Sample records for ysz buffered silicon

  1. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  2. Improved Epitaxy and Surface Morphology in YBa2Cu3Oy Thin Films Grown on Double Buffered Si Wafers

    NASA Astrophysics Data System (ADS)

    Gao, J.; Kang, L.; Wong, H. Y.; Cheung, Y. L.; Yang, J.

    Highly epitaxial thin films of YBCO have been obtained on silicon wafers using a Eu2CuO4/YSZ (yttrium-stabilized ZrO2) double buffer. Our results showed that application of such a double buffer can significantly enhance the epitaxy of grown YBCO. It also leads to an excellent surface morphology. The average surface roughness was found less than 5 nm in a large range. The results of X-ray small angle reflection and positron spectroscpy demonstrate a very clear and flat interface between YBCO and buffer layers. The Eu2CuO4/YSZ double buffer could be promising for coating high-TC superconducting films on various reactive substrates.

  3. Epitaxial growth of YBa2Cu3O7 - delta films on oxidized silicon with yttria- and zirconia-based buffer layers

    NASA Astrophysics Data System (ADS)

    Pechen, E. V.; Schoenberger, R.; Brunner, B.; Ritzinger, S.; Renk, K. F.; Sidorov, M. V.; Oktyabrsky, S. R.

    1993-09-01

    A study of epitaxial growth of YBa2Cu3O7-δ films on oxidized Si with yttria- and zirconia-based buffer layers is reported. Using substrates with either SiO2 free or naturally oxidized (100) surfaces of Si it was found that a thin SiO2 layer on top of the Si favors high-quality superconducting film formation. Compared to yttria-stabilized ZrO2 (YSZ) single layers, YSZY2O3 double and YSZ/Y2O3YSZ triple layers allows the deposition of thin YBa2Cu3O7-δ films with improved properties including reduced aging effects. In epitaxial YBa2Cu3O7-δ films grown on the double buffer layers a critical temperature Tc(R=0)=89.5 K and critical current densities of 3.5×106 A/cm2 at 77 K and 1×107 A/cm2 at 66 K were reached.

  4. Fabrication and characterization of La2Zr2O7 films on different buffer architectures for YBa2Cu3O7-δ coated conductors by RF magnetron sputtering.

    PubMed

    Xu, Da; Liu, Linfei; Xiao, Guina; Li, Yijie

    2013-02-27

    La2Zr2O7 (LZO) films were grown on different buffer architectures by radio frequency magnetron sputtering for the large-scale application of YBa2Cu3O7-x (YBCO)-coated conductors. The three different buffer architectures were cerium oxide (CeO2), yttria-stabilized zirconia (YSZ)/CeO2, and CeO2/YSZ/CeO2. The microstructure and surface morphology of the LZO film were studied by X-ray diffraction, optical microscopy, field emission scanning electron microscopy, and atomic force microscopy. The LZO films prepared on the CeO2, YSZ/CeO2, and CeO2/YSZ/CeO2 buffer architectures were preferentially c-axis-oriented and highly textured. The in-plane texture of LZO film on CeO2 single-buffer architecture was ∆ φ = 5.5° and the out-of-plane texture was ∆ ω = 3.4°. All the LZO films had very smooth surfaces, but LZO films grown on YSZ/CeO2 and CeO2/YSZ/CeO2 buffer architectures had cracks. The highly textured LZO film grown on CeO2-seed buffered NiW tape was suitable for the epitaxial growth of YBCO film with high currents.

  5. Polypropylene Oil as a Fuel for Ni-YSZ | YSZ | LSCF Solid Oxide Fuel Cell

    NASA Astrophysics Data System (ADS)

    Pratiwi, Andini W.; Rahmawati, Fitria; Rochman, Refada A.; Syahputra, Rahmat J. E.; Prameswari, Arum P.

    2018-01-01

    This research aims to convert polypropylene plastic to polypropylene oil through pyrolysis method and use the polypropylene oil as fuel for Solid Oxide Fuel Cell, SOFC, to produce electricity. The material for SOFC single cell are Ni-YSZ, YSZ, and LSCF as anode, electrolyte and cathode, respectively. YSZ is yttria-stabilized-zirconia. Meanwhile, LSCF is a commercial La0.6Sr0.4Co0.2Fe0.8O3. The Ni-YSZ is a composite of YSZ with nickel powder. LSCF and Ni-YSZ slurry coated both side of YSZ electrolyte pellet through screen printing method. The result shows that, the produced polypropylene oil consist of C8 to C27 hydrocarbon chain. Meanwhile, a single cell performance test at 673 K, 773 K and 873 K with polypropylene oil as fuel, found that the maximum power density is 1.729 μW. cm-2 at 673 K with open circuit voltage value of 9.378 mV.

  6. Continuously tunable optical buffer with a dual silicon waveguide design.

    PubMed

    Horak, Peter; Stewart, Will; Loh, Wei H

    2011-06-20

    We propose a design for an optical buffer that comprises two coupled silicon waveguides, which is capable of generating a large continuously tunable change in the propagation delay time. The optical delay can be varied by more than 100% through varying the spacing between the waveguides.

  7. A 4H Silicon Carbide Gate Buffer for Integrated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, N; Frank, S; Britton, C

    2014-02-01

    A gate buffer fabricated in a 2-mu m 4H silicon carbide (SiC) process is presented. The circuit is composed of an input buffer stage with a push-pull output stage, and is fabricated using enhancement mode N-channel FETs in a process optimized for SiC power switching devices. Simulation and measurement results of the fabricated gate buffer are presented and compared for operation at various voltage supply levels, with a capacitive load of 2 nF. Details of the design including layout specifics, simulation results, and directions for future improvement of this buffer are presented. In addition, plans for its incorporation into anmore » isolated high-side/low-side gate-driver architecture, fully integrated with power switching devices in a SiC process, are briefly discussed. This letter represents the first reported MOSFET-based gate buffer fabricated in 4H SiC.« less

  8. Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} thin films on all-oxide layers buffered silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Hien Thu; Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn; Inorganic Materials Science

    2015-12-15

    Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectricmore » properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity

  9. Buffer layers on metal surfaces having biaxial texture as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  10. Buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  11. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  12. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  13. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  14. Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides

    NASA Astrophysics Data System (ADS)

    Jiang, Yihong

    The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during

  15. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  16. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  17. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Hernández, Z.E.; CICATA—Altamira, IPN. Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México; Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphatemore » buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.« less

  18. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  19. YBa2Cu307 superconducting microbolometer linear arrays

    NASA Astrophysics Data System (ADS)

    Johnson, Burgess R.; Ohnstein, Thomas R.; Marsh, Holly A.; Dunham, Scott B.; Kruse, Paul W.

    1992-09-01

    Single pixels and linear arrays of microbolometers employing the high-T(subscript c) superconductor YBa(subscript 2)Cu(subscript 3)O(subscript 7) have been fabricated by silicon micromachining techniques. The substrates are 3 in. diameter silicon wafers upon which buffer layers of Si(subscript 3)N(subscript 4) and yttria-stabilized zirconia (YSZ) have been deposited. The YBa(subscript 2)Cu(subscript 3)O(subscript 7) was deposited by ion beam sputtering upon the yttria-stabilized zirconia (YSZ), then photolithographically patterned into serpentines 4 micrometers wide. Anisotropic etching in KOH removed the silicon underlying each pixel, thereby providing the necessary thermal isolation. When operated at 70 degree(s)K with 1 (mu) A dc bias, the D(superscript *) is 7.5 X 10(superscript 8) cm Hz(superscript 1/2)/Watt with a thermal response time of 24 msec.

  20. Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaskar, Yazeed; Arafin, Shamsul; Lin, Qiyin

    2015-09-01

    A novel heteroepitaxial growth technique, quasi-van der Waals epitaxy, promises the ability to deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer layer by overcoming the lattice and thermal expansion mismatch. In this study, density functional theory (DFT) simulations were performed to understand the interactions at the GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, samples were characterized by x-ray diffraction (..theta..-2..theta.. scan, ..omega..-scan, grazing incidence XRD and pole figure measurement) and transmission electron microscopy. The realizations of smoothmore » GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition technique are a milestone towards an eventual demonstration of the epitaxial growth of GaAs on silicon, which is necessary for integrated photonics application.« less

  1. A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits

    NASA Astrophysics Data System (ADS)

    Lee, Sangrok

    Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.

  2. Growth of magnesium diboride thin films on boron buffered Si and silicon-on-insulator substrates by hybrid physical chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Withanage, Wenura K.; Penmatsa, Sashank V.; Acharya, Narendra; Melbourne, Thomas; Cunnane, D.; Karasik, B. S.; Xi, X. X.

    2018-07-01

    We report on the growth of high quality MgB2 thin films on silicon and silicon-on-insulator substrates by hybrid physical chemical vapor deposition. A boron buffer layer was deposited on all sides of the Si substrate to prevent the reaction of Mg vapor and Si. Ar ion milling at a low angle of 1° was used to reduce the roughness of the boron buffer layer before the MgB2 growth. An Ar ion milling at low angle of 1° was also applied to the MgB2 surface to reduce its roughness. The resultant MgB2 films showed excellent superconducting properties and a smooth surface. The process produces thin MgB2 films suitable for waveguide-based superconducting hot electron bolometers and other MgB2-based electronic devices.

  3. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    PubMed

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (<1 mm thick) to one surface and fired under manufacturer's recommended protocol. Scanning electron microscopy (SEM) with integrated electron dispersive X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  4. Method of depositing buffer layers on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  5. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt

    NASA Astrophysics Data System (ADS)

    Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit

    2018-04-01

    Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.

  6. Graphene as a Buffer Layer for Silicon Carbide-on-Insulator Structures

    PubMed Central

    Astuti, Budi; Tanikawa, Masahiro; Rahman, Shaharin Fadzli Abd; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    We report an innovative technique for growing the silicon carbide-on-insulator (SiCOI) structure by utilizing polycrystalline single layer graphene (SLG) as a buffer layer. The epitaxial growth was carried out using a hot-mesh chemical vapor deposition (HM-CVD) technique. Cubic SiC (3C-SiC) thin film in (111) domain was realized at relatively low substrate temperature of 750 °C. 3C-SiC energy bandgap of 2.2 eV was confirmed. The Si-O absorption band observed in the grown film can be caused by the out-diffusion of the oxygen atom from SiO2 substrate or oxygen doping during the cleaning process. Further experimental works by optimizing the cleaning process, growth parameters of the present growth method, or by using other growth methods, as well, are expected to realize a high quality SiCOI structure, thereby opening up the way for a breakthrough in the development of advanced ULSIs with multifunctionalities.

  7. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  8. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  9. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  10. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-01-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  11. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-05-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  12. The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Bal, Emre; Karabaş, Muhammet; Yılmaz Taptık, İ.

    2018-06-01

    The purpose of this research is to produce CMAS resistant YSZ based TBCs and compare thermal cycle performance of the TBCs before and after CMAS interaction. Plasma sprayed YSZ (Y), YSZ + Alumina (YA), YSZ + Titania (YT), and YSZ + Alumina + Titania (YTA) coatings have been exposed to CMAS at 1250 °C for 18 h. Thermal cycling tests were carried out with a propane + oxygen flame at 1250 ± 50 °C. Thermal cycle lifetime of YSZ, YA, YT, YTA, and CMAS contaminated Y, YA, YT, YTA coatings are 450, 416, 426, 438, 122, 211, 141, 298 respectively. After CMAS interaction, while the life span of other coatings has fallen to their life span’s quarter, the life span of YTA coating has decreased slightly. Damages in the coatings after thermal cycle tests have been studied by using SEM to observe the microstructure and x-ray diffraction techniques to analyze the phase composition. Also to see areal distribution of the CMAS through the coating, EDS mapping has been carried out.

  13. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE PAGES

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; ...

    2016-02-25

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  14. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  15. An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel

    Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less

  16. An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

    DOE PAGES

    Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel; ...

    2017-03-24

    Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less

  17. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    PubMed

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    PubMed

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  19. Photonic integrated circuit optical buffer for packet-switched networks.

    PubMed

    Burmeister, Emily F; Mack, John P; Poulsen, Henrik N; Masanović, Milan L; Stamenić, Biljana; Blumenthal, Daniel J; Bowers, John E

    2009-04-13

    A chip-scale optical buffer performs autonomous contention resolution for 40-byte packets with 99% packet recovery. The buffer consists of a fast, InP-based 2 x 2 optical switch and a silica-on-silicon low loss delay loop. The buffer is demonstrated in recirculating operation, but may be reconfigured in feed-forward operation for longer packet lengths. The recirculating buffer provides packet storage in integer multiples of the delay length of 12.86 ns up to 64.3 ns with 98% packet recovery. The buffer is used to resolve contention between two 40 Gb/s packet streams using multiple photonic chip optical buffers.

  20. Improvement of transmission properties of visible pilot beam for polymer-coated silver hollow fibers with acrylic silicone resin as buffer layer for sturdy structure

    NASA Astrophysics Data System (ADS)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2017-02-01

    Flexible hollow fibers with 530-μm-bore size were developed for infrared laser delivery. Sturdy hollow fibers were fabricated by liquid-phase coating techniques. A silica glass capillary is used as the substrate. Acrylic silicone resin is used as a buffer layer and the buffer layer is firstly coated on the inner surface of the capillary to protect the glass tube from chemical damages due to the following silver plating process. A silver layer was inner-plated by using the conventional silver mirror-plating technique. To improve adhesion of catalyst to the buffer layer, a surface conditioner has been introduced in the method of silver mirror-plating technique. We discuss improvement of transmission properties of sturdy polymer-coated silver hollow fibers for the Er:YAG laser and red pilot beam delivery.

  1. Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Steve Stecura

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Miller, Robert A.

    2017-01-01

    Thermal barrier coatings are widely used in all turbine engines, typically using a 7 wt% Y2O3-ZrO2 formulation. Extensive research and development over many decades have refined the processing and structure of these coatings for increased durability and reliability. New compositions demonstrate some unique advantages and are gaining in application. However, the "7YSZ" formulation predominates and is still in widespread use. This special composition has been universally found to produce nanoscale precipitates of metastable t' tetragonal phase, giving rise to a unique toughening mechanism via ferro-elastic switching under stress. This note recalls the original study that identified superior properties of 6 to 8 wt% YSZ plasma sprayed thermal barrier coatings, published in 1978. The impact of this discovery, arguably, continues in some form to this day. At one point, 7YSZ thermal barrier coatings were used in every new aircraft and ground power turbine engine produced worldwide. It is a tribute to its inventor, Dr. Stephan J. Stecura, NASA retiree.

  2. Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon

    2017-04-01

    Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.

  3. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, Mariappan Parans

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less

  4. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    NASA Astrophysics Data System (ADS)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  5. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E.

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% molmore » Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.« less

  6. Protecting the properties of monolayer MoS 2 on silicon based substrates with an atomically thin buffer

    DOE PAGES

    Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew; ...

    2016-02-12

    Semiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distorted crystalline structure, and rough surface morphology. The ability to protect these properties of monolayer TMDs, such as molybdenum disulfide (MoS 2), on standard Si-based substrates, will enable their use in opto-electronic devices and scientific investigations. Here we show that an atomically thin buffer layer of hexagonal-boron nitride (hBN) protects themore » range of key opto-electronic, structural, and morphological properties of monolayer MoS 2 on Si-based substrates. The hBN buffer restores sharp diffraction patterns, improves monolayer flatness by nearly two-orders of magnitude, and causes over an order of magnitude enhancement in photoluminescence, compared to bare Si and SiO 2 substrates. Lastly, our demonstration provides a way of integrating MoS 2 and other 2D monolayers onto standard Si-substrates, thus furthering their technological applications and scientific investigations.« less

  7. Brazing of Stainless Steels to Yttria Stabilized Zirconia (YSZ) Using Silver -Base Brazes

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah P.; Asthana, Rajiv

    2005-01-01

    Three silver-base brazes containing either noble metal palladium (Palcusil-10 and Palcusil-15) or active metal titanium (Ticusil) were evaluated for high-temperature oxidation resistance, and their effectiveness in joining yttria stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel. Thermogravimetric analysis (TGA), and optical- and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) were used to evaluate the braze oxidation behavior and the structure and chemistry of the YSZ/braze/steel joints. The effect of the braze type and processing conditions on the interfacial microstructure and composition of the joint regions is discussed with reference to the chemical changes that occur at the interface. It was found that chemical interdiffusion of the constituents of YSZ, steel and the brazes led to compositional changes and/or interface reconstruction, and metallurgically sound joints.

  8. Heteroepitaxial growth of In{sub 0.30}Ga{sub 0.70}As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohen, David, E-mail: david.kohen@asm.com; Nguyen, Xuan Sang; Made, Riko I

    We report on the growth of an In{sub 0.30}Ga{sub 0.70}As channel high-electron mobility transistor (HEMT) on a 200 mm silicon wafer by metal organic vapor phase epitaxy. By using a 3 μm thick buffer comprising a Ge layer, a GaAs layer and an InAlAs compositionally graded strain relaxing buffer, we achieve threading dislocation density of (1.0 ± 0.3) × 10{sup 7} cm{sup −2} with a surface roughness of 10 nm RMS. No phase separation was observed during the InAlAs compositionally graded buffer layer growth. 1.4 μm long channel length transistors are fabricated from the wafer with I{sub DS} of 70more » μA/μm and g{sub m} of above 60 μS/μm, demonstrating the high quality of the grown materials.« less

  9. Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films

    NASA Astrophysics Data System (ADS)

    Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.

    Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.

  10. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    PubMed

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  11. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  12. Heterogeneous electrolyte (YSZ-Al 2O 3) based direct oxidation solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Thokchom, J. S.; Xiao, H.; Rottmayer, M.; Reitz, T. L.; Kumar, B.

    Bilayers comprised of dense and porous YSZ-Al 2O 3 (20 wt%) composite were tape cast, processed, and then fabricated into working solid oxide fuel cells (SOFCs). The porous part of the bilayer was converted into anode for direct oxidation of fuels by infiltrating CeO 2 and Cu. The cathode side of the bilayer was coated with an interlayer [YSZ-Al 2O 3 (20 wt%)]: LSM (1:1) and LSM as cathode. Several button cells were evaluated under hydrogen/air and propane/air atmospheres in intermediate temperature range and their performance data were analyzed. For the first time the feasibility of using YSZ-Al 2O 3 material for fabricating working SOFCs with high open circuit voltage (OCV) and power density is demonstrated. AC impedance spectroscopy and scanning electron microscopy (SEM) techniques were used to characterize the membrane and cell.

  13. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance.

    PubMed

    Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz

    2015-10-21

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  14. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    PubMed Central

    Pecho, Omar M.; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz

    2015-01-01

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer. PMID:28793624

  15. Back contact to film silicon on metal for photovoltaic cells

    DOEpatents

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  16. Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Itagaki, Yoshiteru; Watanabe, Shinji; Yamaji, Tsuyoshi; Asamoto, Makiko; Yahiro, Hidenori; Sadaoka, Yoshihiko

    2012-09-01

    Bi-layered cathodes with the LSM/LSM-YSZ structure for solid oxide fuel cells were successfully formed on the carbon-sputtered surface of a YSZ sheet by electrophoretic deposition (EPD). The thicknesses of the first layer of LSM-YSZ (LY) and the second layer of La0.8Sr0.2MnO3 (LSM) could be controlled by adjusting the deposition time in the EPD process. The cathodic properties of the bi-layered structures were superior to those of the mono-layered structures, and were dependent on the thickness of each layer. Decreasing the thickness of the first layer and increasing that of the second layer tended to reduce both polarization and ohmic resistances. The optimal thickness of the first layer at the operating temperature of 600 °C was 4 μm, suggesting that an effective three-phase boundary was extended from the interface between the electrolyte and cathode film to around 4 μm thickness.

  17. Highly Oriented Growth of Piezoelectric Thin Films on Silicon Using Two-Dimensional Nanosheets as Growth Template Layer.

    PubMed

    Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus

    2016-11-16

    Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.

  18. Quantification of the degradation of Ni-YSZ anodes upon redox cycling

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Ruiz-Trejo, Enrique; Bertei, Antonio; Brandon, Nigel P.

    2018-01-01

    Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance. This study quantifies the microstructural changes as a function of redox cycles at 800 °C and associates it to the deterioration of the mechanical properties and polarisation resistance. A physically-based model is used to estimate the triple-phase boundary (TPB) length from impedance spectra, and satisfactorily matches the TPB length quantified by FIB-SEM tomography: within 20 redox cycles, the TPB density decreases from 4.63 μm-2 to 1.06 μm-2. Although the polarisation resistance increases by an order of magnitude after 20 cycles, after each re-reduction the electrode polarisation improves consistently due to the transient generation of Ni nanoparticles around the TPBs. Nonetheless, the long-term degradation overshadows this transient improvement due to the nickel agglomeration. In addition, FIB-SEM tomography reveals fractures along YSZ grain boundaries, Ni-YSZ detachment and increased porosity in the composite that lead to irreversible mechanical damage: the elastic modulus diminishes from 36.4 GPa to 20.2 GPa and the hardness from 0.40 GPa to 0.15 GPa. These results suggest that microstructural, mechanical and electrochemical properties are strongly interdependent in determining the degradation caused by redox cycling.

  19. Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei

    2008-09-01

    YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.

  20. RETRACTED: Chemical densification of plasma sprayed yttria stabilized zirconia (YSZ) coatings for high temperature wear and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ye, Yaping; Fehr, Karl Thomas; Faulstich, Martin; Wolf, Gerhard

    2012-12-01

    Plasma-sprayed yttria stabilized zirconia (YSZ) ceramic coatings have been widely used as wear- and corrosion-resistant coatings in high temperature applications and an aggressive environment due to their high hardness, wear resistance, heat and chemical resistance, and low thermal conductivity. The highly porous structure of plasma-sprayed ceramic coatings and their poor adhesion to the substrate usually lead to the coating degradation and failure. In this study, a two-layer system consisting of atmospheric plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) and Ni-based alloy coatings was post-treated by means of a novel chemical sealing process at moderate temperatures of 600-800 °C. Microstructure characteristics of the YSZ coatings were studied using an electron probe micro-analyzer (EPMA). Results revealed that the ceramic top coat was densified by the precipitated zirconia in the open pores. Therefore, the sealed YSZ coatings exhibit reduced porosity, higher hardness and a better adhesion onto the bond coat. The mechanisms for the sealing process were also proposed.

  1. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  2. Examination of charge transfer in Au/YSZ for high-temperature optical gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltrus, John P.; Ohodnicki, Paul R.

    2014-01-01

    Au-nanoparticle incorporated oxide thin film materials demonstrate significant promise as functionalsensor materials for high temperature optical gas sensing in severe environments relevant for fossil andnuclear based power generation. The Au/yttria-stabilized zirconia (YSZ) system has been extensivelystudied in the literature and serves as a model system for fundamental investigations that seek to betterunderstand the mechanistic origin of the plasmonic gas sensing response. In this work, X-ray photoelec-tron spectroscopy techniques are applied to Au/YSZ films in an attempt to provide further experimentalevidence for a proposed sensing mechanism involving a change in free carrier density of Au nanoparticles due to charge transfer.

  3. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  4. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    NASA Astrophysics Data System (ADS)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  5. A prefilter for mitigating PH 3 contamination of a Ni-YSZ anode

    NASA Astrophysics Data System (ADS)

    Xu, Chunchuan; Zondlo, John W.; Sabolsky, Edward M.

    Ni-YSZ is used as the anode of a solid oxide fuel cell (SOFC) because it has excellent electrochemical performance for operation with coal-derived syngas. However, trace impurities, PH 3 H 2S AsH 3, and Sb in coal-syngas can cause SOFC degradation. Described here is a means of removing PH 3 impurity from syngas by using a Ni-based prefilter. In one test, a thin Ni-based filter was set upstream of a Ni-YSZ anode-supported SOFC. The SOFC was exposed to syngas with PH 3 under a constant current load at 800 °C. The filter decreased 20 ppm PH 3 in the feed to a level which did not degrade the SOFC for over 400 h until the filter became saturated. In another test, both H 2S and PH 3 were co-fed to the cell with Ni-based and Fe/Ni-based filters. The interaction between these two impurities did not significantly impact the filter performance with respect to PH 3 removal for both filter formulations. The cell performance was evaluated by current-voltage measurements and impedance spectroscopy. Post-mortem analyses of the cell and filter were performed by means of XRD, SEM/EDS and XPS. With proper filter design, the Ni-YSZ SOFC can operate on contaminated coal-syngas without degradation over a prescribed period of time.

  6. Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings.

    PubMed

    Deng, Wen; An, Yulong; Hou, Guoliang; Li, Shuangjian; Zhou, Huidi; Chen, Jianmin

    2018-09-01

    Inconel 718 was used as the substrate and preheated at different temperatures to deposit yttrium stabilized zirconia (denoted as YSZ) coatings by atmospheric plasma spraying. The microstructure of the as-deposited YSZ coatings and those after cavitation-erosion tests were characterized by field emission scanning electron microscopy, Raman spectroscopy, and their hardness and toughness as well as cavitation-erosion resistance were evaluated in relation to the effect of substrate preheating temperature. Results indicate that the as-deposited YSZ coatings exhibit typical layered structure and consist of columnar crystals. With the increase of the substrate preheating temperature, the compactness and cohesion strength of coatings are obviously enhanced, which result in the increases in the hardness, elastic modulus and toughness as well as cavitation-erosion resistance of the ceramic coatings therewith. Particularly, the YSZ coating deposited at a substrate preheating temperature of 800 °C exhibits the highest hardness and toughness as well as the strongest lamellar interfacial bonding and cavitation-erosion resistance (its cavitation-erosion life is as much as 8 times than that of deposited at room temperature). Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    PubMed

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H 2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H 2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H 2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  8. Coupled microrings data buffer using fast light

    NASA Astrophysics Data System (ADS)

    Scheuer, Jacob; Shahriar, Selim

    2013-03-01

    We present a theoretical study of a trap-door optical buffer based on a coupled microrings add/drop filter (ADF) utilizing the white light cavity (WLC). The buffer "trap-door" can be opened and closed by tuning the resonances of the microrings comprising the ADF and trap/release optical pulses. We show that the WLC based ADF yields a maximally flat filter which exhibits superior performances in terms of bandwidth and flatness compared to previous design approaches. We also present a realistic, Silicon-over-Insulator based, design and performance analysis taking into consideration the realistic properties and limitations of the materials and the fabrication process, leading to delays exceeding 850ps for 80GHz bandwidth, and a corresponding delay-bandwidth product of approximately 70.

  9. Environmental Barrier Coatings for Silicon-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Fox, Dennis S.; Robinson, Raymond C.; Bansal, Narottam P.

    2001-01-01

    Silicon-based ceramics, such as SiC fiber-reinforced SiC (SiC/SiC ceramic matrix composites (CMC) and monolithic silicon nitride (Si3N4), are prime candidates for hot section structural components of next generation gas turbine engines. Silicon-based ceramics, however, suffer from rapid surface recession in combustion environments due to volatilization of the silica scale via reaction with water vapor, a major product of combustion. Therefore, application of silicon-based ceramic components in the hot section of advanced gas turbine engines requires development of a reliable method to protect the ceramic from environmental attack. An external environmental barrier coating (EBC) is considered a logical approach to achieve protection and CP long-term stability. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 Wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program (5). They consist of three layers, a silicon first bond coat, a mullite or a mullite + BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2) second bond coat, and a BSAS top coat. The EPM EBCs were applied on SiC/SiC CMC combustor liners in three Solar Turbines (San Diego, CA) Centaur 50s gas turbine engines. The combined operation of the three engines has accumulated over 24,000 hours without failure (approximately 1,250 C maximum combustor liner temperature), with the engine in Texaco, Bakersfield, CA, accumulating about 14,000 hours. As the

  10. Formulation of steam-methane reforming rate in Ni-YSZ porous anode of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sugihara, Shinichi; Kawamura, Yusuke; Iwai, Hiroshi

    2018-02-01

    The steam-methane reforming reaction on a Ni-YSZ (yttria-stabilized zirconia) cermet was experimentally investigated under atmospheric pressure and in the temperature range from 650 to 750 °C. We examined the effects of the partial pressures of methane and steam in the supply gas on the reaction rate. The experiments were conducted with a low Ni contained Ni-YSZ cermet sheet of thickness 0.1 mm. Its porous microstructure and accompanied parameters were quantified using the FIB-SEM (focused ion beam scanning electron microscopy) technique. A power-law-type rate equation incorporating the reaction-rate-limiting conditions was obtained on the basis of the unit surface area of the Ni-pore contact surface in the cermet. The kinetics indicated a strong positive dependence on the methane partial pressure and a negative dependence on the steam partial pressure. The obtained rate equation successfully reproduced the experimental results for Ni-YSZ samples having different microstructures in the case of low methane consumption. The equation also reproduced the limiting-reaction behaviours at different temperatures.

  11. In situ Van der Pauw measurements of the Ni/YSZ anode during exposure to syngas with phosphine contaminant

    NASA Astrophysics Data System (ADS)

    Demircan, Oktay; Xu, Chunchuan; Zondlo, John; Finklea, Harry O.

    Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H 2, H 2O, CO, and CO 2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h -1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH 3. XRD analysis suggested that Ni 5P 2 and P 2O 5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.

  12. Molecular Dynamics Simulation of the Structure and Ion Transport in the Ce1 - x Gd x O2 - δ|YSZ Heterosystem

    NASA Astrophysics Data System (ADS)

    Galin, M. Z.; Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    Molecular dynamics simulation has been used to develop a realistic atomistic model of two-layer Ce1 - x Gd x O2 - δ|YSZ heterosystem. It is shown that Ce1 - x Gd x O2 - δ and YSZ layers (about 15 and 16 Å thick, respectively) retain their crystal structure on the whole. The main structural distortions are found to occur near the Ce1 - x Gd x O2 - δ|YSZ geometric interface, within a narrow interfacial region of few angstroms thick. Both the generalized diffusion characteristics of the system as a whole and the oxygen diffusion coefficients in the layers are calculated, and the diffusion activation energies are determined.

  13. Manufacturing of Composite Coatings by Atmospheric Plasma Spraying Using Different Feed-Stock Materials as YSZ and MoSi2

    NASA Astrophysics Data System (ADS)

    Koch, D.; Mauer, G.; Vaßen, R.

