Sample records for ysz substrate prepared

  1. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    NASA Astrophysics Data System (ADS)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  2. Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings.

    PubMed

    Deng, Wen; An, Yulong; Hou, Guoliang; Li, Shuangjian; Zhou, Huidi; Chen, Jianmin

    2018-09-01

    Inconel 718 was used as the substrate and preheated at different temperatures to deposit yttrium stabilized zirconia (denoted as YSZ) coatings by atmospheric plasma spraying. The microstructure of the as-deposited YSZ coatings and those after cavitation-erosion tests were characterized by field emission scanning electron microscopy, Raman spectroscopy, and their hardness and toughness as well as cavitation-erosion resistance were evaluated in relation to the effect of substrate preheating temperature. Results indicate that the as-deposited YSZ coatings exhibit typical layered structure and consist of columnar crystals. With the increase of the substrate preheating temperature, the compactness and cohesion strength of coatings are obviously enhanced, which result in the increases in the hardness, elastic modulus and toughness as well as cavitation-erosion resistance of the ceramic coatings therewith. Particularly, the YSZ coating deposited at a substrate preheating temperature of 800 °C exhibits the highest hardness and toughness as well as the strongest lamellar interfacial bonding and cavitation-erosion resistance (its cavitation-erosion life is as much as 8 times than that of deposited at room temperature). Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E.

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% molmore » Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.« less

  4. Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon

    2017-04-01

    Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.

  5. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Debasish; Basu, Rajendra N., E-mail: rnbasu@cgcri.res.in

    2013-09-01

    Graphical abstract: - Highlights: • Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. • Suspension chemistry and process parameters for electrophoretic deposition optimized. • Deposited film quality changed with iodine and water (dispersants) concentration. • Dense YSZ film (∼5 μm) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry.more » Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 °C for 6 h a dense YSZ film of thickness ∼5 μm is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer.« less

  6. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    PubMed

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  7. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  8. Strong Flux Pinning of Nano-Sized Ysz Particles in Ybco Films Prepared by Mod Method

    NASA Astrophysics Data System (ADS)

    Ye, S.; Suo, H. L.; Liu, M.; Tang, X.; Wu, Z. P.; Zhao, Y.; Zhou, M. L.

    The YBCO films with doped YSZ nanoparticles have been prepared successfully by metal organic doepositon method using trifluoroacetates (TFA-MOD) through dissolving Zr organic salt into the YBCO precursor solution. The doped films have well in-plane and out-plane textures detected by both XRD Φ-scan and ω-scan. The YSZ nanoparticles with the size of about 5 ~ 15 nm were observed on the surface of the YBCO films using both FE-SEM and TEM. By comparing the superconducting properties, it was found that the doped YBCO films had lower Tc than that of undoped YBCO films. However, as increasing the applied magnetic field, Jc of the doped YBCO films were much better than that of undoped one. The Jc was as higher as 2.5 times than that of undoped YBCO film at 77 K and 1 T applied field.

  9. Yttria stabilized zirconia transparent films prepared by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yamane, Hisanori; Hirai, Toshio

    1989-04-01

    Yttria stabilized zirconia (YSZ) transparent films were prepared on quartz glass substrates at the temperature of 1375 K under atmospheric pressure using ZrCl 4, YCl 3 and O 2 gases as source materials. The growth rate of the film thickness was 1.5 to 2.0 μm/h. Cubic YSZ films were obtained at the value of x between 20 to 60, where x is defined by x( wt%) = YCl3×100/( YCl3+ ZrCl4). The lattice parameter of the cubic YSZ increased from 5.14 to 5.19 Å with the increase of x. Transparent films were obtained at the interval where the x value was between 20 to 45. The (100) plane of YSZ is oriented parallel to the surface of the substrate. For transparent film obtained at x = 29 (1.5 μm in thickness) the optical transmittance was 50-70% in the wavelength range of 250-800 nm.

  10. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  11. Polypropylene Oil as a Fuel for Ni-YSZ | YSZ | LSCF Solid Oxide Fuel Cell

    NASA Astrophysics Data System (ADS)

    Pratiwi, Andini W.; Rahmawati, Fitria; Rochman, Refada A.; Syahputra, Rahmat J. E.; Prameswari, Arum P.

    2018-01-01

    This research aims to convert polypropylene plastic to polypropylene oil through pyrolysis method and use the polypropylene oil as fuel for Solid Oxide Fuel Cell, SOFC, to produce electricity. The material for SOFC single cell are Ni-YSZ, YSZ, and LSCF as anode, electrolyte and cathode, respectively. YSZ is yttria-stabilized-zirconia. Meanwhile, LSCF is a commercial La0.6Sr0.4Co0.2Fe0.8O3. The Ni-YSZ is a composite of YSZ with nickel powder. LSCF and Ni-YSZ slurry coated both side of YSZ electrolyte pellet through screen printing method. The result shows that, the produced polypropylene oil consist of C8 to C27 hydrocarbon chain. Meanwhile, a single cell performance test at 673 K, 773 K and 873 K with polypropylene oil as fuel, found that the maximum power density is 1.729 μW. cm-2 at 673 K with open circuit voltage value of 9.378 mV.

  12. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain.

    PubMed

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-06-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc 2 O 3 multilayers as a function of the thick-ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec-trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al 2 O 3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y 2 O 3 -multilayers with similar microstructure. Using the Nernst-Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter-face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain.

  13. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain

    PubMed Central

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-01-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc2O3 multilayers as a function of the thick­ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec­trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al2O3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y2O3-multilayers with similar microstructure. Using the Nernst–Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter­face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain. PMID:27877580

  14. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  15. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt

    NASA Astrophysics Data System (ADS)

    Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit

    2018-04-01

    Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.

  16. Performance evaluation of GDC-SrMoO4-YSZ SOFCs prepared with different pore formers

    NASA Astrophysics Data System (ADS)

    Hongxin, You; Lian, Peng; Xiaojuan, Wang; Cong, Zhao; Yajun, Guan; Tao, Yu; Lijun, Xu; Abuliti

    2018-04-01

    The paper aims to evaluate the performance of anodes prepared with different pore formers. Anodic precursor material SrMoO4 was prepared by hard template method. Gd0.2Ce0.8O1.9 (GDC) was introduced to the precursor to prepare composite anode material GDC-SrMoO4-YSZ by wet impregnation method. Cotton-fibers, graphite powder, flour and activated carbon fibers (ACF) were added as pore formers to the anode to prepare the corresponding solid oxide fuel cell (SOFC), respectively. The electrical performance testing was conducted under the methane environment at 800°C. The result showed that the single cell with 5wt% cotton-fibers as anode pore-former performed best with the maximum power density (464.49 mW.cm2). The cross section samples of the test cells indicated that the anode was left with a plenty of continuous long channels because of the burning of cotton-fibers. Thus, the influence of the amount of cotton-fibers (2wt%, 4wt%, 5wt%, 7wt%, 10wt%) of the anode on the performance of SOFC was tested and further analyzed by the scanning electron microscope (SEM). It was indicated that the optimum adding amount of cotton-fibers was 5wt%.

  17. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-01-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  18. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-05-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  19. Heteroepitaxial growth of tin-doped indium oxide films on single crystalline yttria stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Kamei, Masayuki; Yagami, Teruyuki; Takaki, Satoru; Shigesato, Yuzo

    1994-05-01

    Heteroepitaxial growth of tin-doped indium oxide (ITO) film was achieved for the first time by using single crystalline yttria stabilized zirconia (YSZ) as substrates. The epitaxial relationship between ITO film and YSZ substrate was ITO[100]∥YSZ[100]. By comparing the electrical properties of this epitaxial ITO film with that of a randomly oriented polycrystalline ITO film grown on a glass substrate, neither the large angle grain boundaries nor the crystalline orientation were revealed to be dominant in determining the carrier mobility in ITO films.

  20. RETRACTED: Chemical densification of plasma sprayed yttria stabilized zirconia (YSZ) coatings for high temperature wear and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ye, Yaping; Fehr, Karl Thomas; Faulstich, Martin; Wolf, Gerhard

    2012-12-01

    Plasma-sprayed yttria stabilized zirconia (YSZ) ceramic coatings have been widely used as wear- and corrosion-resistant coatings in high temperature applications and an aggressive environment due to their high hardness, wear resistance, heat and chemical resistance, and low thermal conductivity. The highly porous structure of plasma-sprayed ceramic coatings and their poor adhesion to the substrate usually lead to the coating degradation and failure. In this study, a two-layer system consisting of atmospheric plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) and Ni-based alloy coatings was post-treated by means of a novel chemical sealing process at moderate temperatures of 600-800 °C. Microstructure characteristics of the YSZ coatings were studied using an electron probe micro-analyzer (EPMA). Results revealed that the ceramic top coat was densified by the precipitated zirconia in the open pores. Therefore, the sealed YSZ coatings exhibit reduced porosity, higher hardness and a better adhesion onto the bond coat. The mechanisms for the sealing process were also proposed.

  1. Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun

    2017-08-01

    Thermally sprayed coatings are essentially layered materials, and lamellar interfaces are of great importance to coatings' performances. In the present study, to investigate the microstructures and defect features at thermally sprayed coating interfaces, homoepitaxial 8 mol.% yttria-stabilized zirconia (YSZ) and heteroepitaxial lanthanum zirconia (LZ) films were fabricated. The epitaxial interfaces were examined by high-resolution transmission electron microscope (HR-TEM) in detail. As a result, we report, for the first time, an anomalous incommensurate homoepitaxial growth with mismatch-induced dislocations in thermally sprayed YSZ splats to create a homointerface. We also find the anomalous heteroepitaxial growth in thermally sprayed LZ splats. The mechanism of the anomalous incommensurate growth was analyzed in detail. Essentially, it is a pseudo-heteroepitaxy because of the lattice mismatch between the film and the locally heated substrate, as the locally heated substrate is significantly strained by its cold surroundings. Moreover, the super-high-density dislocations were found in the interfacial region, which resulted from sufficient thermal fluctuations and extremely rapid cooling rates. Both the anomalous lattice mismatch and super-high-density dislocations lead to weak interfaces and violent cracking in thermally sprayed coatings. These were also the essential differences between the conventional and the present epitaxy by thermal spray technique.

  2. Thermal barrier coatings with (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and 8YSZ top coat on Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Yao, Junqi; He, Yedong; Wang, Deren; Peng, Hui; Guo, Hongbo; Gong, Shengkai

    2013-12-01

    Developing new bond coat has been acknowledged as an effective way to extend the service life of thermal barrier coating (TBC) during high temperature. In this study, novel thermal barrier coating system, which is composed with an (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and a YSZ top coat on Ni-based superalloy, has been prepared by magnetron sputtering and EB-PVD, respectively. It is demonstrated, from the cyclic oxidation tests in air at 1100 °C for 200 h, that the YSZ top coat and alloy substrate can be bonded together effectively by the (Al2O3-Y2O3)/(Pt or Pt-Au) composite coating, showing excellent resistance to oxidation, cracking and buckling. These beneficial results can be attributed to the sealing effect of such composite coating, by which the alloy substrate can be protected from oxidation and the interdiffusion between the bond coat and alloy substrate can be avoided; and the toughening effect of noble metals and composite structure of bond coat, by which the micro-cracks propagation can be inhibited and the stress in bond coat can be relaxed. This ceramic/noble metal composite coating can be a considerable structure which would has great application prospect in the TBC.

  3. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    PubMed

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Influence of miscut Y2O3-stabilized ZrO2 substrates on the azimuthal domain structure and ferroelectric properties of epitaxial La-substituted Bi4Ti3O12 films

    NASA Astrophysics Data System (ADS)

    Lee, Sung Kyun; Hesse, Dietrich; Gösele, Ulrich; Lee, Ho Nyung

    2006-09-01

    We have investigated the influence of both miscut angle and miscut direction of Y2O3-stabilized ZrO2 (YSZ) (100) single crystal substrates on the azimuthal domain structure of SrRuO3 electrode layers as well as of La-substituted Bi4Ti3O12 (BLT) ferroelectric thin films, both grown on these substrates by pulsed laser deposition. X-ray diffraction ϕ scan and pole figure characterizations revealed that the YSZ[011] miscut direction is more effective to uniformly reduce the number of azimuthal domain variants in the films than the YSZ[001] miscut direction. The BLT films on YSZ(100) substrates with miscut angle of 5° and [011] miscut direction involve only half the number of azimuthal domains, compared to the BLT films on exactly cut YSZ(100) substrates. Atomic force microscopy and plan-view transmission electron microscopy also confirmed that almost all BLT grains on these miscut YSZ(100) substrates are arranged along only two (out of four) specific azimuthal directions. The BLT films on YSZ(100) substrates with 5° miscut towards YSZ[011] showed an about 1.3 times higher remanent polarization (Pr=12.5μC /cm2) than the BLT films on exactly cut YSZ(100) substrates (Pr=9.5μC/cm2), due most probably to a lower areal density of azimuthal domain boundaries. It thus appears that reducing the structural domains can be an effective way to further enhance the ferroelectric properties of multiply twinned, epitaxial ferroelectric films.

  5. Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Z.; Tamizifar, M.; Arzani, K.; Nemati, A.; Khanfekr, A.; Bolandi, M.

    2013-08-01

    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of nickel and cerium inhibited the grain growth in the system. The average crystallite size of the material doped with nickel oxide (9.33 nm) was bigger than the one doped with cerium oxide (9.29 nm), while the YSZ doping with the two oxides simultaneously promoted the grain growth with crystallite size of 11.37 nm. Yttria-stabilized zirconia powder with a mean crystallite size of 9.997 nm was prepared successfully by this method.

  6. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Hsi, Chi-Shiung; Li, Guang

    1992-01-01

    High T sub C superconducting thick film were prepared by a screen printing process. Y-based (YBa2Cu3O(7-x) superconducting thick film were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconductor thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T sub C and J sub C values were obtained from the films printed on these substrates. Critical temperatures (T sub C) of YBa2Cu3O(7-x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities (J sub C) of these films were less than 2 A/sq cm. Higher T sub C and J sub C YBa2Cu3O(7-x) thick films were printed on YSZ substrates. A YBa2Cu3O(7-x) thick film with T sub C=86.4 and J sub C= 50.4 A/sq cm was prepared by printing the film on YSZ substrate and firing at 990 C for 10 minutes. Multiple-lead samples were also prepared on the YSZ substrates. The multiple-lead samples showed lower T sub C and/or J sub C values than those of the plain samples. The electrical properties of YBa2Cu3O(7-x) thick films were determined by the microstructures of the films. The YBa2Cu3O(7-x) thick films printed on the YSZ substrates, which had the best properties among the films printed on the three different kinds of substrates, had the highest density and the best particle interconnection. The YBa2Cu3O(7-x) thick films with preferred orientation in (001) direction were obtained on the YSZ substrates. Cracks, which retard the properties of the films, were found from the films deposited on the YSZ substrates. Currently, a MSZ (Magnesium Stabilized Zirconia) substrate, which had higher thermal expansion coefficient than the YSZ substrate, is used as substrate for the YBa2Cu3O(7-x) thick film in order to eliminate the cracks on the film. Bi-based superconductor thick films were printed on polycrystalline MgO and YSZ substrates. Interactions between BSCCO thick films and the YSZ substrates were observed. Various buffer layer materials were

  7. Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei

    2008-09-01

    YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.

  8. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  9. Dominant pinning mechanisms in YBa2Cu3O7-x films on single and polycrystalline yttria stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.

    1992-04-01

    Critical-current densities have been measured in YBa2Cu3O7-x films deposited on (100) yttria stabilized zirconia (YSZ) and polycrystalline YSZ substrates as a function of temperature (4.5-88 K), magnetic field (0-1 T) and orientation relative to the applied field. The results indicate that in films on polycrystalline substrates, surface and interface pinning play a dominant role at high temperatures. In films on (100) YSZ, pinning is mainly due to intrinsic layer pinning as well as extrinsic pinning associated with the interaction of the fluxoids with point defects and low energy planar (2D) boundaries. The differences are attributed to the intrinsic rigidity of single fluxoids which is reduced in films on polycrystalline substrates thereby weakening the intrinsic layer pinning.

  10. Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates.

    PubMed

    Molaei, R; Bayati, M R; Alipour, H M; Estrich, N A; Narayan, J

    2014-01-08

    We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.

  11. YSZ thin films with minimized grain boundary resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano-­ columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  12. YSZ thin films with minimized grain boundary resistivity

    DOE PAGES

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  13. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Hernández, Z.E.; CICATA—Altamira, IPN. Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México; Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphatemore » buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.« less

  14. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    PubMed

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  15. Preparation of surface enhanced Raman substrate and its characterization

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  16. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    PubMed

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (<1 mm thick) to one surface and fired under manufacturer's recommended protocol. Scanning electron microscopy (SEM) with integrated electron dispersive X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  17. Fabrication of biaxially oriented YBCO on (001) biaxially oriented yttria-stabilized-zirconia on polycrystalline substrates

    NASA Astrophysics Data System (ADS)

    Arendt, P.; Foltyn, S.; Wu, Xin Di; Townsend, J.; Adams, C.; Hawley, M.; Tiwari, P.; Maley, M.; Willis, J.; Moseley, D.

    Ion-assisted, ion-beam sputter deposition is used to obtain (001) biaxially oriented films of cubic yttria stabilized zirconia (YSZ) on polycrystalline metal substrates. Yttrium barium copper oxide (YBCO) is then heteroepitaxially pulse laser deposited onto the YSZ. Phi scans of the films show the full-width-half maxima of the YSZ (202) and the YBCO (103) reflections to be 14 deg and 10 deg, respectively. Our best dc transport critical current density measurement for the YBCO is 800,000 A/sq cm at 75 K and 0 T. At 75 K, the total dc transport current in a 1 cm wide YBCO film is 23 A.

  18. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  19. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  20. Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

    PubMed

    Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji

    2017-09-20

    Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

  1. A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Kruse, Nancy H. M. (Inventor); Fox, Robert L. (Inventor); Tran, Sang Q. (Inventor)

    1995-01-01

    A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.

  2. The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Bal, Emre; Karabaş, Muhammet; Yılmaz Taptık, İ.

    2018-06-01

    The purpose of this research is to produce CMAS resistant YSZ based TBCs and compare thermal cycle performance of the TBCs before and after CMAS interaction. Plasma sprayed YSZ (Y), YSZ + Alumina (YA), YSZ + Titania (YT), and YSZ + Alumina + Titania (YTA) coatings have been exposed to CMAS at 1250 °C for 18 h. Thermal cycling tests were carried out with a propane + oxygen flame at 1250 ± 50 °C. Thermal cycle lifetime of YSZ, YA, YT, YTA, and CMAS contaminated Y, YA, YT, YTA coatings are 450, 416, 426, 438, 122, 211, 141, 298 respectively. After CMAS interaction, while the life span of other coatings has fallen to their life span’s quarter, the life span of YTA coating has decreased slightly. Damages in the coatings after thermal cycle tests have been studied by using SEM to observe the microstructure and x-ray diffraction techniques to analyze the phase composition. Also to see areal distribution of the CMAS through the coating, EDS mapping has been carried out.

  3. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE PAGES

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; ...

    2016-02-25

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  4. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  5. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visiblymore » higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.« less

  6. Buffer layers on metal surfaces having biaxial texture as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  7. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    NASA Astrophysics Data System (ADS)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  8. An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel

    Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less

  9. An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

    DOE PAGES

    Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel; ...

    2017-03-24

    Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less

  10. Buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  11. Evaluation of thermal barrier coating systems on novel substrates

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Wright, I. G.; Brindley, W. J.

    2000-06-01

    Testing was conducted on both plasma-sprayed (PS) and electron beam-physical vapor deposited (EB-PVD) Y2O3-stabilized ZrO2 (YSZ) thermal barrier coatings (TBCs) applied directly to oxidation-resistant substrates such as β-NiAl, oxide-dispersed FeCrAl, and NiCr. On an alloy that forms a very adherent alumina scale, β-NiAl+Zr, the coating lifetime of YSZ in furnace cyclic tests was 6 or more times longer than on state-of-the-art, YSZ coatings on single-crystal Ni-base superalloys with MCrAlY or Pt aluminide bond coats. Coatings on FeCrAl alloys appear to be a viable option for applications such as the external skin of the X-33, single stage to orbit, reusable launch vehicle. Model chromia-forming bond coat compositions also show promise for power generation applications at temperatures where hot corrosion may be a major problem. In general, while this work examined unique materials systems, many of the same fundamental failure mechanisms observed in conventional TBCs were observed.

  12. Radiolytic preparation and characterization of hydrophilic poly(acrylonitrile-co-vinylsulfonate)-grafted porous poly(tetrafluoroethylene) substrates

    NASA Astrophysics Data System (ADS)

    Park, Byeong-Hee; Sohn, Joon-Yong; Shin, Junhwa

    2016-01-01

    In this study, a hydrophilic copolymer of acrylonitrile (AN) and sodium vinylsulfonate (SVS) was grafted into a highly hydrophobic porous poly(tetrafluoroethylene) (PTFE) substrate using a gamma-ray irradiation method and the grafted substrate was used as a substrate for impregnating a hydrophilic ionomer, Nafion. The results of FT-IR and TGA analysis of the prepared substrate showed that the SVS/AN monomers were successfully grafted into the porous PTFE film. The results of degree of grafting, elemental analyzer, and contact angle analysis showed that the hydrophilicity of the prepared PTFE-g-P(AN-co-VS) substrate was increased with an increase in the amount of SVS/AN graft copolymers. Also, the results of FE-SEM and Gurley number measurement showed that the pores in the substrate were reduced as the amount of SVS/AN copolymers grafted into the substrate increased. The prepared porous PTFE-g-P(AN-co-VS) substrate at an irradiation dose of 70 kGy was found to impregnate Nafion ionomer effectively compared to the original porous PTFE substrate. These results suggest that the prepared PTFE-g-P(AN-co-VS) substrate can be effectively used for the impregnation of polymer electrolyte (Nafion) to prepare a reinforced composite membrane.

  13. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    PubMed

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Preparation of Ag superhydrophobic surface on metal substrates

    NASA Astrophysics Data System (ADS)

    Li, J. Y.; Lu, S. X.; Xu, W. G.; Duan, Y. Q.; Yang, X. C.; Cheng, Y. Y.; He, G.; Cui, S.

    2018-01-01

    In this work, the facile approaches are developed for preparation the Ag superhydrophobic surfaces (SHSs) on zinc (Zn), copper (Cu) and aluminium (Al) substrates. The water contact angles (WCAs) of the Ag SHSs on Zn, Cu and Al substrates are 167°, 165° and 154°, respectively. Furthermore, the water sliding angle (WSA) of each surface is less than 1°. The morphology and chemical composition of the samples are characterized using scanning electron microscopy (SEM) and X-ray diffraction pattern (XRD). The as-prepared three kinds of SHSs possess the self-cleaning performance, which can quickly take the chalk away when the water droplets fall down the SHSs. In addition, the superhydrophobicity of the SHSs can well maintain after exposure to the air for 6 months, indicating that the surfaces can sustain good stability.

  15. Optimization of substrate preparation for oyster mushroom (Pleurotus ostreatus) cultivation by studying different raw materials and substrate preparation conditions (composting: phases I and II).

    PubMed

    Vieira, Fabrício Rocha; de Andrade, Meire Cristina Nogueira

    2016-11-01

    In recent years, oyster mushroom (Pleurotus ostreatus) has become one of the most cultivated mushrooms in the world, mainly in Brazil. Among many factors involved in a mushroom production, substrate preparation is the most critical step, which can be influenced by composting management techniques. Looking forward to optimizing the substrate preparation process, were tested different composting conditions (7 and 14 days of composting with or without conditioning), potential raw materials (decumbens grass, brizantha grass and sugarcane straw) and nitrogen supplementation (with or without wheat bran) on oyster mushroom yield and biological efficiency (BE). The substrate composted for 7 days with conditioning showed higher yield and biological efficiency of mushroom (24.04 and 100.54 %, respectively). Substrates without conditioning (7 and 14 days of composting) showed smaller mushroom yield and biological efficiency. Among the raw materials tested, brizantha grass showed higher mushroom yield followed by decumbens grass, sugarcane straw and wheat straw (28.5, 24.32, 23.5 and 19.27 %, respectively). Brizantha grass also showed higher biological efficiency followed by sugarcane straw, decumbens grass and wheat straw (123.95, 103.70, 96.90 and 86.44 %, respectively). Supplementation with wheat bran improved yield and biological efficiency in all substrate formulations tested; thus, oyster mushroom yield and biological efficiency were influenced by substrate formulation (raw materials), supplementation and composting conditions.

  16. Investigation on the thermo-chemical reaction mechanism between yttria-stabilized zirconia (YSZ) and calcium-magnesium-alumino-silicate (CMAS)

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Bo; Wang, Bin-Yi; Cao, Jian; Song, Guan-Yu; Liu, Juan-Bo

    2015-03-01

    Thermal barrier coatings (TBCs) with Y2O3-stabilized ZrO2 (YSZ) top coat play a very important role in advanced turbine blades by considerably increasing the engine efficiency and improving the performance of highly loaded blades. However, at high temperatures, environment factors result in the failure of TBCs. The influence of calcium-magnesium-alumino-silicate (CMAS) is one of environment factors. Although thermo-physical effect is being paid attention to, the thermo-chemical reaction becomes the hot-spot in the research area of TBCs affected by CMAS. In this paper, traditional twolayered structured TBCs were prepared by electron beam physical vapor deposition (EBPVD) as the object of study. TBCs coated with CMAS were heated at 1240°C for 3 h. Additionally, 15 wt.% simulated molten CMAS powder and YSZ powder were mixed and heated at 1240°C or 1350°C for 48 h. SEM and EDS were adopted to detect morphology and elements distribution. According to XRD and TEM results, it was revealed that CMAS react with YSZ at high temperature and form ZrSiO4, Ca0.2Zr0.8O1.8 and Ca0.15Zr0.85O1.85 after reaction, as a result, leading to the failure of TBCs and decreasing the TBC lifetime.

  17. Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Steve Stecura

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Miller, Robert A.

    2017-01-01

    Thermal barrier coatings are widely used in all turbine engines, typically using a 7 wt% Y2O3-ZrO2 formulation. Extensive research and development over many decades have refined the processing and structure of these coatings for increased durability and reliability. New compositions demonstrate some unique advantages and are gaining in application. However, the "7YSZ" formulation predominates and is still in widespread use. This special composition has been universally found to produce nanoscale precipitates of metastable t' tetragonal phase, giving rise to a unique toughening mechanism via ferro-elastic switching under stress. This note recalls the original study that identified superior properties of 6 to 8 wt% YSZ plasma sprayed thermal barrier coatings, published in 1978. The impact of this discovery, arguably, continues in some form to this day. At one point, 7YSZ thermal barrier coatings were used in every new aircraft and ground power turbine engine produced worldwide. It is a tribute to its inventor, Dr. Stephan J. Stecura, NASA retiree.

  18. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    NASA Astrophysics Data System (ADS)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  19. Structure and Thermal Expansion of YSZ and La 2Zr 2O 7 Above 1500°C from Neutron Diffraction on Levitated Samples

    DOE PAGES

    Ushakov, Sergey V.; Navrotsky, Alexandra; Weber, Richard J. K.; ...

    2015-07-28

    High-temperature time-of-flight neutron diffraction experiments were performed in this paper on cubic yttria-stabilized zirconia (YSZ, 10 mol% YO 1.5) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO 2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10 -6/K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZmore » are similar and within (7 ± 2) × 10 -6/K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10 -6/K at 2350°C–2550°C with oxygen displacement parameters (U iso) reaching 0.1 Å 2, similar to behavior observed in UO 2. Acquisition of powder-like high-temperature neutron diffraction data from solid-levitated samples is feasible and possible improvements are outlined. Finally, this methodology should be applicable to a wide range of materials for high-temperature applications.« less

  20. High Tc YBCO superconductor deposited on biaxially textured Ni substrate

    DOEpatents

    Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.

    1999-01-01

    A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.

  1. Screen printed Y and Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Hsi, Chi-Shiung

    1992-01-01

    High T(sub c) superconducting thick film was prepared by screen printing process. Y-based (YBa2Cu3O(7 - x)) superconducting thick films were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconducting thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T(sub c) and J(sub c) values were obtained from the films printed on these substrates. Critical temperatures of YBa2Cu3O(7 - x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities of these films were less than 2 A/cm(exp 2). Higher T(sub c) and J(sub c) films were printed on the YSZ substrates; T(sub c) = 86.4 K and J(sub c) = 50.4 A/cm(exp 2). Multiple lead samples were also prepared on the YSZ substrates. These showed lower T(sub c) and J(sub c) values than plain samples. The heat treatment conditions of the multiple lead samples are still under investigation. Bi-based superconductor thick films have been obtained so far. Improving the superconducting properties of the BSCCO screen printed thick films will be emphasized in future work.

  2. Brazing of Stainless Steels to Yttria Stabilized Zirconia (YSZ) Using Silver -Base Brazes

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah P.; Asthana, Rajiv

    2005-01-01

    Three silver-base brazes containing either noble metal palladium (Palcusil-10 and Palcusil-15) or active metal titanium (Ticusil) were evaluated for high-temperature oxidation resistance, and their effectiveness in joining yttria stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel. Thermogravimetric analysis (TGA), and optical- and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) were used to evaluate the braze oxidation behavior and the structure and chemistry of the YSZ/braze/steel joints. The effect of the braze type and processing conditions on the interfacial microstructure and composition of the joint regions is discussed with reference to the chemical changes that occur at the interface. It was found that chemical interdiffusion of the constituents of YSZ, steel and the brazes led to compositional changes and/or interface reconstruction, and metallurgically sound joints.

  3. Purity of targets prepared on Cu substrates

    NASA Astrophysics Data System (ADS)

    Méens, A.; Rossini, I.; Sens, J. C.

    1993-09-01

    The purity of several elemental self-supporting targets usually prepared by evaporation onto soluble Cu substrates has been studied. The targets were analysed by Rutherford backscattering and instrumental neutron activation analysis. Because of the high percentage of Cu observed in some Si targets, further measurements, including transmission electron microscopy, have been performed on Si targets deposited by e-gun bombardment onto Cu and ion-beam sputtering onto betaine.

  4. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method

    PubMed Central

    Duan, Nan-Qi; Yan, Dong; Chi, Bo; Pu, Jian; Jian, Li

    2015-01-01

    Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO3-δ (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm−2 and was greatly enhanced to the range from 308 to 1220 mW cm−2 by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm−2 and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run. PMID:25640168

  5. Conduction in In 2O 3/YSZ heterostructures: Complex interplay between electrons and ions, mediated by interfaces

    DOE PAGES

    Veal, B. W.; Eastman, J. A.

    2017-03-01

    Thin film In 2O 3/YSZ heterostructures exhibit significant increases in electrical conductance with time when small in-plane electric fields are applied. Contact resistances between the current electrodes and film, and between current electrodes and substrate are responsible for the behavior. With an in-plane electric field, different field profiles are established in the two materials, with the result that oxygen ions can be driven across the heterointerface, altering the doping of the n-type In 2O 3. Furthermore, a low frequency inductive feature observed in AC impedance spectroscopy measurements under DC bias conditions was found to be due to frequency-dependent changes inmore » the contact resistance.« less

  6. Heterogeneous electrolyte (YSZ-Al 2O 3) based direct oxidation solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Thokchom, J. S.; Xiao, H.; Rottmayer, M.; Reitz, T. L.; Kumar, B.

    Bilayers comprised of dense and porous YSZ-Al 2O 3 (20 wt%) composite were tape cast, processed, and then fabricated into working solid oxide fuel cells (SOFCs). The porous part of the bilayer was converted into anode for direct oxidation of fuels by infiltrating CeO 2 and Cu. The cathode side of the bilayer was coated with an interlayer [YSZ-Al 2O 3 (20 wt%)]: LSM (1:1) and LSM as cathode. Several button cells were evaluated under hydrogen/air and propane/air atmospheres in intermediate temperature range and their performance data were analyzed. For the first time the feasibility of using YSZ-Al 2O 3 material for fabricating working SOFCs with high open circuit voltage (OCV) and power density is demonstrated. AC impedance spectroscopy and scanning electron microscopy (SEM) techniques were used to characterize the membrane and cell.

  7. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance.

    PubMed

    Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz

    2015-10-21

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  8. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    PubMed Central

    Pecho, Omar M.; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz

    2015-01-01

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer. PMID:28793624

  9. High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications

    NASA Astrophysics Data System (ADS)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2018-03-01

    Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.

  10. Method for preparation of thermally and mechanically stable metal/porous substrate composite membranes

    DOEpatents

    Damle, Ashok S.

    2004-07-13

    A method is provided for the preparation of metal/porous substrate composite membranes by flowing a solution of metal to be plated over a first surface of a porous substrate and concurrently applying a pressure of gas on a second surface of the porous substrate, such that the porous substrate separates the solution of metal from the gas, and the use of the resulting membrane for the production of highly purified hydrogen gas.

  11. Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Medricky, Jan; Tesar, Tomas; Kotlan, Jiri; Pala, Zdenek; Lukac, Frantisek; Illkova, Ksenia; Hlina, Michal; Chraska, Tomas; Sokolowski, Pawel; Curry, Nicholas

    2017-12-01

    Introduction of suspension and solution plasma spraying led to a breakthrough in the deposition of yttria-stabilized zirconia (YSZ) coatings and enabled preparation of new types of layers. However, their deposition with high feed rates needed, for example, for the deposition of thermal barrier coatings (TBCs) on large-scale components, is still challenging. In this study, possibility of high-throughput plasma spraying of YSZ coatings is demonstrated for the latest generation of high-enthalpy hybrid water-stabilized plasma (WSP-H) torch technology. The results show that microstructure of the coatings prepared by WSP-H may be tailored for specific applications by the choice of deposition conditions, in particular formulation of the liquid feedstock. Porous and columnar coatings with low thermal conductivity (0.5-0.6 W/mK) were prepared from commercial ethanol-based suspension. Dense vertically cracked coatings with higher thermal conductivity but also higher internal cohesion were deposited from suspension containing ethanol/water mixture and coarser YSZ particles. Spraying of solution formulated from diluted zirconium acetate and yttrium nitrate hexahydrate led also to the successful deposition of YSZ coating combining regions of porous and denser microstructure and providing both low thermal conductivity and improved cohesion of the coating. Enthalpy content, liquid-plasma interaction and coating buildup mechanisms are also discussed.

  12. Preparation and substrate reactions of superconducting Y-Ba-Cu-O films

    NASA Astrophysics Data System (ADS)

    Gurvitch, M.; Fiory, A. T.

    1987-09-01

    Multiple metal-target dc magnetron sputter deposition of a metallic YBa2Cu3 alloy in pure Ar followed by ex situ oxygen annealing was used to prepare superconducting films on various substrates. This work particularly examines film-substrate reactions which are degrading to superconductivity. Better superconductors were obtained using predeposited buffer layers, notably on cubic zirconia and MgO substrates covered with Ag and Nb. Best films have Tc = 80 K, metallic resistivities with a resistance ratio of about 2, and a critical current density of greater than about 10 kA/sq cm at 4.2 K.

  13. Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Itagaki, Yoshiteru; Watanabe, Shinji; Yamaji, Tsuyoshi; Asamoto, Makiko; Yahiro, Hidenori; Sadaoka, Yoshihiko

    2012-09-01

    Bi-layered cathodes with the LSM/LSM-YSZ structure for solid oxide fuel cells were successfully formed on the carbon-sputtered surface of a YSZ sheet by electrophoretic deposition (EPD). The thicknesses of the first layer of LSM-YSZ (LY) and the second layer of La0.8Sr0.2MnO3 (LSM) could be controlled by adjusting the deposition time in the EPD process. The cathodic properties of the bi-layered structures were superior to those of the mono-layered structures, and were dependent on the thickness of each layer. Decreasing the thickness of the first layer and increasing that of the second layer tended to reduce both polarization and ohmic resistances. The optimal thickness of the first layer at the operating temperature of 600 °C was 4 μm, suggesting that an effective three-phase boundary was extended from the interface between the electrolyte and cathode film to around 4 μm thickness.

  14. Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes

    PubMed Central

    Hermans, Andre; Wightman, R. Mark

    2008-01-01

    Here we describe a simple method to prepare voltammetric microelectrodes using tungsten wires as a substrate. Tungsten wires have high tensile modulus and enable the fabrication of electrodes that have small dimensions overall while retaining rigidity. In this work, 125 μm tungsten wires with a conical tip were employed. For the preparation of gold or platinum ultramicroelectrodes, commercial tungsten microelectrodes, completely insulated except at the tip, were used as substrates. Following removal of oxides from the exposed tungsten, platinum or gold was electroplated yielding surfaces with an electroactive area of between 1×10−6 cm2 to 2×10−6 cm2. Carbon surfaces on the etched tip of tungsten microwires were prepared by coating with photoresist followed by pyrolysis. The entire electrode was then insulated with Epoxylite except the tip yielding an exposed carbon surface with an area of around 4×10−6 cm2 to 6×10−6 cm2. All three types of ultramicroelectrodes fabricated on the tungsten wire had similar electrochemical behavior to electrodes fabricated from wires or fibers insulated with glass tubes. PMID:17129002

  15. Quantification of the degradation of Ni-YSZ anodes upon redox cycling

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Ruiz-Trejo, Enrique; Bertei, Antonio; Brandon, Nigel P.

