2007-09-01

    Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.

  11. Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan.

    PubMed

    Ankudowich, E; Pasvanis, S; Rajah, M N

    2016-10-01

    Age-related deficits in context memory may arise from neural changes underlying both encoding and retrieval of context information. Although age-related functional changes in the brain regions supporting context memory begin at midlife, little is known about the functional changes with age that support context memory encoding and retrieval across the adult lifespan. We investigated how age-related functional changes support context memory across the adult lifespan by assessing linear changes with age during successful context encoding and retrieval. Using functional magnetic resonance imaging (fMRI), we compared young, middle-aged and older adults during both encoding and retrieval of spatial and temporal details of faces. Multivariate behavioral partial least squares (B-PLS) analysis of fMRI data identified a pattern of whole-brain activity that correlated with a linear age term and a pattern of whole-brain activity that was associated with an age-by-memory phase (encoding vs. retrieval) interaction. Further investigation of this latter effect identified three main findings: 1) reduced phase-related modulation in bilateral fusiform gyrus, left superior/anterior frontal gyrus and right inferior frontal gyrus that started at midlife and continued to older age, 2) reduced phase-related modulation in bilateral inferior parietal lobule that occurred only in older age, and 3) changes in phase-related modulation in older but not younger adults in left middle frontal gyrus and bilateral parahippocampal gyrus that was indicative of age-related over-recruitment. We conclude that age-related reductions in context memory arise in midlife and are related to changes in perceptual recollection and changes in fronto-parietal retrieval monitoring. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  12. Prosodic Encoding in Silent Reading.

    ERIC Educational Resources Information Center

    Wilkenfeld, Deborah

    In silent reading, short-memory tasks, such as semantic and syntactic processing, require a stage of phonetic encoding between visual representation and the actual extraction of meaning, and this encoding includes prosodic as well as segmental features. To test for this suprasegmental coding, an experiment was conducted in which subjects were…

  13. When fear forms memories: threat of shock and brain potentials during encoding and recognition.

    PubMed

    Weymar, Mathias; Bradley, Margaret M; Hamm, Alfons O; Lang, Peter J

    2013-03-01

    The anticipation of highly aversive events is associated with measurable defensive activation, and both animal and human research suggests that stress-inducing contexts can facilitate memory. Here, we investigated whether encoding stimuli in the context of anticipating an aversive shock affects recognition memory. Event-related potentials (ERPs) were measured during a recognition test for words that were encoded in a font color that signaled threat or safety. At encoding, cues signaling threat of shock, compared to safety, prompted enhanced P2 and P3 components. Correct recognition of words encoded in the context of threat, compared to safety, was associated with an enhanced old-new ERP difference (500-700 msec; centro-parietal), and this difference was most reliable for emotional words. Moreover, larger old-new ERP differences when recognizing emotional words encoded in a threatening context were associated with better recognition, compared to words encoded in safety. Taken together, the data indicate enhanced memory for stimuli encoded in a context in which an aversive event is merely anticipated, which could assist in understanding effects of anxiety and stress on memory processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Emotion regulation modulates anticipatory brain activity that predicts emotional memory encoding in women.

    PubMed

    Galli, Giulia; Griffiths, Victoria A; Otten, Leun J

    2014-03-01

    It has been shown that the effectiveness with which unpleasant events are encoded into memory is related to brain activity set in train before the events. Here, we assessed whether encoding-related activity before an aversive event can be modulated by emotion regulation. Electrical brain activity was recorded from the scalps of healthy women while they performed an incidental encoding task on randomly intermixed unpleasant and neutral visual scenes. A cue presented 1.5 s before each picture indicated the upcoming valence. In half of the blocks of trials, the instructions emphasized to let emotions arise in a natural way. In the other half, participants were asked to decrease their emotional response by adopting the perspective of a detached observer. Memory for the scenes was probed 1 day later with a recognition memory test. Brain activity before unpleasant scenes predicted later memory of the scenes, but only when participants felt their emotions and did not detach from them. The findings indicate that emotion regulation can eliminate the influence of anticipatory brain activity on memory encoding. This may be relevant for the understanding and treatment of psychiatric diseases with a memory component.

  15. Multicore-based 3D-DWT video encoder

    NASA Astrophysics Data System (ADS)

    Galiano, Vicente; López-Granado, Otoniel; Malumbres, Manuel P.; Migallón, Hector

    2013-12-01

    Three-dimensional wavelet transform (3D-DWT) encoders are good candidates for applications like professional video editing, video surveillance, multi-spectral satellite imaging, etc. where a frame must be reconstructed as quickly as possible. In this paper, we present a new 3D-DWT video encoder based on a fast run-length coding engine. Furthermore, we present several multicore optimizations to speed-up the 3D-DWT computation. An exhaustive evaluation of the proposed encoder (3D-GOP-RL) has been performed, and we have compared the evaluation results with other video encoders in terms of rate/distortion (R/D), coding/decoding delay, and memory consumption. Results show that the proposed encoder obtains good R/D results for high-resolution video sequences with nearly in-place computation using only the memory needed to store a group of pictures. After applying the multicore optimization strategies over the 3D DWT, the proposed encoder is able to compress a full high-definition video sequence in real-time.

  16. Interactions among emotional attention, encoding, and retrieval of ambiguous information: An eye-tracking study.

    PubMed

    Everaert, Jonas; Koster, Ernst H W

    2015-10-01

    Emotional biases in attention modulate encoding of emotional material into long-term memory, but little is known about the role of such attentional biases during emotional memory retrieval. The present study investigated how emotional biases in memory are related to attentional allocation during retrieval. Forty-nine individuals encoded emotionally positive and negative meanings derived from ambiguous information and then searched their memory for encoded meanings in response to a set of retrieval cues. The remember/know/new procedure was used to classify memories as recollection-based or familiarity-based, and gaze behavior was monitored throughout the task to measure attentional allocation. We found that a bias in sustained attention during recollection-based, but not familiarity-based, retrieval predicted subsequent memory bias toward positive versus negative material following encoding. Thus, during emotional memory retrieval, attention affects controlled forms of retrieval (i.e., recollection) but does not modulate relatively automatic, familiarity-based retrieval. These findings enhance understanding of how distinct components of attention regulate the emotional content of memories. Implications for theoretical models and emotion regulation are discussed. (c) 2015 APA, all rights reserved).

  17. Time Course of Grammatical Encoding in Agrammatism

    ERIC Educational Resources Information Center

    Lee, Jiyeon

    2011-01-01

    Producing a sentence involves encoding a preverbal message into a grammatical structure by retrieving lexical items and integrating them into a functional (semantic-to-grammatical) structure. Individuals with agrammatism are impaired in this grammatical encoding process. However, it is unclear what aspect of grammatical encoding is impaired and…

  18. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1982-01-01

    A description is given of the logic structure of the universal VLSI symbol-slice Reed-Solomon (RS) encoder chip, from a group of which an RS encoder may be constructed through cascading and proper interconnection. As a design example, it is shown that an RS encoder presently requiring approximately 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical, interconnected VLSI RS encoder chips, offering in addition to greater compactness both a lower power requirement and greater reliability.

  19. Architecture for VLSI design of Reed-Solomon encoders

    NASA Astrophysics Data System (ADS)

    Liu, K. Y.

    1982-02-01

    A description is given of the logic structure of the universal VLSI symbol-slice Reed-Solomon (RS) encoder chip, from a group of which an RS encoder may be constructed through cascading and proper interconnection. As a design example, it is shown that an RS encoder presently requiring approximately 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical, interconnected VLSI RS encoder chips, offering in addition to greater compactness both a lower power requirement and greater reliability.

  20. Does long-term object priming depend on the explicit detection of object identity at encoding?

    PubMed Central

    Gomes, Carlos A.; Mayes, Andrew

    2015-01-01

    It is currently unclear whether objects have to be explicitly identified at encoding for reliable behavioral long-term object priming to occur. We conducted two experiments that investigated long-term object and non-object priming using a selective-attention encoding manipulation that reduces explicit object identification. In Experiment 1, participants either counted dots flashed within an object picture (shallow encoding) or engaged in an animacy task (deep encoding) at study, whereas, at test, they performed an object-decision task. Priming, as measured by reaction times (RTs), was observed for both types of encoding, and was of equivalent magnitude. In Experiment 2, non-object priming (faster RTs for studied relative to unstudied non-objects) was also obtained under the same selective-attention encoding manipulation as in Experiment 1, and the magnitude of the priming effect was equivalent between experiments. In contrast, we observed a linear decrement in recognition memory accuracy across conditions (deep encoding of Experiment 1 > shallow encoding Experiment 1 > shallow encoding of Experiment 2), suggesting that priming was not contaminated by explicit memory strategies. We argue that our results are more consistent with the identification/production framework than the perceptual/conceptual distinction, and we conclude that priming of pictures largely ignored at encoding can be subserved by the automatic retrieval of two types of instances: one at the motor level and another at an object-decision level. PMID:25852594

  1. Effortful Retrieval Reduces Hippocampal Activity and Impairs Incidental Encoding

    PubMed Central

    Reas, Emilie T.; Brewer, James B.

    2014-01-01

    Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in encoding, this study examines the influence of retrieval effort on encoding performance and the interactive effects of encoding and retrieval on hippocampal and neocortical activity. Functional magnetic resonance imaging was conducted while subjects performed a word recognition task with incidental picture encoding. Both lower memory strength and increased search duration were associated with encoding failure and reduced hippocampal and default network activity. Activity in the anterior hippocampus tracked encoding, which was more strongly deactivated when incidental encoding was unsuccessful. These findings highlight potential contributions from background encoding processes to hippocampal activations during neuroimaging studies of episodic memory retrieval. PMID:23378272

  2. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR

  3. Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles

    PubMed Central

    Treue, Stefan

    2018-01-01

    Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n < 60) yielded substantially higher decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798

  4. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): a general algorithm for reducing motion-related artifacts

    PubMed Central

    Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei

    2014-01-01

    Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325

  5. Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety

    PubMed Central

    Fernandes, Myra A.

    2017-01-01

    We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information. PMID:29280957

  6. Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety.

    PubMed

    Lee, Christopher; Fernandes, Myra A

    2017-12-27

    We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information.

  7. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  8. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  9. Aging and Memory as Discrimination: Influences of Encoding Specificity, Cue Overload, and Prior Knowledge

    PubMed Central

    2016-01-01

    From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue’s relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue’s capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encoding and retrieval orthogonally with cue–target distinctiveness. In Experiment 1, associative memory differences for cue–target sets between young and older adults were minimized through training and retrieval efficiency was assessed through response time. In Experiment 2, age-group differences in associative memory were left to vary and retrieval efficiency was assessed through accuracy. Both experiments showed age-invariance in memory-as-discrimination: cues increasing encoding-retrieval match did not benefit memory unless they also improved discrimination between the target and competitors. Predictions based on the age-related associative deficit were also supported: prior knowledge alleviated age-related associative deficits (Experiment 1), and increasing encoding-retrieval match benefited older more than young adults (Experiment 2). We suggest that the latter occurred because older adults’ associative memory deficits reduced the impact of competing retrieval candidates—hence the age-related benefit was not attributable to encoding-retrieval match per se, but rather it was a joint function of an increased probability of the cue connecting to the target combined with a decrease in competing retrieval candidates. PMID:27831714

  10. Aging and memory as discrimination: Influences of encoding specificity, cue overload, and prior knowledge.

    PubMed

    Badham, Stephen P; Poirier, Marie; Gandhi, Navina; Hadjivassiliou, Anna; Maylor, Elizabeth A

    2016-11-01

    From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue's relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue's capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encoding and retrieval orthogonally with cue-target distinctiveness. In Experiment 1, associative memory differences for cue-target sets between young and older adults were minimized through training and retrieval efficiency was assessed through response time. In Experiment 2, age-group differences in associative memory were left to vary and retrieval efficiency was assessed through accuracy. Both experiments showed age-invariance in memory-as-discrimination: cues increasing encoding-retrieval match did not benefit memory unless they also improved discrimination between the target and competitors. Predictions based on the age-related associative deficit were also supported: prior knowledge alleviated age-related associative deficits (Experiment 1), and increasing encoding-retrieval match benefited older more than young adults (Experiment 2). We suggest that the latter occurred because older adults' associative memory deficits reduced the impact of competing retrieval candidates-hence the age-related benefit was not attributable to encoding-retrieval match per se, but rather it was a joint function of an increased probability of the cue connecting to the target combined with a decrease in competing retrieval candidates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Schematic driven layout of Reed Solomon encoders

    NASA Technical Reports Server (NTRS)

    Arave, Kari; Canaris, John; Miles, Lowell; Whitaker, Sterling

    1992-01-01

    Two Reed Solomon error correcting encoders are presented. Schematic driven layout tools were used to create the encoder layouts. Special consideration had to be given to the architecture and logic to provide scalability of the encoder designs. Knowledge gained from these projects was used to create a more flexible schematic driven layout system.

  12. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    PubMed

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world. Copyright © 2015 the authors 0270-6474/15/3514491-10$15.00/0.

  13. Structural encoding processes contribute to individual differences in face and object cognition: Inferences from psychometric test performance and event-related brain potentials.

    PubMed

    Nowparast Rostami, Hadiseh; Sommer, Werner; Zhou, Changsong; Wilhelm, Oliver; Hildebrandt, Andrea

    2017-10-01

    The enhanced N1 component in event-related potentials (ERP) to face stimuli, termed N170, is considered to indicate the structural encoding of faces. Previously, individual differences in the latency of the N170 have been related to face and object cognition abilities. By orthogonally manipulating content domain (faces vs objects) and task demands (easy/speed vs difficult/accuracy) in both psychometric and EEG tasks, we investigated the uniqueness of the processes underlying face cognition as compared with object cognition and the extent to which the N1/N170 component can explain individual differences in face and object cognition abilities. Data were recorded from N = 198 healthy young adults. Structural equation modeling (SEM) confirmed that the accuracies of face perception (FP) and memory are specific abilities above general object cognition; in contrast, the speed of face processing was not differentiable from the speed of object cognition. Although there was considerable domain-general variance in the N170 shared with the N1, there was significant face-specific variance in the N170. The brain-behavior relationship showed that faster face-specific processes for structural encoding of faces are associated with higher accuracy in both perceiving and memorizing faces. Moreover, in difficult task conditions, qualitatively different processes are additionally needed for recognizing face and object stimuli as compared with easy tasks. The difficulty-dependent variance components in the N170 amplitude were related with both face and object memory (OM) performance. We discuss implications for understanding individual differences in face cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Complementary DNA characterization and chromosomal localization of a human gene related to the poliovirus receptor-encoding gene.

    PubMed

    Lopez, M; Eberlé, F; Mattei, M G; Gabert, J; Birg, F; Bardin, F; Maroc, C; Dubreuil, P

    1995-04-03

    The human poliovirus (PV) receptor (PVR) is a member of the immunoglobulin (Ig) superfamily with unknown cellular function. We have isolated a human PVR-related (PRR) cDNA. The deduced amino acid (aa) sequence of PRR showed, in the extracellular region, 51.7 and 54.3% similarity with human PVR and with the murine PVR homolog, respectively. The cDNA coding sequence is 1.6-kb long and encodes a deduced 57-kDa protein; this protein has a structural organization analogous to that of PVR, that is, one V- and two C-set Ig domains, with a conserved number of aa. Northern blot analysis indicated that a major 5.9-kb transcript is present in all normal human tissues tested. In situ hybridization showed that the PRR gene is located at bands q23-q24 of human chromosome 11.

  15. Differences in Brain Activity during a Verbal Associative Memory Encoding Task in High- and Low-fit Adolescents

    PubMed Central

    Herting, Megan M.; Nagel, Bonnie J.

    2013-01-01

    Aerobic fitness is associated with better memory performance as well as larger volumes in memory-related brain regions in children, adolescents, and elderly. It is unclear if aerobic exercise also influences learning and memory functional neural circuitry. Here, we examine brain activity in 17 high-fit (HF) and 17 low-fit (LF) adolescents during a subsequent memory encoding paradigm using fMRI. Despite similar memory performance, HF and LF youth displayed a number of differences in memory-related and default mode (DMN) brain regions during encoding later remembered versus forgotten word pairs. Specifically, HF youth displayed robust deactivation in DMN areas, including the ventral medial PFC and posterior cingulate cortex, whereas LF youth did not show this pattern. Furthermore, LF youth showed greater bilateral hippocampal and right superior frontal gyrus activation during encoding of later remembered versus forgotten word pairs. Follow-up task-dependent functional correlational analyses showed differences in hippocampus and DMN activity coupling during successful encoding between the groups, suggesting aerobic fitness during adolescents may impact functional connectivity of the hippocampus and DMN during memory encoding. To our knowledge, this study is the first to examine the influence of aerobic fitness on hippocampal function and memory-related neural circuitry using fMRI. Taken together with previous research, these findings suggest aerobic fitness can influence not only memory-related brain structure, but also brain function. PMID:23249350

  16. Disruption of Relational Processing Underlies Poor Memory for Order

    ERIC Educational Resources Information Center

    Jonker, Tanya R.; MacLeod, Colin M.

    2015-01-01

    McDaniel and Bugg (2008) proposed that relatively uncommon stimuli and encoding tasks encourage elaborative encoding of individual items (item-specific processing), whereas relatively typical or common encoding tasks encourage encoding of associations among list items (relational processing). It is this relational processing that is thought to…

  17. Nucleic Acid Encoding A Lectin-Derived Progenitor Cell Preservation Factor

    DOEpatents

    Colucci, M. Gabriella; Chrispeels, Maarten J.; Moore, Jeffrey G.

    2001-10-30

    The invention relates to an isolated nucleic acid molecule that encodes a protein that is effective to preserve progenitor cells, such as hematopoietic progenitor cells. The nucleic acid comprises a sequence defined by SEQ ID NO:1, a homolog thereof, or a fragment thereof. The encoded protein has an amino acid sequence that comprises a sequence defined by SEQ ID NO:2, a homolog thereof, or a fragment thereof that contains an amino acid sequence TNNVLQVT. Methods of using the encoded protein for preserving progenitor cells in vitro, ex vivo, and in vivo are also described. The invention, therefore, include methods such as myeloablation therapies for cancer treatment wherein myeloid reconstitution is facilitated by means of the specified protein. Other therapeutic utilities are also enabled through the invention, for example, expanding progenitor cell populations ex vivo to increase chances of engraftation, improving conditions for transporting and storing progenitor cells, and facilitating gene therapy to treat and cure a broad range of life-threatening hematologic diseases.

  18. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, E.E.; Roessler, P.G.

    1999-07-27

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.

  19. A New Quantum Gray-Scale Image Encoding Scheme

    NASA Astrophysics Data System (ADS)

    Naseri, Mosayeb; Abdolmaleky, Mona; Parandin, Fariborz; Fatahi, Negin; Farouk, Ahmed; Nazari, Reza

    2018-02-01

    In this paper, a new quantum images encoding scheme is proposed. The proposed scheme mainly consists of four different encoding algorithms. The idea behind of the scheme is a binary key generated randomly for each pixel of the original image. Afterwards, the employed encoding algorithm is selected corresponding to the qubit pair of the generated randomized binary key. The security analysis of the proposed scheme proved its enhancement through both randomization of the generated binary image key and altering the gray-scale value of the image pixels using the qubits of randomized binary key. The simulation of the proposed scheme assures that the final encoded image could not be recognized visually. Moreover, the histogram diagram of encoded image is flatter than the original one. The Shannon entropies of the final encoded images are significantly higher than the original one, which indicates that the attacker can not gain any information about the encoded images. Supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN

  20. Time encoded radiation imaging

    DOEpatents

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  1. Correcting false information in memory: manipulating the strength of misinformation encoding and its retraction.