    2017-04-01

    Yttria-stabilized zirconia (YSZ) is the state-of-the-art material for the top coat of thermal barrier coatings. To increase the efficiency and lifetime of gas turbines, the integration of MoSi2 as a healing material was proposed. A new method of manufacture was explored in order to enable the spraying of a homogeneous mixed layer of YSZ and MoSi2. As the chemical and physical properties of these powders are very different, they require contrasting process conditions. Due to the evaporation of Si from MoSi2 at spraying conditions suitable for YSZ, more moderate conditions and a shorter time of flight are required for depositing MoSi2. At the same time, the spraying conditions still need to be sufficient for melting the YSZ particles in order to produce a coating. To obtain a homogeneous mixture, both conditions can be matched using an injection system that allows powder injection at two different locations of the plasma jet. Two-color pyrometry during flight (DPV-2000, Tecnar) was used to monitor the actual particle temperature. By optimizing the injection point for the MoSi2, a mixed coating was obtained without decomposition of the MoSi2, which has been analyzed by means of XRD and SEM.

  14. Enhanced Sintering of β"-Al2O3/YSZ with the Sintering Aids of TiO2 and MnO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong

    2015-07-11

    β"-Al2O3 has been the dominated choice for the electrolyte materials of sodium batteries because of its high ionic conductivity, excellent stability with the electrode materials, satisfactory mechanical strength, and low material cost. To achieve adequate electrical and mechanical performance, sintering of β"-Al2O3 is typically carried out at temperatures above 1600oC with deliberate efforts on controlling the phase, composition, and microstructure. Here, we reported a simple method to fabricate β"-Al2O3/YSZ electrolyte at relatively lower temperatures. With the starting material of boehmite, single phase of β"-Al2O3 can be achieved at as low as 1200oC. It was found that TiO2 was extremely effectivemore » as a sintering aid for the densification of β"-Al2O3 and similar behavior was observed with MnO2 for YSZ. With the addition of 2 mol% TiO2 and 5 mol% MnO2, the β"-Al2O3/YSZ composite was able to be densified at as low as 1400oC with a fine microstructure and good electrical/mechanical performance. This study demonstrated a new approach of synthesis and sintering of β"-Al2O3/YSZ composite, which represented a simple and low-cost method for fabrication of high-performance β"-Al2O3/YSZ electrolyte.« less

  15. Buffering the buffer

    Treesearch

    Leslie M. Reid; Sue Hilton

    1998-01-01

    Riparian buffer strips are a widely accepted tool for helping to sustain aquatic ecosystems and to protect downstream resources and values in forested areas, but controversy persists over how wide a buffer strip is necessary. The physical integrity of stream channels is expected to be sustained if the characteristics and rates of tree fall along buffered reaches are...

  16. Investigation of aluminosilicate as a solid oxide fuel cell refractory

    NASA Astrophysics Data System (ADS)

    Gentile, Paul S.; Sofie, Stephen W.

    2011-05-01

    Aluminosilicate represents a potential low cost alternative to alumina for solid oxide fuel cell (SOFC) refractory applications. The objectives of this investigation are to study: (1) changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) deposition of aluminosilicate vapors on yttria stabilized zirconia (YSZ) and nickel, and (3) effects of aluminosilicate vapors on SOFC electrochemical performance. Thermal treatment of aluminosilicate under high temperature SOFC conditions is shown to result in increased mullite concentrations at the surface due to diffusion of silicon from the bulk. Water vapor accelerates the rate of surface diffusion resulting in a more uniform distribution of silicon. The high temperature condensation of volatile gases released from aluminosilicate preferentially deposit on YSZ rather than nickel. Silicon vapor deposited on YSZ consists primarily of aluminum rich clusters enclosed in an amorphous siliceous layer. Increased concentrations of silicon are observed in enlarged grain boundaries indicating separation of YSZ grains by insulating glassy phase. The presence of aluminosilicate powder in the hot zone of a fuel line supplying humidified hydrogen to an SOFC anode impeded peak performance and accelerated degradation. Energy dispersive X-ray spectroscopy detected concentrations of silicon at the interface between the electrolyte and anode interlayer above impurity levels.

  17. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    PubMed

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirikumara, Hansika I., E-mail: hansi.sirikumara@siu.edu; Jayasekera, Thushari, E-mail: thushari@siu.edu

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is idealmore » for achieving charge-neutral EG.« less

  19. Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun

    2017-08-01

    Thermally sprayed coatings are essentially layered materials, and lamellar interfaces are of great importance to coatings' performances. In the present study, to investigate the microstructures and defect features at thermally sprayed coating interfaces, homoepitaxial 8 mol.% yttria-stabilized zirconia (YSZ) and heteroepitaxial lanthanum zirconia (LZ) films were fabricated. The epitaxial interfaces were examined by high-resolution transmission electron microscope (HR-TEM) in detail. As a result, we report, for the first time, an anomalous incommensurate homoepitaxial growth with mismatch-induced dislocations in thermally sprayed YSZ splats to create a homointerface. We also find the anomalous heteroepitaxial growth in thermally sprayed LZ splats. The mechanism of the anomalous incommensurate growth was analyzed in detail. Essentially, it is a pseudo-heteroepitaxy because of the lattice mismatch between the film and the locally heated substrate, as the locally heated substrate is significantly strained by its cold surroundings. Moreover, the super-high-density dislocations were found in the interfacial region, which resulted from sufficient thermal fluctuations and extremely rapid cooling rates. Both the anomalous lattice mismatch and super-high-density dislocations lead to weak interfaces and violent cracking in thermally sprayed coatings. These were also the essential differences between the conventional and the present epitaxy by thermal spray technique.

  20. Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Z.; Tamizifar, M.; Arzani, K.; Nemati, A.; Khanfekr, A.; Bolandi, M.

    2013-08-01

    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of nickel and cerium inhibited the grain growth in the system. The average crystallite size of the material doped with nickel oxide (9.33 nm) was bigger than the one doped with cerium oxide (9.29 nm), while the YSZ doping with the two oxides simultaneously promoted the grain growth with crystallite size of 11.37 nm. Yttria-stabilized zirconia powder with a mean crystallite size of 9.997 nm was prepared successfully by this method.

  1. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  2. Release and skin distribution of silicone-related compound(s) from a silicone gel sheet in vitro.

    PubMed

    Shigeki, S; Nobuoka, N; Murakami, T; Ikuta, Y

    1999-01-01

    The efficacy of topical silicone gel sheeting in prevention and/or reduction of keloids and hypertrophic scars is well recognized. In the present study, we reexamined the possible release of silicone-related compound(s) from a commercially available silicone gel sheet (Cica-Care, Smith and Nephew, Hull, England) in aqueous media in vitro. The silicone gel sheet was also applied on the excised skin surface to examine the possible distribution of silicone-related compounds into the skin in vitro. Silicone-related compounds were measured as silicon by an inductively coupled plasma-atomic emission spectrophotometer. When a piece of silicone gel sheet was placed in phosphate buffer solution (pH 3-9) at 37 degrees C for 7 days, the concentration of silicon in the medium increased with time, depending on the pH of the medium. This indicates that the released silicone-related compounds are water-soluble. When Cica-Care was applied on the surface of excised rat skin, human axilla skin and hypertrophic scars under hydrated conditions in vitro, silicon was detected in all skin samples. Greater distribution was observed in rat skin than in human axilla skin and hypertrophic scars. The release of silicone-related compounds from a silicone gel sheet (Cica-Care) and their distribution into the skin were demonstrated in vitro. Silicone-related compounds distributed into the skin may have pharmacological effects on the skin. Further investigation will be necessary to investigate in detail the action of silicone-related compounds on the proliferation of fibroblasts and excessive production of collagen.

  3. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    PubMed

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    PubMed

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  5. Strong Flux Pinning of Nano-Sized Ysz Particles in Ybco Films Prepared by Mod Method

    NASA Astrophysics Data System (ADS)

    Ye, S.; Suo, H. L.; Liu, M.; Tang, X.; Wu, Z. P.; Zhao, Y.; Zhou, M. L.

    The YBCO films with doped YSZ nanoparticles have been prepared successfully by metal organic doepositon method using trifluoroacetates (TFA-MOD) through dissolving Zr organic salt into the YBCO precursor solution. The doped films have well in-plane and out-plane textures detected by both XRD Φ-scan and ω-scan. The YSZ nanoparticles with the size of about 5 ~ 15 nm were observed on the surface of the YBCO films using both FE-SEM and TEM. By comparing the superconducting properties, it was found that the doped YBCO films had lower Tc than that of undoped YBCO films. However, as increasing the applied magnetic field, Jc of the doped YBCO films were much better than that of undoped one. The Jc was as higher as 2.5 times than that of undoped YBCO film at 77 K and 1 T applied field.

  6. New MBE buffer for micron- and quarter-micron-gateGaAs MESFETs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A new buffer layer has been developed that eliminates backgating in GaAs MESFETs and substantially reduces short-channel effects in GaAs MESFETs with 0.27-micron-long gates. The new buffer is grown by molecular beam epitaxy (MBE) at a substrate temperature of 200 C using Ga and As sub 4 beam fluxes. The buffer is crystalline, highly resistive, optically inactive, and can be overgrown with high quality GaAs. GaAs MESFETs with a gate length of 0.27 microns that incorporate the new buffer show improved dc and RF properties in comparison with a similar MESFET with a thin undoped GaAs buffer. To demonstrate the backgating performance improvement afforded by the new buffer, MESFETs were fabricated using a number of different buffer layers and structures. A schematic cross section of the MESFET structure used in this study is shown. The measured gate length, gate width, and source-drain spacing of this device are 2,98, and 5.5 microns, respectively. An ohmic contact, isolated from the MESFET by mesa etching, served as the sidegate. The MESFETs were fabricated in MBE n-GaAs layers grown on the new buffer and also in MBE n-GaAs layers grown on buffer layers of undoped GaAs, AlGaAs, and GaAs/AlGaAs superlattices. All the buffer layers were grown by MBE and are 2 microns thick. The active layer is doped to approximately 2 x 10 to the 17th/cu cm with silicon and is 0.3 microns thick.

  7. Structural characterization of hard materials by transmission electron microscopy (TEM): Diamond-Silicon Carbide composites and Yttria-stabilized Zirconia

    NASA Astrophysics Data System (ADS)

    Park, Joon Seok

    2008-10-01

    Diamond-Silicon Carbide (SiC) composites are excellent heat spreaders for high performance microprocessors, owing to the unparalleled thermal conductivity of the former component. Such a combination is obtained by the infiltration of liquid silicon in a synthetic diamond compact, where a rigid SiC matrix forms by the reaction between the raw materials. As well as the outstanding thermal properties, this engineered compound also retains the extreme hardness of the artificial gem. This makes it difficult to perform structural analysis by transmission electron microscopy (TEM), for it is not possible to produce thin foils out of this solid by conventional polishing methods. For the first time, a dual-beam focused ion beam (FIB) instrument successfully allowed site-specific preparation of electron-transparent specimens by the lift-out technique. Subsequent TEM studies revealed that the highest concentration of structural defects occurs in the vicinity of the diamond-SiC interfaces, which are believed to act as the major barriers to the transport of thermal energy. Diffraction contrast analyses showed that the majority of the defects in diamond are isolated perfect screw or 60° dislocations. On the other hand, SiC grains contain partial dislocations and a variety of imperfections such as microtwins, stacking faults and planar defects that are conjectured to consist of antiphase (or inversion) boundaries. Clusters of nanocrystalline SiC were also observed at the diamond-SiC boundaries, and a specific heteroepitaxial orientation relationship was discovered for all cubic SiC that grows on diamond {111} facets. Yttria-stabilized Zirconia (YSZ) is the most common electrolyte material for solid oxide fuel cell (SOFC) applications. It is an ionic conductor in which charge transfer is achieved by the transport of oxygen ions (O 2-). Like the diamond composite above, it is hard and brittle, and difficult to make into electron transparent TEM samples. Provided an effective

  8. Buffer layer between a planar optical concentrator and a solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solano, Manuel E.; Barber, Greg D.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structuremore » increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.« less

  9. Effect of Nano-Si3N4 Additives and Plasma Treatment on the Dry Sliding Wear Behavior of Plasma Sprayed Al2O3-8YSZ Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Zhang, Jian; Zhang, Qiwen; Wang, You; Wang, Chaohui

    2017-04-01

    In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.

  10. Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

    PubMed

    Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji

    2017-09-20

    Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

  11. Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density

    NASA Astrophysics Data System (ADS)

    Yang, Feng

    1995-01-01

    The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different

  12. Development of in-situ control diagnostics for application of epitaxial superconductor and buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.C. Winkleman; T.V. Giel; Jason Cunningham

    1999-07-30

    The recent achievements of critical currents in excess of 1 x 10{sup 6} amp/cm{sup 2} at 77 K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the US DOE's sponsorship, the University of Tennessee Space Institute performed an extensive evaluation of leading coated conductor processing options. In general, it is their feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineeringmore » evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.« less

  13. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  14. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain.

    PubMed

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-06-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc 2 O 3 multilayers as a function of the thick-ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec-trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al 2 O 3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y 2 O 3 -multilayers with similar microstructure. Using the Nernst-Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter-face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain.

  15. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain

    PubMed Central

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-01-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc2O3 multilayers as a function of the thick­ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec­trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al2O3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y2O3-multilayers with similar microstructure. Using the Nernst–Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter­face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain. PMID:27877580

  16. Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1-xN Buffer Layer.

    PubMed

    Lee, Chang-Ju; Won, Chul-Ho; Lee, Jung-Hee; Hahm, Sung-Ho; Park, Hongsik

    2017-07-21

    The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded Al x Ga -x N buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded Al x Ga 1-x N buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 10 - ² A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers.

  17. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    NASA Astrophysics Data System (ADS)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  18. Selective growth of Pb islands on graphene/SiC buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Sincemore » Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.« less

  19. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  20. Investigation on the thermo-chemical reaction mechanism between yttria-stabilized zirconia (YSZ) and calcium-magnesium-alumino-silicate (CMAS)

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Bo; Wang, Bin-Yi; Cao, Jian; Song, Guan-Yu; Liu, Juan-Bo

    2015-03-01

    Thermal barrier coatings (TBCs) with Y2O3-stabilized ZrO2 (YSZ) top coat play a very important role in advanced turbine blades by considerably increasing the engine efficiency and improving the performance of highly loaded blades. However, at high temperatures, environment factors result in the failure of TBCs. The influence of calcium-magnesium-alumino-silicate (CMAS) is one of environment factors. Although thermo-physical effect is being paid attention to, the thermo-chemical reaction becomes the hot-spot in the research area of TBCs affected by CMAS. In this paper, traditional twolayered structured TBCs were prepared by electron beam physical vapor deposition (EBPVD) as the object of study. TBCs coated with CMAS were heated at 1240°C for 3 h. Additionally, 15 wt.% simulated molten CMAS powder and YSZ powder were mixed and heated at 1240°C or 1350°C for 48 h. SEM and EDS were adopted to detect morphology and elements distribution. According to XRD and TEM results, it was revealed that CMAS react with YSZ at high temperature and form ZrSiO4, Ca0.2Zr0.8O1.8 and Ca0.15Zr0.85O1.85 after reaction, as a result, leading to the failure of TBCs and decreasing the TBC lifetime.

  1. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    DOEpatents

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  2. DEVELOPMENT OF IN-SITU CONTROL DIAGNOSTICS FOR APPLICATION OF EPITAXIAL SUPERCONDUCTOR AND BUFFER LAYERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.C. Winkleman; T.V. Giel, Jr.; J. Cunningham

    1999-06-30

    The recent achievements of critical currents in excess of 1x10{sup 6}amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the U. S. Department of Energy (DOE's) sponsorship, the University of Tennessee Space Institute (UTSI) performed an extensive evaluation of leading coated conductor processing options. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need propermore » engineering evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's (LANL) ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's (ORNL) rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.« less

  3. Structure and Thermal Expansion of YSZ and La 2Zr 2O 7 Above 1500°C from Neutron Diffraction on Levitated Samples

    DOE PAGES

    Ushakov, Sergey V.; Navrotsky, Alexandra; Weber, Richard J. K.; ...

    2015-07-28

    High-temperature time-of-flight neutron diffraction experiments were performed in this paper on cubic yttria-stabilized zirconia (YSZ, 10 mol% YO 1.5) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO 2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10 -6/K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZmore » are similar and within (7 ± 2) × 10 -6/K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10 -6/K at 2350°C–2550°C with oxygen displacement parameters (U iso) reaching 0.1 Å 2, similar to behavior observed in UO 2. Acquisition of powder-like high-temperature neutron diffraction data from solid-levitated samples is feasible and possible improvements are outlined. Finally, this methodology should be applicable to a wide range of materials for high-temperature applications.« less

  4. Effect of oxygen plasma on nanomechanical silicon nitride resonators

    NASA Astrophysics Data System (ADS)

    Luhmann, Niklas; Jachimowicz, Artur; Schalko, Johannes; Sadeghi, Pedram; Sauer, Markus; Foelske-Schmitz, Annette; Schmid, Silvan

    2017-08-01

    Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.

  5. Extinguishing visible photoluminescence of porous silicon stimulated by antigen-antibody immunocomplex formation

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Fedorenko, Leonid L.; Starodub, Valentyna M.; Dikiy, S. P.; Svechnikov, Sergey V.

    1997-02-01

    The photoluminescence of the porous silicon obtained by special procedure with the usage of the chemical and laser beam treatment of silicon crystal was investigated in water, buffer and solution containing sodium chloride. It was demonstrated that the intensity of the photoluminescence did not practically change at the above mentioned conditions as well as after antigen or antibody immobilization on the porous silicon surface. But this parameter of the photoluminescence dramatically decreased in case of specific immune complex formation on the silicon surface. The level of the photoluminescence extinguishing depended on duration and intensity of immune reaction. It is proposed to use discovered effect for creation of the immunosensors based on the direct registration of immunocomplex formation.

  6. Towards III-V solar cells on Si: Improvement in the crystalline quality of Ge-on-Si virtual substrates through low porosity porous silicon buffer layer and annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, Gabriele; Baricordi, Stefano; Bernardoni, Paolo

    2014-09-26

    A comparison between the crystalline quality of Ge grown on bulk Si and on a low porosity porous Si (pSi) buffer layer using low energy plasma enhanced chemical vapor deposition is reported. Omega/2Theta coupled scans around the Ge and Si (004) diffraction peaks show a reduction of the Ge full-width at half maximum (FWHM) of 22.4% in presence of the pSi buffer layer, indicating it is effective in improving the epilayer crystalline quality. At the same time atomic force microscopy analysis shows an increase in root means square roughness for Ge grown on pSi from 38.5 nm to 48.0 nm,more » as a consequence of the larger surface roughness of pSi compared to bulk Si. The effect of 20 minutes vacuum annealing at 580°C is also investigated. The annealing leads to a FWHM reduction of 23% for Ge grown on Si and of 36.5% for Ge on pSi, resulting in a FWHM of 101 arcsec in the latter case. At the same time, the RMS roughness is reduced of 8.8% and of 46.5% for Ge grown on bulk Si and on pSi, respectively. The biggest improvement in the crystalline quality of Ge grown on pSi with respect to Ge grown on bulk Si observed after annealing is a consequence of the simultaneous reorganization of the Ge epilayer and the buffer layer driven by energy minimization. A low porosity buffer layer can thus be used for the growth of low defect density Ge on Si virtual substrates for the successive integration of III-V multijunction solar cells on Si. The suggested approach is simple and fast –thus allowing for high throughput-, moreover is cost effective and fully compatible with subsequent wafer processing. Finally it does not introduce new chemicals in the solar cell fabrication process and can be scaled to large area silicon wafers.« less

  7. Growing GaN LEDs on amorphous SiC buffer with variable C/Si compositions

    PubMed Central

    Cheng, Chih-Hsien; Tzou, An-Jye; Chang, Jung-Hung; Chi, Yu-Chieh; Lin, Yung-Hsiang; Shih, Min-Hsiung; Lee, Chao-Kuei; Wu, Chih-I; Kuo, Hao-Chung; Chang, Chun-Yen; Lin, Gong-Ru

    2016-01-01

    The epitaxy of high-power gallium nitride (GaN) light-emitting diode (LED) on amorphous silicon carbide (a-SixC1−x) buffer is demonstrated. The a-SixC1−x buffers with different nonstoichiometric C/Si composition ratios are synthesized on SiO2/Si substrate by using a low-temperature plasma enhanced chemical vapor deposition. The GaN LEDs on different SixC1−x buffers exhibit different EL and C-V characteristics because of the extended strain induced interfacial defects. The EL power decays when increasing the Si content of SixC1−x buffer. The C-rich SixC1−x favors the GaN epitaxy and enables the strain relaxation to suppress the probability of Auger recombination. When the SixC1−x buffer changes from Si-rich to C-rich condition, the EL peak wavelengh shifts from 446 nm to 450 nm. Moreover, the uniform distribution contour of EL intensity spreads between the anode and the cathode because the traping density of the interfacial defect gradually reduces. In comparison with the GaN LED grown on Si-rich SixC1−x buffer, the device deposited on C-rich SixC1−x buffer shows a lower turn-on voltage, a higher output power, an external quantum efficiency, and an efficiency droop of 2.48 V, 106 mW, 42.3%, and 7%, respectively. PMID:26794268

  8. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    NASA Astrophysics Data System (ADS)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  9. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coux, P. de; CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4; Bachelet, R.

    A bottleneck in the integration of functional oxides with silicon, either directly grown or using a buffer, is the usual formation of an amorphous interfacial layer. Here, we demonstrate that ferromagnetic CoFe{sub 2}O{sub 4} films can be grown epitaxially on Si(111) using a Y{sub 2}O{sub 3} buffer layer, and remarkably the Y{sub 2}O{sub 3}/Si(111) interface is stable and remains atomically sharp. CoFe{sub 2}O{sub 4} films present high crystal quality and high saturation magnetization.

  11. Accuracy of buffered-force QM/MM simulations of silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peguiron, Anke; Moras, Gianpietro; Colombi Ciacchi, Lucio

    2015-02-14

    We report comparisons between energy-based quantum mechanics/molecular mechanics (QM/MM) and buffered force-based QM/MM simulations in silica. Local quantities—such as density of states, charges, forces, and geometries—calculated with both QM/MM approaches are compared to the results of full QM simulations. We find the length scale over which forces computed using a finite QM region converge to reference values obtained in full quantum-mechanical calculations is ∼10 Å rather than the ∼5 Å previously reported for covalent materials such as silicon. Electrostatic embedding of the QM region in the surrounding classical point charges gives only a minor contribution to the force convergence. Whilemore » the energy-based approach provides accurate results in geometry optimizations of point defects, we find that the removal of large force errors at the QM/MM boundary provided by the buffered force-based scheme is necessary for accurate constrained geometry optimizations where Si–O bonds are elongated and for finite-temperature molecular dynamics simulations of crack propagation. Moreover, the buffered approach allows for more flexibility, since special-purpose QM/MM coupling terms that link QM and MM atoms are not required and the region that is treated at the QM level can be adaptively redefined during the course of a dynamical simulation.« less

  12. High-T(sub c) Edge-geometry SNS Weak Links on Silicon-on-sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Hunt, B.; Foote, M.; Pike, W.; Barner, J.; Vasquez, R.

    1994-01-01

    High-quality superconductor/normal-metal/superconductor(SNS) edge-geometry weak links have been produced on silicon-on-sapphire (SOS) substrates using a new SrTiO(sub 3)/'seed layer'/cubic-zirconia (YS2) buffer system.

  13. 12 CFR 324.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 324.11 Section 324.11 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... Requirements and Buffers § 324.11 Capital conservation buffer and countercyclical capital buffer amount. (a...

  14. 12 CFR 217.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 217.11 Section 217.11 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS... Requirements and Buffers § 217.11 Capital conservation buffer and countercyclical capital buffer amount. (a...

  15. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  16. Epitaxial Growth of beta-Silicon Carbide (SiC) on a Compliant Substrate via Chemical Vapor Deposition (CVD)

    NASA Technical Reports Server (NTRS)

    Mitchell, Sharanda L.

    1996-01-01

    Many lattice defects have been attributed to the lattice mismatch and the difference in the thermal coefficient of expansion between SiC and silicon (Si). Stacking faults, twins and antiphase boundaries are some of the lattice defects found in these SiC films. These defects may be a partial cause of the disappointing performance reported for the prototype devices fabricated from beta-SiC films. The objective of this research is to relieve some of the thermal stress due to lattice mismatch when SiC is epitaxially grown on Si. The compliant substrate is a silicon membrane 2-4 microns thick. The CVD process includes the buffer layer which is grown at 1360 C followed by a very thin epitaxial growth of SiC. Then the temperature is raised to 1500 C for the subsequent growth of SiC. Since silicon melts at 1415 C, the SiC will be grown on molten Silicon which is absorbed by a porous graphite susceptor eliminating the SiC/Si interface. We suspect that this buffer layer will yield less stressed material to help in the epitaxial growth of SiC.

  17. YSZ-based sensor using Cr-Fe-based spinel-oxide electrodes for selective detection of CO.

    PubMed

    Anggraini, Sri Ayu; Fujio, Yuki; Ikeda, Hiroshi; Miura, Norio

    2017-08-22

    A selective carbon monoxide (CO) sensor was developed by the use of both of CuCrFeO 4 and CoCrFeO 4 as the sensing electrode (SE) for yttria-stabilized zirconia (YSZ)-based potentiometric sensor. The sensing-characteristic examinations of the YSZ-based sensors using each of spinel oxides as the single-SE sensor showed that CuCrFeO 4 -SE had the ability to detect CO, hydrocarbons and NO x gases, while CoCrFeO 4 -SE was sensitive to hydrocarbons and NO x gases. Thus, when both SEs were paired as a combined-SEs sensor, the resulting sensor could generate a selective response to CO at 450 °C under humid conditions. The sensor was also capable of detecting CO in the concentration range of 20-700 ppm. Its sensing mechanism that was examined via polarization-curve measurements was confirmed to be based on mixed-potential model. The CO response generated by the combined-SEs sensor was unaffected by the change of water vapor concentration in the range of 1.3-11.5 vol% H 2 O. Additionally, the sensing performance was stable during 13 days tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties

    PubMed Central

    Matveev, Victor; Zucker, Robert S.; Sherman, Arthur

    2004-01-01

    Synaptic facilitation (SF) is a ubiquitous form of short-term plasticity, regulating synaptic dynamics on fast timescales. Although SF is known to depend on the presynaptic accumulation of Ca2+, its precise mechanism is still under debate. Recently it has been shown that at certain central synapses SF results at least in part from the progressive saturation of an endogenous Ca2+ buffer (Blatow et al., 2003), as proposed by Klingauf and Neher (1997). Using computer simulations, we study the magnitude of SF that can be achieved by a buffer saturation mechanism (BSM), and explore its dependence on the endogenous buffering properties. We find that a high SF magnitude can be obtained either by a global saturation of a highly mobile buffer in the entire presynaptic terminal, or a local saturation of a completely immobilized buffer. A characteristic feature of BSM in both cases is that SF magnitude depends nonmonotonically on the buffer concentration. In agreement with results of Blatow et al. (2003), we find that SF grows with increasing distance from the Ca2+ channel cluster, and increases with increasing external Ca2+, [Ca2+]ext, for small levels of [Ca2+]ext. We compare our modeling results with the experimental properties of SF at the crayfish neuromuscular junction, and find that the saturation of an endogenous mobile buffer can explain the observed SF magnitude and its supralinear accumulation time course. However, we show that the BSM predicts slowing of the SF decay rate in the presence of exogenous Ca2+ buffers, contrary to experimental observations at the crayfish neuromuscular junction. Further modeling and data are required to resolve this aspect of the BSM. PMID:15111389

  19. Equilibrium water and solute uptake in silicone hydrogels.

    PubMed

    Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J

    2015-05-01

    Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.

  1. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

  2. Thermoelectric Properties of Silicon Germanium: An Investigation of the Reduction of Lattice Thermal Conductivity and Enhancement of Power Factor

    NASA Astrophysics Data System (ADS)

    Lahwal, Ali Sadek

    Thermoelectric materials are of technological interest owing to their ability of direct thermal-to-electrical energy conversion. In thermoelectricity, thermal gradients can be used to generate an electrical power output. Recent efforts in thermoelectrics are focused on developing higher efficient power generation materials. In this dissertation, the overall goal is to investigate both the n-type and p-type of the state of the art thermoelectric material, silicon germanium (SiGe), for high temperature power generation. Further improvement of thermoelectric performance of Si-Ge alloys hinges upon how to significantly reduce the as yet large lattice thermal conductivity, and optimizing the thermoelectric power factor PF. Our methods, in this thesis, will be into two different approaches as follow: The first approach is manipulating the lattice thermal conductivity of n and p-type SiGe alloys via direct nanoparticle inclusion into the n-type SiGe matrix and, in a different process, using a core shell method for the p-type SiGe. This approach is in line with the process of in-situ nanocomposites. Nanocomposites have become a new paradigm for thermoelectric research in recent years and have resulted in the reduction of thermal conductivity via the nano-inclusion and grain boundary scattering of heat-carrying phonons. To this end, a promising choice of nano-particle to include by direct mixing into a SiGe matrix would be Yttria Stabilized Zirconia ( YSZ). In this work we report the preparation and thermoelectric study of n-type SiGe + YSZ nanocomposites prepared by direct mechanical mixing followed by Spark Plasma Sintering (SPS) processing. Specifically, we experimentally investigated the reduction of lattice thermal conductivity (kappaL) in the temperature range (30--800K) of n-type Si 80Ge20P2 alloys with the incorporation of YSZ nanoparticles (20 ˜ 40 nm diameter) into the Si-Ge matrix. These samples synthesized by SPS were found to have densities > 95% of the

  3. Solution immersed silicon (SIS)-based biosensors: a new approach in biosensing.

    PubMed

    Diware, M S; Cho, H M; Chegal, W; Cho, Y J; Jo, J H; O, S W; Paek, S H; Yoon, Y H; Kim, D

    2015-02-07

    A novel, solution immersed silicon (SIS)-based sensor has been developed which employs the non-reflecting condition (NRC) for a p-polarized wave. The SIS sensor's response is almost independent of change in the refractive index (RI) of a buffer solution (BS) which makes it capable of measuring low-concentration and/or low-molecular-weight compounds.

  4. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  5. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions.