    2018-01-01

    Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance. This study quantifies the microstructural changes as a function of redox cycles at 800 °C and associates it to the deterioration of the mechanical properties and polarisation resistance. A physically-based model is used to estimate the triple-phase boundary (TPB) length from impedance spectra, and satisfactorily matches the TPB length quantified by FIB-SEM tomography: within 20 redox cycles, the TPB density decreases from 4.63 μm-2 to 1.06 μm-2. Although the polarisation resistance increases by an order of magnitude after 20 cycles, after each re-reduction the electrode polarisation improves consistently due to the transient generation of Ni nanoparticles around the TPBs. Nonetheless, the long-term degradation overshadows this transient improvement due to the nickel agglomeration. In addition, FIB-SEM tomography reveals fractures along YSZ grain boundaries, Ni-YSZ detachment and increased porosity in the composite that lead to irreversible mechanical damage: the elastic modulus diminishes from 36.4 GPa to 20.2 GPa and the hardness from 0.40 GPa to 0.15 GPa. These results suggest that microstructural, mechanical and electrochemical properties are strongly interdependent in determining the degradation caused by redox cycling.

  16. The early growth and interface of YBa 2Cu 3O y thin films deposited on YSZ substrates

    NASA Astrophysics Data System (ADS)

    Gao, J.; Tang, W. H.; Yau, C. Y.

    2001-11-01

    Epitaxial thin films of YBa 2Cu 3O y (YBCO) have been prepared on yttrium-stabilized zirconia substrates with and without a buffer layer. The early growth, crystallinity and surface morphology of these thin films have been characterized by X-ray diffraction, rocking curves, scanning electron microscope, in situ conductance measurements, and surface step profiler. The full width at half maximum of the ( 0 0 5 ) peak of rocking curve was found to be less than 0.1°. Over a wide scanning range of 2000 μm the average surface roughness is just 5 nm, indicating very smooth films. Grazing incident X-ray reflection and positron annihilation spectroscopy shows well-defined interfaces between layers and substrate. By applying a new Eu 2CuO 4 (ECO) buffer layer the initial formation of YBCO appears to grow layer-by-layer rather than the typical island growth mode. The obtained results reveal significant improvements at the early formation and crystallinity of YBCO by using the 214-T ‧ ECO as a buffer layer.

  17. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Kesler, Olivera

    2012-12-01

    Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

  18. APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings

    DOE PAGES

    Lance, Michael J.; Unocic, Kinga A.; Haynes, James A.; ...

    2015-09-04

    Directionally-solidified (DS) superalloy components with advanced thermal barrier coatings (TBC) to lower the metal operating temperature have the potential to replace more expensive single crystal superalloys for large land-based turbines. In order to assess relative TBC performance, furnace cyclic testing was used with superalloys 1483, X4 and Hf-rich DS 247 substrates and high velocity oxygen fuel (HVOF)-NiCoCrAlYHfSi bond coatings at 1100 °C with 1-h cycles in air with 10% H 2O. With these coating and test conditions, there was no statistically-significant effect of substrate alloy on the average lifetime of the air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coatingsmore » on small coupons. Using photo-stimulated luminescence piezospectroscopy maps at regular cycling intervals, the residual compressive stress in the α-Al 2O 3 scale underneath the YSZ top coating and on a bare bond coating was similar for all three substrates and delaminations occurred at roughly the same rate and frequency. As a result, x-ray fluorescence (XRF) measurements collected from the bare bond coating surface revealed higher Ti interdiffusion occurring with the 1483 substrate, which contained the highest Ti content.« less

  19. Effect of thermally growth oxides (TGO) on adhesion strength for high purity yitria stabilised zirconia (YSZ) and rare - Earth lanthanum zirconates (LZ) multilayer thermal barrier coating before and after isothermal heat treatment

    NASA Astrophysics Data System (ADS)

    Yunus, Salmi Mohd; Johari, Azril Dahari; Husin, Shuib

    2017-12-01

    Investigation on the effect of Thermally Growth Oxides (TGO) on the adhesion strength for thermal barrier coating (TBC) was carried out. The TBC under studied was the multilayer systems which consist of NiCrAlY bond coat and YSZ/LZ ceramic coating deposited on Ni-based superalloy substrates. The development of thermally growth oxides (TGO) for both TBC systems after isothermal heat treatment was measured. Isothermal heat treatment was carried out at 1100 ˚C for 100 hours to age the samples. ASTM D4541: Standard Test Method for Pull-off Strength of Coatings using Portable Adhesion Tester was used to measure the adhesion strength of both TBC systems before and after heat treatment. The effect of the developed TGO on the measured adhesion strength was examined and correlation between them was established individually for both TBC systems. The failure mechanism of the both system was also identified; either cohesive or adhesive or the combination of both. The results showed that TGO has more than 50% from the bond coat layer for rare-earth LZ system compared to the typical YSZ system, which was less than 10 % from the bond coat layer. This leads to the lower adhesion strength of rare-earth LZ coating system compared to typical YSZ system. Failure mechanism during the pull-off test also was found to be different for both TBC systems. The typical YSZ system experienced cohesive failure whereas the rare-earth LZ system experienced the combination of cohesive and adhesive failure.

  20. Examination of charge transfer in Au/YSZ for high-temperature optical gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltrus, John P.; Ohodnicki, Paul R.

    2014-01-01

    Au-nanoparticle incorporated oxide thin film materials demonstrate significant promise as functionalsensor materials for high temperature optical gas sensing in severe environments relevant for fossil andnuclear based power generation. The Au/yttria-stabilized zirconia (YSZ) system has been extensivelystudied in the literature and serves as a model system for fundamental investigations that seek to betterunderstand the mechanistic origin of the plasmonic gas sensing response. In this work, X-ray photoelec-tron spectroscopy techniques are applied to Au/YSZ films in an attempt to provide further experimentalevidence for a proposed sensing mechanism involving a change in free carrier density of Au nanoparticles due to charge transfer.

  1. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  2. Advanced study of thermal behaviour of CSZ comparing with the classic YSZ coating

    NASA Astrophysics Data System (ADS)

    Dragomirescu, A.; Constantin, N.; Ştefan, A.; Manoliu, V.; Truşcă, R.

    2017-01-01

    Thermal barrier coatings (TBC) are advanced materials typically applied to metal surfaces subjected to extreme temperatures to protect them and increase their lifetime. Ceria stabilized zirconia ceramic layer (CSZ) is increasingly used as an alternative improved as replace for classical TBC system - yttria stabilized zirconia - thanks to superior properties, including mechanical and high resistance to thermal corrosion. The paper describes the thermal shock testing of two types of thermal barrier coatings used to protect a nickel super alloy. For the experimental procedure, it was used plate samples from nickel super alloy with a bond coat and a ceramic top coat. The top coat was different: on some samples, it was used YSZ and on others CSZ. Ni based super alloys have good corrosion resistance in reducing environments action, but poor in oxidizing conditions. Extreme environments can lead to loss of material by oxidation / corrosion, along with decreased mechanical properties of the substrate due to damaging elements which diffuses into the substrate at high temperatures. Using laboratory equipment, the TBC systems were exposed repeatedly to extreme high temperatures for a short time and then cooled. After the thermal shock tests, the samples were morph-structured characterized using electronic microscopy to analyze the changes. The experimental results were compared to rank the TBC systems in order of performance.

  3. A prefilter for mitigating PH 3 contamination of a Ni-YSZ anode

    NASA Astrophysics Data System (ADS)

    Xu, Chunchuan; Zondlo, John W.; Sabolsky, Edward M.

    Ni-YSZ is used as the anode of a solid oxide fuel cell (SOFC) because it has excellent electrochemical performance for operation with coal-derived syngas. However, trace impurities, PH 3 H 2S AsH 3, and Sb in coal-syngas can cause SOFC degradation. Described here is a means of removing PH 3 impurity from syngas by using a Ni-based prefilter. In one test, a thin Ni-based filter was set upstream of a Ni-YSZ anode-supported SOFC. The SOFC was exposed to syngas with PH 3 under a constant current load at 800 °C. The filter decreased 20 ppm PH 3 in the feed to a level which did not degrade the SOFC for over 400 h until the filter became saturated. In another test, both H 2S and PH 3 were co-fed to the cell with Ni-based and Fe/Ni-based filters. The interaction between these two impurities did not significantly impact the filter performance with respect to PH 3 removal for both filter formulations. The cell performance was evaluated by current-voltage measurements and impedance spectroscopy. Post-mortem analyses of the cell and filter were performed by means of XRD, SEM/EDS and XPS. With proper filter design, the Ni-YSZ SOFC can operate on contaminated coal-syngas without degradation over a prescribed period of time.

  4. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.

    PubMed

    Haberkorn, Niko; Weber, Stefan A L; Berger, Rüdiger; Theato, Patrick

    2010-06-01

    We describe the synthesis and characterization of a cross-linkable siloxane-derivatized tetraphenylbenzidine (DTMS-TPD), which was used for the fabrication of semiconducting highly ordered nanorod arrays on conductive indium tin oxide or Pt-coated substrates. The stepwise process allow fabricating of macroscopic areas of well-ordered free-standing nanorod arrays, which feature a high resistance against organic solvents, semiconducting properties and a good adhesion to the substrate. Thin films of the TPD derivate with good hole-conducting properties could be prepared by cross-linking and covalently attaching to hydroxylated substrates utilizing an initiator-free thermal curing at 160 degrees C. The nanorod arrays composed of cross-linked DTMS-TPD were fabricated by an anodic aluminum oxide (AAO) template approach. Furthermore, the nanorod arrays were investigated by a recently introduced method allowing to probe local conductivity on fragile structures. It revealed that more than 98% of the nanorods exhibit electrical conductance and consequently feature a good electrical contact to the substrate. The prepared nanorod arrays have the potential to find application in the fabrication of multilayered device architectures for building well-ordered bulk-heterojunction solar cells.

  5. Preparation of a micropatterned rigid-soft composite substrate for probing cellular rigidity sensing.

    PubMed

    Wong, Stephanie; Guo, Wei-hui; Hoffecker, Ian; Wang, Yu-li

    2014-01-01

    Substrate rigidity has been recognized as an important property that affects cellular physiology and functions. While the phenomenon has been well recognized, understanding the underlying mechanism may be greatly facilitated by creating a microenvironment with designed rigidity patterns. This chapter describes in detail an optimized method for preparing substrates with micropatterned rigidity, taking advantage of the ability to dehydrate polyacrylamide gels for micropatterning with photolithography, and subsequently rehydrate the gel to regain the original elastic state. While a wide range of micropatterns may be prepared, typical composite substrates consist of micron-sized islands of rigid photoresist grafted on the surface of polyacrylamide hydrogels of defined rigidity. These islands are displaced by cellular traction forces, for a distance determined by the size of the island, the rigidity of the underlying hydrogel, and the magnitude of traction forces. Domains of rigidity may be created using this composite material to allow systematic investigations of rigidity sensing and durotaxis. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Derivative effect of laser cladding on interface stability of YSZ@Ni coating on GH4169 alloy: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping

    2018-01-01

    Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 < QO-Ni = 0.220) compared to that in ZrO2/Ni, TGO Al2O3 can improve the oxidation resistance of the metal matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.

  7. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    PubMed

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H 2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H 2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H 2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  8. Fabrication and Characterization of Functionally Graded Cathodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Simonet, J.; Kapelski, G.; Bouvard, D.

    2008-02-01

    Solid oxide fuel cells are multi-layered designed. The most prevalent structure is an anode supported cell with a thick porous layer of nickel oxide NiO and yttrium stabilized zirconia (YSZ) composite acting as an anode, a thin dense layer of YSZ as an electrolyte, a composite thin porous layer of lanthanum strontium manganate LSM and YSZ and a current collector layer of porous LSM. Regular operating temperature is 1000 °C. The industrial development requires designing cathodes with acceptable electrochemical and mechanical properties at a lower temperature, typically between 700 and 800 °C. A solution consists in designing composite bulk cathodes with more numerous electro-chemical reaction sites. This requirement could be met by grading the composition of the cathode in increasing the YSZ volume fraction near the electrolyte and the LSM volume fraction near the current collector layer so that the repartition of reaction sites and the interfacial adhesion between the cathode and electrolyte layers are optimal. The fabrication of graded composite cathode has been investigated using a sedimentation process that consists of preparing a suspension containing the powder mixture and allowing the particles to fall by gravity upon a substrate. Different composite cathodes with continuous composition gradient have been obtained by sedimentation of LSM and YSZ powder mixture upon a dense YSZ substrate and subsequent firing. Their compositions and microstructures have been analysed with Scanning Electron Microscope (SEM) and Electron Dispersive Spectrometry (EDS).

  9. Surface enhanced Raman scattering substrates prepared by thermal evaporation on liquid surfaces.

    PubMed

    Ye, Ziran; Sun, Guofang; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Xu, Fengyun; Wang, Ke; Ye, Gaoxiang; Yang, Shikuan

    2018-06-25

    We present an effective surface-enhancement Raman scattering(SERS) substrate enabled by depositing metallic film on a liquid surface at room temperature. Thermal evaporation is used to deposit Au atoms on silicone oil surface and then form quasi-continuous films. Due to the isotropic characteristics of the liquid surface, this film consists of substantial nanoparticles with uniform diameter, which is different from films fabricated on solid substrates and can be served as an applicable substrate for SERS detection. With the assistance of this substrate, SERS signals of Rhodamine 6G(R6G) were significantly enhanced, the dependence between SERS spectra and film thickness was investigated. Analytical simulation results confirm the experimental observations and the superiorities of our proposed method for preparation of SERS substrate. This work provides a potential application of metallic film deposition on free-sustained surface and holds promise as an efficient sensor in rapid trace detection of small molecule analytes. © 2018 IOP Publishing Ltd.

  10. The Type of Forage Substrate Preparation Included as Substrate in a RUSITEC System Affects the Ruminal Microbiota and Fermentation Characteristics

    PubMed Central

    Duarte, Andrea C.; Holman, Devin B.; Alexander, Trevor W.; Durmic, Zoey; Vercoe, Philip E.; Chaves, Alexandre V.

    2017-01-01

    In vitro fermentation systems such as the rumen simulation technique (RUSITEC) are frequently used to assess dietary manipulations in livestock, thereby limiting the use of live animals. Despite being in use for nearly 40 years, improvements are continually sought in these systems to better reflect and mimic natural processes in ruminants. The aim of this study was to evaluate the effect of forage preparation, i.e., frozen minced (FM) and freeze-dried and ground (FDG), on the ruminal microbiota and on fermentation characteristics when included as a substrate in a RUSITEC system. A completely randomized design experiment was performed over a 15-day period, with 7 days of adaptation and an 8-day experimental period. Fermentation parameters (total gas, CH4, and volatile fatty acid production) were analyzed on a daily basis over the experimental period and the archaeal and bacterial microbiota (liquid-associated microbes [LAM] and solid-associated microbes [SAM] was assessed at 0, 5, 10, and 15 days using high-throughput sequencing of the 16S rRNA gene. Results from this study suggested a tendency (P = 0.09) of FM treatment to increase daily CH4 (mg/d) production by 16.7% when compared with FDG treatment. Of the major volatile fatty acids (acetate, propionate, and butyrate), only butyrate production was greater (P = 0.01) with FM treatment compared with FDG substrate. The archaeal and bacterial diversity and richness did not differ between the forage preparations, although feed particle size of the forage had a significant effect on microbial community structure in the SAM and LAM samples. The Bacteroidetes phylum was more relatively abundant in the FM substrate treatment, while Proteobacteria was enriched in the FDG treatment. At the genus-level, Butyrivibrio, Prevotella, and Roseburia were enriched in the FM substrate treatment and Campylobacter and Lactobacillus in the FDG substrate treatment. Evidence from this study suggests that forage preparation affects CH4

  11. Impact of yttria stabilized zirconia nanoinclusions on the thermal conductivity of n-type Si80Ge20 alloys prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Lahwal, Ali; Bhattacharya, S.; He, Jian; Wu, Di; Peterson, A.; Poon, S. J.; Williams, L.; Dehkordi, A. Mehdizadeh; Tritt, T. M.

    2015-04-01

    Nanocomposites have become a new paradigm for thermoelectric research in recent years and have resulted in the reduction of thermal conductivity via the nano-inclusion and grain boundary scattering. In this work, we report the preparation and thermoelectric study of SiGe-yttria stabilized zirconia (YSZ) nanocomposites prepared by Spark Plasma Sintering (SPS). We experimentally investigated the reduction of lattice thermal conductivity (κL) in the temperature range (30-800 K) of n-type Si80Ge20P2 alloys with the incorporation of YSZ nanoparticles (20-40 nm diameter) into the Si-Ge matrix. These samples synthesized by using the SPS technique were found to have densities > 95% of the theoretical density. The thermal conductivity, at both low and high temperatures, was measured by steady state and laser flash techniques, respectively. At room temperature, we observed approximately a 50% reduction in the lattice thermal conductivity as result of adding 10% YSZ by volume to the Si80Ge20P2 host matrix. A phenomenological model developed by Callaway was used to corroborate both the temperature dependence and reduction of κ L over the measured temperature range (30-800 K) of both Si80Ge20P2 and Si80Ge20P2 + YSZ samples. The observed κL is discussed and interpreted in terms of various phonon scattering mechanisms such as alloy disorder, the Umklapp phonon scattering, and boundary scattering. In addition, a contribution from the phonon scattering by YSZ nanoparticles was further included to account for the κL of Si80Ge20P2 + YSZ sample. The theoretical calculations are in reasonably good agreement with the experimental results for both the Si80Ge20P2 and Si80Ge20P2 + YSZ alloys.

  12. Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma

    NASA Astrophysics Data System (ADS)

    Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro

    1992-08-01

    A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.

  13. Formulation of steam-methane reforming rate in Ni-YSZ porous anode of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sugihara, Shinichi; Kawamura, Yusuke; Iwai, Hiroshi

    2018-02-01

    The steam-methane reforming reaction on a Ni-YSZ (yttria-stabilized zirconia) cermet was experimentally investigated under atmospheric pressure and in the temperature range from 650 to 750 °C. We examined the effects of the partial pressures of methane and steam in the supply gas on the reaction rate. The experiments were conducted with a low Ni contained Ni-YSZ cermet sheet of thickness 0.1 mm. Its porous microstructure and accompanied parameters were quantified using the FIB-SEM (focused ion beam scanning electron microscopy) technique. A power-law-type rate equation incorporating the reaction-rate-limiting conditions was obtained on the basis of the unit surface area of the Ni-pore contact surface in the cermet. The kinetics indicated a strong positive dependence on the methane partial pressure and a negative dependence on the steam partial pressure. The obtained rate equation successfully reproduced the experimental results for Ni-YSZ samples having different microstructures in the case of low methane consumption. The equation also reproduced the limiting-reaction behaviours at different temperatures.

  14. [Preparation of a kind of SERS-active substrates for spot fast analysis].

    PubMed

    Ji, Nan; Li, Zhi-Shi; Zhao, Bing; Zou, Bo

    2013-02-01

    A kind of SERS-active substrates was prepared using chemical self-assembly method, aiming at spot fast analysis using portable Raman spectrometer. PDDA was first absorbed on the inner wall of vials, and then Ag colloids were assembled on the inner wall. UV-Vis spectra and Raman spectra of two kinds of blank vials were investigated and the transparent vials were thought to be better for SERS-vials. UV-Vis spectra were used to monitor the assembly process of Ag colloids. SERS activity of our substrates was characterized using p-ATP as probing molecules.

  15. Brazing of Stainless Steels to Yttria Stabilized Zirconia (YSZ) for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Shpargel, Tarah P.; Needham, Robert J.; Singh, M.; Kung, Steven C.

    2005-01-01

    Recently, there has been a great deal of interest in research, development, and commercialization of solid oxide fuel cells. Joining and sealing are critical issues that will need to be addressed before SOFC's can truly perform as expected. Ceramics and metals can be difficult to join together, especially when the joint must withstand up to 900 C operating temperature of the SOFC's. The goal of the present study is to find the most suitable braze material for joining of yttria stabilized zirconia (YSZ) to stainless steels. A number of commercially available braze materials TiCuSil, TiCuNi, Copper-ABA, Gold-ABA, and Gold-ABA-V have been evaluated. The oxidation behavior of the braze materials and steel substrates in air was also examined through thermogravimetric analysis. The microstructure and composition of the brazed regions have been examined by optical and scanning electron microscopy and EDS analysis. Effect of braze composition and processing conditions on the interfacial microstructure and composition of the joint regions will be presented.

  16. In situ Van der Pauw measurements of the Ni/YSZ anode during exposure to syngas with phosphine contaminant

    NASA Astrophysics Data System (ADS)

    Demircan, Oktay; Xu, Chunchuan; Zondlo, John; Finklea, Harry O.

    Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H 2, H 2O, CO, and CO 2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h -1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH 3. XRD analysis suggested that Ni 5P 2 and P 2O 5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.

  17. Investigation for surface resistance of yttrium-barium-copper-oxide thin films on various substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Yao, Hongjun

    High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.

  18. Molecular Dynamics Simulation of the Structure and Ion Transport in the Ce1 - x Gd x O2 - δ|YSZ Heterosystem

    NASA Astrophysics Data System (ADS)

    Galin, M. Z.; Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    Molecular dynamics simulation has been used to develop a realistic atomistic model of two-layer Ce1 - x Gd x O2 - δ|YSZ heterosystem. It is shown that Ce1 - x Gd x O2 - δ and YSZ layers (about 15 and 16 Å thick, respectively) retain their crystal structure on the whole. The main structural distortions are found to occur near the Ce1 - x Gd x O2 - δ|YSZ geometric interface, within a narrow interfacial region of few angstroms thick. Both the generalized diffusion characteristics of the system as a whole and the oxygen diffusion coefficients in the layers are calculated, and the diffusion activation energies are determined.

  19. Manufacturing of Composite Coatings by Atmospheric Plasma Spraying Using Different Feed-Stock Materials as YSZ and MoSi2

    NASA Astrophysics Data System (ADS)

    Koch, D.; Mauer, G.; Vaßen, R.

    2017-04-01

    Yttria-stabilized zirconia (YSZ) is the state-of-the-art material for the top coat of thermal barrier coatings. To increase the efficiency and lifetime of gas turbines, the integration of MoSi2 as a healing material was proposed. A new method of manufacture was explored in order to enable the spraying of a homogeneous mixed layer of YSZ and MoSi2. As the chemical and physical properties of these powders are very different, they require contrasting process conditions. Due to the evaporation of Si from MoSi2 at spraying conditions suitable for YSZ, more moderate conditions and a shorter time of flight are required for depositing MoSi2. At the same time, the spraying conditions still need to be sufficient for melting the YSZ particles in order to produce a coating. To obtain a homogeneous mixture, both conditions can be matched using an injection system that allows powder injection at two different locations of the plasma jet. Two-color pyrometry during flight (DPV-2000, Tecnar) was used to monitor the actual particle temperature. By optimizing the injection point for the MoSi2, a mixed coating was obtained without decomposition of the MoSi2, which has been analyzed by means of XRD and SEM.

  20. Study of vanadium doped ZnO films prepared by dc reactive magnetron sputtering at different substrate temperatures.

    PubMed

    Meng, Lijian; Teixeira, Vasco; Dos Santos, M P

    2013-02-01

    ZnO films doped with vanadium (ZnO:V) have been prepared by dc reactive magnetron sputtering technique at different substrate temperatures (RT-500 degrees C). The effects of the substrate temperature on ZnO:V films properties have been studied. XRD measurements show that only ZnO polycrystalline structure has been obtained, no V2O5 or VO2 crystal phase can be observed. It has been found that the film prepared at low substrate temperature has a preferred orientation along the (002) direction. As the substrate temperature is increased, the (002) peak intensity decreases. When the substrate temperature reaches the 500 degrees C, the film shows a random orientation. SEM measurements show a clear formation of the nano-grains in the sample surface when the substrate temperature is higher than 400 degrees C. The optical properties of the films have been studied by measuring the specular transmittance. The refractive index has been calculated by fitting the transmittance spectra using OJL model combined with harmonic oscillator.

  1. Enhanced Sintering of β"-Al2O3/YSZ with the Sintering Aids of TiO2 and MnO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong

    2015-07-11

    β"-Al2O3 has been the dominated choice for the electrolyte materials of sodium batteries because of its high ionic conductivity, excellent stability with the electrode materials, satisfactory mechanical strength, and low material cost. To achieve adequate electrical and mechanical performance, sintering of β"-Al2O3 is typically carried out at temperatures above 1600oC with deliberate efforts on controlling the phase, composition, and microstructure. Here, we reported a simple method to fabricate β"-Al2O3/YSZ electrolyte at relatively lower temperatures. With the starting material of boehmite, single phase of β"-Al2O3 can be achieved at as low as 1200oC. It was found that TiO2 was extremely effectivemore » as a sintering aid for the densification of β"-Al2O3 and similar behavior was observed with MnO2 for YSZ. With the addition of 2 mol% TiO2 and 5 mol% MnO2, the β"-Al2O3/YSZ composite was able to be densified at as low as 1400oC with a fine microstructure and good electrical/mechanical performance. This study demonstrated a new approach of synthesis and sintering of β"-Al2O3/YSZ composite, which represented a simple and low-cost method for fabrication of high-performance β"-Al2O3/YSZ electrolyte.« less

  2. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

    PubMed Central

    Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique. PMID:28904839

  3. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy.

    PubMed

    Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.

  4. The sol-gel route: A versatile process for up-scaling the fabrication of gas-tight thin electrolyte layers

    NASA Astrophysics Data System (ADS)

    Viazzi, Céline; Rouessac, Vincent; Lenormand, Pascal; Julbe, Anne; Ansart, Florence; Guizard, Christian

    2011-03-01

    Sol-gel routes are often investigated and adapted to prepare, by suitable chemical modifications, submicronic powders and derived materials with controlled morphology, which cannot be obtained by conventional solid state chemistry paths. Wet chemistry methods provide attractive alternative routes because mixing of species occurs at the atomic scale. In this paper, ultrafine powders were prepared by a novel synthesis method based on the sol-gel process and were dispersed into suspensions before processing. This paper presents new developments for the preparation of functional materials like yttria-stabilized-zirconia (YSZ, 8% Y2O3) used as electrolyte for solid oxide fuel cells. YSZ thick films were coated onto porous Ni-YSZ substrates using a suspension with an optimized formulation deposited by either a dip-coating or a spin-coating process. The suspension composition is based on YSZ particles encapsulated by a zirconium alkoxide which was added with an alkoxide derived colloidal sol. The in situ growth of these colloids increases significantly the layer density after an appropriated heat treatment. The derived films were continuous, homogeneous and around 20 μm thick. The possible up-scaling of this process has been also considered and the suitable processing parameters were defined in order to obtain, at an industrial scale, homogeneous, crack-free, thick and adherent films after heat treatment at 1400 °C.

  5. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  6. Preparation and Properties of High-T(sub c) Bi-Pb-Sr-Ca-Cu-O Thick Film Superconductors on YSZ Substrates

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.

    1996-01-01

    An evaluation of four firing profiles was performed to determine the optimum processing conditions for producing high-T(sub c) Bi-Pb-Sr-Ca-Cu-O thick films on yttria-stabilized zirconia substrates. Using these four profiles, the effects of sintering temperatures of 830-850 C and soak times of 0.5 to 12 hours were examined. In this study, T-c, zero values of 100 K were obtained using a firing profile in which the films were sintered for 1.5 to 2 hours at 840 to 845 C and then quenched to room temperature. X-ray diffraction analyses of these specimens confirmed the presence of the high-T(sub c) phase. Films which were similarly fired and furnace cooled from the peak processing temperature exhibited a two-step superconductive transition to zero resistance, with T-c,zero values ranging from 85 to 92 K. The other firing profiles evaluated in this investigation yielded specimens which either exhibited critical transition temperatures below 90 K or did not exhibit a superconductive transition above 77 K.

  7. Straight single-crystalline germanium nanowires and their patterns grown on sol gel prepared gold/silica substrates

    NASA Astrophysics Data System (ADS)

    Pan, Zheng Wei; Dai, Sheng; Lowndes, Douglas H.

    2005-04-01

    Straight single-crystalline Ge nanowires with a uniform diameter distribution of 50-80 nm and lengths up to tens of micrometers were grown in a high yield on sol-gel prepared gold/silica substrates by using Ge powder as the Ge source. Detailed electron microscopy analyses show that the nanowires grow through a vapor-liquid-solid growth mechanism with gold nanoparticles located at the nanowire tips. By using transmission electron microscope grids as the shadow mask, the sol-gel technique can be readily adapted to prepare patterned film-like gold/silica substrates, so that regular micropatterns of Ge nanowires were obtained, which could facilitate the integration of Ge nanowires for characterization and devices.

  8. Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom

    DOEpatents

    Goyal, Amit; Kroeger, Donald M.; Paranthaman, Mariappan; Lee, Dominic F.; Feenstra, Roeland; Norton, David P.

    2002-01-01

    A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO.sub.2, YSZ, LaAlO.sub.3, SrTiO.sub.3, Y.sub.2 O.sub.3, RE.sub.2 O.sub.3, SrRuO.sub.3, LaNiO.sub.3 and La.sub.2 ZrO.sub.3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.

  9. Laminate articles on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2003-12-16

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0YSZ between the CeO.sub.2 layer and the (R.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  10. Effect of Nano-Si3N4 Additives and Plasma Treatment on the Dry Sliding Wear Behavior of Plasma Sprayed Al2O3-8YSZ Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Zhang, Jian; Zhang, Qiwen; Wang, You; Wang, Chaohui

    2017-04-01

    In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.

  11. Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films

    NASA Astrophysics Data System (ADS)

    Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.

    Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.

  12. Influence of Substrate Temperature on Structural, Electrical and Optical Properties of Ito Thin Films Prepared by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    He, Bo; Zhao, Lei; Xu, Jing; Xing, Huaizhong; Xue, Shaolin; Jiang, Meng

    2013-10-01

    In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω•cm, while the carrier concentration and mobility are as high as 3.461 × 1021 atom/cm3 and 19.1 cm2/Vṡs, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.

  13. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-01

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  14. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates.

    PubMed

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-06

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  15. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    NASA Astrophysics Data System (ADS)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  16. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio S.; Marple, Basil R.

    2017-03-01

    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  17. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  18. Structural and optical properties of electron beam evaporated yttria stabilized zirconia thin films

    NASA Astrophysics Data System (ADS)

    Kirubaharan, A. Kamalan; Kuppusami, P.; Singh, Akash; Dharini, T.; Ramachandran, D.; Mohandas, E.

    2015-06-01

    Yttria stabilized zirconia (10 mole % Y2O3) thin films were deposited on quartz substrates using electron beam physical vapor deposition at the substrate temperatures in the range 300 - 973 K. XRD analysis showed cubic crystalline phase of YSZ films with preferred orientation along (111). The surface roughness was found to increase with the increase of deposition temperatures. The optical band gap of ˜5.7 eV was calculated from transmittance curves. The variation in the optical properties is correlated with the changes in the microstructural features of the films prepared as a function of substrate temperature.

  19. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation

    PubMed Central

    Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-01-01

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888

  20. Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates.

    PubMed

    Cunha, Ana G; Freire, Carmen S R; Silvestre, Armando J D; Pascoal Neto, Carlos; Gandini, Alessandro; Orblin, Elina; Fardim, Pedro

    2007-04-01

    New highly hydrophobic/lipophobic biopolymers were prepared by the controlled heterogeneous pentafluorobenzoylation of cellulose substrates, i.e., plant and bacterial cellulose fibers. The characterization of the modified fibers was performed by elemental analysis, FTIR spectroscopy, X-ray diffraction, thermogravimetry, and surface analysis (XPS, ToF-SIMS, and contact angle measurements). The degree of substitution of the ensuing pentafluorobenzoylated fibers ranged from 0.014 to 0.39. The hydrolytic stability of these perfluorinated cellulose derivatives was also evaluated and showed that they were quite water stable, although of course the fluorinated moieties could readily be removed by hydrolysis in an aqueous alkaline medium.

  1. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    NASA Astrophysics Data System (ADS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  2. Conducting LaAlO3/SrTiO3 heterointerfaces on atomically-flat substrates prepared by deionized-water

    PubMed Central

    Connell, J. G.; Nichols, J.; Gruenewald, J. H.; Kim, D.-W.; Seo, S. S. A.

    2016-01-01

    We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns. PMID:27033248

  3. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Influence of Ytterbia Content on Residual Stress and Microstructure of Y2O3-ZrO2 Thin Films Prepared by EB-PVD*

    NASA Astrophysics Data System (ADS)

    Xiao, Qi-Ling; Shao, Sriu-Ying; He, Hong-Bo; Shao, Jian-Da; Fan, Zheng-Xiu

    2008-09-01

    Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x-ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress incre ases monotonically with the increase of Y2O3 content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.

  4. Monitoring Delamination of Plasma-Sprayed Thermal Barrier Coatings by Reflectance-Enhanced Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J.

    2006-01-01

    Highly scattering plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination because scattering attenuates light transmitted through the TBC and usually degrades contrast between attached and delaminated regions of the TBC. This paper presents a new approach where reflectance-enhanced luminescence from a luminescent sublayer incorporated along the bottom of the TBC is used to identify regions of TBC delamination. Because of the higher survival rate of luminescence reflecting off the back surface of a delaminated TBC, the strong scattering exhibited by plasma-sprayed TBCs actually accentuates contrast between attached and delaminated regions by making it more likely that multiple reflections of luminescence off the back surface occur before exiting the top surface of the TBC. A freestanding coating containing sections designed to model an attached or delaminated TBC was prepared by depositing a luminescent Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer and utilizing a NiCr backing layer to represent an attached substrate. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections even at a plasma-sprayed overlayer thickness of 300 m. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating form the Er-doped YSZ sublayer.

  5. Effect of substrate porosity on photoluminescence properties of ZnS films prepared on porous Si substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Feng; Li, Qing-Shan; Zhang, Li-Chun; Lv, Lei; Qi, Hong-Xia

    2007-05-01

    ZnS films were deposited on porous Si (PS) substrates with different porosities by pulsed laser deposition. The photoluminescence spectra of the samples were measured to study the effect of substrate porosity on luminescence properties of ZnS/porous Si composites. After deposition of ZnS films, the red photoluminescence peak of porous Si shows a slight blueshift compared with as-prepared porous Si samples. With an increase of the porosity, a green emission at about 550 nm was observed which may be ascribed to the defect-center luminescence of ZnS films, and the photoluminescence of ZnS/porous Si composites is very close to white light. Good crystal structures of the samples were observed by x-ray diffraction, showing that ZnS films were grown in preferred orientation. Due to the roughness of porous Si surface, some cracks appear in ZnS films, which could be seen from scanning electron microscope images.

  6. Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction

    NASA Astrophysics Data System (ADS)

    Anis, Badawi; Mostafa, A. M.; El Sayed, Z. A.; Khalil, A. S. G.; Abouelsayed, A.

    2018-07-01

    We present the preparation of highly conducting, transparent, and flexible reduced graphene oxide/silver nanowires (rGO/SNWs) substrates using non-thermal laser photoreduction method. High quality monolayers graphene oxide (GO) solution has been prepared by the chemical oxidation of thermally expanded large area natural graphite. Silver nanowires was prepared by using the typical polyol method. Uniform hybrid GO/silver nanowires (GO/SNWs) was prepared by growing the nanowires from silver nuclei in the presence of GO. Uniform and high-quality rGO/SNWs thin films were prepared using a dip-coating technique and were reduced to highly electrically conductive graphene and transparent conductive films using non-thermal laser scribe method. The laser scribed rGO/SNWs hybrid film exhibited 80% transparency with 70 Ω □-1 after 20 min of dipping in GO/SNWs solution.

  7. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2015-01-06

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  8. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2013-02-19

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  9. Finding pathways to prepare Fe4N thin films at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Seema, Gupta, Nitiand Mukul

    2018-04-01

    In Fe-N phase diagram the formation of Fe4N thin films occur in a very narrow region, specially below 573 K. Above this, the range of homogeneity for formation of Fe4N start to increase yielding more favorable conditions for formation of single phase Fe4N. However, when deposited at high substrate temperature (Ts) typically above 650 K, nitrogen (N) tends to diffuse out of the system yielding a N deficient phase. In this work, we attempt to find pathways to deposit Fe4N thin films at low Ts and successfully prepared single phase Fe4N thin films at Ts as low as 423 K. This was achieved by utilizing an underlayer of CrN. We find that such underlayer not only has close lattice matching with Fe4N, it also acts as a diffusion barrier for the film-substrate interface.