    PubMed

    Ecker, Ullrich K H; Lewandowsky, Stephan; Swire, Briony; Chang, Darren

    2011-06-01

    Information that is presumed to be true at encoding but later on turns out to be false (i.e., misinformation) often continues to influence memory and reasoning. In the present study, we investigated how the strength of encoding and the strength of a later retraction of the misinformation affect this continued influence effect. Participants read an event report containing misinformation and a subsequent correction. Encoding strength of the misinformation and correction were orthogonally manipulated either via repetition (Experiment 1) or by imposing a cognitive load during reading (Experiment 2). Results suggest that stronger retractions are effective in reducing the continued influence effects associated with strong misinformation encoding, but that even strong retractions fail to eliminate continued influence effects associated with relatively weak encoding. We present a simple computational model based on random sampling that captures this effect pattern, and conclude that the continued influence effect seems to defy most attempts to eliminate it.

  2. Eddy current-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times.

    PubMed

    Aliotta, Eric; Moulin, Kévin; Ennis, Daniel B

    2018-02-01

    To design and evaluate eddy current-nulled convex optimized diffusion encoding (EN-CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of eddy current-induced image distortions. The EN-CODE framework was used to generate diffusion-encoding waveforms that are eddy current-compensated. The EN-CODE DTI waveform was compared with the existing eddy current-nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-eddy current-compensated CODE in terms of echo time (TE) and image distortions. Comparisons were made in simulations, phantom experiments, and neuro imaging in 10 healthy volunteers. The EN-CODE sequence achieved eddy current compensation with a significantly shorter TE than TRSE (78 versus 96 ms) and a slightly shorter TE than MONO (78 versus 80 ms). Intravoxel signal variance was lower in phantoms with EN-CODE than with MONO (13.6 ± 11.6 versus 37.4 ± 25.8) and not different from TRSE (15.1 ± 11.6), indicating good robustness to eddy current-induced image distortions. Mean fractional anisotropy values in brain edges were also significantly lower with EN-CODE than with MONO (0.16 ± 0.01 versus 0.24 ± 0.02, P < 1 x 10 -5 ) and not different from TRSE (0.16 ± 0.01 versus 0.16 ± 0.01, P = nonsignificant). The EN-CODE sequence eliminated eddy current-induced image distortions in DTI with a TE comparable to MONO and substantially shorter than TRSE. Magn Reson Med 79:663-672, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Phenotypic regional fMRI activation patterns during memory encoding in MCI and AD

    PubMed Central

    Browndyke, Jeffrey N.; Giovanello, Kelly; Petrella, Jeffrey; Hayden, Kathleen; Chiba-Falek, Ornit; Tucker, Karen A.; Burke, James R.; Welsh-Bohmer, Kathleen A.

    2014-01-01

    Background Reliable blood-oxygen-level-dependent (BOLD) fMRI phenotypic biomarkers of Alzheimer's disease (AD) or mild cognitive impairment (MCI) are likely to emerge only from a systematic, quantitative, and aggregate examination of the functional neuroimaging research literature. Methods A series of random-effects, activation likelihood estimation (ALE) meta-analyses were conducted on studies of episodic memory encoding operations in AD and MCI samples relative to normal controls. ALE analyses were based upon a thorough literature search for all task-based functional neuroimaging studies in AD and MCI published up to January 2010. Analyses covered 16 fMRI studies, which yielded 144 distinct foci for ALE meta-analysis. Results ALE results indicated several regional task-based BOLD consistencies in MCI and AD patients relative to normal controls across the aggregate BOLD functional neuroimaging research literature. Patients with AD and those at significant risk (MCI) showed statistically significant consistent activation differences during episodic memory encoding in the medial temporal lobe (MTL), specifically parahippocampal gyrus, as well superior frontal gyrus, precuneus, and cuneus, relative to normal controls. Conclusions ALE consistencies broadly support the presence of frontal compensatory activity, MTL activity alteration, and posterior midline “default mode” hyperactivation during episodic memory encoding attempts in the diseased or prospective pre-disease condition. Taken together these robust commonalities may form the foundation for a task-based fMRI phenotype of memory encoding in AD. PMID:22841497

  4. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    PubMed Central

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-01-01

    Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476

  5. Negative base encoding in optical linear algebra processors

    NASA Technical Reports Server (NTRS)

    Perlee, C.; Casasent, D.

    1986-01-01

    In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.

  6. Data Encoding using Periodic Nano-Optical Features

    NASA Astrophysics Data System (ADS)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  7. Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval

    PubMed Central

    Wolosin, Sasha M.; Zeithamova, Dagmar; Preston, Alison R.

    2012-01-01

    Emerging evidence suggests that motivation enhances episodic memory formation through interactions between medial temporal lobe (MTL) structures and dopaminergic midbrain. In addition, recent theories propose that motivation specifically facilitates hippocampal associative binding processes, resulting in more detailed memories that are readily reinstated from partial input. Here, we used high-resolution functional magnetic resonance imaging to determine how motivation influences associative encoding and retrieval processes within human MTL subregions and dopaminergic midbrain. Participants intentionally encoded object associations under varying conditions of reward and performed a retrieval task during which studied associations were cued from partial input. Behaviorally, cued recall performance was superior for high-value relative to low-value associations; however, participants differed in the degree to which rewards influenced memory. The magnitude of behavioral reward modulation was associated with reward-related activation changes in dentate gyrus/CA2,3 during encoding and enhanced functional connectivity between dentate gyrus/CA2,3 and dopaminergic midbrain during both the encoding and retrieval phases of the task. These findings suggests that within the hippocampus, reward-based motivation specifically enhances dentate gyrus/CA2,3 associative encoding mechanisms through interactions with dopaminergic midbrain. Furthermore, within parahippocampal cortex and dopaminergic midbrain regions, activation associated with successful memory formation was modulated by reward across the group. During the retrieval phase, we also observed enhanced activation in hippocampus and dopaminergic midbrain for high-value associations that occurred in the absence of any explicit cues to reward. Collectively, these findings shed light on fundamental mechanisms through which reward impacts associative memory formation and retrieval through facilitation of MTL and VTA/SN processing

  8. Deeper processing is beneficial during episodic memory encoding for adults with Williams syndrome.

    PubMed

    Greer, Joanna; Hamiliton, Colin; Riby, Deborah M; Riby, Leigh M

    2014-07-01

    Previous research exploring declarative memory in Williams syndrome (WS) has revealed impairment in the processing of episodic information accompanied by a relative strength in semantic ability. The aim of the current study was to extend this literature by examining how relatively spared semantic memory may support episodic remembering. Using a level of processing paradigm, older adults with WS (aged 35-61 years) were compared to typical adults of the same chronological age and typically developing children matched for verbal ability. In the study phase, pictures were encoded using either a deep (decide if a picture belongs to a particular category) or shallow (perceptual based processing) memory strategy. Behavioural indices (reaction time and accuracy) at retrieval were suggestive of an overall difficulty in episodic memory for WS adults. Interestingly, however, semantic support was evident with a greater recall of items encoded with deep compared to shallow processing, indicative of an ability to employ semantic encoding strategies to maximise the strength of the memory trace created. Unlike individuals with autism who find semantic elaboration strategies problematic, the pattern of findings reported here suggests in those domains that are relatively impaired in WS, support can be recruited from relatively spared cognitive processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Phase-encoded single-voxel magnetic resonance spectroscopy for suppressing outer volume signals at 7 Tesla.

    PubMed

    Li, Ningzhi; An, Li; Johnson, Christopher; Shen, Jun

    2017-01-01

    Due to imperfect slice profiles, unwanted signals from outside the selected voxel may significantly contaminate metabolite signals acquired using in vivo magnetic resonance spectroscopy (MRS). The use of outer volume suppression may exceed the SAR threshold, especially at high field. We propose using phase-encoding gradients after radiofrequency (RF) excitation to spatially encode unwanted signals originating from outside of the selected single voxel. Phase-encoding gradients were added to a standard single voxel point-resolved spectroscopy (PRESS) sequence which selects a 2 × 2 × 2 cm 3 voxel. Subsequent spatial Fourier transform was used to encode outer volume signals. Phantom and in vivo experiments were performed using both phase-encoded PRESS and standard PRESS at 7 Tesla. Quantification was performed using fitting software developed in-house. Both phantom and in vivo studies showed that spectra from the phase-encoded PRESS sequence were relatively immune from contamination by oil signals and have more accurate quantification results than spectra from standard PRESS spectra of the same voxel. The proposed phase-encoded single-voxel PRESS method can significantly suppress outer volume signals that may appear in the spectra of standard PRESS without increasing RF power deposition.

  10. Comparative assessment of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders for low-delay video applications

    NASA Astrophysics Data System (ADS)

    Grois, Dan; Marpe, Detlev; Nguyen, Tung; Hadar, Ofer

    2014-09-01

    The popularity of low-delay video applications dramatically increased over the last years due to a rising demand for realtime video content (such as video conferencing or video surveillance), and also due to the increasing availability of relatively inexpensive heterogeneous devices (such as smartphones and tablets). To this end, this work presents a comparative assessment of the two latest video coding standards: H.265/MPEG-HEVC (High-Efficiency Video Coding), H.264/MPEG-AVC (Advanced Video Coding), and also of the VP9 proprietary video coding scheme. For evaluating H.264/MPEG-AVC, an open-source x264 encoder was selected, which has a multi-pass encoding mode, similarly to VP9. According to experimental results, which were obtained by using similar low-delay configurations for all three examined representative encoders, it was observed that H.265/MPEG-HEVC provides significant average bit-rate savings of 32.5%, and 40.8%, relative to VP9 and x264 for the 1-pass encoding, and average bit-rate savings of 32.6%, and 42.2% for the 2-pass encoding, respectively. On the other hand, compared to the x264 encoder, typical low-delay encoding times of the VP9 encoder, are about 2,000 times higher for the 1-pass encoding, and are about 400 times higher for the 2-pass encoding.

  11. A method for encoding clinical datasets with SNOMED CT.

    PubMed

    Lee, Dennis H; Lau, Francis Y; Quan, Hue

    2010-09-17

    Over the past decade there has been a growing body of literature on how the Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) can be implemented and used in different clinical settings. Yet, for those charged with incorporating SNOMED CT into their organisation's clinical applications and vocabulary systems, there are few detailed encoding instructions and examples available to show how this can be done and the issues involved. This paper describes a heuristic method that can be used to encode clinical terms in SNOMED CT and an illustration of how it was applied to encode an existing palliative care dataset. The encoding process involves: identifying input data items; cleaning the data items; encoding the cleaned data items; and exporting the encoded terms as output term sets. Four outputs are produced: the SNOMED CT reference set; interface terminology set; SNOMED CT extension set and unencodeable term set. The original palliative care database contained 211 data elements, 145 coded values and 37,248 free text values. We were able to encode ~84% of the terms, another ~8% require further encoding and verification while terms that had a frequency of fewer than five were not encoded (~7%). From the pilot, it would seem our SNOMED CT encoding method has the potential to become a general purpose terminology encoding approach that can be used in different clinical systems.

  12. Perceiving speech in context: Compensation for contextual variability during acoustic cue encoding and categorization

    NASA Astrophysics Data System (ADS)

    Toscano, Joseph Christopher

    Several fundamental questions about speech perception concern how listeners understand spoken language despite considerable variability in speech sounds across different contexts (the problem of lack of invariance in speech). This contextual variability is caused by several factors, including differences between individual talkers' voices, variation in speaking rate, and effects of coarticulatory context. A number of models have been proposed to describe how the speech system handles differences across contexts. Critically, these models make different predictions about (1) whether contextual variability is handled at the level of acoustic cue encoding or categorization, (2) whether it is driven by feedback from category-level processes or interactions between cues, and (3) whether listeners discard fine-grained acoustic information to compensate for contextual variability. Separating the effects of cue- and category-level processing has been difficult because behavioral measures tap processes that occur well after initial cue encoding and are influenced by task demands and linguistic information. Recently, we have used the event-related brain potential (ERP) technique to examine cue encoding and online categorization. Specifically, we have looked at differences in the auditory N1 as a measure of acoustic cue encoding and the P3 as a measure of categorization. This allows us to examine multiple levels of processing during speech perception and can provide a useful tool for studying effects of contextual variability. Here, I apply this approach to determine the point in processing at which context has an effect on speech perception and to examine whether acoustic cues are encoded continuously. Several types of contextual variability (talker gender, speaking rate, and coarticulation), as well as several acoustic cues (voice onset time, formant frequencies, and bandwidths), are examined in a series of experiments. The results suggest that (1) at early stages of speech

  13. Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes.

    PubMed

    Chiu, Yu-Chin; Egner, Tobias

    2015-08-26

    Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused

  14. The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia.

    PubMed

    Zierhut, Kathrin; Bogerts, Bernhard; Schott, Björn; Fenker, Daniela; Walter, Martin; Albrecht, Dominik; Steiner, Johann; Schütze, Hartmut; Northoff, Georg; Düzel, Emrah; Schiltz, Kolja

    2010-09-30

    Declarative memory disturbances, known to substantially contribute to cognitive impairment in schizophrenia, have previously been attributed to prefrontal as well as hippocampal dysfunction. To characterize the role of prefrontal and mesolimbic/hippocampal dysfunction during memory encoding in schizophrenia. Neuronal activation in schizophrenia patients and controls was assessed using functional magnetic resonance imaging (fMRI) during encoding of words in a deep (semantic judgement) and shallow (case judgment) task. A free recall (no delay) and a recognition task (24h delay) were performed. Free recall, but not recognition performance was reduced in patients. Reduced performance was correlated with positive symptoms which in turn were related to increased left hippocampal activity during successful encoding. Furthermore, schizophrenia patients displayed a hippocampal hyperactivity during deep encoding irrespective of encoding success along with a reduced anterior cingulate cortex (ACC) and dorsomedial prefrontal cortex (DMPFC) activity in successful encoding but an intact left inferior frontal cortex (LIFC) activity. This study provides the first evidence directly linking positive symptoms and memory deficits to dysfunctional hippocampal hyperactivity. It thereby underscores the pivotal pathophysiological role of a hyperdopaminergic mesolimbic state in schizophrenia. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Neural encoding of the speech envelope by children with developmental dyslexia.

    PubMed

    Power, Alan J; Colling, Lincoln J; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2016-09-01

    Developmental dyslexia is consistently associated with difficulties in processing phonology (linguistic sound structure) across languages. One view is that dyslexia is characterised by a cognitive impairment in the "phonological representation" of word forms, which arises long before the child presents with a reading problem. Here we investigate a possible neural basis for developmental phonological impairments. We assess the neural quality of speech encoding in children with dyslexia by measuring the accuracy of low-frequency speech envelope encoding using EEG. We tested children with dyslexia and chronological age-matched (CA) and reading-level matched (RL) younger children. Participants listened to semantically-unpredictable sentences in a word report task. The sentences were noise-vocoded to increase reliance on envelope cues. Envelope reconstruction for envelopes between 0 and 10Hz showed that the children with dyslexia had significantly poorer speech encoding in the 0-2Hz band compared to both CA and RL controls. These data suggest that impaired neural encoding of low frequency speech envelopes, related to speech prosody, may underpin the phonological deficit that causes dyslexia across languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Neural correlates of the encoding of multimodal contextual features

    PubMed Central

    Gottlieb, Lauren J.; Wong, Jenny; de Chastelaine, Marianne; Rugg, Michael D.

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was employed to identify neural regions engaged during the encoding of contextual features belonging to different modalities. Subjects studied objects that were presented to the left or right of fixation. Each object was paired with its name, spoken in either a male or a female voice. The test requirement was to discriminate studied from unstudied pictures and, for each picture judged old, to retrieve its study location and the gender of the voice that spoke its name. Study trials associated with accurate rather than inaccurate location memory demonstrated enhanced activity in the fusiform and parahippocampal cortex and the hippocampus and reduced activity (a negative subsequent memory effect) in the medial occipital cortex. Successful encoding of voice information was associated with enhanced study activity in the right middle superior temporal sulcus and activity reduction in the right superior frontal cortex. These findings support the proposal that encoding of a contextual feature is associated with enhanced activity in regions engaged during its online processing. In addition, they indicate that negative subsequent memory effects can also demonstrate feature-selectivity. Relative to other classes of study trials, trials for which both contextual features were later retrieved demonstrated enhanced activity in the lateral occipital complex and reduced activity in the temporo-parietal junction. These findings suggest that multifeatural encoding was facilitated when the study item was processed efficiently and study processing was not interrupted by redirection of attention toward extraneous events. PMID:23166292

  17. Molecular mechanisms for protein-encoded inheritance

    PubMed Central

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  18. 47 CFR 73.4094 - Dolby encoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Dolby encoder. 73.4094 Section 73.4094 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4094 Dolby encoder. See Public Notice dated July 10...

  19. 47 CFR 73.4094 - Dolby encoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Dolby encoder. 73.4094 Section 73.4094 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4094 Dolby encoder. See Public Notice dated July 10...

  20. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  1. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors.

    PubMed Central

    Kim, K S; Chilton, W S; Farrand, S K

    1996-01-01

    The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors. PMID:8655510

  2. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors.

    PubMed

    Kim, K S; Chilton, W S; Farrand, S K

    1996-06-01

    The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors.

  3. Doppler imaging using spectrally-encoded endoscopy

    PubMed Central

    Yelin, Dvir; Bouma, B. E.; Rosowsky, J. J.; Tearney, G. J.

    2009-01-01

    The capability to image tissue motion such as blood flow through an endoscope could have many applications in medicine. Spectrally encoded endoscopy (SEE) is a recently introduced technique that utilizes a single optical fiber and miniature diffractive optics to obtain endoscopic images through small diameter probes. Using spectral-domain interferometry, SEE is furthermore capable of three-dimensional volume imaging at video rates. Here we show that by measuring relative spectral phases, this technology can additionally measure Doppler shifts. Doppler SEE is demonstrated in flowing Intralipid phantoms and vibrating middle ear ossicles. PMID:18795020

  4. Modulating the focus of attention for spoken words at encoding affects frontoparietal activation for incidental verbal memory.

    PubMed

    Christensen, Thomas A; Almryde, Kyle R; Fidler, Lesley J; Lockwood, Julie L; Antonucci, Sharon M; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall.

  5. Modulating the Focus of Attention for Spoken Words at Encoding Affects Frontoparietal Activation for Incidental Verbal Memory

    PubMed Central

    Christensen, Thomas A.; Almryde, Kyle R.; Fidler, Lesley J.; Lockwood, Julie L.; Antonucci, Sharon M.; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall. PMID:22144982

  6. Posterior parietal cortex and episodic encoding: insights from fMRI subsequent memory effects and dual-attention theory.

    PubMed

    Uncapher, Melina R; Wagner, Anthony D

    2009-02-01

    The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.

  7. Novel encoding methods for DNA-templated chemical libraries.

    PubMed

    Li, Gang; Zheng, Wenlu; Liu, Ying; Li, Xiaoyu

    2015-06-01

    Among various types of DNA-encoded chemical libraries, DNA-templated library takes advantage of the sequence-specificity of DNA hybridization, enabling not only highly effective DNA-templated chemical reactions, but also high fidelity in library encoding. This brief review summarizes recent advances that have been made on the encoding strategies for DNA-templated libraries, and it also highlights their respective advantages and limitations for the preparation of DNA-encoded libraries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. On the asymmetric effects of mind-wandering on levels of processing at encoding and retrieval.

    PubMed

    Thomson, David R; Smilek, Daniel; Besner, Derek

    2014-06-01

    The behavioral consequences of off-task thought (mind-wandering) on primary-task performance are now well documented across an increasing range of tasks. In the present study, we investigated the consequences of mind-wandering on the encoding of information into memory in the context of a levels-of-processing framework (Craik & Lockhart, 1972). Mind-wandering was assessed via subjective self-reports in response to thought probes that were presented under both semantic (size judgment) and perceptual (case judgment) encoding instructions. Mind-wandering rates during semantic encoding negatively predicted subsequent recognition memory performance, whereas no such relation was observed during perceptual encoding. We discuss the asymmetric effects of mind-wandering on levels of processing in the context of attentional-resource accounts of mind-wandering.