    PubMed

    Ludwig, D Brett; Carpenter, John F; Hamel, Jean-Bernard; Randolph, Theodore W

    2010-04-01

    The effect of silicone oil on the stability of therapeutic protein formulations is of concern in the biopharmaceutical industry as more proteins are stored and delivered in prefilled syringes. Prefilled syringes provide convenience for medical professionals and patients, but prolonged exposure of proteins to silicone oil within prefilled syringes may be problematic. In this study, we characterize systems of silicone oil-in-aqueous buffer emulsions and model proteins in formulations containing surfactant, sodium chloride, or sucrose. For each of the formulations studied, silicone oil-induced loss of soluble protein, likely through protein adsorption onto the silicone oil droplet surface. Excipient addition affected both protein adsorption and emulsion stability. Addition of surfactant stabilized emulsions but decreased protein adsorption to silicone oil microdroplets. In contrast, addition of sodium chloride increased protein adsorption and decreased emulsion stability. Silicone oil droplets with adsorbed lysozyme rapidly agglomerated and creamed out of suspension. This decrease in the kinetic stability of the emulsion is ascribed to surface charge neutralization and a bridging flocculation phenomenon and illustrates the need to investigate not only the effects of silicone oil on protein stability, but also the effects of protein formulation variables on emulsion stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  6. Stress-induced magnetization for epitaxial spinel ferrite films through interface engineering

    NASA Astrophysics Data System (ADS)

    Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2004-08-01

    This study found "stress-induced magnetization" for epitaxial ferrite films with spinel structure. We grew (111)- and (001)-epitaxial Ni0.17Zn0.23Fe2.60O4(NZF) films on CeO2/Y0.15Zr0.85O1.93(YSZ )/Si(001) and oxide single-crystal substrates, respectively. There is a window of lattice mismatch (between 0 and 6.5%) to achieve bulk saturation magnetization (Ms). An NZF film grown on CeO2/YSZ //Si(001) showed tensile stress, but that stress was relaxed by introducing a ZnCo2O4(ZC ) buffer layer. NZF films grown on SrTiO3(ST )(001) and (La,Sr)(Al,Ta)O3(LSAT)(001) had compressive stress, which was enhanced by introducing a ZC buffer layer. In both cases, bulk Ms was achieved by introducing the ZC buffer layer. This similarity suggests that magnetization can be controlled by the stress.

  7. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  8. Microfabricated electrochemical sensors for combustion applications

    NASA Astrophysics Data System (ADS)

    Vulcano Rossi, Vitor A.; Mullen, Max R.; Karker, Nicholas A.; Zhao, Zhouying; Kowarz, Marek W.; Dutta, Prabir K.; Carpenter, Michael A.

    2015-05-01

    A new design for the miniaturization of an existing oxygen sensor is proposed based on the application of silicon microfabrication technologies to a cm sized O2 sensor demonstrated by Argonne National Laboratory and The Ohio State University which seals a metal/metal oxide within the structure to provide an integrated oxygen reference. The structural and processing changes suggested will result in a novel MEMS-based device meeting the semiconductor industry standards for cost efficiency and mass production. The MEMS design requires thin film depositions to create a YSZ membrane, palladium oxide reference and platinum electrodes. Pt electrodes are studied under operational conditions ensuring film conductivity over prolonged usage. SEM imaging confirms void formation after extended tests, consistent with the literature. Furthermore, hydrophilic bonding of pairs of silicon die samples containing the YSZ membrane and palladium oxide is discussed in order to create hermetic sealed cavities for oxygen reference. The introduction of tensile Si3N4 films to the backside of the silicon die generates bowing of the chips, compromising bond quality. This effect is controlled through the application of pressure during the initial bonding stages. In addition, KOH etching of the bonded die samples is discussed, and a YSZ membrane that survives the etching step is characterized by Raman spectroscopy.

  9. Structural and electrical properties of epitaxial YBCO films on Si (Abstract Only).

    NASA Astrophysics Data System (ADS)

    Fork, David K.; Barrera, A.; Phillips, Julia M.; Newman, N.; Fenner, David B.; Geballe, Theodore H.; Connell, G. A. N.; Boyce, James B.

    1991-03-01

    Efforts to grow high quality films of YBCO on Si have been complicated by factors discussed in Ref. 1, chief among them being the reaction between YBCO and Si, which is damaging even at 550 C. This is well below the customary temperatures for YBCO film growth. To avoid the reaction problem, epitaxial YBCO films were grown on Si (100) using an intermediate buffer layer of yttria-stabilized zirconia (YSZ).2 Both layers are grown via an entirely in situ process by pulsed laser deposition (PLD). Although the buffer layer prevents reaction, another problem arises; the large difference in thermal expansion coefficients between silicon and YBCO causes strain at room temperature. Thin (<500 A) YBCO films are unrelaxed and under tensile strain with a distorted unit cell. Thicker films are cracked and have poorer electrical properties. The thermal strain may be reduced by growing on silicon-on-sapphire (SOS) rather than silicon.3 This allows the growth of films of arbitrary thickness. Ion channeling reveals a high degree of crystalline perfection with a channeling minimum yield for Ba as low as 12% on either silicon or SOS. The normal state resistivity is 250-300 i-cm at 300 K; the critical temperature, Tc (R=0), is 86-88 K with a transition width (ATc) of I K. Critical current densities (J)°f 2x107 A/cm2 at 4.2 K and >2x106 A/cm2 at 77 K have been achieved. In addition, the surface resistance of a YBCO film on SOS was measured against Nb at 4.2 K. At 10 GHz, a value of 45 was obtained. This compares favorably to values reported for LaAlO3. Application of this technology to produce reaction patterned microstrip lines has been tested.4 This was done by ion milling away portions of the YSZ buffer layer prior to the YBCO deposition. YBCO landing on regions of exposed Si reacts to form an insulator. This technique was used to make 3 micron lines 1.5 mm long. The resulting structure had a Jc of l.6xl06 A/cm2 at 77 K. Isolation of separate structures exceeded 20 M. Several

  10. Hybrid Quantum Cascade Lasers on Silicon-on-Sapphire

    DTIC Science & Technology

    2016-11-23

    on-SOS devices mounted on a copper heat sink. The liquid crystal thermal absorber is attached to block mid-IR emission from any sections of the laser...directions. 2. Statement of the problem studied Short-wavelength infrared (SWIR, ~1-3 m) photonics systems based on silicon-on- insulator (SOI...Table 1. Layer type Layer thickness and doping Thickness (nm) Doping (cm-3) InP substrate 350000 Semi- insulating InP buffer layer 2000 2.00E

  11. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  12. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability

    NASA Astrophysics Data System (ADS)

    Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.; Boccard, Mathieu; Cheacharoen, Rongrong; Mailoa, Jonathan P.; McMeekin, David P.; Hoye, Robert L. Z.; Bailie, Colin D.; Leijtens, Tomas; Peters, Ian Marius; Minichetti, Maxmillian C.; Rolston, Nicholas; Prasanna, Rohit; Sofia, Sarah; Harwood, Duncan; Ma, Wen; Moghadam, Farhad; Snaith, Henry J.; Buonassisi, Tonio; Holman, Zachary C.; Bent, Stacey F.; McGehee, Michael D.

    2017-02-01

    As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity.

  13. Antibacterial studies of ZnO nanoparticle coatings on nanocrystalline YSZ irradiated with femtosecond laser light

    NASA Astrophysics Data System (ADS)

    Alvarez, Crysthal; Garcia, Valeria; Cuando, Natanael; Aguilar, Guillermo

    2018-02-01

    Recently, efforts have been made to create a transparent ceramic cranial implant comprised of nanocrystalline yttriastabilized zirconia (nc-YSZ) that will provide optical access to the brain. This has been referred to as Window to the Brain (WttB) in the literature. WttB will allow the use of laser and photonic treatments and diagnostics in areas with difficult optical access in the brain. Nevertheless, infection is still one of the frequent cranial implant complications. In most cases a second surgery is required to replace the infected implant. To address potential infections in the WttB platform, we have studied the antibacterial effect of a Zinc Oxide (ZnO) nanoparticles coating on nc-YSZ. After coating with ZnO nanoparticles, the implant was irradiated with infrared femtosecond laser light. We synthesized ZnO nanoparticles through the Laser Ablation of Solids in Liquids (LASL) method, using a Zinc solid target in a liquid medium (water/acetone). Antibacterial coatings were obtained by air brush, using a precursor solution of ZnO nanoparticles in distilled water. Escherichia coli (E. coli) have been used as representative, clinical relevant bacteria to probe the antibacterial effect of the coating. Our previous studies suggested that the use of ZnO nanoparticles inhibit bacterial growth. Laser irradiation treatment alone also offers inhibition of bacterial growth, up to 70%. The incorporation of nanoparticles offers an additional 20% inhibition. Thus, this work represents the next step towards the development of a clinically-oriented transparent cranial implant.

  14. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  15. Aggregation and Particle Formation of Therapeutic Proteins in Contact With a Novel Fluoropolymer Surface Versus Siliconized Surfaces: Effects of Agitation in Vials and in Prefilled Syringes.

    PubMed

    Teska, Brandon M; Brake, Jeffrey M; Tronto, Gregory S; Carpenter, John F

    2016-07-01

    We examined the effects of an accelerated agitation protocol on 2 protein therapeutics, intravenous immunoglobulin (IVIG) and Avastin (bevacizumab), in contact with a novel fluoropolymer surface and more typical siliconized surfaces. The fluoropolymer surface provides "solid-phase" lubrication for the syringe plunger-obviating the need for silicone oil lubrication in prefilled syringes. We tested the 2 surfaces in a vial system and in prefilled glass syringes. We also examined the effects of 2 buffers, phosphate-buffered saline (PBS) and 0.2-M glycine, with and without the addition of polysorbate 20, on agitation-induced aggregation of IVIG. Aggregation was monitored by measuring subvisible particle formation and soluble protein loss. In both vials and syringes, protein particle formation was much lower during agitation with the fluoropolymer surface than with the siliconized surface. Also, particle formation was greater in PBS than in glycine buffer, an effect attributed to lower colloidal stability of IVIG in PBS. Polysorbate 20 in the formulation greatly inhibited protein particle formation. Overall, the fluoropolymer plunger surface in an unsiliconized glass barrel was demonstrated to be a viable solution for eliminating silicone oil droplets from prefilled syringe formulations and providing a consistent system for rationale formulation development and simplified particle analysis. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. 12 CFR 3.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 3.11 Section 3.11 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY CAPITAL ADEQUACY STANDARDS Capital Ratio Requirements and Buffers § 3.11 Capital conservation...

  17. High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications

    NASA Astrophysics Data System (ADS)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2018-03-01

    Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.

  18. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-01-01

    The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  19. Derivative effect of laser cladding on interface stability of YSZ@Ni coating on GH4169 alloy: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping

    2018-01-01

    Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 < QO-Ni = 0.220) compared to that in ZrO2/Ni, TGO Al2O3 can improve the oxidation resistance of the metal matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.

  20. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by solution precursor plasma spraying with axial feedstock injection

    NASA Astrophysics Data System (ADS)

    Metcalfe, Craig; Lay-Grindler, Elisa; Kesler, Olivera

    2014-02-01

    Nickel and yttria-stabilized zirconia (YSZ) anodes were fabricated by solution precursor plasma spraying (SPPS) and incorporated into metal-supported solid oxide fuel cells (SOFC). A power density of 0.45 W cm-2 at 0.7 V and a peak power density of 0.52 W cm-2 at 750 °C in humidified H2 was obtained, which are the first performance results reported for an SOFC having an anode fabricated by SPPS. The effects of solution composition, plasma gas composition, and stand-off distance on the composition of the deposited Ni-YSZ coatings by SPPS were evaluated. It was found that the addition of citric acid to the aqueous solution delayed re-solidification of NiO particles, improving the deposition efficiency and coating adhesion. The composition of the deposited coatings was found to vary with torch power. Increasing torch power led to coatings with decreasing Ni content, as a result of Ni vaporizing in-flight at stand-off distances less than 60 mm from the torch nozzle exit.

  1. The integration of InGaP LEDs with CMOS on 200 mm silicon wafers

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Lee, Kwang Hong; Wang, Cong; Wang, Yue; Made, Riko I.; Sasangka, Wardhana Aji; Nguyen, Viet Cuong; Lee, Kenneth Eng Kian; Tan, Chuan Seng; Yoon, Soon Fatt; Fitzgerald, Eugene A.; Michel, Jurgen

    2017-02-01

    The integration of photonics and electronics on a converged silicon CMOS platform is a long pursuit goal for both academe and industry. We have been developing technologies that can integrate III-V compound semiconductors and CMOS circuits on 200 mm silicon wafers. As an example we present our work on the integration of InGaP light-emitting diodes (LEDs) with CMOS. The InGaP LEDs were epitaxially grown on high-quality GaAs and Ge buffers on 200 mm (100) silicon wafers in a MOCVD reactor. Strain engineering was applied to control the wafer bow that is induced by the mismatch of coefficients of thermal expansion between III-V films and silicon substrate. Wafer bonding was used to transfer the foundry-made silicon CMOS wafers to the InGaP LED wafers. Process trenches were opened on the CMOS layer to expose the underneath III-V device layers for LED processing. We show the issues encountered in the 200 mm processing and the methods we have been developing to overcome the problems.

  2. Improvement of Toluene Selectivity via the Application of an Ethanol Oxidizing Catalytic Cell Upstream of a YSZ-Based Sensor for Air Monitoring Applications

    PubMed Central

    Sato, Tomoaki; Breedon, Michael; Miura, Norio

    2012-01-01

    The sensing characteristics of a yttria-stabilized zirconia (YSZ)-based sensor utilizing a NiO sensing-electrode (SE) towards toluene (C7H8) and interfering gases (C3H6, H2, CO, NO2 and C2H5OH) were evaluated with a view to selective C7H8 monitoring in indoor atmospheres. The fabricated YSZ-based sensor showed preferential responses toward 480 ppb C2H5OH, rather than the target 50 ppb C7H8 at an operational temperature of 450 °C under humid conditions (RH ≃ 32%). To overcome this limitation, the catalytic activity of Cr2O3, SnO2, Fe2O3 and NiO powders were evaluated for their selective ethanol oxidation ability. Among these oxides, SnO2 was found to selectively oxidize C2H5OH, thus improving C7H8 selectivity. An inline pre-catalytic cell loaded with SnO2 powder was installed upstream of the YSZ-based sensor utilizing NiO-SE, which enabled the following excellent abilities by selectively catalyzing common interfering gases; sensitive ppb level detection of C7H8 lower than the established Japanese Guideline value; low interferences from 50 ppb C3H6, 500 ppb H2, 100 ppb CO, 40 ppb NO2, as well as 480 ppb C2H5OH. These operational characteristics are all indicative that the developed sensor may be suitable for real-time C7H8 concentration monitoring in indoor environments. PMID:22666053

  3. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  4. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions

    NASA Astrophysics Data System (ADS)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-08-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  5. Buffer$--An Economic Analysis Tool

    Treesearch

    Gary Bentrup

    2007-01-01

    Buffer$ is an economic spreadsheet tool for analyzing the cost-benefits of conservation buffers by resource professionals. Conservation buffers are linear strips of vegetation managed for multiple landowner and societal objectives. The Microsoft Excel based spreadsheet can calculate potential income derived from a buffer, including income from cost-share/incentive...

  6. Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    NASA Astrophysics Data System (ADS)

    Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.

    2016-03-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers-without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime-and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon.

  7. Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    PubMed Central

    Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.

    2016-01-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers–without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime–and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon. PMID:26975515

  8. Versatile buffer layer architectures based on Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Roucka, R.; Tolle, J.; Cook, C.; Chizmeshya, A. V. G.; Kouvetakis, J.; D'Costa, V.; Menendez, J.; Chen, Zhihao D.; Zollner, S.

    2005-05-01

    We describe methodologies for integration of compound semiconductors with Si via buffer layers and templates based on the GeSn system. These layers exhibit atomically flat surface morphologies, low defect densities, tunable thermal expansion coefficients, and unique ductile properties, which enable them to readily absorb differential stresses produced by mismatched overlayers. They also provide a continuous selection of lattice parameters higher than that of Ge, which allows lattice matching with technologically useful III-V compounds. Using this approach we have demonstrated growth of GaAs, GeSiSn, and pure Ge layers at low temperatures on Si(100). These materials display extremely high-quality structural, morphological, and optical properties opening the possibility of versatile integration schemes directly on silicon.

  9. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  10. Protocol for buffer space negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessett, D.

    There are at least two ways to manage the buffer memory of a communications node. On etechnique veiws the buffer as a single resource that is to be reserved and released as a unit for a particular communication transaction. A more common approach treats the node's buffer space as a collection of resources (e.g., bytes, words, packet slots) capable of being allocated among multiple concurrent conversations. To achieve buffer space multiplexing, some sort of negotiation for buffer space must take place between source and sink nodes before a transaction can commence. Results are presented which indicate that, for an applicationmore » involving a CSMA broadcast network, buffer space multiplexing offers better performance than buffer reservation. To achieve this improvement, a simple protocol is presented that features flow-control information traveling both from source to sink as well as from sink to source. It is argued that this bidirectionality allows the sink to allocate buffer space among its active communication paths more effectively. 13 figures.« less

  11. Towards nanometer-spaced silicon contacts to proteins.

    PubMed

    Schukfeh, Muhammed I; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-18

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p(+) silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices' electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes' edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions' conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein's denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  12. Single molecule localization imaging of exosomes using blinking silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Zong, Shenfei; Zong, Junzhu; Chen, Chen; Jiang, Xiaoyue; Zhang, Yizhi; Wang, Zhuyuan; Cui, Yiping

    2018-02-01

    Discovering new fluorophores, which are suitable for single molecule localization microscopy (SMLM) is important for promoting the applications of SMLM in biological or material sciences. Here, we found that silicon quantum dots (Si QDs) possess a fluorescence blinking behavior, making them an excellent candidate for SMLM. The Si QDs are fabricated using a facile microwave-assisted method. Blinking of Si QDs is confirmed by single particle fluorescence measurement and the spatial resolution achieved is about 30 nm. To explore the potential application of Si QDs as the nanoprobes for SMLM imaging, cell derived exosomes are chosen as the object owing to their small size (50-100 nm in diameter). Since CD63 is commonly presented on the membrane of exosomes, CD63 aptamers are attached to the surface of Si QDs to form nanoprobes which can specifically recognize exosomes. SMLM imaging shows that Si QDs based nanoprobes can indeed realize super resolved optical imaging of exosomes. More importantly, blinking of Si QDs is observed in water or PBS buffer with no need for special imaging buffers. Besides, considering that silicon is highly biocompatible, Si QDs should have minimal cytotoxicity. These features make Si QDs quite suitable for SMLM applications especially for live cell imaging.

  13. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.

    PubMed

    Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer

    2015-01-14

    In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the

  14. Ex Situ Investigation of Anisotropic Interconnection in Silicon-Titanium-Nickel Alloy Anode Material

    DOE PAGES

    Cho, Jong -Soo; Alaboina, Pankaj Kumar; Kang, Chan -Soon; ...

    2017-03-10

    Herein we investigate the nanostructural evolution of Silicon-Titanium-Nickel (Si-Ti-Ni) ternary alloy material synthesized by melt spinning process for advanced lithium-ion battery anode. The synthesized material was found to have nano-Silicon particles dispersed in the Ti 4Ni 4Si 7 (STN) alloy buffering matrix and was characterized by X-ray diffraction (XRD), High resolution- transmission electron microscope (HR-TEM), Scanning transmission electron microscopes - energy dispersive X-ray spectrometer (STEM-EDS), and electrochemical performance test. The role of STN matrix is to accommodate the volume expansion stresses of the dispersed Si nanoparticles. However, an interesting behavior was observed during cycling. The Si nanoparticles were observed tomore » form interconnection channels growing through the weak STN matrix cracks and evolving to a network isolating the STN matrix into small puddles. In conclusion, this unique nanostructural evolution of Si particles and isolation of the STN matrix failing to offer significant buffering effect to the grown Si network eventually accelerates more volume expansions during cycling due to less mechanical confinement and leads to performance degradation and poor cycle stability.« less

  15. k(+)-buffer: An Efficient, Memory-Friendly and Dynamic k-buffer Framework.

    PubMed

    Vasilakis, Andreas-Alexandros; Papaioannou, Georgios; Fudos, Ioannis

    2015-06-01

    Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the most suitable value of k are still missing. To this end, we introduce k(+)-buffer, a fast framework that accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality.

  16. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  17. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  18. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  19. Effect of thermally growth oxides (TGO) on adhesion strength for high purity yitria stabilised zirconia (YSZ) and rare - Earth lanthanum zirconates (LZ) multilayer thermal barrier coating before and after isothermal heat treatment

    NASA Astrophysics Data System (ADS)

    Yunus, Salmi Mohd; Johari, Azril Dahari; Husin, Shuib

    2017-12-01

    Investigation on the effect of Thermally Growth Oxides (TGO) on the adhesion strength for thermal barrier coating (TBC) was carried out. The TBC under studied was the multilayer systems which consist of NiCrAlY bond coat and YSZ/LZ ceramic coating deposited on Ni-based superalloy substrates. The development of thermally growth oxides (TGO) for both TBC systems after isothermal heat treatment was measured. Isothermal heat treatment was carried out at 1100 ˚C for 100 hours to age the samples. ASTM D4541: Standard Test Method for Pull-off Strength of Coatings using Portable Adhesion Tester was used to measure the adhesion strength of both TBC systems before and after heat treatment. The effect of the developed TGO on the measured adhesion strength was examined and correlation between them was established individually for both TBC systems. The failure mechanism of the both system was also identified; either cohesive or adhesive or the combination of both. The results showed that TGO has more than 50% from the bond coat layer for rare-earth LZ system compared to the typical YSZ system, which was less than 10 % from the bond coat layer. This leads to the lower adhesion strength of rare-earth LZ coating system compared to typical YSZ system. Failure mechanism during the pull-off test also was found to be different for both TBC systems. The typical YSZ system experienced cohesive failure whereas the rare-earth LZ system experienced the combination of cohesive and adhesive failure.

  20. Mechanisms of buffer therapy resistance

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.

    2014-01-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761

  1. Automotive assessment of carbon-silicon composite anodes and methods of fabrication

    NASA Astrophysics Data System (ADS)

    Karulkar, Mohan; Blaser, Rachel; Kudla, Bob

    2015-01-01

    To assess the potential of carbon silicon composite anodes for automotive applications, C-Si anodes were fabricated and certain improvements employed. The use of a PVDF buffer layer is demonstrated for the first time with a C-Si composite material. The buffer layer increases adhesion by 89%, and increases capacity by 50-80%. Also, a limited capacity range is employed to improve cycle life by up to 200%, and enable currents as high as 2 mA cm-1. The combined use of a buffer layer and limited capacity range has not been reported before. A model is also presented for comparing C-Si performance with real-world automotive targets from USABC, including energy density, power density, specific energy, and specific power. The analysis reveals a capacity penalty that arises from pairing C-Si with a traditional cathode (NCA), and which prevents the cell from meeting all targets. Scenarios are presented in which a higher-capacity cathode (250 mAh g-1) allows all targets to be hypothetically met.

  2. 3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability

    PubMed Central

    Pecho, Omar M.; Stenzel, Ole; Iwanschitz, Boris; Gasser, Philippe; Neumann, Matthias; Schmidt, Volker; Prestat, Michel; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz

    2015-01-01

    This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 °C. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φeff), constriction factor (β), and tortuosity (τ). The effective conductivity (σeff) is described as the product of intrinsic conductivity (σ0) and the so-called microstructure-factor (M): σeff = σ0 × M. Two different methods are used to evaluate the M-factor: (1) by prediction using a recently established relationship, Mpred = εβ0.36/τ5.17, and (2) by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (Msim). Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers. PMID:28793523

  3. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  4. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    PubMed

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  5. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  6. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  7. Towards nanometer-spaced silicon contacts to proteins

    NASA Astrophysics Data System (ADS)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  8. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction†

    PubMed Central

    Sciacca, Beniamino; Alvarez, Sara D.; Geobaldo, Francesco; Sailor, Michael J.

    2011-01-01

    The high stability of Salonen’s thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge—many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces. PMID:20967329

  9. Role of Buffers in Protein Formulations.

    PubMed

    Zbacnik, Teddy J; Holcomb, Ryan E; Katayama, Derrick S; Murphy, Brian M; Payne, Robert W; Coccaro, Richard C; Evans, Gabriel J; Matsuura, James E; Henry, Charles S; Manning, Mark Cornell

    2017-03-01

    Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Cytosolic Ca2+ Buffers

    PubMed Central

    Schwaller, Beat

    2010-01-01

    “Ca2+ buffers,” a class of cytosolic Ca2+-binding proteins, act as modulators of short-lived intracellular Ca2+ signals; they affect both the temporal and spatial aspects of these transient increases in [Ca2+]i. Examples of Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Besides their proven Ca2+ buffer function, some might additionally have Ca2+ sensor functions. Ca2+ buffers have to be viewed as one of the components implicated in the precise regulation of Ca2+ signaling and Ca2+ homeostasis. Each cell is equipped with proteins, including Ca2+ channels, transporters, and pumps that, together with the Ca2+ buffers, shape the intracellular Ca2+ signals. All of these molecules are not only functionally coupled, but their expression is likely to be regulated in a Ca2+-dependent manner to maintain normal Ca2+ signaling, even in the absence or malfunctioning of one of the components. PMID:20943758

  11. Common data buffer

    NASA Technical Reports Server (NTRS)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  12. Buffer Zone Fact Sheets

    EPA Pesticide Factsheets

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  13. Growth of indium gallium arsenide thin film on silicon substrate by MOCVD technique

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sisir; Das, Anish; Banerji, Pallab

    2018-05-01

    Indium gallium arsenide (InGaAs) thin film with indium phosphide (InP) buffer has been grown on p-type silicon (100) by Metal Organic Chemical Vapor Deposition (MOCVD) technique. To get a lattice matched substrate an Indium Phosphide buffer thin film is deposited onto Si substrate prior to InGaAs growth. The grown films have been investigated by UV-Vis-NIR reflectance spectroscopy. The band gap energy of the grown InGaAs thin films determined to be 0.82 eV from reflectance spectrum and the films are found to have same thickness for growth between 600 °C and 650 °C. Crystalline quality of the grown films has been studied by grazing incidence X-ray diffractometry (GIXRD).

  14. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers.

    PubMed

    Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y

    2016-12-01

    The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.

  15. Establishing conservation buffers using precision information

    Treesearch

    Mike G. Dosskey; Dean E. Eisenhauer; Matthew J. Helmers

    2005-01-01

    Conservation buffers, such as filter strips and riparian forest buffers, are widely prescribed to improve and protect water quality in agricultural landscapes. These buffers intercept field runoff and retain some of its pollutant load before it reaches a waterway. A buffer typically is designed to have uniform width along a field margin and to intercept runoff that...

  16. Common stock solutions, buffers, and media.

    PubMed

    2001-05-01

    This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.

  17. Undergraduate Chemistry Students' Perceptions of and Misconceptions about Buffers and Buffer Problems

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Sutherland, Aynsley

    2008-01-01

    Both upper- and lower-level chemistry students struggle with understanding the concept of buffers and with solving corresponding buffer problems. While it might be reasonable to expect general chemistry students to struggle with this abstract concept, it is surprising that upper-level students in analytical chemistry and biochemistry continue to…

  18. Signature-based store checking buffer

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-06-02

    A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.

  19. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  20. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  1. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE PAGES

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.; ...

    2016-11-18

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  2. YSZ thin films with minimized grain boundary resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano-­ columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  3. YSZ thin films with minimized grain boundary resistivity

    DOE PAGES

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  4. Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates.

    PubMed

    Molaei, R; Bayati, M R; Alipour, H M; Estrich, N A; Narayan, J

    2014-01-08

    We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.

  5. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording

    PubMed Central

    Kang, Hongki; Kim, Jee-Yeon; Choi, Yang-Kyu; Nam, Yoonkey

    2017-01-01

    In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on the signal amplification capability and intrinsic noise of the transistors. A neural recording system using both silicon nanowire field-effect transistor-based active-type microelectrode array and platinum black microelectrode-based passive-type microelectrode array are implemented and compared. An artificial neural spike signal is supplied as input to both arrays through a buffer solution and recorded simultaneously. Recorded signal intensity by the silicon nanowire transistor was precisely determined by an electrical characteristic of the transistor, transconductance. Signal-to-noise ratio was found to be strongly dependent upon the intrinsic 1/f noise of the silicon nanowire transistor. We found how signal strength is determined and how intrinsic noise of the transistor determines signal-to-noise ratio of the recorded neural signals. This study provides in-depth understanding of the overall neural recording mechanism using silicon nanowire transistors and solid design guideline for further improvement and development. PMID:28350370

  6. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording.

    PubMed

    Kang, Hongki; Kim, Jee-Yeon; Choi, Yang-Kyu; Nam, Yoonkey

    2017-03-28

    In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on the signal amplification capability and intrinsic noise of the transistors. A neural recording system using both silicon nanowire field-effect transistor-based active-type microelectrode array and platinum black microelectrode-based passive-type microelectrode array are implemented and compared. An artificial neural spike signal is supplied as input to both arrays through a buffer solution and recorded simultaneously. Recorded signal intensity by the silicon nanowire transistor was precisely determined by an electrical characteristic of the transistor, transconductance. Signal-to-noise ratio was found to be strongly dependent upon the intrinsic 1/f noise of the silicon nanowire transistor. We found how signal strength is determined and how intrinsic noise of the transistor determines signal-to-noise ratio of the recorded neural signals. This study provides in-depth understanding of the overall neural recording mechanism using silicon nanowire transistors and solid design guideline for further improvement and development.

  7. ACS Science Data Buffer Check/Self-Tests for CS Buffer RAM and MIE RAM

    NASA Astrophysics Data System (ADS)

    Balzano, V.

    2001-07-01

    The ACS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for MIE RAM. The MIE must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.

  8. ACS Science Data Buffer Check/Self-Tests for CS Buffer RAM and MIE RAM

    NASA Astrophysics Data System (ADS)

    Welty, Alan

    2005-07-01

    The ACS Science Buffer RAM is checked for bit flips during SAA passages. Thisis followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for MIE RAM. The MIE must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.