  10. A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates.

    PubMed

    Bengtsson, Oskar; Arntzen, Magnus Ø; Mathiesen, Geir; Skaugen, Morten; Eijsink, Vincent G H

    2016-01-10

    Analysis of the secretomes of filamentous fungi growing on insoluble lignocellulosic substrates is of major current interest because of the industrial potential of secreted fungal enzymes. Importantly, such studies can help identifying key enzymes from a large arsenal of bioinformatically detected candidates in fungal genomes. We describe a simple, plate-based method to analyze the secretome of Hypocrea jecorina growing on insoluble substrates that allows harsh sample preparation methods promoting desorption, and subsequent identification, of substrate-bound proteins, while minimizing contamination with non-secreted proteins from leaking or lysed cells. The validity of the method was demonstrated by comparative secretome analysis of wild-type H.jecorina strain QM6a growing on bagasse, birch wood, spruce wood or pure cellulose, using label-fee quantification. The proteomic data thus obtained were consistent with existing data from transcriptomics and proteomics studies and revealed clear differences in the responses to complex lignocellulosic substrates and the response to pure cellulose. This easy method is likely to be generally applicable to filamentous fungi and to other microorganisms growing on insoluble substrates. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Method of depositing buffer layers on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  12. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  13. Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting

    2009-01-01

    Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.

  14. Thermal Aging Behavior of Axial Suspension Plasma-Sprayed Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan

    2015-02-01

    7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.

  15. High-Tc thermal bridges for space-borne cryogenic infrared detectors

    NASA Technical Reports Server (NTRS)

    Wise, S. A.; Buckley, J. D.; Nolt, I.; Hooker, M. W.; Haertling, G. H.; Selim, R.; Caton, R.; Buoncristiani, A. M.

    1993-01-01

    The potential for using high-temperature superconductive elements, screen-printed onto ceramic substrates, as thermal bridges to replace the currently employed manganin wires is studied at NASA-LaRC. Substrate selection is considered to be the most critical parameter in device production. Due to the glass-like thermal behavior of yttria-stabilized-zirconia (YSZ) and fused silica substrates, these materials are found to reduce the heat load significantly. The estimated thermal savings for superconductive leads printed onto YSZ or fused silica substrates range from 6 to 14 percent.

  16. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  17. Effect of synthesis process on the microstructure and electrical conductivity of nickel/yttria-stabilized zirconia powders prepared by urea hydrolysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyung-Dong; Wu, Zhao-Lun

    In this study, NiO/YSZ composite powders were synthesized using hydrolysis on two solutions, one contains YSZ particles and Ni 2+ ion, and the other contains NiO particles, Zr 4+, and Y 3+ ions, with the aid of urea. The microstructure of the powders and sintered bulks was further characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that various synthesis processes yielded NiO/YSZ powders with different morphologies. The NiO precursors would deposit onto the surface of YSZ particles, and NiO-deposited YSZ composite powders were obtained. Alternatively, it was not observed that YSZ precursors deposited onto the surface of NiO particles, thus, a uniform powder mixture of fine NiO and fine YSZ particles was produced. After sintering and subsequent reduction, these powders would lead to the variations of Ni distribution in the YSZ matrix and conductivity of cermets. Owing to the core-shell structure of the powders and the higher size ratio of YSZ and NiO particles, the conductivity of cermet with NiO-deposited YSZ powders containing 23 wt% NiO is comparable to those with a NiO/YSZ powder mixture containing 50 wt% NiO.

  18. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property.

    PubMed

    Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee

    2017-06-08

    Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples.

  19. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property

    PubMed Central

    Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee

    2017-01-01

    Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples. PMID:28772987

  20. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen

    2016-09-01

    In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.

  1. Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi

    For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less

  2. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  3. Thermal Diffusivity Measurement for Thermal Spray Coating Attached to Substrate Using Laser Flash Method

    NASA Astrophysics Data System (ADS)

    Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio

    2011-11-01

    Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.

  4. Structure and magnetic properties of Fe-Co-B alloy thin films prepared on cubic (001) single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Ohtake, Mitsuru; Serizawa, Kana; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2018-04-01

    Fe70Co30 and (Fe70Co30)0.95B5 (at. %) alloy films of 5 nm thickness are prepared by sputtering on cubic (001) oxide substrates at 200 °C. The lattice mismatch between film and substrate is varied from -4.2%, 0%, to +3.5% by employing MgO, MgAl2O4, and SrTiO3 substrates, respectively. Fe70Co30 and (Fe70Co30)0.95B5 single-crystal films with bcc structure grow epitaxially on all the substrates in the orientation relationship of (001)[110]film || (001)[100]substrate. The in-plane and out-of-plane lattice constants, a and c, are in agreement within small differences ranging between +1.1% and -0.9% with the value of bulk bcc-Fe70Co30 crystal, even though there exist the lattice mismatches of -4.2% and +3.5%. The result indicates that misfit dislocations are introduced around the film/substrate interface when films are deposited on MgO and SrTiO3 substrates. The single-crystal films show in-plane magnetic anisotropies with the easy magnetization direction of bcc[100], which are reflecting the magnetocrystalline anisotropy of bulk Fe70Co30 crystal.

  5. Influence of Al content on the properties of ternary Al{sub 2x}In{sub 2−2x}O{sub 3} alloy films prepared on YSZ (1 1 1) substrates by MOCVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xianjin; Zhao, Cansong; Li, Zhao

    2015-10-15

    Highlights: • Al{sub 2x}In{sub 2−2x}O{sub 3} films were prepared on the Y-stabilized ZrO{sub 2} (1 1 1) substrates by MOCVD at 700 °C. • A phase transition from the bixbyite In{sub 2}O{sub 3} structure to the amorphous structure was observed. • The lowest resistivity of 4.7 × 10{sup −3} Ω cm was obtained for the Al{sub 0.4}In{sub 1.6}O{sub 3} film. • Tunable optical band gap from 3.7 to 4.8 eV was obtained. - Abstract: The ternary Al{sub 2x}In{sub 2−2x}O{sub 3} films with different Al contents of x [Al/(Al + In) atomic ratio] have been fabricated on the Y-stabilized ZrO{sub 2}more » (1 1 1) substrates by metal organic chemical vapor deposition at 700 °C. The structural, electrical and optical properties of the films as a result of different Al contents (x = 0.1–0.9) were investigated in detail. With the increase of Al content from 10% to 90%, a phase transition from the bixbyite In{sub 2}O{sub 3} structure with a single orientation along (1 1 1) to the amorphous structure was observed. The minimum resistivity of 4.7 × 10{sup −3} Ω cm, a carrier concentration of 1.4 × 10{sup 20} cm{sup −3} and a Hall mobility of 9.8 cm{sup 2} v{sup −1} s{sup −1} were obtained for the sample with x = 0.2. The average transmittances for the Al{sub 2x}In{sub 2−2x}O{sub 3} films in the visible range were all over 78% and the optical band gap of the films could be tuned from 3.7 to 4.8 eV.« less

  6. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  7. YSZ-based sensor using Cr-Fe-based spinel-oxide electrodes for selective detection of CO.

    PubMed

    Anggraini, Sri Ayu; Fujio, Yuki; Ikeda, Hiroshi; Miura, Norio

    2017-08-22

    A selective carbon monoxide (CO) sensor was developed by the use of both of CuCrFeO 4 and CoCrFeO 4 as the sensing electrode (SE) for yttria-stabilized zirconia (YSZ)-based potentiometric sensor. The sensing-characteristic examinations of the YSZ-based sensors using each of spinel oxides as the single-SE sensor showed that CuCrFeO 4 -SE had the ability to detect CO, hydrocarbons and NO x gases, while CoCrFeO 4 -SE was sensitive to hydrocarbons and NO x gases. Thus, when both SEs were paired as a combined-SEs sensor, the resulting sensor could generate a selective response to CO at 450 °C under humid conditions. The sensor was also capable of detecting CO in the concentration range of 20-700 ppm. Its sensing mechanism that was examined via polarization-curve measurements was confirmed to be based on mixed-potential model. The CO response generated by the combined-SEs sensor was unaffected by the change of water vapor concentration in the range of 1.3-11.5 vol% H 2 O. Additionally, the sensing performance was stable during 13 days tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Substrate preparation effects on defect density in molecular beam epitaxial growth of CdTe on CdTe (100) and (211)B

    DOE PAGES

    Burton, George L.; Diercks, David R.; Perkins, Craig L.; ...

    2017-07-01

    Recent studies have demonstrated that growth of CdTe on CdTe (100) and (211)B substrates via molecular beam epitaxy (MBE) results in planar defect densities 2 and 3 orders of magnitude higher than growth on InSb (100) substrates, respectively. To understand this shortcoming, MBE growth on CdTe substrates with a variety of substrate preparation methods is studied by scanning electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy, cross sectional transmission electron microscopy, and atom probe tomography (APT). Prior to growth, carbon is shown to remain on substrate surfaces even after atomic hydrogen cleaning. APT revealed that following the growth ofmore » films, trace amounts of carbon remained at the substrate/film interface. This residual carbon may lead to structural degradation, which was determined as the main cause of higher defect density.« less

  9. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    PubMed

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  12. Physical vapor deposition and metalorganic chemical vapor deposition of yttria-stabilized zirconia thin films

    NASA Astrophysics Data System (ADS)

    Kaufman, David Y.

    Two vapor deposition techniques, dual magnetron oblique sputtering (DMOS) and metalorganic chemical vapor deposition (MOCVD), have been developed to produce yttria-stabilized zirconia (YSZ) films with unique microstructures. In particular, biaxially textured thin films on amorphous substrates and dense thin films on porous substrates have been fabricated by DMOS and MOCVD, respectively. DMOS YSZ thin films were deposited by reactive sputtering onto Si (native oxide surface) substrates positioned equidistant between two magnetron sources such that the fluxes arrived at oblique angles with respect to the substrate normal. Incident fluxes from two complimentary oblique directions were necessary for the development of biaxial texture. The films displayed a strong [001] out-of-plane orientation with the <110> direction in the film aligned with the incident flux. Biaxial texture improved with increasing oblique angle and film thickness, and was stronger for films deposited with Ne than with Ar. The films displayed a columnar microstructure with grain bundling perpendicular to the projected flux direction, the degree of which increased with oblique angle and thickness. The texture decreased by sputtering at pressures at which the flux of sputtered atoms was thermalized. These results suggested that grain alignment is due to directed impingement of both sputtered atoms and reflected energetic neutrals. The best texture, a {111} phi FWHM of 23°, was obtained in a 4.8 mum thick film deposited at an oblique angle of 56°. MOCVD YSZ thin films were deposited in a vertical cold-wall reactor using Zr(tmhd)4 and Y(tmhd)3 precursors. Fully stabilized YSZ films with 9 mol% could be deposited by controlling the bubbler temperatures. YSZ films on Si substrates displayed a transition at 525°C from surface kinetic limited growth, with an activation energy of 5.5 kJ/mole, to mass transport limited growth. Modifying the reactor by lowering the inlet height and introducing an Ar baffle

  13. Substrate binding ability of chemically inactivated pectinase for the substrate pectic acid.

    PubMed

    Chiba, Y; Kobayashi, M

    1995-07-01

    Pectinase (polygalacturonase) was purified from a commercial pectinase preparation from a mold. Substrate binding of pectinase was measured by centrifugal affinity chromatography using an immobilized substrate, pectic acid. Desorption of pectinase from the affinity matrix with the substrate pectin and pectic acid gave Kd values of 5.3 and 8.5 mg/ml, respectively. Chemical modification of pectinase by 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide (EDC) and diethyl pyrocarbonate (DEP) caused a loss of most of the enzyme activity, but the substrate binding ability was not impaired. Thus, the pectinase preparation was digested with lysyl endopeptidase and the resulting peptides were treated with pectic acid-affinity gel. Three peptide fragments, which were recovered from the affinity column and sequenced, were identical to sequences in the second pectinase gene from Aspergillus niger. The first peptide contained 17 amino acids, Asp101-Ser117, and the second and third peptides corresponded to 18 amino acids of Asn152-Asp169. These results indicate that the inactivated pectinase retained substrate binding ability and would function as an acidic polysaccharide recognizing protein.

  14. Improved Oxidation Life of Segmented Plasma Sprayed 8YSZ Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Smialek, James L.

    2004-03-01

    Unconventional plasma sprayed thermal barrier coating (TBC) systems were produced and evaluated by interrupted or cyclic furnace oxidation life testing. First, approximately 250 µm thick 8YSZ coatings were directly sprayed onto grit blasted surfaces of PWA 1484, without a bond coat, to take advantage of the excellent oxidation resistance of this superalloy. For nominal sulfur (S) contents of 1 ppmw, total coating separation took place at relatively short times (200 h at 1100°C). Reductions in the S content, by melt desulfurization commercially (0.3 ppmw) or by hydrogen (H2) annealing in the laboratory (0.01 ppmw), improved scale adhesion and extended life appreciably, by factors of 5-10. However, edge-initiated failure persisted, producing massive delamination as one sheet of coating. Secondly, surfaces of melt desulfurized PWA 1484 were machined with a grid of grooves or ribs (˜250 µm wide and high), resulting in a segmented TBC surface macrostructure, for the purpose of subverting this failure mechanism. In this case, failure occurred only as independent, single-segment events. For grooved samples, 1100 °C segment life was extended to ˜1000h for 5 mm wide segments, with no failure observed out to 2000 h for segments ≤2.5 mm wide. Ribbed samples were even more durable, and segments ≤6 mm remained intact for 2000 h. Larger segments failed by buckling at times inversely related to the segment width and decreased by oxidation effects at higher temperatures. This critical buckling size was consistent with that predicted for elastic buckling of a TBC plate subject to thermal expansion mismatch stresses. Thus, low S substrates demonstrate appreciable coating lives without a bond coat, while rib segmenting extends life considerably.

  15. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.

  16. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  17. Improved metal-insulator-transition characteristics of ultrathin VO2 epitaxial films by optimized surface preparation of rutile TiO2 substrates

    NASA Astrophysics Data System (ADS)

    Martens, Koen; Aetukuri, Nagaphani; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.

    2014-02-01

    Key to the growth of epitaxial, atomically thin films is the preparation of the substrates on which they are deposited. Here, we report the growth of atomically smooth, ultrathin films of VO2 (001), only ˜2 nm thick, which exhibit pronounced metal-insulator transitions, with a change in resistivity of ˜500 times, at a temperature that is close to that of films five times thicker. These films were prepared by pulsed laser deposition on single crystalline TiO2(001) substrates that were treated by dipping in acetone, HCl and HF in successive order, followed by an anneal at 700-750 °C in flowing oxygen. This pretreatment removes surface contaminants, TiO2 defects, and provides a terraced, atomically smooth surface.

  18. Preparation of Cobalt-Based Electrodes by Physical Vapor Deposition on Various Nonconductive Substrates for Electrocatalytic Water Oxidation.

    PubMed

    Wu, Yizhen; Wang, Le; Chen, Mingxing; Jin, Zhaoxia; Zhang, Wei; Cao, Rui

    2017-12-08

    Artificial photosynthesis requires efficient anodic electrode materials for water oxidation. Cobalt metal thin films are prepared through facile physical vapor deposition (PVD) on various nonconductive substrates, including regular and quartz glass, mica sheet, polyimide, and polyethylene terephthalate (PET). Subsequent surface electrochemical modification by cyclic voltammetry (CV) renders these films active for electrocatalytic water oxidation, reaching a current density of 10 mA cm -2 at a low overpotential of 330 mV in 1.0 m KOH solution. These electrodes are robust with unchanged activity throughout prolonged chronopotentiometry measurements. This work is thus significant to show that the combination of PVD and CV is very valuable and convenient to fabricate active electrodes on various nonconductive substrates, particularly with flexible polyimide and PET substrates. This efficient, safe and convenient method can potentially be expanded to many other electrochemical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  20. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.

    PubMed

    Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu

    2009-06-02

    Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.

  1. Antibacterial studies of ZnO nanoparticle coatings on nanocrystalline YSZ irradiated with femtosecond laser light

    NASA Astrophysics Data System (ADS)

    Alvarez, Crysthal; Garcia, Valeria; Cuando, Natanael; Aguilar, Guillermo

    2018-02-01

    Recently, efforts have been made to create a transparent ceramic cranial implant comprised of nanocrystalline yttriastabilized zirconia (nc-YSZ) that will provide optical access to the brain. This has been referred to as Window to the Brain (WttB) in the literature. WttB will allow the use of laser and photonic treatments and diagnostics in areas with difficult optical access in the brain. Nevertheless, infection is still one of the frequent cranial implant complications. In most cases a second surgery is required to replace the infected implant. To address potential infections in the WttB platform, we have studied the antibacterial effect of a Zinc Oxide (ZnO) nanoparticles coating on nc-YSZ. After coating with ZnO nanoparticles, the implant was irradiated with infrared femtosecond laser light. We synthesized ZnO nanoparticles through the Laser Ablation of Solids in Liquids (LASL) method, using a Zinc solid target in a liquid medium (water/acetone). Antibacterial coatings were obtained by air brush, using a precursor solution of ZnO nanoparticles in distilled water. Escherichia coli (E. coli) have been used as representative, clinical relevant bacteria to probe the antibacterial effect of the coating. Our previous studies suggested that the use of ZnO nanoparticles inhibit bacterial growth. Laser irradiation treatment alone also offers inhibition of bacterial growth, up to 70%. The incorporation of nanoparticles offers an additional 20% inhibition. Thus, this work represents the next step towards the development of a clinically-oriented transparent cranial implant.

  2. Semi-preparative scale purification of enterococcal bacteriocin enterocin EJ97, and evaluation of substrates for its production.

    PubMed

    López, Rosario Lucas; García, Ma Teresa; Abriouel, Hikmate; Ben Omar, Nabil; Grande, Ma José; Martínez-Cañamero, Magdalena; Gálvez, Antonio

    2007-12-01

    The influence of substrate composition on the production of enterocin EJ97 and the conditions for semi-preparative bacteriocin recovery have been studied. Final bacteriocin concentrations of 12.5 or 15.6 mg/l were obtained in the commercial media brain heart infusion broth (BHI) and tryptic soya broth, respectively. The bacteriocin was also produced in the complex medium CM (8.75 mg/l), in which the vitamin supplement was essential for production. Some combinations of meat peptone and yeast extract plus either soy peptone or BHI also supported bacteriocin production, at concentrations of 6.25-7.5 mg/l. In cow milk (whole, half-skimmed, and skimmed), the final bacteriocin concentrations obtained ranged from 7.5 to 11.25 mg/l. Highest bacteriocin activity was obtained by using pasteurised milk whey as growth substrate (up to 25 mg/l), suggesting that this bacteriocin can be obtained on a large scale by using this cheap food-grade industrial by-product. Highest bacteriocin titres were always obtained after 8 h of incubation at 37 degrees C. Semi-preparative concentration and purification of enterocin EJ97 produced in a complex medium was achieved by bulk cation exchange chromatography without previous cell separation, followed by reversed-phase chromatography. This two-step procedure allowed preparation of milligram quantities of purified bacteriocin, which is an improvement compared to purification procedures established for most other bacteriocins (35). The availability of purified enterocin EJ97 will facilitate other studies such as the elucidation of its molecular structure and its interaction with target bacteria.

  3. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-01-01

    The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  4. alpha-L-iduronidase, beta-D-glucuronidase, and 2-sulfo-L-iduronate 2-sulfatase: preparation and characterization of radioactive substrates from heparin.

    PubMed

    Hopwood, J J

    1979-03-01

    Radioactive disaccharide substrates for alpha-L-iduronidase, beta-D-glucuronidase, and 2-sulfo-L-iduronate 2-sulfatase have been prepared from heparin by deaminative cleavage followed by reduction with NaBT4. Six disaccharides were isolated from this reaction mixture and identified. Acid hydrolysis of the major disaccharide, O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate (IdAs--Ms), produced 48% of O-(alpha-L-idopyranosyluronic acid)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate) (IdA--Ms) and 25% of O-(alpha-L-idopyranosyluronic acid)-(1 linked to 4)-2,5-anhydro-D-mannitol-l-t. The most-sensitive substrate for determining alpha-L-iduronidase activity was IdA--Ms which, when incubated with leucocyte and skin-fibroblast homogenates prepared from patients having a deficiency of alpha-L-iduronidase (Mucopolysaccharidosis Type I; MPS-I), was hydrolysed to yield 2,5-anhydro-D-mannitol-l-t 6-sulfate at a rate 50-times less than that found for normal control-preparations. Similarly, O-(beta-D-glucopyranosyluronic acid)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate) was degraded by whole-cell homogenates prepared from beta-D-glucuronidase-deficient (Mucopolysaccharidosis, Type VII) fibroblasts, to yield 2,5-anhydro-D-mannitol-l-t 5-sulfate at a rate 60-times less that that found for MPS-I and normal control-preparations. IdAs--Ms was degraded by 2-sulfo-L-iduronate 2-sulfatase at a rate more than 45-times greater than that found for O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 linked to 4)-2,5-anhydro-D-mannitol-l-t. C-6 Sulfation of the anhydro-D-mannitol-l-t residue is an important structural determinant in the mechanism of action of both alpha-L-iduronidase and 2-sulfo-L-iduronate 2-sulfatase on disaccharide substrates.

  5. [Oxygen plasma-vulcanized deformable polydimethylsiloxane sheet culture substrates].

    PubMed

    Zhang, Yiyi; Tao, Zulai

    2003-06-01

    A method of preparing deformable polydimethylsiloxane sheet culture substrates by oxygen plasma vulcanization was developed. As compared with the traditional heating vulcanization method, the substrates prepared in this way have hydrophilic surfaces, the adhesion and spreading of cells both occur quickly, and the wrinkling deformation of substrates develops quickly, too. In addition, the changes of wrinkles during treatment of cytochalasin D were observed, and the result shows that this technique has high temporal resolution.

  6. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by solution precursor plasma spraying with axial feedstock injection

    NASA Astrophysics Data System (ADS)

    Metcalfe, Craig; Lay-Grindler, Elisa; Kesler, Olivera

    2014-02-01

    Nickel and yttria-stabilized zirconia (YSZ) anodes were fabricated by solution precursor plasma spraying (SPPS) and incorporated into metal-supported solid oxide fuel cells (SOFC). A power density of 0.45 W cm-2 at 0.7 V and a peak power density of 0.52 W cm-2 at 750 °C in humidified H2 was obtained, which are the first performance results reported for an SOFC having an anode fabricated by SPPS. The effects of solution composition, plasma gas composition, and stand-off distance on the composition of the deposited Ni-YSZ coatings by SPPS were evaluated. It was found that the addition of citric acid to the aqueous solution delayed re-solidification of NiO particles, improving the deposition efficiency and coating adhesion. The composition of the deposited coatings was found to vary with torch power. Increasing torch power led to coatings with decreasing Ni content, as a result of Ni vaporizing in-flight at stand-off distances less than 60 mm from the torch nozzle exit.

  7. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope.

    PubMed

    Vesenka, J; Guthold, M; Tang, C L; Keller, D; Delaine, E; Bustamante, C

    1992-07-01

    A simple method of substrate preparation for imaging circular DNA molecules with the scanning force microscope (SFM) is presented. These biomolecules are adsorbed onto mica that has been soaked in magnesium acetate, sonicated and glow-discharged. The stylus-sample forces that may be endured before sample damage occurs depends on the ambient relative humidity. Images of circular DNA molecules have been obtained routinely using tips specially modified by an electron beam with a radius of curvature, Rc, of about 10 nm [D. Keller and C. Chih-Chung, Surf. Sci. 268 (1992) 333]. The resolution of these adsorbed biomolecules is determined by the Rc. At higher forces individual circular DNA molecules can be manipulated with the SFM stylus. Strategies to develop still sharper probes will be discussed.

  8. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  9. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel.

    PubMed

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2014-02-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay. © 2013 Wiley Periodicals, Inc.

  10. Improvement of Toluene Selectivity via the Application of an Ethanol Oxidizing Catalytic Cell Upstream of a YSZ-Based Sensor for Air Monitoring Applications

    PubMed Central

    Sato, Tomoaki; Breedon, Michael; Miura, Norio

    2012-01-01

    The sensing characteristics of a yttria-stabilized zirconia (YSZ)-based sensor utilizing a NiO sensing-electrode (SE) towards toluene (C7H8) and interfering gases (C3H6, H2, CO, NO2 and C2H5OH) were evaluated with a view to selective C7H8 monitoring in indoor atmospheres. The fabricated YSZ-based sensor showed preferential responses toward 480 ppb C2H5OH, rather than the target 50 ppb C7H8 at an operational temperature of 450 °C under humid conditions (RH ≃ 32%). To overcome this limitation, the catalytic activity of Cr2O3, SnO2, Fe2O3 and NiO powders were evaluated for their selective ethanol oxidation ability. Among these oxides, SnO2 was found to selectively oxidize C2H5OH, thus improving C7H8 selectivity. An inline pre-catalytic cell loaded with SnO2 powder was installed upstream of the YSZ-based sensor utilizing NiO-SE, which enabled the following excellent abilities by selectively catalyzing common interfering gases; sensitive ppb level detection of C7H8 lower than the established Japanese Guideline value; low interferences from 50 ppb C3H6, 500 ppb H2, 100 ppb CO, 40 ppb NO2, as well as 480 ppb C2H5OH. These operational characteristics are all indicative that the developed sensor may be suitable for real-time C7H8 concentration monitoring in indoor environments. PMID:22666053

  11. Preparation of Nd-Fe-B/α-Fe nano-composite thick-film magnets on various substrates using PLD with high laser energy density above 10 J/cm2

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kondo, H.; Yamashita, A.; Yanai, T.; Itakura, M.; Fukunaga, H.

    2018-05-01

    PLD (Pulsed Laser Deposition) method with high laser energy density (LED) above 10 J/cm2 followed by a flash annealing enabled us to obtain isotropic nano-composite thick-film magnets with (BH)max ≧ 80 kJ/m3 on polycrystalline Ta substrates. We also have demonstrated that a dispersed structure composed of α-Fe together with Nd2Fe14B phases with the average grain diameter of approximately 20 nm could be formed on the Ta substrates. In this study, we tried to enhance the (BH)max value by controlling the microstructure due to the usage of different metal based substrates with each high melting point such as Ti, Nb, and W. Although it was difficult to vary the microstructure and to improve the magnetic properties of the films deposited on the substrates, we confirmed that isotropic thick-film magnets with (BH)max ≧ 80 kJ/m3 based on the nano-dispersed α-Fe and Nd2Fe14B phases could be obtained on various metal substrates with totally different polycrystalline structure. On the other hand, the use of a glass substrate lead to the deterioration of magnetic properties of a film prepared using the same preparation process.

  12. Precise micropatterning of silver nanoparticles on plastic substrates

    NASA Astrophysics Data System (ADS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2017-04-01

    Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV-vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  13. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  14. Preparation of the Superconductor Substrate: Strontium Titanate

    DTIC Science & Technology

    1988-09-01

    reported 19. Dijkkamp, D., Venkatesant, T., Wu, X.D., Shaheen, S.A.. Jisrawi , N., Min-Lee. Y.H., Mclean, W.I., and Croft, M. (1987) Preparation of Y-Ba...D., Venkatesant, T., Wu, X.D., Shaheen, S.A., Jisrawi , N., Min-Lee, Y.H., Mclean. W.I., and Croft, M. (1987) Preparation of Y-Ba-Cu-oxide

  15. Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.

    2018-04-01

    Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.

  16. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  17. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  18. Brazing of Stainless Steel to Yttria-Stabilized Zirconia Using Gold-Based Brazes for Solid Oxide Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Asthana, R.

    2007-01-01

    Two gold-base active metal brazes (gold-ABA and gold-ABA-V) were evaluated for oxidation resistance to 850 C, and used to join yttria-stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel for possible use in solid oxide fuel cells. Thermogravimetric analysis and optical microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy were used to evaluate the braze oxidation behavior, and microstructure and composition of the YSZ/braze/steel joints. Both gold-ABA and gold-ABA-V exhibited nearly linear oxidation kinetics at 850 C, with gold-ABA-V showing faster oxidation than gold-ABA. Both brazes produced metallurgically sound YSZ/steel joints due to chemical interactions of Ti and V with the YSZ and steel substrates.

  19. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  20. 3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability

    PubMed Central

    Pecho, Omar M.; Stenzel, Ole; Iwanschitz, Boris; Gasser, Philippe; Neumann, Matthias; Schmidt, Volker; Prestat, Michel; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz

    2015-01-01

    This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 °C. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φeff), constriction factor (β), and tortuosity (τ). The effective conductivity (σeff) is described as the product of intrinsic conductivity (σ0) and the so-called microstructure-factor (M): σeff = σ0 × M. Two different methods are used to evaluate the M-factor: (1) by prediction using a recently established relationship, Mpred = εβ0.36/τ5.17, and (2) by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (Msim). Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers. PMID:28793523

  1. Method of making carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei; Liu, Jun

    2006-03-14

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  2. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cui; Liu, Qingbin; Li, Jia

    2014-11-03

    We investigate the temperature dependent electrical transport properties of quasi-free standing bilayer graphene on 4H-SiC (0001) substrate. Three groups of monolayer epitaxial graphene and corresponding quasi-free standing bilayer graphene with different crystal quality and layer number homogeneity are prepared. Raman spectroscopy and atomic-force microscopy are used to obtain their morphologies and layer number, and verify the complete translation of buffer layer into graphene. The highest room temperature mobility reaches 3700 cm{sup 2}/V·s for the quasi-free standing graphene. The scattering mechanism analysis shows that poor crystal quality and layer number inhomogeneity introduce stronger interacting of SiC substrate to the graphene layer andmore » more impurities, which limit the carrier mobility of the quasi-free standing bilayer graphene samples.« less

  3. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  4. Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density

    NASA Astrophysics Data System (ADS)

    Yang, Feng

    1995-01-01

    The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different

  5. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy.

    PubMed

    Fullwood, Leanne M; Griffiths, Dave; Ashton, Katherine; Dawson, Timothy; Lea, Robert W; Davis, Charles; Bonnier, Franck; Byrne, Hugh J; Baker, Matthew J

    2014-01-21

    Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.

  6. Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone.

    PubMed

    Durham, John W; Allen, Matthew J; Rabiei, Afsaneh

    2017-04-01

    Polyether ether ketone (PEEK) is a highly heat-resistant thermoplastic with excellent strength and elastic modulus similar to human bone, making it an attractive material for orthopedic implants. However, the hydrophobic surface of PEEK implants induces fibrous encapsulation which is unfavorable for stable implant anchorage. In this study, PEEK was coated via ion-beam-assisted deposition (IBAD) using a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to improve osseointegration. Microstructural analysis of the coatings showed a dense, uniform columnar grain structure in the YSZ layer and no delamination from the substrate. The HA layer was found to be amorphous and free of porosities in its as-deposited state. Subsequent heat treatment via microwave energy followed by autoclaving crystallized the HA layer, confirmed by SEM and XRD analysis. An in vitro study using MC3T3 preosteoblast cells showed improved bioactivity in heat-treated sample groups. Cell proliferation, differentiation, and mineralization were analyzed by MTT assay and DNA content, osteocalcin expression, and Alizarin Red S (AR-S) content, respectively. Initial cell growth was increased, and osteogenic maturation and mineralization were accelerated most on coatings that underwent a combined microwave and autoclave heat treatment process as compared to uncoated PEEK and amorphous HA surfaces. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 560-567, 2017. © 2015 Wiley Periodicals, Inc.

  7. Study on AN Intermediate Temperature Planar Sofc

    NASA Astrophysics Data System (ADS)

    Wang, Shaorong; Cao, Jiadi; Chen, Wenxia; Lu, Zhiyi; Wang, Daqian; Wen, Ting-Lian

    An ITSOFC consisted of Ni/YSZ anode supported YSZ composite thin film and La0.6Sr0.4CoO3 (LSCO) cathode combined with a Ce0.8Sm0.2O1.9 (CSO) interlayer was studied. Tape cast method was applied to prepare green sheets of Ni/YSZ anode supported YSZ composite thin film. After isostatic pressing and cosintering, the YSZ film on the Ni/YSZ anode was gas-tight dense, and 15-30μm thick. The area of the composite film was over 100 cm2. A CSO interlayer was sintered on to the YSZ electrolyte film to protect LSCO cathode from reaction with YSZ at high temperatures. The LSCO cathode layer was screen printed onto the CSO interlayer and sintered at 1200°C for 3h to form a single cell. The obtained single cell was operated with H2 as fuel and O2 as oxidant. The cell performance and impedance were measured and discussed relating with the component contributions.

  8. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  9. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.

    PubMed

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-04

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  10. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  11. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    PubMed Central

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006

  12. Ionic Conductivity Increased by Two Orders of Magnitude in Micrometer-Thick Vertical Yttria-Stabilized ZrO 2 Nanocomposite Films

    DOE PAGES

    Lee, Shinbuhm; Zhang, Wenrui; Khatkhatay, Fauzia; ...

    2015-09-03

    We design and create a unique cell geometry of templated micrometer-thick epitaxial nanocomposite films which contain ~20 nm diameter yttria-stabilized ZrO 2 (YSZ) nanocolumns, strain coupled to a SrTiO 3 matrix. We also enhanced the ionic conductivity of these nanocolumnsby over 2 orders of magnitude compared to plain YSZ films. Concomitant with the higher ionic conduction is the finding that the YSZ nanocolumns in the films have much higher crystallinity and orientation, compared to plain YSZ films. Hence, “oxygen migration highways” are formed in the desired out-of-plane direction. This improved structure is shown to originate from the epitaxial coupling ofmore » the YSZ nanocolumns to the SrTiO 3 film matrix and from nucleation of the YSZ nanocolumns on an intermediate nanocomposite base layer of highly aligned Sm-doped CeO 2 nanocolumns within the SrTiO 3 matrix. Furthermore, this intermediate layer reduces the lattice mismatch between the YSZ nanocolumns and the substrate. Vertical ionic conduction values as high as 10 –2 Ω –1 cm –1 were demonstrated at 360 °C (300 °C lower than plain YSZ films), showing the strong practical potential of these nanostructured films for use in much lower operation temperature ionic devices.« less

  13. Health Monitoring of Thermal Barrier Coatings by Mid-Infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Nesbitt, J. A.; Street, K. W.

    2002-01-01

    Mid-infrared (MIR) reflectance is shown to be a powerful tool for monitoring the integrity of 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs). Because of the translucent nature of plasma-sprayed 8YSZ TBCs, particularly at MIR wavelengths (3 to 5 microns), measured reflectance does not only originate from the TBC surface, but contains strong contributions from internal scattering within the coating as well as reflectance from the underlying TBC/substrate interface. Therefore, changes in MIR reflectance measurements can be used to monitor the progression of TBC delamination. In particular, MIR reflectance is shown to reproducibly track the progression of TBC delamination produced by repeated thermal cycling (to 1163 C) of plasma-sprayed 8YSZ TBCs on Rene N5 superalloy substrates. To understand the changes in MIR reflectance with the progression of a delamination crack network, a four-flux scattering model is used to predict the increase in MIR reflectance produced by the introduction of these cracks.

  14. Infrared Radiative Properties of Yttria-Stabilized Zirconia Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeff I.; Spuckler, Charles M.; Street, Ken W.; Markham, Jim R.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The infrared (IR) transmittance and reflectance of translucent thermal barrier coatings (TBCs) have important implications for both the performance of these coatings as radiation barriers and emitters as well as affecting measurements of TBC thermal conductivity, especially as TBCs are being pushed to higher temperatures. In this paper, the infrared spectral directional-hemispherical transmittance and reflectance of plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) TBCs are reported. These measurements are compared to those for single crystal YSZ specimens to show the effects of the plasma-sprayed coating microstructure. It is shown that the coatings exhibit negligible absorption at wavelengths up to about 5 micrometers, and that internal scattering rather than surface reflections dominates the hemispherical reflectance. The translucent nature of the 8YSZ TBCs results in the absorptance/emittance and reflectance of TBC-coated substrates depending on the TBC thickness, microstructure, as well as the radiative properties of the underlying substrate. The effects of these properties on TBC measurements and performance are discussed.

  15. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation.