  9. Using XML to encode TMA DES metadata.

    PubMed

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  10. Using XML to encode TMA DES metadata

    PubMed Central

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  11. Encoding Orientation and the Remembering of Schizophrenic Young Adults

    ERIC Educational Resources Information Center

    Koh, Soon D.; Peterson, Rolf A.

    1978-01-01

    This research examines different types of encoding strategies, in addition to semantic and organizational encodings, and their effects on schizophrenics' remembering. Based on Craik and Lockhart (1972), i.e., memory performance is a function of depth of encoding processing, this analysis compares schizophrenics' encoding processing with that of…

  12. Differences between primary auditory cortex and auditory belt related to encoding and choice for AM sounds

    PubMed Central

    Niwa, Mamiko; Johnson, Jeffrey S.; O’Connor, Kevin N.; Sutter, Mitchell L.

    2013-01-01

    We recorded from middle-lateral (ML) and primary (A1) auditory cortex while macaques discriminated amplitude modulated (AM) from unmodulated noise. Compared to A1, ML had a higher proportion of neurons that encode increasing AM depth by decreasing their firing-rates (‘decreasing’ neurons), particularly with responses that were not synchronized to the modulation. Choice probability (CP) analysis revealed that A1 and ML activity were different during the first half of the test stimulus. In A1, significant CP begins prior to the test stimulus, remains relatively constant (or increases slightly) during the stimulus and increases greatly within 200 ms of lever-release. Neurons in ML behave similarly, except that significant CP disappears during the first half of the stimulus and reappears during the second half and pre-release periods. CP differences between A1 and ML depend on neural response type. In ML (but not A1), when activity is lower during the first half of the stimulus in non-synchronized ‘decreasing’ neurons, the monkey is more likely to report AM. Neurons that both increase firing rate with increasing modulation depth (‘increasing’ neurons) and synchronize their responses to AM had similar choice-related activity dynamics in ML and A1. The results suggest that, when ascending the auditory system, there is a transformation in coding AM from primarily synchronized ‘increasing’ responses in A1 to non-synchronized and dual (‘increasing’/’decreasing’) coding in ML. This sensory transformation is accompanied by changes in the timing of activity related to choice, suggesting functional differences between A1 and ML related to attention and/or behavior. PMID:23658177

  13. Perceptual priming versus explicit memory: dissociable neural correlates at encoding.

    PubMed

    Schott, Björn; Richardson-Klavehn, Alan; Heinze, Hans-Jochen; Düzel, Emrah

    2002-05-15

    We addressed the hypothesis that perceptual priming and explicit memory have distinct neural correlates at encoding. Event-related potentials (ERPs) were recorded while participants studied visually presented words at deep versus shallow levels of processing (LOPs). The ERPs were sorted by whether or not participants later used studied words as completions to three-letter word stems in an intentional memory test, and by whether or not they indicated that these completions were remembered from the study list. Study trials from which words were later used and not remembered (primed trials) and study trials from which words were later used and remembered (remembered trials) were compared to study trials from which words were later not used (forgotten trials), in order to measure the ERP difference associated with later memory (DM effect). Primed trials involved an early (200-450 msec) centroparietal negative-going DM effect. Remembered trials involved a late (900-1200 msec) right frontal, positive-going DM effect regardless of LOP, as well as an earlier (600-800 msec) central, positive-going DM effect during shallow study processing only. All three DM effects differed topographically, and, in terms of their onset or duration, from the extended (600-1200 msec) fronto-central, positive-going shift for deep compared with shallow study processing. The results provide the first clear evidence that perceptual priming and explicit memory have distinct neural correlates at encoding, consistent with Tulving and Schacter's (1990) distinction between brain systems concerned with perceptual representation versus semantic and episodic memory. They also shed additional light on encoding processes associated with later explicit memory, by suggesting that brain processes influenced by LOP set the stage for other, at least partially separable, brain processes that are more directly related to encoding success.

  14. Predication-based semantic indexing: permutations as a means to encode predications in semantic space.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C

    2009-11-14

    Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.

  15. Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity

    PubMed Central

    Liu, Peiying; Hebrank, Andrew C.; Rodrigue, Karen M.; Kennedy, Kristen M.; Section, Jarren; Park, Denise C.; Lu, Hanzhang

    2013-01-01

    BOLD fMRI has provided a wealth of information about the aging brain. A common finding is that posterior regions of the brain manifest an age-related decrease in activation while the anterior regions show an age-related increase. Several neurocognitive models have been proposed to interpret these findings. However, one issue that has not been sufficiently considered to date is that the BOLD signal is based on vascular responses secondary to neural activity. Thus the above findings could be in part due to a vascular change, especially in view of the expected decline of vascular health with age. In the present study, we aim to examine age-related differences in memory-encoding fMRI response in the context of vascular aging. One hundred and thirty healthy subjects ranging from 20 to 89 years old underwent a scene-viewing fMRI task and, in the same session, cerebrovascular reactivity (CVR) was measured in each subject using a CO2-inhalation task. Without accounting for the influence of vascular changes, the task-activated fMRI signal showed the typical age-related decrease in visual cortex and medial temporal lobe (MTL), but manifested an increase in the right inferior frontal gyrus (IFG). In the same individuals, an age-related CVR reduction was observed in all of these regions. We then used a previously proposed normalization approach to calculate a CVR-corrected fMRI signal, which was defined as the uncorrected signal divided by CVR. Based on the CVR-corrected fMRI signal, an age-related increase is now seen in both the left and right side of IFG; and no brain regions showed a signal decrease with age. We additionally used a model-based approach to examine the fMRI data in the context of CVR, which again suggested an age-related change in the two frontal regions, but not in the visual and MTL regions. PMID:23624491

  16. Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study

    PubMed Central

    Gunduz Can, Rumeysa; Schack, Thomas; Koester, Dirk

    2017-01-01

    The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control. PMID:28611714

  17. Simultaneously driven linear and nonlinear spatial encoding fields in MRI.

    PubMed

    Gallichan, Daniel; Cocosco, Chris A; Dewdney, Andrew; Schultz, Gerrit; Welz, Anna; Hennig, Jürgen; Zaitsev, Maxim

    2011-03-01

    Spatial encoding in MRI is conventionally achieved by the application of switchable linear encoding fields. The general concept of the recently introduced PatLoc (Parallel Imaging Technique using Localized Gradients) encoding is to use nonlinear fields to achieve spatial encoding. Relaxing the requirement that the encoding fields must be linear may lead to improved gradient performance or reduced peripheral nerve stimulation. In this work, a custom-built insert coil capable of generating two independent quadratic encoding fields was driven with high-performance amplifiers within a clinical MR system. In combination with the three linear encoding fields, the combined hardware is capable of independently manipulating five spatial encoding fields. With the linear z-gradient used for slice-selection, there remain four separate channels to encode a 2D-image. To compare trajectories of such multidimensional encoding, the concept of a local k-space is developed. Through simulations, reconstructions using six gradient-encoding strategies were compared, including Cartesian encoding separately or simultaneously on both PatLoc and linear gradients as well as two versions of a radial-based in/out trajectory. Corresponding experiments confirmed that such multidimensional encoding is practically achievable and demonstrated that the new radial-based trajectory offers the PatLoc property of variable spatial resolution while maintaining finite resolution across the entire field-of-view. Copyright © 2010 Wiley-Liss, Inc.

  18. Characterizing the role of the hippocampus during episodic simulation and encoding.

    PubMed

    Thakral, Preston P; Benoit, Roland G; Schacter, Daniel L

    2017-12-01

    The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval. © 2017 Wiley Periodicals, Inc.

  19. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions

    PubMed Central

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2014-01-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items. PMID:24683066

  20. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions.

    PubMed

    Cohen, Michael S; Rissman, Jesse; Suthana, Nanthia A; Castel, Alan D; Knowlton, Barbara J

    2014-06-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants' selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.

  1. A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2011-01-01

    Formal behavioral specifications written early in the system-design process and communicated across all design phases have been shown to increase the efficiency, consistency, and quality of the system under development. To prevent introducing design or verification errors, it is crucial to test specifications for satisfiability. Our focus here is on specifications expressed in linear temporal logic (LTL). We introduce a novel encoding of symbolic transition-based Buchi automata and a novel, "sloppy," transition encoding, both of which result in improved scalability. We also define novel BDD variable orders based on tree decomposition of formula parse trees. We describe and extensively test a new multi-encoding approach utilizing these novel encoding techniques to create 30 encoding variations. We show that our novel encodings translate to significant, sometimes exponential, improvement over the current standard encoding for symbolic LTL satisfiability checking.

  2. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging.

    PubMed Central

    Stern, C E; Corkin, S; González, R G; Guimaraes, A R; Baker, J R; Jennings, P J; Carr, C A; Sugiura, R M; Vedantham, V; Rosen, B R

    1996-01-01

    Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory. Images Fig. 1 Fig. 3 PMID:8710927

  3. Short theta burst stimulation to left frontal cortex prior to encoding enhances subsequent recognition memory

    PubMed Central

    Demeter, Elise; Mirdamadi, Jasmine L.; Meehan, Sean K.; Taylor, Stephan F.

    2016-01-01

    Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants’ confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function. PMID:27098772

  4. The Acquisition of Syntactically Encoded Evidentiality

    ERIC Educational Resources Information Center

    Rett, Jessica; Hyams, Nina

    2014-01-01

    This article presents several empirical studies of syntactically encoded evidentiality in English. The first part of our study consists of an adult online experiment that confirms claims in Asudeh & Toivonen (2012) that raised Perception Verb Similatives (PVSs; e.g. "John looks like he is sick") encode direct evidentiality. We then…

  5. Effects of Acute Methamphetamine on Emotional Memory Formation in Humans: Encoding vs Consolidation

    PubMed Central

    Ballard, Michael E.; Weafer, Jessica; Gallo, David A.; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies. PMID:25679982

  6. Remembering with gains and losses: effects of monetary reward and punishment on successful encoding activation of source memories.

    PubMed

    Shigemune, Yayoi; Tsukiura, Takashi; Kambara, Toshimune; Kawashima, Ryuta

    2014-05-01

    The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment.

  7. Remembering with Gains and Losses: Effects of Monetary Reward and Punishment on Successful Encoding Activation of Source Memories

    PubMed Central

    Shigemune, Yayoi; Tsukiura, Takashi; Kambara, Toshimune; Kawashima, Ryuta

    2014-01-01

    The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment. PMID:23314939

  8. Two-layer contractive encodings for learning stable nonlinear features.

    PubMed

    Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven

    2015-04-01

    Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders which compute linear projections of input followed by a smooth thresholding function. In this work, we demonstrate that these encoders fail to find stable features when the required computation is in the exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted in the type of features it can learn. The proposed encoder is regularized by an extension of previous work on contractive regularization. This proposed two-layer contractive encoder potentially poses a more difficult optimization problem, and we further propose to linearly transform hidden neurons of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer encoders trained with the linear transformation of perceptrons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Exploring the influence of encoding format on subsequent memory.

    PubMed

    Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha

    2017-05-01

    Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.

  10. Evidence for encoding versus retrieval scheduling in the hippocampus by theta phase and acetylcholine

    PubMed Central

    Douchamps, Vincent; Jeewajee, Ali; Blundell, Pam; Burgess, Neil; Lever, Colin

    2013-01-01

    The formation of new memories requires new information to be encoded in the face of proactive interference from the past. Two solutions have been proposed for hippocampal region CA1: 1) acetylcholine, released in novelty, selectively suppresses excitatory projections to CA1 from CA3 (mediating the products of retrieval), while sparing entorhinal inputs (mediating novel sensory information); 2) encoding preferentially occurs at the pyramidal-layer theta peak, coincident with input from entorhinal cortex, and retrieval occurs at the trough, coincident with input from CA3, consistent with theta-phase-dependent synaptic plasticity. We examined three predictions of these models: 1) In novel environments, the preferred theta phase of CA1 place cell firing should shift closer to the CA1 pyramidal-layer theta peak, shifting the encoding-retrieval balance towards encoding; 2) The encoding-related shift in novel environments should be disrupted by cholinergic antagonism; 3) In familiar environments, cholinergic antagonism should shift the preferred theta firing phase closer to the theta trough, shifting the encoding-retrieval balance even further towards retrieval. We tested these predictions by recording from CA1 pyramidal cells in freely moving rats as they foraged in open field environments under the influence of scopolamine (an amnestic cholinergic antagonist) or vehicle (saline). Results confirmed all three predictions, supporting both the theta phase and cholinergic models of encoding-vs-retrieval dynamics. Also consistent with cholinergic enhancement of encoding, scopolamine attenuated the formation of distinct spatial representations in a new environment, reducing the extent of place cell “remapping”. PMID:23678113

  11. Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Effects of emotion and reward motivation on neural correlates of episodic memory encoding: a PET study.

    PubMed

    Shigemune, Yayoi; Abe, Nobuhito; Suzuki, Maki; Ueno, Aya; Mori, Etsuro; Tashiro, Manabu; Itoh, Masatoshi; Fujii, Toshikatsu

    2010-05-01

    It is known that emotion and reward motivation promote long-term memory formation. It remains unclear, however, how and where emotion and reward are integrated during episodic memory encoding. In the present study, subjects were engaged in intentional encoding of photographs under four different conditions that were made by combining two factors (emotional valence, negative or neutral; and monetary reward value, high or low for subsequent successful recognition) during H2 15O positron emission tomography (PET) scanning. As for recognition performance, we found significant main effects of emotional valence (negative>neutral) and reward value (high value>low value), without an interaction between the two factors. Imaging data showed that the left amygdala was activated during the encoding conditions of negative pictures relative to neutral pictures, and the left orbitofrontal cortex was activated during the encoding conditions of high reward pictures relative to low reward pictures. In addition, conjunction analysis of these two main effects detected right hippocampal activation. Although we could not find correlations between recognition performance and activity of these three regions, we speculate that the right hippocampus may integrate the effects of emotion (processed in the amygdala) and monetary reward (processed in the orbitofrontal cortex) on episodic memory encoding. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex

    PubMed Central

    Cai, Xinying; Padoa-Schioppa, Camillo

    2012-01-01

    We examined the activity of individual cells in the primate anterior cingulate cortex during an economic choice task. In the experiments, monkeys chose between different juices offered in variables amounts and subjective values were inferred from the animals’ choices. We analyzed neuronal firing rates in relation to a large number of behaviorally relevant variables. We report three main results. First, there were robust differences between the dorsal bank (ACCd) and the ventral bank (ACCv) of the cingulate sulcus. Specifically, neurons in ACCd but not in ACCv were modulated by the movement direction. Furthermore, neurons in ACCd were most active prior to movement initiation whereas neurons in ACCv were most active after juice delivery. Second, neurons in both areas encoded the identity and the subjective value of the juice chosen by the animal. In contrast, neither region encoded the value of individual offers. Third, the population of value-encoding neurons in both ACCd and ACCv underwent range adaptation. With respect to economic choice, it is interesting to compare these areas with the orbitofrontal cortex (OFC), previously examined. While neurons in OFC encoded both pre-decision and post-decision variables, neurons in ACCd and ACCv only encoded post-decision variables. Moreover, the encoding of chosen value in ACCd and ACCv trailed that found in OFC. These observations indicate that economic decisions (value comparisons) take place upstream of ACCd and ACCv. The coexistence of choice outcome and movement signals in ACCd suggests that this area constitutes a getaway through which the choice system informs motor systems. PMID:22423100

  14. ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks

    PubMed Central

    Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel

    2017-01-01

    The “subsequent memory paradigm” is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential “subsequent memory effects” (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding. PMID:28194105

  15. ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks.

    PubMed

    Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel

    2017-01-01

    The "subsequent memory paradigm" is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential "subsequent memory effects" (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding.

  16. Semantic and Phonological Encoding Times in Adults Who Stutter: Brain Electrophysiological Evidence.

    PubMed

    Maxfield, Nathan D

    2017-10-17

    Some psycholinguistic theories of stuttering propose that language production operates along a different time course in adults who stutter (AWS) versus typically fluent adults (TFA). However, behavioral evidence for such a difference has been mixed. Here, the time course of semantic and phonological encoding in picture naming was compared in AWS (n = 16) versus TFA (n = 16) by measuring 2 event-related potential (ERP) components: NoGo N200, an ERP index of response inhibition, and lateralized readiness potential, an ERP index of response preparation. Each trial required a semantic judgment about a picture in addition to a phonemic judgment about the target label of the picture. Judgments were mapped onto a dual-choice (Go-NoGo/left-right) push-button response paradigm. On each trial, ERP activity time-locked to picture onset was recorded at 32 scalp electrodes. NoGo N200 was detected earlier to semantic NoGo trials than to phonemic NoGo trials in both groups, replicating previous evidence that semantic encoding generally precedes phonological encoding in language production. Moreover, N200 onset was earlier to semantic NoGo trials in TFA than in AWS, indicating that semantic information triggering response inhibition became available earlier in TFA versus AWS. In contrast, the time course of N200 activity to phonemic NoGo trials did not differ between groups. Lateralized readiness potential activity was influenced by strategic response preparation and, thus, could not be used to index real-time semantic and phonological encoding. NoGo N200 results point to slowed semantic encoding in AWS versus TFA. Discussion considers possible factors in slowed semantic encoding in AWS and how fluency might be impacted by slowed semantic encoding.

  17. Semantic and Phonological Encoding Times in Adults Who Stutter: Brain Electrophysiological Evidence

    PubMed Central

    2017-01-01

    Purpose Some psycholinguistic theories of stuttering propose that language production operates along a different time course in adults who stutter (AWS) versus typically fluent adults (TFA). However, behavioral evidence for such a difference has been mixed. Here, the time course of semantic and phonological encoding in picture naming was compared in AWS (n = 16) versus TFA (n = 16) by measuring 2 event-related potential (ERP) components: NoGo N200, an ERP index of response inhibition, and lateralized readiness potential, an ERP index of response preparation. Method Each trial required a semantic judgment about a picture in addition to a phonemic judgment about the target label of the picture. Judgments were mapped onto a dual-choice (Go–NoGo/left–right) push-button response paradigm. On each trial, ERP activity time-locked to picture onset was recorded at 32 scalp electrodes. Results NoGo N200 was detected earlier to semantic NoGo trials than to phonemic NoGo trials in both groups, replicating previous evidence that semantic encoding generally precedes phonological encoding in language production. Moreover, N200 onset was earlier to semantic NoGo trials in TFA than in AWS, indicating that semantic information triggering response inhibition became available earlier in TFA versus AWS. In contrast, the time course of N200 activity to phonemic NoGo trials did not differ between groups. Lateralized readiness potential activity was influenced by strategic response preparation and, thus, could not be used to index real-time semantic and phonological encoding. Conclusion NoGo N200 results point to slowed semantic encoding in AWS versus TFA. Discussion considers possible factors in slowed semantic encoding in AWS and how fluency might be impacted by slowed semantic encoding. PMID:28973156

  18. The effect of interference on delta modulation encoded video signals

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1979-01-01

    An adaptive delta modulator which encodes composite color video signals was shown to provide a good response when operating at 16 Mb/s and near-commercial quality at 23Mb/s. The ADM was relatively immune to channel errors. The system design is discussed and circuit diagrams are included.

  19. Peroxisome Proliferator-Activated Receptor γ Target Gene Encoding a Novel Angiopoietin-Related Protein Associated with Adipose Differentiation

    PubMed Central

    Yoon, J. Cliff; Chickering, Troy W.; Rosen, Evan D.; Dussault, Barry; Qin, Yubin; Soukas, Alexander; Friedman, Jeffrey M.; Holmes, William E.; Spiegelman, Bruce M.