  9. Suppression of Leakage Current of Metal-Insulator-Semiconductor Ta2O5 Capacitors with Al2O3/SiON Buffer Layer

    NASA Astrophysics Data System (ADS)

    Tonomura, Osamu; Miki, Hiroshi; Takeda, Ken-ichi

    2011-10-01

    An Al2O3/SiO buffer layer was incorporated in a metal-insulator-semiconductor (MIS) Ta2O5 capacitor for dynamic random access memory (DRAM) application. Al2O3 was chosen for the buffer layer owing to its high band offset against silicon and oxidation resistance against increase in effective oxide thickness (EOT). It was clarified that post-deposition annealing in nitrogen at 800 °C for 600 s increased the band offset between Al2O3 and the lower electrode and decreased leakage current by two orders of magnitude at 1 V. Furthermore, we predicted and experimentally confirmed that there was an optimized value of y in (Si3N4)y(SiO2)(1-y), which is 0.58, for minimizing the leakage current and EOT of SiON. To clarify the oxidation resistance and appropriate thickness of Al2O3, a TiN/Ta2O5/Al2O3/SiON/polycrystalline-silicon capacitor was fabricated. It was confirmed that the lower electrode was not oxidized during the crystallization annealing of Ta2O5. By setting the Al2O3 thickness to 3.4 nm, the leakage current is lowered below the required value with an EOT of 3.6 nm.

  10. The investigation of optimal Silicon/Silicon(1-x)Germanium(x) thin-film solar cells with quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ehsan, Md Amimul

    Thin-film solar cells are emerging from the research laboratory to become commercially available devices for low cost electrical power generation applications. Silicon which is a cheap, abundant and non-toxic elemental semiconductor is an attractive candidate for these solar cells. Advanced modeling and simulation of Si thin-film solar cells has been performed to make this technology more cost effective without compromising the performance and efficiency. In this study, we focus on the design and optimization of Si/Si1-xGex heterostructures, and microcrystalline and nanocrystalline Si thin-film solar cells. Layer by layer optimization of these structures was performed by using advanced bandgap engineering followed by numerical analysis for their structural, electrical and optical characterizations. Special care has been introduced for the selection of material layers which can help to improve the light absorption properties of these structures for harvesting the solar spectrum. Various strategies such as the optimization of the doping concentrations, Ge contents in Si1-xGex buffer layer, incorporation of the absorber layers and surface texturing have been in used to improve overall conversion efficiencies of the solar cells. To be more specific, the observed improvement in the conversion efficiency of these solar cells has been calculated by tailoring the thickness of the buffer, absorber, and emitter layers. In brief, an approach relying on the phenomena of improved absorption of the buffer and absorber layer which leads to a corresponding gain in the open circuit voltage and short circuit current is explored. For numerical analysis, a PC1D simulator is employed that uses finite element analysis technique for solving semiconductor transport equations. A comparative study of the Si/Si1-xGex and Ge/Si1-xGex is also performed. We found that due to the higher lattice mismatch of Ge to Si, thin-film solar cells based on Si/Si1-xGex heterostructures performed much

  11. Mapping variable width riparian buffers

    Treesearch

    Sinan Abood

    2016-01-01

    Riparian buffers are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well-defined vegetation and soil characteristics. Previous approaches to riparian buffer delineation have...

  12. Virtual Frame Buffer Interface Program

    NASA Technical Reports Server (NTRS)

    Wolfe, Thomas L.

    1990-01-01

    Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.

  13. COS Science Data Buffer Check/Self-Tests for CS Buffer RAM and DIB RAM

    NASA Astrophysics Data System (ADS)

    Welty, Alan

    2009-07-01

    The COS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for DIB RAM. The DIB must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.Supports Activity COS-03

  14. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    EPA Science Inventory

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  15. A III-V nanowire channel on silicon for high-performance vertical transistors.

    PubMed

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-09

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.

  16. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    NASA Astrophysics Data System (ADS)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  17. Buffer-regulated biocorrosion of pure magnesium.

    PubMed

    Kirkland, Nicholas T; Waterman, Jay; Birbilis, Nick; Dias, George; Woodfield, Tim B F; Hartshorn, Richard M; Staiger, Mark P

    2012-02-01

    Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO(2) atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.

  18. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  19. Gluing silicon with silicone

    NASA Astrophysics Data System (ADS)

    Abt, I.; Fox, H.; Moshous, B.; Richter, R. H.; Riechmann, K.; Rietz, M.; Riedl, J.; Denis, R. St; Wagner, W.

    1998-02-01

    Problems and solutions concerning the gluing of silicon detectors are discussed. The R & D work for the HERA- B vertex detector system led to gluing studies with epoxy and silicone-based adhesives used on ceramics and carbon fibre. The HERA- B solution using a silicone glue is presented.

  20. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  1. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2014-02-01

    Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.

  2. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    A buffer assembly for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode.

  3. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  4. Electrodialysis operation with buffer solution

    DOEpatents

    Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  5. Buffer Gas Acquisition and Storage

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.; Callahan, Richard A.; Delgado, H. (Technical Monitor)

    2001-01-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture Of CO2 Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO, freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (ND, and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193K and 10 kpa to 300 kPa. Concentrations were measured with a gas chromatograph that used a thermoconductivity (TCD) detector with helium (He) as the carrier gas. The general trend as the temperature was lowered was for the membranes to become more selective, In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar.

  6. Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient

    NASA Technical Reports Server (NTRS)

    Cohen, R. A.; Wheeler, R. K. (Inventor)

    1974-01-01

    A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.

  7. Investigation of ZnSe-coated silicon substrates for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Huber, Daniel A.; Olsen, Larry C.; Dunham, Glen; Addis, F. William

    1993-01-01

    Studies are being carried out to determine the feasibility of using ZnSe as a buffer layer for GaAs solar cells grown on silicon. This study was motivated by reports in the literature indicating ZnSe films had been grown by metallorganic chemical vapor deposition (MOCVD) onto silicon with EPD values of 2 x 10(exp 5) cm(sup -2), even though the lattice mismatch between silicon and ZnSe is 4.16 percent. These results combined with the fact that ZnSe and GaAs are lattice matched to within 0.24 percent suggest that the prospects for growing high efficiency GaAs solar cells onto ZnSe-coated silicon are very good. Work to date has emphasized development of procedures for MOCVD growth of (100) ZnSe onto (100) silicon wafers, and subsequent growth of GaAs films on ZnSe/Si substrates. In order to grow high quality single crystal GaAs with a (100) orientation, which is desirable for solar cells, one must grow single crystal (100) ZnSe onto silicon substrates. A process for growth of (100) ZnSe was developed involving a two-step growth procedure at 450 C. Single crystal, (100) GaAs films were grown onto the (100) ZnSe/Si substrates at 610 C that are adherent and specular. Minority carrier diffusion lengths for the GaAs films grown on ZnSe/Si substrates were determined from photoresponse properties of Al/GaAs Schottky barriers. Diffusion lengths for n-type GaAs films are currently on the order of 0.3 microns compared to 2.0 microns for films grown simultaneously by homoepitaxy.

  8. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

    NASA Astrophysics Data System (ADS)

    Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza

    2017-04-01

    In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

  9. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  10. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOEpatents

    Kruger, H.W.

    1994-05-10

    A buffer assembly is disclosed for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode. 7 figures.

  11. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials.

    PubMed

    Kodjikian, Laurent; Casoli-Bergeron, Emmanuelle; Malet, Florence; Janin-Manificat, Hélène; Freney, Jean; Burillon, Carole; Colin, Joseph; Steghens, Jean-Paul

    2008-02-01

    As bacterial adhesion to contact lenses may contribute to the pathogenesis of keratitis, the aim of our study was to investigate in vitro adhesion of clinically relevant bacteria to conventional hydrogel (standard HEMA) and silicone-hydrogel contact lenses using a bioluminescent ATP assay. Four types of unworn contact lenses (Etafilcon A, Galyfilcon A, Balafilcon A, Lotrafilcon B) were incubated with Staphylococcus epidermidis (two different strains) and Pseudomonas aeruginosa suspended in phosphate buffered saline (PBS). Lenses were placed with the posterior surface facing up and were incubated in the bacterial suspension for 4 hours at 37 degrees C. Bacterial binding was then measured and studied by bioluminescent ATP assay. Six replicate experiments were performed for each lens and strain. Adhesion of all species of bacteria to standard HEMA contact lenses (Etafilcon A) was found to be significantly lower than that of three types of silicone-hydrogel contact lenses, whereas Lotrafilcon B material showed the highest level of bacterial binding. Differences between species in the overall level of adhesion to the different types of contact lenses were observed. Adhesion of P. aeruginosa was typically at least 20 times greater than that observed with both S. epidermidis strains. Conventional hydrogel contact lenses exhibit significantly lower bacterial adhesion in vitro than silicone-hydrogel ones. This could be due to the greater hydrophobicity but also to the higher oxygen transmissibility of silicone-hydrogel lenses.

  12. SODR Memory Control Buffer Control ASIC

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  13. Wintering bird response to fall mowing of herbaceous buffers

    USGS Publications Warehouse

    Blank, P.J.; Parks, J.R.; Dively, G.P.

    2011-01-01

    Herbaceous buffers are strips of herbaceous vegetation planted between working agricultural land and streams or wetlands. Mowing is a common maintenance practice to control woody plants and noxious weeds in herbaceous buffers. Buffers enrolled in Maryland's Conservation Reserve Enhancement Program (CREP) cannot be mowed during the primary bird nesting season between 15 April and 15 August. Most mowing of buffers in Maryland occurs in late summer or fall, leaving the vegetation short until the following spring. We studied the response of wintering birds to fall mowing of buffers. We mowed one section to 10-15 cm in 13 buffers and kept another section unmowed. Ninety-two percent of birds detected in buffers were grassland or scrub-shrub species, and 98% of all birds detected were in unmowed buffers. Total bird abundance, species richness, and total avian conservation value were significantly greater in unmowed buffers, and Savannah Sparrows (Passerculus sandwichensis), Song Sparrows (Melospiza melodia), and White-throated Sparrows (Zonotrichia albicollis) were significantly more abundant in unmowed buffers. Wintering bird use of mowed buffers was less than in unmowed buffers. Leaving herbaceous buffers unmowed through winter will likely provide better habitat for wintering birds. ?? 2011 by the Wilson Ornithological Society.

  14. COS Side 2 Science Data Buffer Check/Self-Tests for CS Buffer RAM and DIB RAM

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    2013-10-01

    The COS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for DIB RAM. The DIB must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.

  15. Conduction in In 2O 3/YSZ heterostructures: Complex interplay between electrons and ions, mediated by interfaces

    DOE PAGES

    Veal, B. W.; Eastman, J. A.

    2017-03-01

    Thin film In 2O 3/YSZ heterostructures exhibit significant increases in electrical conductance with time when small in-plane electric fields are applied. Contact resistances between the current electrodes and film, and between current electrodes and substrate are responsible for the behavior. With an in-plane electric field, different field profiles are established in the two materials, with the result that oxygen ions can be driven across the heterointerface, altering the doping of the n-type In 2O 3. Furthermore, a low frequency inductive feature observed in AC impedance spectroscopy measurements under DC bias conditions was found to be due to frequency-dependent changes inmore » the contact resistance.« less

  16. Buffers and Oscillations in Intracellular Ca2+ Dynamics

    PubMed Central

    Falcke, Martin

    2003-01-01

    I model the behavior of intracellular Ca2+ release with high buffer concentrations. The model uses a spatially discrete array of channel clusters. The channel subunit dynamics is a stochastic representation of the DeYoung-Keizer model. The calculations show that the concentration profile of fast buffer around an open channel is more localized than that of slow buffers. Slow buffers allow for release of larger amounts of Ca2+ from the endoplasmic reticulum and hence bind more Ca2+ than fast buffers with the same dissociation constant and concentration. I find oscillation-like behavior for high slow buffer concentration and low Ca2+ content of the endoplasmic reticulum. High concentration of slow buffer leads to oscillation-like behavior by repetitive wave nucleation for high Ca2+ content of the endoplasmic reticulum. Localization of Ca2+ release by slow buffer, as used in experiments, can be reproduced by the modeling approach. PMID:12524263

  17. Plasmonic silicon solar cells: impact of material quality and geometry.

    PubMed

    Pahud, Celine; Isabella, Olindo; Naqavi, Ali; Haug, Franz-Josef; Zeman, Miro; Herzig, Hans Peter; Ballif, Christophe

    2013-09-09

    We study n-i-p amorphous silicon solar cells with light-scattering nanoparticles in the back reflector. In one configuration, the particles are fully embedded in the zinc oxide buffer layer; In a second configuration, the particles are placed between the buffer layer and the flat back electrode. We use stencil lithography to produce the same periodic arrangement of the particles and we use the same solar cell structure on top, thus establishing a fair comparison between a novel plasmonic concept and its more traditional counterpart. Both approaches show strong resonances around 700 nm in the external quantum efficiency the position and intensity of which vary strongly with the nanoparticle shape. Moreover, disagreement between simulations and our experimental results suggests that the dielectric data of bulk silver do not correctly represent the reality. A better fit is obtained by introducing a porous interfacial layer between the silver and zinc oxide. Without the interfacial layer, e.g. by improved processing of the nanoparticles, our simulations show that the nanoparticles concept could outperform traditional back reflectors.

  18. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  19. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research†

    PubMed Central

    Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325

  20. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  1. High Tc YBCO superconductor deposited on biaxially textured Ni substrate

    DOEpatents

    Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.

    1999-01-01

    A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.

  2. Green-ampt infiltration parameters in riparian buffers

    Treesearch

    L.M. Stahr; D.E. Eisenhauer; M.J. Helmers; Mike G. Dosskey; T.G. Franti

    2004-01-01

    Riparian buffers can improve surface water quality by filtering contaminants from runoff before they enter streams. Infiltration is an important process in riparian buffers. Computer models are often used to assess the performance of riparian buffers. Accurate prediction of infiltration by these models is dependent upon accurate estimates of infiltration parameters....

  3. Buffer Biology.

    ERIC Educational Resources Information Center

    Morgan, Kelly

    2000-01-01

    Presents a science experiment in which students test the buffering capacity of household products such as shampoo, hand lotion, fizzies candy, and cola. Lists the standards addressed in this experiment and gives an example of a student lab write-up. (YDS)

  4. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer

    NASA Astrophysics Data System (ADS)

    Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei

    2014-12-01

    High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.

  5. Silicon surface passivation by silicon nitride deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.

  6. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  7. Buffer regulation of calcium puff sequences.

    PubMed

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-02-01

    Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.

  8. Buffer regulation of calcium puff sequences

    NASA Astrophysics Data System (ADS)

    Fraiman, Daniel; Ponce Dawson, Silvina

    2014-02-01

    Puffs are localized Ca2 + signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca2 + from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca2 + provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca2 + signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca2 + channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca2 + buffer can increase the average number of channels that participate of a puff.

  9. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    NASA Astrophysics Data System (ADS)

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere

    2016-05-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs.

  10. Optimization of protein buffer cocktails using Thermofluor.

    PubMed

    Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2013-02-01

    The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.

  11. Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface.

    PubMed

    Zafar, Sufi; D'Emic, Christopher; Afzali, Ali; Fletcher, Benjamin; Zhu, Y; Ning, Tak

    2011-10-07

    Silicon nanowire field effect transistor sensors with SiO(2)/HfO(2) as the gate dielectric sensing surface are fabricated using a top down approach. These sensors are optimized for pH sensing with two key characteristics. First, the pH sensitivity is shown to be independent of buffer concentration. Second, the observed pH sensitivity is enhanced and is equal to the Nernst maximum sensitivity limit of 59 mV/pH with a corresponding subthreshold drain current change of ∼ 650%/pH. These two enhanced pH sensing characteristics are attributed to the use of HfO(2) as the sensing surface and an optimized fabrication process compatible with silicon processing technology.

  12. Impact of the silicon substrate resistivity and growth condition on the deep levels in Ni-Au/AlN/Si MIS Capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei

    2017-10-01

    Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.

  13. Social buffering: relief from stress and anxiety

    PubMed Central

    Kikusui, Takefumi; Winslow, James T; Mori, Yuji

    2006-01-01

    Communication is essential to members of a society not only for the expression of personal information, but also for the protection from environmental threats. Highly social mammals have a distinct characteristic: when conspecific animals are together, they show a better recovery from experiences of distress. This phenomenon, termed ‘social buffering’, has been found in rodents, birds, non-human primates and also in humans. This paper reviews classical findings on social buffering and focuses, in particular, on social buffering effects in relation to neuroendocrine stress responses. The social cues that transmit social buffering signals, the neural mechanisms of social buffering and a partner's efficacy with respect to social buffering are also detailed. Social contact appears to have a very positive influence on the psychological and the physiological aspects of social animals, including human beings. Research leading towards further understanding of the mechanisms of social buffering could provide alternative medical treatments based on the natural, individual characteristics of social animals, which could improve the quality of life. PMID:17118934

  14. Impact of varying buffer thickness generated strain and threading dislocations on the formation of plasma assisted MBE grown ultra-thin AlGaN/GaN heterostructure on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302

    2015-05-15

    Plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructures on Si(111) substrate with three buffer thickness (600 nm/400 nm/200 nm) have been reported. An unique growth process has been developed that supports lower temperature epitaxy of GaN buffer which minimizes thermally generated tensile strain through appropriate nitridation and AlN initiated epitaxy for achieving high quality GaN buffer which supports such ultra-thin heterostructures in the range of 10-15Å. It is followed by investigations of role of buffer thickness on formation of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructure, in terms of stress-strain and threading dislocation (TD). Structural characterization were performedmore » by High-Resolution X-Ray Diffraction (HRXRD), room-temperature Photoluminescence (RT-PL), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Analysis revealed increasing biaxial tensile stress of 0.6918 ± 0.04, 1.1084, 1.1814 GPa in heterostructures with decreasing buffer thickness of 600, 400, 200 nm respectively which are summed up with residual tensile strain causing red-shift in RT-PL peak. Also, increasing buffer thickness drastically reduced TD density from the order 10{sup 10} cm{sup −2} to 10{sup 8} cm{sup −2}. Surface morphology through AFM leads to decrease of pits and root mean square value with increasing buffer thickness which are resulted due to reduction of combined effect of strain and TDs.« less

  15. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation

    PubMed Central

    Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-01-01

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888

  16. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  17. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  18. Silicone metalization

    DOEpatents

    Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  19. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  20. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  1. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations.

    PubMed

    Lee, H-P; Perozek, J; Rosario, L D; Bayram, C

    2016-11-21

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13  cm -2 ) on Si(111) substrates.

  2. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations

    PubMed Central

    Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.

    2016-01-01

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222

  3. An assessment of buffer strips for improving damage tolerance

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kennedy, J. M.

    1981-01-01

    Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with 45/0/-45/90(2S) and 45/0/450(2S) layups. The buffer strips were parallel to the loading directions. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-49/epoxy on either a one for one or a two for one basis. In a third case, O deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg piles and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different widths and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layups, buffer material, buffer strip width and spacing, and the number of plies of buffer material.

  4. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.

  5. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  6. Analysis of a hybrid-undirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.

  7. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  8. The quantitation of buffering action I. A formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-15

    Although "buffering" as a homeostatic mechanism is a universal phenomenon, the quantitation of buffering action remains controversial and problematic. Major shortcomings are: lack of a buffering strength unit for some buffering phenomena, multiple and mutually incommensurable units for others, and lack of a genuine ratio scale for buffering strength. Here, I present a concept of buffering that overcomes these shortcomings. Briefly, when, for instance, some "free" H+ ions are added to a solution (e.g. in the form of strong acid), buffering is said to be present when not all H+ ions remain "free" (i.e., bound to H2O), but some become "bound" (i.e., bound to molecules other than H2O). The greater the number of H+ ions that become "bound" in this process, the greater the buffering action. This number can be expressed in two ways: 1) With respect to the number of total free ions added as "buffering coefficient b", defined in differential form as b = d(bound)/d(total). This measure expresses buffering action from nil to complete by a dimensionless number between 0 and 1, analogous to probabilites. 2) With respect to the complementary number of added ions that remain free as "buffering ratio B", defined as the differential B = d(bound)/d(free). The buffering ratio B provides an absolute ratio scale, where buffering action from nil to perfect corresponds to dimensionless numbers between 0 and infinity, and where equal differences of buffering action result in equal intervals on the scale. Formulated in purely mathematical, axiomatic form, the concept reveals striking overlap with the mathematical concept of probability. However, the concept also allows one to devise simple physical models capable of visualizing buffered systems and their behavior in an exact yet intuitive way. These two measures of buffering action can be generalized easily to any arbitrary quantity that partitions into two compartments or states, and are thus suited to serve as standard units for

  9. Coupled resonator optical waveguides based on silicon-on-insulator photonic wires

    NASA Astrophysics Data System (ADS)

    Xia, Fengnian; Sekaric, Lidija; O'Boyle, Martin; Vlasov, Yurii

    2006-07-01

    Coupled resonator optical waveguides (CROWs) comprised of up to 16 racetrack resonators based on silicon-on-insulator (SOI) photonic wires were fabricated and characterized. The optical properties of the CROWs were simulated using measured single resonator parameters based on a matrix approach. The group delay property of CROWs was also analyzed. The SOI based CROWs consisting of multiple resonators have extremely small footprints and can find applications in optical filtering, dispersion compensation, and optical buffering. Moreover, such CROW structure is a promising candidate for exploration of low light level nonlinear optics due to its resonant nature and compact mode size (˜0.1μm2) in photonic wire.

  10. UNDERSTANDING, DERIVING, AND COMPUTING BUFFER CAPACITY

    EPA Science Inventory

    Derivation and systematic calculation of buffer capacity is a topic that seems often to be neglected in chemistry courses and given minimal treatment in most texts. However, buffer capacity is very important in the chemistry of natural waters and potable water. It affects corro...

  11. Erosive and buffering capacities of yogurt.

    PubMed

    Kargul, Betul; Caglar, Esber; Lussi, Adrian

    2007-05-01

    The capability of drinks and foods to resist pH changes brought about by salivary buffering may play an important role in the erosion of dental enamel. The aim of the present study was to measure the initial pH of several types of yogurt and to test the degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite to determine the buffering capacity and related erosive potential of yogurt. Twenty-five milliliters of 7 types of freshly opened yogurt was titrated with 1 mol/L of sodium hydroxide, added in 0.5 mL increments, until the pH reached 10, to assess the total titratable acidity, a measure of the drink's own buffering capacity. The degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite were also calculated, using a computer program developed for this purpose. For statistical analysis, samples were compared using Kruskal-Wallis test. The buffering capacities can be ordered as follows: fruit yogurt >low-fat yogurt >bioyogurt >butter yogurt >natural yogurt >light fruit yogurt >light yogurt. The results suggest that, in vitro, fruit yogurt has the greatest buffering capacity. It can be stated that it is not possible to induce erosion on enamel with any type of yogurt.

  12. Buffer Management Simulation in ATM Networks

    NASA Technical Reports Server (NTRS)

    Yaprak, E.; Xiao, Y.; Chronopoulos, A.; Chow, E.; Anneberg, L.

    1998-01-01

    This paper presents a simulation of a new dynamic buffer allocation management scheme in ATM networks. To achieve this objective, an algorithm that detects congestion and updates the dynamic buffer allocation scheme was developed for the OPNET simulation package via the creation of a new ATM module.

  13. Social Buffering of Stress in Development: A Career Perspective

    PubMed Central

    Gunnar, Megan R.

    2016-01-01

    This review provides a broad overview of my research group's work on social buffering in human development in the context of the field. Much of the focus is on social buffering of the hypothalamic-pituitary-adrenocortical (HPA) system, one of the two major arms of the mammalian stress system. This focus reflects the centrality of the HPA system in research on social buffering in the fields of developmental psychobiology and developmental science. However, buffering of the cardiovascular and autonomic nervous system is also discussed. The central developmental question in this area derives from attachment theory which argues that the infant's experience of stress and arousal regulation in the context of her early attachment relationships is not an immature form of social buffering experienced in adulthood, but rather the foundation out of which individual differences in the capacity to gain stress relief from social partners emerge. The emergence of social buffering in infancy, changes in social buffering throughout childhood and adolescence, the influence of early experience on later individual differences in social buffering, and critical gaps in our knowledge are described. PMID:28544861

  14. Dynamically-allocated multi-queue buffers for VLSI communication switches

    NASA Technical Reports Server (NTRS)

    Tamir, Yuval; Frazier, Gregory L.

    1992-01-01

    Several buffer structures are discussed and compared in terms of implementation complexity, interswitch handshaking requirements, and their ability to deal with variations in traffic patterns and message lengths. A new design of buffers is presented that provide non-FIFO message handling and efficient storage allocation for variable size packets using linked lists managed by a simple on-chip controller. The new buffer design is evaluated by comparing it to several alternative designs in the context of a multistage interconnection network. The present modeling and simulations show that the new buffer outperforms alternative buffers and can thus be used to improve the performance of a wide variety of systems currently using less efficient buffers.

  15. Field effect transistors improve buffer amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Unity gain buffer amplifier with a Field Effect Transistor /FET/ differential input stage responds much faster than bipolar transistors when operated at low current levels. The circuit uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth.

  16. Agarose electrophoresis of DNA in discontinuous buffers, using a horizontal slab apparatus and a buffer system with improved properties.

    PubMed

    Zsolnai, A; Orbán, L; Chrambach, A

    1993-03-01

    Using a horizontal slab apparatus with a buffer in the reservoirs at the level of the gel ("sea-level electrophoresis"), the retrograde discontinuous buffer system reported by Wiltfang et al. for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was applied to DNA electrophoresis. This application yielded the advantages of an increased displacement rate of the moving boundary front and a decrease in the concentration of the counterion base in the resolving phase, which yielded reduced relative mobility values at equivalent gel concentrations and practicable low buffer concentrations. The change of relative mobilities (Rf) with a variation of field strength is decreased compared to that of the migration rate in the continuous Tris-boric-acid-EDTA (TBE) buffer and thus the robustness of the system is improved, as well as the efficiency of separation. The system of Wiltfang et al. has in common with previously described discontinuous DNA system, that it is able to stack DNA from dilute samples and is insensitive to sample components with lower net mobilities than DNA, such as acetate. However, the variance of Rf at constant current density in the discontinuous buffer system is not improved over that of the migration rate at constant field strength in the continuous TBE buffer.

  17. Feasibility of Electrochemical Deposition of Nickel/Silicon Carbide Fibers Composites over Nickel Superalloys

    NASA Astrophysics Data System (ADS)

    Ambrosio, E. P.; Abdul Karim, M. R.; Pavese, M.; Biamino, S.; Badini, C.; Fino, P.

    2017-05-01

    Nickel superalloys are typical materials used for the hot parts of engines in aircraft and space vehicles. They are very important in this field as they offer high-temperature mechanical strength together with a good resistance to oxidation and corrosion. Due to high-temperature buckling phenomena, reinforcement of the nickel superalloy might be needed to increase stiffness. For this reason, it was thought to investigate the possibility of producing composite materials that might improve properties of the metal at high temperature. The composite material was produced by using electrochemical deposition method in which a composite with nickel matrix and long silicon carbide fibers was deposited over the nickel superalloy. The substrate was Inconel 718, and monofilament continuous silicon carbide fibers were chosen as reinforcement. Chemical compatibility was studied between Inconel 718 and the reinforcing fibers, with fibers both in an uncoated condition, and coated with carbon or carbon/titanium diboride. Both theoretical calculations and experiments were conducted, which suggested the use of a carbon coating over the fibers and a buffer layer of nickel to avoid unwanted reactions between the substrate and silicon carbide. Deposition was then performed, and this demonstrated the practical feasibility of the process. Yield strength was measured to detect the onset of interface debonding between the substrate and the composite layer.

  18. Buffer Zone Requirements for Soil Fumigant Applications

    EPA Pesticide Factsheets

    Updated pesticide product labels require fumigant users to establish a buffer zone around treated fields to reduce risks to bystanders. Useful information includes tarp testing guidance and a buffer zone calculator.

  19. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers

    PubMed Central

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-01-01

    Background and Aims Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. Methods The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G0/G1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain–nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Key Results Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Conclusions Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members

  20. Gilliam County Riparian Buffers; 2003-2004 Annual Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coiner, Josh

    Interest appears to be at an all-time high for riparian conservation programs in Gilliam County. With the recently added Herbaceous Buffer and the already established CREP program interest is booming. However, more and more people are turning towards the herbaceous buffer because of expense. The riparian forest buffer is becoming too expensive. Even with the excellent cost share and incentives landowners are having trouble with Farm Service Agency's payment limitation. Because of this payment limitation landowners are not receiving their full rental and incentive payments, usually in year one. This has cooled the installation of riparian forest buffers and peakedmore » interest in the CP-29 (Herbaceous Buffer for Wildlife). Either way, riparian lands are being enhanced and water quality is being improved. Year three should be very similar to the accomplishments of year 2. There has already been several projects proposed that may or may not be approved during year 3. I am currently working on three projects that are all over 2.5 miles long on each side and total anywhere from 60 to 250 acres in size. Along with these three projects there at least seven small projects being proposed. Four of those projects are riparian forest buffers and the remaining are herbaceous buffers.« less

  1. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1993-01-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  2. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  3. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  4. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  5. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  6. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes voyage...

  7. Brazing of Stainless Steels to Yttria Stabilized Zirconia (YSZ) for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Shpargel, Tarah P.; Needham, Robert J.; Singh, M.; Kung, Steven C.

    2005-01-01

    Recently, there has been a great deal of interest in research, development, and commercialization of solid oxide fuel cells. Joining and sealing are critical issues that will need to be addressed before SOFC's can truly perform as expected. Ceramics and metals can be difficult to join together, especially when the joint must withstand up to 900 C operating temperature of the SOFC's. The goal of the present study is to find the most suitable braze material for joining of yttria stabilized zirconia (YSZ) to stainless steels. A number of commercially available braze materials TiCuSil, TiCuNi, Copper-ABA, Gold-ABA, and Gold-ABA-V have been evaluated. The oxidation behavior of the braze materials and steel substrates in air was also examined through thermogravimetric analysis. The microstructure and composition of the brazed regions have been examined by optical and scanning electron microscopy and EDS analysis. Effect of braze composition and processing conditions on the interfacial microstructure and composition of the joint regions will be presented.

  8. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun

    2018-02-01

    SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.

  9. Urban Runoff: Model Ordinances for Aquatic Buffers

    EPA Pesticide Factsheets

    Aquatic Buffers serve as natural boundaries between local waterways and existing development. The model and example ordinaces below provide suggested language or technical guidance designed to create the most effective stream buffer zones possible.

  10. The Multimission Image Processing Laboratory's virtual frame buffer interface

    NASA Technical Reports Server (NTRS)

    Wolfe, T.