    PubMed

    Vieira, Fabricio Rocha; Pecchia, John Andrew

    2018-02-01

    Substrate preparation (i.e., composting) for Agaricus bisporus cultivation is the most critical point of mushroom production. Among many factors involved in the composting process, the microbial ecology of the system is the underlying drive of composting and can be influenced by composting management techniques. Pasteurization temperature at the beginning of phase II, in theory, may influence the bacterial community and subsequently the "selectivity" and nutrition of the final substrate. Therefore, this hypothesis was tested by simulation in bioreactors under different pasteurization conditions (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h), simulating conditions adopted by many producers. Bacterial diversity, based on 16S ribosomal RNA obtained by high-throughput sequencing and classified in operational taxonomic units (OTUs), was greater than previously reported using culture-dependent methods. Alpha diversity estimators show a lower diversity of OTUs under a high-temperature pasteurization condition. Bacillales order shows a relatively higher OTU abundance under a high-pasteurization temperature, which also was related to high ammonia emission measurements. On the other hand, beta diversity analysis showed no significantly changes in the bacterial community structure under different conditions. Agaricus bisporus mycelium growth during a standard spawn run period was significantly slower in the compost pasteurized at high temperature. Since the bacterial community structure was not greatly affected by different pasteurization conditions but by-products left (e.g., ammonia) at the end of compost conditioning varied, further studies need to be conducted to determine the functional role of the microbial communities found during substrate preparation for Agaricus bisporus cultivation.

  16. Lattice matched semiconductor growth on crystalline metallic substrates

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  17. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63-1.27 W m-1 K-1), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings.

  18. Off-axis silicon carbide substrates

    DOEpatents

    Edgar, James; Dudley, Michael; Kuball, Martin; Zhang, Yi; Wang, Guan; Chen, Hui; Zhang, Yu

    2014-09-02

    A method of epitaxial growth of a material on a crystalline substrate includes selecting a substrate having a crystal plane that includes a plurality of terraces with step risers that join adjacent terraces. Each terrace of the plurality or terraces presents a lattice constant that substantially matches a lattice constant of the material, and each step riser presents a step height and offset that is consistent with portions of the material nucleating on adjacent terraces being in substantial crystalline match at the step riser. The method also includes preparing a substrate by exposing the crystal plane; and epitaxially growing the material on the substrate such that the portions of the material nucleating on adjacent terraces merge into a single crystal lattice without defects at the step risers.

  19. Composition dependences of crystal structure and electrical properties of epitaxial Pb(Zr,Ti)O3 films grown on Si and SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Okamoto, Shoji; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2016-10-01

    {100}-oriented Pb(Zr x ,Ti1- x )O3 (PZT) thin films of approximately 2 µm thickness and Zr/(Zr + Ti) ratios of 0.39-0.65 were epitaxially grown on (100)cSrRuO3//(100)SrTiO3 (STO) and (100)cSrRuO3//(100)cLaNiO3//(100)CeO2//(100)YSZ//(100)Si (Si) substrates having different thermal expansion coefficients by pulsed metal-organic chemical vapor deposition (MOCVD). The effects of Zr/(Zr + Ti) ratio and type of substrate on the crystal structure and dielectric, ferroelectric and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that both films changed from having a tetragonal symmetry to rhombohedral symmetry through the coexisting region with increasing Zr/(Zr + Ti) ratio. This region showed the Zr/(Zr + Ti) ratios of 0.45-0.59 for the films on the STO substrates that were wider than the films on the Si substrates. Saturation polarization values were minimum at approximately Zr/(Zr + Ti) = 0.50 for the films on the STO substrates, and no obvious Zr/(Zr + Ti) ratio dependence was detected in the films on the Si substrates. On the other hand, the maximum field-induced strain values measured by scanning force microscopy at approximately Zr/(Zr + Ti) = 0.50 at 100 kV/cm were about 0.5 and 0.1% in the films on the Si and STO, respectively.

  20. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    NASA Astrophysics Data System (ADS)

    Das, Sayantan; Alford, T. L.

    2013-06-01

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  1. Preparation and surface characterization of plasma-treated and biomolecular-micropatterned polymer substrates

    NASA Astrophysics Data System (ADS)

    Langowski, Bryan Alfred

    A micropatterning process creates distinct microscale domains on substrate surfaces that differ from the surfaces' original chemical/physical properties. Numerous micropatterning methods exist, each having relative advantages and disadvantages in terms of cost, ease, reproducibility, and versatility. Polymeric surfaces micropatterned with biomolecules have many applications, but are specifically utilized in tissue engineering as cell scaffolds that attempt to controlled tissue generation in vivo and ex vivo. As the physical and chemical cues presented by micropatterned substrates control resulting cellular behavior, characterization of these cues via surface-sensitive analytical techniques is essential in developing cell scaffolds that mimic complex in vivo physicochemical environments. The initial focus of this thesis is the chemical and physical characterization of plasma-treated, microcontact-printed (muCP) polymeric substrates used to direct nerve cell behavior. Unmodified and oxygen plasma-treated poly(methyl methacrylate) (PMMA) substrates were analyzed by surface sensitive techniques to monitor plasma-induced chemical and physical modifications. Additionally, protein-micropattern homogeneity and size were microscopically evaluated. Lastly, poly(dimethylsiloxane) (PDMS) stamps and contaminated PMMA substrates were characterized by spectroscopic and microscopic methods to identify a contamination source during microcontact printing. The final focus of this thesis is the development of microscale plasma-initiated patterning (muPIP) as a versatile, reproducible micropatterning method. Using muPIP, polymeric substrates were micropatterned with several biologically relevant inks. Polymeric substrates were characterized following muPIP by surface-sensitive techniques to identify the technique's underlying physical and chemical bases. In addition, neural stem cell response to muPIP-generated laminin micropatterns was microscopically and biologically evaluated

  2. Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability.

    PubMed

    Nakata, Ryo; Osumi, Yu; Miyagawa, Shoko; Tachibana, Akira; Tanabe, Toshizumi

    2015-07-01

    Keratin was extracted as a reduced form from wool, which was then subjected to acetamidation, carboxymethylation or aminoethylation at abundant free cysteine residues to give acetamidated keratin (AAK), carboxymethylated keratin (CMK) and aminoethylated keratin (AEK). Hydrogels were prepared from intact and three chemically modified keratins simply by concentrating their aqueous solution and subsequent cooling. The lowest concentration to form a hydrogel without fluidity was 110 mg/ml for AAK, 120 mg/ml for AEK, 130 mg/ml for keratin and 180 mg/ml for CMK. Comparing with a hydrogel just prepared (swelling ratio: 600-700), each hydrogel slightly shrank in an acidic solution. While AAK hydrogel little swelled in neutral and basic solutions, other hydrogels became swollen and CMK hydrogel reached to dissolution. Hydrogels of keratin, AAK and AEK were found to support cell proliferation, although cell elongation on AAK and AEK hydrogel was a little suppressed. On the other hand, CMK hydrogel did not seem to be suitable for a cell substrate because of its high swelling in culture medium. Evaluation of the hydrogels as a drug carrier showed that keratin and AAK hydrogels were good sustained drug release carriers, which showed the drug release for more than three days, while the release from AEK and CMK hydrogels completed within one day. Thus, keratin and chemically modified keratin hydrogels, especially keratin and AAK hydrogels, were promising biomaterials as a cell substrate and a sustained drug release carrier. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Preparation and Characterization of Biofunctionalized Inorganic Substrates.

    PubMed

    Dugger, Jason W; Webb, Lauren J

    2015-09-29

    Integrating the function of biological molecules into traditional inorganic materials and substrates couples biologically relevant function to synthetic devices and generates new materials and capabilities by combining biological and inorganic functions. At this so-called "bio/abio interface," basic biological functions such as ligand binding and catalysis can be co-opted to detect analytes with exceptional sensitivity or to generate useful molecules with chiral specificity under entirely benign reaction conditions. Proteins function in dynamic, complex, and crowded environments (the living cell) and are therefore appropriate for integrating into multistep, multiscale, multimaterial devices such as integrated circuits and heterogeneous catalysts. However, the goal of reproducing the highly specific activities of biomolecules in the perturbed chemical and electrostatic environment at an inorganic interface while maintaining their native conformations is challenging to achieve. Moreover, characterizing protein structure and function at a surface is often difficult, particularly if one wishes to compare the activity of the protein to that of the dilute, aqueous solution phase. Our laboratory has developed a general strategy to address this challenge by taking advantage of the structural and chemical properties of alkanethiol self-assembled monolayers (SAMs) on gold surfaces that are functionalized with covalently tethered peptides. These surface-bound peptides then act as the chemical recognition element for a target protein, generating a biomimetic surface in which protein orientation, structure, density, and function are controlled and variable. Herein we discuss current research and future directions related to generating a chemically tunable biofunctionalization strategy that has potential to successfully incorporate the highly specialized functions of proteins onto inorganic substrates.

  4. Thick-film nickel-metal-hydride battery based on porous ceramic substrates

    NASA Astrophysics Data System (ADS)

    Do, Jing-Shan; Yu, Sen-Hao; Cheng, Suh-Fen

    Nickel-metal-hydride (Ni-MH) batteries are prepared with thick-film and thin-film technologies based on porous ceramic substrates. The porosity and the mean pore diameter of BP ceramic substrates prepared from the argils increases from 19.81% and 0.0432 μm to 29.81% and 0.224 μm, respectively, upon increasing the ethyl cellulose content in the BP argil from 0 to 0.79%. The pore diameter of Al 2O 3 substrates prepared from Al 2O 3 powder is mainly distributed in the range 0.01-0.5 μm. The distribution of the pore diameters of BP ceramic substrates lies in two ranges, namely: 0.04-2 μm and 10-300 μm. Using BP ceramic plates and Al 2O 3 plates as substrates to fabricate thick-film Ni-MH batteries, the optimal electroactive material utilization in the batteries is 77.0 and 71.1%, respectively. On increasing the screen-printing number for preparing the cathode (Ni(OH) 2) from 1 to 3, the discharge capacity of the thick-film battery increases from 0.2917 to 0.7875 mAh, and the utilization in the battery decreases from 71.0 to 53.0%.

  5. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  6. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  7. Microstructure evolution determined by the crystalline phases competition in self-assembled WO3-BiVO4 hetero nanostructures

    NASA Astrophysics Data System (ADS)

    Song, Haili; Li, Chao; Nguyen Van, Chien; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang

    2018-02-01

    A series of self-assembled WO3-BiVO4 nanostructured thin films were grown on the (001) yttria-stabilized zirconia (YSZ) substrate at the substrate temperatures of 400 °C, 500 °C, 550 °C, 600 °C, 650 °C and 700 °C by a pulsed laser deposition method. The microstructures including crystalline phases, epitaxial relationships, surface morphologies and interface structures were investigated by a combination of x-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The sample grown at 400 °C was amorphous due to the low driving forces for nucleation and diffusion. For the samples made at 500 °C, 550 °C and 600 °C, the monoclinic BiVO4 matrix epitaxially grew on YSZ, forming the matrix, where the WO3 nanopillars were embedded in with a specific orientation relationship among BiVO4, WO3 and YSZ. However, in thin films deposited at 650 °C and 700 °C, the WO3 grains randomly grew on the YSZ substrate, which dominated the microstructures of the resultant thin films. Quantitative analyses of the microstructures revealed that the lateral grain sizes of BiVO4 and WO3 increased and the volume fraction of BiVO4 in the thin films decreased with the increase of the deposition temperature. A three-regime growth mechanism of the WO3-BiVO4 composite thin film was proposed based on the growth dynamics determined by the competition between BiVO4 and WO3.

  8. Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition.

    PubMed

    Jia, Endong; Zhou, Chunlan; Wang, Wenjing

    2015-01-01

    Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.

  9. Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments

    NASA Astrophysics Data System (ADS)

    Lukauskaitė, R.; Valiulis, A. V.; Černašėjus, O.; Škamat, J.; Rębiś, J. A.

    2016-08-01

    The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.

  10. Grain growth simulation of [001] textured YBCO films grown on (001) substrates with large lattice misfit: Prediction of misorientations of the remaining boundaries

    NASA Astrophysics Data System (ADS)

    Tsai, Jack W. H.; Ling, Shiun; Rodriguez, Julio C.; Mustapha, Zarina; Chan, Siu-Wai

    2001-04-01

    We study the effects of (1) the variation of grain boundary energy with misorientation and (2) the large lattice misfit (>3%) between the films and substrates on grain growth in films by method of Monte Carlo simulations. The results from the grain growth simulation in YBa2Cu3O7-x (YBCO) films was found to concur with previous experimental observation of preferred grain orientations for YBCO films deposited on various substrates such as (001) magnesium oxide (MgO) and (001) yttria stabilized zirconia (YSZ). The simulation has helped us to identify three factors influencing the competition of these [001] tilt boundaries. They are: (1) the relative depths of local minima in the boundary energy vs. misorientation curve, (2) the number of combinations of coincidence epitaxy (CE) orientations contributing to the exact misorientation for each of the high-angle-but-low-energy (HABLE) boundaries, and (3) the number of combinations of CE orientations within the angular ranges bracketing each of the exact HABLE boundaries. Hence, these factors can be applied to clarify the origin of special misorientations observed experimentally.

  11. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

    NASA Astrophysics Data System (ADS)

    Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza

    2017-04-01

    In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

  12. Preparation and Characterization of Flexible Substrate Material from Phenyl-Thiophene-2-Carbaldehyde Compound.

    PubMed

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md

    2016-05-11

    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.

  13. Preparation and Characterization of Flexible Substrate Material from Phenyl-Thiophene-2-Carbaldehyde Compound

    PubMed Central

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md.

    2016-01-01

    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4–9.2 GHz. PMID:28773479

  14. Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.

    PubMed

    Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik

    2010-01-01

    We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.

  15. Effect of milling methods on performance of Ni-Y 2O 3-stabilized ZrO 2 anode for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cho, Hyoup Je; Choi, Gyeong Man

    A Ni-YSZ (Y 2O 3-stabilized ZrO 2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni-YSZ/YSZ/Ni-YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements. Pellets made by using high-energy milled NiO-YSZ powders have much smaller particle sizes and a more uniform distribution of Ni particles than pellets made from ball-milled powder, and thus the polarization resistance of the electrode is also smaller. The maximum power density of the anode-supported cell prepared by using the high-energy milled powder is ∼850 mW cm -2 at 800 °C compared with ∼500 mW cm -2 for the cell with ball-milled powder. Thus, high-energy milling is found to be more effective in reducing particle size and obtaining a uniform distribution of Ni particles.

  16. Rolling process for producing biaxially textured substrates

    DOEpatents

    Goyal, Amit

    2004-05-25

    A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.

  17. Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates

    NASA Astrophysics Data System (ADS)

    Pahlke, Patrick; Sieger, Max; Ottolinger, Rick; Lao, Mayraluna; Eisterer, Michael; Meledin, Alexander; Van Tendeloo, Gustaaf; Hänisch, Jens; Holzapfel, Bernhard; Schultz, Ludwig; Nielsch, Kornelius; Hühne, Ruben

    2018-04-01

    Recent efforts in the development of YBa2Cu3O7-x (YBCO) coated conductors are devoted to the increase of the critical current I c in magnetic fields. This is typically realized by growing thicker YBCO layers as well as by the incorporation of artificial pinning centers. We studied the growth of doped YBCO layers with a thickness of up to 7 μm using pulsed laser deposition with a growth rate of about 1.2 nm s-1. Industrially fabricated ion-beam textured YSZ templates based on metal tapes were used as substrates for this study. The incorporation of BaHfO3 (BHO) or Ba2Y(Nb0.5Ta0.5)O6 (BYNTO) secondary phase additions leads to a denser microstructure compared to undoped films. A purely c-axis-oriented YBCO growth is preserved up to a thickness of about 4 μm, whereas misoriented texture components were observed in thicker films. The critical temperature is slightly reduced compared to undoped films and independent of film thickness. The critical current density J c of the BHO- and BYNTO-doped YBCO layers is lower at 77 K and self-field compared to pure YBCO layers; however, I c increases up to a thickness of 5 μm. A comparison between films with a thickness of 1.3 μm revealed that the anisotropy of the critical current density J c(θ) strongly depends on the incorporated pinning centers. Whereas BHO nanorods lead to a strong B∣∣c-axis peak, the overall anisotropy is significantly reduced by the incorporation of BYNTO forming a mixture of short c-axis-oriented nanorods and small (a-b)-oriented platelets. As a result, the J c values of the doped films outperform the undoped samples at higher fields and lower temperatures for most magnetic field directions.

  18. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    NASA Astrophysics Data System (ADS)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  19. °Enhancing High Temperature Anode Performance with 2° Anchoring Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Robert A.; Sofie, Stephen W.; Amendola, Roberta

    2015-10-01

    Project accomplishments included developing and optimizing strength testing of aluminum titanate (ALT)-doped Ni-YSZ materials and identified the dopant levels that optimized mechanical strength and enhanced electrochemical performance. We also optimized our ability to fabricate electrolyte supported button cells with anodes consisting of powders provided by Fuel Cell Energy. In several instances, those anodes were infiltrated with ALT and tested with hydrogen for 30 hours at 800°C at an applied potential of 0.4 V. Our research activities were focused in three areas: 1) mechanical strength testing on as prepared and reducced nickel-YSZ structures that were either free of a dopant ormore » prepared by mechanically mixing in ALT at various weight percents (up to 10 wt%); 2) 24-hour electrochemical testing of electroylte supported cells having anodes made from Ni/YSZ and Ni/YSZ/ALT anodes with specific attention focused on modeling degradation rates; and 3) operando EIS and optical testing of both in-house fabricated devices as well as membrane electrode assemblies that were acquired from commercial vendors.« less

  20. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  1. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  2. Lattice matched crystalline substrates for cubic nitride semiconductor growth

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2015-02-24

    Disclosed embodiments include methods of fabricating a semiconductor layer or device and devices fabricated thereby. The methods include, but are not limited to, providing a substrate having a cubic crystalline surface with a known lattice parameter and growing a cubic crystalline group III-nitride alloy layer on the cubic crystalline substrate by coincident site lattice matched epitaxy. The cubic crystalline group III-nitride alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter of the substrate (a). The group III-nitride alloy may be a cubic crystalline In.sub.xGa.sub.yAl.sub.1-x-yN alloy. The lattice parameter of the In.sub.xGa.sub.yAl.sub.1-x-yN or other group III-nitride alloy may be related to the substrate lattice parameter by (a')= 2(a) or (a')=(a)/ 2. The semiconductor alloy may be prepared to have a selected band gap.

  3. Steel slag affects pH and Si content of container substrates

    USDA-ARS?s Scientific Manuscript database

    A substrate representing a typical greenhouse potting mix was prepared using 85% sphagnum peat and 15% perlite. The substrate was filled into 10 cm wide containers. A pulverized steel slag (SS) from a basic oxygen furnace, and dolomitic limestone (DL) were amended to the base substrate at a rate o...

  4. Preparation and screening of crystalline inorganic materials

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Xiang, Xiaodong [Danville, CA; Goldwasser, Isy [Palo Alto, CA; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong [Fremont, CA; Wang, Kai-An [Cupertino, CA

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Preparation of functional layers for anode-supported solid oxide fuel cells by the reverse roll coating process

    NASA Astrophysics Data System (ADS)

    Mücke, R.; Büchler, O.; Bram, M.; Leonide, A.; Ivers-Tiffée, E.; Buchkremer, H. P.

    The roll coating technique represents a novel method for applying functional layers to solid oxide fuel cells (SOFCs). This fast process is already used for mass production in other branches of industry and offers a high degree of automation. It was utilized for coating specially developed anode (NiO + 8YSZ, 8YSZ: 8 mol% yttria-stabilized zirconia) and electrolyte (8YSZ) suspensions on green and pre-sintered tape-cast anode supports (NiO + 8YSZ). The layers formed were co-fired in a single step at 1400 °C for 5 h. As a result, the electrolyte exhibited a thickness of 14-18 μm and sufficient gas tightness. Complete cells with a screen-printed and sintered La 0.65Sr 0.3MnO 3- δ (LSM)/8YSZ cathode yielded a current density of 0.9-1.1 A cm -2 at 800 °C and 0.7 V, which is lower than the performance of non-co-fired slip-cast or screen-printed Jülich standard cells with thinner anode and electrolyte layers. The contribution of the cell components to the total area-specific resistance (ASR) was calculated by analyzing the distribution function of the relaxation times (DRTs) of measured electrochemical impedance spectra (EIS) and indicates the potential improvement in the cell performance achievable by reducing the thickness of the roll-coated layers. The results show that the anode-supported planar half-cells can be fabricated cost-effectively by combining roll coating with subsequent co-firing.

  6. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.

    2013-06-13

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-pointmore » metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find

  7. Optical limiting device and method of preparation thereof

    DOEpatents

    Wang, Hsing-Lin; Xu, Su; McBranch, Duncan W.

    2003-01-01

    Optical limiting device and method of preparation thereof. The optical limiting device includes a transparent substrate and at least one homogeneous layer of an RSA material in polyvinylbutyral attached to the substrate. The device may be produced by preparing a solution of an RSA material, preferably a metallophthalocyanine complex, and a solution of polyvinylbutyral, and then mixing the two solutions together to remove air bubbles. The resulting solution is layered onto the substrate and the solvent is evaporated. The method can be used to produce a dual tandem optical limiting device.

  8. Preparation and morphology, magnetic properties of yttrium iron garnet nanodot arrays on Gd3Ga5O12 substrate

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwang; Zheng, Hui; Han, Mangui

    2017-07-01

    In this work, yttrium iron garnet nanodot array has been deposited on Gd3Ga5O12 substrate by pulsed laser deposition through an ultrathin alumina mask. The morphology and magnetic properties of YIG nanodot array have been investigated. Scanning electron microscopy displays the prepared nanodot array has a sharp distribution in diameter centered at 330 nm with standard deviation of 20 nm. X-ray diffraction θ-2θ and pole figure analysis show the yttrium iron garnet nanodot array has oriented growth. Moreover, typical hysteresis loops and ferromagnetic resonance spectra display larger coercivity and multi-resonance peaks which are ascribed to this unique structure.

  9. Stabilization of orthorhombic phase in single-crystal ZnSnN 2 films

    DOE PAGES

    Senabulya, Nancy; Feldberg, Nathaniel; Makin, Robert. A.; ...

    2016-09-22

    Here, we report on the crystal structure of epitaxial ZnSnN 2 films synthesized via plasma-assisted vapor deposition on (111) yttria stabilized zirconia (YSZ) and (001) lithium gallate (LiGaO 2) substrates. X-ray diffraction measurements performed on ZnSnN 2 films deposited on LiGaO 2 substrates show evidence of single-crystal, phase-pure orthorhombic structure in the Pn2 1a symmetry [space group (33)], with lattice parameters in good agreement with theoretically predicted values. This Pn2 1a symmetry is imposed on the ZnSnN 2 films by the LiGaO 2 substrate, which also has orthorhombic symmetry. A structural change from the wurtzite phase to the orthorhombic phasemore » in films grown at high substrate temperatures ~550°C and low values of nitrogen flux ~10 –5 Torr is observed in ZnSnN 2 films deposited on YSZ characterized by lattice contraction in the basal plane and a 5.7% expansion of the out-of-plane lattice parameter.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senabulya, Nancy; Feldberg, Nathaniel; Makin, Robert. A.

    Here, we report on the crystal structure of epitaxial ZnSnN 2 films synthesized via plasma-assisted vapor deposition on (111) yttria stabilized zirconia (YSZ) and (001) lithium gallate (LiGaO 2) substrates. X-ray diffraction measurements performed on ZnSnN 2 films deposited on LiGaO 2 substrates show evidence of single-crystal, phase-pure orthorhombic structure in the Pn2 1a symmetry [space group (33)], with lattice parameters in good agreement with theoretically predicted values. This Pn2 1a symmetry is imposed on the ZnSnN 2 films by the LiGaO 2 substrate, which also has orthorhombic symmetry. A structural change from the wurtzite phase to the orthorhombic phasemore » in films grown at high substrate temperatures ~550°C and low values of nitrogen flux ~10 –5 Torr is observed in ZnSnN 2 films deposited on YSZ characterized by lattice contraction in the basal plane and a 5.7% expansion of the out-of-plane lattice parameter.« less

  11. Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors.

    PubMed

    Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng

    2017-11-15

    The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Highly Segmented Thermal Barrier Coatings Deposited by Suspension Plasma Spray: Effects of Spray Process on Microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio

    2016-12-01

    Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.

  13. Epitaxial growth of iridate pyrochlore Nd 2Ir 2O 7 films

    DOE PAGES

    Gallagher, J. C.; Esser, B. D.; Morrow, R.; ...

    2016-02-29

    Epitaxial films of the pyrochlore Nd 2Ir 2O 7 have been grown on (111)-oriented yttria-stabilized zirconia (YSZ) substrates by off-axis sputtering followed by post-growth annealing. X-ray diffraction (XRD) results demonstrate phase-pure epitaxial growth of the pyrochlore films on YSZ. Scanning transmission electron microscopy (STEM) investigation of an Nd 2Ir 2O 7 film with a short post-annealing provides insight into the mechanism for crystallization of Nd 2Ir 2O 7 during the post-annealing process. STEM images reveal clear pyrochlore ordering of Nd and Ir in the films. As a result, the epitaxial relationship between the YSZ and Nd 2Ir 2O 7 ismore » observed clearly while some interfacial regions show a thin region with polycrystalline Ir nanocrystals.« less

  14. Preparation of epitaxial TlBa2Ca2Cu3O9 high Tc thin films on LaAlO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Reschauer, N.; Spreitzer, U.; Ströbel, J. P.; Schönberger, R.; Renk, K. F.; Saemann-Ischenko, G.

    1994-09-01

    Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.

  15. Foldable graphene electronic circuits based on paper substrates.

    PubMed

    Hyun, Woo Jin; Park, O Ok; Chin, Byung Doo

    2013-09-14

    Graphene electronic circuits are prepared on paper substrates by using graphene nanoplates and applied to foldable paper-based electronics. The graphene circuits show a small change in conductance under various folding angles and maintain an electronic path on paper substrates after repetition of folding and unfolding. Foldable paper-based applications with graphene circuits exhibit excellent folding stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  17. Thyronamines are isozyme-specific substrates of deiodinases.

    PubMed

    Piehl, S; Heberer, T; Balizs, G; Scanlan, T S; Smits, R; Koksch, B; Köhrle, J

    2008-06-01

    3-Iodothyronamine (3-T 1 AM) and thyronamine (T AM) are novel endogenous signaling molecules that exhibit great structural similarity to thyroid hormones but apparently antagonize classical thyroid hormone (T(3)) actions. Their proposed biosynthesis from thyroid hormones would require decarboxylation and more or less extensive deiodination. Deiodinases (Dio1, Dio2, and Dio3) catalyze the removal of iodine from their substrates. Because a role of deiodinases in thyronamine biosynthesis requires their ability to accept thyronamines as substrates, we investigated whether thyronamines are converted by deiodinases. Thyronamines were incubated with isozyme-specific deiodinase preparations. Deiodination products were analyzed using a newly established method applying liquid chromatography and tandem mass spectrometry (LC-MS/MS). Phenolic ring deiodinations of 3,3',5'-triiodothyronamine (rT3AM), 3',5'-diiodothyronamine (3',5'-T2AM), and 3,3'-diiodothyronamine (3,3'-T2AM) as well as tyrosyl ring deiodinations of 3,5,3'-triiodothyronamine (T3AM) and 3,5-diiodothyronamine (3,5-T2AM) were observed with Dio1. These reactions were completely inhibited by the Dio1-specific inhibitor 6n-propyl-2-thiouracil (PTU). Dio2 containing preparations also deiodinated rT(3)AM and 3',5'-T2AM at the phenolic rings but in a PTU-insensitive fashion. All thyronamines with tyrosyl ring iodine atoms were 5(3)-deiodinated by Dio3-containing preparations. In functional competition assays, the newly identified thyronamine substrates inhibited an established iodothyronine deiodination reaction. By contrast, thyronamines that had been excluded as deiodinase substrates in LC-MS/MS experiments failed to show any effect in the competition assays, thus verifying the former results. These data support a role for deiodinases in thyronamine biosynthesis and contribute to confining the biosynthetic pathways for 3-T 1 AM and T 0 AM.

  18. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  19. Magnetic properties and crystal texture of Co alloy thin films prepared on double bias Cr

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Lambeth, D. N.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    A double layer Cr film structure has been prepared by sputter depositing Cr on single crystal Si substrates first without substrate bias and then with various substrate bias voltages. Without substrate bias, Cr{200} texture grows on Si at room temperature; thus the first Cr layer acts like a seed Cr layer with the {200} texture, and the second Cr layer, prepared with substrate bias, tends to replicate the {200} texture epitaxially. CoCrTa and CoNiCr films prepared on these double Cr underlayers, therefore, tend to have a {112¯0} texture with their c-axes oriented in the plane of the film. At the same time, the bias sputtering of the second Cr layer increases the coercivity of the subsequently deposited magnetic films significantly. Comparison studies of δM curves show that the use of the double Cr underlayers reduces the intergranular exchange interactions. The films prepared on the Si substrates have been compared with the films prepared on canasite and glass substrates. It has also been found that the magnetic properties are similar for films on canasite and on glass.

  20. Investigating Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.

    Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates didmore » not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.« less

  1. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates.

    PubMed

    Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao

    2014-05-01

    Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  2. Precision and accuracy of luminescence lifetime-based phosphor thermometry: A case study of Eu(III):YSZ

    NASA Astrophysics Data System (ADS)

    Heeg, B.; Jenkins, T. P.

    2013-09-01

    Laser induced phosphor thermometry as a reliable technique requires an analysis of factors controlling or contributing to the precision and accuracy of a measurement. In this paper, we discuss several critical design parameters in the development of luminescence lifetime-based phosphor thermometry instrumentation for use at elevated temperatures such as encountered in hot sections of gas turbine engines. As precision is predominantly governed by signal and background photon shot noise and detector noise, a brief summary is presented of how these noise contributions may affect the measurement. Accuracy, on the other hand, is governed by a range of effects including, but not limited to, detector response characteristics, laser-induced effects, the photo-physics of the sensor materials, and also the method of data reduction. The various possible outcomes of measurement precision and accuracy are discussed with luminescence lifetime measurements on Eu(III):YSZ sensor coatings.

  3. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  4. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE PAGES

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.; ...

    2016-11-18

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  5. Atomic-Level Properties of Thermal Barrier Coatings: Characterization of Metal-Ceramic Interfaces

    DTIC Science & Technology

    2001-01-01

    these cases metal - metal bonds were stronger than metal - substrate bonds, thus predicting a 3D (cluster) growth mode as opposed to layer-by-layer...coat layer must be deposited. The top coat serves as the insulator and the bond coat mediates contact between the top coat and metal alloy substrate ...in thermomechanical properties between a YSZ top coat and a metal -alloy substrate is enough to require the introduction of an intermediate layer. This

  6. Preparation and characterisation of crystalline tris(acetylacetonato)Fe(III) films grown on p-Si substrate for dielectric applications

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Ali-Mohamed, A. Y.

    2007-02-01

    Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal insulator semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV-1/cm2 and the surface charge density in the insulator film was of order 1010 cm-2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.

  7. [Monolithic column-gold composite substrate preparation and application to SERS detection of pigment].

    PubMed

    Xie, Yun-Fei; Li, Yan; Yu, Hui; Qian, He; Yao, Wei-Rong

    2014-03-01

    In the present study, we developed a novel SERS substrate with the porous monolith material combined with classic gold nanoparticles, and erythrosine as the research object, by adjusting the different experimental conditions for optimal SERS enhancements, including system pH and mixing time, and ultimately selected the optimum pH value 5.06 and mixing time 25 min. Compared with the traditional gold plastic substrate enhancement effect, the experimental conditions were applied to the monolith substrate SERS detection of dye erythrosine, different concentrations of samples were used for erythrosine SERS detection, and the detection limit reached 0.1 g x mL(-1). The method uses the payload of gold nanoparticles in mesoporous materials to effectively enhance the SERS signal. And this method has the advantages of simpleness and good stability, which provides a favorable theoretical basis for the rapid prohibited colorings screening.

  8. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System.

    PubMed

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.

  9. Preparation and Raman enhancement properties of gold nanostars

    NASA Astrophysics Data System (ADS)

    Shan, Feng; Zhang, Tong

    2018-03-01

    Gold nanostars (GNSs) have a series of sharp tips structures, which will produce strong hot spots and have great application potential in Raman enhancement. In this paper, muti-tip GNSs have been prepared experimentally, and the control techniques of their tip and size have been mastered. For the first time, a fast and efficient self-assembly technique without additives has been developed, and a series of Surface Enhanced Raman Scattering (SERS) substrates have been successfully prepared by using this technique. The effect of different GNSs density of substrates on SERS signal is further studied experimentally. The results show that the SERS signal is closely related to the density of particles in the substrate. The higher density of GNSs in the substrate, the more hot spots covered by the incident light plate, and the greater contribution to the SERS signal.

  10. [Research on the preparative method of Arctigenin].

    PubMed

    Zhang, Li-Ying; Yang, Yi-Shun; Zhang, Tong; Ding, Yue; Cai, Zhen-Zhen; Tao, Jian-Sheng

    2012-03-01

    To research on the preparation of Arctigenin in vitro. Took enzyme concentration, time course and substrate concentration as investigation factors, used Box-Behnken design-response surface methodology to optimize the enzyme hydrolysis path of Arctigenin. The best operational path for Arctigenin was as follows: the temperature was 50 degrees C, pH was 4.8, enzyme concentration was 0.44 U/mL, time course was 46.81 min, substrate concentration was 0.29 mg/mL, the conversion rate was 90.94%. This research can be regarded as a referencein preparing Arctigenin in vitro.

  11. Visible-blind ultraviolet photodetectors on porous silicon carbide substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my

    2013-06-01

    Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less

  12. Investigation of substrate-mounted thin-film meteoroid sensors for use in large area impact experiments

    NASA Technical Reports Server (NTRS)

    Carollo, S. F.; Davis, J. M.; Dance, W. E.

    1973-01-01

    Two types of sensor designs were investigated: (1)a polysulfone dielectric film with vapor-deposited aluminum and gold sensor plates, bonded to a relatively thick aluminum substrate, and (2) an aluminum oxide (A1203) dielectric layer prepared on an aluminum substrate by anodization, with a layer of vapor-deposited aluminum providing one sensor plate and the substrate serving as the other plate. In the first design, specimens were prepared which indicate the state of the art for application of this type of sensor for elements of a meteoroid detection system having an area as large as 10 sq M. Techniques were investigated for casting large-area polysulfone films on the surface of water and for transferring the films from the water. Methods of preparing sensors by layering of films, the deposition of capacitor plates, and sensor film-to-substrate bonding, as well as techniques for making electrical connections to the capacitor plates, were studied.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senabulya, Nancy; Jones, Christina M.; Mathis, James

    We report on the crystal structure of epitaxial ZnSnN{sub 2} films synthesized via plasma-assisted vapor deposition on (111) yttria stabilized zirconia (YSZ) and (001) lithium gallate (LiGaO{sub 2}) substrates. X-ray diffraction measurements performed on ZnSnN{sub 2} films deposited on LiGaO{sub 2} substrates show evidence of single-crystal, phase-pure orthorhombic structure in the Pn2{sub 1}a symmetry [space group (33)], with lattice parameters in good agreement with theoretically predicted values. This Pn2{sub 1}a symmetry is imposed on the ZnSnN{sub 2} films by the LiGaO{sub 2} substrate, which also has orthorhombic symmetry. A structural change from the wurtzite phase to the orthorhombic phase inmore » films grown at high substrate temperatures ∼550°C and low values of nitrogen flux ∼10{sup −5} Torr is observed in ZnSnN{sub 2} films deposited on YSZ characterized by lattice contraction in the basal plane and a 5.7% expansion of the out-of-plane lattice parameter.« less

  14. Fabrication and Characterization of Flexible Organic Light Emitting Diodes Based on Transparent Flexible Clay Substrates

    NASA Astrophysics Data System (ADS)

    Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi

    2013-03-01

    In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.

  15. Fabrication and characterization of La2Zr2O7 films on different buffer architectures for YBa2Cu3O7-δ coated conductors by RF magnetron sputtering.

    PubMed

    Xu, Da; Liu, Linfei; Xiao, Guina; Li, Yijie

    2013-02-27

    La2Zr2O7 (LZO) films were grown on different buffer architectures by radio frequency magnetron sputtering for the large-scale application of YBa2Cu3O7-x (YBCO)-coated conductors. The three different buffer architectures were cerium oxide (CeO2), yttria-stabilized zirconia (YSZ)/CeO2, and CeO2/YSZ/CeO2. The microstructure and surface morphology of the LZO film were studied by X-ray diffraction, optical microscopy, field emission scanning electron microscopy, and atomic force microscopy. The LZO films prepared on the CeO2, YSZ/CeO2, and CeO2/YSZ/CeO2 buffer architectures were preferentially c-axis-oriented and highly textured. The in-plane texture of LZO film on CeO2 single-buffer architecture was ∆ φ = 5.5° and the out-of-plane texture was ∆ ω = 3.4°. All the LZO films had very smooth surfaces, but LZO films grown on YSZ/CeO2 and CeO2/YSZ/CeO2 buffer architectures had cracks. The highly textured LZO film grown on CeO2-seed buffered NiW tape was suitable for the epitaxial growth of YBCO film with high currents.