    2000-01-01

    The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis. PMID:10866690

  20. Source memory that encoding was self-referential: the influence of stimulus characteristics.

    PubMed

    Durbin, Kelly A; Mitchell, Karen J; Johnson, Marcia K

    2017-10-01

    Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one's self-schema, and that depends, in part, on the stimulus' valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation.

  1. Source memory that encoding was self-referential: the influence of stimulus characteristics

    PubMed Central

    Durbin, Kelly A.; Mitchell, Karen J.; Johnson, Marcia K.

    2017-01-01

    Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one’s self-schema, and that depends, in part, on the stimulus’ valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation. PMID:28276984

  2. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  3. Posterior Parietal Cortex and Episodic Encoding: Insights from fMRI Subsequent Memory Effects and Dual Attention Theory

    PubMed Central

    Uncapher, Melina; Wagner, Anthony D.

    2010-01-01

    The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591

  4. Visual feature binding in younger and older adults: encoding and suffix interference effects.

    PubMed

    Brown, Louise A; Niven, Elaine H; Logie, Robert H; Rhodes, Stephen; Allen, Richard J

    2017-02-01

    Three experiments investigated younger (18-25 yrs) and older (70-88 yrs) adults' temporary memory for colour-shape combinations (binding). We focused upon estimating the magnitude of the binding cost for each age group across encoding time (Experiment 1; 900/1500 ms), presentation format (Experiment 2; simultaneous/sequential), and interference (Experiment 3; control/suffix) conditions. In Experiment 1, encoding time did not differentially influence binding in the two age groups. In Experiment 2, younger adults exhibited poorer binding performance with sequential relative to simultaneous presentation, and serial position analyses highlighted a particular age-related difficulty remembering the middle item of a series (for all memory conditions). Experiments 1-3 demonstrated small to medium binding effect sizes in older adults across all encoding conditions, with binding less accurate than shape memory. However, younger adults also displayed negative effects of binding (small to large) in two of the experiments. Even when older adults exhibited a greater suffix interference effect in Experiment 3, this was for all memory types, not just binding. We therefore conclude that there is no consistent evidence for a visual binding deficit in healthy older adults. This relative preservation contrasts with the specific and substantial deficits in visual feature binding found in several recent studies of Alzheimer's disease.

  5. Polypeptides having beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Assessing the Neural Correlates of Task-unrelated Thoughts during Episodic Encoding and Their Association with Subsequent Memory in Young and Older Adults.

    PubMed

    Maillet, David; Rajah, M Natasha

    2016-06-01

    Recent evidence indicates that young adults frequently exhibit task-unrelated thoughts (TUTs) such as mind-wandering during episodic encoding tasks and that TUTs negatively impact subsequent memory. In the current study, we assessed age-related differences in the frequency and neural correlates of TUTs during a source memory encoding task, as well as age-related differences in the relationship between the neural correlates of TUTs and subsequent source forgetting effects (i.e., source misses). We found no age-related differences in frequency of TUTs during fMRI scanning. Moreover, TUT frequency at encoding was positively correlated with source misses at retrieval across age groups. In both age groups, brain regions including bilateral middle/superior frontal gyri and precuneus were activated to a greater extent during encoding for subsequent source misses versus source hits and during TUTs versus on-task episodes. Overall, our results reveal that, during a source memory encoding task in an fMRI environment, young and older adults exhibit a similar frequency of TUTs and that experiencing TUTs at encoding is associated with decreased retrieval performance. In addition, in both age groups, experiencing TUTs at encoding is associated with increased activation in some of the same regions that exhibit subsequent source forgetting effects.

  7. Temporal texture of associative encoding modulates recall processes.

    PubMed

    Tibon, Roni; Levy, Daniel A

    2014-02-01

    Binding aspects of an experience that are distributed over time is an important element of episodic memory. In the current study, we examined how the temporal complexity of an experience may govern the processes required for its retrieval. We recorded event-related potentials during episodic cued recall following pair associate learning of concurrently and sequentially presented object-picture pairs. Cued recall success effects over anterior and posterior areas were apparent in several time windows. In anterior locations, these recall success effects were similar for concurrently and sequentially encoded pairs. However, in posterior sites clustered over parietal scalp the effect was larger for the retrieval of sequentially encoded pairs. We suggest that anterior aspects of the mid-latency recall success effects may reflect working-with-memory operations or direct access recall processes, while more posterior aspects reflect recollective processes which are required for retrieval of episodes of greater temporal complexity. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. JPEG2000 encoding with perceptual distortion control.

    PubMed

    Liu, Zhen; Karam, Lina J; Watson, Andrew B

    2006-07-01

    In this paper, a new encoding approach is proposed to control the JPEG2000 encoding in order to reach a desired perceptual quality. The new method is based on a vision model that incorporates various masking effects of human visual perception and a perceptual distortion metric that takes spatial and spectral summation of individual quantization errors into account. Compared with the conventional rate-based distortion minimization JPEG2000 encoding, the new method provides a way to generate consistent quality images at a lower bit rate.

  9. Retention interval affects visual short-term memory encoding.

    PubMed

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  10. Optical image encryption method based on incoherent imaging and polarized light encoding

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Xiong, D.; Alfalou, A.; Brosseau, C.

    2018-05-01

    We propose an incoherent encoding system for image encryption based on a polarized encoding method combined with an incoherent imaging. Incoherent imaging is the core component of this proposal, in which the incoherent point-spread function (PSF) of the imaging system serves as the main key to encode the input intensity distribution thanks to a convolution operation. An array of retarders and polarizers is placed on the input plane of the imaging structure to encrypt the polarized state of light based on Mueller polarization calculus. The proposal makes full use of randomness of polarization parameters and incoherent PSF so that a multidimensional key space is generated to deal with illegal attacks. Mueller polarization calculus and incoherent illumination of imaging structure ensure that only intensity information is manipulated. Another key advantage is that complicated processing and recording related to a complex-valued signal are avoided. The encoded information is just an intensity distribution, which is advantageous for data storage and transition because information expansion accompanying conventional encryption methods is also avoided. The decryption procedure can be performed digitally or using optoelectronic devices. Numerical simulation tests demonstrate the validity of the proposed scheme.

  11. Negative affect promotes encoding of and memory for details at the expense of the gist: affect, encoding, and false memories.

    PubMed

    Storbeck, Justin

    2013-01-01

    I investigated whether negative affective states enhance encoding of and memory for item-specific information reducing false memories. Positive, negative, and neutral moods were induced, and participants then completed a Deese-Roediger-McDermott (DRM) false-memory task. List items were presented in unique spatial locations or unique fonts to serve as measures for item-specific encoding. The negative mood conditions had more accurate memories for item-specific information, and they also had fewer false memories. The final experiment used a manipulation that drew attention to distinctive information, which aided learning for DRM words, but also promoted item-specific encoding. For the condition that promoted item-specific encoding, false memories were reduced for positive and neutral mood conditions to a rate similar to that of the negative mood condition. These experiments demonstrated that negative affective cues promote item-specific processing reducing false memories. People in positive and negative moods encode events differently creating different memories for the same event.

  12. Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes.

    PubMed

    Rocca, Maria A; Vacchi, Laura; Rodegher, Mariaemma; Meani, Alessandro; Martinelli, Vittorio; Possa, Francesca; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-10-01

    Using fMRI during a face encoding (FE) task, we investigated the behavioral and fMRI correlates of FE in patients with relapse-onset multiple sclerosis (MS) at different stages of the disease and their relation with attentive-executive performance and structural MRI measures of disease-related damage. A fMRI FE task was administered to 75 MS patients (11 clinically isolated syndromes - CIS, 40 relapsing-remitting - RRMS - and 24 secondary progressive - SPMS) and 22 healthy controls (HC). fMRI activity during the face encoding condition was correlated with behavioral, clinical, neuropsychological and structural MRI variables. All study subjects activated brain regions belonging to face perception and encoding network, and deactivated areas of the default-mode network. Compared to HC, MS patients had the concomitant presence of areas of increased and decreased activations as well as increased and decreased deactivations. Compared to HC or RRMS, CIS patients experienced an increased recruitment of posterior-visual areas. Thalami, para-hippocampal gyri and right anterior cingulum were more activated in RRMS vs CIS or SPMS patients, while an increased recruitment of frontal areas was observed in SPMS vs RRMS. Areas of abnormal activations were significantly correlated with clinical, cognitive-behavioral and structural MRI measures. Abnormalities of FE network occur in MS and vary across disease clinical phenotypes. Early in the disease, an increased recruitment of areas typically devoted to face perception and encoding occurs. In SPMS patients, abnormal functional recruitment of frontal lobe areas might contribute to the severity of clinical manifestations.

  13. QualityML: a dictionary for quality metadata encoding

    NASA Astrophysics Data System (ADS)

    Ninyerola, Miquel; Sevillano, Eva; Serral, Ivette; Pons, Xavier; Zabala, Alaitz; Bastin, Lucy; Masó, Joan

    2014-05-01

    The scenario of rapidly growing geodata catalogues requires tools focused on facilitate users the choice of products. Having quality fields populated in metadata allow the users to rank and then select the best fit-for-purpose products. In this direction, we have developed the QualityML (http://qualityml.geoviqua.org), a dictionary that contains hierarchically structured concepts to precisely define and relate quality levels: from quality classes to quality measurements. Generically, a quality element is the path that goes from the higher level (quality class) to the lowest levels (statistics or quality metrics). This path is used to encode quality of datasets in the corresponding metadata schemas. The benefits of having encoded quality, in the case of data producers, are related with improvements in their product discovery and better transmission of their characteristics. In the case of data users, particularly decision-makers, they would find quality and uncertainty measures to take the best decisions as well as perform dataset intercomparison. Also it allows other components (such as visualization, discovery, or comparison tools) to be quality-aware and interoperable. On one hand, the QualityML is a profile of the ISO geospatial metadata standards providing a set of rules for precisely documenting quality indicator parameters that is structured in 6 levels. On the other hand, QualityML includes semantics and vocabularies for the quality concepts. Whenever possible, if uses statistic expressions from the UncertML dictionary (http://www.uncertml.org) encoding. However it also extends UncertML to provide list of alternative metrics that are commonly used to quantify quality. A specific example, based on a temperature dataset, is shown below. The annual mean temperature map has been validated with independent in-situ measurements to obtain a global error of 0.5 ° C. Level 0: Quality class (e.g., Thematic accuracy) Level 1: Quality indicator (e.g., Quantitative

  14. Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli.

    PubMed

    Parent, Marise B; Krebs-Kraft, Desiree L; Ryan, John P; Wilson, Jennifer S; Harenski, Carla; Hamann, Stephan

    2011-04-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with episodic memory encoding and whether these effects would differ depending on the emotional valence of the material. We used a double-blind, within-participants, crossover design in which either glucose (50g) or a saccharin placebo were administered before scanning, on days approximately 1 week apart. We scanned healthy young male participants with fMRI as they viewed emotionally arousing negative pictures and emotionally neutral pictures, intermixed with baseline fixation. Free recall was tested at 5 min after scanning and again after 1 day. Glucose administration increased activation in brain regions associated with successful episodic memory encoding. Glucose also enhanced activation in regions whose activity was correlated with subsequent successful recall, including the hippocampus, prefrontal cortex, and other regions, and these effects differed for negative vs. neutral stimuli. Finally, glucose substantially increased functional connectivity between the hippocampus and amygdala and a network of regions previously implicated in successful episodic memory encoding. These findings fit with evidence from nonhuman animals indicating glucose modulates memory by selectively enhancing neural activity in brain regions engaged during memory tasks. Our results highlight the modulatory effects of glucose and the importance of examining both regional changes in activity and functional connectivity to fully characterize the effects of glucose on brain function and memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Distinct encoding of risk and value in economic choice between multiple risky options☆

    PubMed Central

    Wright, Nicholas D.; Symmonds, Mkael; Dolan, Raymond J.

    2013-01-01

    Neural encoding of value-based stimuli is suggested to involve representations of summary statistics, including risk and expected value (EV). A more complex, but ecologically more common, context is when multiple risky options are evaluated together. However, it is unknown whether encoding related to option evaluation in these situations involves similar principles. Here we employed fMRI during a task that parametrically manipulated EV and risk in two simultaneously presented lotteries, both of which contained either gains or losses. We found representations of EV in medial prefrontal cortex and anterior insula, an encoding that was dependent on which option was chosen (i.e. chosen and unchosen EV) and whether the choice was over gains or losses. Parietal activity reflected whether the riskier or surer option was selected, whilst activity in a network of regions that also included parietal cortex reflected both combined risk and difference in risk for the two options. Our findings provide support for the idea that summary statistics underpin a representation of value-based stimuli, and further that these summary statistics undergo distinct forms of encoding. PMID:23684860

  16. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  17. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  18. Modality-specific alpha modulations facilitate long-term memory encoding in the presence of distracters.

    PubMed

    Jiang, Haiteng; van Gerven, Marcel A J; Jensen, Ole

    2015-03-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it reflects the functional disengagement of specific regions in attention and memory tasks. We here ask if such allocation of resources by alpha oscillations generalizes to long-term memory encoding in a cross-modal setting in which we acquired the ongoing brain activity using magnetoencephalography. Participants were asked to encode pictures while ignoring simultaneously presented words and vice versa. We quantified the brain activity during rehearsal reflecting subsequent memory in the different attention conditions. The key finding was that successful long-term memory encoding is reflected by alpha power decreases in the sensory region of the to-be-attended modality and increases in the sensory region of the to-be-ignored modality to suppress distraction during rehearsal period. Our results corroborate related findings from attention studies by demonstrating that alpha activity is also important for the allocation of resources during long-term memory encoding in the presence of distracters.

  19. Security enhanced BioEncoding for protecting iris codes

    NASA Astrophysics Data System (ADS)

    Ouda, Osama; Tsumura, Norimichi; Nakaguchi, Toshiya

    2011-06-01

    Improving the security of biometric template protection techniques is a key prerequisite for the widespread deployment of biometric technologies. BioEncoding is a recently proposed template protection scheme, based on the concept of cancelable biometrics, for protecting biometric templates represented as binary strings such as iris codes. The main advantage of BioEncoding over other template protection schemes is that it does not require user-specific keys and/or tokens during verification. Besides, it satisfies all the requirements of the cancelable biometrics construct without deteriorating the matching accuracy. However, although it has been shown that BioEncoding is secure enough against simple brute-force search attacks, the security of BioEncoded templates against more smart attacks, such as record multiplicity attacks, has not been sufficiently investigated. In this paper, a rigorous security analysis of BioEncoding is presented. Firstly, resistance of BioEncoded templates against brute-force attacks is revisited thoroughly. Secondly, we show that although the cancelable transformation employed in BioEncoding might be non-invertible for a single protected template, the original iris code could be inverted by correlating several templates used in different applications but created from the same iris. Accordingly, we propose an important modification to the BioEncoding transformation process in order to hinder attackers from exploiting this type of attacks. The effectiveness of adopting the suggested modification is validated and its impact on the matching accuracy is investigated empirically using CASIA-IrisV3-Interval dataset. Experimental results confirm the efficacy of the proposed approach and show that it preserves the matching accuracy of the unprotected iris recognition system.

  20. Functional dissociation between regularity encoding and deviance detection along the auditory hierarchy.

    PubMed

    Aghamolaei, Maryam; Zarnowiec, Katarzyna; Grimm, Sabine; Escera, Carles

    2016-02-01

    Auditory deviance detection based on regularity encoding appears as one of the basic functional properties of the auditory system. It has traditionally been assessed with the mismatch negativity (MMN) long-latency component of the auditory evoked potential (AEP). Recent studies have found earlier correlates of deviance detection based on regularity encoding. They occur in humans in the first 50 ms after sound onset, at the level of the middle-latency response of the AEP, and parallel findings of stimulus-specific adaptation observed in animal studies. However, the functional relationship between these different levels of regularity encoding and deviance detection along the auditory hierarchy has not yet been clarified. Here we addressed this issue by examining deviant-related responses at different levels of the auditory hierarchy to stimulus changes varying in their degree of deviation regarding the spatial location of a repeated standard stimulus. Auditory stimuli were presented randomly from five loudspeakers at azimuthal angles of 0°, 12°, 24°, 36° and 48° during oddball and reversed-oddball conditions. Middle-latency responses and MMN were measured. Our results revealed that middle-latency responses were sensitive to deviance but not the degree of deviation, whereas the MMN amplitude increased as a function of deviance magnitude. These findings indicated that acoustic regularity can be encoded at the level of the middle-latency response but that it takes a higher step in the auditory hierarchy for deviance magnitude to be encoded, thus providing a functional dissociation between regularity encoding and deviance detection along the auditory hierarchy. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. All varieties of encoding variability are not created equal: Separating variable processing from variable tasks

    PubMed Central

    Huff, Mark J.; Bodner, Glen E.

    2014-01-01

    Whether encoding variability facilitates memory is shown to depend on whether item-specific and relational processing are both performed across study blocks, and whether study items are weakly versus strongly related. Variable-processing groups studied a word list once using an item-specific task and once using a relational task. Variable-task groups’ two different study tasks recruited the same type of processing each block. Repeated-task groups performed the same study task each block. Recall and recognition were greatest in the variable-processing group, but only with weakly related lists. A variable-processing benefit was also found when task-based processing and list-type processing were complementary (e.g., item-specific processing of a related list) rather than redundant (e.g., relational processing of a related list). That performing both item-specific and relational processing across trials, or within a trial, yields encoding-variability benefits may help reconcile decades of contradictory findings in this area. PMID:25018583

  2. Temporal dynamics of attention during encoding vs. maintenance of working memory: complementary views from event-related potentials and alpha-band oscillations

    PubMed Central

    Myers, Nicholas E.; Walther, Lena; Wallis, George; Stokes, Mark G.; Nobre, Anna C.

    2015-01-01

    Working memory (WM) is strongly influenced by attention. In visual working-memory tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar fronto-parietal control network, the two are likely to exhibit some processing differences, since precues invite anticipation of upcoming information, while retrocues may guide prioritisation, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual working-memory task designed to permit a direct comparison between cueing conditions. We found marked differences in event-related potential (ERP) profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha band (8-14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information. PMID:25244118

  3. The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear.

    PubMed

    Schmidt, K; Forkmann, K; Sinke, C; Gratz, M; Bitz, A; Bingel, U

    2016-07-01

    Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Gene family encoding the major toxins of lethal Amanita mushrooms

    PubMed Central

    Hallen, Heather E.; Luo, Hong; Scott-Craig, John S.; Walton, Jonathan D.

    2007-01-01

    Amatoxins, the lethal constituents of poisonous mushrooms in the genus Amanita, are bicyclic octapeptides. Two genes in A. bisporigera, AMA1 and PHA1, directly encode α-amanitin, an amatoxin, and the related bicyclic heptapeptide phallacidin, a phallotoxin, indicating that these compounds are synthesized on ribosomes and not by nonribosomal peptide synthetases. α-Amanitin and phallacidin are synthesized as proproteins of 35 and 34 amino acids, respectively, from which they are predicted to be cleaved by a prolyl oligopeptidase. AMA1 and PHA1 are present in other toxic species of Amanita section Phalloidae but are absent from nontoxic species in other sections. The genomes of A. bisporigera and A. phalloides contain multiple sequences related to AMA1 and PHA1. The predicted protein products of this family of genes are characterized by a hypervariable “toxin” region capable of encoding a wide variety of peptides of 7–10 amino acids flanked by conserved sequences. Our results suggest that these fungi have a broad capacity to synthesize cyclic peptides on ribosomes. PMID:18025465

  5. [The ENCODE project and functional genomics studies].

    PubMed

    Ding, Nan; Qu, Hongzhu; Fang, Xiangdong

    2014-03-01

    Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.