    1984-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied interfaces. This variety of architectures and interfaces creates software development, maintenance and portability problems for application programs. Several machine-dependent graphics standards such as ANSI Core and GKS are available, but none of them are adequate for image processing. Therefore, the Multimission Image Processing laboratory project has implemented a programmer level virtual frame buffer interface. This interface makes all frame buffers appear as a generic frame buffer with a specified set of characteristics. This document defines the virtual frame uffer interface and provides information such as FORTRAN subroutine definitions, frame buffer characteristics, sample programs, etc. It is intended to be used by application programmers and system programmers who are adding new frame buffers to a system.

  11. Heed the head: buffer benefits along headwater streams

    Treesearch

    Rhonda Mazza; Deanna (Dede) Olson

    2015-01-01

    Since the Northwest Forest Plan implemented riparian buffers along non-fish bearing streams in 1994, there have been questions about how wide those buffers need to be to protect aquatic and riparian resources from upland forest management activities. The Density Management and Riparian Buffer Study of western Oregon, also initiated in 1994, examines the effects of...

  12. Semiconductor to Metal Transition Characteristics of VO2/NiO Epitaxial Heterostructures Integrated with Si(100)

    NASA Astrophysics Data System (ADS)

    Molaei, Roya

    The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. NiO/c-YSZ

  13. FIFO Buffer for Asynchronous Data Streams

    NASA Technical Reports Server (NTRS)

    Bascle, K. P.

    1985-01-01

    Variable-rate, asynchronous data signals from up to four measuring instruments or other sources combined in first-in/first-out (FIFO) buffer for transmission on single channel. Constructed in complementary metal-oxide-semiconductor (CMOS) logic, buffer consumes low power (only 125 mW at 5V) and conforms to aerospace standards of reliability and maintainability.

  14. Precision and accuracy of luminescence lifetime-based phosphor thermometry: A case study of Eu(III):YSZ

    NASA Astrophysics Data System (ADS)

    Heeg, B.; Jenkins, T. P.

    2013-09-01

    Laser induced phosphor thermometry as a reliable technique requires an analysis of factors controlling or contributing to the precision and accuracy of a measurement. In this paper, we discuss several critical design parameters in the development of luminescence lifetime-based phosphor thermometry instrumentation for use at elevated temperatures such as encountered in hot sections of gas turbine engines. As precision is predominantly governed by signal and background photon shot noise and detector noise, a brief summary is presented of how these noise contributions may affect the measurement. Accuracy, on the other hand, is governed by a range of effects including, but not limited to, detector response characteristics, laser-induced effects, the photo-physics of the sensor materials, and also the method of data reduction. The various possible outcomes of measurement precision and accuracy are discussed with luminescence lifetime measurements on Eu(III):YSZ sensor coatings.

  15. Method of making silicon carbide-silicon composite having improved oxidation resistance

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2002-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  16. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  17. Method for Impeding Degradation of Porous Silicon Structures

    NASA Technical Reports Server (NTRS)

    Vilentchouk, Biana Godin; Ferrari, Mauro

    2011-01-01

    This invention relates to surface modification of porosified silicon (pSi) structures with poly(alkylene) glycols for the purpose of controlled degradation of the silicon matrix and tailored release of encapsulated substances for biomedical applications. The pSi structures are currently used in diverse biomedical applications including bio-molecular screening, optical bio-sensoring, and drug delivery by means of injectable/orally administered carriers and implantable devices. The size of the pores and the surface chemistry of the pSi structure can be controlled during the microfabrication process and thereafter. A fine regulation of the degradation kinetics of mesoporous silicon structures is of fundamental importance. Polyethylene glycols (PEGs) represent the major category of surface modifying agents used in classical drug delivery systems and in pharmaceutical dosage forms. PEGylation enables avoidance of RES uptake, thus prolonging circulation time of intravenously injectable nanovectors. PEG molecules demonstrate little toxicity and immunogenicity, and are cleared from the body through the urine (molecular weight, MW less than 30 kDa) or in the feces (MW greater than 30kDa). The invention focuses on the possibility of finely tuning the degradation kinetics of the pSi nanovectors and other structures through surface conjugation of PEGs with various backbone lengths/MWs. To prove the concept, pSi nanovectors were covalently conjugated to seven PEGs with MW from 245 to 5,000 Da and their degradation kinetics in physiologically relevant media (phosphate buffer saline, PBS pH7.4, and fetal bovine serum) was assessed by the elemental analysis of the Si using inductive coupled plasma atomic emission spectroscopy (ICP-AES). The conjugation of the PEG with lowest MW to the nanovectors surface did not induce any change in the degradation kinetics in serum, but inhibited degradation and consequently the release of orthosilicic acid into buffer. When PEGs with the longer

  18. Solar silicon from directional solidification of MG silicon produced via the silicon carbide route

    NASA Technical Reports Server (NTRS)

    Rustioni, M.; Margadonna, D.; Pirazzi, R.; Pizzini, S.

    1986-01-01

    A process of metallurgical grade (MG) silicon production is presented which appears particularly suitable for photovoltaic (PV) applications. The MG silicon is prepared in a 240 KVA, three electrode submerged arc furnace, starting from high grade quartz and high purity silicon carbide. The silicon smelted from the arc furnace was shown to be sufficiently pure to be directionally solidified to 10 to 15 kg. After grinding and acid leaching, had a material yield larger than 90%. With a MG silicon feedstock containing 3 ppmw B, 290 ppmw Fe, 190 ppmw Ti, and 170 ppmw Al, blended with 50% of off grade electronic grade (EG) silicon to reconduct the boron content to a concentration acceptable for solar cell fabrication, the 99% of deep level impurities were concentrated in the last 5% of the ingot. Quite remarkably this material has OCV values higher tham 540 mV and no appreciable shorts due to SiC particles.

  19. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    NASA Astrophysics Data System (ADS)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  20. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  1. The Interplay between Feedback and Buffering in Cellular Homeostasis.

    PubMed

    Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart

    2017-11-22

    Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Methods for improved growth of group III nitride buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphologymore » of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).« less

  3. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    NASA Technical Reports Server (NTRS)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-01-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  4. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.

  5. a Buffer Analysis Based on Co-Location Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, S.; Wang, H.; Zhang, R.; Wang, Q.; Sha, H.; Liu, X.; Pan, Q.

    2018-05-01

    Buffer analysis is a common tool of spatial analysis, which deals with the problem of proximity in GIS. Buffer analysis researches the relationship between the center object and other objects around a certain distance. Buffer analysis can make the complicated problem be more scientifically and visually, and provide valuable information for users. Over the past decades, people have done a lot of researches on buffer analysis. Along with the constantly improvement of spatial analysis accuracy needed by people, people hope that the results of spatial analysis can be more exactly express the actual situation. Due to the influence of some certain factors, the impact scope and contact range of a geographic elements on the surrounding objects are uncertain. As all we know, each object has its own characteristics and changing rules in the nature. They are both independent and relative to each other. However, almost all the generational algorithms of existing buffer analysis are based on fixed buffer distance, which do not consider the co-location relationship among instances. Consequently, it is a waste of resource to retrieve the useless information, and useful information is ignored.

  6. Laser-induced amorphization of silicon during pulsed-laser irradiation of TiN/Ti/polycrystalline silicon/SiO2/silicon

    NASA Astrophysics Data System (ADS)

    Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.

    2002-11-01

    In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.

  7. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  8. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers.

    PubMed

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-11-01

    Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G 0 /G 1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain-nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family

  9. Study on Silicon Microstructure Processing Technology Based on Porous Silicon

    NASA Astrophysics Data System (ADS)

    Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing

    2018-03-01

    Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.

  10. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  11. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  12. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions.

    PubMed

    Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H

    2010-02-19

    Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These

  13. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    PubMed

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  14. An Ephemeral Burst-Buffer File System for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Teng; Moody, Adam; Yu, Weikuan

    BurstFS is a distributed file system for node-local burst buffers on high performance computing systems. BurstFS presents a shared file system space across the burst buffers so that applications that use shared files can access the highly-scalable burst buffers without changing their applications.

  15. Performance of the THS4302 and the Class V Radiation-Tolerant THS4304-SP Silicon Germanium Wideband Amplifiers at Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Elbuluk, Malik; Hammoud, Ahmad; VanKeuls, Frederick W.

    2009-01-01

    This report discusses the performance of silicon germanium, wideband gain amplifiers under extreme temperatures. The investigated devices include Texas Instruments THS4304-SP and THS4302 amplifiers. Both chips are manufactured using the BiCom3 process based on silicon germanium technology along with silicon-on-insulator (SOI) buried oxide layers. The THS4304-SP device was chosen because it is a Class V radiation-tolerant (150 kRad, TID silicon), voltage-feedback operational amplifier designed for use in high-speed analog signal applications and is very desirable for NASA missions. It operates with a single 5 V power supply [1]. It comes in a 10-pin ceramic flatpack package, and it provides balanced inputs, low offset voltage and offset current, and high common mode rejection ratio. The fixed-gain THS4302 chip, which comes in a 16-pin leadless package, offers high bandwidth, high slew rate, low noise, and low distortion [2]. Such features have made the amplifier useful in a number of applications such as wideband signal processing, wireless transceivers, intermediate frequency (IF) amplifier, analog-to-digital converter (ADC) preamplifier, digital-to-analog converter (DAC) output buffer, measurement instrumentation, and medical and industrial imaging.

  16. Eco-buffers: A high density agroforestry design using native species

    Treesearch

    William Schroeder

    2012-01-01

    This study showed that Eco-Buffers are characterized by rapid establishment and superior survival when compared to single species buffers. Height of green ash (Fraxinus pennsylvanica Marsh. var. subintegerrima (Vahl.) Fern.) after eight growing seasons averaged 415 cm when growing in an Eco-Buffer compared to 333cm in the single species buffer. Site capture in the Eco-...

  17. Improved indexes for targeting placement of buffers of Hortonian runoff

    Treesearch

    M.G. Dosskey; Z. Qiu; M.J. Helmers; D.E. Eisenhauer

    2011-01-01

    Targeting specific locations within agricultural watersheds for installing vegetative buffers has been advocated as a way to enhance the impact of buffers and buffer programs on stream water quality. Existing models for targeting buffers of Hortonian, or infiltration-excess, runoff are not well developed. The objective was to improve on an existing soil survey–based...

  18. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  19. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  20. Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Yuewang; Zhao, Qiancheng; Sharac, Nicholas; Ragan, Regina; Boyraz, Ozdal

    2015-05-01

    We demonstrate the fabrication of a highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles for plasmonic enhancement. The average enhancement effect is evaluated by measuring the spectral broadening effect caused by self-phase-modulation. The nonlinear refractive index n2 was measured to be 7.0917×10-19 m2/W for a waveguide whose Wopen is 5 μm. Several waveguides at different locations on one wafer were measured in order to take the randomness of the nanoparticle distribution into consideration. The largest enhancement is measured to be as high as 10 times. Fabrication of this waveguide started with a MEMS grade photomask. By using conventional optical lithography, the wide linewidth was transferred to a <100> wafer. Then the wafer was etched anisotropically by potassium hydroxide (KOH) to engrave trapezoidal trenches with an angle of 54.7º. Side wall roughness was mitigated by KOH etching and thermal oxidation that was used to generate a buffer layer for silicon nitride waveguide. The guiding material silicon nitride was then deposited by low pressure chemical vapor deposition. The waveguide was then patterned with a chemical template, with 20 nm gold particles being chemically attached to the functionalized poly(methyl methacrylate) domains. Since the particles attached only to the PMMA domains, they were confined to localized regions, therefore forcing the nanoparticles into clusters of various numbers and geometries. Experiments reveal that the waveguide has negligible nonlinear absorption loss, and its nonlinear refractive index can be greatly enhanced by gold nano clusters. The silicon nitride trench waveguide has large nonlinear refractive index, rendering itself promising for nonlinear applications.

  1. The quantitation of buffering action II. Applications of the formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-16

    The paradigm of "buffering" originated in acid-base physiology, but was subsequently extended to other fields and is now used for a wide and diverse set of phenomena. In the preceding article, we have presented a formal and general approach to the quantitation of buffering action. Here, we use that buffering concept for a systematic treatment of selected classical and other buffering phenomena. H+ buffering by weak acids and "self-buffering" in pure water represent "conservative buffered systems" whose analysis reveals buffering properties that contrast in important aspects from classical textbook descriptions. The buffering of organ perfusion in the face of variable perfusion pressure (also termed "autoregulation") can be treated in terms of "non-conservative buffered systems", the general form of the concept. For the analysis of cytoplasmic Ca++ concentration transients (also termed "muffling"), we develop a related unit that is able to faithfully reflect the time-dependent quantitative aspect of buffering during the pre-steady state period. Steady-state buffering is shown to represent the limiting case of time-dependent muffling, namely for infinitely long time intervals and infinitely small perturbations. Finally, our buffering concept provides a stringent definition of "buffering" on the level of systems and control theory, resulting in four absolute ratio scales for control performance that are suited to measure disturbance rejection and setpoint tracking, and both their static and dynamic aspects. Our concept of buffering provides a powerful mathematical tool for the quantitation of buffering action in all its appearances.

  2. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  3. Silicon carbide-silicon composite having improved oxidation resistance and method of making

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    1999-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  4. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity β V is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  5. A VSA-based strategy for placing conservation buffers in agricultural watersheds.

    PubMed

    Qiu, Zeyuan

    2003-09-01

    Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.

  6. Back contact buffer layer for thin-film solar cells

    DOEpatents

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  7. Monitoring Liverworts to Evaluate the Effectiveness of Hydroriparian Buffers

    NASA Astrophysics Data System (ADS)

    Higgins, Kellina L.; Yasué, Maï

    2014-01-01

    In the coastal temperate rainforest of British Columbia (BC) in western Canada, government policies stipulate that foresters leave unlogged hydroriparian buffer strips up to 25 m on each side of streams to protect wildlife habitat. At present, studies on the effectiveness of these buffers focus on mammals, birds, and amphibians while there is comparably little information on smaller organisms such as liverworts in these hydroriparian buffers. To address this gap of knowledge, we conducted field surveys of liverworts comparing the percent cover and community composition in hydroriparian forested areas ( n = 4 sites, n = 32 plots with nested design) to hydroriparian buffer zones ( n = 4 sites, n = 32 plots). We also examined how substrate type affected the cover of liverworts. Liverwort communities in buffers were similar to those in riparian forest areas and most liverworts were found on downed wood. Thus, hydroriparian buffers of 25-35 m on each side in a coastal temperate rainforest effectively provide habitat for liverworts as long as downed wood is left intact in the landscape. Because liverworts are particularly sensitive to changes in humidity, these results may indicate that hydroriparian buffers are an effective management strategy for bryophytes and possibly for a range of other riparian species that are particularly sensitive to forestry-related changes in microclimate.

  8. Evaluation of methods for application of epitaxial layers of superconductor and buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, basedmore » on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process

  9. Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.

    1984-01-01

    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.

  10. On buffer layers as non-reflecting computational boundaries

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  11. Petri net modelling of buffers in automated manufacturing systems.

    PubMed

    Zhou, M; Dicesare, F

    1996-01-01

    This paper presents Petri net models of buffers and a methodology by which buffers can be included in a system without introducing deadlocks or overflows. The context is automated manufacturing. The buffers and models are classified as random order or order preserved (first-in-first-out or last-in-first-out), single-input-single-output or multiple-input-multiple-output, part type and/or space distinguishable or indistinguishable, and bounded or safe. Theoretical results for the development of Petri net models which include buffer modules are developed. This theory provides the conditions under which the system properties of boundedness, liveness, and reversibility are preserved. The results are illustrated through two manufacturing system examples: a multiple machine and multiple buffer production line and an automatic storage and retrieval system in the context of flexible manufacturing.

  12. One-step production of phage-silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification

    NASA Astrophysics Data System (ADS)

    De Plano, Laura M.; Scibilia, Santi; Rizzo, Maria Giovanna; Crea, Sara; Franco, Domenico; Mezzasalma, Angela M.; Guglielmino, Salvatore P. P.

    2018-03-01

    Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The "one-step" functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage-SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage-SiNPs are performed by UV-Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage-SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage-SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage-SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.

  13. Buffer strip design for protecting water quality and fish habitat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belt, G.H.; O'Laughlin, J.

    1994-04-01

    Buffer strips are protective areas adjacent to streams or lakes. Among other functions, they protect water quality and fish habitat. A typical buffer strip is found in western Oregon, where they are called Riparian Management Areas (RMAs). The authors use the term buffer strip to include functional descriptions such as filter, stabilization, or leave strips, and administrative designations such as Idaho's Stream Protection Zone (SPZ), Washington's Riparian Management Zone (RMZ), and the USDA Forest Service's Streamside Management Zone (SMZ). They address water quality and fishery protective functions of buffer strips on forestlands, pointing out improvements in buffer strip design possiblemore » through research or administrative changes. Buffer strip design requirements found in some western Forest Practices Act (FPA) regulations are also compared and related to findings in the scientific literature.« less

  14. Thermal barrier coatings with (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and 8YSZ top coat on Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Yao, Junqi; He, Yedong; Wang, Deren; Peng, Hui; Guo, Hongbo; Gong, Shengkai

    2013-12-01

    Developing new bond coat has been acknowledged as an effective way to extend the service life of thermal barrier coating (TBC) during high temperature. In this study, novel thermal barrier coating system, which is composed with an (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and a YSZ top coat on Ni-based superalloy, has been prepared by magnetron sputtering and EB-PVD, respectively. It is demonstrated, from the cyclic oxidation tests in air at 1100 °C for 200 h, that the YSZ top coat and alloy substrate can be bonded together effectively by the (Al2O3-Y2O3)/(Pt or Pt-Au) composite coating, showing excellent resistance to oxidation, cracking and buckling. These beneficial results can be attributed to the sealing effect of such composite coating, by which the alloy substrate can be protected from oxidation and the interdiffusion between the bond coat and alloy substrate can be avoided; and the toughening effect of noble metals and composite structure of bond coat, by which the micro-cracks propagation can be inhibited and the stress in bond coat can be relaxed. This ceramic/noble metal composite coating can be a considerable structure which would has great application prospect in the TBC.

  15. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.

    PubMed

    Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying

    2016-04-01

    An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.

  16. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  17. Accelerating Science with the NERSC Burst Buffer Early User Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhimji, Wahid; Bard, Debbie; Romanus, Melissa

    NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide variety of scientific computing applications. The use-cases of the Burst Buffer at NERSC are therefore also considerable and diverse. We describe here performance measurements and lessons learned from the Burstmore » Buffer Early User Program at NERSC, which selected a number of research projects to gain early access to the Burst Buffer and exercise its capability to enable new scientific advancements. To the best of our knowledge this is the first time a Burst Buffer has been stressed at scale by diverse, real user workloads and therefore these lessons will be of considerable benefit to shaping the developing use of Burst Buffers at HPC centers.« less

  18. Evaluation of pulsed laser deposited SrNb0.1Co0.9O3-δ thin films as promising cathodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Dengjie; Chen, Chi; Gao, Yang; Zhang, Zhenbao; Shao, Zongping; Ciucci, Francesco

    2015-11-01

    SrNb0.1Co0.9O3-δ (SNC) thin films prepared on single-crystal yttria-stabilized zirconia (YSZ) electrolytes are evaluated as promising cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Geometrically well-defined polycrystalline SNC thin films with low surface roughness and high surface oxygen vacancy concentration are successfully fabricated by pulsed laser deposition. The thin films are characterized by basic techniques, e.g., X-ray diffraction for phase structure identification, scanning electron microscopy and atomic force microscopy for microstructures measurement, and X-ray photoelectron spectroscopy for elements quantification. Electrochemical impedance spectroscopy (EIS) is used to investigate oxygen reduction reaction activities of SNC thin films in symmetric electrochemical cells. Current collectors (Ag paste, Ag strip, and Au strip) are found to have negligible impact on polarization resistances. A slight decrease of the electrode polarization resistances is observed after adding a samarium doped ceria (SDC) buffer layer between SNC and YSZ. SNC thin-film electrodes exhibit low electrode polarization resistances, e.g., 0.237 Ω cm2 (SNC/SDC/YSZ/SDC/SNC) and 0.274 Ω cm2 (SNC/YSZ/SNC) at 700 °C and 0.21 atm, demonstrating the promise of SNC materials for IT-SOFCs. An oxygen reduction reaction mechanism of SNC thin films is also derived by analyzing EIS at temperature of 550-700 °C under oxygen partial pressure range of 0.04-1 atm.

  19. Diamagnetic to ferromagnetic switching in VO2 epitaxial thin films by nanosecond excimer laser treatment

    NASA Astrophysics Data System (ADS)

    Molaei, R.; Bayati, R.; Nori, S.; Kumar, D.; Prater, J. T.; Narayan, J.

    2013-12-01

    VO2(010)/NiO(111) epitaxial heterostructures were integrated with Si(100) substrates using a cubic yttria-stabilized zirconia (c-YSZ) buffer. The epitaxial alignment across the interfaces was determined to be VO2(010)‖NiO(111)‖c-YSZ(001)‖Si(001) and VO2[100]‖NiO⟨110⟩‖c-YSZ⟨100⟩‖Si⟨100⟩. The samples were subsequently treated by a single shot of a nanosecond KrF excimer laser. Pristine as-deposited film showed diamagnetic behavior, while laser annealed sample exhibited ferromagnetic behavior. The population of majority charge carriers (e-) and electrical conductivity increased by about two orders of magnitude following laser annealing. These observations are attributed to the introduction of oxygen vacancies into the VO2 thin films and the formation of V3+ defects.

  20. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  1. Methyl Bromide Commodity Fumigation Buffer Zone Lookup Tables

    EPA Pesticide Factsheets

    Product labels for methyl bromide used in commodity and structural fumigation include requirements for buffer zones around treated areas. The information on this page will allow you to find the appropriate buffer zone for your planned application.

  2. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    NASA Astrophysics Data System (ADS)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  3. Low cost silicon solar array project silicon materials task

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.

  4. Replenishing data descriptors in a DMA injection FIFO buffer

    DOEpatents

    Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Cernohous, Bob R [Rochester, MN; Heidelberger, Philip [Cortlandt Manor, NY; Kumar, Sameer [White Plains, NY; Parker, Jeffrey J [Rochester, MN

    2011-10-11

    Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.

  5. III-V compound semiconductor growth on silicon via germanium buffer and surface passivation for CMOS technology

    NASA Astrophysics Data System (ADS)

    Choi, Donghun

    Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre

  6. Assessment of concentrated flow through riparian buffers

    Treesearch

    M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer; T.G. Franti; K.D. Hoagland

    2002-01-01

    Concentrated flow of surface runoff from agricultural fields may limit the capability of riparian buffers to remove pollutants. This study was conducted on four farms in southeastern Nebraska to develop a method for assessing the extent of concentrated flow in riparian buffers and for evaluating the impact that it has on sediment-trapping efficiency. Field methods...

  7. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  9. Protein Buffering in Model Systems and in Whole Human Saliva

    PubMed Central

    Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian

    2007-01-01

    The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and α-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva. PMID:17327922

  10. META-ANALYSIS OF NITROGEN REMOVAL IN RIPARIAN BUFFERS

    EPA Science Inventory

    Riparian buffer zones, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and controlling nitrogen loads entering water bodies. Riparian buffer width may be positively related to nitrogen removal effectiveness by influencing nitrog...

  11. Label-free virus detection using silicon photonic microring resonators

    PubMed Central

    McClellan, Melinda S.; Domier, Leslie L; Bailey, Ryan C.

    2013-01-01

    Viruses represent a continual threat to humans through a number of mechanisms, which include disease, bioterrorism, and destruction of both plant and animal food resources. Many contemporary techniques used for the detection of viruses and viral infections suffer from limitations such as the need for extensive sample preparation or the lengthy window between infection and measurable immune response, for serological methods. In order to develop a method that is fast, cost-effective, and features reduced sample preparation compared to many other virus detection methods, we report the application of silicon photonic microring resonators for the direct, label-free detection of intact viruses in both purified samples as well as in a complex, real-world analytical matrix. As a model system, we demonstrate the quantitative detection of Bean pod mottle virus, a pathogen of great agricultural importance, with a limit of detection of 10 ng/mL. By simply grinding a small amount of leaf sample in buffer with a mortar and pestle, infected leaves can be identified over a healthy control with a total analysis time of less than 45 min. Given the inherent scalability and multiplexing capability of the semiconductor-based technology, we feel that silicon photonic microring resonators are well-positioned as a promising analytical tool for a number of viral detection applications. PMID:22138465

  12. Label-free virus detection using silicon photonic microring resonators.

    PubMed

    McClellan, Melinda S; Domier, Leslie L; Bailey, Ryan C

    2012-01-15

    Viruses represent a continual threat to humans through a number of mechanisms, which include disease, bioterrorism, and destruction of both plant and animal food resources. Many contemporary techniques used for the detection of viruses and viral infections suffer from limitations such as the need for extensive sample preparation or the lengthy window between infection and measurable immune response, for serological methods. In order to develop a method that is fast, cost-effective, and features reduced sample preparation compared to many other virus detection methods, we report the application of silicon photonic microring resonators for the direct, label-free detection of intact viruses in both purified samples as well as in a complex, real-world analytical matrix. As a model system, we demonstrate the quantitative detection of Bean pod mottle virus, a pathogen of great agricultural importance, with a limit of detection of 10 ng/mL. By simply grinding a small amount of leaf sample in buffer with a mortar and pestle, infected leaves can be identified over a healthy control with a total analysis time of less than 45 min. Given the inherent scalability and multiplexing capability of the semiconductor-based technology, we feel that silicon photonic microring resonators are well-positioned as a promising analytical tool for a number of viral detection applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Read buffer optimizations to support compiler-assisted multiple instruction retry

    NASA Technical Reports Server (NTRS)

    Alewine, N. J.; Fuchs, W. K.; Hwu, W. M.

    1993-01-01

    Multiple instruction retry is a recovery mechanism for transient processor faults. We previously developed a compiler-assisted approach to multiple instruction ferry in which a read buffer of size 2N (where N represents the maximum instruction rollback distance) was used to resolve some data hazards while the compiler resolved the remaining hazards. The compiler-assisted scheme was shown to reduce the performance overhead and/or hardware complexity normally associated with hardware-only retry schemes. This paper examines the size and design of the read buffer. We establish a practical lower bound and average size requirement for the read buffer by modifying the scheme to save only the data required for rollback. The study measures the effect on the performance of a DECstation 3100 running ten application programs using six read buffer configurations with varying read buffer sizes. Two alternative configurations are shown to be the most efficient and differed depending on whether split-cycle-saves are assumed. Up to a 55 percent read buffer size reduction is achievable with an average reduction of 39 percent given the most efficient read buffer configuration and a variety of applications.

  14. Grass buffers for playas in agricultural landscapes: A literature synthesis

    USGS Publications Warehouse

    Melcher, Cynthia P.; Skagen, Susan K.

    2005-01-01

    Future research should entail multiple-scale approaches at regional, wetland-complex, and individual watershed scales. Information needs include direct measures of buffer effectiveness in ‘real-world’ systems, refinement and field tests of buffer-effectiveness models, how buffers may affect floral and faunal communities of playas, and basic ecological information on playa function and playa wildlife ecology. Understanding how wildlife communities respond to patch size and habitat fragmentation is crucial for addressing questions regarding habitat quality of grass buffers in playa systems.

  15. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccard, Mathieu; Holman, Zachary C.

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  16. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccard, Mathieu; Holman, Zachary C.

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  17. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGES

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  18. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  19. Buffered versus non-buffered ocean carbon reservoir variations: Application to the sensitivity of atmospheric pCO2 to ocean circulation changes

    NASA Astrophysics Data System (ADS)

    d'Orgeville, M.; England, M. H.; Sijp, W. P.

    2011-12-01

    Changes in the ocean circulation on millenial timescales can impact the atmospheric CO2 concentration by two distinct mechanisms: either by modifying the non-buffered ocean carbon storage (through changes in the physical and biological oceanic pumps) or by directly varying the surface mean oceanic partial pressure of pCO2 (through changes in mean surface alkalinity, temperature or salinity). The equal importance of the two mechanisms is illustrated here by introducing a diagnostic buffered carbon budget on the results of simulations performed with an Earth System Climate Model. For all the circulation changes considered in this study (due to a freshening of the North Atlantic, or a change in the Southern Hemisphere Westerly winds), the sign of the atmospheric CO2 response is opposite to the sign of the non-buffered ocean carbon storage change, indicating a transfer of carbon between ocean and atmosphere reservoirs. However the concomitant changes in the buffered ocean carbon reservoir can either greatly enhance or almost inhibit the atmospheric response depending on its sign. This study also demonstrates the utility of the buffered carbon budget approach in diagnosing the transient response of the global carbon cycle to climatic variations.

  20. Comparison of Four Nuclear Isolation Buffers for Plant DNA Flow Cytometry

    PubMed Central

    LOUREIRO, JOÃO; RODRIGUEZ, ELEAZAR; DOLEŽEL, JAROSLAV; SANTOS, CONCEIÇÃO

    2006-01-01

    • Background and Aims DNA flow cytometry requires preparation of suspensions of intact nuclei, which are stained using a DNA-specific fluorochrome prior to analysis. Various buffer formulas were developed to preserve nuclear integrity, protect DNA from degradation and facilitate its stoichiometric staining. Although nuclear isolation buffers differ considerably in chemical composition, no systematic comparison of their performance has been made until now. This knowledge is required to select the appropriate buffer for a given species and tissue. • Methods Four common lysis buffers (Galbraith's, LB01, Otto's and Tris.MgCl2) were used to prepare samples from leaf tissues of seven plant species (Sedum burrito, Oxalis pes-caprae, Lycopersicon esculentum, Celtis australis, Pisum sativum, Festuca rothmaleri and Vicia faba). The species were selected to cover a wide range of genome sizes (1·30–26·90 pg per 2C DNA) and a variety of leaf tissue types. The following parameters were assessed: forward (FS) and side (SS) light scatters, fluorescence of propidium iodide-stained nuclei, coefficient of variation of DNA peaks, presence of debris background and the number of nuclei released from sample tissue. The experiments were performed independently by two operators and repeated on three different days. • Key Results Clear differences among buffers were observed. With the exception of O. pes-caprae, any buffer provided acceptable results for all species. LB01 and Otto's were generally the best buffers, with Otto's buffer providing better results in species with low DNA content. Galbraith's buffer led to satisfactory results and Tris.MgCl2 was generally the worst, although it yielded the best histograms in C. australis. A combined analysis of FS and SS provided a ‘fingerprint’ for each buffer. The variation between days was more significant than the variation between operators. • Conclusions Each lysis buffer tested responded to a specific problem differently

  1. Message communications of particular message types between compute nodes using DMA shadow buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blocksome, Michael A.; Parker, Jeffrey J.