  16. Phase analysis of plasma-sprayed zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Berndt, C. C.; Herman, H.

    1983-01-01

    Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.

  17. Substrats poreux biodegradables prepares a partir de phases co-continues dans les melanges de polymeres immiscibles

    NASA Astrophysics Data System (ADS)

    Sarazin, Pierre

    2003-06-01

    In this thesis a novel approach to preparing biodegradable materials with highly structured and interconnected porosity is proposed. The method involves the controlled preparation of immiscible co-continuous polymer blends using melt-processing technology followed by a bulk solvent extraction step of one of the phases (the porogen phase). A co-continuous structure is defined as the state when each phase of the blend is fully interconnected through a continuous pathway. This method allows for the preparation of porous materials with highly controlled pore size, pore volume and pore shape which can then be transformed and shaped in various forms useful for biomedical applications. Various properties of the skin of the polymeric articles (closed-cell, open-cell, modification of the pore size) can be controlled. Initially, the study on the immiscible binary and compatibilized poly(L-lactide)/polystyrene blends (PLLA/PS) after extraction of the PS phase demonstrated that highly percolated blends exist from 40--75%PS and 40--60%PS for the binary and compatibilized blends, respectively. It is demonstrated that both the pore size and extent of co-continuity can be controlled through composition and interfacial modification. The subsequent part of our work treats of the preparation of porous PLLA from a blend of two biodegradable polymers and the performance of such porous materials. This portion of the work uses only polymer materials which have been medically approved for internal use. In this case, small amounts of the porogen phase can be tolerated in the final porous substrate. Co-continuous blends comprised of poly(L-lactide)/Poly(epsilon-caprolactone) PLLA/PCL, were prepared via melt processing. A wide range of phase sizes for the co-continuous blend is generated through a combination of concentration control and quiescent annealing. As the PLLA phase can not be dissolved selectively in PLLA/PS blends, the co-continuity range was evaluated indirectly. To precisely

  18. High-power hybrid plasma spraying of large yttria-stabilized zirconia powder

    NASA Astrophysics Data System (ADS)

    Huang, Heji; Eguchi, Keisuke; Yoshida, Toyonobu

    2006-03-01

    To testify to the advantage of large ceramic powder spraying, numerical simulations and experimental studies on the behavior of large yttria-stabilized zirconia (YSZ) powder in a high-power hybrid plasma spraying process have been carried out. Numeric predictions and experimental results showed that, with the high radio frequency (RF) input power of 100 kW, the most refractory YSZ powder with particle sizes as large as 88 μm could be fully melted and well-flattened splats could be formed. A large degree of flattening (ξ) of 4.7 has been achieved. The improved adhesive strength between the large splat and the substrate was confirmed based on the measurement of the crack density inside of the splats. A thick YSZ coating >300 μm was successfully deposited on a large CoNiCrAlY-coated Inconel substrate (50×50×4 mm in size). The ultradense microstructure without clear boundaries between the splats and the clean and crack-free interface between the top-coat and the bond-coat also indicate the good adhesion. These results showed that highpower hybrid plasma spraying of large ceramic powder is a very promising process for deposition of highquality coatings, especially in the application of thermal barrier coatings (TBCs).

  19. Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2005-03-08

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  20. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1995-01-01

    Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.

  1. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process

    NASA Astrophysics Data System (ADS)

    Zhu, Nai-Wei; Hu, Ming; Xia, Xiao-Xu; Wei, Xiao-Ying; Liang, Ji-Ran

    2014-04-01

    The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.

  2. Hydrogenated amorphous silicon solar cells fabricated at low substrate temperature 110°C on flexible PET substrate

    NASA Astrophysics Data System (ADS)

    Ramakrishna, M.; Kumari, Juhi; Venkanna, K.; Agarwal, Pratima

    2018-05-01

    In this paper, we report a-Si:H solar cells fabricated on flexible Polyethylene terephthalate (PET) and corning glass. The a-Si:H thin films were prepared at low substrate temperature (110oC) on corning 1737 glass with different rf powers. The influence of rf power on structural and optoelectronic properties of i-a-Si:H were studied. The films deposited at rf power 50W show less broadening of <ɛ2> peak. This indicates these films are more ordered. With this optimized parameter for i-layer, solar cells fabricated on flexible PET substrate show best efficiency of 3.3% whereas on corning glass 3.82%.

  3. Thyronamines Are Isozyme-Specific Substrates of Deiodinases

    PubMed Central

    Piehl, S.; Heberer, T.; Balizs, G.; Scanlan, T. S.; Smits, R.; Koksch, B.; Köhrle, J.

    2008-01-01

    3-Iodothyronamine (3-T1AM) and thyronamine (T0AM) are novel endogenous signaling molecules that exhibit great structural similarity to thyroid hormones but apparently antagonize classical thyroid hormone (T3) actions. Their proposed biosynthesis from thyroid hormones would require decarboxylation and more or less extensive deiodination. Deiodinases (Dio1, Dio2, and Dio3) catalyze the removal of iodine from their substrates. Because a role of deiodinases in thyronamine biosynthesis requires their ability to accept thyronamines as substrates, we investigated whether thyronamines are converted by deiodinases. Thyronamines were incubated with isozyme-specific deiodinase preparations. Deiodination products were analyzed using a newly established method applying liquid chromatography and tandem mass spectrometry (LC-MS/MS). Phenolic ring deiodinations of 3,3′,5′-triiodothyronamine (rT3AM), 3′,5′-diiodothyronamine (3′,5′-T2AM), and 3,3′-diiodothyronamine (3,3′-T2AM) as well as tyrosyl ring deiodinations of 3,5,3′-triiodothyronamine (T3AM) and 3,5-diiodothyronamine (3,5-T2AM) were observed with Dio1. These reactions were completely inhibited by the Dio1-specific inhibitor 6n-propyl-2-thiouracil (PTU). Dio2 containing preparations also deiodinated rT3AM and 3′,5′-T2AM at the phenolic rings but in a PTU-insensitive fashion. All thyronamines with tyrosyl ring iodine atoms were 5(3)-deiodinated by Dio3-containing preparations. In functional competition assays, the newly identified thyronamine substrates inhibited an established iodothyronine deiodination reaction. By contrast, thyronamines that had been excluded as deiodinase substrates in LC-MS/MS experiments failed to show any effect in the competition assays, thus verifying the former results. These data support a role for deiodinases in thyronamine biosynthesis and contribute to confining the biosynthetic pathways for 3-T1AM and T0AM. PMID:18339710

  4. Preparation of arrays of long carbon nanotubes using catalyst structure

    DOEpatents

    Zhu, Yuntian T.; Arendt, Paul; Li, Qingwen; Zhang, Xiefie

    2016-03-22

    A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.

  5. Resistance of Nanostructured Environmental Barrier Coatings to the Movement of Molten Salts

    NASA Astrophysics Data System (ADS)

    Rao, S.; Frederick, L.; McDonald, A.

    2012-09-01

    Corrosion of components in a recovery boiler is a major problem faced by the pulp and paper industry. The superheater tubes become severely corroded due to the presence of sulfidic gases in the boiler and molten salts which are deposited on the surface of the tubes. As a result, the boiler must be decommissioned for expensive maintenance and repairs. Yttria-stabilized zirconia (YSZ) coatings have been shown to provide corrosion resistance when applied on gas turbines operating at high temperatures. Air plasma-sprayed YSZ environmental barrier coatings on Type 309 stainless steel were exposed to three different corrosive environments: Test A—600 °C, salt vapors, flue gases, 168 h; Test B—600 °C, molten salt, air, 168 h; and Test C—600 °C, molten salt, flue gases, 168 h. Two different types of YSZ coatings—conventional YSZ and nanostructured YSZ—were tested to study their resistance to corrosion and molten salt penetration. The performances of both types of coatings were evaluated, and a comparative study was conducted. It was found that the nanostructured YSZ samples protected the stainless steel substrate better than their conventional counterparts. This superior performance was attributed to the presence of semi-molten nano-agglomerates present in the coating microstructure, which acted as collection points for the penetrating molten salts.

  6. Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing

    PubMed Central

    2012-01-01

    Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Ω/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors. PMID:22525096

  7. Influence of Substrate Temperature on the Transformation Front Velocities That Determine Thermal Stability of Vapor-Deposited Glasses

    DOE PAGES

    Dalal, Shakeel S.; Ediger, M. D.

    2015-02-09

    Stable organic glasses prepared by physical vapor deposition transform into the supercooled liquid via propagating fronts of molecular mobility, a mechanism different from that exhibited by glasses prepared by cooling the liquid. In this paper, we show that spectroscopic ellipsometry can directly observe this front-based mechanism in real time and explore how the velocity of the front depends upon the substrate temperature during deposition. For the model glass former indomethacin, we detect surface-initiated mobility fronts in glasses formed at substrate temperatures between 0.68T g and 0.94T g. At each of two annealing temperatures, the substrate temperature during deposition can changemore » the transformation front velocity by a factor of 6, and these changes are imperfectly correlated with the density of the glass. We also observe substrate-initiated fronts at some substrate temperatures. By connecting with theoretical work, we are able to infer the relative mobilities of stable glasses prepared at different substrate temperatures. Finally, an understanding of the transformation behavior of vapor-deposited glasses may be relevant for extending the lifetime of organic semiconducting devices.« less

  8. Flexible SERS Substrates: Challenges and Opportunities

    DTIC Science & Technology

    2016-01-28

    interactions between the analyte, silver nanoparticles , and a salt. This system has also been applied to detection of trace antibiotics for food safety...Cleanable SERS Substrates Based on Silver Nanoparticle Decorated Electrospun Nano-fibrous Membranes Chaoyang Jiang Porous electrospun nanofibrous...present our recent work on the preparation, characterization, and SERS activity of silver nanoparticle decorated polymeric electrospun nanofibers

  9. Effect of grit-blasting on substrate roughness and coating adhesion

    NASA Astrophysics Data System (ADS)

    Varacalle, Dominic J.; Guillen, Donna Post; Deason, Douglas M.; Rhodaberger, William; Sampson, Elliott

    2006-09-01

    Statistically designed experiments were performed to compare the surface roughness produced by grit blasting A36/1020 steel using different abrasives. Grit blast media, blast pressure, and working distance were varied using a Box-type statistical design of experiment (SDE) approach. The surface textures produced by four metal grits (HG16, HG18, HG25, and HG40) and three conventional grits (copper slag, coal slag, and chilled iron) were compared. Substrate roughness was measured using surface profilometry and correlated with operating parameters. The HG16 grit produced the highest surface roughness of all the grits tested. Aluminum and zinc-aluminum coatings were deposited on the grit-blasted substrates using the twin-wire electric are (TWEA) process. Bond strength of the coatings was measured with a portable adhesion tester in accordance with ASTM standard D 4541. The coatings on substrates roughened with steel grit exhibit superior bond strength to those prepared with conventional grit. For aluminum coatings sprayed onto surfaces prepared with the HG16 grit, the bond strength was most influenced by current, spray distance, and spray gun pressure (in that order). The highest bond strength for the zinc-aluminum coatings was attained on surfaces prepared using the metal grits.

  10. Preparation and uses of amorphous boron carbide coated substrates

    DOEpatents

    Riley, Robert E.; Newkirk, Lawrence R.; Valencia, Flavio A.

    1981-09-01

    Cloth is coated at a temperature below about 1000.degree. C. with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  11. Preparation and uses of amorphous boron carbide coated substrates

    DOEpatents

    Riley, R.E.; Newkirk, L.R.; Valencia, F.A.; Wallace, T.C.

    1979-12-05

    Cloth is coated at a temperature below about 1000/sup 0/C with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  12. Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    PubMed

    Yugeswaran, S; Yoganand, C P; Kobayashi, A; Paraskevopoulos, K M; Subramanian, B

    2012-05-01

    Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedstocks for the coatings. The effect of YSZ reinforcement on the phase formation and mechanical properties of the coatings such as hardness, adhesive strength and sliding wear rates was examined. The results showed that the reinforcement of YSZ in HA could significantly enhance the hardness and adhesive strength of the coatings. The potentiodynamic polarization and impedance measurements showed that the reinforced coatings exhibited superior corrosion resistance compared to the HA coating in SBF solution. Further the results of the bioactivity test conducted by immersion of coatings in SBF showed that after 10 days of immersion of the obtained coatings with all the above compositions commonly exhibited the onset of bioactive apatite formation except for HA+10%YSZ coating. The cytocompatibility was investigated by culturing the green fluorescent protein (GFP)-labeled marrow stromal cells (MSCs) on the coating surface. The cell culture results revealed that the reinforced coatings have superior cell growth than the pure HA coatings. Copyright © 2012. Published by Elsevier Ltd.

  13. Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300M Steel Substrates

    NASA Astrophysics Data System (ADS)

    Nastic, A.; Vijay, M.; Tieu, A.; Rahmati, S.; Jodoin, B.

    2017-10-01

    The effect of substrate surface topography on the creation of metallurgical bonds and mechanical anchoring points has been studied for the cold spray deposition of pure aluminum on 300M steel substrate material. The coatings adhesion strength showed a significant decrease from 31.0 ± 5.7 MPa on polished substrates to 6.9 ± 2.0 MPa for substrates with roughness of 2.2 ± 0.5 μm. Strengths in the vicinity of 45 MPa were reached for coatings deposited onto forced pulsed waterjet treated surfaces with roughnesses larger than 33.8 μm. Finite element analysis has confirmed the sole presence of mechanical anchoring in coating adhesion strength for all surface treatment except polished surfaces. Grit embedment has been shown to be non-detrimental to coating adhesion for the current deposited material combination. The particle deformation process during impacts has been studied through finite element analysis using the Preston-Tonks-Wallace (PTW) constitutive model. The obtained equivalent plastic strain (PEEQ), temperature, contact pressure and velocity vector were correlated to the particle ability to form metallurgical bonds. Favorable conditions for metallurgical bonding were found to be highest for particles deposited on polished substrates, as confirmed by fracture surface analysis.

  14. Preparation of energy storage materials

    DOEpatents

    Li, Lin Song; Jia, Quanxi

    2003-01-01

    A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.

  15. Preparation Of Energy Storage Materials

    DOEpatents

    Li, Lin Song; Jia, Quanxi

    2003-12-02

    A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.

  16. Thermal barrier coatings

    DOEpatents

    Alvin, Mary Anne [Pittsburg, PA

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  17. Growth of antiphase-domain-free GaP on Si substrates by metalorganic chemical vapor deposition using an in situ AsH{sub 3} surface preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Emily L., E-mail: emily.warren@nrel.gov; Kibbler, Alan E.; France, Ryan M.

    2015-08-24

    Antiphase-domain (APD) free GaP films were grown on Si(100) substrates prepared by annealing under dilute AsH{sub 3} in situ in an MOCVD reactor. LEED and AES surface analysis of Si(100) surfaces prepared by this treatment show that AsH{sub 3} etching quickly removes O and C contaminants at a relatively low temperature (690–740 °C), and creates a single-domain “A-type” As/Si surface reconstruction. The resulting GaP epilayers grown at the same temperature are APD-free, and could thereby serve as templates for direct growth of III-V semiconductors on Si. This single chamber process has a low thermal budget, and can enable heteroepitaxial integration ofmore » III-Vs and Si at an industrial scale.« less

  18. Effect of substrates on microstructure and mechanical properties of nano-eutectic 1080 steel produced by aluminothermic reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La, Peiqing, E-mail: pqla@lut.cn; Li, Zhengning; Li, Cuiling

    2014-06-01

    Nano-eutectic bulk 1080 carbon steel was prepared on glass and copper substrates by an aluminothermic reaction casting. The microstructure of the steel was analyzed by an optical microscope, transmission electron microscopy, an electron probe micro-analyzer, a scanning electron microscope and X-ray diffraction. Results show that the microstructure of the steel consisted of a little cementite and lamellar eutectic pearlite. Average lamellar spacing of the pearlite prepared on copper and glass substrates was about 230 nm and 219 nm, respectively. Volume fraction of the pearlite of the two steels was about 95%. Hardness of the steel was about 229 and 270more » HV. Tensile strength was about 610 and 641 MPa and tensile elongation was about 15% and 8%. Compressive strength was about 1043 and 1144 MPa. Compared with the steel prepared on copper substrate, the steel prepared on glass substrate had smaller lamellar spacing of the pearlite phase and higher strength, and low ductility due to the smaller spacing. - Highlights: • 1080-carbon steels were successfully prepared by an aluminothermic reaction casting. • Lamellar spacing of the nanoeutetic pearlite is less than 250 nm. • The compressive strength of the steel is about 1144 MPa. • The tensile ductility of the steel is about 15%.« less

  19. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    DOE PAGES

    Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou; ...

    2017-03-18

    Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower losemore » rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.« less

  20. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou

    Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower losemore » rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.« less

  1. Molecular modeling of lipase binding to a substrate-water interface.

    PubMed

    Gruber, Christian C; Pleiss, Jürgen

    2012-01-01

    Interactions of lipases with hydrophobic substrate-water interfaces are of great interest to design improved lipase variants and engineer reaction conditions. This chapter describes the necessary steps to carry out molecular dynamics simulations of Candida antarctica lipase B at tributyrin-water interface using the GROMACS simulation software. Special attention is drawn to the preparation of the protein and the substrate-water interface and to the analysis of the obtained trajectory.

  2. Method for preparing thin-walled ceramic articles of configuration

    DOEpatents

    Holcombe, C.E.; Powell, G.L.

    1975-11-01

    A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate. (auth)

  3. Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate

    PubMed Central

    Shi, Shih-Chen; Huang, Teng-Feng; Wu, Jhen-Yu

    2015-01-01

    A novel method for preparing eco-biodegradable lubricant based on hydroxypropyl methylcellulose (HPMC) via hydration process is demonstrated. The smooth and homogeneous HPMC coating has a uniform thickness (~35 μm). It has been demonstrated that the preparation parameters play a critical role in controlling the lubricating behavior of the coating; in addition, excess HPMC and water concentration suppress the tribology properties. Nevertheless, a remarkable friction-reduction and anti-wear performance has been obtained. Impressively, the preparation parameter of 5% HPMC + 30 mL water significantly improves lubricant performance and durability. A simple approach for the water-degradability evaluation of HPMC is proposed. PMID:28788029

  4. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

  5. Method for preparing superconductors

    DOEpatents

    Dahlgren, Shelley D.

    1976-01-01

    A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

  6. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System

    PubMed Central

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275

  7. Preparation, characterization and antioxidant activity of polysaccharide from spent Lentinus edodes substrate.

    PubMed

    Zhu, Hongji; Tian, Li; Zhang, Lei; Bi, Jingxiu; Song, Qianqian; Yang, Hui; Qiao, Jianjun

    2018-06-01

    This study explored the potential of spent Lentinus edodes substrate, a by-product of mushroom industries causing environmental pollution, serving as materials to produce antioxidant polysaccharide. The extraction process of spent Lentinus edodes substrate polysaccharide (SLSP) was optimized and the effects of drying methods on chemical composition, morphological property and antioxidant activity were investigated. Results showed that freeze-dried SLSP (SLSP-F) exhibited the best quality in terms of the polysaccharide yield (13.00%) and antioxidant activity. The EC 50 values of SLSP-F on DPPH, ABTS and superoxide anion radicals was 0.051mg/mL, 0.379mg/mL, 0.719mg/mL, respectively, which was significantly lower than that of freeze-dried Lentinus edodes polysaccharide (LP-F). After purification by Sephadex G-150, the purified SLSP-F (PSP) has a molecular weight of 16.77kDa. Compared with LP-F, PSP has more reducing sugars and uronic acids in chemical composition and higher contents of xylose, glucose and galactose in monosaccharide composition. FT-IR and NMR spectroscopy analysis revealed that PSP has both α and β glycosidic bonds and massive acetyl groups, which is different from LP-F mainly composed of 1, 3 linked α-D-Manp residue with some acetyl groups. The findings provided a reliable approach for the development of antioxidant polysaccharide from spent Lentinus edodes substrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Method and apparatus for preparing multiconductor cable with flat conductors

    NASA Technical Reports Server (NTRS)

    Marcell, G. V. (Inventor)

    1969-01-01

    A method and apparatus for preparing flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of a substrate is described. The conductors are brought into contact with the substrate surface, and while maintained in axial tension on said substrate, the combination is seated on a yieldably compressible layer to permit the conductor to become embedded into the surface of the substrate film.

  9. In-situ preparation of Fe{sub 2}O{sub 3} hierarchical arrays on stainless steel substrate for high efficient catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zeheng, E-mail: zehengyang@hfut.edu.cn; Wang, Kun; Shao, Zongming

    Hierarchical array catalysts with micro/nano structures on substrates not only possess high reactivity from large surface area and suitable interface, but intensify mass transfer through shortening the diffusion paths of both reactants and products for high catalytic efficiency. Herein, we first demonstrate fabrication of Fe{sub 2}O{sub 3} hierarchical arrays grown on stainless-steel substrates via in-situ hydrothermal chemical oxidation followed by heat treatment in N{sub 2} atmosphere. As a Fenton-like catalyst, Fe{sub 2}O{sub 3} hierarchical arrays exhibit excellent catalytic activity and life cycle performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. Themore » Fe{sub 2}O{sub 3} catalyst with unique hierarchical structures and efficient transport channels, effectively activates H{sub 2}O{sub 2} to generate large quantity of • OH radicals and highly promotes reaction kinetics between MB and • OH radicals. Immobilization of hierarchical array catalysts on stainless-steel can prevent particles agglomeration, facilitate the recovery and reuse of the catalysts, which is expected promising applications in wastewater remediation. - Graphical abstract: The in-situ synthesis of Fe{sub 2}O{sub 3} hierarchical arrays on stainless-steel substrates was reported for the first time, which exhibit excellent catalytic activity performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. - Highlights: • Fe{sub 2}O{sub 3} hierarchical arrays was prepared by in-situ hydrothermal chemical oxidation. • F{sup −} ions play an important role in the formation of the Fe{sub 2}O{sub 3} hierarchical arrays. • Fe{sub 2}O{sub 3} hierarchical arrays show high catalytic activity to methylene blue degradation.« less

  10. Preparation of high-strength nanometer scale twinned coating and foil

    DOEpatents

    Zhang, Xinghang [Los Alamos, NM; Misra, Amit [Los Alamos, NM; Nastasi, Michael A [Santa Fe, NM; Hoagland, Richard G [Santa Fe, NM

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  11. Substrate dependent hierarchical structures of RF sputtered ZnS films

    NASA Astrophysics Data System (ADS)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  12. Nutrient Supplying Potential of Different Spent Mushroom Substrate Preparations as Soil Amendment in a Potting Media

    NASA Astrophysics Data System (ADS)

    Ultra, VU, Jr.; Ong Sotto, JME; Punzalan, MR

    2018-03-01

    A three consecutive cropping experiment was conducted to evaluate the nutrient supplying potential of different preparations of the spent mushroom substrate as an amendment of growing media for potted plants using pechay as test plant. There are 12 treatment combinations consisted 4 types of growing media containing soil alone and mixtures of soil with fresh SMS (FSMS), weathered SMS (WSMS) and carbonized SMS (CSMS) in combination with 0%, 50% or 100% recommended rate (RR) of nitrogen fertilizer. Succeeding two trials were conducted on the same pots and treatment assignments. The high yield of pechay during the first and second crop was observed on WSMS and CSMS treatments FSMS media produced high yields only during the 3rd crop. Yield was increased by N fertilizer in WSMS and CSMS treatments but not in FSMS. The growth differences is attributed to differences in available nutrients and C/N ratio between treatments. WSMS and CSMS increased the available N while FSMS immobilized N and other nutrients indicting that weathered SMS and carbonized SMS are more suitable as a component of potting media or as soil amendments without detrimental effect on immobilization and availability of nutrients.

  13. Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.

    PubMed

    Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe

    2016-06-08

    Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies.

  14. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    DOE PAGES

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less

  15. Epitaxial growth of YBa2Cu3O7 - delta films on oxidized silicon with yttria- and zirconia-based buffer layers

    NASA Astrophysics Data System (ADS)

    Pechen, E. V.; Schoenberger, R.; Brunner, B.; Ritzinger, S.; Renk, K. F.; Sidorov, M. V.; Oktyabrsky, S. R.

    1993-09-01

    A study of epitaxial growth of YBa2Cu3O7-δ films on oxidized Si with yttria- and zirconia-based buffer layers is reported. Using substrates with either SiO2 free or naturally oxidized (100) surfaces of Si it was found that a thin SiO2 layer on top of the Si favors high-quality superconducting film formation. Compared to yttria-stabilized ZrO2 (YSZ) single layers, YSZY2O3 double and YSZ/Y2O3YSZ triple layers allows the deposition of thin YBa2Cu3O7-δ films with improved properties including reduced aging effects. In epitaxial YBa2Cu3O7-δ films grown on the double buffer layers a critical temperature Tc(R=0)=89.5 K and critical current densities of 3.5×106 A/cm2 at 77 K and 1×107 A/cm2 at 66 K were reached.

  16. Standard Operating Procedure for the Preparation of Lead-Containing Paint Films and Lead-in-Paint Diagnostic Test Materials

    EPA Science Inventory

    This SOP describes the preparation of stand-alone, lead paint films, prepared according to the old paint recipes. Further, this SOP describes the use of these paint films for the preparation of simulated old paints on a variety of substrates. Substrates used included wood, stee...

  17. Analysis and characterization of graphene-on-substrate devices

    NASA Astrophysics Data System (ADS)

    Berdebes, Dionisis

    The purpose of this MS Thesis is the analysis and characterization of graphene on substrate structures prepared at the Birck Nanotechnology Center-Purdue University/IBM Watson Research Center-N.Y., and characterized under low-field transport conditions. First, a literature survey is conducted, both in theoretical and experimental work on graphene transport phenomena, and the open issues are reported. Next, the theory of low-field transport in graphene is reviewed within a Landauer framework. Experimental results of back-gated graphene-on-substrate devices, prepared by the Appenzeller group, are then presented, followed by an extraction of an energy/temperature dependent backscattering mean free path as the main characterization parameter. A key conclusion is the critical role of contacts in two-probe measurements. In this framework, a non-self-consistent Non Equilibrium Green's Function method is employed for the calculation of the odd and even metal-graphene ballistic interfacial resistance. A good agreement with the relevant experimental work is observed.

  18. X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah

    2005-01-01

    With environmental regulations limiting the use of volatile organic compounds, low-vapor pressure solvents have replaced traditional degreasing solvents for bond substrate preparation. When used to clean and prepare porous bond substrates such as phenolic composites, low vapor pressure solvents can penetrate deep into substrate pore networks and remain there for extended periods. Trapped solvents can interact with applied adhesives either prior to or during cure, potentially compromising bond properties. Currently, methods for characterizing solvent time-depth profiles in bond substrates are limited to bulk gravimetric or sectioning techniques. While sectioning techniques such as microtome allow construction of solvent depth profiles, their depth resolution and reliability are limited by substrate type. Sectioning techniques are particularly limited near the adhesive-substrate interface where depth resolution is further limited by adhesive-substrate hardness and, in the case of a partially cured adhesive, mechanical properties differences. Additionally, sectioning techniques cannot provide information about lateral solvent diffusion. Cross-section component mapping is an alternative method for measuring solvent migration in porous substrates that eliminates the issues associated with sectioning techniques. With cross-section mapping, the solvent-wiped substrate is sectioned perpendicular rather than parallel to the wiped surface, and the sectioned surface is analyzed for the solvent or solvent components of interest using a two-dimensional mapping or imaging technique. Solvent mapping can be performed using either direct or indirect methods. With a direct method, one or more solvent components are mapped using red or Raman spectroscopy together with a moveable sample stage and/or focal plane array detector. With an indirect method, an elemental "tag" not present in the substrate is added to the solvent before the substrate is wiped. Following cross sectioning, the

  19. Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.

    PubMed

    Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich

    2009-04-01

    Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.

  20. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK

    PubMed Central

    Durham, John W.; Rabiei, Afsaneh

    2015-01-01

    Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength. PMID:27713592

  1. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates.

    PubMed

    Lee, Hyukjin; Lee, Kang Dae; Pyo, Kyung Bo; Park, Sung Young; Lee, Haeshin

    2010-03-16

    We report on catechol-grafted poly(ethylene) glycol (PEG-g-catechol) for the preparation of nonfouling surfaces on versatile substrates including adhesion-resistant PTFE. PEG-g-catechol was prepared by the step-growth polymerization of PEO to which dopamine, a mussel-derived adhesive molecule, was conjugated. The immersion of substrates into an aqueous solution of PEG-g-catechol resulted in robust PEGylation on versatile surfaces of noble metals, oxides, and synthetic polymers. Surface PEGylation was unambiguously confirmed by various surface analytical tools such as ellipsometry, goniometry, infrared spectroscopy, and X-ray photoelectron spectroscopy. Contrary to existing PEG derivatives that are difficult-to-modify synthetic polymer surfaces, PEG-g-catechol can be considered to be a new class of PEGs for the facile surface PEGylation of various types of surfaces.

  2. High temperature gradient cobalt based clad developed using microwave hybrid heating

    NASA Astrophysics Data System (ADS)

    Prasad, C. Durga; Joladarashi, Sharnappa; Ramesh, M. R.; Sarkar, Anunoy

    2018-04-01

    The development of cobalt based cladding on a titanium substrate using microwave cladding technique is benchmark in coating area. The developed cladding would serve the function of a corrosion resistant coating under high temperatures. Clads of thickness 500 µm have been developed by microwave hybrid heating. A microwave furnace of 2.45GHz frequency was used at a 900W power level for processing. Impact of processing time on melting and adhesion of clad has been discussed. The study also extended to static thermal analysis of simple parts with cladding using commercial Finite Element analysis (FEA) software. A comparative study is explored between four variants of the clad being developed. The analysis has been conducted using a square sample. Similar temperature gradient is also shown for a proposed multi-layer coating, which includes a thermal barrier coating yttria stabilized zirconia (YSZ) on top of the corrosion resistant clad. The YSZ coating would protect the corrosion resistant cladding and substrate from high temperatures.

  3. Matrix and Backstage: Cellular Substrates for Viral Vaccines

    PubMed Central

    Jordan, Ingo; Sandig, Volker

    2014-01-01

    Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin. PMID:24732259

  4. A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology.

    PubMed

    Zhang, Changlin; Oliaee, Shirin Norooz; Hwang, Sang Youp; Kong, Xiangkai; Peng, Zhenmeng

    2016-01-13

    Mass production of shape-controlled platinum group metal (PGM) and alloy nanoparticles is of high importance for their many fascinating properties in catalysis, electronics, and photonics. Despite of successful demonstrations at milligram scale using wet chemistry syntheses in many fundamental studies, there is still a big gap between the current methods and their real applications due to the complex synthetic procedures, scale-up difficulty, and surface contamination problem of the made particles. Here we report a generic wet impregnation method for facile, surfactant-free, and scalable preparation of nanoparticles of PGMs and their alloys on different substrate materials with controlled particle morphology and clean surface, which bridges the outstanding properties of these nanoparticles to practical important applications. The underlying particle growth and shape formation mechanisms were investigated using a combination of ex situ and in situ characterizations and were attributed to their different interactions with the applied gas molecules.

  5. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis

    NASA Astrophysics Data System (ADS)

    Salehi, Tahereh Mombeini; Peyravi, Majid; Jahanshahi, Mohsen; Lau, Woei-Jye; Rad, Ali Shokuhi

    2018-04-01

    In this work, microporous substrates modified by zeolite nanoparticles were prepared and used for composite membrane making with the aim of reducing internal concentration polarization (ICP) effect of membranes during engineered osmosis applications. Nanocomposite substrates were fabricated via phase inversion technique by embedding nanostructured zeolite (clinoptilolite) in the range of 0-0.6 wt% into matrix of polyethersulfone (PES) substrate. Of all the substrates prepared, the PES0.4 substrate (with 0.4 wt% zeolite) exhibited unique characteristics, i.e., increased surface porosity, lower structural parameter ( S) (from 0.78 to 0.48 mm), and enhanced water flux. The thin film nanocomposite (TFN) membrane made of this optimized substrate was also reported to exhibit higher water flux compared to the control composite membrane during forward osmosis (FO) and pressure-retarded osmosis (PRO) test, without compromising reverse solute flux. The water flux of such TFN membrane was 43% higher than the control TFC membrane (1.93 L/m2 h bar) with salt rejection recorded at 94.7%. An increment in water flux is ascribed to the reduction in structural parameter, leading to reduced ICP effect.

  6. Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Götsch, Thomas; Klötzer, Bernhard; Penner, Simon

    2016-05-25

    Structural and chemical degradation mechanisms of metal-free yttria stabilized zirconia (YSZ-8, 8 mol% Y2O3 in ZrO2) in comparison to its pure oxidic components ZrO2 and Y2O3 have been studied in carbon-rich fuel gases with respect to coking/graphitization and (oxy)carbide formation. By combining operando electrochemical impedance spectroscopy (EIS), operando Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), the removal and suppression of CH4- and CO-induced carbon deposits and of those generated in more realistic fuel gas mixtures (syngas, mixtures of CH4 or CO with CO2 and H2O) was examined under SOFC-relevant conditions up to 1273 K and ambient pressures. Surface-near carbidization is a major problem already on the "isolated" (i.e. Nickel-free) cermet components, leading to irreversible changes of the conduction properties. Graphitic carbon deposition takes place already on the "isolated" oxides under sufficiently fuel-rich conditions, most pronounced in the pure gases CH4 and CO, but also significantly in fuel gas mixtures containing H2O and CO2. For YSZ, a comparative quantification of the total amount of deposited carbon in all gases and mixtures is provided and thus yields favorable and detrimental experimental approaches to suppress the carbon formation. In addition, the effectivity and reversibility of removal of the coke/graphite layers was comparably studied in the pure oxidants O2, CO2 and H2O and their effective contribution upon addition to the pure fuel gases CO and CH4 verified.

  7. The effects of commercial preparations of herbal supplements commonly used by women on the biotransformation of fluorogenic substrates by human cytochromes P450.

    PubMed

    Ho, Shirley H Y; Singh, Mohini; Holloway, Alison C; Crankshaw, Denis J

    2011-07-01

    The study set out to determine the potential for commercially available preparations of black cohosh (Actaea racemosa), chaste tree berry (Vitex agnus-castus), crampbark (Viburnum opulus) and false unicorn (Chamaelirium luteum) to inhibit the major human drug metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 as well as CYP1A1 which activates some carcinogens. In vitro microplate-based assays using cDNA-expressed CYP450 isoforms and fluorogenic substrates were used. Components of the commercial herbal preparations interfered with the assays and limited the concentration ranges that could be tested. Nevertheless, the fluorogenic assays were robust, reproducible and easy to perform and thus are still useful for initial screening for potential herb-drug interactions. None of the preparations affected CYPs 1A1 or 2C9 at the concentrations tested but all preparations inhibited some of the enzymes with potencies around 1 μg/mL. The three most potent interactions were: chaste tree berry and CYP2C19 (IC₅₀) 0.22 μg/mL); chaste tree berry and CYP3A4 (IC₅₀) 0.3 μg/mL); black cohosh and CYP2C19 (IC₅₀) 0.37 μg/mL,). Thus, the study successfully identified the potential for the commercial herbal preparations to inhibit human drug metabolizing enzymes. Whether this potential translates into clinically significant herb-drug interactions can only be confirmed by appropriate in vivo studies. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Highly ordered, accessible and nanocrystalline mesoporous TiO₂ thin films on transparent conductive substrates.

    PubMed

    Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A

    2012-08-01

    Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.

  9. Composite perfluorohydrocarbon membranes, their preparation and use

    DOEpatents

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  10. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.

    PubMed

    Sun, Fubao Fuebiol; Hong, Jiapeng; Hu, Jinguang; Saddler, Jack N; Fang, Xu; Zhang, Zhenyu; Shen, Song

    2015-11-01

    The potential of cellulase enzymes in the developing and ongoing "biorefinery" industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Antibacterial graphene oxide coatings on polymer substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yiming; Wen, Jing; Gao, Yang; Li, Tianyang; Wang, Huifang; Yan, Hong; Niu, Baolong; Guo, Ruijie

    2018-04-01

    Graphene oxide (GO) was thought to be a promising antibacterial material. In this work, graphene oxide coatings on polymer substrate were prepared and the antibacterial activity against E. coli and S. aureus was investigated. It was demonstrated that the coatings exhibited stronger antibacterial activity against E. coli with thin membrane than S. aureus with thick membrane. Take into consideration the fact that the coatings presented smooth, sharp edges-free morphology and bonded parallelly to substrate, which was in mark contrast with their precursor GO nanosheets, oxidative stress mechanism was considered the main factor of antibacterial activity. The coatings, which are easy to recycle and have no inhalation risk, provide an alternative for application in antibacterial medical instruments.