  6. Two Pathways to Stimulus Encoding in Category Learning?

    PubMed Central

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2008-01-01

    Category learning theorists tacitly assume that stimuli are encoded by a single pathway. Motivated by theories of object recognition, we evaluate a dual-pathway account of stimulus encoding. The part-based pathway establishes mappings between sensory input and symbols that encode discrete stimulus features, whereas the image-based pathway applies holistic templates to sensory input. Our experiments use rule-plus-exception structures in which one exception item in each category violates a salient regularity and must be distinguished from other items. In Experiment 1, we find that discrete representations are crucial for recognition of exceptions following brief training. Experiments 2 and 3 involve multi-session training regimens designed to encourage either part or image-based encoding. We find that both pathways are able to support exception encoding, but have unique characteristics. We speculate that one advantage of the part-based pathway is the ability to generalize across domains, whereas the image-based pathway provides faster and more effortless recognition. PMID:19460948

  7. Modular verification of chemical reaction network encodings via serializability analysis

    PubMed Central

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  8. Constructing LDPC Codes from Loop-Free Encoding Modules

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth

    2009-01-01

    A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to

  9. Brain Activity During the Encoding, Retention, and Retrieval of Stimulus Representations

    PubMed Central

    de Zubicaray, Greig I.; McMahon, Katie; Wilson, Stephen J.; Muthiah, Santhi

    2001-01-01

    Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory. PMID:11584070

  10. Efficient biprediction decision scheme for fast high efficiency video coding encoding

    NASA Astrophysics Data System (ADS)

    Park, Sang-hyo; Lee, Seung-ho; Jang, Euee S.; Jun, Dongsan; Kang, Jung-Won

    2016-11-01

    An efficient biprediction decision scheme of high efficiency video coding (HEVC) is proposed for fast-encoding applications. For low-delay video applications, bidirectional prediction can be used to increase compression performance efficiently with previous reference frames. However, at the same time, the computational complexity of the HEVC encoder is significantly increased due to the additional biprediction search. Although a some research has attempted to reduce this complexity, whether the prediction is strongly related to both motion complexity and prediction modes in a coding unit has not yet been investigated. A method that avoids most compression-inefficient search points is proposed so that the computational complexity of the motion estimation process can be dramatically decreased. To determine if biprediction is critical, the proposed method exploits the stochastic correlation of the context of prediction units (PUs): the direction of a PU and the accuracy of a motion vector. Through experimental results, the proposed method showed that the time complexity of biprediction can be reduced to 30% on average, outperforming existing methods in view of encoding time, number of function calls, and memory access.

  11. Divided attention can enhance memory encoding: the attentional boost effect in implicit memory.

    PubMed

    Spataro, Pietro; Mulligan, Neil W; Rossi-Arnaud, Clelia

    2013-07-01

    Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute facilitation was obtained in 2 perceptual implicit tasks (lexical decision and word fragment completion) but not in a conceptual implicit task (semantic classification). In the case of recognition memory, the facilitation was relative, bringing accuracy in the divided attention condition up to the level of accuracy in the full attention condition. The findings follow from the hypothesis that the attentional boost effect reflects enhanced visual encoding of the study stimulus consequent to the transient orienting response to the dual-task target. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. The ENCODE Project at UC Santa Cruz.

    PubMed

    Thomas, Daryl J; Rosenbloom, Kate R; Clawson, Hiram; Hinrichs, Angie S; Trumbower, Heather; Raney, Brian J; Karolchik, Donna; Barber, Galt P; Harte, Rachel A; Hillman-Jackson, Jennifer; Kuhn, Robert M; Rhead, Brooke L; Smith, Kayla E; Thakkapallayil, Archana; Zweig, Ann S; Haussler, David; Kent, W James

    2007-01-01

    The goal of the Encyclopedia Of DNA Elements (ENCODE) Project is to identify all functional elements in the human genome. The pilot phase is for comparison of existing methods and for the development of new methods to rigorously analyze a defined 1% of the human genome sequence. Experimental datasets are focused on the origin of replication, DNase I hypersensitivity, chromatin immunoprecipitation, promoter function, gene structure, pseudogenes, non-protein-coding RNAs, transcribed RNAs, multiple sequence alignment and evolutionarily constrained elements. The ENCODE project at UCSC website (http://genome.ucsc.edu/ENCODE) is the primary portal for the sequence-based data produced as part of the ENCODE project. In the pilot phase of the project, over 30 labs provided experimental results for a total of 56 browser tracks supported by 385 database tables. The site provides researchers with a number of tools that allow them to visualize and analyze the data as well as download data for local analyses. This paper describes the portal to the data, highlights the data that has been made available, and presents the tools that have been developed within the ENCODE project. Access to the data and types of interactive analysis that are possible are illustrated through supplemental examples.

  13. Enhanced tactile encoding and memory recognition in congenital blindness.

    PubMed

    D'Angiulli, Amedeo; Waraich, Paul

    2002-06-01

    Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness.

  14. Narrative organisation at encoding facilitated children's long-term episodic memory.

    PubMed

    Wang, Qi; Bui, Van-Kim; Song, Qingfang

    2015-01-01

    This study examined the effect of narrative organisation at encoding on long-term episodic memory in a sample of five- to seven-year-old children (N = 113). At an initial interview, children were asked to narrate a story from a picture book. Six months later, they were interviewed again and asked to recall the story and answer a series of direct questions about the story. Children who initially encoded more information in narrative and produced more complete, complex, cohesive and coherent narratives remembered the story in greater detail and accuracy following the six-month interval, independent of age and verbal skills. The relation between narrative organisation and memory was consistent across culture and gender. These findings provide new insight into the critical role of narrative in episodic memory.

  15. Encoding Deficits Impede Word Learning and Memory in Adults With Developmental Language Disorders

    PubMed Central

    Gordon, Katherine; Eden, Nichole; Arbisi-Kelm, Tim; Oleson, Jacob

    2017-01-01

    Purpose The aim of this study was to determine whether the word-learning challenges associated with developmental language disorder (DLD) result from encoding or retention deficits. Method In Study 1, 59 postsecondary students with DLD and 60 with normal development (ND) took the California Verbal Learning Test–Second Edition, Adult Version (Delis, Kramer, Kaplan, & Ober, 2000). In Study 2, 23 postsecondary students with DLD and 24 with ND attempted to learn 9 novel words in each of 3 training conditions: uncued test, cued test, and no test (passive study). Retention was measured 1 day and 1 week later. Results By the end of training, students with DLD had encoded fewer familiar words (Study 1) and fewer novel words (Study 2) than their ND peers as evinced by word recall. They also demonstrated poorer encoding as evinced by slower growth in recall from Trials 1 to 2 (Studies 1 and 2), less semantic clustering of recalled words, and poorer recognition (Study 1). The DLD and ND groups were similar in the relative amount of information they could recall after retention periods of 5 and 20 min (Study 1). After a 1-day retention period, the DLD group recalled less information that had been encoded via passive study, but they performed as well as their ND peers when recalling information that had been encoded via tests (Study 2). Compared to passive study, encoding via tests also resulted in more robust lexical engagement after a 1-week retention for DLD and ND groups. Conclusions Encoding, not retention, is the problematic stage of word learning for adults with DLD. Self-testing with feedback lessens the deficit. Supplemental Materials https://doi.org/10.23641/asha.5435200 PMID:28980007

  16. Transcranial magnetic stimulation of the left angular gyrus during encoding does not impair associative memory performance.

    PubMed

    Koen, Joshua D; Thakral, Preston P; Rugg, Michael D

    2018-06-05

    The left angular gyrus (AG) is thought to play a critical role in episodic retrieval and has been implicated in the recollection of specific details of prior episodes. Motivated by recent fMRI studies in which it was reported that elevated neural activity in left AG during study is predictive of subsequent associative memory, the present study investigated whether the region plays a causal role in associative memory encoding. Participants underwent online transcranial magnetic stimulation (TMS) while encoding word pairs prior to an associative memory test. We predicted that TMS to left AG during encoding would result in reduced subsequent memory accuracy, especially for estimates of recollection. The results did not support this prediction: estimates of both recollection and familiarity-driven recognition were essentially identical for words pairs encoded during TMS to left AG relative to a vertex control site. These results suggest that the left AG may not play a necessary role in associative memory encoding. TMS to left AG did however affect confidence for incorrect 'intact' judgments to rearranged pairs and incorrect 'rearranged' judgments to intact pairs. These findings suggest that the left AG supports encoding processes that contribute to aspects of subjective mnemonic experience.

  17. Encoding specificity manipulations do affect retrieval from memory.

    PubMed

    Zeelenberg, René

    2005-05-01

    In a recent article, P.A. Higham (2002) [Strong cues are not necessarily weak: Thomson and Tulving (1970) and the encoding specificity principle revisited. Memory &Cognition, 30, 67-80] proposed a new way to analyze cued recall performance in terms of three separable aspects of memory (retrieval, monitoring, and report bias) by comparing performance under both free-report and forced-report instructions. He used this method to derive estimates of these aspects of memory in an encoding specificity experiment similar to that reported by D.M. Thomson and E. Tulving (1970) [Associative encoding and retrieval: weak and strong cues. Journal of Experimental Psychology, 86, 255-262]. Under forced-report instructions, the encoding specificity manipulation did not affect performance. Higham concluded that the manipulation affected monitoring and report bias, but not retrieval. I argue that this interpretation of the results is problematic because the Thomson and Tulving paradigm is confounded, and show in three experiments using a more appropriate design that encoding specificity manipulations do affect performance in forced-report cued recall. Because in Higham's framework forced-report performance provides a measure of retrieval that is uncontaminated by monitoring and report bias it is concluded that encoding specificity manipulations do affect retrieval from memory.

  18. Eddy current compensated double diffusion encoded (DDE) MRI.

    PubMed

    Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd

    2017-01-01

    Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Learning from Number Board Games: You Learn What You Encode

    ERIC Educational Resources Information Center

    Laski, Elida V.; Siegler, Robert S.

    2014-01-01

    We tested the hypothesis that encoding the numerical-spatial relations in a number board game is a key process in promoting learning from playing such games. Experiment 1 used a microgenetic design to examine the effects on learning of the type of counting procedure that children use. As predicted, having kindergartners count-on from their current…

  20. Cellulases, nucleic acids encoding them and methods for making and using them

    DOEpatents

    Blum, David; Gemsch Cuenca, Joslin; Dycaico, Mark

    2013-04-23

    This invention relates to molecular and cellular biology and biochemistry. In one aspect, the invention provides polypeptides having cellulase activity, e.g., endoglucanase, cellobiohydrolase, mannanase and/or .beta.-glucosidase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides cellulase activity, e.g., endoglucanase, cellobiohydrolase, mannanase and/or .beta.-glucosidase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts.

  1. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-04-29

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  4. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  5. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  6. Incremental Phonological Encoding during Unscripted Sentence Production

    PubMed Central

    Jaeger, T. Florian; Furth, Katrina; Hilliard, Caitlin

    2012-01-01

    We investigate phonological encoding during unscripted sentence production, focusing on the effect of phonological overlap on phonological encoding. Previous work on this question has almost exclusively employed isolated word production or highly scripted multi-word production. These studies have led to conflicting results: some studies found that phonological overlap between two words facilitates phonological encoding, while others found inhibitory effects. One worry with many of these paradigms is that they involve processes that are not typical to everyday language use, which calls into question to what extent their findings speak to the architectures and mechanisms underlying language production. We present a paradigm to investigate the consequences of phonological overlap between words in a sentence while leaving speakers much of the lexical and structural choices typical in everyday language use. Adult native speakers of English described events in short video clips. We annotated the presence of disfluencies and the speech rate at various points throughout the sentence, as well as the constituent order. We find that phonological overlap has an inhibitory effect on phonological encoding. Specifically, if adjacent content words share their phonological onset (e.g., hand the hammer), they are preceded by production difficulty, as reflected in fluency and speech rate. We also find that this production difficulty affects speakers’ constituent order preferences during grammatical encoding. We discuss our results and previous works to isolate the properties of other paradigms that resulted in facilitatory or inhibitory results. The data from our paradigm also speak to questions about the scope of phonological planning in unscripted speech and as to whether phonological and grammatical encoding interact. PMID:23162515

  7. Dynamical information encoding in neural adaptation.

    PubMed

    Luozheng Li; Wenhao Zhang; Yuanyuan Mi; Dahui Wang; Xiaohan Lin; Si Wu

    2016-08-01

    Adaptation refers to the general phenomenon that a neural system dynamically adjusts its response property according to the statistics of external inputs. In response to a prolonged constant stimulation, neuronal firing rates always first increase dramatically at the onset of the stimulation; and afterwards, they decrease rapidly to a low level close to background activity. This attenuation of neural activity seems to be contradictory to our experience that we can still sense the stimulus after the neural system is adapted. Thus, it prompts a question: where is the stimulus information encoded during the adaptation? Here, we investigate a computational model in which the neural system employs a dynamical encoding strategy during the neural adaptation: at the early stage of the adaptation, the stimulus information is mainly encoded in the strong independent firings; and as time goes on, the information is shifted into the weak but concerted responses of neurons. We find that short-term plasticity, a general feature of synapses, provides a natural mechanism to achieve this goal. Furthermore, we demonstrate that with balanced excitatory and inhibitory inputs, this correlation-based information can be read out efficiently. The implications of this study on our understanding of neural information encoding are discussed.

  8. Encoding attentional states during visuomotor adaptation

    PubMed Central

    Im, Hee Yeon; Bédard, Patrick; Song, Joo-Hyun

    2015-01-01

    We recently showed that visuomotor adaptation acquired under attentional distraction is better recalled under a similar level of distraction compared to no distraction. This paradoxical effect suggests that attentional state (e.g., divided or undivided) is encoded as an internal context during visuomotor learning and should be reinstated for successful recall (Song & Bédard, 2015). To investigate if there is a critical temporal window for encoding attentional state in visuomotor memory, we manipulated whether participants performed the secondary attention-demanding task concurrently in the early or late phase of visuomotor learning. Recall performance was enhanced when the attentional states between recall and the early phase of visuomotor learning were consistent. However, it reverted to untrained levels when tested under the attentional state of the late-phase learning. This suggests that attentional state is primarily encoded during the early phase of learning before motor errors decrease and reach an asymptote. Furthermore, we demonstrate that when divided and undivided attentional states were mixed during visuomotor adaptation, only divided attention was encoded as an internal cue for memory retrieval. Therefore, a single attentional state appears to be primarily integrated with visuomotor memory while motor error reduction is in progress during learning. PMID:26114683

  9. Cognitive training of self-initiation of semantic encoding strategies in schizophrenia: A pilot study.

    PubMed

    Guimond, Synthia; Lepage, Martin

    2016-01-01

    Available cognitive remediation interventions have a significant but relatively small to moderate impact on episodic memory in schizophrenia. The present study aimed to evaluate the efficacy and feasibility of a brief novel episodic memory training targeting the self-initiation of semantic encoding strategies. To select patients with such deficits, 28 participants with schizophrenia performed our Semantic Encoding Memory Task (SEMT) that provides a measure of self-initiated semantic encoding strategies. This task identified a deficit in 13 participants who were then offered two 60-minute training sessions one week apart. After the training, patients performed an alternate version of the SEMT. The CVLT-II (a standardised measure of semantic encoding strategies) and the BVMT-R (a control spatial memory task) were used to quantify memory pre- and post-training. After the training, participants were significantly better at self-initiating semantic encoding strategies in the SEMT (p = .004) and in the CVLT-II (p = .002). No significant differences were found in the BVMT-R. The current study demonstrates that a brief and specific training in memory strategies can help patients to improve a deficient memory process in schizophrenia. Future studies will need to test this intervention further using a randomised controlled trial, and to explore its functional impact.

  10. Improvement of encoding and retrieval in normal and pathological aging with word-picture paradigm.

    PubMed

    Iodice, Rosario; Meilán, Juan José G; Carro, Juan

    2015-01-01

    During the aging process, there is a progressive deficit in the encoding of new information and its retrieval. Different strategies are used in order to maintain, optimize or diminish these deficits in people with and without dementia. One of the classic techniques is paired-associate learning (PAL), which is based on improving the encoding of memories, but it has yet to be used to its full potential in people with dementia. In this study, our aim is to corroborate the importance of PAL tasks as instrumental tools for creating contextual cues, during both the encoding and retrieval phases of memory. Additionally, we aim to identify the most effective form of presenting the related items. Pairs of stimuli were shown to healthy elderly people and to patients with moderate and mild Alzheimer's disease. The encoding conditions were as follows: word/word, picture/picture, picture/word, and word/picture. Associative cued recall of the second item in the pair shows that retrieval is higher for the word/picture condition in the two groups of patients with dementia when compared to the other conditions, while word/word is the least effective in all cases. These results confirm that PAL is an effective tool for creating contextual cues during both the encoding and retrieval phases in people with dementia when the items are presented using the word/picture condition. In this way, the encoding and retrieval deficit can be reduced in these people.

  11. The ENCODE project: implications for psychiatric genetics.

    PubMed

    Kavanagh, D H; Dwyer, S; O'Donovan, M C; Owen, M J

    2013-05-01

    The ENCyclopedia Of DNA Elements (ENCODE) project is a public research consortium that aims to identify all functional elements of the human genome sequence. The project comprised 1640 data sets, from 147 different cell type and the findings were released in a coordinated set of 34 publications across several journals. The ENCODE publications report that 80.4% of the human genome displays some functionality. These data have important implications for interpreting results from large-scale genetics studies. We reviewed some of the key findings from the ENCODE publications and discuss how they can influence or inform further investigations into the genetic factors contributing to neuropsychiatric disorders.

  12. Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects.

    PubMed

    Soldan, Anja; Mangels, Jennifer A; Cooper, Lynn A

    2008-11-01

    According to the distractor-selection hypothesis (Mulligan, 2003), dividing attention during encoding reduces perceptual priming when responses to non-critical (i.e., distractor) stimuli are selected frequently and simultaneously with critical stimulus encoding. Because direct support for this hypothesis comes exclusively from studies using familiar word stimuli, the present study tested whether the predictions of the distractor-selection hypothesis extend to perceptual priming of unfamiliar visual objects using the possible/impossible object decision test. Consistent with the distractor-selection hypothesis, Experiments 1 and 2 found no reduction in priming when the non-critical stimuli were presented infrequently and non-synchronously with the critical target stimuli, even though explicit recognition memory was reduced. In Experiment 3, non-critical stimuli were presented frequently and simultaneously during encoding of critical stimuli; however, no decrement in priming was detected, even when encoding time was reduced. These results suggest that priming in the possible/impossible object decision test is relatively immune to reductions in central attention and that not all aspects of the distractor-selection hypothesis generalise to priming of unfamiliar visual objects. Implications for theoretical models of object decision priming are discussed.

  13. Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects

    PubMed Central

    Soldan, Anja; Mangels, Jennifer A.; Cooper, Lynn A.

    2008-01-01

    According to the distractor-selection hypothesis (Mulligan, 2003), dividing attention during encoding reduces perceptual priming when responses to non-critical (i.e., distractor) stimuli are selected frequently and simultaneously with critical stimulus encoding. Because direct support for this hypothesis comes exclusively from studies using familiar word stimuli, the present study tested whether the predictions of the distractor-selection hypothesis extend to perceptual priming of unfamiliar visual objects using the possible/impossible object-decision test. Consistent with the distractor-selection hypothesis, Experiments 1 and 2 found no reduction in priming when the non-critical stimuli were presented infrequently and non-synchronously with the critical target stimuli, even though explicit recognition memory was reduced. In Experiment 3, non-critical stimuli were presented frequently and simultaneously during encoding of critical stimuli; however, no decrement in priming was detected, even when encoding time was reduced. These results suggest that priming in the possible/impossible object-decision test is relatively immune to reductions in central attention and that not all aspects of the distractor-selection hypothesis generalize to priming of unfamiliar visual objects. Implications for theoretical models of object-decision priming are discussed. PMID:18821167

  14. The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus)

    NASA Astrophysics Data System (ADS)

    Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.