    Message communications of particular message types between compute nodes using DMA shadow buffers includes: receiving a buffer identifier specifying an application buffer having a message of a particular type for transmission to a target compute node through a network; selecting one of a plurality of shadow buffers for a DMA engine on the compute node for storing the message, each shadow buffer corresponding to a slot of an injection FIFO buffer maintained by the DMA engine; storing the message in the selected shadow buffer; creating a data descriptor for the message stored in the selected shadow buffer; injecting the datamore » descriptor into the slot of the injection FIFO buffer corresponding to the selected shadow buffer; selecting the data descriptor from the injection FIFO buffer; and transmitting the message specified by the selected data descriptor through the data communications network to the target compute node.« less

  2. Compounding with Silicones.

    PubMed

    Allen, Loyd V

    2015-01-01

    Since the 1940s, methylchlorosilanes have been used to treat glassware to prevent blood from clotting. The use of silicones in pharmaceutical and medical applications has grown to where today they are used in many life-saving devices (pacemakers, hydrocephalic shunts) and pharmaceutical applications from tubing, to excipients in topical formulations, to adhesives to affix transdermal drug delivery systems, and are also being used in products as active pharmaceutical ingredients, such as antiflatulents. About 60% of today's skin-care products now contain some type of silicone where they are considered safe and are known to provide a pleasant "silky-touch," non-greasy, and non-staining feel. Silicones exhibit many useful characteristics, and the safety of these agents supports their numerous applications; their biocompatibility is partially due to their low-chemical reactivity displayed by silicones, low-surface energy, and their hydrophobicity. Silicones are used both as active ingredients and as excipients. In addition is their use for "siliconization," or surface treatment, of many parenteral packaging components. Dimethicone and silicone oil are used as lubricants on stoppers to aid machineability, in syringes to aid piston movement, or on syringe needles to reduce pain upon injection. Silicones are also useful in pharmaceutical compounding as is discussed in this artiele included with this article are in developing formulations with silicones.

  3. Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Feng, Jinkui; Zhang, Zhen; Ci, Lijie; Zhai, Wei; Ai, Qing; Xiong, Shenglin

    2015-08-01

    A novel one-pot chemical dealloying method has been developed to prepare nanocomposite of reduced graphene oxide (RGO) and silicon dendrite from cheap commercial Al-Si eutectic precursor. The RGO anchoring could act as both conductive agent and buffer layer for Si volume change in the application of lithium ion batteries (LIBs). The Si/RGO composites show an initial reversible capacity of 2280 mAh g-1, excellent capacity retention of 1942 mAh g-1 even after 100 cycles, and a high capacity of 1521 mAh g-1 even at the rate of 4000 mA g-1. Electrochemical impedance spectroscopy (EIS) measurement proved that Si/RGO composite has the lower charge transfer resistance. This work proposes an economic and facile method to prepare silicon based anode material for next generation LIBs with high energy density.

  4. AlGaSb Buffer Layers for Sb-Based Transistors

    DTIC Science & Technology

    2010-01-01

    transistor ( HEMT ), molecular beam epitaxy (MBE), field-effect transistor (FET), buffer layer INTRODUCTION High-electron-mobility transistors ( HEMTs ) with InAs...monolayers/s. The use of thinner buffer layers reduces molecular beam epitaxial growth time and source consumption. The buffer layers also exhibit...source. In addition, some of the flux from an Sb cell in a molecular beam epitaxy (MBE) system will deposit near the mouth of the cell, eventually

  5. Highly efficient treatment of aerobic vaginitis with simple acidic buffered gels: The importance of pH and buffers on the microenvironment of vaginas.

    PubMed

    Sun, Xiaodong; Qiu, Haiying; Jin, Yiguang

    2017-06-15

    Aerobic vaginitis (AV) leads to uterus deep infection or preterm birth. Antibacterial agents are not optimal therapeutics of AV. Here, we report a series of temperature-sensitive in situ forming acidic buffered gels for topical treatment of AV, involving lactate, acetate, and citrate gels at pH 3.5, 5.0, and 6.5. AV rat models were prepared following vaginal infection with Staphylococcus aureus and Escherichia coli. In vitro/in vivo studies of the buffered gels were performed compared with ofloxacin gels and blank gels. All the buffered gels showed the lower in vitro antibacterial activities than ofloxacin gels but the better in vivo anti-S. aureus effects and similar anti-E. coli effects. The buffered gels improved Lactobacillus growth in the vaginas. Both the healthy rat vaginal pH and the pH of rat vaginas treated with the buffered gels were about 6.5 though the AV rat models or ones treated with ofloxacin gels still remained at the high pH more than 7.0. After treatments with the buffered gels, the vaginal smears changed to a clean state nearly without aerobic bacteria, the vaginal tissues were refreshed, and the immunoreactions were downregulated. The acidic buffered gels bring rapid decrease of local vaginal pH, high antibacterial activities, improvement of probiotics, and alleviation of inflammation. They are simple, highly efficient, and safe anti-AV formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Heterogeneous Integration of Epitaxial Ge on Si using AlAs/GaAs Buffer Architecture: Suitability for Low-power Fin Field-Effect Transistors

    PubMed Central

    Hudait, Mantu K.; Clavel, Michael; Goley, Patrick; Jain, Nikhil; Zhu, Yan

    2014-01-01

    Germanium-based materials and device architectures have recently appeared as exciting material systems for future low-power nanoscale transistors and photonic devices. Heterogeneous integration of germanium (Ge)-based materials on silicon (Si) using large bandgap buffer architectures could enable the monolithic integration of electronics and photonics. In this paper, we report on the heterogeneous integration of device-quality epitaxial Ge on Si using composite AlAs/GaAs large bandgap buffer, grown by molecular beam epitaxy that is suitable for fabricating low-power fin field-effect transistors required for continuing transistor miniaturization. The superior structural quality of the integrated Ge on Si using AlAs/GaAs was demonstrated using high-resolution x-ray diffraction analysis. High-resolution transmission electron microscopy confirmed relaxed Ge with high crystalline quality and a sharp Ge/AlAs heterointerface. X-ray photoelectron spectroscopy demonstrated a large valence band offset at the Ge/AlAs interface, as compared to Ge/GaAs heterostructure, which is a prerequisite for superior carrier confinement. The temperature-dependent electrical transport properties of the n-type Ge layer demonstrated a Hall mobility of 370 cm2/Vs at 290 K and 457 cm2/Vs at 90 K, which suggests epitaxial Ge grown on Si using an AlAs/GaAs buffer architecture would be a promising candidate for next-generation high-performance and energy-efficient fin field-effect transistor applications. PMID:25376723

  7. Labview virtual instruments for calcium buffer calculations.

    PubMed

    Reitz, Frederick B; Pollack, Gerald H

    2003-01-01

    Labview VIs based upon the calculator programs of Fabiato and Fabiato (J. Physiol. Paris 75 (1979) 463) are presented. The VIs comprise the necessary computations for the accurate preparation of multiple-metal buffers, for the back-calculation of buffer composition given known free metal concentrations and stability constants used, for the determination of free concentrations from a given buffer composition, and for the determination of apparent stability constants from absolute constants. As implemented, the VIs can concurrently account for up to three divalent metals, two monovalent metals and four ligands thereof, and the modular design of the VIs facilitates further extension of their capacity. As Labview VIs are inherently graphical, these VIs may serve as useful templates for those wishing to adapt this software to other platforms.

  8. The W-W02 Oxygen Fugacity Buffer at High Pressures and Temperatures: Implications for f02 Buffering and Metal-silicate Partitioning

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Righter, K.

    2013-01-01

    Oxygen fugacity (fO2) controls multivalent phase equilibria and partitioning of redox-sensitive elements, and it is important to understand this thermodynamic parameter in experimental and natural systems. The coexistence of a metal and its oxide at equilibrium constitutes an oxygen buffer which can be used to control or calculate fO2 in high pressure experiments. Application of 1-bar buffers to high pressure conditions can lead to inaccuracies in fO2 calculations because of unconstrained pressure dependencies. Extending fO2 buffers to pressures and temperatures corresponding to the Earth's deep interior requires precise determinations of the difference in volume (Delta) V) between the buffer phases. Synchrotron x-ray diffraction data were obtained using diamond anvil cells (DAC) and a multi anvil press (MAP) to measure unit cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. These data were fitted to Birch-Murnaghan 3rd-order thermal equations of state using a thermal pressure approach; parameters for W are KT = 306 GPa, KT' = 4.06, and aKT = 0.00417 GPa K-1. Two structural phase transitions were observed for WO2 at 4 and 32 GPa with structures in P21/c, Pnma and C2/c space groups. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 190, 213, 300 GPa, KT' = 4.24, 5.17, 4 (fixed), and aKT = 0.00506, 0.00419, 0.00467 GPa K-1 for the P21/c, Pnma and C2/c phases, respectively. The W-WO2 buffer (WWO) was extended to high pressure by inverting the W and WO2 equations of state to obtain phase volumes at discrete pressures (1-bar to 100 GPa, 1 GPa increments) along isotherms (300 to 3000K, 100 K increments). The slope of the absolute fO2 of the WWO buffer is positive with increasing temperature up to approximately 70 GPa and is negative above this pressure. The slope is positive along isotherms from 1000 to 3000K with increasing pressure up to at least 100 GPa. The WWO buffer is at

  9. Intra- and Inter-personal Consequences of Protective Buffering among Cancer Patients and Caregivers

    PubMed Central

    Langer, Shelby L.; Brown, Jonathon D.; Syrjala, Karen L.

    2009-01-01

    BACKGROUND Protective buffering refers to hiding cancer-related thoughts and concerns from one’s spouse or partner. This study sought to examine the intra- and inter-personal consequences of protective buffering and motivations for such (desire to shield partner from distress, desire to shield self from distress). METHODS Eighty hematopoietic stem cell transplant patients and their spousal caregivers/ partners completed measures designed to assess protective buffering and relationship satisfaction at two time points: prior to the transplant (T1) and 50 days post-transplant (T2). Overall mental health was also assessed at T2. RESULTS There was moderate agreement between one dyad member’s reported buffering of his/ her partner, and the partner’s perception of the extent to which s/he felt buffered. Caregivers buffered patients more than patients buffered caregivers, especially at T2. The more participants buffered their partners at T2, and the more they felt buffered, the lower their concurrent relationship satisfaction and the poorer their mental health. The latter effect was particularly true for patients who buffered, and patients who felt buffered. With respect to motivations, patients who buffered primarily to protect their partner at T1 reported increases in relationship satisfaction over time, but when they did so at T2, their caregiver reported concurrent decreases in relationship satisfaction. CONCLUSIONS Protective buffering is costly, in that those who buffer and those who feel buffered report adverse psychosocial outcomes. In addition, buffering enacted by patients with an intention to help may prove counterproductive, ultimately hurting the object of such protection. PMID:19731352

  10. Optimizing the availability of a buffered industrial process

    DOEpatents

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  11. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Hsi, Chi-Shiung; Li, Guang

    1992-01-01

    High T sub C superconducting thick film were prepared by a screen printing process. Y-based (YBa2Cu3O(7-x) superconducting thick film were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconductor thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T sub C and J sub C values were obtained from the films printed on these substrates. Critical temperatures (T sub C) of YBa2Cu3O(7-x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities (J sub C) of these films were less than 2 A/sq cm. Higher T sub C and J sub C YBa2Cu3O(7-x) thick films were printed on YSZ substrates. A YBa2Cu3O(7-x) thick film with T sub C=86.4 and J sub C= 50.4 A/sq cm was prepared by printing the film on YSZ substrate and firing at 990 C for 10 minutes. Multiple-lead samples were also prepared on the YSZ substrates. The multiple-lead samples showed lower T sub C and/or J sub C values than those of the plain samples. The electrical properties of YBa2Cu3O(7-x) thick films were determined by the microstructures of the films. The YBa2Cu3O(7-x) thick films printed on the YSZ substrates, which had the best properties among the films printed on the three different kinds of substrates, had the highest density and the best particle interconnection. The YBa2Cu3O(7-x) thick films with preferred orientation in (001) direction were obtained on the YSZ substrates. Cracks, which retard the properties of the films, were found from the films deposited on the YSZ substrates. Currently, a MSZ (Magnesium Stabilized Zirconia) substrate, which had higher thermal expansion coefficient than the YSZ substrate, is used as substrate for the YBa2Cu3O(7-x) thick film in order to eliminate the cracks on the film. Bi-based superconductor thick films were printed on polycrystalline MgO and YSZ substrates. Interactions between BSCCO thick films and the YSZ substrates were observed. Various buffer layer materials were

  12. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions

    PubMed Central

    Tanti, N.C.; Jones, L.; Sheardown, H.

    2010-01-01

    Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate  (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed

  13. Application of allflex conservation buffer in illumina genotyping.

    PubMed

    de Groot, M; Ras, T; van Haeringen, W A

    2016-12-01

    This experiment was designed to study if liquid conservation buffer used in the novel Tissue Sampling Technology (TST) from Allflex can be used for Illumina BeadChip genotyping. Ear punches were collected from 6 bovine samples, using both the Tissue Sampling Unit (TSU) as well as the Total Tagger Universal (TTU) collection system. The stability of the liquid conservation buffer was tested by genotyping samples on Illumina BeadChips, incubated at 0, 3, 15, 24, 48, 72, 168, 336, 720 h after sample collection. Additionally, a replenishment study was designed to test how often the liquid conservation buffer could be completely replenished before a significant call rate drop could be observed. Results from the stability study showed an average call rate of 0.993 for samples collected with the TSU system and 0.953 for samples collected with the TTU system, both exceeding the inclusion threshold call rate of 0.85. As an additional control, the identity of the individual animals was confirmed using the International Society of Animal Genetics (ISAG) recommended SNP panel. The replenishment study revealed a slight drop in the sample call rate after replenishing the conservation buffer for the fourth time for the TSU as well as the TTU samples. In routine analysis, this application allows for multiple experiments to be performed on the liquid conservation buffer, while maintaining the tissue samples for future use. The data collected in this study shows that the liquid conservation buffer used in the TST system can be used for Illumina BeadChip genotyping applications.

  14. Silicon entering through silicon utilizing organisms has biological effects in human beings

    NASA Astrophysics Data System (ADS)

    Shraddhamayananda, S.

    2012-12-01

    Except in the lungs, there is no evidence that silicon can do any harm in our body and Silicon is as essential as magnesium and calcium for us. It helps in proper activities of the bone tissues and all of the components in the human skeletal system. It can prevent osteoporosis in bones and also helps in lowering of blood pressure. Silicon can also inhibit fungal disease by physically inhibiting fungal germ tube penetration of the epidermis. Many of our foods which are associated with silicon utilizing organisms like rice, vegetables, wheat etc, contain plenty silicon, however, during processing most silicon get lost. In alternative medicine silicon is used to promote expulsion of foreign bodies from tissue, in formation of suppuration and finally expulsion of pus from abscesses. Silicon is also used to remove fibrotic lesions and scar tissue and in this way it can prevent formation of keloids. Sometimes it is also used to treat chronic otitis media, and chronic fistula,

  15. Concentrated flow paths in riparian buffer zones of southern Illinois

    Treesearch

    R.C. Pankau; J.E. Schoonover; K.W.J. Willard; P.J. Edwards

    2012-01-01

    Riparian buffers in agricultural landscapes should be designed to trap pollutants in overland flow by slowing, filtering, and infiltrating surface runoff entering the buffer via sheet flow. However, observational evidence suggests that concentrated flow is prevalent from agricultural fields. Over time sediment can accumulate in riparian buffers forming berms that...

  16. Fabrication and characterization of silicon quantum dots in Si-rich silicon carbide films.

    PubMed

    Chang, Geng-Rong; Ma, Fei; Ma, Dayan; Xu, Kewei

    2011-12-01

    Amorphous Si-rich silicon carbide films were prepared by magnetron co-sputtering and subsequently annealed at 900-1100 degrees C. After annealing at 1100 degrees C, this configuration of silicon quantum dots embedded in amorphous silicon carbide formed. X-ray photoelectron spectroscopy was used to study the chemical modulation of the films. The formation and orientation of silicon quantum dots were characterized by glancing angle X-ray diffraction, which shows that the ratio of silicon and carbon significantly influences the species of quantum dots. High-resolution transmission electron microscopy investigations directly demonstrated that the formation of silicon quantum dots is heavily dependent on the annealing temperatures and the ratio of silicon and carbide. Only the temperature of about 1100 degrees C is enough for the formation of high-density and small-size silicon quantum dots due to phase separation and thermal crystallization. Deconvolution of the first order Raman spectra shows the existence of a lower frequency peak in the range 500-505 cm(-1) corresponding to silicon quantum dots with different atom ratio of silicon and carbon.

  17. Buffer Zone Sign Template

    EPA Pesticide Factsheets

    The certified pesticide applicator is required to post a comparable sign, designating a buffer zone around the soil fumigant application block in order to control exposure risk. It must include the don't walk symbol, product name, and applicator contact.

  18. Crystalline silicon growth in nickel/a-silicon bilayer

    NASA Astrophysics Data System (ADS)

    Mohiddon, Md Ahamad; Naidu, K. Lakshun; Dalba, G.; Rocca, F.; Krishna, M. Ghanashyam

    2013-02-01

    The effect of substrate temperature on amorphous Silicon crystallization, mediated by metal impurity is reported. Bilayers of Ni(200nm)/Si(400nm) are deposited on fused silica substrate by electron beam evaporator at 200 and 500 °C. Raman mapping shows that, 2 to 5 micron size crystalline silicon clusters are distributed over the entire surface of the sample. X-ray diffraction and X-ray absorption spectroscopy studies demonstrate silicon crystallizes over the metal silicide seeds and grow with the annealing temperature.

  19. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  20. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M [Livermore, CA

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  1. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Treesearch

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  2. Baroreflex buffering and susceptibility to vasoactive drugs

    NASA Technical Reports Server (NTRS)

    Jordan, Jens; Tank, Jens; Shannon, John R.; Diedrich, Andre; Lipp, Axel; Schroder, Christoph; Arnold, Guy; Sharma, Arya M.; Biaggioni, Italo; Robertson, David; hide

    2002-01-01

    BACKGROUND: The overall effect of vasoactive drugs on blood pressure is determined by a combination of the direct effect on vascular tone and an indirect baroreflex-mediated effect, a baroreflex buffering of blood pressure. Differences in baroreflex function affect the responsiveness to vasoactive medications, particularly baroreflex buffering of blood pressure; however, the magnitude is not known. METHODS AND RESULTS: We characterized baroreflex function and responses to vasoactive drugs in patients with idiopathic orthostatic intolerance, patients with essential hypertension, patients with monogenic hypertension and brachydactyly, patients with multiple system atrophy, and control subjects. We used phenylephrine sensitivity during ganglionic blockade as a measure of baroreflex buffering. Phenylephrine (25 microg) increased systolic blood pressure 6+/-1.6 mm Hg in control subjects, 6+/-1.1 mm Hg in orthostatic intolerance patients, 18+/-3.9 mm Hg in patients with essential hypertension, 31+/-3.4 mm Hg in patients with monogenic hypertension, and 25+/-3.4 mm Hg in patients with multiple system atrophy. Similar differences in sensitivities between groups were observed with nitroprusside. The sensitivity to vasoactive drugs was highly correlated with baroreflex buffering function and to a lesser degree with baroreflex control of heart rate. In control subjects, sensitivities to nitroprusside and phenylephrine infusions were correlated with baroreflex heart rate control and sympathetic nerve traffic. CONCLUSIONS: Our findings are consistent with an important effect of baroreflex blood pressure buffering on the sensitivity to vasoactive drugs. They suggest that even moderate changes in baroreflex function may have a substantial effect on the sensitivity to vasoactive medications.

  3. The effect of respiration buffer composition on mitochondrial metabolism and function.

    PubMed

    Wollenman, Lucas C; Vander Ploeg, Matthew R; Miller, Mackinzie L; Zhang, Yizhu; Bazil, Jason N

    2017-01-01

    Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha

  4. The effect of respiration buffer composition on mitochondrial metabolism and function

    PubMed Central

    Wollenman, Lucas C.; Vander Ploeg, Matthew R.; Miller, Mackinzie L.; Zhang, Yizhu

    2017-01-01

    Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha

  5. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  6. Improved pH buffering agent for sodium hypochlorite

    NASA Technical Reports Server (NTRS)

    Nash, J. R.; Veeder, L. N.

    1969-01-01

    Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.

  7. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle.

    PubMed

    Abe, H; Dobson, G P; Hoeger, U; Parkhouse, W S

    1985-10-01

    Histidine-related compounds (HRC) were analyzed in fish skeletal muscle as a means of identifying their precise role in intracellular buffering. Fish muscle was used because it contains two functionally and spatially distinct fiber types, red and white. Two fish species, rainbow trout (Salmo gairdneri) and the Pacific blue marlin (Makaira nigricans), were studied because these species demonstrate widely different activity patterns. Marlin red and white muscle buffer capacity was two times higher than trout with white muscle, buffering being two times greater than red in both species. Buffer capacity was highest in the 6.5-7.5 pH range for all tissues, which corresponded to their high anserine levels. The titrated HRC buffering was greater than the observed HRC buffering, which suggested that not all HRC were available to absorb protons. The HRC contribution to total cellular buffering varied from a high of 62% for marlin white to a low of 7% for trout red. The other principal buffers were found to be phosphate and protein with taurine contributing within red muscle in the 7.0-8.0 pH range. HRC were found to be dominant in skeletal muscle buffering by principally accounting for the buffering capacity differences found between the species and fiber types.

  8. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns.

    PubMed

    Ynsa, M D; Dang, Z Y; Manso-Silvan, M; Song, J; Azimi, S; Wu, J F; Liang, H D; Torres-Costa, V; Punzon-Quijorna, E; Breese, M B H; Garcia-Ruiz, J P

    2014-04-01

    Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.

  9. Advanced study of thermal behaviour of CSZ comparing with the classic YSZ coating

    NASA Astrophysics Data System (ADS)

    Dragomirescu, A.; Constantin, N.; Ştefan, A.; Manoliu, V.; Truşcă, R.

    2017-01-01

    Thermal barrier coatings (TBC) are advanced materials typically applied to metal surfaces subjected to extreme temperatures to protect them and increase their lifetime. Ceria stabilized zirconia ceramic layer (CSZ) is increasingly used as an alternative improved as replace for classical TBC system - yttria stabilized zirconia - thanks to superior properties, including mechanical and high resistance to thermal corrosion. The paper describes the thermal shock testing of two types of thermal barrier coatings used to protect a nickel super alloy. For the experimental procedure, it was used plate samples from nickel super alloy with a bond coat and a ceramic top coat. The top coat was different: on some samples, it was used YSZ and on others CSZ. Ni based super alloys have good corrosion resistance in reducing environments action, but poor in oxidizing conditions. Extreme environments can lead to loss of material by oxidation / corrosion, along with decreased mechanical properties of the substrate due to damaging elements which diffuses into the substrate at high temperatures. Using laboratory equipment, the TBC systems were exposed repeatedly to extreme high temperatures for a short time and then cooled. After the thermal shock tests, the samples were morph-structured characterized using electronic microscopy to analyze the changes. The experimental results were compared to rank the TBC systems in order of performance.

  10. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.

    PubMed

    Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G

    2012-07-15

    The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    PubMed Central

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements. PMID:28425460

  12. Measurement of radon concentration in super-Kamiokande's buffer gas

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Sekiya, H.; Tasaka, S.; Takeuchi, Y.; Wendell, R. A.; Matsubara, M.; Nakahata, M.

    2017-09-01

    To precisely measure radon concentrations in purified air supplied to the Super-Kamiokande detector as a buffer gas, we have developed a highly sensitive radon detector with an intrinsic background as low as 0 . 33 ± 0 . 07 mBq /m3. In this article, we discuss the construction and calibration of this detector as well as results of its application to the measurement and monitoring of the buffer gas layer above Super-Kamiokande. In March 2013, the chilled activated charcoal system used to remove radon in the input buffer gas was upgraded. After this improvement, a dramatic reduction in the radon concentration of the supply gas down to 0 . 08 ± 0 . 07 mBq /m3. Additionally, the Rn concentration of the in-situ buffer gas has been measured 28 . 8 ± 1 . 7 mBq /m3 using the new radon detector. Based on these measurements we have determined that the dominant source of Rn in the buffer gas arises from contamination from the Super-Kamiokande tank itself.

  13. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  14. Setting priorities for research on pollution reduction functions of agricultural buffers.

    PubMed

    Dosskey, Michael G

    2002-11-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An assessment of these uncertainties cautions that there is greater risk of overestimating buffer impact than underestimating it. Priorities for future research are proposed that will lead more quickly to major advances in predictive capabilities. Highest priority is given for work on the surface runoff filtration function, which is almost universally important to the amount of pollution reduction expected from buffer installation and for which there remain major sources of uncertainty for predicting level of impact. Foremost uncertainties surround the extent and consequences of runoff flow concentration and pollutant accumulation. Other buffer functions, including filtration of groundwater nitrate and stabilization of channel erosion sources of sediments, may be important in some regions. However, uncertainty surrounds our ability to identify and quantify the extent of site conditions where buffer installation can substantially reduce stream pollution in these ways. Deficiencies in predictive models reflect gaps in experimental information as well as technology to account for spatial heterogeneity of pollutant sources, pathways, and buffer capabilities across watersheds. Since completion of a comprehensive watershed-scale buffer model is probably far off, immediate needs call for simpler techniques to gage the probable impacts of buffer installation at local scales.

  15. Microhabitats in the tropics buffer temperature in a globally coherent manner

    PubMed Central

    Scheffers, Brett R.; Evans, Theodore A.; Williams, Stephen E.; Edwards, David P.

    2014-01-01

    Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9°C and reduced maximum temperatures by 3.5°C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates. PMID:25540160

  16. Release of low molecular weight silicones and platinum from silicone breast implants.

    PubMed

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was

  17. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  18. Inactivation of viruses using novel protein A wash buffers.

    PubMed

    Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J

    2015-01-01

    Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.

  19. An assessment of buffer strips for improving damage tolerance of composite laminates

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kennedy, J. M.

    1980-01-01

    Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with (45/0/-45/90)2S and (45/0/-45/0)2S layups. The buffer strips were parallel to the loading direction. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-90/epoxy on either a one-for-one or a two-for-one basis. In a third case, 0 deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg plies and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different width and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those of plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layup, buffer material, buffer strip width and spacing, and the number of plies of buffer material

  20. Job Shop Scheduling Focusing on Role of Buffer

    NASA Astrophysics Data System (ADS)

    Hino, Rei; Kusumi, Tetsuya; Yoo, Jae-Kyu; Shimizu, Yoshiaki

    A scheduling problem is formulated in order to consistently manage each manufacturing resource, including machine tools, assembly robots, AGV, storehouses, material shelves, and so on. The manufacturing resources are classified into three types: producer, location, and mover. This paper focuses especially on the role of the buffer, and the differences among these types are analyzed. A unified scheduling formulation is derived from the analytical results based on the resource’s roles. Scheduling procedures based on dispatching rules are also proposed in order to numerically evaluate job shop-type production having finite buffer capacity. The influences of the capacity of bottle-necked production devices and the buffer on productivity are discussed.

  1. Buffer capacity of the coelomic fluid in echinoderms.

    PubMed

    Collard, Marie; Laitat, Kim; Moulin, Laure; Catarino, Ana I; Grosjean, Philippe; Dubois, Philippe

    2013-09-01

    The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8mmolkg(-1) SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4mmolkg(-1) SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3mmolkg(-1) SW compared to unfed ones who showed a difference of about 0.5mmolkg(-1) SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH7.7 to about twice that of the control individuals and, for those at pH7

  2. TRIO: Burst Buffer Based I/O Orchestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Teng; Oral, H Sarp; Pritchard, Michael

    The growing computing power on leadership HPC systems is often accompanied by ever-escalating failure rates. Checkpointing is a common defensive mechanism used by scientific applications for failure recovery. However, directly writing the large and bursty checkpointing dataset to parallel filesystem can incur significant I/O contention on storage servers. Such contention in turn degrades the raw bandwidth utilization of storage servers and prolongs the average job I/O time of concurrent applications. Recently burst buffer has been proposed as an intermediate layer to absorb the bursty I/O traffic from compute nodes to storage backend. But an I/O orchestration mechanism is still desiredmore » to efficiently move checkpointing data from bursty buffers to storage backend. In this paper, we propose a burst buffer based I/O orchestration framework, named TRIO, to intercept and reshape the bursty writes for better sequential write traffic to storage severs. Meanwhile, TRIO coordinates the flushing orders among concurrent burst buffers to alleviate the contention on storage server bandwidth. Our experimental results reveal that TRIO can deliver 30.5% higher bandwidth and reduce the average job I/O time by 37% on average for data-intensive applications in various checkpointing scenarios.« less

  3. Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Götsch, Thomas; Klötzer, Bernhard; Penner, Simon

    2016-05-25

    Structural and chemical degradation mechanisms of metal-free yttria stabilized zirconia (YSZ-8, 8 mol% Y2O3 in ZrO2) in comparison to its pure oxidic components ZrO2 and Y2O3 have been studied in carbon-rich fuel gases with respect to coking/graphitization and (oxy)carbide formation. By combining operando electrochemical impedance spectroscopy (EIS), operando Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), the removal and suppression of CH4- and CO-induced carbon deposits and of those generated in more realistic fuel gas mixtures (syngas, mixtures of CH4 or CO with CO2 and H2O) was examined under SOFC-relevant conditions up to 1273 K and ambient pressures. Surface-near carbidization is a major problem already on the "isolated" (i.e. Nickel-free) cermet components, leading to irreversible changes of the conduction properties. Graphitic carbon deposition takes place already on the "isolated" oxides under sufficiently fuel-rich conditions, most pronounced in the pure gases CH4 and CO, but also significantly in fuel gas mixtures containing H2O and CO2. For YSZ, a comparative quantification of the total amount of deposited carbon in all gases and mixtures is provided and thus yields favorable and detrimental experimental approaches to suppress the carbon formation. In addition, the effectivity and reversibility of removal of the coke/graphite layers was comparably studied in the pure oxidants O2, CO2 and H2O and their effective contribution upon addition to the pure fuel gases CO and CH4 verified.