  12. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  13. Influence of Substrate Biasing on (Ba,Sr)TiO3 Films Prepared by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Niino, Atsushi; Ohtsu, Yasunori; Misawa, Tatsuya; Yonesu, Akira; Fujita, Hiroharu; Miyake, Shoji

    2004-03-01

    (Ba,Sr)TiO3 (BST) films were deposited by electron cyclotron resonance (ECR) plasma sputtering with mirror confinement. DC bias voltage was applied to Pt/Ti/SiO2/Si substrates during deposition to vary the intensity of bombardment of energetic ions and to modify film properties. BST films deposited on the substrates at floating potential (approximately +20 V) were found to be amorphous, while films deposited on +40 V-biased substrates were crystalline in spite of a low substrate temperature below 648 K. In addition, atomic diffusion, which causes deterioration in the electrical properties of the films, was hardly observed in the crystallized films deposited with +40 V bias perhaps due to the low substrate temperature. Plasma diagnoses revealed that application of a positive bias to the substrate reduced the energy of ion bombardment and increased the density of excited neutral particles, which was assumed to result in the promotion of chemical reactions during deposition and the crystallization of BST films at a low temperature.

  14. Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance

    NASA Astrophysics Data System (ADS)

    Cebollero, J. A.; Lahoz, R.; Laguna-Bercero, M. A.; Larrea, A.

    2017-08-01

    Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.

  15. Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells

    PubMed Central

    2016-01-01

    We employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.5 mol % yttria-stabilized zirconia (YSZ) single crystal electrolyte below a La0.6Sr0.4CoO3−δ (LSC) electrode. We observe yttrium segregation toward the YSZ/LSC electrolyte/electrode interface under reducing conditions. Under oxidizing conditions, the interface becomes Y depleted. The yttrium segregation is corroborated by an enhanced outward relaxation of the YSZ interfacial metal ion layer. At the same time, an increase in point defect concentration in the electrolyte at the interface was observed, as evidenced by reduced YSZ crystallographic site occupancies for the cations as well as the oxygen ions. Such changes in composition are expected to strongly influence the oxygen ion transport through this interface which plays an important role for the performance of solid oxide fuel cells. The structure of the interface is compared to the bare YSZ(100) surface structure near the microelectrode under identical conditions and to the structure of the YSZ(100) surface prepared under ultrahigh vacuum conditions. PMID:27346923

  16. Comparison of pelletized biochar derived from two source materials as replacements for peat in potting substrates

    USDA-ARS?s Scientific Manuscript database

    Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops, with sphagnum peat moss being a primary constituent of most substrates. We are examining biochars for several horticultural applications, including as peat moss replacements. Biochar was prepared ...

  17. Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements

    NASA Astrophysics Data System (ADS)

    Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki

    2018-04-01

    Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.

  18. Facile chemical routes to mesoporous silver substrates for SERS analysis

    PubMed Central

    Tastekova, Elina A; Polyakov, Alexander Yu; Goldt, Anastasia E; Sidorov, Alexander V; Oshmyanskaya, Alexandra A; Sukhorukova, Irina V; Shtansky, Dmitry V; Grünert, Wolgang

    2018-01-01

    Mesoporous silver nanoparticles were easily synthesized through the bulk reduction of crystalline silver(I) oxide and used for the preparation of highly porous surface-enhanced Raman scattering (SERS)-active substrates. An analogous procedure was successfully performed for the production of mesoporous silver films by chemical reduction of oxidized silver films. The sponge-like silver blocks with high surface area and the in-situ-prepared mesoporous silver films are efficient as both analyte adsorbents and Raman signal enhancement mediators. The efficiency of silver reduction was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The developed substrates were applied for SERS detection of rhodamine 6G (enhancement factor of about 1–5 × 105) and an anti-ischemic mildronate drug (meldonium; enhancement factor of ≈102) that is known for its ability to increase the endurance performance of athletes. PMID:29600149

  19. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  20. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing

    NASA Astrophysics Data System (ADS)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya

    2018-04-01

    Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.

  1. Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application

    NASA Astrophysics Data System (ADS)

    Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel

    2017-04-01

    This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.

  2. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush.

    PubMed

    Chen, Mingsheng; Zhang, Ying; Sky Driver, M; Caruso, Anthony N; Yu, Qingsong; Wang, Yong

    2013-08-01

    The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (∼2mm thick, ∼10mm diameter). The prepared surfaces were treated for 5-45s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38°C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5s plasma treatment of all these substrates. After 30s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush

    PubMed Central

    Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong

    2013-01-01

    Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823

  4. Improved Epitaxy and Surface Morphology in YBa2Cu3Oy Thin Films Grown on Double Buffered Si Wafers

    NASA Astrophysics Data System (ADS)

    Gao, J.; Kang, L.; Wong, H. Y.; Cheung, Y. L.; Yang, J.

    Highly epitaxial thin films of YBCO have been obtained on silicon wafers using a Eu2CuO4/YSZ (yttrium-stabilized ZrO2) double buffer. Our results showed that application of such a double buffer can significantly enhance the epitaxy of grown YBCO. It also leads to an excellent surface morphology. The average surface roughness was found less than 5 nm in a large range. The results of X-ray small angle reflection and positron spectroscpy demonstrate a very clear and flat interface between YBCO and buffer layers. The Eu2CuO4/YSZ double buffer could be promising for coating high-TC superconducting films on various reactive substrates.

  5. Glucuronoyl esterases are active on polymeric substrate, methyl esterified glucuronoxylan

    USDA-ARS?s Scientific Manuscript database

    Alkali extracted beechwood glucuronoxylan methyl ester prepared by esterification of 4-O-methyl-D-glucuronic acid side residues by methanol was found to serve as substrate of microbial glucuronoyl esterases from Ruminococcus flavefaciens, Schizophyllum commune and Trichoderma reesei. The enzymatic d...

  6. Circumventing substrate interference in the Raman spectroscopic identification of blood stains.

    PubMed

    McLaughlin, Gregory; Sikirzhytski, Vitali; Lednev, Igor K

    2013-09-10

    Raman spectroscopy has demonstrated remarkable capabilities in identifying blood in controlled laboratory conditions. However, substrate interference presents a significant challenge toward characterizing body fluid traces with Raman spectroscopy at a crime scene. Here, several possible solutions are explored, including the selection of laser excitation, isolating the signal of blood using spectral subtraction and using a favorable substrate for collection which minimizes interference. Simulated blood stain evidence was prepared and analyzed using a Raman microscope with variable laser capabilities. It is shown that the best approach for detecting blood depends on the nature of the substrate and the type of interference encountered. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Hybridized boron-carbon nitride fibrous nanostructures on Ni substrates

    NASA Astrophysics Data System (ADS)

    Yap, Yoke Khin; Yoshimura, Masashi; Mori, Yusuke; Sasaki, Takatomo

    2002-04-01

    Stoichiometric BC2N films can be deposited on Si (100) at 800 °C, however, they are phase separated as pure carbon and BN phases. Likewise, hybridized boron-carbon nitride (BCN) films can be synthesized on Ni substrates. On Ni, the carbon and BN phases are hybridized through carbon nitride and boron carbide bonds. These films appeared as fibrous nanostructures. Evidence indicates that the Ni substrate acts as a sink for the carbon and forces the carbon composites to grow on top of the B and N atoms. However, as these films are grown thicker, phase separation occurs again. These results indicate that hybridized BCN phases should now be regarded as semiconducting or superhard nanostructures. High-temperature deposition on Ni substrates might be a solution to the obstacle of preparing hybridized BCN phases.

  8. Channelling study of La1-xSrxCoO3 films on different substrates

    NASA Astrophysics Data System (ADS)

    Szilágyi, E.; Kótai, E.; Rata, D.; Németh, Z.; Vankó, G.

    2014-08-01

    The cobalt oxide system LaCoO3 and its Sr-doped child compounds have been intensively studied for decades due to their intriguing magnetic and electronic properties. Preparing thin La1-xSrxCoO3 (LSCO) films on different substrates allows for studies with a new type of perturbation, as the films are subject to substrate-dependent epitaxial strain. By choosing a proper substrate for a thin film grow, not only compressing but also tensile strain can be applied. The consequences for the fundamental physical properties are dramatic: while compressed films are metallic, as the bulk material, films under tensile strain become insulating. The goal of this work is to determine the strain tensor in LSCO films prepared on LaAlO3 and SrTiO3 substrates by pulsed laser deposition using RBS/channelling methods. Apart from the composition and defect structure of the samples, the depth dependence of the strain tensor, the cell parameters, and the volume of the unit cell are also determined. Asymmetric behaviour of the strained cell parameters is found on both substrates. This asymmetry is rather weak in the case of LSCO film grown on LaAlO3, while stronger on SrTiO3 substrate. The strain is more effective at the interface, some relaxation can be observed near to the surface.

  9. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  10. Surface Treatment of Plastic Substrates using Atomic Hydrogen Generated on Heated Tungsten Wire at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    2007-06-01

    The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. For the substrate, surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. AHA was useful for pretreatment before film deposition on a plastic substrate because the changes in surface state relate to adhesion improvement. It is concluded that this method is a promising technique for preparing high-performance plastic substrates at low temperatures.

  11. PREFACE: Cell-substrate interactions Cell-substrate interactions

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    not on the amount of ligand for adhesion receptors, but on its spatial distribution [1]. New protocols for the preparation of soft elastic substrates were essential to show that adhesion structures and cytoskeleton of adherent cells strongly adapt to substrate stiffness [2], with dramatic effects for cellular decision making. For example, it has been shown recently that differentiation of mesenchymal stem cells is strongly influenced by substrate stiffness [3]. Thus, physical factors appear to be equally important as biochemical ones in determining the cellular response to its substrate [4]. The introduction of novel physical techniques not only opened up completely new perspectives regarding biological function, it also introduced a new quantitative element into this field. For example, the availability of soft elastic substrates with controlled stiffness allows us to reconstruct cellular traction forces and to correlate them with other cellular features. This development enables modeling approaches to work in close contact with experimental data, thus opening up the perspective that the field of cell-substrate interactions will become a quantitative and predictive science in the future. Because physical research into cell-substrate interactions has become one of the fastest growing research areas in cellular biophysics and materials science, we believe that it is very timely that this special issue gathers some of the on-going research effort in this field. In contrast to the non-living world, cellular systems usually interact with their environment through specific adhesion, mainly based on adhesion receptors from the integrin family. During recent years, force spectroscopy has emerged as one of the main methods to study the physics of specific adhesion. In this special issue, single cell force spectroscopy is used by Boettiger and Wehrle-Haller to characterize the strength of cell-matrix adhesion and how it is modulated by the glycocalyx [5], while Chirasatitsin

  12. Effects of electrical conductivity of substrate materials on microstructure of diamond-like carbon films prepared by bipolar-type plasma based ion implantation

    NASA Astrophysics Data System (ADS)

    Nakao, S.; Sonoda, T.

    2013-03-01

    Diamond-like carbon (DLC) films are prepared by a bipolar-type plasma based ion implantation, and the structural differences between DLC films deposited on different electrical conductive substrates, i.e., conductive Si wafers and insulating glass plates are examined by Raman spectroscopy and x-ray photo emission spectroscopy (XPS). In the Raman measurements, graphite (G) and disorder (D) peaks are observed for both samples. However, the additional photo luminescence is overlapped on the spectra in the case of on-glass sample. To elucidate the structural difference, the intensity ratio of D to G peak (I(D)/I(G)), G peak position and full width at half maximum (FWHM) are obtained by curve fitting using Gaussian function and linear baseline. It is found that the I(D)/I(G) is lower, G peak position is higher and FWHM of G peak is narrower for on-glass sample than for on-Si sample. According to Robertson [1], lower I(D)/I(G) seems more sp3 C-C bonding in amount for on-glass sample. In contrast, higher G peak position and narrower FWHM of G peak suggest less sp3 C-C bonding in amount for on-glass sample. The results of XPS analysis with C1s spectra reveal that sp3 ratio, i.e., the intensity ratio of sp3/(sp3+sp2) is smaller for on-glass sample than for on-Si sample. The inconsistency of the trend between I(D)/I(G) and other parameters (G peak position and FWHM of G peak) might be caused by the overlap of photo luminescence signal on Raman spectrum as to on-glass sample. From these results, it is considered that sp3 C-C bonding is reduced in amount when using insulating substrate in comparison with conductive substrate.

  13. Stability of perovskite solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  14. Preparation of hydrophobic coatings

    DOEpatents

    Branson, Eric D [Albuquerque, NM; Shah, Pratik B [Albuquerque, NM; Singh, Seema [Rio Rancho, NM; Brinker, C Jeffrey [Albuquerque, NM

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  15. Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J

    2013-08-13

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a substrate having a crystalline surface with a known lattice parameter (a). The method further includes growing a crystalline semiconductor layer on the crystalline substrate surface by coincident site lattice matched epitaxy, without any buffer layer between the crystalline semiconductor layer and the crystalline surface of the substrate. The crystalline semiconductor layer will be prepared to have a lattice parameter (a') that is related to the substrate lattice parameter (a). The lattice parameter (a') maybe related to the lattice parameter (a) by a scaling factor derived from a geometric relationship between the respective crystal lattices.

  16. Depositing nanoparticles on a silicon substrate using a freeze drying technique.

    PubMed

    Sigehuzi, Tomoo

    2017-08-28

    For the microscopic observation of nanoparticles, an adequate sample preparation is an essential part of this task. Much research has been performed for usable preparation methods that will yield aggregate-free samples. A freeze drying technique, which only requires a -80  ° C freezer and a freeze dryer, is shown to provide an on-substrate dispersion of mostly isolated nanoparticles. The particle density could be made sufficiently high for efficient observations using atomic force microscopy. Since this sandwich method is purely physical, it could be applied to deposit various nanoparticles independent of their surface chemical properties. Suspension film thickness, or the dimensionality of the suspension film, was shown to be crucial for the isolation of the particles. Silica nanoparticles were dispersed on a silicon substrate using this method and the sample properties were examined using atomic force microscopy.

  17. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111)

    NASA Astrophysics Data System (ADS)

    Gallheber, B.-C.; Fischer, M.; Mayr, M.; Straub, J.; Schreck, M.

    2018-06-01

    Basic understanding of the fundamental processes in crystal growth as well as the structural quality of diamond synthesized by chemical vapour deposition on iridium surfaces has reached a high level for samples with (001) orientation. Diamond deposition on the alternative (111) surface is generally more challenging but of appreciable technological interest, too. In the present work, heteroepitaxy of diamond on Ir/YSZ/Si(111) with different off-axis angles and directions has been studied. During the growth of the first microns, strong and complex intrinsic stress states were rapidly formed. They restricted the range of suitable temperatures in this study to values between 830 °C and 970 °C. At low-stress conditions, the maximum growth rates were about 1 μm/h. They facilitated long-time processes which yielded pronounced structural improvements with minimum values of 0.08° for the azimuthal mosaic spread, 4 × 107 cm-2 for the dislocation density and 1.8 cm-1 for the Raman line width. This refinement is even faster than on (001) growth surfaces. It indicates substantial differences between the two crystal directions in terms of merging of mosaic blocks and annihilation of dislocations. Crystals with a thickness of up to 330 μm have been grown. The correlation of photoluminescence and μ-Raman tomograms with topography data also revealed fundamental differences in the off-axis growth between (001) and (111) orientation. Finally, the analysis of the microscopic structures at the growth surface provided the base for a model that can conclusively explain the intriguing reversal of stress tensor anisotropy caused by a simple inversion in sign of the off-axis angle.

  18. Enhancement and Prediction of Adhesion Strength of Copper Cold Spray Coatings on Steel Substrates for Nuclear Fuel Repository

    NASA Astrophysics Data System (ADS)

    Fernández, R.; MacDonald, D.; Nastić, A.; Jodoin, B.; Tieu, A.; Vijay, M.

    2016-12-01

    Thick copper coatings have been envisioned as corrosion protection barriers for steel containers used in repositories for nuclear waste fuel bundles. Due to its high deposition rate and low oxidation levels, cold spray is considered as an option to produce these coatings as an alternative to traditional machining processes to create corrosion protective sleeves. Previous investigations on the deposition of thick cold spray copper coatings using only nitrogen as process gas on carbon steel substrates have continuously resulted in coating delamination. The current work demonstrates the possibility of using an innovative surface preparation process, forced pulsed waterjet, to induce a complex substrate surface morphology that serves as anchoring points for the copper particles to mechanically adhere to the substrate. The results of this work show that, through the use of this surface preparation method, adhesion strength can be drastically increased, and thick copper coatings can be deposited using nitrogen. Through finite element analysis, it was shown that it is likely that the bonding created is purely mechanical, explaining the lack of adhesion when conventional substrate preparation methods are used and why helium is usually required as process gas.

  19. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, Maria; Scigaj, Mateusz; Gazquez, Jaume

    Interfaces between (110) and (111)SrTiO 3 (STO) single crystalline substrates and amorphous oxide layers, LaAlO 3 (a-LAO), Y:ZrO 2 (a-YSZ), and SrTiO 3 (a-STO) become conducting above a critical thickness t c. Here we show that t c for a-LAO does not depend on the substrate orientation, i.e. t c (a-LAO/(110)STO) ≈ t c(a-LAO/(111)STO) interfaces, whereas it strongly depends on the composition of the amorphous oxide: t c(a-LAO/(110)STO) < t c(a-YSZ/(110)STO) < t c(a-STO/(110)STO). It is concluded that the formation of oxygen vacancies in amorphous-type interfaces is mainly determined by the oxygen affinity of the deposited metal ions, rather thanmore » orientation-dependent enthalpy vacancy formation and diffusion. Furthermore, scanning transmission microscopy characterization of amorphous and crystalline LAO/STO(110) interfaces shows much higher amount of oxygen vacancies in the former, providing experimental evidence of the distinct mechanism of conduction in these interfaces.« less

  1. Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro

    In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methodsmore » using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.« less

  2. Polymer Based Thin Film Screen Preparation Technique

    NASA Astrophysics Data System (ADS)

    Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Saatsakis, G.; Karabotsos, A.; Panayiotakis, G. S.; Kandarakis, I.

    2017-11-01

    Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.

  3. Nanocolloid substrate for surface enhanced Raman scattering sensor for biological applications

    USDA-ARS?s Scientific Manuscript database

    Biopolymer encapsulated with silver nanoparticle (BeSN) substrate was prepared by chemical reduction method with silver nitrate, trisodium citrate in addition to polyvinyl alcohol. Optical properties of BeSN were analyzed with UV/Vis spectroscopy and hyperspectral microscope imaging. UV/Visible spec...

  4. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Pryds, N.; Toftmann, B.; Bilde-Sørensen, J. B.; Schou, J.; Linderoth, S.

    2006-04-01

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced.

  5. Silver Nanoparticle-Decorated Shape-Memory Polystyrene Sheets as Highly Sensitive Surface-Enhanced Raman Scattering Substrates with a Thermally Inducible Hot Spot Effect.

    PubMed

    Mengesha, Zebasil Tassew; Yang, Jyisy

    2016-11-15

    In this study, an active surface-enhanced Raman scattering (SERS) substrate with a thermally inducible hot spot effect for sensitive measurement of Raman-active molecules was successfully fabricated from silver nanoparticle (AgNP)-decorated shape-memory polystyrene (SMP) sheets. To prepare the SERS substrate, SMP sheets were first pretreated with n-octylamine for effective decoration with AgNPs. By varying the formulation and condition of the reduction reaction, AgNP-decorated SMP (Ag@SMP) substrates were successfully prepared with optimized particle gaps to produce inducible hot spot effects on thermal shrink. High-quality SERS spectra were easily obtained with enhancement factors higher than 10 8 by probing with aromatic thiols. Several Ag@SMP substrates produced under different reaction conditions were explored for the creation of inducible hot spot effects. The results indicated that AgNP spacing is crucial for strong hot spot effects. The suitability of Ag@SMP substrates for quantification was also evaluated according to the detection of adenine. Results confirmed that prepared Ag@SMP substrates were highly suitable for quantitative analysis because they yielded an estimated limit of detection as low as 120 pg/cm 2 , a linear range of up to 7 ng/cm 2 , and a regression coefficient (R 2 ) of 0.9959. Ag@SMP substrates were highly reproducible; the average relative standard deviation for all measurements was less than 10%.

  6. High resolution masks for ion milling pores through substrates of biological interest

    NASA Technical Reports Server (NTRS)

    Donovan, S. S.

    1978-01-01

    The feasibility was investigated of electrochemically oxidizing vapor deposited aluminum coatings to produce porous aluminum oxide coatings with submicron pore diameters and with straight channels normal to the substrate surface. Porous aluminum oxide coatings were produced from vapor deposited aluminum coatings on thin stainless steel (304), copper, Teflon (FEP) and Kapton substrates and also on pure aluminum substrates. Scanning electron microscope examination indicated that porous oxide coatings can be produced with straight channels, appropriate pore diameters and none or minimal intervening residual aluminum. The oxide coatings on the copper and Kapton substrates had the straightest channels and in general were superior to those fabricated on the other substrate materials. For oxide coatings fabricated at 600 V and 300 V, pore diameters were 0.4-0.6, and 0.3 micron with center-to-center spacing of 0.7-0.8, and 0.4 micron, respectively. Estimated direct labor and materials costs to prepare an oxide mask is anticipated to be about $4-$6 per square foot.

  7. Formation and possible growth mechanism of bismuth nanowires on various substrates

    NASA Astrophysics Data System (ADS)

    Volkov, V. T.; Kasumov, A. Yu.; Kasumov, Yu. A.; Khodos, I. I.

    2017-08-01

    In this work, we report results of a study of bismuth nanowires growth on various substrates, including Fe, Ni, Co, W, Pt, Au thin films on oxidized Si, Si (111), oxidized Si (100), and fused quartz. The nanowires (NW) were prepared by RF diode sputtering of Bi onto a substrate heated to about 200 °C. The structure of the wires was studied by a scanning and transmission electron microscopy. The NWs are monocrystalline up to a length of several micrometers and possess a very thin (less than 2 nm) oxide layer. A major influence of the substrate type on the quantity and the length of the obtained nanowires is observed. Based on the above studies, we propose a possible mechanism of a bismuth nanowire growth.

  8. SERS substrates fabricated using ceramic filters for the detection of bacteria.

    PubMed

    Mosier-Boss, P A; Sorensen, K C; George, R D; Obraztsova, A

    2016-01-15

    SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored. Published by Elsevier B.V.

  9. SERS substrates fabricated using ceramic filters for the detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A.

    2016-01-01

    SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored.

  10. An Efficient Covalent Coating on Glass Slides for Preparation of Optical Oligonucleotide Microarrays

    PubMed Central

    Pourjahed, Atefeh; Rabiee, Mohammad; Tahriri, Mohammadreza

    2013-01-01

    Objective(s): Microarrays are potential analyzing tools for genomics and proteomics researches, which is in needed of suitable substrate for coating and also hybridization of biomolecules. Materials and Methods: In this research, a thin film of oxidized agarose was prepared on the glass slides which previously coated with poly-L-lysine (PLL). Some of the aldehyde groups of the activated agarose linked covalently to PLL amine groups; also bound to the amino groups of biomolecules. These linkages were fixed by UV irradiation. The prepared substrates were compared to only agarose-coated and PLL-coated slides. Results: Results on atomic force microscope (AFM) demonstrated that agarose provided three-dimensional surface which had higher loading and bindig capacity for biomolecules than PLL-coated surface which had two-dimensional surface. In addition, the signal-to-noise ratio in hybridization reactions performed on the agarose-PLL coated substrates increased two fold and four fold compared to agarose and PLL coated substrates, respectively. Conclusion: The agarose-PLL microarrays had the highest signal (2546) and lowest background signal (205) in hybridization, suggesting that the prepared slides are suitable in analyzing wide concentration range of analytes. PMID:24570832

  11. Liquid precursor for deposition of indium selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  12. Liquid precursor for deposition of copper selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Franciscus Antonius Maria Van Hest, Marinus; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-08

    Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.

  13. Constructing honeycomb micropatterns on nonplanar substrates with high glass transition temperature polymers.

    PubMed

    Ding, Jianyun; Gong, Jianliang; Bai, Hua; Li, Lei; Zhong, Yawen; Ma, Zhi; Svrcek, Vladimir

    2012-08-15

    In Qiao's previous report, only star polymers with T(g) (glass transition temperature) below 48°C were found forming homogeneous honeycomb coatings on the nonplanar substrates. The polymers with high T(g) are believed not able to duplicate nonplanar substrate due to their brittleness. This article presents a comprehensive study on the construction of macroporous polymeric films on various nonplanar substrates with static breath figure (BF) technique, using linear polymers with high T(g). Two kinds of linear polymers with high T(g), polystyrene-b-poly(acrylic acid) and polystyrene without polar end groups, are employed to prepare 3-dimensional macroporous films on different nonplanar substrates. Scanning electronic microscopy views on the side wall in addition to views in-plane prove that polymer films with BF array perfectly replicated the surface features of these substrates. The formation processes of macropores on these substrates are analyzed in detail, and it demonstrates that neither molecular topography nor T(g) of polymers is the critical factor contouring nonplanar substrate. A new hypothesis involving polymer plasticization and conformation during the solvent evaporation is formulated. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  14. Influence of substrate temperature on properties of MgF 2 coatings

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Qi, Hongji; Cui, Yun; Shen, Yanming; Shao, JianDa; Fan, ZhengXiu

    2007-05-01

    Thermal boat evaporation was employed to prepare MgF 2 single-layer coatings upon both JGS1 and UBK7 substrates at different substrate temperatures. Microstructure, transmittance and residual stress of these coatings were measured by X-ray diffraction, spectrophotometer, and optical interferometer, respectively. Measurement of laser induced damage threshold (LIDT) of the samples was performed at 355 nm, 8 ns pulses. The results showed that high substrate temperature was beneficial to crystallization of the film. Above 244 °C, the refractive index increased gradually with the substrate temperature rising. Whereas, it was exceptional at 210 °C that the refractive index was higher than those deposited at 244 and 277 °C. The tensile residual stresses were exhibited in all MgF 2 films, but not well correlated with the substrate temperature. In addition, the stresses were comparatively smaller upon JGS1 substrates. A tendency could be seen that the LIDTs reached the highest values at about 244 °C, and the films upon JGS1 had higher LIDTs than those upon UBK7 substrates at the same temperature. Meanwhile, the damage morphologies showed that the laser damage of the coating resulted from an absorbing center at the film-substrate interface. The features of the damages were displayed by an absorbing center dominated model. Furthermore, the reason of the difference in LIDT values was discussed in detail.

  15. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  16. The substrate matters in the Raman spectroscopy analysis of cells

    NASA Astrophysics Data System (ADS)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  17. Chemical resistivity of self-assembled monolayer covalently attached to silicon substrate to hydrofluoric acid and ammonium fluoride

    NASA Astrophysics Data System (ADS)

    Saito, N.; Youda, S.; Hayashi, K.; Sugimura, H.; Takai, O.

    2003-06-01

    Self-assembled monolayers (SAMs) were prepared on hydrogen-terminated silicon substrates through chemical vapor deposition using 1-hexadecene (HD) as a precursor. The HD-SAMs prepared in an atmosphere under a reduced pressure (≈50 Pa) showed better chemical resistivities to hydrofluoric acid and ammonium fluoride (NH 4F) solutions than that of an organosilane SAM formed on oxide-covered silicon substrates. The surface covered with the HD-SAM was micro-patterned by vacuum ultraviolet photolithography and consequently divided into two areas terminated with HD-SAM or silicon dioxide. This micro-patterned sample was immersed in a 40 vol.% NH 4F aqueous solution. Surface images obtained by an optical microscopy clearly show that the micro-patterns of HD-SAM/silicon dioxide were successfully transferred into the silicon substrate.

  18. Epitaxial Fe/Y2O3 interfaces as a model system for oxide-dispersion-strengthened ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Bowden, Mark E.; Wang, Chong M.

    2015-02-01

    The fundamental mechanisms underlying the superior radiation tolerance properties of oxide-dispersion-strengthened ferritic steels and nanostructured ferritic alloys are poorly understood. Thin film heterostructures of Fe/Y2O3 can serve as a model system for fundamental studies of radiation damage. Epitaxial thin films of Y2O3 were deposited by pulsed laser deposition on 8% Y:ZrO2 (YSZ) substrates with (100), (110), and (111) orientation. Metallic Fe was subsequently deposited by molecular beam epitaxy. Characterization by x-ray diffraction and Rutherford backscattering spectrometry in the channeling geometry revealed a degree of epitaxial or axiotaxial ntation for Fe(211) deposited on Y2O3(110)/YSZ(110). In contrast, Fe on Y2O3(111)/YSZ(111) was fullymore » polycrystalline, and Fe on Y2O3(100)/YSZ(100) exhibited out-of-plane texture in the [110] direction with little or no preferential in-plane orientation. Scanning transmission electron microscopy imaging of Fe(211)/Y2O3(110)/YSZ(110) revealed a strongly islanded morphology for the Fe film, with no epitaxial grains visible in the cross-sectional sample. Well-ordered Fe grains with no orientation to the underlying Y2O3 were observed. Well-ordered crystallites of Fe with both epitaxial and non-epitaxial orientations on Y2O3 are a promising model system for fundamental studies of radiation damage phenomena. This is illustrated with preliminary results of He bubble formation following implantation with a helium ion microscope. He bubble formation is shown to preferentially occur at the Fe/Y2O3 interface.« less

  19. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing

    2018-05-01

    Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.

  20. Preparation of a semiconductor thin film

    DOEpatents

    Pehnt, Martin; Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  1. Aligned Silver Nanorod Array as SERS Substrates for Viral Sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping; Shanmukh, Saratchandra; Chaney, Stephen B.; Jones, Les; Dluhy, Richard A.; Tripp, Ralph A.

    2006-03-01

    The aligned silver nanorod array substrates prepared by the oblique angle deposition method are capable of providing extremely high enhancement factors (˜10^9) at near-infrared wavelengths (785 nm) for a standard reporter molecule 1,2 trans-(bis)pyridyl-ethene (BPE). The enhancement factor depends strongly on the length of the Ag nanorods, the substrate coating, as well as the polarization of the excitation laser beam. With the current optimum structure, we demonstrate that the detection limit for BPE can be lower than 0.1 fM. The applicability of this substrate to the detection of bioagents has been investigated by looking several viruses, such as Adenovirus, HIV, Rhinovirus and Respiratory Syncytial Virus (RSV), at low quantities (˜0.5uL). Different viruses have different fingerprint Raman spectrum. The detection of virus presented in infected cells has also been demonstrated.

  2. Utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product, and ethanol as by-product, by a litre-scale integrated process.

    PubMed

    You, Shengping; Chang, Hongxing; Yin, Qingdian; Qi, Wei; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2017-12-01

    Whey powder, a by-product of dairy industry, is an attractive raw material for value-added products. In this study, utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product and ethanol as by-product were investigated by a litre-scale integrated strategy, encompassing fermentation, isolation, permeabilization and spray drying. Firstly, through development of low-cost industrial culture and fed-batch strategies by Kluyveromyces lactis, 119.30U/mL β-galactosidase activity and 16.96mg/mL by-product ethanol were achieved. Afterward, an up-dated mathematic model for the recycling permeabilization was established successfully and 30.4g cells sediment isolated from 5L fermentation broth were permeabilized completely by distilled ethanol from broth supernatant. Then β-galactosidase product with 5.15U/mg from protection of gum acacia by spray drying was obtained. Furthermore, by-product ethanol with 31.08% (v/v) was achieved after permeabilization. Therefore, the integrated strategy using whey powder as substrate is a feasible candidate for industrial-scale implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Physical and chemical differences between one-stage and two-stage hydrothermal pretreated hardwood substrates for use in cellulosic ethanol production

    DOE PAGES

    Guilliams, Andrew; Pattathil, Sivakumar; Willies, Deidre; ...

    2016-02-03

    Here, there are many different types of pretreatment carried out to prepare cellulosic substrates for fermentation. In this study, one- and two-stage hydrothermal pretreatment were carried out to determine their effects on subsequent fermentations. The two substrates were found to behave differently during fermentation. The two substrates were then characterized using physical and chemical parameters.

  4. Evaluation of tensile retention of Y-TZP crowns after long-term aging: effect of the core substrate and crown surface conditioning.

    PubMed

    Amaral, R; Rippe, M; Oliveira, B G; Cesar, P F; Bottino, M A; Valandro, L F

    2014-01-01

    This study evaluated the effect of the core substrate type (dentin and composite resin) on the retention of crowns made of yttrium oxide stabilized tetragonal zirconia polycrystal (Y-TZP), submitted to three inner surface conditionings. For this purpose, 72 freshly extracted molars were embedded in acrylic resin, perpendicular to the long axis, and prepared for full crowns: 36 specimens had crown preparations in dentin; the remaining 36 teeth had the crowns removed, and crown preparations were reconstructed with composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and 72 Y-TZP copings for the tensile test were produced. Cementation was performed with a dual-cured cement containing phosphate monomers. For cementation, the crown preparation (dentin or resin) was conditioned with the adhesive system, and the ceramic was subjected to one of three surface treatments: isopropyl alcohol, tribochemical silica coating, or thin low-fusing glassy porcelain layer application plus silanization. After 24 hours, all specimens were submitted to thermocycling (6000 cycles) and placed in a special tensile testing device in a universal testing machine to determine failure loads. The failure modes of all samples were analyzed under a stereomicroscope. Two-way analysis of variance showed that the surface treatment and substrate type (α=0.05) affected the tensile retention results. The dentin substrate presented the highest tensile retention values, regardless of the surface treatment. When the substrate was resin, the tribochemical silica coating and low-fusing glaze application plus silanization groups showed the higher retention values.

  5. Investigation of Ag buffered Ni and Ni-Cr alloys as substrates for the preparation of bismuth superconducting tapes

    NASA Astrophysics Data System (ADS)

    Régnier, P.; Bifulco-Michon, C.; Poissonnet, S.; Martin, H.; Bonnaillie, P.; Giunchi, G.; Legendre, F.

    2002-10-01

    We review and comment on the various requirements that a metallic substrate has to meet to be a good candidate for the fabrication of electrodeposited BSCCO superconducting tapes. We conclude that, in the present state of the art, no metallic substrate is really ideal. Hence we have investigated in detail the use of silver-buffered nickel-based alloys that seem to be a viable alternative to pure silver tape, which is more expensive and less resistant to high temperature. The major difficulty encountered was the occurrence of holes and blisters induced in the silver layers by the oxidation of the nickel underlayer during the heat treatments performed at high temperature in open air, which according to our procedure are required to synthesize high-temperature superconducting tapes. It was found that the liquid phases, transiently present in the process during the synthesis of the precursor phases, infiltrate between the Ag layer and the substrate through these holes and strongly react with the substrate transferring the poisoned element to the superconducting film greatly reducing its superconducting properties. Hence, several routes have been explored to try and suppress hole formation. It was found that pre-oxidizing the substrate at 880 °C for 1 h in open air sufficiently lowers the hole and blister densities to allow us to synthesize good Bi-2212 tapes on pure nickel, but not on Ni80-Cr20 alloys. A much more interesting solution seems to be to pre-anneal the substrate in a hydrogenous atmosphere which permits us to remove blisters and holes.

  6. A highly sensitive biological detection substrate based on TiO2 nanowires supporting gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Yuan; Tan, Hai-jun; Cheng, Xiu-Lan; Chen, Rui; Wang, Ying

    2011-12-01

    Surface enhanced Raman scattering (SERS) has attracted widespread concern in the field of bioassay because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the highly sensitive detection of molecules. Conventional SERS substrates are prepared by placing metal nanoparticles on a planar surface. Here we show a unique SERS substrate stacked by disordered TiO2 nanowires (TiO2-NWs) supportig gold nanocrystals. The structure can be easily fabricated by chemical synthesis at low cost. The COMSOL model simulation shows the designed SERS substrate is capable of output high Local Field Enhancement (LFE) in the Near Infrared region (NIR) that is the optimal wavelength in bio-detection because of both the unique coupling enhancement effect amony nearby Au nanocrystals on TiO2-NWs and the Suface Plasmon Resonance (SPR) effect of TiO2 -NWs. The as-prepared transparent and freestanding SERS substrate is capable of detecting extremely low concentration R6G molecular, showing much higher Raman signal because of the extremely large surface area and the uniqueTiO2-NWs self-assemblied by Au nanocrystals. These results provide a new approach to ultrasensitive bioassay device.

  7. Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters.