    2016-06-01

    Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.

  15. Memory for emotional words: The role of semantic relatedness, encoding task and affective valence.

    PubMed

    Ferré, Pilar; Fraga, Isabel; Comesaña, Montserrat; Sánchez-Casas, Rosa

    2015-01-01

    Emotional stimuli have been repeatedly demonstrated to be better remembered than neutral ones. The aim of the present study was to test whether this advantage in memory is mainly produced by the affective content of the stimuli or it can be rather accounted for by factors such as semantic relatedness or type of encoding task. The valence of the stimuli (positive, negative and neutral words that could be either semantically related or unrelated) as well as the type of encoding task (focused on either familiarity or emotionality) was manipulated. The results revealed an advantage in memory for emotional words (either positive or negative) regardless of semantic relatedness. Importantly, this advantage was modulated by the encoding task, as it was reliable only in the task which focused on emotionality. These findings suggest that congruity with the dimension attended at encoding might contribute to the superiority in memory for emotional words, thus offering us a more complex picture of the underlying mechanisms behind the advantage for emotional information in memory.

  16. Mental reinstatement of encoding context improves episodic remembering.

    PubMed

    Bramão, Inês; Karlsson, Anna; Johansson, Mikael

    2017-09-01

    This study investigates context-dependent memory retrieval. Previous work has shown that physically re-experiencing the encoding context at retrieval improves memory accessibility. The current study examined if mental reconstruction of the original encoding context would yield parallel memory benefits. Participants performed a cued-recall memory task, preceded either by a mental or by a physical context reinstatement task, and we manipulated whether the context reinstated at retrieval overlapped with the context of the target episode. Both behavioral and electrophysiological measures of brain activity showed strong encoding-retrieval (E-R) overlap effects, with facilitated episodic retrieval when the encoding and retrieval contexts overlapped. The electrophysiological E-R overlap effect was more sustained and involved more posterior regions when context was mentally compared with physically reinstated. Additionally, a time-frequency analysis revealed that context reinstatement alone engenders recollection of the target episode. However, while recollection of the target memory is readily prompted by a physical reinstatement, target recollection during mental reinstatement is delayed and depends on the gradual reconstruction of the context. Taken together, our results show facilitated episodic remembering also when mentally reinstating the encoding context; and that such benefits are supported by both shared and partially non-overlapping neural mechanisms when the encoding context is mentally reconstructed as compared with physically presented at the time of retrieval. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.

    PubMed

    Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A

    2018-06-01

    We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  18. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2018-06-01

    Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  19. Late positive slow waves as markers of chunking during encoding

    PubMed Central

    Nogueira, Ana M. L.; Bueno, Orlando F. A.; Manzano, Gilberto M.; Kohn, André F.; Pompéia, Sabine

    2015-01-01

    Electrophysiological markers of chunking of words during encoding have mostly been shown in studies that present pairs of related stimuli. In these cases it is difficult to disentangle cognitive processes that reflect distinctiveness (i.e., conspicuous items because they are related), perceived association between related items and unified representations of various items, or chunking. Here, we propose a paradigm that enables the determination of a separate Event-related Potential (ERP) marker of these cognitive processes using sequentially related word triads. Twenty-three young healthy individuals viewed 80 15-word lists composed of unrelated items except for the three words in the middle serial positions (triads), which could be either unrelated (control list), related perceptually, phonetically or semantically. ERP amplitudes were measured at encoding of each one of the words in the triads. We analyzed two latency intervals (350–400 and 400–800 ms) at midline locations. Behaviorally, we observed a progressive facilitation in the immediate free recall of the words in the triads depending on the relations between their items (control < perceptual < phonetic < semantic), but only semantically related items were recalled as chunks. P300-like deflections were observed for perceptually deviant stimuli. A reduction of amplitude of a component akin to the N400 was found for words that were phonetically and semantically associated with prior items and therefore were not associated to chunking. Positive slow wave (PSW) amplitudes increased as successive phonetically and semantically related items were presented, but they were observed earlier and were more prominent at Fz for semantic associates. PSWs at Fz and Cz also correlated with recall of semantic word chunks. This confirms prior claims that PSWs at Fz are potential markers of chunking which, in the proposed paradigm, were modulated differently from the detection of deviant stimuli and of relations between

  20. Temporally Specific Divided Attention Tasks in Young Adults Reveal the Temporal Dynamics of Episodic Encoding Failures in Elderly Adults

    PubMed Central

    Johnson, Ray; Nessler, Doreen; Friedman, David

    2013-01-01

    Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299–312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This altered brain activity was associated with significantly decreased recognition performance and reduced recollection-related brain activity at retrieval (D. Nessler, D. Friedman, R. Johnson, Jr., & M. Bersick, 2007, Does repetition engender the same retrieval processes in young and older adults? NeuroReport, Vol. 18, pp. 1837–1840). To test the hypothesis that older adults’ well-documented episodic retrieval deficit is related to reduced pLIPFC activity at encoding, we used a novel divided attention task in healthy young adults that was specifically timed to disrupt encoding in either the 1st or 2nd half of a 300- to 1,400-ms interval. The results showed that diverting resources for 550 ms during either half of this interval reproduced the 4 characteristic aspects of the older participants’ retrieval performance: normal semantic retrieval during encoding, reduced subsequent episodic recognition and recall, reduced recollection-related ERP activity, and the presence of “compensatory” brain activity. We conclude that part of older adults’ episodic memory deficit is attributable to altered pLIPFC activity during encoding due to reduced levels of available processing resources. Moreover, the findings also provide insights into the nature and timing of the putative “compensatory” processes posited to be used by older adults in an attempt to compensate for age-related decline in cognitive function. These results support the scaffolding account of compensation, in

  1. Temporally specific divided attention tasks in young adults reveal the temporal dynamics of episodic encoding failures in elderly adults.

    PubMed

    Johnson, Ray; Nessler, Doreen; Friedman, David

    2013-06-01

    Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299-312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This altered brain activity was associated with significantly decreased recognition performance and reduced recollection-related brain activity at retrieval (D. Nessler, D. Friedman, R. Johnson, Jr., & M. Bersick, 2007, Does repetition engender the same retrieval processes in young and older adults? NeuroReport, Vol. 18, pp. 1837-1840). To test the hypothesis that older adults' well-documented episodic retrieval deficit is related to reduced pLIPFC activity at encoding, we used a novel divided attention task in healthy young adults that was specifically timed to disrupt encoding in either the 1st or 2nd half of a 300- to 1,400-ms interval. The results showed that diverting resources for 550 ms during either half of this interval reproduced the 4 characteristic aspects of the older participants' retrieval performance: normal semantic retrieval during encoding, reduced subsequent episodic recognition and recall, reduced recollection-related ERP activity, and the presence of "compensatory" brain activity. We conclude that part of older adults' episodic memory deficit is attributable to altered pLIPFC activity during encoding due to reduced levels of available processing resources. Moreover, the findings also provide insights into the nature and timing of the putative "compensatory" processes posited to be used by older adults in an attempt to compensate for age-related decline in cognitive function. These results support the scaffolding account of compensation, in which the

  2. Choice by value encoding and value construction: processes of loss aversion.

    PubMed

    Willemsen, Martijn C; Böckenholt, Ulf; Johnson, Eric J

    2011-08-01

    Loss aversion and reference dependence are 2 keystones of behavioral theories of choice, but little is known about their underlying cognitive processes. We suggest an additional account for loss aversion that supplements the current account of the value encoding of attributes as gains or losses relative to a reference point, introducing a value construction account. Value construction suggests that loss aversion results from biased evaluations during information search and comparison processes. We develop hypotheses that identify the influence of both accounts and examine process-tracing data for evidence. Our data suggest that loss aversion is the result of the initial direct encoding of losses that leads to the subsequent process of directional comparisons distorting attribute valuations and the final choice.

  3. Accelerated radial Fourier-velocity encoding using compressed sensing.

    PubMed

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  4. Multiple-stage pure phase encoding with biometric information

    NASA Astrophysics Data System (ADS)

    Chen, Wen

    2018-01-01

    In recent years, many optical systems have been developed for securing information, and optical encryption/encoding has attracted more and more attention due to the marked advantages, such as parallel processing and multiple-dimensional characteristics. In this paper, an optical security method is presented based on pure phase encoding with biometric information. Biometric information (such as fingerprint) is employed as security keys rather than plaintext used in conventional optical security systems, and multiple-stage phase-encoding-based optical systems are designed for generating several phase-only masks with biometric information. Subsequently, the extracted phase-only masks are further used in an optical setup for encoding an input image (i.e., plaintext). Numerical simulations are conducted to illustrate the validity, and the results demonstrate that high flexibility and high security can be achieved.

  5. Digital plus analog output encoder

    NASA Technical Reports Server (NTRS)

    Hafle, R. S. (Inventor)

    1976-01-01

    The disclosed encoder is adapted to produce both digital and analog output signals corresponding to the angular position of a rotary shaft, or the position of any other movable member. The digital signals comprise a series of binary signals constituting a multidigit code word which defines the angular position of the shaft with a degree of resolution which depends upon the number of digits in the code word. The basic binary signals are produced by photocells actuated by a series of binary tracks on a code disc or member. The analog signals are in the form of a series of ramp signals which are related in length to the least significant bit of the digital code word. The analog signals are derived from sine and cosine tracks on the code disc.

  6. Choice by Value Encoding and Value Construction: Processes of Loss Aversion

    ERIC Educational Resources Information Center

    Willemsen, Martijn C.; Bockenholt, Ulf; Johnson, Eric J.

    2011-01-01

    Loss aversion and reference dependence are 2 keystones of behavioral theories of choice, but little is known about their underlying cognitive processes. We suggest an additional account for loss aversion that supplements the current account of the value encoding of attributes as gains or losses relative to a reference point, introducing a value…

  7. A secretome view of colonisation factors in Shiga toxin-encoding Escherichia coli (STEC): from enterohaemorrhagic E. coli (EHEC) to related enteropathotypes.

    PubMed

    Monteiro, Ricardo; Ageorges, Valentin; Rojas-Lopez, Maricarmen; Schmidt, Herbert; Weiss, Agnes; Bertin, Yolande; Forano, Evelyne; Jubelin, Grégory; Henderson, Ian R; Livrelli, Valérie; Gobert, Alain P; Rosini, Roberto; Soriani, Marco; Desvaux, Mickaël

    2016-08-01

    Shiga toxin-encoding Escherichia coli (STEC) regroup strains that carry genes encoding Shiga toxin (Stx). Among intestinal pathogenic E. coli, enterohaemorrhagic E. coli (EHEC) constitute the major subgroup of virulent STEC. EHEC cause serious human disease such as haemorrhagic colitis and haemolytic-uremic syndrome. While EHEC have evolved from enteropathogenic E. coli, hybrids with enteroaggregative E. coli have recently emerged. Of note, some enteroinvasive E. coli also belong to the STEC group. While the LEE (locus of enterocyte effacement) is a key and prominent molecular determinant in the pathogenicity, neither all EHEC nor STEC contain the LEE, suggesting that they possess additional virulence and colonisation factors. Currently, nine protein secretion systems have been described in diderm-lipopolysaccharide bacteria (archetypal Gram-negative) and can be involved in the secretion of extracellular effectors, cell-surface proteins or assembly of cell-surface organelles, such as flagella or pili. In this review, we focus on the secretome of STEC and related enteropathotypes, which are relevant to the colonisation of biotic and abiotic surfaces. Considering the wealth of potential protein trafficking mechanisms, the different combinations of colonisation factors and modulation of their expression is further emphasised with regard to the ecophysiology of STEC. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. [ENCODE apophenia or a panglossian analysis of the human genome].

    PubMed

    Casane, Didier; Fumey, Julien; Laurenti, Patrick

    2015-01-01

    In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world. © 2015 médecine/sciences – Inserm.

  9. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    PubMed Central

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  10. Structural and Metabolic Correlates of Episodic Memory in Relation to the Depth of Encoding in Normal Aging

    ERIC Educational Resources Information Center

    Kalpouzos, Gregoria; Chetelat, Gael; Landeau, Brigitte; Clochon, Patrice; Viader, Fausto; Eustache, Francis; Desgranges, Beatrice

    2009-01-01

    This study set out to establish the relationship between changes in episodic memory retrieval in normal aging on the one hand and gray matter volume and [superscript 18]FDG uptake on the other. Structural MRI, resting-state [superscript 18]FDG-PET, and an episodic memory task manipulating the depth of encoding and the retention interval were…

  11. Thought probes during prospective memory encoding: Evidence for perfunctory processes.

    PubMed

    Scullin, Michael K; McDaniel, Mark A; Dasse, Michelle N; Lee, Ji Hae; Kurinec, Courtney A; Tami, Claudina; Krueger, Madison L

    2018-01-01

    For nearly 50 years, psychologists have studied prospective memory, or the ability to execute delayed intentions. Yet, there remains a gap in understanding as to whether initial encoding of the intention must be elaborative and strategic, or whether some components of successful encoding can occur in a perfunctory, transient manner. In eight studies (N = 680), we instructed participants to remember to press the Q key if they saw words representing fruits (cue) during an ongoing lexical decision task. They then typed what they were thinking and responded whether they encoded fruits as a general category, as specific exemplars, or hardly thought about it at all. Consistent with the perfunctory view, participants often reported mind wandering (42.9%) and hardly thinking about the prospective memory task (22.5%). Even though participants were given a general category cue, many participants generated specific category exemplars (34.5%). Bayesian analyses of encoding durations indicated that specific exemplars came to mind in a perfunctory manner rather than via strategic, elaborative mechanisms. Few participants correctly guessed the research hypotheses and changing from fruit category cues to initial-letter cues eliminated reports of specific exemplar generation, thereby arguing against demand characteristics in the thought probe procedure. In a final experiment, encoding duration was unrelated to prospective memory performance; however, specific-exemplar encoders outperformed general-category encoders with no ongoing task monitoring costs. Our findings reveal substantial variability in intention encoding, and demonstrate that some components of prospective memory encoding can be done "in passing."

  12. Spatial encoding using the nonlinear field perturbations from magnetic materials.

    PubMed

    Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H

    2014-08-01

    A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.

  13. Virus-encoded microRNAs

    PubMed Central

    Grundhoff, Adam; Sullivan, Christopher S.

    2011-01-01

    microRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category are a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection. PMID:21277611

  14. The miR-545/374a Cluster Encoded in the Ftx lncRNA is Overexpressed in HBV-Related Hepatocellular Carcinoma and Promotes Tumorigenesis and Tumor Progression

    PubMed Central

    Zhao, Qi; Li, Tao; Qi, Jianni; Liu, Juan; Qin, Chengyong

    2014-01-01

    Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a

  15. The miR-545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression.

    PubMed

    Zhao, Qi; Li, Tao; Qi, Jianni; Liu, Juan; Qin, Chengyong

    2014-01-01

    Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a

  16. Staying Cool when Things Get Hot: Emotion Regulation Modulates Neural Mechanisms of Memory Encoding

    PubMed Central

    Hayes, Jasmeet Pannu; Morey, Rajendra A.; Petty, Christopher M.; Seth, Srishti; Smoski, Moria J.; McCarthy, Gregory; LaBar, Kevin S.

    2010-01-01

    During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala, and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes. PMID:21212840

  17. Functional Neuroimaging of Self-Referential Encoding with Age

    PubMed Central

    Gutchess, Angela H.; Kensinger, Elizabeth A.; Schacter, Daniel L.

    2009-01-01

    Aging impacts memory formation and the engagement of frontal and medial temporal regions. However, much of the research to date has focused on the encoding of neutral verbal and visual information. The present fMRI study investigated age differences in a social encoding task while participants made judgments about the self or another person. Although previous studies identified an intact self-reference effect with age, subserved by robust engagement of medial prefrontal cortex (mPFC) by both young and older adults, we identified a number of age differences. In regions including superior mPFC, inferior prefrontal cortex, and anterior and posterior cingulate cortex, young and older adults exhibited reversals in the pattern of activity for self and other conditions. Whereas young primarily evidenced subsequent forgetting effects in the self-reference condition, older adults demonstrated subsequent memory effects in the other-reference condition. These results indicate fundamental differences across the age groups in the engagement of elaborative encoding processes. We suggest that older adults may encode information about the self in a more normative manner, whereas young adults focus on encoding the unique aspects of the self and distinguishing the self from others. PMID:19765600

  18. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide.

    PubMed Central

    Spindel, E R; Chin, W W; Price, J; Rees, L H; Besser, G M; Habener, J F

    1984-01-01

    We have prepared and cloned cDNAs derived from poly(A)+ RNA from a human pulmonary carcinoid tumor rich in immunoreactivity to gastrin-releasing peptide, a peptide closely related in structure to amphibian bombesin. Mixtures of synthetic oligodeoxyribonucleotides corresponding to amphibian bombesin were used as hybridization probes to screen a cDNA library prepared from the tumor RNA. Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide. hGRP is flanked at its carboxyl terminus by two basic amino acids, following a glycine used for amidation of the carboxyl-terminal methionine. RNA blot analyses of tumor RNA show a major mRNA of 900 bases and a minor mRNA of 850 bases. Blot hybridization analyses using human genomic DNA are consistent with a single hGRP-encoding gene. The presence of two mRNAs encoding the hGRP precursor protein in the face of a single hGRP gene raises the possibility of alternative processing of the single RNA transcript. Images PMID:6207529

  19. Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging.

    PubMed

    Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko

    2018-05-17

    Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Epistatic interaction of genetic depression risk variants in the human subgenual cingulate cortex during memory encoding

    PubMed Central

    Schott, B H; Assmann, A; Schmierer, P; Soch, J; Erk, S; Garbusow, M; Mohnke, S; Pöhland, L; Romanczuk-Seiferth, N; Barman, A; Wüstenberg, T; Haddad, L; Grimm, O; Witt, S; Richter, S; Klein, M; Schütze, H; Mühleisen, T W; Cichon, S; Rietschel, M; Noethen, M M; Tost, H; Gundelfinger, E D; Düzel, E; Heinz, A; Meyer-Lindenberg, A; Seidenbecher, C I; Walter, H

    2014-01-01

    Recent genome-wide association studies have pointed to single-nucleotide polymorphisms (SNPs) in genes encoding the neuronal calcium channel CaV1.2 (CACNA1C; rs1006737) and the presynaptic active zone protein Piccolo (PCLO; rs2522833) as risk factors for affective disorders, particularly major depression. Previous neuroimaging studies of depression-related endophenotypes have highlighted the role of the subgenual cingulate cortex (CG25) in negative mood and depressive psychopathology. Here, we aimed to assess how recently associated PCLO and CACNA1C depression risk alleles jointly affect memory-related CG25 activity as an intermediate phenotype in clinically healthy humans. To investigate the combined effects of rs1006737 and rs2522833 on the CG25 response, we conducted three functional magnetic resonance imaging studies of episodic memory formation in three independent cohorts (N=79, 300, 113). An epistatic interaction of PCLO and CACNA1C risk alleles in CG25 during memory encoding was observed in all groups, with carriers of no risk allele and of both risk alleles showing higher CG25 activation during encoding when compared with carriers of only one risk allele. Moreover, PCLO risk allele carriers showed lower memory performance and reduced encoding-related hippocampal activation. In summary, our results point to region-specific epistatic effects of PCLO and CACNA1C risk variants in CG25, potentially related to episodic memory. Our data further suggest that genetic risk factors on the SNP level do not necessarily have additive effects but may show complex interactions. Such epistatic interactions might contribute to the ‘missing heritability' of complex phenotypes. PMID:24643163

  1. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    PubMed

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  2. Effect of Orthographic Processes on Letter Identity and Letter-Position Encoding in Dyslexic Children

    PubMed Central

    Reilhac, Caroline; Jucla, Mélanie; Iannuzzi, Stéphanie; Valdois, Sylviane; Démonet, Jean-François

    2012-01-01

    The ability to identify letters and encode their position is a crucial step of the word recognition process. However and despite their word identification problem, the ability of dyslexic children to encode letter identity and letter-position within strings was not systematically investigated. This study aimed at filling this gap and further explored how letter identity and letter-position encoding is modulated by letter context in developmental dyslexia. For this purpose, a letter-string comparison task was administered to French dyslexic children and two chronological age (CA) and reading age (RA)-matched control groups. Children had to judge whether two successively and briefly presented four-letter strings were identical or different. Letter-position and letter identity were manipulated through the transposition (e.g., RTGM vs. RMGT) or substitution of two letters (e.g., TSHF vs. TGHD). Non-words, pseudo-words, and words were used as stimuli to investigate sub-lexical and lexical effects on letter encoding. Dyslexic children showed both substitution and transposition detection problems relative to CA-controls. A substitution advantage over transpositions was only found for words in dyslexic children whereas it extended to pseudo-words in RA-controls and to all type of items in CA-controls. Letters were better identified in the dyslexic group when belonging to orthographically familiar strings. Letter-position encoding was very impaired in dyslexic children who did not show any word context effect in contrast to CA-controls. Overall, the current findings point to a strong letter identity and letter-position encoding disorder in developmental dyslexia. PMID:22661961

  3. Complementary-encoding holographic associative memory using a photorefractive crystal

    NASA Astrophysics Data System (ADS)

    Yuan, ShiFu; Wu, Minxian; Yan, Yingbai; Jin, Guofan

    1996-06-01

    We present a holographic implementation of accurate associative memory with only one holographic memory system. In the implementation, the stored and test images are coded by using complementary-encoding method. The recalled complete image is also a coded image that can be decoded with a decoding mask to get an original image or its complement image. The experiment shows that the complementary encoding can efficiently increase the addressing accuracy in a simple way. Instead of the above complementary-encoding method, a scheme that uses complementary area-encoding method is also proposed for the holographic implementation of gray-level image associative memory with accurate addressing.