  4. A Highly Sensitive Porous Silicon (P-Si)-Based Human Kallikrein 2 (hK2) Immunoassay Platform toward Accurate Diagnosis of Prostate Cancer

    PubMed Central

    Lee, Sang Wook; Hosokawa, Kazuo; Kim, Soyoun; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas; Maeda, Mizuo

    2015-01-01

    Levels of total human kallikrein 2 (hK2), a protein involved the pathology of prostate cancer (PCa), could be used as a biomarker to aid in the diagnosis of this disease. In this study, we report on a porous silicon antibody immunoassay platform for the detection of serum levels of total hK2. The surface of porous silicon has a 3-dimensional macro- and nanoporous structure, which offers a large binding capacity for capturing probe molecules. The tailored pore size of the porous silicon also allows efficient immobilization of antibodies by surface adsorption, and does not require chemical immobilization. Monoclonal hK2 capture antibody (6B7) was dispensed onto P-Si chip using a piezoelectric dispenser. In total 13 × 13 arrays (169 spots) were spotted on the chip with its single spot volume of 300 pL. For an optimization of capture antibody condition, we firstly performed an immunoassay of the P-Si microarray under a titration series of hK2 in pure buffer (PBS) at three different antibody densities (75, 100 and 145 µg/mL). The best performance of the microarray platform was seen at 100 µg/mL of the capture antibody concentration (LOD was 100 fg/mL). The platform then was subsequently evaluated for a titration series of serum-spiked hK2 samples. The developed platform utilizes only 15 µL of serum per test and the total assay time is about 3 h, including immobilization of the capture antibody. The detection limit of the hK2 assay was 100 fg/mL in PBS buffer and 1 pg/mL in serum with a dynamic range of 106 (10−4 to 102 ng/mL). PMID:26007739

  5. A Highly Sensitive Porous Silicon (P-Si)-Based Human Kallikrein 2 (hK2) Immunoassay Platform toward Accurate Diagnosis of Prostate Cancer.

    PubMed

    Lee, Sang Wook; Hosokawa, Kazuo; Kim, Soyoun; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas; Maeda, Mizuo

    2015-05-22

    Levels of total human kallikrein 2 (hK2), a protein involved the pathology of prostate cancer (PCa), could be used as a biomarker to aid in the diagnosis of this disease. In this study, we report on a porous silicon antibody immunoassay platform for the detection of serum levels of total hK2. The surface of porous silicon has a 3-dimensional macro- and nanoporous structure, which offers a large binding capacity for capturing probe molecules. The tailored pore size of the porous silicon also allows efficient immobilization of antibodies by surface adsorption, and does not require chemical immobilization. Monoclonal hK2 capture antibody (6B7) was dispensed onto P-Si chip using a piezoelectric dispenser. In total 13 × 13 arrays (169 spots) were spotted on the chip with its single spot volume of 300 pL. For an optimization of capture antibody condition, we firstly performed an immunoassay of the P-Si microarray under a titration series of hK2 in pure buffer (PBS) at three different antibody densities (75, 100 and 145 µg/mL). The best performance of the microarray platform was seen at 100 µg/mL of the capture antibody concentration (LOD was 100 fg/mL). The platform then was subsequently evaluated for a titration series of serum-spiked hK2 samples. The developed platform utilizes only 15 µL of serum per test and the total assay time is about 3 h, including immobilization of the capture antibody. The detection limit of the hK2 assay was 100 fg/mL in PBS buffer and 1 pg/mL in serum with a dynamic range of 106 (10(-4) to 10(2) ng/mL).

  6. Buffers and vegetative filter strips

    Treesearch

    Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney

    2008-01-01

    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.

  7. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.

    PubMed Central

    Berlin, J R; Bassani, J W; Bers, D M

    1994-01-01

    Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires

  8. Silicon-on-Insulator Pin Diodes.

    DTIC Science & Technology

    1987-12-01

    Thin (0.5 Micron) Silicon-on-Oxidized Silicon Fig. 2.8 SEM Photographs of CVD Silicon Dioxide on Aluminum 28 After 1500 0 C Anneal in Oxygen...silicon nitride over the silicon dioxide encapsu- -9- lation layer and by depositing the silicon dioxide with a plasma CVD process which uses N20 as...relief via thermal expansion matching varies lin- -27- A B Figure 2.8: SEM Photographs of CVD Silicon Dioxide on Aluminum after 15000 C Anneal in Oxygen

  9. Using soil surveys to target riparian buffers in the Chesapeake Bay watershed

    Treesearch

    Michael G. Dosskey

    2008-01-01

    The efficacy of vegetative buffers for improving water quality could be enhanced by distinguishing differences in buffer capability across watersheds and accounting for them in buffer planning. A soil survey-based method was applied to riparian areas in the Chesapeake Bay watershed. The method is based on soil attributes that are important in determining buffer...

  10. Buffer Modulation of Menadione-Induced Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Lushchak, Oleh V.; Bayliak, Maria M.; Korobova, Olha V.; Levine, Rodney L.; Lushchak, Volodymyr I.

    2012-01-01

    The objective of this study was to compare in vivo the effects of bicarbonate and phosphate buffers on surviving and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. If at 25 mM concentration of buffers menadione only slightly reduced yeast surviving, at 50 mM concentration cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed. PMID:19843376

  11. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I

    2009-01-01

    The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.

  12. Thin film photovoltaic devices with a minimally conductive buffer layer

    DOEpatents

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  13. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  14. Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.

  15. Microhabitats in the tropics buffer temperature in a globally coherent manner.

    PubMed

    Scheffers, Brett R; Evans, Theodore A; Williams, Stephen E; Edwards, David P

    2014-12-01

    Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9 °C and reduced maximum temperatures by 3.5 °C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOEpatents

    Natesan, Ken

    1994-01-01

    An iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100.degree. C.

  17. Growth of silicon nanoclusters in thermal silicon dioxide under annealing in an atmosphere of nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, E. V., E-mail: Ivanova@mail.ioffe.ru; Sitnikova, A. A.; Aleksandrov, O. V.

    2016-06-15

    It is found for the first time that silicon nanoclusters are formed in the surface layer of thermal silicon dioxide under high-temperature annealing (T = 1150°C) in dried nitrogen. Analysis of the cathodoluminescence spectra shows that an imperfect surface layer appears upon such annealing of silicon dioxide, with silicon nanoclusters formed in this layer upon prolonged annealing. Transmission electron microscopy demonstrated that the silicon clusters are 3–5.5 nm in size and lie at a depth of about 10 nm from the surface. Silicon from the thermal film of silicon dioxide serves as the material from which the silicon nanoclusters aremore » formed. This method of silicon-nanocluster formation is suggested for the first time.« less

  18. Diamond-silicon carbide composite

    DOEpatents

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  19. Use of silicon in liquid sintered silicon nitrides and sialons

    DOEpatents

    Raj, R.; Baik, S.

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  20. Use of silicon in liquid sintered silicon nitrides and sialons

    DOEpatents

    Raj, Rishi; Baik, Sunggi

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  1. Arise, amphibians: stream buffers affect more than fish.

    Treesearch

    Sally Duncan

    2003-01-01

    Buffers along streams cover a tremendous proportion of the land base in the forested systems of the western Pacific Northwest. These buffers were designated primarily to conserve and restore habitat for salmon and trout, but conservation of habitat for a number of other organisms also has been implicit in their design. Recent research evaluated the importance of...

  2. Miniature silicon electronic biological assay chip and applications for rapid battlefield diagnostics

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian T.; Regan, Robert A.; Clapp, Christopher; Hildebrant, Eric; Weinberg, Marc S.; Williams, John

    1999-07-01

    Assessing the medical condition of battlefield personnel requires the development of rapid, portable biological diagnostic assays for a wide variety of antigens and enzymes. Ideally, such an assay would be inexpensive, small, and require no added reagents while maintaining the sensitivity and accuracy of laboratory-based assays. In this work, a microelectromechanical (MEMS) based biological assay sensor is presented which is expected to meet the above requirements. The sensor is a thin silicon membrane resonator (SMR) which registers a decrease in resonant frequency when mass is adsorbed onto its surface. By coating the sensor surface with a monolayer of antibody, for example, we have detected the corresponding antigen with a detection resolution of 0.25 ng/ml in phosphate buffer solution. Micromachining techniques are being used to integrate many (64 elements on the first test chip) identical SMR sensors into a single silicon chip which would be capable of simultaneously performing a wide variety of biomedical assays. The sensors require only a small printed circuit board and 8V power supply to operate and provide a readout. The presentation will describe the operation of the SMR sensor, the fabrication of the sensor array, and initial test results using commercially available animal immunoglobulins in laboratory-prepared test solutions.

  3. Propagation of misfit dislocations from buffer/Si interface into Si

    DOEpatents

    Liliental-Weber, Zuzanna [El Sobrante, CA; Maltez, Rogerio Luis [Porto Alegre, BR; Morkoc, Hadis [Richmond, VA; Xie, Jinqiao [Raleigh, VA

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  4. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-08-17

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.

  5. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  6. Hydrochemical buffer assessment in agricultural landscapes: from local to catchment scale.

    PubMed

    Viaud, Valérie; Merot, Philippe; Baudry, Jacques

    2004-10-01

    Non-point-source pollution of surface and groundwater is a prominent environmental issue in rural catchments, with major consequences on water supply and aquatic ecosystem quality. Among surface-water protection measures, environmental or landscape management policies support the implementation and the management of buffer zones. Although a great number of studies have focused on buffer zones, quantification of the buffer effect is still a recurring question. The purpose of this article is a critical review of the assessment of buffer-zone functioning. Our objective is to provide land planners and managers with a set of variables to assess the limits and possibilities for quantifying buffer impact at the catchment scale. We first consider the scale of the local landscape feature. The most commonly used empirical method for assessing buffers is to calculate water/nutrient budgets from inflow-outflow monitoring at the level of landscape structures. We show that several other parameters apart from mean depletion of flux can be used to describe buffer functions. Such parameters include variability, with major implication for water management. We develop a theoretical framework to clarify the assessment of the buffer effect and propose a systematic analysis taking account of temporal variability. Second, we review the current assessment of buffer effects at the catchment scale according to the theoretical framework established at the local scale. Finally, we stress the limits of direct empirical assessment at the catchment scale and, in particular, we emphasize the hierarchy in hydrological processes involved at the catchment scale: The landscape feature function is constrained by other factors (climate and geology) that are of importance at a broader spatial and temporal scale.

  7. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOEpatents

    Natesan, K.

    1994-12-27

    An iron-based alloy is described containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100 C. 8 figures.

  8. Analysis of a unidirectional, symmetric buffer strip laminate with damage

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1984-01-01

    A method for predicting the fracture behavior of hybrid buffer strip laminates is presented in which the classical shear-lag model is used to represent the shear stress distribution between adjacent fibers. The method is demonstrated by applying it to a notched graphite/epoxy laminate, and the results show clearly the manner in which the most efficient combination of buffer strip properties can be selected in order to arrest the crack. The ultimate failure stress of the laminate is plotted vs the buffer strip width. It is shown that in the case of graphite-epoxy and S-glass epoxy laminates, the optimum buffer strip spacing to width ratio should be about four to one.

  9. Dislocation-free strained silicon-on-silicon by in-place bonding

    NASA Astrophysics Data System (ADS)

    Cohen, G. M.; Mooney, P. M.; Paruchuri, V. K.; Hovel, H. J.

    2005-06-01

    In-place bonding is a technique where silicon-on-insulator (SOI) slabs are bonded by hydrophobic attraction to the underlying silicon substrate when the buried oxide is undercut in dilute HF. The bonding between the exposed surfaces of the SOI slab and the substrate propagates simultaneously with the buried oxide etching. As a result, the slabs maintain their registration and are referred to as "bonded in-place". We report the fabrication of dislocation-free strained silicon slabs from pseudomorphic trilayer Si/SiGe/SOI by in-place bonding. Removal of the buried oxide allows the compressively strained SiGe film to relax elastically and induce tensile strain in the top and bottom silicon films. The slabs remain bonded to the substrate by van der Waals forces when the wafer is dried. Subsequent annealing forms a covalent bond such that when the upper Si and the SiGe layer are removed, the bonded silicon slab remains strained.

  10. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poznanski, Jaroslaw; Szczesny, Pawel; Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw

    Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in themore » cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.« less

  11. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results of a study for Task 3 of the Low Cost Solar Array Project, directed toward the development of a cost effective encapsulation system for photovoltaic modules using silicon based materials, are reported. Results of the following are discussed: (1) weather-ometer stressing vs. weathering history of silicon and silicon modified materials; (2) humidity/temperature cycling exposure; (3) exposure at high humidity/high temperature; (4) outdoor exposure stress; (5) thermal cycling stress; and (6) UV screening agents. The plans for the next quarter are outlined.

  12. A silicon Brillouin laser

    NASA Astrophysics Data System (ADS)

    Otterstrom, Nils T.; Behunin, Ryan O.; Kittlaus, Eric A.; Wang, Zheng; Rakich, Peter T.

    2018-06-01

    Brillouin laser oscillators offer powerful and flexible dynamics as the basis for mode-locked lasers, microwave oscillators, and optical gyroscopes in a variety of optical systems. However, Brillouin interactions are markedly weak in conventional silicon photonic waveguides, stifling progress toward silicon-based Brillouin lasers. The recent advent of hybrid photonic-phononic waveguides has revealed Brillouin interactions to be one of the strongest and most tailorable nonlinearities in silicon. In this study, we have harnessed these engineered nonlinearities to demonstrate Brillouin lasing in silicon. Moreover, we show that this silicon-based Brillouin laser enters a regime of dynamics in which optical self-oscillation produces phonon linewidth narrowing. Our results provide a platform to develop a range of applications for monolithic integration within silicon photonic circuits.

  13. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  14. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram

    2009-03-01

    We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.

  15. Dynamics and mitigation of six pesticides in a "Wet" forest buffer zone.

    PubMed

    Passeport, Elodie; Richard, Benjamin; Chaumont, Cédric; Margoum, Christelle; Liger, Lucie; Gril, Jean-Joël; Tournebize, Julien

    2014-04-01

    Pesticide pollution is one of the main current threats on water quality. This paper presents the potential and functioning principles of a "Wet" forest buffer zone for reducing concentrations and loads of glyphosate, isoproturon, metazachlor, azoxystrobin, epoxiconazole, and cyproconazole. A tracer injection experiment was conducted in the field in a forest buffer zone at Bray (France). A fine time-scale sampling enabled to illustrate that interactions between pesticides and forest buffer substrates (soil and organic-rich litter layer), had a retarding effect on molecule transfer. Low concentrations were observed for all pesticides at the forest buffer outlet thus demonstrating the efficiency of "Wet" forest buffer zone for pesticide dissipation. Pesticide masses injected in the forest buffer inlet directly determined concentration peaks observed at the outlet. Rapid and partially reversible adsorption was likely the major process affecting pesticide transfer for short retention times (a few hours to a few days). Remobilization of metazachlor, isoproturon, desmethylisoproturon, and AMPA was observed when non-contaminated water flows passed through the forest buffer. Our data suggest that pesticide sorption properties alone could not explain the complex reaction mechanisms that affected pesticide transfer in the forest buffer. Nevertheless, the thick layer of organic matter litter on the top of the forest soil was a key parameter, which enhanced partially reversible sorption of pesticide, thus retarded their transfer, decreased concentration peaks, and likely increased degradation of the pesticides. Consequently, to limit pesticide pollution transported by surface water, the use of already existing forest areas as buffer zones should be equally considered as the most commonly implemented grass buffer strips.

  16. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOEpatents

    Natesan, K.

    1992-01-01

    This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

  17. Leakage effects in n-GaAs MESFET with n-GaAs buffer layer

    NASA Technical Reports Server (NTRS)

    Wang, Y. C.; Bahrami, M.

    1983-01-01

    Whereas improvement of the interface between the active layer and the buffer layer has been demonstrated, the leakage effects can be important if the buffer layer resistivity is not sufficiently high and/or the buffer layer thickness is not sufficiently small. It was found that two buffer leakage currents exist from the channel under the gate to the source and from drain to the channel in addition to the buffer leakage resistance between drain and source. It is shown that for a 1 micron gate-length n-GaAs MESFET, if the buffer layer resistivity is 12 OHM-CM and the buffer layer thickness h is 2 microns, the performance of the device degrades drastically. It is suggested that h should be below 2 microns.

  18. Reprogrammable read only variable threshold transistor memory with isolated addressing buffer

    DOEpatents

    Lodi, Robert J.

    1976-01-01

    A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.

  19. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  20. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  1. Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.

    PubMed

    Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie

    2018-01-01

    The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short

  2. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal.

    PubMed

    Jaynes, D B; Isenhart, T M

    2014-03-01

    Riparian buffers are a proven practice for removing NO from overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage, most of the subsurface flow leaving fields is passed through the buffers in drainage pipes, leaving little opportunity for NO removal. We investigated the feasibility of re-routing a fraction of field tile drainage as subsurface flow through a riparian buffer for increasing NO removal. We intercepted an existing field tile outlet draining a 10.1-ha area of a row-cropped field in central Iowa and re-routed a fraction of the discharge as subsurface flow along 335 m of an existing riparian buffer. Tile drainage from the field was infiltrated through a perforated pipe installed 75 cm below the surface by maintaining a constant head in the pipe at a control box installed in-line with the existing field outlet. During 2 yr, >18,000 m (55%) of the total flow from the tile outlet was redirected as infiltration within the riparian buffer. The redirected water seeped through the 60-m-wide buffer, raising the water table approximately 35 cm. The redirected tile flow contained 228 kg of NO. On the basis of the strong decrease in NO concentrations within the shallow groundwater across the buffer, we hypothesize that the NO did not enter the stream but was removed within the buffer by plant uptake, microbial immobilization, or denitrification. Redirecting tile drainage as subsurface flow through a riparian buffer increased its NO removal benefit and is a promising management practice to improve surface water quality within tile-drained landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Improved toughness of silicon carbide

    NASA Technical Reports Server (NTRS)

    Palm, J. A.

    1976-01-01

    Impact energy absorbing layers (EALs) comprised of partially densified silicon carbide were formed in situ on fully sinterable silicon carbide substrates. After final sintering, duplex silicon carbide structures resulted which were comprised of a fully sintered, high density silicon carbide substrate or core, overlayed with an EAL of partially sintered silicon carbide integrally bonded to its core member. Thermal cycling tests proved such structures to be moderately resistant to oxidation and highly resistant to thermal shock stresses. The strength of the developed structures in some cases exceeded but essentially it remained the same as the fully sintered silicon carbide without the EAL. Ballistic impact tests indicated that substantial improvements in the toughness of sintered silicon carbide were achieved by the use of the partially densified silicon carbide EALs.

  4. Effects of Different Buffers on the Construction of Aptamer Sensors

    NASA Astrophysics Data System (ADS)

    Yu, Quan; Dai, Zhao; Wu, Wenjing; Zhu, Haijia; Ji, Luyu

    2017-12-01

    In this paper, the effect of different buffers, PBS and TBE, on the construction of an aptamer sensor (apt sensor) for ATP was investigated. The apt sensor was based on fluorescence energy resonance transfer (FRET), when the energy donor was 5'-carboxyfluorescein (5'-FAM) and the energy receptor was Au nanoparticles (AuNPs), respectively. Both the donor and acceptor were conjugated with complementary and single stranded DNA (ssDNA). The fluorescent changes of the sensors were measured to investigate the influence of different buffers during the whole preparation and detection process. The results indicated that when the AuNPs and ssDNA (Au-DNA1) were conjugated in PBS buffer, the corresponding apt sensors would obtain a better detection ability of ATP than in TBE buffer.

  5. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1982-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  6. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1984-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  7. Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.

    PubMed Central

    Liu, S Y; Kono, M; Ebrey, T G

    1991-01-01

    The effect of pH buffers on the microsecond photocurrent component, B2, of oriented purple membranes has been studied. We found that under low salt conditions (less than 10 mM monovalent cationic salt) pH buffers can dramatically alter the waveform of the B2 component. The effect is induced by the protonation process of the buffer molecules by protons expelled from the membrane. These effects can be classified according to the charge transition upon protonation of the buffer. Buffers that carry two positive charges in their protonated form add a negative current component (N component) to B2. Almost all of the other buffers add a positive current component (P component) to B2, which is essentially a mirror image of the N component. Buffers with a pK less than 5.5 have only a small positive buffer component. The pH dependence of the buffer effect is closely related to the pK of the buffer; it requires that the buffer be in its unprotonated form. The rise time of the buffer component increases with the concentration of the buffer molecules. All the buffer effects can be inhibited by the addition of 5 mM of a divalent cation such as Ca2+. Reducing the surface potential slows down the N component but accelerates the P component without affecting the amplitude of the buffer effect significantly. Many of the buffer effects can be explained if we assume that upon protonation of the buffer by a proton expelled from the membrane by light, the buffer molecules move toward the membrane. This backward movement of buffer molecules forms a counter current very similar to that due to cations discussed in Liu, S. Y., R. Govindjee, and T. G. Ebrey. (1990. Biophys. J. 57:951-963). PMID:1883939

  8. Silicone-containing composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Mustafa

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selectedmore » from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.« less

  9. The concept of "buffering" in systems and control theory: from metaphor to math.

    PubMed

    Schmitt, Bernhard M

    2004-10-04

    The paradigm of "buffering" is used increasingly for the description of diverse "systemic" phenomena encountered in evolutionary genetics, ecology, integrative physiology, and other areas. However, in this new context, the paradigm has not yet matured into a truly quantitative concept inasmuch as it lacks a corresponding quantitative measure of "systems-level buffering strength". Here, I develop such measures on the basis of a formal and general approach to the quantitation of buffering action. "Systems-level buffering" is shown to be synonymous with "disturbance rejection" in feedback-control systems, and can be quantitated by means of dimensionless proportions between partial flows in two-partitioned systems. The units allow either the time-independent, "static" buffering properties or the time-dependent, "dynamic" ones to be measured. Analogous to this "resistance to change", one can define and measure the "conductance to change"; this quantity corresponds to "set-point tracking" in feedback-control systems. Together, these units provide a systematic framework for the quantitation of buffering action in systems biology, and reveal the common principle behind systems-level buffering, classical acid-base buffering, and multiple other manifestations of buffering.

  10. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions.

    PubMed

    Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K

    2017-10-19

    We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.

  11. Buffered hydrochloric acid: a modern method of treating metabolic alkalosis.

    PubMed

    Finkle, D; Dean, R E

    1981-03-01

    Twenty-one patients with metabolic alkalosis were treated successfully with intravenous hydrochloric acid (HCl) buffered in an amino acid solution (TPN). No complications of HCl were seen. TPN was used to meet energy needs and provide a buffering effect through the interaction of HCl and amino acids. Buffered HCl therapy should be considered as the initial treatment in patients with metabolic alkalosis associated with congestive heart failure, renal failure, hepatic failure, cerebral edema, or refractory metabolic alkalosis.

  12. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  13. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  14. Questing and the application for silicon based ternary compound within ultra-thin layer of SIS intermediate region

    NASA Astrophysics Data System (ADS)

    Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan

    2016-12-01

    A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.

  15. Grass buffers for playas in agricultural landscapes: An annotated bibliography

    USGS Publications Warehouse

    Melcher, Cynthia P.; Skagen, Susan K.

    2005-01-01

    References on best management practices (BMPs) for agricultural lands were included because certain BMPs are crucial for informing decisions about buffer design/ effectiveness and overall playa ecology. We also included various papers that increase the spectrum of time over which buffer theories and practices have evolved. An unannotated section lists references that we did not prioritize for annotation and references that may be helpful but were beyond the scope of this document. Finally, we provide notes on conversations we had with scientists, land managers, and other buffer experts whom we consulted, and their contact information. We conclude the bibliography with appendices of common and scientific names of birds and plants and acronyms used in both the bibliography. In the annotations, italicized text signifies our own editorial remarks. Readers should also note that much of the work on buffers has been designed using English units of measure rather than metrics; in most cases, their results have been converted to metrics for publication, explaining the seemingly odd or irregular buffer widths and other parameters reported.

  16. Bond Sensitivity to Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.

  17. Comparison of the effect of NaOH and TE buffer on 25 to 100 eV electron induced damage to ΦX174 dsDNA

    NASA Astrophysics Data System (ADS)

    Kumar, S. V. K.; Murali, Megha; Kushwaha, Preksha

    2015-09-01

    In this article we report the usage of (1) ΦX174 dsDNA as a model for electron - DNA interaction studies, (2) semiconductor grade 100 silicon wafer, gold on chrome on glass, and tantalum foil substrates, drying process and effect of temperature, on the DNA film formation and its stability, (3) stability of DNA films formed from DNA suspended in nano pure water and with additives like NaOH and TE buffer, and (4) effect of 0.001 mM NaOH and TE buffer (at pH 7.5) additives on DNA damage induced by 25 to 100 eV electrons. The results show that when tantalum foils are used as a substrate, it results in films, which have DNA distributed fairly uniformly and is also stable against strand breaks affected due to the stress of the drying. Electron irradiation of DNA suspended in TE buffer result in the formation of only relaxed form. When the DNA is suspended in 0.001 mM NaOH and irradiated similarly, linear form and cross links are also formed, in addition to relaxed form. This could be likely due to the secondary electrons interacting with Na+ ions that are bound to the DNA causing a second strand break in the opposite strand. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  18. One-step synthesis of 3D sulfur/nitrogen dual-doped graphene supported nano silicon as anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Ruihong; Li, Junli; Qi, Kaiyu; Ge, Xin; Zhang, Qiwei; Zhang, Bangwen

    2018-03-01

    Silicon is one of the most promising candidates for next-generation anode of Lithium-ion batteries. However, poor electrical conductivity and large volume change during alloying/dealloying hinder its practical use. Here we reported a three-dimensional (3D) nitrogen and sulfur codoped graphene supported silicon nanoparticles composite (SN-G/Si) through one-step hydrothermal self-assembly. The obtained SN-G/Si was investigated in term of instrumental characterizations and electrochemical properties. The results show that SN-G/Si as a freestanding anode in LIBs delivers a reversible capacity of 2020 mAh g-1 after 100 cycles with coulombic efficiency of nearly 97%. The excellent electrochemical performance is associated with the unique structure and the synergistic effect of SN-G/Si, in which SN-G provides volume buffer for nano Si as the flexible loader, short paths/fast channels for electron/Li ion transport as porous skeleton, and low charge-transfer resistance.

  19. Structural, Electrical and Optical Properties of Sputtered-Grown InN Films on ZnO Buffered Silicon, Bulk GaN, Quartz and Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Bashir, Umar; Hassan, Zainuriah; Ahmed, Naser M.; Afzal, Naveed

    2018-05-01

    Indium nitride (InN) films were grown on Si (111), bulk GaN, quartz and sapphire substrates by radio frequency magnetron sputtering. Prior to the film deposition, a zinc oxide (ZnO) buffer layer was deposited on all the substrates. The x-ray diffraction patterns of InN films on ZnO-buffered substrates indicated c-plane-oriented films whereas the Raman spectroscopy results indicated A1 (LO) and E2 (high) modes of InN on all the substrates. The crystalline quality of InN was found to be better on sapphire and quartz than on the other substrates. The surface roughness of InN was studied using an atomic force microscope. The results indicated higher surface roughness of the film on sapphire as compared to the others; however, roughness of the film was lower than 8 nm on all the substrates. The electrical properties indicated higher electron mobility of InN (20.20 cm2/Vs) on bulk GaN than on the other substrates. The optical band gap of InN film was more than 2 eV in all the cases and was attributed to high carrier concentration in the film.

  20. Performance evaluation of GDC-SrMoO4-YSZ SOFCs prepared with different pore formers

    NASA Astrophysics Data System (ADS)

    Hongxin, You; Lian, Peng; Xiaojuan, Wang; Cong, Zhao; Yajun, Guan; Tao, Yu; Lijun, Xu; Abuliti

    2018-04-01

    The paper aims to evaluate the performance of anodes prepared with different pore formers. Anodic precursor material SrMoO4 was prepared by hard template method. Gd0.2Ce0.8O1.9 (GDC) was introduced to the precursor to prepare composite anode material GDC-SrMoO4-YSZ by wet impregnation method. Cotton-fibers, graphite powder, flour and activated carbon fibers (ACF) were added as pore formers to the anode to prepare the corresponding solid oxide fuel cell (SOFC), respectively. The electrical performance testing was conducted under the methane environment at 800°C. The result showed that the single cell with 5wt% cotton-fibers as anode pore-former performed best with the maximum power density (464.49 mW.cm2). The cross section samples of the test cells indicated that the anode was left with a plenty of continuous long channels because of the burning of cotton-fibers. Thus, the influence of the amount of cotton-fibers (2wt%, 4wt%, 5wt%, 7wt%, 10wt%) of the anode on the performance of SOFC was tested and further analyzed by the scanning electron microscope (SEM). It was indicated that the optimum adding amount of cotton-fibers was 5wt%.

  1. Silicone-specific blood lymphocyte response in women with silicone breast implants.

    PubMed Central

    Ojo-Amaize, E A; Conte, V; Lin, H C; Brucker, R F; Agopian, M S; Peter, J B

    1994-01-01

    A blinded cross-sectional study was carried out with 99 women, 44 of whom had silicone breast implants. Group I consisted of 55 healthy volunteer women without breast implants; group II comprised 13 volunteer women with breast implants or explants who felt healthy; group III comprised 21 volunteer women with breast implants who had chronic fatigue, musculoskeletal symptoms, and skin disorders; and group IV comprised 10 women who had their prostheses explanted but still presented with clinical symptoms similar to those of the women in group III. Proliferative responses of peripheral blood mononuclear cells from all 99 women were measured by [3H]thymidine uptake after exposure to SiO2 silicon, or silicone gel. The levels of proliferative responses were expressed as stimulation indices, which were obtained by dividing the counts per minute of stimulated cells by the counts per minute of unstimulated cells. Abnormal responses to SiO2, silicon, or silicone gel were defined as a stimulation index of > 2.8, > 2.1, or > 2.4, respectively. Abnormal responses were observed in 0% of group I, 15% of group II, 29% of group III, and 30% of group IV (P < 0.0005 for group I versus groups II and IV). Thirty-one percent of symptomatic women with silicone gel breast implants had elevated serum silicon levels ( > 0.18 mg/liter); however, there was no significant correlation between abnormal cellular responses and silicon levels in blood serum, type of implant, time since first implantation, prosthesis explantation, number of implants, or report of implant leakage or rupture.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8556522

  2. Placement of riparian forest buffers to improve water quality

    Treesearch

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2005-01-01

    Riparian forest buffers can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, hydrology, and surficial geology detemine the capability of forest buffers to intercept and treat these flows. This paper describes landscape analysis techniques for identifying and mapping...