    PubMed

    Tabor, P S; Neihof, R A

    1982-10-01

    We report a method which combines epifluorescence microscopy and microautoradiography to determine both the total number of microorganisms in natural water populations and those individual organisms active in the uptake of specific substrates. After incubation with H-labeled substrate, the sample is filtered and, while still on the filter, mounted directly in a film of autoradiographic emulsion on a microscope slide. The microautoradiogram is processed and stained with acridine orange, and, subsequently, the filter is removed before microscopic observation. This novel preparation resulted in increased accuracy in direct counts made from the autoradiogram, improved sensitivity in the recognition of uptake-active (H-labeled) organisms, and enumeration of a significantly greater number of labeled organisms compared with corresponding samples prepared by a previously reported method.

  8. A Highly Efficient Sensor Platform Using Simply Manufactured Nanodot Patterned Substrates

    PubMed Central

    Rasappa, Sozaraj; Ghoshal, Tandra; Borah, Dipu; Senthamaraikannan, Ramsankar; Holmes, Justin D.; Morris, Michael A.

    2015-01-01

    Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance. PMID:26290188

  9. Development of pyrethroid-like fluorescent substrates for glutathione S-transferase

    PubMed Central

    Huang, Huazhang; Yao, Hongwei; Liu, Jun-Yan; Samra, Aman I.; Kamita, Shizuo G.; Cornel, Anthony J.; Hammock, Bruce D.

    2012-01-01

    The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers) preference. A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized CDNB, a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (kcat/KM ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes. PMID:23000005

  10. Preparation of a semiconductor thin film

    DOEpatents

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  11. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. II. La(Sr)CoO 3 cathode

    NASA Astrophysics Data System (ADS)

    Inagaki, Toru; Miura, Kazuhiro; Yoshida, Hiroyuki; Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- α (LSGM) electrolyte, La 0.6Sr 0.4CoO 3- δ (LSCo) cathode, and Ni-(CeO 2) 0.8(SmO 1.5) 0.2 (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm 2, at 800°C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO 3-YSZ cathode and Ni-YSZ cermet anode at 1000°C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm 2 was measured for a cathode prepared by sintering at 1000°C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface.

  12. Comparison of candidate materials for a synthetic osteo-odonto keratoprosthesis device.

    PubMed

    Tan, Xiao Wei; Perera, A Promoda P; Tan, Anna; Tan, Donald; Khor, K A; Beuerman, Roger W; Mehta, Jodhbir S

    2011-01-05

    Osteo-odonto keratoprosthesis is one of the most successful forms of keratoprosthesis surgery for end-stage corneal and ocular surface disease. There is a lack of detailed comparison studies on the biocompatibilities of different materials used in keratoprosthesis. The aim of this investigation was to compare synthetic bioinert materials used for keratoprosthesis surgery with hydroxyapatite (HA) as a reference. Test materials were sintered titanium oxide (TiO(2)), aluminum oxide (Al(2)O(3)), and yttria-stabilized zirconia (YSZ) with density >95%. Bacterial adhesion on the substrates was evaluated using scanning electron microscopy and the spread plate method. Surface properties of the implant discs were scanned using optical microscopy. Human keratocyte attachment and proliferation rates were assessed by cell counting and MTT assay at different time points. Morphologic analysis and immunoblotting were used to evaluate focal adhesion formation, whereas cell adhesion force was measured with a multimode atomic force microscope. The authors found that bacterial adhesion on the TiO(2), Al(2)O(3), and YSZ surfaces were lower than that on HA substrates. TiO(2) significantly promoted keratocyte proliferation and viability compared with HA, Al(2)O(3,) and YSZ. Immunofluorescent imaging analyses, immunoblotting, and atomic force microscope measurement revealed that TiO(2) surfaces enhanced cell spreading and cell adhesion compared with HA and Al(2)O(3). TiO(2) is the most suitable replacement candidate for use as skirt material because it enhanced cell functions and reduced bacterial adhesion. This would, in turn, enhance tissue integration and reduce device failure rates during keratoprosthesis surgery.

  13. Indium-bump-free antimonide superlattice membrane detectors on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamiri, M., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.

    2016-02-29

    We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface betweenmore » the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.« less

  14. Flexible microstrip antenna based on carbon nanotubes/(ethylene-octene copolymer) thin composite layer deposited on PET substrate

    NASA Astrophysics Data System (ADS)

    Matyas, J.; Olejnik, R.; Slobodian, P.

    2017-12-01

    A most of portable devices, such as mobile phones, tablets, uses antennas made of cupper. In this paper we demonstrate possible use of electrically conductive polymer composite material for such antenna application. Here we describe the method of preparation and properties of the carbon nanotubes (CNTs)/(ethylene-octene copolymer) as flexible microstrip antenna. Carbon nanotubes dispersion in (ethylene-octene copolymer) toluene solution was prepared by ultrasound finally coating PET substrate by method of dip-coating. Main advantages of PET substrate are low weight and also flexibility. The final size of flexible microstrip antenna was 5 x 50 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with the weight of only 0.402 g. Antenna operates at three frequencies 1.66 GHz (-6.51 dB), 2.3 GHz (-13 dB) and 2.98 GHz (-33.59 dB).

  15. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  16. Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates.

    PubMed

    Gottfried, Jennifer L

    2011-07-01

    The potential of laser-induced breakdown spectroscopy (LIBS) to discriminate biological and chemical threat simulant residues prepared on multiple substrates and in the presence of interferents has been explored. The simulant samples tested include Bacillus atrophaeus spores, Escherichia coli, MS-2 bacteriophage, α-hemolysin from Staphylococcus aureus, 2-chloroethyl ethyl sulfide, and dimethyl methylphosphonate. The residue samples were prepared on polycarbonate, stainless steel and aluminum foil substrates by Battelle Eastern Science and Technology Center. LIBS spectra were collected by Battelle on a portable LIBS instrument developed by A3 Technologies. This paper presents the chemometric analysis of the LIBS spectra using partial least-squares discriminant analysis (PLS-DA). The performance of PLS-DA models developed based on the full LIBS spectra, and selected emission intensities and ratios have been compared. The full-spectra models generally provided better classification results based on the inclusion of substrate emission features; however, the intensity/ratio models were able to correctly identify more types of simulant residues in the presence of interferents. The fusion of the two types of PLS-DA models resulted in a significant improvement in classification performance for models built using multiple substrates. In addition to identifying the major components of residue mixtures, minor components such as growth media and solvents can be identified with an appropriately designed PLS-DA model.

  17. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    NASA Astrophysics Data System (ADS)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  18. The preparation method of terahertz monolithic integrated device

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.

  19. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes.

    PubMed

    Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2010-05-12

    Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.

  20. Stretchable hydrogen sensors employing palladium nanosheets transferred onto an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Namgung, Gitae; Ta, Qui Thanh Hoai; Noh, Jin-Seo

    2018-07-01

    Stretchable hydrogen sensors were fabricated from Pd nanosheets that were transferred onto a PDMS substrate. To prepare the Pd nanosheets, a Pd thin film on PDMS was first biaxially stretched and then PDMS substrate was etched off. The size of Pd nanosheets decreased as the applied strain increased and the film thickness decreased. A transfer technique was utilized to implement the stretchable hydrogen sensors. The stretchable sensors exhibited negative response behaviors upon the exposure to hydrogen gas. Interestingly, the sensors worked even under large strains up to 30%, demonstrating a potential as a high-strain-tolerable hydrogen sensor for the first time.

  1. The crystallogenesis of a human estradiol dehydrogenase-substrate complex

    NASA Astrophysics Data System (ADS)

    Zhu, Dao-Wei; Azzi, Arezki; Rehse, Peter; Lin, Sheng-Xiang

    1996-10-01

    Human 17β-hydroxysteroid dehydrogenase type 1 is an important steroidogenic enzyme catalyzing the synthesis of the most active estrogen: estradiol. The enzyme is formed by two identical subunits (34.5 kDa). In this paper, we report the preparation of a stoichiometric 17β-HSD1-estradiol complex sample at a much higher concentration than the solubility of the free substrate, using a gradual concentration of the enzyme-substrate mixture starting at low concentration. The complex is successfully crystallized by vapor diffusion at pH 7.5 with polyethyleneglycol 4000 as the precipitating agent. The space group is C2 with a = 123.56 Å, b = 45.21 Å, c = 61.30 Å and β = 99.06°. There is one monomer in the asymmetric unit and two molecules of the enzyme in a unit cell. A diffraction data set to 2.5 Å has been collected to 86% completeness on native crystals. The high quality of the electronic density map of estradiol supports the full occupancy of the binding site, thus confirming the efficiency of the complex preparation. This method will also be useful in crystallizing other steroid-dehydrogenase complexes.

  2. Preparation of thin film silver fluoride electrodes from constituent elements

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.

    1972-01-01

    The feasibility of preparing thin-film metal fluoride electrodes from the elemental constituents has been demonstrated. Silver fluoride cathodes were prepared by deposition of silver on a conducting graphite substrate followed by fluorination under controlled conditions using elemental fluorine. The resulting electrodes were of high purity, and the variables such as size, shape, and thickness were easily controlled.

  3. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    PubMed

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  4. Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)

    1990-01-01

    A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, wherein a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd.sub.1-x Mn.sub.x Te, wherein 0.ltoreq..times..ltoreq.0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) maganese (TCPMn) is employed. To prevent TCPMn condensation during the introduction thereof int the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, wherein the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.

  5. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hong, Li; Hongbin, Pu; Chunlei, Zheng; Zhiming, Chen

    2015-06-01

    β-FeSi2 thin films have been successfully prepared by magnetron sputtering and post rapid thermal annealing method on 6H-SiC (0001) substrates using a FeSi2 target and a Si target. X-ray diffraction (XRD) and Raman spectroscopy are applied to analyze the formation of β-FeSi2 films. XRD spectra reveal that the amorphous FeSi2 films are transformed to β-FeSi2 phase as the annealing temperature is increased from 500 to 900 °C for 5 min and the optimal annealing temperature is 900 °C. The formation of β-FeSi2 is also confirmed by Raman spectroscopy. Scanning electron microscope (SEM) observations indicate that the film is flat, relatively compact and the interface between β-FeSi2 and 6H-SiC is clear. Atomic force microscope (AFM) measurements demonstrate that the surface roughness confirmed by the root mean square (RMS) of the β-FeSi2 film is 0.87 nm. Near-infrared spectrophotometer observation shows that the absorption coefficient is of the order of 105 cm-1 and the optical band-gap of the β-FeSi2 film is 0.88 eV. The β-FeSi2 film with high crystal quality is fabricated by co-sputtering a FeSi2 target and a Si target for 60 min and annealing at 900 °C for 5 min. Project supported by the National Natural Science Foundation of China (No. 51177134) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM6286).

  6. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    NASA Astrophysics Data System (ADS)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical

  7. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries

    PubMed Central

    Harris, Jennifer L.; Backes, Bradley J.; Leonetti, Francesco; Mahrus, Sami; Ellman, Jonathan A.; Craik, Charles S.

    2000-01-01

    A method is presented for the preparation and use of fluorogenic peptide substrates that allows for the configuration of general substrate libraries to rapidly identify the primary and extended specificity of proteases. The substrates contain the fluorogenic leaving group 7-amino-4-carbamoylmethylcoumarin (ACC). Substrates incorporating the ACC leaving group show kinetic profiles comparable to those with the traditionally used 7-amino-4-methylcoumarin (AMC) leaving group. The bifunctional nature of ACC allows for the efficient production of single substrates and substrate libraries by using 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase synthesis techniques. The approximately 3-fold-increased quantum yield of ACC over AMC permits reduction in enzyme and substrate concentrations. As a consequence, a greater number of substrates can be tolerated in a single assay, thus enabling an increase in the diversity space of the library. Soluble positional protease substrate libraries of 137,180 and 6,859 members, possessing amino acid diversity at the P4-P3-P2-P1 and P4-P3-P2 positions, respectively, were constructed. Employing this screening method, we profiled the substrate specificities of a diverse array of proteases, including the serine proteases thrombin, plasmin, factor Xa, urokinase-type plasminogen activator, tissue plasminogen activator, granzyme B, trypsin, chymotrypsin, human neutrophil elastase, and the cysteine proteases papain and cruzain. The resulting profiles create a pharmacophoric portrayal of the proteases to aid in the design of selective substrates and potent inhibitors. PMID:10869434

  8. Large area nano-patterning /writing on gold substrate using dip - pen nanolithography (DPN)

    NASA Astrophysics Data System (ADS)

    Saini, Sudhir Kumar; Vishwakarma, Amit; Agarwal, Pankaj B.; Pesala, Bala; Agarwal, Ajay

    2014-10-01

    Dip Pen Nanolithography (DPN) is utilized to pattern large area (50μmX50μm) gold substrate for application in fabricating Nano-gratings. For Nano-writing 16-MHA ink coated AFM tip was prepared using double dipping procedure. Gold substrate is fabricated on thermally grown SiO2 substrate by depositing ˜5 nm titanium layer followed by ˜30nm gold using DC pulse sputtering. The gratings were designed using period of 800nm and 25% duty cycle. Acquired AFM images indicate that as the AFM tip proceeds for nano-writing, line width decreases from 190nm to 100nm. This occurs probably due to depreciation of 16-MHA molecules in AFM tip as writing proceeds.

  9. Lattice distortion of square iron nitride monolayers induced by changing symmetry of substrate

    NASA Astrophysics Data System (ADS)

    Hattori, Takuma; Iimori, Takushi; Miyamachi, Toshio; Komori, Fumio

    2018-04-01

    Rectangular iron nitride monatomic layers are fabricated on the threefold symmetric Cu(111) substrate by taking advantage of the stability of the square nitride film. Two different ordered structures are observed on the Cu(111) substrate by scanning tunneling microscopy after annealing at 510 K and 580 K. Their chemical composition and lattice symmetry are investigated by x-ray photoelectron spectroscopy and low energy electron diffraction. The monolayer film prepared at 580 K is a distorted Fe2N monolayer analogous to a ferromagnetic square Fe2N monolayer with a clock reconstruction on the Cu(001) substrate. The lattice deformation of the square Fe2N monolayer is induced by using Cu(111) with threefold symmetry.

  10. Analysis of main parameters affecting substrate/mortar contact area through tridimensional laser scanner.

    PubMed

    Stolz, Carina M; Masuero, Angela B

    2015-10-01

    This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Preparation of high magneto-optical performance and crystalline quality Ce1Gd2Fe5-xGaxO12 films on CLNGG substrate crystal

    NASA Astrophysics Data System (ADS)

    Fu, Qiu-ping; Zheng, Ze-yuan; Lin, Nan-xi; Liu, Xiao-feng; Hong, Can-huang; Hu, Xiao-lin; Zhuang, Nai-feng; Chen, Jian-zhong

    2016-11-01

    Thin films of Ce1Gd2Fe5-xGaxO12 (Ce,Ga:GIG) were prepared on Gd3Ga5O12 (GGG) and Ca2.90Li0.30Nb1.93Ga2.76O12 (CLNGG) substrates by using radio frequency magnetron sputtering technique. The phase, grain orientation, surface morphology, transmittance, magnetism and magnetic circular dichroism (MCD) properties of films were analyzed. And the effects of lattice mismatch and non-magnetic Ga3+-doping were discussed. The results show that the films with higher crystallized quality and lower stress can be obtained by growing on CLNGG than on GGG. Moreover, the coercive force, magnetization, magneto-optical effect intensity and orientation of film can be effectively regulated by adjusting Ga3+-doped concentration.

  12. Improved Microautoradiographic Method to Determine Individual Microorganisms Active in Substrate Uptake in Natural Waters

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1982-01-01

    We report a method which combines epifluorescence microscopy and microautoradiography to determine both the total number of microorganisms in natural water populations and those individual organisms active in the uptake of specific substrates. After incubation with 3H-labeled substrate, the sample is filtered and, while still on the filter, mounted directly in a film of autoradiographic emulsion on a microscope slide. The microautoradiogram is processed and stained with acridine orange, and, subsequently, the filter is removed before microscopic observation. This novel preparation resulted in increased accuracy in direct counts made from the autoradiogram, improved sensitivity in the recognition of uptake-active (3H-labeled) organisms, and enumeration of a significantly greater number of labeled organisms compared with corresponding samples prepared by a previously reported method. Images PMID:16346120

  13. Strain induced on (TMTSF){2}ReO{4} microwires deposited on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Colin, C. V.; Joo, N.; Pasquier, C. R.

    2009-12-01

    We present the successful recrystallization of Bechgaard salts with the microwire shape using the drop casting method. The samples are deposited on a substrate with previously prepared patterns made by optical lithography. The physical properties of the microwires are shown. The excellent transport properties show that this technique provides a new method for the tuning of the physical properties of molecular conductors and the first step toward applications. The pressure effects of the substrate on the conduction are discussed.

  14. High-density optical disk readout using a blue laser diode and a transparent plastic substrate with 0.3-mm thickness

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Chan; Lee, TaekSoo; Kim, Hyung-Nam; Jeong, SeongYun; Ahn, Seong-Keun; Kim, Jin-Yong; Lee, Jun-Seok; Kim, Ji-Byung; Lee, SeongWon; Lee, Dong C.; Asai, Ikuo

    2000-09-01

    We prepared and tested a disc that has a transparent plastic substrate of 0.3 mm thickness to confirm the readout capability using a blue laser diode. And the test results of injection molding for the plastic substrate of 0.3 mm thickness are shown.

  15. Self-Heating Pasteurization of Substrates for Culinary-Medicinal Mushrooms Cultivation in Mexico.

    PubMed

    Morales, Viviana; Sánchez, Jose E

    2017-01-01

    The aim of this study was to evaluate a self-heating pasteurization technique in preparing substrates for mushroom production. Seven species were used: Agrocybe aegerita, Auricularia fuscosuccinea, Pleurotus djamor, P. eryngii, P. ostreatus, Lentinula edodes, and Ganoderma lucidum. They were cultivated on grass, corncob, wood shavings, and a mixture thereof. The self-heating technique allowed for pasteurization of 3 of the substrates (grass, corncob, and the mixture). The preheating chamber comprised a drawer placed under the pasteurization crate. With this chamber, it was possible to increase inlet air temperatures by 4--5°C. The evaluated mushroom species responded in different ways to the pasteurization process. P. ostreatus (control) and P. djamor produced basidiomes when cultivated in all pasteurization substrates. A. aegerita and P. eryngii fruited only on corncob and the mixture, whereas A. fuscosuccinea fruited only on the pasteurized corncob. G. lucidum and L. edodes did not fructify on the pasteurized substrates.

  16. In situ laser-induced photochemical silver substrate synthesis and sequential SERS detection in a flow cell.

    PubMed

    Herman, Krisztian; Szabó, László; Leopold, Loredana F; Chiş, Vasile; Leopold, Nicolae

    2011-05-01

    A new, simple, and effective approach for multianalyte sequential surface-enhanced Raman scattering (SERS) detection in a flow cell is reported. The silver substrate was prepared in situ by laser-induced photochemical synthesis. By focusing the laser on the 320 μm inner diameter glass capillary at 0.5 ml/min continuous flow of 1 mM silver nitrate and 10 mM sodium citrate mixture, a SERS active silver spot on the inner wall of the glass capillary was prepared in a few seconds. The test analytes, dacarbazine, 4-(2-pyridylazo)resorcinol (PAR) complex with Cu(II), and amoxicillin, were sequentially injected into the flow cell. Each analyte was adsorbed to the silver surface, enabling the recording of high intensity SERS spectra even at 2 s integration times, followed by desorption from the silver surface and being washed away from the capillary. Before and after each analyte passed the detection window, citrate background spectra were recorded, and thus, no "memory effects" perturbed the SERS detection. A good reproducibility of the SERS spectra obtained under flow conditions was observed. The laser-induced photochemically synthesized silver substrate enables high Raman enhancement, is characterized by fast preparation with a high success rate, and represents a valuable alternative for silver colloids as SERS substrate in flow approaches.

  17. The Effect of Molybdenum Substrate Oxidation on Molybdenum Splat Formation

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Chang-Jiu

    2018-01-01

    Disk splats are usually observed when the deposition temperature exceeds the transition temperature, whereas thick oxide layer will reduce the adhesion resulting from high deposition temperature. In present study, single molybdenum splats were deposited onto polished molybdenum substrates with different preheating processes to clarify the effect of surface oxidation on the splat formation. Three substrate samples experienced three different preheating processes in an argon atmosphere. Two samples were preheated to 350 and 550 °C, and another sample was cooled to 350 °C after it was preheated to 550 °C. The chemistry and compositions of substrate surface were examined by XPS. The cross sections of splats were prepared by focus ion beam (FIB) and then characterized by SEM. Nearly disk-shaped splat with small fingers in the periphery was observed on the sample preheated to 350 °C. A perfect disk-shape splat was deposited at 550 °C. With the sample on the substrate preheated to 350 °C (cooling down from 550 °C), flower-shaped splat exhibited a central core and discrete periphery detached by some voids. The results of peeling off splats by carbon tape and the morphology of FIB sampled cross sections indicated that no effective bonding formed at the splat-substrate interface for the substrate ever heated to 550 °C, due to the increasing content of MoO3 on the preheated molybdenum surface.

  18. Nanowire surface fastener fabrication on flexible substrate.

    PubMed

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-27

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm -2 ) and low contact resistivity (2.2 × 10 -4 Ω cm 2 ).

  19. Nanowire surface fastener fabrication on flexible substrate

    NASA Astrophysics Data System (ADS)

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-01

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).

  20. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    NASA Astrophysics Data System (ADS)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2014-03-01

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  1. Profilometry of thin films on rough substrates by Raman spectroscopy

    PubMed Central

    Ledinský, Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbühler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf , Stefaan; Ballif , Christophe; Fejfar, Antonín

    2016-01-01

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2. PMID:27922033

  2. Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Wang, Qi; Mao, Guoming; Liu, Hao; Yu, Rongdi; Ren, Xiaomin

    2018-04-01

    Periodic Ag nanocluster arrays for surface enhanced Raman spectroscopy (SERS) were fabricated through magnetron sputtering Ag over a large-area monolayer template which is based on silica (SiO2) nanospheres. High-density nanogaps between the adjacent Ag nanoclusters acted as "hot-spots", making a dominant contribution to the high-performance SERS detection. Moreover, the nanospheres and Ag nanoclusters effectively increased the surface roughness and also enlarged the surface area of as-obtained SERS substrate, which resulted in a further enhancement in Raman signals. As-prepared SERS substrates showed very high sensitivity with the enhancement factor (EF) value of 4.1 × 1012 for Rhodamine 6G (R6G), allowing the corresponding detection limit as low as 10-16 M. Additionally, SERS signal of melamine was still strong even though its concentration was lowered to 10-7 M. Our results show that preparing highly sensitive SERS substrate with periodic Ag nanoclusters over SiO2 nanosphere template is a convenient and promising pathway for chemical and biologic sensing.

  3. Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiNx Films at Low Substrate Temperatures

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki

    2004-12-01

    Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.

  4. Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provo, James L., E-mail: jlprovo@verizon.net

    2016-07-15

    Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surfacemore » (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard

  5. Process for utilizing low-cost graphite substrates for polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1978-01-01

    Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.

  6. Application of thermotolerant microorganisms for biofertilizer preparation.

    PubMed

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  7. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  8. Thick tellurium target preparation by vacuum deposition

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna

    1999-12-01

    Tellurium targets of thickness up to 6.5 mg/cm 2 on carbon backings were prepared by vacuum deposition. The influence of the crucible dimension, treatment of the backing foil by glow discharge and substrate cooling on the Te sticking efficiency was studied in order to achieve the best yield.

  9. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  10. Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography

    NASA Astrophysics Data System (ADS)

    Xuan, Ming-dong; Dai, Long-gui; Jia, Hai-qiang; Chen, Hong

    2014-01-01

    Periodic triangle truncated pyramid arrays are successfully fabricated on the sapphire substrate by a low-cost and high-efficiency laser interference lithography (LIL) system. Through the combination of dry etching and wet etching techniques, the nano-scale patterned sapphire substrate (NPSS) with uniform size is prepared. The period of the patterns is 460 nm as designed to match the wavelength of blue light emitting diode (LED). By improving the stability of the LIL system and optimizing the process parameters, well-defined triangle truncated pyramid arrays can be achieved on the sapphire substrate with diameter of 50.8 mm. The deviation of the bottom width of the triangle truncated pyramid arrays is 6.8%, which is close to the industrial production level of 3%.

  11. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Ye, Min; Wei, Zewen; Hu, Fei; Wang, Jianxin; Ge, Guanglu; Hu, Zhiyuan; Shao, Mingwang; Lee, Shuit-Tong; Liu, Jian

    2015-08-01

    It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance.It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have

  12. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  13. Natural cellulose fiber as substrate for supercapacitor.

    PubMed

    Gui, Zhe; Zhu, Hongli; Gillette, Eleanor; Han, Xiaogang; Rubloff, Gary W; Hu, Liangbing; Lee, Sang Bok

    2013-07-23

    Cellulose fibers with porous structure and electrolyte absorption properties are considered to be a good potential substrate for the deposition of energy material for energy storage devices. Unlike traditional substrates, such as gold or stainless steel, paper prepared from cellulose fibers in this study not only functions as a substrate with large surface area but also acts as an interior electrolyte reservoir, where electrolyte can be absorbed much in the cellulose fibers and is ready to diffuse into an energy storage material. We demonstrated the value of this internal electrolyte reservoir by comparing a series of hierarchical hybrid supercapacitor electrodes based on homemade cellulose paper or polyester textile integrated with carbon nanotubes (CNTs) by simple solution dip and electrodeposited with MnO2. Atomic layer deposition of Al2O3 onto the fiber surface was used to limit electrolyte absorption into the fibers for comparison. Configurations designed with different numbers of ion diffusion pathways were compared to show that cellulose fibers in paper can act as a good interior electrolyte reservoir and provide an effective pathway for ion transport facilitation. Further optimization using an additional CNT coating resulted in an electrode of paper/CNTs/MnO2/CNTs, which has dual ion diffusion and electron transfer pathways and demonstrated superior supercapacitive performance. This paper highlights the merits of the mesoporous cellulose fibers as substrates for supercapacitor electrodes, in which the water-swelling effect of the cellulose fibers can absorb electrolyte, and the mesoporous internal structure of the fibers can provide channels for ions to diffuse to the electrochemical energy storage materials.

  14. Preparation and Ferroelectric Property of (100)-ORIENTED Ca0.4Sr0.6Bi4Ti4O15 Thin Film on Pt/Ti/SiO2/Si Substrate

    NASA Astrophysics Data System (ADS)

    Fan, Suhua; Che, Quande; Zhang, Fengqing

    The (100)-oriented Ca0.4Sr0.6Bi4Ti4O15(C0.4S0.6BTi) thin film was successfully prepared by a sol-gel method on Pt/Ti/SiO2/Si substrate. The orientation and formation of thin films under different annealing schedules were studied using XRD and SEM. XRD analysis indicated that (100)-oriented C0.4S0.6BTi thin film with degree of orientation of I(200)/I(119) = 1.60 was prepared by preannealing the film at 400°C for 3 min followed by rapid thermal annealing at 800°C for 5 min. SEM analysis further indicated that the (100)-oriented C0.4S0.6BTi thin film with a thickness of about 800 nm was mainly composed of equiaxed grains. The remanent polarization and coercive field of the film were 16.1 μC/cm2 and 85 kV/cm, respectively.

  15. Conversion coatings prepared or treated with calcium hydroxide solutions

    NASA Technical Reports Server (NTRS)

    Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)

    2002-01-01

    A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.

  16. Rapid detection of salmonella using SERS with silver nano-substrate

    NASA Astrophysics Data System (ADS)

    Sundaram, J.; Park, B.; Hinton, A., Jr.; Windham, W. R.; Yoon, S. C.; Lawrence, K. C.

    2011-06-01

    Surface Enhanced Raman Scattering (SERS) can detect the pathogen in rapid and accurate. In SERS weak Raman scattering signals are enhanced by many orders of magnitude. In this study silver metal with biopolymer was used. Silver encapsulated biopolymer polyvinyl alcohol nano-colloid was prepared and deposited on stainless steel plate. This was used as metal substrate for SERS. Salmonella typhimurium a common food pathogen was selected for this study. Salmonella typhimurium bacteria cells were prepared in different concentrations in cfu/mL. Small amount of these cells were loaded on the metal substrate individually, scanned and spectra were recorded using confocal Raman microscope. The cells were exposed to laser diode at 785 nm excitation and object 50x was used to focus the laser light on the sample. Raman shifts were obtained from 400 to 2400 cm-1. Multivariate data analysis was carried to predict the concentration of unknown sample using its spectra. Concentration prediction gave an R2 of 0.93 and standard error of prediction of 0.21. The results showed that it could be possible to find out the Salmonella cells present in a low concentration in food samples using SERS.

  17. Synthesis of sub-micro-flakes CrSe2 on glass and (110) Si substrates by solvothermal method

    NASA Astrophysics Data System (ADS)

    Tang, Qingkai; Liu, Changyou; Zhang, Binbin; Jie, Wanqi

    2018-06-01

    Layered structure MX2 (M = transition metal, X = S, Se and Te) chalcogenides have rich physic properties and potential applications. While it is still a challenge to prepare the chalcogenides by solvothermal method. In this work, we reported a new solution method to prepare CrSe2 sub-micro-flakes on different substrates. The surface morphologies, structures and compositions of the precursor CrSe2(en)1/2 and CrSe2 were investigated by SEM, XRD, thermogravimetric, IR and Raman spectra. The CrSe2 flakes with the sizes of 5-15 μm were obtained on both glass and (110) Si crystalline substrates. The formation mechanism of CrSe2 sub-micro-flakes is suggested.

  18. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  19. Influence of substrate temperature on structural, morphological, optical and electrical properties of Bi-doped MnInS4 thin films prepared by nebuliser spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Kennedy, A.; Senthil Kumar, V.; Pradeev Raj, K.

    2017-11-01

    increases with increase in substrate temperature and a maximum electrical conductivity of 3.73 × 10-3 Ω-1m-1 were obtained for the film prepared at 400 °C. The thickness of the films was also measured and the values ranged between 743 nm (250 °C) to 629 nm (400 °C). The high absorption coefficient (1.85 × 104 cm-1) and high transmittance of the films make them an efficient window layer for solar cell applications. Incorporation of Bismuth (Bi) into MnInS4 matrix leads to improve the optical transmittance (85%) and electrical conductivity (3.11 × 10-3 Ω-1 m-1) of the film grown at 400 °C. Other important parameters like dislocation density (δ), strain (ε), the number of crystallites per unit area (N) and lattice distortion (LD), which are commonly used to describe the structural analysis were also presented. Bi-doped MnInS4 thin films were grown by a variety of deposition methods. Among them, spray pyrolysis is an eco-friendly method because of its low cost, mass production capacity, large area coatings and minimum wastage of the source materials.

  20. Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, H.M.; Torres, J., E-mail: njtorress@unal.edu.co; Lopez Carreno, L.D.

    2013-01-15

    Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperaturemore » rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.« less

  1. Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)

    1988-01-01

    A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, in which a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd(sub 1-x)Mn(sub x)Te, in which 0 is less than or equal to x less than or equal to 0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) manganese (TCPMn) is employed. To prevent TCPMn condensation during its introduction into the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, in which the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.

  2. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  3. Diamagnetic to ferromagnetic switching in VO2 epitaxial thin films by nanosecond excimer laser treatment

    NASA Astrophysics Data System (ADS)

    Molaei, R.; Bayati, R.; Nori, S.; Kumar, D.; Prater, J. T.; Narayan, J.

    2013-12-01

    VO2(010)/NiO(111) epitaxial heterostructures were integrated with Si(100) substrates using a cubic yttria-stabilized zirconia (c-YSZ) buffer. The epitaxial alignment across the interfaces was determined to be VO2(010)‖NiO(111)‖c-YSZ(001)‖Si(001) and VO2[100]‖NiO⟨110⟩‖c-YSZ⟨100⟩‖Si⟨100⟩. The samples were subsequently treated by a single shot of a nanosecond KrF excimer laser. Pristine as-deposited film showed diamagnetic behavior, while laser annealed sample exhibited ferromagnetic behavior. The population of majority charge carriers (e-) and electrical conductivity increased by about two orders of magnitude following laser annealing. These observations are attributed to the introduction of oxygen vacancies into the VO2 thin films and the formation of V3+ defects.

  4. YBa2Cu307 superconducting microbolometer linear arrays

    NASA Astrophysics Data System (ADS)

    Johnson, Burgess R.; Ohnstein, Thomas R.; Marsh, Holly A.; Dunham, Scott B.; Kruse, Paul W.

    1992-09-01

    Single pixels and linear arrays of microbolometers employing the high-T(subscript c) superconductor YBa(subscript 2)Cu(subscript 3)O(subscript 7) have been fabricated by silicon micromachining techniques. The substrates are 3 in. diameter silicon wafers upon which buffer layers of Si(subscript 3)N(subscript 4) and yttria-stabilized zirconia (YSZ) have been deposited. The YBa(subscript 2)Cu(subscript 3)O(subscript 7) was deposited by ion beam sputtering upon the yttria-stabilized zirconia (YSZ), then photolithographically patterned into serpentines 4 micrometers wide. Anisotropic etching in KOH removed the silicon underlying each pixel, thereby providing the necessary thermal isolation. When operated at 70 degree(s)K with 1 (mu) A dc bias, the D(superscript *) is 7.5 X 10(superscript 8) cm Hz(superscript 1/2)/Watt with a thermal response time of 24 msec.

  5. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    NASA Technical Reports Server (NTRS)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  6. Semiconductor to Metal Transition Characteristics of VO2/NiO Epitaxial Heterostructures Integrated with Si(100)

    NASA Astrophysics Data System (ADS)

    Molaei, Roya

    The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. NiO/c-YSZ

  7. [Study on preparation of sagittatoside B with epimedin B converted from cellulase].

    PubMed

    Xu, Feng-Juan; Sun, E; Zhang, Zhen-Hai; Cui, Li; Jia, Xiao-Bin

    2014-01-01

    To prepare sagittatoside B with epimedin B Hydrolyzed from cellulase. With the conversion ratio as the index, the effects of pH value, temperature, reaction time, dosage of enzyme and concentration of substrates on the conversion ratio were detected. L9 (3(4)) orthogonal design was adopted to optimize the preparation process. Hydrolyzed products were identified by MS, 1H-NMR, and 13C-NMR. The results showed that the optimum reaction conditions for the enzymatic hydrolysis were that the temperature was 50 degrees C, the reaction medium was pH 5.6 acetic acid-sodium acetate buffer solution, the concentration of substrates was 20 g x L(-1), the mass ratio between enzyme and substrate was 3: 5, and the relative molecular mass of the reaction product was 646.23. NMR data proved that the product was sagittatoside B. The process is simple and reliable under mild reaction conditions, thus suitable for industrial production.

  8. Preparation of CIGS-based solar cells using a buffered electrodeposition bath

    DOEpatents

    Bhattacharya, Raghu Nath

    2007-11-20

    A photovoltaic cell exhibiting an overall conversion efficiency of at least 9.0% is prepared from a copper-indium-gallium-diselenide thin film. The thin film is prepared by simultaneously electroplating copper, indium, gallium, and selenium onto a substrate using a buffered electro-deposition bath. The electrodeposition is followed by adding indium to adjust the final stoichiometry of the thin film.

  9. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.

  10. Techno-economic analysis of three different substrate removal and reuse strategies for III-V solar cells: Techno-economic analysis for III-V solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, J. Scott; Remo, Timothy; Horowitz, Kelsey

    The high cost of wafers suitable for epitaxial deposition of III-V solar cells has been a primary barrier to widespread use of these cells in low-concentration and one-sun terrestrial solar applications. A possible solution is to reuse the substrate many times, thus spreading its cost across many cells. We performed a bottom-up techno-economic analysis of three different strategies for substrate reuse in high-volume manufacturing: epitaxial lift-off, spalling, and the use of a porous germanium release layer. The analysis shows that the potential cost reduction resulting from substrate reuse is limited in all three strategies--not by the number of reuse cyclesmore » achievable, but by the costs that are incurred in each cycle to prepare the substrate for another epitaxial deposition. The dominant substrate-preparation cost component is different for each of the three strategies, and the cost-ranking of these strategies is subject to change if future developments substantially reduce the cost of epitaxial deposition.« less

  11. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng, E-mail: wy3121685@163.com

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  12. Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays

    PubMed Central

    2014-01-01

    We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(N-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects. PMID:25137554

  13. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Z.; Olszanski, W.; Battles, J.E.

    1975-12-09

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such a solid lithium--aluminum filled within a substrate of metal foam are provided. 1 figure, 1 table.

  14. Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential.