  4. FMRI activity during associative encoding is correlated with cardiorespiratory fitness and source memory performance in older adults

    PubMed Central

    Hayes, Scott M.; Hayes, Jasmeet P.; Williams, Victoria J.; Liu, Huiting; Verfaellie, Mieke

    2017-01-01

    Older adults (OA), relative to young adults (YA), exhibit age-related alterations in functional Magnetic Resonance Imaging (fMRI) activity during associative encoding, which contributes to deficits in source memory. Yet, there are remarkable individual differences in brain health and memory performance among OA. Cardiorespiratory fitness (CRF) is one individual difference factor that may attenuate brain aging, and thereby contribute to enhanced source memory in OA. To examine this possibility, 26 OA and 31 YA completed a treadmill-based exercise test to evaluate CRF (peak VO2) and fMRI to examine brain activation during a face-name associative encoding task. Our results indicated that in OA, peak VO2 was positively associated with fMRI activity during associative encoding in multiple regions including bilateral prefrontal cortex, medial frontal cortex, bilateral thalamus and left hippocampus. Next, a conjunction analysis was conducted to assess whether CRF influenced age-related differences in fMRI activation. We classified OA as high or low CRF and compared their activation to YA. High fit OA (HFOA) showed fMRI activation more similar to YA than low fit OA (LFOA) (i.e., reduced age-related differences) in multiple regions including thalamus, posterior and prefrontal cortex. Conversely, in other regions, primarily in prefrontal cortex, HFOA, but not LFOA, demonstrated greater activation than YA (i.e., increased age-related differences). Further, fMRI activity in these brain regions was positively associated with source memory among OA, with a mediation model demonstrating that associative encoding activation in medial frontal cortex indirectly influenced the relationship between peak VO2 and subsequent source memory performance. These results indicate that CRF may contribute to neuroplasticity among OA, reducing age-related differences in some brain regions, consistent with the brain maintenance hypothesis, but accentuating age-differences in other regions

  5. FMRI activity during associative encoding is correlated with cardiorespiratory fitness and source memory performance in older adults.

    PubMed

    Hayes, Scott M; Hayes, Jasmeet P; Williams, Victoria J; Liu, Huiting; Verfaellie, Mieke

    2017-06-01

    Older adults (OA), relative to young adults (YA), exhibit age-related alterations in functional Magnetic Resonance Imaging (fMRI) activity during associative encoding, which contributes to deficits in source memory. Yet, there are remarkable individual differences in brain health and memory performance among OA. Cardiorespiratory fitness (CRF) is one individual difference factor that may attenuate brain aging, and thereby contribute to enhanced source memory in OA. To examine this possibility, 26 OA and 31 YA completed a treadmill-based exercise test to evaluate CRF (peak VO 2 ) and fMRI to examine brain activation during a face-name associative encoding task. Our results indicated that in OA, peak VO 2 was positively associated with fMRI activity during associative encoding in multiple regions including bilateral prefrontal cortex, medial frontal cortex, bilateral thalamus and left hippocampus. Next, a conjunction analysis was conducted to assess whether CRF influenced age-related differences in fMRI activation. We classified OA as high or low CRF and compared their activation to YA. High fit OA (HFOA) showed fMRI activation more similar to YA than low fit OA (LFOA) (i.e., reduced age-related differences) in multiple regions including thalamus, posterior and prefrontal cortex. Conversely, in other regions, primarily in prefrontal cortex, HFOA, but not LFOA, demonstrated greater activation than YA (i.e., increased age-related differences). Further, fMRI activity in these brain regions was positively associated with source memory among OA, with a mediation model demonstrating that associative encoding activation in medial frontal cortex indirectly influenced the relationship between peak VO 2 and subsequent source memory performance. These results indicate that CRF may contribute to neuroplasticity among OA, reducing age-related differences in some brain regions, consistent with the brain maintenance hypothesis, but accentuating age-differences in other regions

  6. Age Differences in Self-Referencing: Evidence for Common and Distinct Encoding Strategies

    PubMed Central

    Gutchess, Angela H.; Sokal, Rebecca; Coleman, Jennifer A.; Gotthilf, Gina; Grewal, Lauren; Rosa, Nicole

    2014-01-01

    Although engagement of medial prefrontal cortex (MPFC) underlies self-referencing of information for younger and older adults, the region has not consistently been implicated across age groups for the encoding of self-referenced information. We sought to determine whether making judgments about others as well as the self influenced findings in the previous study. During an fMRI session, younger and older adults encoded adjectives using only a self-reference task. For items later remembered compared to those later forgotten, both age groups robustly recruited medial prefrontal cortex, indicating common neural regions support encoding across younger and older adults when participants make only self-reference judgments. Focal age differences emerged in regions related to emotional processing and cognitive control, though these differences are more limited than in tasks in which judgments also are made about others. We conclude that making judgments about another person differently affects the ways that younger and older adults make judgments about the self, with results of a follow-up behavioral study supporting this interpretation. PMID:25223905

  7. Pathobiologic Roles of Epstein–Barr Virus-Encoded MicroRNAs in Human Lymphomas

    PubMed Central

    Navari, Mohsen; Etebari, Maryam; Ibrahimi, Mostafa; Leoncini, Lorenzo

    2018-01-01

    Epstein–Barr virus (EBV) is a human γ-herpesvirus implicated in several human malignancies, including a wide range of lymphomas. Several molecules encoded by EBV in its latent state are believed to be related to EBV-induced lymphomagenesis, among which microRNAs—small RNAs with a posttranscriptional regulating role—are of great importance. The genome of EBV encodes 44 mature microRNAs belonging to two different classes, including BamHI-A rightward transcript (BART) and Bam HI fragment H rightward open reading frame 1 (BHRF1), with different expression levels in different EBV latency types. These microRNAs might contribute to the pathogenetic effects exerted by EBV through targeting self mRNAs and host mRNAs and interfering with several important cellular mechanisms such as immunosurveillance, cell proliferation, and apoptosis. In addition, EBV microRNAs can regulate the surrounding microenvironment of the infected cells through exosomal transportation. Moreover, these small molecules could be potentially used as molecular markers. In this review, we try to present an updated and extensive view of the role of EBV-encoded miRNAs in human lymphomas. PMID:29649101

  8. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extractsmore » are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.« less

  9. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  10. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  11. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2014-04-08

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  12. Encoder-Decoder Optimization for Brain-Computer Interfaces

    PubMed Central

    Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam

    2015-01-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919

  13. Encoder-decoder optimization for brain-computer interfaces.

    PubMed

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  14. How can survival processing improve memory encoding?

    PubMed

    Luo, Meng; Geng, Haiyan

    2013-11-01

    We investigated the psychological mechanism of survival processing advantage from the perspective of false memory in two experiments. Using a DRM paradigm in combination with analysis based on signal detection theory, we were able to separately examine participants' utilization of verbatim representation and gist representation. Specifically, in Experiment 1, participants rated semantically related words in a survival scenario for a survival condition but rated pleasantness of words in the same DRM lists for a non-survival control condition. The results showed that participants demonstrated more gist processing in the survival condition than in the pleasantness condition; however, the degree of item-specific processing in the two encoding conditions did not significantly differ. In Experiment 2, the control task was changed to a category rating task, in which participants were asked to make category ratings of words in the category lists. We found that the survival condition involved more item-specific processing than did the category condition, but we found no significant difference between the two encoding conditions at the level of gist processing. Overall, our study demonstrates that survival processing can simultaneously promote gist and item-specific representations. When the control tasks only promoted either item-specific representation or gist representation, memory advantages of survival processing occurred.

  15. Unconscious relational inference recruits the hippocampus.

    PubMed

    Reber, Thomas P; Luechinger, Roger; Boesiger, Peter; Henke, Katharina

    2012-05-02

    Relational inference denotes the capacity to encode, flexibly retrieve, and integrate multiple memories to combine past experiences to update knowledge and improve decision-making in new situations. Although relational inference is thought to depend on the hippocampus and consciousness, we now show in young, healthy men that it may occur outside consciousness but still recruits the hippocampus. In temporally distinct and unique subliminal episodes, we presented word pairs that either overlapped ("winter-red", "red-computer") or not. Effects of unconscious relational inference emerged in reaction times recorded during unconscious encoding and in the outcome of decisions made 1 min later at test, when participants judged the semantic relatedness of two supraliminal words. These words were either episodically related through a common word ("winter-computer" related through "red") or unrelated. Hippocampal activity increased during the unconscious encoding of overlapping versus nonoverlapping word pairs and during the unconscious retrieval of episodically related versus unrelated words. Furthermore, hippocampal activity during unconscious encoding predicted the outcome of decisions made at test. Hence, unconscious inference may influence decision-making in new situations.

  16. Thought probes during prospective memory encoding: Evidence for perfunctory processes

    PubMed Central

    McDaniel, Mark A.; Dasse, Michelle N.; Lee, Ji hae; Kurinec, Courtney A.; Tami, Claudina; Krueger, Madison L.

    2018-01-01

    For nearly 50 years, psychologists have studied prospective memory, or the ability to execute delayed intentions. Yet, there remains a gap in understanding as to whether initial encoding of the intention must be elaborative and strategic, or whether some components of successful encoding can occur in a perfunctory, transient manner. In eight studies (N = 680), we instructed participants to remember to press the Q key if they saw words representing fruits (cue) during an ongoing lexical decision task. They then typed what they were thinking and responded whether they encoded fruits as a general category, as specific exemplars, or hardly thought about it at all. Consistent with the perfunctory view, participants often reported mind wandering (42.9%) and hardly thinking about the prospective memory task (22.5%). Even though participants were given a general category cue, many participants generated specific category exemplars (34.5%). Bayesian analyses of encoding durations indicated that specific exemplars came to mind in a perfunctory manner rather than via strategic, elaborative mechanisms. Few participants correctly guessed the research hypotheses and changing from fruit category cues to initial-letter cues eliminated reports of specific exemplar generation, thereby arguing against demand characteristics in the thought probe procedure. In a final experiment, encoding duration was unrelated to prospective memory performance; however, specific-exemplar encoders outperformed general-category encoders with no ongoing task monitoring costs. Our findings reveal substantial variability in intention encoding, and demonstrate that some components of prospective memory encoding can be done “in passing.” PMID:29874277

  17. Semantics-informed geological maps: Conceptual modeling and knowledge encoding

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2018-07-01

    This paper introduces a novel, semantics-informed geologic mapping process, whose application domain is the production of a synthetic geologic map of a large administrative region. A number of approaches concerning the expression of geologic knowledge through UML schemata and ontologies have been around for more than a decade. These approaches have yielded resources that concern specific domains, such as, e.g., lithology. We develop a conceptual model that aims at building a digital encoding of several domains of geologic knowledge, in order to support the interoperability of the sources. We apply the devised terminological base to the classification of the elements of a geologic map of the Italian Western Alps and northern Apennines (Piemonte region). The digitally encoded knowledge base is a merged set of ontologies, called OntoGeonous. The encoding process identifies the objects of the semantic encoding, the geologic units, gathers the relevant information about such objects from authoritative resources, such as GeoSciML (giving priority to the application schemata reported in the INSPIRE Encoding Cookbook), and expresses the statements by means of axioms encoded in the Web Ontology Language (OWL). To support interoperability, OntoGeonous interlinks the general concepts by referring to the upper part level of ontology SWEET (developed by NASA), and imports knowledge that is already encoded in ontological format (e.g., ontology Simple Lithology). Machine-readable knowledge allows for consistency checking and for classification of the geological map data through algorithms of automatic reasoning.

  18. Mollusk genes encoding lysine tRNA (UUU) contain introns.

    PubMed

    Matsuo, M; Abe, Y; Saruta, Y; Okada, N

    1995-11-20

    New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.

  19. Method and system for efficient video compression with low-complexity encoder

    NASA Technical Reports Server (NTRS)

    Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)

    2012-01-01

    Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.

  20. HERMES: Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy

    PubMed Central

    Chan, Kimberly L.; Puts, Nicolaas A. J.; Schär, Michael; Barker, Peter B.; Edden, Richard A. E.

    2017-01-01

    Purpose To investigate a novel Hadamard-encoded spectral editing scheme and evaluate its performance in simultaneously quantifying N-acetyl aspartate (NAA) and N-acetyl aspartyl glutamate (NAAG) at 3 Tesla. Methods Editing pulses applied according to a Hadamard encoding scheme allow the simultaneous acquisition of multiple metabolites. The method, called HERMES (Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy), was optimized to detect NAA and NAAG simultaneously using density-matrix simulations and validated in phantoms at 3T. In vivo data were acquired in the centrum semiovale of 12 normal subjects. The NAA:NAAG concentration ratio was determined by modeling in vivo data using simulated basis functions. Simulations were also performed for potentially coedited molecules with signals within the detected NAA/NAAG region. Results Simulations and phantom experiments show excellent segregation of NAA and NAAG signals into the intended spectra, with minimal crosstalk. Multiplet patterns show good agreement between simulations and phantom and in vivo data. In vivo measurements show that the relative peak intensities of the NAA and NAAG spectra are consistent with a NAA:NAAG concentration ratio of 4.22:1 in good agreement with literature. Simulations indicate some coediting of aspartate and glutathione near the detected region (editing efficiency: 4.5% and 78.2%, respectively, for the NAAG reconstruction and 5.1% and 19.5%, respectively, for the NAA reconstruction). Conclusion The simultaneous and separable detection of two otherwise overlapping metabolites using HERMES is possible at 3T. PMID:27089868

  1. Impact of a Computer System and the Encoding Staff Organization on the Encoding Stays and on Health Institution Financial Production in France.

    PubMed

    Sarazin, Marianne; El Merini, Amine; Staccini, Pascal

    2016-01-01

    In France, medicalization of information systems program (PMSI) is an essential tool for the management planning and funding of health. The performance of encoding data inherent to hospital stays has become a major challenge for health institutions. Some studies have highlighted the impact of organizations set up on encoding quality and financial production. The aim of this study is to evaluate a computerized information system and new staff organization impact for treatment of the encoded information.

  2. Explaining Variance in Long-Term Recall in 3- and 4-Year-Old Children: The Importance of Post-Encoding Processes

    ERIC Educational Resources Information Center

    Bauer, Patricia J.; Larkina, Marina; Doydum, Ayzit O.

    2012-01-01

    Long-term recall is influenced by what originally was encoded as well as by the efficacy of retrieval processes. The possible explanatory role of post-encoding processes by which initially labile memory traces are stabilized and integrated into long-term memory (i.e., consolidated) has received relatively less research attention. In the current…

  3. Encoding order and developmental dyslexia: A family of skills predicting different orthographic components

    PubMed Central

    Romani, Cristina; Tsouknida, Effie; Olson, Andrew

    2015-01-01

    We investigated order encoding in developmental dyslexia using a task that presented nonalphanumeric visual characters either simultaneously or sequentially—to tap spatial and temporal order encoding, respectively—and asked participants to reproduce their order. Dyslexic participants performed poorly in the sequential condition, but normally in the simultaneous condition, except for positions most susceptible to interference. These results are novel in demonstrating a selective difficulty with temporal order encoding in a dyslexic group. We also tested the associations between our order reconstruction tasks and: (a) lexical learning and phonological tasks; and (b) different reading and spelling tasks. Correlations were extensive when the whole group of participants was considered together. When dyslexics and controls were considered separately, different patterns of association emerged between orthographic tasks on the one side and tasks tapping order encoding, phonological processing, and written learning on the other. These results indicate that different skills support different aspects of orthographic processing and are impaired to different degrees in individuals with dyslexia. Therefore, developmental dyslexia is not caused by a single impairment, but by a family of deficits loosely related to difficulties with order. Understanding the contribution of these different deficits will be crucial to deepen our understanding of this disorder. PMID:25246235

  4. Learning terms and definitions: Drawing and the role of elaborative encoding.

    PubMed

    Wammes, Jeffrey D; Meade, Melissa E; Fernandes, Myra A

    2017-09-01

    Traditionally, students adopt the strategy of taking written notes when attending a class or learning from a textbook in educational settings. Informed by previous work showing that learning by doing improves memory performance, we examined whether drawing to-be-remembered definitions from university textbooks would improve later memory, relative to a more typical strategy of rote transcription. Participants were asked to either write out the definition, or to draw a picture representative of the definition. Results indicated that drawing, relative to verbatim writing, conferred a reliable memorial benefit that was robust, even when participants' preexisting familiarity with the terms was included as a covariate (in Experiment 1) or when the to-be-remembered terms and definitions were fictitious, thus removing the influence of familiarity (in Experiment 2). We reasoned that drawing likely facilitates retention at least in part because at encoding, participants must retain and elaborate upon information regarding the meaning of the definition, to translate it into a new form (a picture). This is not the case when participants write out the definitions verbatim. In Experiment 3 we showed that paraphrasing during encoding, which, like drawing and in contrast with verbatim writing, requires self-generated elaboration, led to memory performance that was comparable to drawing. Taken together, results suggest that drawing is a powerful tool which improves memory, and that drawing produces a similar level of retention as does paraphrasing. This suggests that elaborative encoding plays a critical role in the memorial benefit that drawing confers to memory for definitions of academic terms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  6. Feasibility of encoding the Institute for Clinical Systems Improvement Depression Guideline using the Omaha System.

    PubMed

    Monsen, Karen A; Neely, Claire; Oftedahl, Gary; Kerr, Madeleine J; Pietruszewski, Pam; Farri, Oladimeji

    2012-08-01

    Evidence-based clinical guidelines are being developed to bridge the gap between research and practice with the goals of improving health care quality and population health. However, disseminating, implementing, and ensuring ongoing use of clinical guidelines in practice settings is challenging. The purpose of this study was to demonstrate the feasibility of encoding evidence-based clinical guidelines using the Omaha System. Clinical documentation with Omaha System-encoded guidelines generates individualized, meaningful data suitable for program evaluation and health care quality research. The use of encoded guidelines within the electronic health record has potential to reinforce use of guidelines, and thus improve health care quality and population health. Research using Omaha System data generated by clinicians has potential to discover new knowledge related to guideline use and effectiveness. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Source encoding in multi-parameter full waveform inversion

    NASA Astrophysics Data System (ADS)

    Matharu, Gian; Sacchi, Mauricio D.