  3. Stability and rheology of dispersions of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1987-01-01

    The relationship between the surface and colloid chemistry of commercial ultra-fine silicon carbide and silicon nitride powders was examined by a variety of standard characterization techniques and by methodologies especially developed for ceramic dispersions. These include electrokinetic measurement, surface titration, and surface spectroscopies. The effects of powder pretreatment and modification strategies, which can be utilized to augment control of processing characteristics, were monitored with these technologies. Both silicon carbide and nitride were found to exhibit silica-like surface chemistries, but silicon nitride powders possess an additional amine surface functionality. Colloidal characteristics of the various nitride powders in aqueous suspension is believed to be highly dependent on the relative amounts of the two types of surface groups, which in turn is determined by the powder synthesis route. The differences in the apparent colloidal characteristics for silicon nitride powders cannot be attributed to the specific absorption of ammonium ions. Development of a model for the prediction of double-layer characteristics of materials with a hybrid site interface facilitated understanding and prediction of the behavior of both surface charge and surface potential for these materials. The utility of the model in application to silicon nitride powders was demonstrated.

  4. Single-Event Effects in Silicon and Silicon Carbide Power Devices

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2014-01-01

    NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.

  5. On the delay analysis of a TDMA channel with finite buffer capacity

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.

    1982-01-01

    The throughput performance of a TDMA channel with finite buffer capacity for transmitting data messages is considered. Each station has limited message buffer capacity and has Poisson message arrivals. Message arrivals will be blocked if the buffers are congested. Using the embedded Markov chain model, the solution procedure for the limiting system-size probabilities is presented in a recursive fashion. Numerical examples are given to demonstrate the tradeoffs between the blocking probabilities and the buffer sizing strategy.

  6. Growth of silicon carbide crystals on a seed while pulling silicon crystals from a melt

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.; Schwuttke, G. H. (Inventor)

    1979-01-01

    A saturated solution of silicon and an element such as carbon having a segregation coefficient less than unity is formed by placing a solid piece of carbon in a body of molten silicon having a temperature differential decreasing toward the surface. A silicon carbide seed crystal is disposed on a holder beneath the surface of the molten silicon. As a rod or ribbon of silicon is slowly pulled from the melt, a supersaturated solution of carbon in silicon is formed in the vicinity of the seed crystal. Excess carbon is emitted from the solution in the form of silicon carbide which crystallizes on the seed crystal held in the cool region of the melt.

  7. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density

    PubMed Central

    Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H.; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-man; Doo, Seok-Gwang; Chang, Hyuk

    2015-01-01

    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. PMID:26109057

  8. Porous Silicon Nanowires

    PubMed Central

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  9. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    DOEpatents

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  10. Social buffering enhances extinction of conditioned fear responses in male rats.

    PubMed

    Mikami, Kaori; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-09-01

    In social species, the phenomenon in which the presence of conspecific animals mitigates stress responses is called social buffering. We previously reported that social buffering in male rats ameliorated behavioral fear responses, as well as hypothalamic-pituitary-adrenal axis activation, elicited by an auditory conditioned stimulus (CS). However, after social buffering, it is not clear whether rats exhibit fear responses when they are re-exposed to the same CS in the absence of another rat. In the present study, we addressed this issue using an experimental model of extinction. High stress levels during extinction training impaired extinction, suggesting that extinction is enhanced when stress levels during extinction training are low. Therefore, we hypothesized that rats that had received social buffering during extinction training would not show fear responses to a CS, even in the absence of another rat, because social buffering had enhanced the extinction of conditioned fear responses. To test this, we subjected male fear-conditioned rats to extinction training either alone or with a non-conditioned male rat. The subjects were then individually re-exposed to the CS in a recall test. When the subjects individually underwent extinction training, no responses were suppressed in the recall test. Conversely, when the subjects received social buffering during extinction training, freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala were suppressed. Additionally, the effects of social buffering were absent when the recall test was conducted in a different context from the extinction training. The present results suggest that social buffering enhances extinction of conditioned fear responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Silicone Migration From Baked-on Silicone Layers. Particle Characterization in Placebo and Protein Solutions.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2016-12-01

    A significant number of therapeutic proteins are marketed as pre-filled syringes or other drug/device combination products and have been safely used in these formats for years. Silicone oil, which is used as lubricant, can migrate into the drug product and may interact with therapeutic proteins. In this study, particles in the size range of 0.2-5 μm and ≥1 μm as determined by resonant mass measurement and micro-flow imaging/light obscuration, respectively, resulted from silicone sloughing off the container barrel after agitation. The degree of droplet formation correlated well with the applied baked-on silicone levels of 13 μg and 94 μg per cartridge. Silicone migration was comparable in placebo, 2 mg/mL and 33 mg/mL IgG1 formulations containing 0.04% (w/v) polysorbate 20. Headspace substantially increased the formation of silicone droplets during agitation. The highest particle concentrations reached, however, were still very low compared to numbers described for spray-on siliconized containers. When applying adequate baked-on silicone levels below 100 μg, bake-on siliconization efficiently limits silicone migration into the drug product without compromising device functionality. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. High T(sub c) superconductors fabricated by plasma aerosol mist deposition technique

    NASA Technical Reports Server (NTRS)

    Wang, X. W.; Vuong, K. D.; Leone, A.; Shen, C. Q.; Williams, J.; Coy, M.

    1995-01-01

    We report new results on high T(sub c) superconductors fabricated by a plasma aerosol mist deposition technique, in atmospheric environment. Materials fabricated are YBaCuO, BiPbSrCaCuO, BaCaCuO precursor films for TlBaCaCuO, and other buffers such as YSZ. Depending on processing conditions, sizes of crystallites and/or particles are between dozens of nano-meters and several micrometers. Superconductive properties and other material characteristics can also be tailored.

  13. ssDNA degradation along capillary electrophoresis process using a Tris buffer.

    PubMed

    Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François

    2017-06-01

    Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Signal Amplification in Field Effect-Based Sandwich Enzyme-Linked Immunosensing by Tuned Buffer Concentration with Ionic Strength Adjuster.

    PubMed

    Kumar, Satyendra; Kumar, Narendra; Panda, Siddhartha

    2016-04-01

    Miniaturization of the sandwich enzyme-based immunosensor has several advantages but could result in lower signal strength due to lower enzyme loading. Hence, technologies for amplification of the signal are needed. Signal amplification in a field effect-based electrochemical immunosensor utilizing chip-based ELISA is presented in this work. First, the molarities of phosphate buffer saline (PBS) and concentrations of KCl as ionic strength adjuster were optimized to maximize the GOx glucose-based enzymatic reactions in a beaker for signal amplification measured by change in the voltage shift with an EIS device (using 20 μl of solution) and validated with a commercial pH meter (using 3 ml of solution). The PBS molarity of 100 μM with 25 mM KCl provided the maximum voltage shift. These optimized buffer conditions were further verified for GOx immobilized on silicon chips, and similar trends with decreased PBS molarity were obtained; however, the voltage shift values obtained on chip reaction were lower as compared to the reactions occurring in the beaker. The decreased voltage shift with immobilized enzyme on chip could be attributed to the increased Km (Michaelis-Menten constant) values in the immobilized GOx. Finally, a more than sixfold signal enhancement (from 8 to 47 mV) for the chip-based sandwich immunoassay was obtained by altering the PBS molarity from 10 to 100 μM with 25 mM KCl.

  15. Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution.

    PubMed

    Tang, Jianting; Liu, Jian; Yang, Jie; Feng, Zhaochi; Fan, Fengtao; Yang, Qihua

    2009-07-15

    Mesoporous titanosilicates with high titanium content were synthesized under mild acidic conditions (pH=4.4, HAc-NaAc buffer solution) by co-condensation of acetylacetone-modified titanium isopropoxide (Ti(OBu(n))(3) (acac)) and mixture of sodium silicate with tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) or tetrakis(2-hydroxyethyl)orthosilicate (EGMS), using block copolymer Pluronic P123 as template. The combined results of XRD, N(2) sorption and TEM show that the highly regular structure of the mesoporous titanosilicates can still be obtained when Ti/Si molar ratio in the final product is as high as 0.059. The results of UV-vis diffuse reflectance spectra and UV resonance Raman spectra show that the framework titanium species are predominant in the mesoporous titanosilicates when Ti/Si molar ratio in the final product is less than 0.042. The mixture of sodium silicate and EGMS was proved to be the best silicon source for the synthesis of titanosilicates with ordered mesostructure and high titanium content. The efficiency of this synthetic method may be attributed to the mild acidic medium as well as the modified hydrolysis-condensation rate and hydrophility of the precursors.

  16. Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets.

    PubMed

    Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-04-01

    The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  17. Through-silicon via-induced strain distribution in silicon interposer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianne, B., E-mail: benjamin.vianne@st.com; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles; Richard, M.-I.

    2015-04-06

    Strain in silicon induced by Through-Silicon Via (TSV) integration is of particular interest in the frame of the integration of active devices in silicon interposer. Nano-focused X-ray beam diffraction experiments were conducted using synchrotron radiation to investigate the thermally induced strain field in silicon around copper filled TSVs. Measurements were performed on thinned samples at room temperature and during in situ annealing at 400 °C. In order to correlate the 2D strain maps with finite elements analysis, an analytical model was developed, which takes into account beam absorption in the sample for a given diffraction geometry. The strain field along themore » [335] direction is found to be in the 10{sup −5} range at room temperature and around 10{sup −4} at 400 °C. Simulations support the expected plastification in some regions of the TSV during the annealing step.« less

  18. The role of the episodic buffer in working memory for language processing.

    PubMed

    Rudner, Mary; Rönnberg, Jerker

    2008-03-01

    A body of work has accumulated to show that the cognitive process of binding information from different mnemonic and sensory sources as well as in different linguistic modalities can be fractionated from general executive functions in working memory both functionally and neurally. This process has been defined in terms of the episodic buffer (Baddeley in Trends Cogn Sci 4(11):417-423, 2000). This paper considers behavioural, neuropsychological and neuroimaging data that elucidate the role of the episodic buffer in language processing. We argue that the episodic buffer seems to be truly multimodal in function and that while formation of unitary multidimensional representations in the episodic buffer seems to engage posterior neural networks, maintenance of such representations is supported by frontal networks. Although, the episodic buffer is not necessarily supported by executive processes and seems to be supported by different neural networks, it may operate in tandem with the central executive during effortful language processing. There is also evidence to suggest engagement of the phonological loop during buffer processing. The hippocampus seems to play a role in formation but not maintenance of representations in the episodic buffer of working memory.

  19. High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions.

    PubMed

    Geuijen, Karin P M; Schasfoort, Richard B; Wijffels, Rene H; Eppink, Michel H M

    2014-06-01

    Affinity-based analyses on biosensors depend partly on regeneration between measurements. Regeneration is performed with a buffer that efficiently breaks all interactions between ligand and analyte while maintaining the active binding site of the ligand. We demonstrated a regeneration buffer scouting using the combination of a continuous flow microspotter with a surface plasmon resonance imaging platform to simultaneously test 48 different regeneration buffers on a single biosensor. Optimal regeneration conditions are found within hours and consume little amounts of buffers, analyte, and ligand. This workflow can be applied to any ligand that is coupled through amine, thiol, or streptavidin immobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    NASA Technical Reports Server (NTRS)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  1. Electrophoretic mobilities of cultured human embryonic kidney cells in various buffers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Data on the electrophoretic mobility distributions of cells in the new D-1 buffer and the interlaboratory standardization of urokinase assay methods are presented. A table of cell strains and recent data on cell dispersal methods are also included. It was decided that glycerol in A-1 electrophoretic mobility data on cultured human embryonic kidney cells subjected to electrophoresis in this buffer. The buffer composition is presented.

  2. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  3. Theoretical considerations for Reaction-Formed Silicon Carbide (RFSC) formation by molten silicon infiltration into slurry-derived preforms

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.; Singh, M.

    1993-01-01

    For reaction-formed silicon carbide (RFSC) ceramics produced by silicon melt infiltration of porous carbon preforms, equations are developed to relate the amount of residual silicon to the initial carbon density. Also, for a slurry derived preform containing both carbon and silicon powder, equations are derived which relate the amount of residual silicon in the RFSC to the relative density of the carbon in the preform and to the amount of silicon powder added to the slurry. For a porous carbon preform that does not have enough porosity to prevent choking-off of the silicon infiltration, these results show that complete silicon infiltration can occur by adding silicon powder to the slurry mixture used to produce these preforms.

  4. Silicon oxidation in fluoride solutions

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Kapur, V.

    1980-01-01

    Silicon is produced in a NaF, Na2SiF6, and Na matrix when SiF4 is reduced by metallic sodium. Hydrogen is evolved during acid leaching to separate the silicon from the accompanying reaction products, NaF and Na2SiF6. The hydrogen evolution reaction was studied under conditions simulating leaching conditions by making suspensions of the dry silicon powder in aqueous fluoride solutions. The mechanism for the hydrogen evolution is discussed in terms of spontaneous oxidation of silicon resulting from the cooperative effects of (1) elemental sodium in the silicon that reacts with water to remove a protective silica layer, leaving clean reactive silicon, and (2) fluoride in solution that complexes with the oxidized silicon in solution and retards formation of a protective hydrous oxide gel.

  5. Process for producing silicon

    DOEpatents

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  6. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  7. Investigation of aluminosilicate refractory for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gentile, Paul Steven

    Stationary solid oxide fuel cells (SOFCs) have been demonstrated to provide clean and reliable electricity through electro-chemical conversion of various fuel sources (CH4 and other light hydrocarbons). To become a competitive conversion technology the costs of SOFCs must be reduced to less than $400/kW. Aluminosilicate represents a potential low cost alternative to high purity alumina for SOFC refractory applications. The objectives of this investigation are to: (1) study changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) identify volatile silicon species released by aluminosilicates, (3) identify the mechanisms of aluminosilicate vapor deposition on SOFC materials, and (4) determine the effects of aluminosilicate vapors on SOFC electrochemical performance. It is shown thermodynamically and empirically that low cost aluminosilicate refractory remains chemically and thermally unstable under SOFC operating conditions between 800°C and 1000°C. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) of the aluminosilicate bulk and surface identified increased concentrations of silicon at the surface after exposure to SOFC gases at 1000°C for 100 hours. The presence of water vapor accelerated surface diffusion of silicon, creating a more uniform distribution. Thermodynamic equilibrium modeling showed aluminosilicate remains stable in dry air, but the introduction of water vapor indicative of actual SOFC gas streams creates low temperature (<1000°C) silicon instability due to the release of Si(OH)4 and SiO(OH) 2. Thermal gravimetric analysis and transpiration studies identified a discrete drop in the rate of silicon volatility before reaching steady state conditions after 100-200 hours. Electron microscopy observed the preferential deposition of vapors released from aluminosilicate on yttria stabilized zirconia (YSZ) over nickel. The adsorbent consisted of alumina rich clusters enclosed in an amorphous siliceous

  8. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111)

    NASA Astrophysics Data System (ADS)

    Gallheber, B.-C.; Fischer, M.; Mayr, M.; Straub, J.; Schreck, M.

    2018-06-01

    Basic understanding of the fundamental processes in crystal growth as well as the structural quality of diamond synthesized by chemical vapour deposition on iridium surfaces has reached a high level for samples with (001) orientation. Diamond deposition on the alternative (111) surface is generally more challenging but of appreciable technological interest, too. In the present work, heteroepitaxy of diamond on Ir/YSZ/Si(111) with different off-axis angles and directions has been studied. During the growth of the first microns, strong and complex intrinsic stress states were rapidly formed. They restricted the range of suitable temperatures in this study to values between 830 °C and 970 °C. At low-stress conditions, the maximum growth rates were about 1 μm/h. They facilitated long-time processes which yielded pronounced structural improvements with minimum values of 0.08° for the azimuthal mosaic spread, 4 × 107 cm-2 for the dislocation density and 1.8 cm-1 for the Raman line width. This refinement is even faster than on (001) growth surfaces. It indicates substantial differences between the two crystal directions in terms of merging of mosaic blocks and annihilation of dislocations. Crystals with a thickness of up to 330 μm have been grown. The correlation of photoluminescence and μ-Raman tomograms with topography data also revealed fundamental differences in the off-axis growth between (001) and (111) orientation. Finally, the analysis of the microscopic structures at the growth surface provided the base for a model that can conclusively explain the intriguing reversal of stress tensor anisotropy caused by a simple inversion in sign of the off-axis angle.

  9. Buffer architecture for biaxially textured structures and method of fabricating same

    DOEpatents

    Norton, David P.; Park, Chan; Goyal, Amit

    2004-04-06

    The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  10. Asparagine deamidation dependence on buffer type, pH, and temperature.

    PubMed

    Pace, Amanda L; Wong, Rita L; Zhang, Yonghua Taylor; Kao, Yung-Hsiang; Wang, Y John

    2013-06-01

    The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments. From this, deamidation rates of each fragment can be calculated. To generate kinetic parameters useful in setting shelf life, buffers prepared at room temperature and then placed at the appropriate stability temperatures. Solution pH was not adjusted to the same at different temperatures. Deamidation rate at 40°C was faster in acidic buffers than in basic buffers. However, this trend is reversed at 5°C, attributed to the change in hydroxide ion concentration influenced by buffer and temperature. The apparent activation energy was higher for rates generated in an acidic buffer than in a basic buffer. The rate-pH profile for mAb1 can be deconvoluted to Fc and Fab. The Fc deamidation showed a V-shaped profile: deamidation of PENNY peptide is responsible for the rate at high-pH, whereas deamidation of a new site, Asn323, may be responsible for the rate at low-pH. The profile for Fab is a straight line without curvature. Copyright © 2013 Wiley Periodicals, Inc.

  11. Fatigue of graphite/epoxy buffer strip panels with center cracks

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1985-01-01

    The effects of fatigue loading on the behavior of graphite/epoxy panels with either S-Glass or Kevlar-49 buffer strips is studied. Buffer strip panels are fatigued and tested in tension to measure their residual strength with crack-like damage. Panels are made with 45/0/-45/90 sub 2s layup with either S-Glass or Kevlar-49 buffer strip material. The buffer strips are parallel to the loading direction and made by replacing narrow strips of the 0-degree graphite plies with strips of either 0-degree S-Glass/epoxy or Kevlar-49/epoxy on a one-for-one basis. The panels are subjected to a fatigue loading spectrum MINITWIST, the shortened version of the standardized load program for the wing lower surface of a transport aircraft. Two levels of maximum strain are used in the spectrum with three durations of the fatigue spectrum. One group of panels is preloaded prior to the application of the fatigue cycling. The preload consists of statistically loading the spectrum in tension until the crack-tip damage zone reaches the ajacent buffer strips. After fatigue loading, all specimens are statistically loaded in tension to failure to determine their residual strengths.

  12. Silicon-graphene photonic devices

    NASA Astrophysics Data System (ADS)

    Yin, Yanlong; Li, Jiang; Xu, Yang; Tsang, Hon Ki; Dai, Daoxin

    2018-06-01

    Silicon photonics has attracted much attention because of the advantages of CMOS (complementary-metal-oxide-semiconductor) compatibility, ultra-high integrated density, etc. Great progress has been achieved in the past decades. However, it is still not easy to realize active silicon photonic devices and circuits by utilizing the material system of pure silicon due to the limitation of the intrinsic properties of silicon. Graphene has been regarded as a promising material for optoelectronics due to its unique properties and thus provides a potential option for realizing active photonic integrated devices on silicon. In this paper, we present a review on recent progress of some silicon-graphene photonic devices for photodetection, all-optical modulation, as well as thermal-tuning. Project supported by the National Major Research and Development Program (No. 2016YFB0402502), the National Natural Science Foundation of China (Nos. 11374263, 61422510, 61431166001, 61474099, 61674127), and the National Key Research and Development Program (No. 2016YFA0200200).

  13. Analysis of microbial populations, denitrification, and nitrous oxide production in riparian buffers

    USDA-ARS?s Scientific Manuscript database

    Riparian buffers are used extensively to protect water bodies from nonpoint source nitrogen pollution. However there is relatively little information on the impact of these buffers on production of nitrous oxide (N2O). In this study, we assessed nitrous oxide production in riparian buffers of the so...

  14. Exposure to buffer solution alters tendon hydration and mechanics.

    PubMed

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Conservation Buffers—Design guidelines for buffers, corridors, and greenways

    Treesearch

    G. Bentrup

    2008-01-01

    Over 80 illustrated design guidelines for conservation buffers are synthesized and developed from a review of over 1,400 research publications. Each guideline describes a specific way that a vegetative buffer can be applied to protect soil, improve air and water quality, enhance fish and wildlife habitat, produce economic products, provide recreation opportunities, or...

  16. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  17. Buffer layers for REBCO films for use in superconducting devices

    DOEpatents

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  18. Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013

    High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN filmmore » grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.« less

  19. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    DOEpatents

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  20. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  1. Low-noise two-wired buffer electrodes for bioelectric amplifiers.

    PubMed

    Degen, Thomas; Torrent, Simon; Jäckel, Heinz

    2007-07-01

    Active buffer electrodes are known to improve the immunity of bioelectric recordings against power line interferences. A survey of published work reveals that buffer electrodes are almost exclusively designed using operational amplifiers (opamps). In this paper, we discuss the advantage of utilizing a single transistor instead. This allows for a simple electrode, which is small and requires only two wires. In addition, a single transistor adds considerably less noise when compared to an opamp with the same power consumption. We then discuss output resistance and gain as well as their respective effect on the common mode rejection ratio (CMRR). Finally, we demonstrate the use of two-wired buffer electrodes for a bioelectric amplifier.

  2. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    NASA Astrophysics Data System (ADS)

    Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca

    2014-08-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.

  3. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NASA Astrophysics Data System (ADS)

    de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.

    2001-12-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions

  4. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  5. Cleanroom Garment Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Geer, Wayne; Lepage, Colette

    2006-01-01

    The slide presentation reviews actions taken at Goddard Space Flight Center (GSFC) to eliminate contamination by silicone in clean rooms. Background information includes facilities and hardware affected by silicon contamination, a discussion of the negative aspects of silicone contamination, clean room garments, and how the problem was identified at GSFC. Actions taken by the GSFC Contamination Engineering Group and lessons learned are detailed. Results include: awareness of the silicone issue in laundry, increase in infrastructure and support of the testing lab, establishment of protocols for garment verification, closer relationship established with laundry and converter, specifications for laundry services and garments were strengthened, all consumables are tested before use in clean rooms, and established procedures were used to identify and treat silicone found on face masks.

  6. Improved toughness of silicon carbide

    NASA Technical Reports Server (NTRS)

    Palm, J. A.

    1975-01-01

    Several techniques were employed to apply or otherwise form porous layers of various materials on the surface of hot-pressed silicon carbide ceramic. From mechanical properties measurements and studies, it was concluded that although porous layers could be applied to the silicon carbide ceramic, sufficient damage was done to the silicon carbide surface by the processing required so as to drastically reduce its mechanical strength. It was further concluded that there was little promise of success in forming an effective energy absorbing layer on the surface of already densified silicon carbide ceramic that would have the mechanical strength of the untreated or unsurfaced material. Using a process for the pressureless sintering of silicon carbide powders it was discovered that porous layers of silicon carbide could be formed on a dense, strong silicon carbide substrate in a single consolidation process.

  7. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniadis, H.

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink highmore » efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.« less

  8. Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH.

    PubMed

    Zareie, Mohammad; Keuning, Eelco D; ter Wee, Piet M; Schalkwijk, Casper G; Beelen, Robert H J; van den Born, Jacob

    2006-01-01

    Chronic exposure to conventional peritoneal dialysis fluid (PDF) is associated with functional and structural alterations of the peritoneal membrane. The bioincompatibility of conventional PDF can be due to hypertonicity, high glucose concentration, lactate buffering system, presence of glucose degradation products (GDPs) and/or acidic pH. Although various investigators have studied the sole effects of hyperosmolarity, high glucose, GDPs and lactate buffer in experimental PD, less attention has been paid to the chronic impact of low pH in vivo. Rats received daily 10 ml of either conventional lactate-buffered PDF (pH 5.2; n=7), a standard bicarbonate/lactate-buffered PDF with physiological pH (n=8), bicarbonate/lactate-buffered PDF with acidic pH (adjusted to pH 5.2 with 1 N hydrochloride, n=5), or bicarbonate/lactate buffer, without glucose, pH 7.4 (n=7). Fluids were instilled via peritoneal catheters connected to implanted subcutaneous mini vascular access ports for 8 weeks. Control animals with or without peritoneal catheters served as control groups (n=8/group). Various functional (2 h PET) and morphological/cellular parameters were analyzed. Compared with control groups and the buffer group, conventional lactate-buffered PDF induced a number of morphological/cellular changes, including angiogenesis and fibrosis in various peritoneal tissues (all parameters P<0.05), accompanied by increased glucose absorption and reduced ultrafiltration capacity. Daily exposure to standard or acidified bicarbonate/lactate-buffered PDF improved the performance of the peritoneal membrane, evidenced by reduced new vessel formation in omentum (P<0.02) and parietal peritoneum (P<0.008), reduced fibrosis (P<0.02) and improved ultrafiltration capacity. No significant differences were found between standard and acidified bicarbonate/lactate-buffered PDF. During PET, acidic PDF was neutralized within 15 to 20 min. The bicarbonate/lactate-buffered PDF, acidity per se did not contribute

  9. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  10. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.

    PubMed

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-07

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  11. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    PubMed Central

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  12. Breeding Bird Community Continues to Colonize Riparian Buffers Ten Years after Harvest

    PubMed Central

    2015-01-01

    Riparian ecosystems integrate aquatic and terrestrial communities and often contain unique assemblages of flora and fauna. Retention of forested buffers along riparian habitats is a commonly employed practice to reduce potential negative effects of land use on aquatic systems. However, very few studies have examined long-term population and community responses to buffers, leading to considerable uncertainty about effectiveness of this practice for achieving conservation and management outcomes. We examined short- (1–2 years) and long-term (~10 years) avian community responses (occupancy and abundance) to riparian buffer prescriptions to clearcut logging silvicultural practices in the Pacific Northwest USA. We used a Before-After-Control-Impact experimental approach and temporally replicated point counts analyzed within a Bayesian framework. Our experimental design consisted of forested control sites with no harvest, sites with relatively narrow (~13m) forested buffers on each side of the stream, and sites with wider (~30m) and more variable width unharvested buffer. Buffer treatments exhibited a 31–44% increase in mean species richness in the post-harvest years, a pattern most evident 10 years post-harvest. Post-harvest, species turnover was much higher on both treatments (63–74%) relative to the controls (29%). We did not find evidence of local extinction for any species but found strong evidence (no overlap in 95% credible intervals) for an increase in site occupancy on both Narrow (short-term: 7%; long-term 29%) and Wide buffers (short-term: 21%; long-term 93%) relative to controls after harvest. We did not find a treatment effect on total avian abundance. When assessing relationships between buffer width and site level abundance of four riparian specialists, we did not find strong evidence of reduced abundance in Narrow or Wide buffers. Silviculture regulations in this region dictate average buffer widths on small and large permanent streams that range

  13. [Study of purity tests for silicone resins].

    PubMed

    Sato, Kyoko; Otsuki, Noriko; Ohori, Akio; Chinda, Mitsuru; Furusho, Noriko; Osako, Tsutomu; Akiyama, Hiroshi; Kawamura, Yoko

    2012-01-01

    In the 8th edition of Japan's Specifications and Standards for Food Additives, the purity test for silicone resins requires the determination of the refractive index and kinetic viscosity of the extracted silicone oil, and allows for only a limited amount of silicon dioxide. In the purity test, carbon tetrachloride is used to separate the silicone oil and silicon dioxide. To exclude carbon tetrachloride, methods were developed for separating the silicone oil and silicon dioxide from silicone resin, which use hexane and 10% n-dodecylbenzenesulfonic acid in hexane. For silicone oil, the measured refractive index and kinetic viscosity of the silicone oil obtained from the hexane extract were shown to be equivalent to those of the intact silicone oil. In regard to silicon dioxide, it was confirmed that, following the separation with 10% n-dodecylbenzenesulfonic acid in hexane, the level of silicon dioxide in silicone resin can be accurately determined. Therefore, in this study, we developed a method for testing the purity of silicone resins without the use of carbon tetrachloride, which is a harmful reagent.

  14. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki

    2016-08-28

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less

  15. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoqing, E-mail: steelxu@stanford.edu; Parizi, Kokab B.; Huo, Yijie

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surfacemore » leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.« less

  16. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  17. Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrhardt, Fabien; Muller, Dominique; Slaoui, Abdelilah, E-mail: abdelilah.slaoui@unistra.fr

    2016-05-07

    Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size ofmore » the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.« less

  18. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  19. Method for one-to-one polishing of silicon nitride and silicon oxide

    NASA Technical Reports Server (NTRS)

    Babu, Suryadevara V. (Inventor); Natarajan, Anita (Inventor)

    2009-01-01

    The present invention provides a method of removing silicon nitride at about the same removal rate as silicon dioxide by CMP. The method utilizes a polishing slurry that includes colloidal silica abrasive particles dispersed in water and additives that modulate the silicon dioxide and silicon nitride removal rates such that they are about the same. In one embodiment of the invention, the additive is lysine or lysine mono hydrochloride in combination with picolinic acid, which is effective at a pH of about 8. In another embodiment of the invention, the additive is arginine in combination with picolinic acid, which is effective at a pH of about 10.

  20. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls.

    PubMed

    Kiyokawa, Yasushi; Hennessy, Michael B

    2018-03-01

    KIYOKAWA, Y. and HENNESSY, M.B. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls…NEUROSCI BIOBEHAV REV XXX-XXX, .- Over the past decades, there has been an increasing number of investigations of the impact of social variables on neural, endocrine, and immune outcomes. Among these are studies of "social buffering"-or the phenomenon by which affiliative social partners mitigate the response to stressors. Yet, as social buffering studies have become more commonplace, the variety of approaches taken, definitions employed, and divergent results obtained in different species can lead to confusion and miscommunication. The aim of the present paper, therefore, is to address terminology and approaches and to highlight potential pitfalls to the study of social buffering across nonhuman species. We review and categorize variables currently being employed in social buffering studies and provide an overview of responses measured, mediating sensory modalities and underlying mechanisms. It is our hope that the paper will be useful to those contemplating examination of social buffering in the context of their own research. Copyright © 2017 Elsevier Ltd. All rights reserved.