    2018-04-01

    Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.

  8. Interaction between attentional systems and episodic memory encoding: the impact of conflict on binding of information.

    PubMed

    Sperduti, Marco; Armougum, Allan; Makowski, Dominique; Blondé, Philippe; Piolino, Pascale

    2017-12-01

    Episodic memory (EM) is defined as a long-term memory system that stores information that can be retrieved along with details of the context of the original events (binding). Several studies have shown that manipulation of attention during encoding can impact subsequent memory performance. An influential model of attention distinguishes between three partially independent attentional networks: the alerting, the orienting and the executive or conflict resolution component. To date, the impact of the engagement of these sub-systems during encoding on item and relational context binding has not been investigated. Here, we developed a new task combining the Attentional Network Test and an incidental episodic memory encoding task to study this issue. We reported that when the alerting network was not solicited, resolving conflict hindered item encoding. Moreover, resolving conflict, independently of the cueing condition, had a negative impact on context binding. These novel findings could have a potential impact in the understanding EM formation, and memory disorders in different populations, including healthy elderly people.

  9. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast

  10. Pictorial encoding effects and memory confusions in the Deese-Roediger-McDermott paradigm: evidence for the activation of spontaneous imagery.

    PubMed

    Foley, Mary Ann; Foy, Jeffrey

    2008-10-01

    The purpose of the experiments reported in this paper was to examine the possible role of spontaneous imagery and list-specific cues on pictorial encoding effects induced by the Deese-Roediger-McDermott (DRM) task. After viewing pictures and words referring to thematically related materials, by way of a picture/word source-judgement task, participants were asked to remember the way in which these materials were presented. Participants reported "seeing" pictures of items that were presented as words, an effect predicted by the imaginal activation hypothesis in its suggestion that incidental images experienced during encoding will later be mistaken as memories for pictures. Whether participants made the same picture misattributions on related lures (or non-presented related items) depended on the way in which the lures' respective thematic lists were experienced during encoding (Experiments 1 and 2), pointing to the effects of list-specific cues in picture/word judgements. These findings have intriguing implications for interpretations of picture-encoding effects induced by the DRM task. The findings also speak to the use of DRM false-memory rates when marshalling evidence against the use of imagery in applied settings.

  11. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    PubMed

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  12. Pea chloroplast DNA encodes homologues of Escherichia coli ribosomal subunit S2 and the beta'-subunit of RNA polymerase.

    PubMed Central

    Cozens, A L; Walker, J E

    1986-01-01

    The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249

  13. Associative Encoding and Retrieval Are Predicted by Functional Connectivity in Distinct Hippocampal Area CA1 Pathways

    PubMed Central

    Duncan, Katherine; Tompary, Alexa

    2014-01-01

    Determining how the hippocampus supports the unique demands of memory encoding and retrieval is fundamental for understanding the biological basis of episodic memory. One possibility proposed by theoretical models is that the distinct computational demands of encoding and retrieval are accommodated by shifts in the functional interaction between the hippocampal CA1 subregion and its input structures. However, empirical tests of this hypothesis are lacking. To test this in humans, we used high-resolution fMRI to measure functional connectivity between hippocampal area CA1 and regions of the medial temporal lobe and midbrain during extended blocks of associative encoding and retrieval tasks. We found evidence for a double dissociation between the pathways supporting successful encoding and retrieval. Specifically, during the associative encoding task, but not the retrieval task, functional connectivity only between area CA1 and the ventral tegmental area predicted associative long-term memory. In contrast, connectivity between area CA1 and DG/CA3 was greater, on average, during the retrieval task compared with the encoding task, and, importantly, the strength of this connectivity significantly correlated with retrieval success. Together, these findings serve as an important first step toward understanding how the demands of fundamental memory processes may be met by changes in the relative strength of connectivity within hippocampal pathways. PMID:25143600

  14. New Ultra-High Sensitivity, Absolute, Linear, and Rotary Encoders

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1998-01-01

    Several new types of absolute optical encoders of both rotary and linear function are discussed. The means for encoding are complete departures from conventional optical encoders and offer advantages of compact form, immunity to damage-induced dropouts of position information, and about an order of magnitude higher sensitivity over what is commercially available. Rotary versions have sensitivity from 0.02 arcseconds down to 0.003 arcsecond while linear models have sensitivity of 10 nm.

  15. Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors

    PubMed Central

    Braun, Erin Kendall; Daw, Nathaniel D.

    2014-01-01

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. PMID:25378157

  16. Noise level and MPEG-2 encoder statistics

    NASA Astrophysics Data System (ADS)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  17. Targeting latent function: Encouraging effective encoding for successful memory training and transfer

    PubMed Central

    Lustig, Cindy; Flegal, Kristin E.

    2009-01-01

    Cognitive training programs for older adults often result in improvements at the group level. However, there are typically large age and individual differences in the size of training benefits. These differences may be related to the degree to which participants implement the processes targeted by the training program. To test this possibility, we tested older adults in a memory-training procedure either under specific strategy instructions designed to encourage semantic, integrative encoding, or in a condition that encouraged time and attention to encoding but allowed participants to choose their own strategy. Both conditions improved the performance of old-old adults relative to an earlier study (Bissig & Lustig, 2007) and reduced self-reports of everyday memory errors. Performance in the strategy-instruction group was related to pre-existing ability, performance in the strategy-choice group was not. The strategy-choice group performed better on a laboratory transfer test of recognition memory, and training performance was correlated with reduced everyday memory errors. Training programs that target latent but inefficiently-used abilities while allowing flexibility in bringing those abilities to bear may best promote effective training and transfer. PMID:19140647

  18. Targeting latent function: encouraging effective encoding for successful memory training and transfer.

    PubMed

    Lustig, Cindy; Flegal, Kristin E

    2008-12-01

    Cognitive training programs for older adults often result in improvements at the group level. However, there are typically large age and individual differences in the size of training benefits. These differences may be related to the degree to which participants implement the processes targeted by the training program. To test this possibility, we tested older adults in a memory-training procedure either under specific strategy instructions designed to encourage semantic, integrative encoding, or in a condition that encouraged time and attention to encoding but allowed participants to choose their own strategy. Both conditions improved the performance of old-old adults relative to an earlier study (D. Bissig & C. Lustig, 2007) and reduced self-reports of everyday memory errors. Performance in the strategy-instruction group was related to preexisting ability; performance in the strategy?choice group was not. The strategy-choice group performed better on a laboratory transfer test of recognition memory, and training performance was correlated with reduced everyday memory errors. Training programs that target participants' latent but inefficiently used abilities while allowing flexibility in bringing those abilities to bear may best promote effective training and transfer. Copyright (c) 2009 APA, all rights reserved.

  19. The influence of attention on holistic face encoding.

    PubMed

    Boutet, Isabelle; Gentes-Hawn, Alyson; Chaudhuri, Avi

    2002-07-01

    We examined the influence of attention on the formation of holistic face representations using the composite effect (Perception 16 (1987) 747). In Experiment 1, stimuli composed of a face superimposed on a house were shown during encoding. Subjects delineated either the face or the house, thus manipulating attention away or toward the face. In Experiment 2, an intact face image was presented with letters scrolling from top to bottom. Subjects were asked to either ignore the letters or read them and decipher the words that they formed. Aligned and misaligned composites were shown at testing. Recognition performance was consistently better for misaligned than aligned stimuli, regardless of the allocation of attention during encoding. In Experiment 3, we show that the composite effect can be eliminated by a disruption in holistic processing at the time of encoding. We conclude that holistic encoding is one aspect of face analysis that occurs equally well with or without attention.

  20. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.

    PubMed

    Lau, Hoi-Kwan; Plenio, Martin B

    2016-09-02

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  1. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Plenio, Martin B.

    2016-09-01

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  2. Angular Gyrus Involvement at Encoding and Retrieval Is Associated with Durable But Less Specific Memories.

    PubMed

    van der Linden, Marieke; Berkers, Ruud M W J; Morris, Richard G M; Fernández, Guillén

    2017-09-27

    After consolidation, information belonging to a mental schema is better remembered, but such memory can be less specific when it comes to details. A neuronal mechanism consistent with this behavioral pattern could result from a dynamic interaction that entails mediation by a specific cortical network with associated hippocampal disengagement. We now report that, in male and female adult human subjects, encoding and later consolidation of a series of objects embedded in a semantic schema was associated with a buildup of activity in the angular gyrus (AG) that predicted memory 24 h later. In parallel, the posterior hippocampus became less involved as schema objects were encoded successively. Hippocampal disengagement was related to an increase in falsely remembering objects that were not presented at encoding. During both encoding and retrieval, the AG and lateral occipital complex (LOC) became functionally connected and this interaction was beneficial for successful retrieval. Therefore, a network including the AG and LOC enhances the overnight retention of schema-related memories and their simultaneous detachment from the hippocampus reduces the specificity of the memory. SIGNIFICANCE STATEMENT This study provides the first empirical evidence on how the hippocampus and the neocortex interact dynamically when acquiring and then effectively retaining durable knowledge that is associated to preexisting knowledge, but they do so at the cost of memory specificity. This interaction is a fundamental mnemonic operation that has thus far been largely overlooked in memory research. Copyright © 2017 the authors 0270-6474/17/379474-12$15.00/0.

  3. Robust Encoding of Spatial Information in Orbitofrontal Cortex and Striatum.

    PubMed

    Yoo, Seng Bum Michael; Sleezer, Brianna J; Hayden, Benjamin Y

    2018-06-01

    Knowing whether core reward regions carry information about the positions of relevant objects is crucial for adjudicating between choice models. One limitation of previous studies, including our own, is that spatial positions can be consistently differentially associated with rewards, and thus position can be confounded with attention, motor plans, or target identity. We circumvented these problems by using a task in which value-and thus choices-was determined solely by a frequently changing rule, which was randomized relative to spatial position on each trial. We presented offers asynchronously, which allowed us to control for reward expectation, spatial attention, and motor plans in our analyses. We find robust encoding of the spatial position of both offers and choices in two core reward regions, orbitofrontal Area 13 and ventral striatum, as well as in dorsal striatum of macaques. The trial-by-trial correlation in noise in encoding of position was associated with variation in choice, an effect known as choice probability correlation, suggesting that the spatial encoding is associated with choice and is not incidental to it. Spatial information and reward information are not carried by separate sets of neurons, although the two forms of information are temporally dissociable. These results highlight the ubiquity of multiplexed information in association cortex and argue against the idea that these ostensible reward regions serve as part of a pure value domain.

  4. Low-Density Parity-Check Code Design Techniques to Simplify Encoding

    NASA Astrophysics Data System (ADS)

    Perez, J. M.; Andrews, K.

    2007-11-01

    This work describes a method for encoding low-density parity-check (LDPC) codes based on the accumulate-repeat-4-jagged-accumulate (AR4JA) scheme, using the low-density parity-check matrix H instead of the dense generator matrix G. The use of the H matrix to encode allows a significant reduction in memory consumption and provides the encoder design a great flexibility. Also described are new hardware-efficient codes, based on the same kind of protographs, which require less memory storage and area, allowing at the same time a reduction in the encoding delay.

  5. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    NASA Astrophysics Data System (ADS)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-09-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.

  6. The Drosophila pigmentation gene pink (p) encodes a homologue of human Hermansky-Pudlak syndrome 5 (HPS5).

    PubMed

    Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C

    2007-02-01

    Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.

  7. Principles of metadata organization at the ENCODE data coordination center

    PubMed Central

    Hong, Eurie L.; Sloan, Cricket A.; Chan, Esther T.; Davidson, Jean M.; Malladi, Venkat S.; Strattan, J. Seth; Hitz, Benjamin C.; Gabdank, Idan; Narayanan, Aditi K.; Ho, Marcus; Lee, Brian T.; Rowe, Laurence D.; Dreszer, Timothy R.; Roe, Greg R.; Podduturi, Nikhil R.; Tanaka, Forrest; Hilton, Jason A.; Cherry, J. Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org PMID:26980513

  8. Working memory encoding delays top-down attention to visual cortex.

    PubMed

    Scalf, Paige E; Dux, Paul E; Marois, René

    2011-09-01

    The encoding of information from one event into working memory can delay high-level, central decision-making processes for subsequent events [e.g., Jolicoeur, P., & Dell'Acqua, R. The demonstration of short-term consolidation. Cognitive Psychology, 36, 138-202, 1998, doi:10.1006/cogp.1998.0684]. Working memory, however, is also believed to interfere with the deployment of top-down attention [de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. The role of working memory in visual selective attention. Science, 291, 1803-1806, 2001, doi:10.1126/science.1056496]. It is, therefore, possible that, in addition to delaying central processes, the engagement of working memory encoding (WME) also postpones perceptual processing as well. Here, we tested this hypothesis with time-resolved fMRI by assessing whether WME serially postpones the action of top-down attention on low-level sensory signals. In three experiments, participants viewed a skeletal rapid serial visual presentation sequence that contained two target items (T1 and T2) separated by either a short (550 msec) or long (1450 msec) SOA. During single-target runs, participants attended and responded only to T1, whereas in dual-target runs, participants attended and responded to both targets. To determine whether T1 processing delayed top-down attentional enhancement of T2, we examined T2 BOLD response in visual cortex by subtracting the single-task waveforms from the dual-task waveforms for each SOA. When the WME demands of T1 were high (Experiments 1 and 3), T2 BOLD response was delayed at the short SOA relative to the long SOA. This was not the case when T1 encoding demands were low (Experiment 2). We conclude that encoding of a stimulus into working memory delays the deployment of attention to subsequent target representations in visual cortex.

  9. A novel optical rotary encoder with eccentricity self-detection ability.

    PubMed

    Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2017-11-01

    Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.

  10. A novel optical rotary encoder with eccentricity self-detection ability

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2017-11-01

    Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.

  11. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  12. Encoded libraries of chemically modified peptides.

    PubMed

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.

  13. Performance study of large area encoding readout MRPC

    NASA Astrophysics Data System (ADS)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  14. The role of temporal context in norm-based encoding of faces.

    PubMed

    Van Rensbergen, Bram; Op de Beeck, Hans P

    2014-02-01

    Research shows that the human brain encodes faces in terms of how they relate to a prototypical face, a phenomenon referred to as norm-based encoding. The goal of this study was to examine the effect of short-term exposure on the development of the norm, independently of global, long-term exposure. We achieved this by varying the sequence of presentation of the stimuli while keeping global exposure constant. We found that a systematic manipulation of the average face in a set of 10 preceding trials can shift this norm toward that average. However, there was no effect of order or recency among these trials; thus, there was no evidence that the last faces mattered more than the first. This suggests that the position of the face norm is modified by information that is integrated across multiple recent faces.

  15. The dual effect of context on memory of related and unrelated themes: discrimination at encoding and cue at retrieval.

    PubMed

    Levy-Gigi, Einat; Vakil, Eli

    2012-01-01

    The influence of contextual factors on encoding and retrieval in recognition memory was investigated using a retroactive interference paradigm. Participants were randomly assigned to four context conditions constructed by manipulating types of presentation modality (pictures vs words) for study, interference, and test stages, respectively (ABA, ABB, AAA, & AAB). In Experiment 1 we presented unrelated items in the study and interference stages, while in Experiment 2 each stage contained items from the same semantic category. The results demonstrate a dual role for context in memory processes-at encoding as well as at retrieval. In Experiment 1 there is a hierarchical order between the four context conditions, depending on both target-test and target-interference contextual similarity. Adding a categorical context in Experiment 2 helped to specify each list and therefore better distinguish between target and interferer information, and in some conditions compensated for their perceptual similarity.

  16. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    PubMed

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  17. How do expert soccer players encode visual information to make decisions in simulated game situations?

    PubMed

    Poplu, Gérald; Ripoll, Hubert; Mavromatis, Sébastien; Baratgin, Jean

    2008-09-01

    The aim of this study was to determine what visual information expert soccer players encode when they are asked to make a decision. We used a repetition-priming paradigm to test the hypothesis that experts encode a soccer pattern's structure independently of the players' physical characteristics (i.e., posture and morphology). The participants were given either realistic (digital photos) or abstract (three-dimensional schematic representations) soccer game patterns. The results showed that the experts benefited from priming effects regardless of how abstract the stimuli were. This suggests that an abstract representation of a realistic pattern (i.e., one that does not include visual information related to the players'physical characteristics) is sufficient to activate experts'specific knowledge during decision making. These results seem to show that expert soccer players encode and store abstract representations of visual patterns in memory.

  18. Parietal cortex integrates contextual and saliency signals during the encoding of natural scenes in working memory.

    PubMed

    Santangelo, Valerio; Di Francesco, Simona Arianna; Mastroberardino, Serena; Macaluso, Emiliano

    2015-12-01

    The Brief presentation of a complex scene entails that only a few objects can be selected, processed indepth, and stored in memory. Both low-level sensory salience and high-level context-related factors (e.g., the conceptual match/mismatch between objects and scene context) contribute to this selection process, but how the interplay between these factors affects memory encoding is largely unexplored. Here, during fMRI we presented participants with pictures of everyday scenes. After a short retention interval, participants judged the position of a target object extracted from the initial scene. The target object could be either congruent or incongruent with the context of the scene, and could be located in a region of the image with maximal or minimal salience. Behaviourally, we found a reduced impact of saliency on visuospatial working memory performance when the target was out-of-context. Encoding-related fMRI results showed that context-congruent targets activated dorsoparietal regions, while context-incongruent targets de-activated the ventroparietal cortex. Saliency modulated activity both in dorsal and ventral regions, with larger context-related effects for salient targets. These findings demonstrate the joint contribution of knowledge-based and saliency-driven attention for memory encoding, highlighting a dissociation between dorsal and ventral parietal regions. © 2015 Wiley Periodicals, Inc.

  19. Security authentication using phase-encoded nanoparticle structures and polarized light.

    PubMed

    Carnicer, Artur; Hassanfiroozi, Amir; Latorre-Carmona, Pedro; Huang, Yi-Pai; Javidi, Bahram

    2015-01-15

    Phase-encoded nanostructures such as quick response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase-encoded QR codes. The system is illuminated using polarized light, and the QR code is encoded using a phase-only random mask. Using classification algorithms, it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase-encoded QR codes using polarimetric signatures.

  20. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding.

    PubMed

    Sato, Naoyuki

    2013-01-01

    Theta band power (4-8 Hz) in the scalp electroencephalogram (EEG) is thought to be stronger during memory encoding for subsequently remembered items than for forgotten items. According to simultaneous EEG-functional magnetic resonance imaging (fMRI) measurements, the memory-dependent EEG theta is associated with multiple regions of the brain. This suggests that the multiple regions cooperate with EEG theta synchronization during successful memory encoding. However, a question still remains: What kind of neural dynamic organizes such a memory-dependent global network? In this study, the modulation of the EEG theta entrainment property during successful encoding was hypothesized to lead to EEG theta synchronization among a distributed network. Then, a transient response of EEG theta to a theta-band photic flicker with a short duration was evaluated during memory encoding. In the results, flicker-induced EEG power increased and decreased with a time constant of several hundred milliseconds following the onset and the offset of the flicker, respectively. Importantly, the offset response of EEG power was found to be significantly decreased during successful encoding. Moreover, the offset response of the phase locking index was also found to associate with memory performance. According to computational simulations, the results are interpreted as a smaller time constant (i.e., faster response) of a driven harmonic oscillator rather than a change in the spontaneous oscillatory input. This suggests that the fast response of EEG theta forms a global EEG theta network among memory-related regions during successful encoding, and it contributes to a flexible formation of the network along the time course.