    PubMed

    Rajagopal, Rajinikanth; Béline, Fabrice

    2011-05-01

    This study aimed to develop a biochemical-test mainly to evaluate the hydrolytic-potential of different substrates and to apply this test to characterize various organic substrates. Outcome of this study can be used for optimization of the WWTPs through enhancement of N/P removal or anaerobic digestion. Out of four series of batch experiments, the first two tests were conducted to determine the optimal operating conditions (test duration, inoculum-ratio etc.) for the hydrolytic-potential test using secondary and synthetically-prepared sludges. Based on the results (generation of CODs, pH and VFA), test duration was fixed between 6 and 7d allowing to attain maximum hydrolysis and to avoid methanogenesis. Effect of inoculum-ratios on acid fermentation of sludge was not significantly noticed. Using this methodology, third and fourth tests were performed to characterize various organic substrates namely secondary, pre-treated sludge, pig and two different cattle slurries. VFA production was shown to be substantially dependent on substrates types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    NASA Astrophysics Data System (ADS)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  16. Electrochemical growth of CoNi and Pt-CoNi soft magnetic composites on an alkanethiol monolayer-modified ITO substrate.

    PubMed

    Escalera-López, D; Gómez, E; Vallés, E

    2015-07-07

    CoNi and Pt-CoNi magnetic layers on indium-tin oxide (ITO) substrates modified by an alkanethiol self-assembled monolayer (SAM) have been electrochemically obtained as an initial stage to prepare semiconducting layer-SAM-magnetic layer hybrid structures. The best conditions to obtain the maximum compactness of adsorbed layers of dodecanethiol (C12-SH) on ITO substrate have been studied using contact angle, AFM, XPS and electrochemical tests. The electrochemical characterization (electrochemical probe or voltammetric response in blank solutions) is fundamental to ensure the maximum blocking of the substrate. Although the electrodeposition process on the SAM-modified ITO substrate is very slow if the blocking of the surface is significant, non-cracked metallic layers of CoNi, with or without a previously electrodeposited seed-layer of platinum, have been obtained by optimizing the deposition potentials. Initial nucleation is expected to take place at the pinhole defects of the C12-SH SAM, followed by a mushroom-like growth regime through the SAM interface that allows the formation of a continuous metallic layer electrically connected to the ITO surface. Due to the potential of the methodology, the preparation of patterned metallic deposits on ITO substrate using SAMs with different coverage as templates is feasible.

  17. Ga2O3-In2O3 thin films on sapphire substrates: Synthesis and ultraviolet photoconductivity

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kolymagin, A. B.; Nabatov, B. V.; Kanevsky, V. M.

    2017-11-01

    The structure and electrical and optical properties of β-Ga2O3-In2O3 thin films on sapphire substrates with different orientations have been investigated. The samples have been prepared by annealing of gallium-indium metallic films on sapphire substrates in air at different gallium-to-indium ratios in the initial mixture. The photoconductivity of these structures in the solar-blind ultraviolet spectral region has been examined.

  18. Effects of substrate temperatures and deposition rates on properties of aluminum fluoride thin films in deep-ultraviolet region.

    PubMed

    Sun, Jian; Li, Xu; Zhang, Weili; Yi, Kui; Shao, Jianda

    2012-12-10

    Aluminum fluoride (AlF(3)) is a low-refractive-index material widely used in coatings for deep-ultraviolet (DUV) optical systems, especially 193 nm laser systems. Low optical loss and stability are essential for film application. In this study, AlF(3)> thin films were prepared by thermal evaporation with a resistive heating boat. The effects of substrate temperatures and deposition rates on the optical properties in vacuum and in air, composition, and microstructures were discussed respectively. In vacuum the deposition parameters directly influenced the microstructures that determined the refractive index. When the films were exposed to air, aluminum oxide (Al(2)O(3)) formed in the films with water adsorption. Thus the refractive index increased and a nonmonotonic changing trend of the refractive index with substrate temperature was observed. The Al(2)O(3) was also found to be conductive to reducing absorption loss. AlF(3) films prepared at a high substrate temperature and deposition rate could yield stable structures with large optical loss.

  19. Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates.

    PubMed

    Pan, Z; Zavalin, A; Ueda, A; Guo, M; Groza, M; Burger, A; Mu, R; Morgan, S H

    2005-06-01

    Surface-enhanced Raman scattering (SERS) has been studied using a silver-coated porous glass-ceramic material as a new type of substrate. The porous glass-ceramic is in the CaO-TiO2-P2O5 system prepared by controlled crystallization and subsequent chemical leaching of the dense glass-ceramic, leaving a solid skeleton with pores ranging in size from 50 nm to submicrometer. Silver was coated on the surface of the porous glass-ceramic by radio frequency (RF) sputtering or e-beam evaporation in vacuum. SERS spectra of excellent quality were obtained from several dyes and carboxylic acid molecules, including rhodamine 6G, crystal violet, isonicotinic acid, and benzoic acid, using this new substrate. This new substrate showed a good compatibility with these molecules. The porous glass ceramic with a nanometer-structured surface accommodated both test molecules and silver film. The absorbed molecules were therefore better interfaced with silver for surface-enhanced Raman scattering.

  20. Impact of Substrate Types on Structure and Emission of ZnO Nanocrystalline Films

    NASA Astrophysics Data System (ADS)

    Ballardo Rodriguez, I. Ch.; El Filali, B.; Díaz Cano, A. I.; Torchynska, T. V.

    2018-02-01

    Zinc oxide (ZnO) films were simultaneously synthesized by an ultrasonic spray pyrolysis (USP) method on p-type Si (100), silicon carbide polytype [6H-SiC (0001)], porous 6H-SiC and amorphous glass substrates with the aim of studying the impact of substrate types on the structure and emission of ZnO nanocrystalline films. Porous silicon carbide (P-SiC) was prepared by the electrochemical anodization method at a constant potential of 20 V and etching time of 12 min. ZnO films grown on the SiC and P-SiC substrates are characterized by a wurtzite crystal structure with preferential growth along the (002) direction and with grain sizes of 90-180 and 70-160 nm, respectively. ZnO films grown on the Si substrate have just some small irregular hexagonal islands. The amorphous glass substrate did not promote the formation of any regular crystal forms. The obtained x-ray diffraction and photoluminescence (PL) results have shown that the better ZnO film crystallinity and high PL intensity of near-band edge emissions were achieved in the films grown on the porous SiC and SiC substrates. The preferential growth and crystalline nature of ZnO films on the SiC substrate have been discussed from the point of view of the lattice parameter compatibility between ZnO and SiC crystals.

  1. In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-01-01

    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  2. Effect of substrates on Zinc Oxide thin films fabrication using sol-gel method

    NASA Astrophysics Data System (ADS)

    Kadir, Rosmalini Ab; Taib, Nurmalina Mohd; Ahmad, Wan Rosmaria Wan; Aziz, Anees Abdul; Sabirin Zoolfakar, Ahmad

    2018-03-01

    The properties of ZnO thin films were deposited on three different substrates via dip coating method was investigated. The films were prepared on glass, ITO and p-type silicon. Characterization of the film revealed that the properties of the dip coated ZnO thin films were influenced by the type of substrates. The grains on ITO and glass were ∼10 nm in size while the grains on wafer agglomerate together to form a denser film. Studies of the optical properties using UV-VIS-NIR of the fabricated films demonstrated that glass has the highest transmittance compared to ITO.

  3. Biocompatible 3D SERS substrate for trace detection of amino acids and melamine

    NASA Astrophysics Data System (ADS)

    Satheeshkumar, Elumalai; Karuppaiya, Palaniyandi; Sivashanmugan, Kundan; Chao, Wei-Ting; Tsay, Hsin-Sheng; Yoshimura, Masahiro

    2017-06-01

    A novel, low-cost and biocompatible three-dimensional (3D) substrate for surface-enhanced Raman spectroscopy (SERS) is fabricated using gold nanoparticles (AuNPs) loaded on cellulose paper for detection of amino acids and melamine. Dysosma pleiantha rhizome (Dp-Rhi) capped AuNPs (Dp-Rhi_AuNPs) were prepared by in situ using aqueous extract of Dp-Rhi and in situ functionalized Dp-Rhi on AuNPs surface was verified by Fourier transform infrared spectroscopy and zeta potentials analysis shows a negative (- 18.4 mV) surface charges, which confirm that presence of Dp-Rhi on AuNPs. The biocompatibility of Dp-Rhi_AuNPs is also examined by cell viability of FaDu cells using MTS assay and compared to control group. In conclusion, the SERS performance of AuNPs@cellulose paper substrates were systematically demonstrated and examined with different excitation wavelengths (i.e. 532, 632.8 and 785 nm lasers) and the as-prepared 3D substrates provided an enhancement factor approaching 7 orders of magnitude compared with conventional Raman intensity using para-nitrothiophenol (p-NTP), para-aminothiophenol (p-ATP) and para-mercaptobenzoic acid (p-MBA) as probe molecules. The strong electromagnetic effect was generated at the interface of AuNPs and pre-treated roughened cellulose paper is also investigated by simulation in which the formation of possible Raman hot-spot zone in fiber-like microstructure of cellulose paper decorated with AuNPs. Notably, with optimized condition of as-prepared 3D AuNPs@cellulose paper is highly sensitive in the SERS detection of aqueous tyrosine (10- 10 M) and melamine (10- 9 M).

  4. Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester

    NASA Technical Reports Server (NTRS)

    Vailhe, Christophe

    2003-01-01

    The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.

  5. Method for fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam [Hinsdale, IL; Ma, Beihai [Naperville, IL; Miller, Dean [Darien, IL

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  6. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Guo, Yanzhao; Lin, Liangzhen; Zheng, Yuting; Hei, Lifu; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Li, Chengming

    2018-06-01

    Microwave plasma chemical vapor deposition (MPCVD) was used to grow single-crystal diamonds on two types of single-crystal diamond seed substrates prepared by high-pressure, high-temperature (HPHT) and chemical vapor deposition (CVD) methods. The quality of diamonds grown on the different seed substrates was compared. Fluorescence characteristics showed that the sectors of the HPHT seed substrates were obviously partitioned. Raman and absorption spectra showed that the CVD seed substrate produced higher-quality crystals with fewer nitrogen impurities. X-ray topography showed that the HPHT seed substrate had obvious growth sector boundaries, inclusions, dislocations, and stacking faults. The polarization characteristics of HPHT seed substrate were obvious, and the stress distribution was not uniform. When etching HPHT and CVD seed substrates using the same parameters, the etching morphology and extent of different growth sectors of the two substrates differed. Although extended defects were inevitably formed at the interface and propagated in the CVD layer, the dislocation density of a 1 mm-thick CVD layer grown on a CVD seed substrate was only half that of a 1 mm-thick CVD layer grown on an HPHT seed substrate. Therefore, the use of CVD seed substrate enabled the growth of a relatively higher-quality CVD single-crystal diamond.

  7. Atomic structure and composition of the yttria-stabilized zirconia (111) surface.

    PubMed

    Vonk, Vedran; Khorshidi, Navid; Stierle, Andreas; Dosch, Helmut

    2013-06-01

    Anomalous and nonanomalous surface X-ray diffraction is used to investigate the atomic structure and composition of the yttria-stabilized zirconia (YSZ)(111) surface. By simulation it is shown that the method is sensitive to Y surface segregation, but that the data must contain high enough Fourier components in order to distinguish between different models describing Y/Zr disorder. Data were collected at room temperature after two different annealing procedures. First by applying oxidative conditions at 10 - 5  mbar O 2 and 700 K to the as-received samples, where we find that about 30% of the surface is covered by oxide islands, which are depleted in Y as compared with the bulk. After annealing in ultrahigh vacuum at 1270 K the island morphology of the surface remains unchanged but the islands and the first near surface layer get significantly enriched in Y. Furthermore, the observation of Zr and oxygen vacancies implies the formation of a porous surface region. Our findings have important implications for the use of YSZ as solid oxide fuel cell electrode material where yttrium atoms and zirconium vacancies can act as reactive centers, as well as for the use of YSZ as substrate material for thin film and nanoparticle growth where defects control the nucleation process.

  8. Challenge for lowering concentration polarization in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  9. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The resultsmore » show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.« less

  10. Mechanical and thermal properties of SrO/BaO modified Y2O3-Al2O3-B2O3-SiO2 glasses and their compatibility with solid oxide fuel cell components

    NASA Astrophysics Data System (ADS)

    Kaur, Navdeep; Kaur, Gurbinder; Kumar, Devender; Singh, K.

    2018-07-01

    In this study, various compositions of (30-x) SrO-xBaO-10Al2O3-45SiO2-5B2O3-10Y2O3 (mol%) (5 ≤ x ≤ 25) were synthesized using the melt-quench technique. The as-prepared glasses were characterized by X-ray diffraction, micro-hardness testing, dilatometry, and scanning electron microscopy to determine their thermal and mechanical properties. Powders of the glasses were used to make diffusion couples with Crofer 22 APU (interconnect) and yttria stabilized zirconia (YSZ) for the interfacial study. Diffusion couples of the pre-oxidized Crofer 22 APU/glasses and YSZ/glasses were tested for 500 h at 850 °C. The coefficients of thermal expansion obtained for all the glasses were in the required range for applications in solid oxide fuel cells. The highest hardness and fracture toughness were obtained for the glass with x = 10 mol% due to the mixed modifier effect. However, the glass with x = 15 mol% exhibited better adhesion with YSZ and Crofer 22 APU.

  11. Alloyed surfaces: New substrates for graphene growth

    NASA Astrophysics Data System (ADS)

    Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.

    2017-11-01

    We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.

  12. Glasses and Liquids Low on the Energy Landscape Prepared by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Dalal, Shakeel; Fakhraai, Zahra; Ediger, Mark

    2014-03-01

    The lower portions of the potential energy landscape for glass-forming materials such as polymers and small molecules were historically inaccessible by experiments. Physical vapor deposition is uniquely able to prepare materials in this portion of the energy landscape, with the properties of the deposited material primarily modulated by the substrate temperature. Here we report on high-throughput experiments which utilize a temperature gradient stage to enable rapid screening of vapor-deposited organic glasses. Using ellipsometry, we characterize a 100 K range of substrate temperatures in a single experiment, allowing us to rapidly determine the density, kinetic stability, fictive temperature and molecular orientation of these glasses. Their properties fall into three temperature regimes. At substrate temperatures as low as 0.97Tg, we prepare materials which are equivalent to the supercooled liquid produced by cooling the melt. Below 0.9Tg (1.16TK) the properties of materials are kinetically controlled and highly tunable. At intermediate substrate temperatures we are able to produce materials whose bulk properties match those expected for the equilibrium supercooled liquid, down to 1.16TK, but are structurally anisotropic.

  13. Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate.

    PubMed

    Nidheesh, T; Pal, Gaurav Kumar; Suresh, P V

    2015-05-05

    Solid state fermentation (SSF) conditions were statistically optimized for the production of chitosanase by Purpureocillium lilacinum CFRNT12 using shrimp by-products as substrate. Central composite design and response surface methodology were applied to evaluate the effect of variables and their optimization. Incubation temperature, incubation time, concentration of inoculum and yeast extract were found to influence the chitosanase production significantly. The R(2) value of 0.94 indicates the aptness of the model. The level of variables for optimal production of chitosanase was 32 ± 1°C temperature, 96 h incubation, 10.5% (w/v) inoculum, 1.05% (w/w) yeast extract and 65% (w/w) moisture content. The chitosanase production was found to increase from 2.34 ± 0.07 to 41.78 ± 0.73 units/g initial dry substrate after optimization. The crude chitosanase produced 4.43 mM of chitooligomers as exclusive end product from colloidal chitosan hydrolysis. These results indicate the potential of P. lilacinum CFRNT12 for the chitosanase production employing cost effective SSF using shrimp by-products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of the co-spun anode functional layer on the performance of the direct-methane microtubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Meng, Xiuxia; Gong, Xun; Yin, Yimei; Yang, Naitao; Tan, Xiaoyao; Ma, Zi-Feng

    2014-02-01

    NiO-YSZ/porous YSZ (NiO-YSZ/p-YSZ) dual-layer hollow fibers have been fabricated by a co-spinning-sintering method, on which a dense YSZ films has been formed by a dip-coating and sintering process. A LSM-YSZ ink has been dip-coated on the dense YSZ films as cathode, while the Cu-CeO2 carbon-resistant catalyst has been impregnated in the p-YSZ layer to form double-anode supported micro tubular fuel cells (MT-SOFCs). The thickness of the Ni-YSZ layer, so called anode functional layer (AFL), is controlled from 74 μm to 13 μm by varying the spinning rates of the NiO-YSZ dopes. The maximum power density of an MT-SOFC, which is fabricated based on a thin co-spun AFL, reaches 566 mW cm-2 operated at 850 °C fed with dry methane, and is stably operated for 85 h without power declination.

  15. [Comparative characteristics of microbial proteases by the level of hydrolysis of protein substrates].

    PubMed

    Rimareva, L V; Overchenko, M B; Serba, E M; Trifonova, V V

    1997-01-01

    Screening of enzyme preparations displaying a maximum proteolytic activity at pH 4.0-5.5 and effecting deep proteolysis of plant proteins was performed. Amyloprotooryzin prepared from Aspergillus oryzae 387 containing a complex of proteolytic enzymes was the most effective. The amino acid composition of the hydrolysates obtained was studied. Amyloprotooryzin increased the contents of amino acids by 108-227%, depending on the substrate used. The enzymatic complex of amyloprotooryzin was studied; in addition, proteases, alpha-amylase, exo-beta-glucanase, and xylanase were detected in the complex.

  16. Oxidation of monohydric phenol substrates by tyrosinase. An oximetric study.

    PubMed

    Naish-Byfield, S; Riley, P A

    1992-11-15

    The purity of commercially available mushroom tyrosinase was investigated by non-denaturing PAGE. Most of the protein in the preparation migrated as a single band under these conditions. This band contained both tyrosinase and dopa oxidase activity. No other activity of either classification was found in the preparation. Oxygen consumption by tyrosinase during oxidation of the monohydric phenol substrates tyrosine and 4-hydroxyanisole (4HA) was monitored by oximetry in order to determine the stoichiometry of the reactions. For complete oxidation, the molar ratio of oxygen: 4HA was 1:1. Under identical conditions, oxidation of tyrosine required 1.5 mol of oxygen/mol of tyrosine. The additional oxygen uptake during tyrosine oxidation is due to the internal cyclization of dopaquinone to form cyclodopa, which undergoes a redox reaction with dopaquinone to form dopachrome and dopa, which is then oxidized by the enzyme, leading to an additional 0.5 mol of oxygen/mol of original substrate. Oxygen consumption for complete oxidation of 200 nmol of 4HA was constant over a range of concentrations of tyrosinase of 33-330 units/ml of substrate. The maximum rate of reaction was directly proportional to the concentration of tyrosinase, whereas the length of the lag phase decreased non-linearly with increasing tyrosinase concentration. Activation of the enzyme by exposure to citrate was not seen, nor was the lag phase abolished by exposure of the enzyme to low pH. Michaelis-Menten analysis of tyrosinase in which the lag phase is abolished by pre-exposure of the enzyme to a low concentration of dithiothreitol gave Km values for tyrosine and 4HA of 153 and 20 microM respectively.

  17. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    PubMed

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  18. Comparison of structural and optical properties of TeO2 nanostructures synthesized using various substrate conditions

    NASA Astrophysics Data System (ADS)

    Jung, Taek-Kyun; Ryou, Min; Lee, Ji-Woon; Hyun, Soong-Keun; Na, Han Gil; Jin, Changhyun

    2017-11-01

    Several TeO2 low-dimensional nanostructures were prepared by thermal evaporation using four substrate conditions: (1) a bare substrate, (2) a scratched substrate, (3) a Au-catalyst-assisted substrate, and (4) a multi-walled carbon nanotube (MWCNT)-assisted substrate. Scanning electron microscopy and transmission electron microscopy analysis reveals that the morphologies of the nanostructures synthesized using these methods gradually changed from nanoparticles to ultra-thin nanowires with single tetragonal-type TeO2. Photoluminescence (PL) spectra reveal that the PL intensities of the TeO2 nanomaterials obtained using methods (1) and (2) are slightly increased, whereas the intensities of the TeO2 nanostructures obtained using methods (3) and (4) differ significantly depending on the initial substrate conditions. The emission peak is also blue-shifted from 440 nm to 430 nm for the scratched surface condition due to an excitonic transition. The increase in the blue emission for the MWCNT-assisted condition is attributed to the degree and type of excitons and defects in the TeO2 nanostructures.

  19. Nano- and microcrystalline diamond deposition on pretreated WC-Co substrates: structural properties and adhesion

    NASA Astrophysics Data System (ADS)

    Fraga, M. A.; Contin, A.; Rodríguez, L. A. A.; Vieira, J.; Campos, R. A.; Corat, E. J.; Trava Airoldi, V. J.

    2016-02-01

    Many developments have been made to improve the quality and adherence of CVD diamond films onto WC-Co hard metal tools by the removing the cobalt from the substrate surface through substrate pretreatments. Here we compare the efficiency of three chemical pretreatments of WC-Co substrates for this purpose. First, the work was focused on a detailed study of the composition and structure of as-polished and pretreated substrate surfaces to characterize the effects of the substrate preparation. Considering this objective, a set of WC-9% Co substrates, before and after pretreatment, was analyzed by FEG-SEM, EDS and x-ray diffraction (XRD). The second stage of the work was devoted to the evaluation of the influence of seeding process, using 4 nm diamond nanoparticles, on the morphology and roughness of the pretreated substrates. The last and most important stage was to deposit diamond coatings with different crystallite sizes (nano and micro) by hot-filament CVD to understand fully the mechanism of growth and adhesion of CVD diamond films on pretreated WC-Co substrates. The transition from nano to microcrystalline diamond was achieved by controlling the CH4/H2 gas ratio. The nano and microcrystalline samples were grown under same time at different substrate temperatures 600 °C and 800 °C, respectively. The different substrate temperatures allowed the analysis of the cobalt diffusion from the bulk to the substrate surface during CVD film growth. Furthermore, it was possible to evaluate how the coating adhesion is affected by the diffusion. The diamond coatings were characterized by Raman spectroscopy, XRD, EDS, FEG-SEM, atomic force microscope and 1500 N Rockwell indentation to evaluate the adhesion.

  20. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  1. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  2. Growth of highly strained CeO 2 ultrathin films

    DOE PAGES

    Shi, Yezhou; Lee, Sang Chul; Monti, Matteo; ...

    2016-11-07

    Large biaxial strain is a promising route to tune the functionalities of oxide thin films. However, large strain is often not fully realized due to the formation of misfit dislocations at the film/substrate interface. In this work, we examine the growth of strained ceria (CeO 2) thin films on (001)-oriented single crystal yttria-stabilized zirconia (YSZ) via pulsed-laser deposition. By varying the film thickness systematically between 1 and 430 nm, we demonstrate that ultrathin ceria films are coherently strained to the YSZ substrate for thicknesses up to 2.7 nm, despite the large lattice mismatch (~5%). The coherency is confirmed by bothmore » X-ray diffraction and high-resolution transmission electron microscopy. This thickness is several times greater than the predicted equilibrium critical thickness. Partial strain relaxation is achieved by forming semirelaxed surface islands rather than by directly nucleating dislocations. In situ reflective high-energy electron diffraction during growth confirms the transition from 2-D (layer-by-layer) to 3-D (island) at a film thickness of ~1 nm, which is further supported by atomic force microscopy. We propose that dislocations likely nucleate near the surface islands and glide to the film/substrate interface, as evidenced by the presence of 60° dislocations. Finally, an improved understanding of growing oxide thin films with a large misfit lays the foundation to systematically explore the impact of strain and dislocations on properties such as ionic transport and redox chemistry.« less

  3. Long length coated conductor fabrication by inclined substrate deposition and evaporation

    NASA Astrophysics Data System (ADS)

    Prusseit, W.; Hoffmann, C.; Nemetschek, R.; Sigl, G.; Handke, J.; Lümkemann, A.; Kinder, H.

    2006-06-01

    The commercial development of coated conductors is rapidly progressing. As a result we present an economic route to produce second generation HTS tape from the initial substrate preparation to the final metal coating. The most important and technically challenging steps are the deposition of an oriented buffer layer and the superconductor film in a reel-to-reel configuration. New evaporation techniques have been developed to enable reliable, high rate tape coating. Highly oriented MgO - buffer layers are realized by inclined substrate deposition (ISD) and DyBCO is deposited by simple e-gun evaporation yielding critical currents beyond 200 A/cm. Coated conductors have been fabricated up to 40 m length and are currently tested in a variety of applications.

  4. Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

    NASA Astrophysics Data System (ADS)

    Tomko, John A.; Olson, David H.; Braun, Jeffrey L.; Kelliher, Andrew P.; Kaehr, Bryan; Hopkins, Patrick E.

    2018-01-01

    In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. We find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substrate preparation. These findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.

  5. Effect of substrate roughness on D spacing supports theoretical resolution of vapor pressure paradox.

    PubMed Central

    Tristram-Nagle, S; Petrache, H I; Suter, R M; Nagle, J F

    1998-01-01

    The lamellar D spacing has been measured for oriented stacks of lecithin bilayers prepared on a variety of solid substrates and hydrated from the vapor. We find that, when the bilayers are in the L(alpha) phase near 100% relative humidity, the D spacing is consistently larger when the substrate is rougher than when it is smooth. The differences become smaller as the relative humidity is decreased to 80% and negligible differences are seen in the L(beta') phase. Our interpretation is that rough substrates frustrate the bilayer stack energetically, thereby increasing the fluctuations, the fluctuational repulsive forces, and the water spacing compared with stacks on smooth surfaces. This interpretation is consistent with and provides experimental support for a recently proposed theoretical resolution of the vapor pressure paradox. PMID:9512038

  6. The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schumann, T.; Lopes, J. M. J.; Wofford, J. M.; Oliveira, M. H.; Dubslaff, M.; Hanke, M.; Jahn, U.; Geelhaar, L.; Riechert, H.

    2015-09-01

    We examine how substrate selection impacts the resulting film properties in graphene growth by molecular beam epitaxy (MBE). Graphene growth on metallic as well as dielectric templates was investigated. We find that MBE offers control over the number of atomic graphene layers regardless of the substrate used. High structural quality could be achieved for graphene prepared on Ni (111) films which were epitaxially grown on MgO (111). For growth either on Al2O3 (0001) or on (6√3×6√3)R30°-reconstructed SiC (0001) surfaces, graphene with a higher density of defects is obtained. Interestingly, despite their defective nature, the layers possess a well defined epitaxial relation to the underlying substrate. These results demonstrate the feasibility of MBE as a technique for realizing the scalable synthesis of this two-dimensional crystal on a variety of substrates.

  7. Magneto-optical characterizations of FeTe₀̣₅Se₀̣₅ thin films with critical current density over 1 MA/cm²

    DOE PAGES

    Sun, Yue; Li, Qiang; Tsuchiya, Yuji; ...

    2014-12-03

    We performed magneto-optical (MO) measurements on FeTe₀̣₅Se₀̣₅ thin films grown on LaAlO₃ (LAO) and Yttria-stabilized zirconia (YSZ) single-crystalline substrates. These thin films show superconducting transition temperature T c ~19 K, 4 K higher than the bulk sample. Typical roof-top patterns can be observed in the MO images of thin films grown on LAO and YSZ, from which a large and homogeneous critical current density J c ~ 3 - 4 x 10⁶ A/cm² at 5 K was obtained. In this study, magnetic flux penetration measurement reveals that the current is almost isotropically distributed in the two thin films. Compared withmore » bulk crystals, FeTe₀̣₅Se₀̣₅ thin film demonstrates not only higher T c, but also much larger J c, which is attractive for applications.« less

  8. Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Liang, Pei; Tang, Lisha; Zhou, Yongfeng; Cao, Yanting; Wu, Yanxiong; Zhang, De; Dong, Qianmin; Huang, Jie; He, Peng

    2018-04-01

    As a means of chemical identification and analysis, Surface enhanced Raman spectroscopy (SERS), with the advantages of high sensitivity and selectivity, non-destructive, high repeatability and in situ detection etc., has important significance in the field of composition detection, environmental science, biological medicine etc. Physical model of coupling effect between different semiconductor substrates and noble metal particles were investigated by using 3D-FDTD method. Mechanism and the effects of excitation wavelength, particle spacing and semiconductor substrate types on the SERS effect were discussed. The results showed that the optimal excitation wavelengths of three noble metals of Ag, Au, Cu, were located at 510, 600 and 630 nm, respectively; SERS effect of Ag, Au, Cu increases with the decreasing of the inter distance of particles, while the distance of the NPs reaches the critical value of 3 nm, the strength of SERS effect will be greatly enhanced. For the four different types of substrate of Ge, Si, SiO2 (glass) and Al2O3, the SERS effect of Ag on SiO2 > Ge > Al2O3 > Si. For Au and Cu nanoparticles, the SERS effect of them on oxide substrate is stronger than that on non-oxide substrate. In order to verify FDTD simulations, taking silver nanoparticles as an example, and silver nanoparticles prepared by chemical method were spinning coating on the four different substrates with R6G as probe molecules. The results show that the experimental results are consistent with FDTD theoretical simulations, and the SERS enhancement effect of Ag-SiO2 substrate is best. The results of this study have important theoretical significance to explain the variations of SERS enhancement on different noble metals, which is also an important guide for the preparation of SERS substrates, especially for the microfluidics. The better Raman effect can be realized by choosing proper substrate type, particle spacing and excitation wavelength, result in expanding the depth and width

  9. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference

    NASA Astrophysics Data System (ADS)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.

    2017-06-01

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.

  10. MoS2 thin films prepared by sulfurization

    NASA Astrophysics Data System (ADS)

    Sojková, M.; Chromik, Å.; Rosová, A.; Dobročka, E.; Hutár, P.; Machajdík, D.; Kobzev, A. P.; Hulman, M.

    2017-08-01

    Sulfurization of a Mo layer is one of the most used methods for preparation of thin MoS2 films. In the method, a sulfur powder and Mo covered substrate are placed in different positions within a furnace, and heated separately. This requires a furnace having at least two zones. Here, we present a simplified version of the method where a one-zone tube furnace was used. A molybdenum film on a substrate and a sulfur powder were placed in the center of the furnace and heated at temperatures above 800°C. Mo films transform into MoS2 in vapors of sulphur at high temperatures. As-prepared films were characterized by number of techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman, Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS). It appears that one-zone sulfurization, with just one annealing temperature used, is a suitable method for fabrication of MoS2 thin films. This method is fast, cheap and easy to scale up.

  11. Laser Microperforated Biodegradable Microbial Polyhydroxyalkanoate Substrates for Tissue Repair Strategies: An Infrared Microspectroscopy Studey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G Ellis; P Cano; M Jadraque

    Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.

  12. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray

    PubMed Central

    Hsu, Chia-Hao; Chen, Tai-Cheng; Huang, Rong-Tan; Tsay, Leu-Wen

    2017-01-01

    304 stainless steels (SS) were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod) 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD) map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC). Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ) was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group. PMID:28772547

  13. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    PubMed Central

    Jensen, Mikkel R. B.; Łopacińska, Joanna; Schmidt, Michael S.; Skolimowski, Maciej; Abeille, Fabien; Qvortrup, Klaus; Mølhave, Kristian

    2013-01-01

    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered. PMID:23326412

  14. Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Li, Qi; Cao, Hui; Leng, Guanghui; Li, Yongliang; Wang, Li; Zheng, Lifang; Ding, Yulong

    2018-06-01

    We investigated the wetting behavior of a eutectic carbonate salt of NaLiCO3 on MgO substrates at an elevated temperature of 778 K by measuring contact angle with a sessile drop method. Both sintered and non-sintered MgO were prepared and used as the substrates. The sintered substrates were obtained by sintering compacted MgO powders at 500-1300 °C. For comparison purposes, a single crystal MgO substrate was also used in the work. The different sintering temperatures provided MgO substrates with different structures, allowing their effects on salt penetration and hence wettability and surface energy to be investigated. A scanning electron microscope equipped with energy dispersive spectrometry and an atomic force microscope were used to observe the morphology and structures of the MgO substrates as well as the salt penetration. The results showed a good wettability of the carbonate salt on both the sintered and non-sintered MgO substrates and the wettability depended strongly on the structure of the substrates. The non-sintered MgO substrate has a loose surface particle packing with large pores and crevices, leading to significant salt infiltration, and the corresponding contact angle was measured to be ∼25°. The contact angle of the salt on the sintered MgO substrates increased with an increase in the sintering temperature of the MgO substrate, and the contact angle of the salt on the single crystal substrate was the highest at ∼40°. The effect of the sintering temperature for making the MgO substrate could be linked to the surface energy, and the linkage is validated by the AFM measurements of the adhesion forces of the MgO substrates.

  15. Dynamics of Preferential Substrate Recognition in HIV-1 Protease: Redefining the Substrate Envelope

    PubMed Central

    Özen, Ayşegül; Haliloğlu, Türkan; Schiffer, Celia A.

    2011-01-01

    HIV-1 protease (PR) permits viral maturation by processing the Gag and Gag-Pro-Pol polyproteins. Though HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy, the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates the consideration of drug resistance in novel drug-design strategies. Drug-resistant HIV-1 PR variants, while no longer efficiently inhibited, continue to efficiently hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we defined as the “substrate envelope”. We previously showed that resistance mutations arise where PIs protrude beyond the substrate envelope, as these regions are crucial for drug binding but not for substrate recognition. Here, we extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. Seven molecular dynamics simulations of PR-substrate complexes were performed to estimate the conformational flexibility of substrates in their complexes. Interdependency of the substrate-protease interactions may compensate for the variations in cleavage-site sequences, and explain how a diverse set of sequences can be recognized as substrates by the same enzyme. This diversity may be essential for regulating sequential processing of substrates. We also define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance. PMID:21762811

  16. Effects of magnetic flux density and substrate bias voltage on Ni films prepared on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koda, Tatsunori; Toyota, Hiroshi, E-mail: h.toyota.za@it-hiroshima.ac.jp

    The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S} = −40 V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C} = 0, 3, and 5 mT was 88.2, 95.4, and 104.4 nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities ofmore » I(111)/I(200) increased with V{sub S}. For V{sub S} = −40 V and B{sub C} = 3 mT, a film resistivity ρ of 8.96 × 10{sup −6} Ω cm was observed, which is close to the Ni bulk value of 6.84 × 10{sup −6} Ω cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.« less

  17. [Preparation and Performance of Ultrafast γ-CuI Scintillation Conversion Screen].

    PubMed

    Xia, Ming; Gu, Mu; Liu, Xiao-lin; Liu, Bo; Huang, Shi-ming; Ni, Chen

    2015-04-01

    Micro-columnar structured γ-CuI scintillation conversion screen with columnar diameter in the micrometer and thickness about 17 µm were prepared by thermal evaporation method on quartz substrates with different temperatures. X-ray excited luminescence spectra of the screens show two peaks located at 430 nm and near 700 nm, which correspond to the fast and slow emission components, respectively. The fast one dominated. The intensity of 430 nm peak decreased as the substrate temperature rose from 170 °C to 210 °C. At the same time the intensity of 700 nm band increased. The changes may be attributed to the iodine loss from screen caused by the substrate temperature. The phenomenon of iodine loss was observed by the Rutherford backscattering experiment. The crystal structure of the screens presents (111) preferred orientation, which is independent of the substrate temperature. As the temperature rose to 210 °C, two weak additional peaks of (220) and (420) γ-CuI crystal planes in X-ray diffraction patterns appeared due to the increase in kinetic energy of CuI molecules. The scanning electron microscopy images of the screens showed that the columnar structure was improved when the substrate temperature increased from 170 °C to 190 °C, but it would be degenerated when the temperature continued to rise to 210 °C because of the surface and bulk diffusion effects of the depositing molecules. Finally, the spatial resolution of the γ-CuI scintillation screens was measured by knife-edge method, and they are 4.5, 7.2 and 5.6lp · mm(-1) for the screens prepared at the substrates temperatures of 170, 190 and 210 °C, respectively. The result shows that micro-column structure could improve the spatial resolution of γ-CuI scintillation screen.

  18. Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures

    NASA Astrophysics Data System (ADS)

    Song, Haili; Li, Chao; Van, Chien Nguyen; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang

    2017-11-01

    Self-assembled WO3-BiVO4 nanostructured thin films were grown on a (001) yttrium stabilized zirconia (YSZ) substrate by the pulsed laser deposition method with and without the indium tin oxide (ITO) bottom electrode. Their microstructures including surface morphologies, crystalline phases, epitaxial relationships, interface structures, and composition distributions were investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. In both samples, WO3 formed nanopillars embedded into the monoclinic BiVO4 matrix with specific orientation relationships. In the sample with the ITO bottom electrode, an atomically sharp BiVO4/ITO interface was formed and the orthorhombic WO3 nanopillars were grown on a relaxed BiVO4 buffer layer with a mixed orthorhombic and hexagonal WO3 transition layer. In contrast, a thin amorphous layer appears at the interfaces between the thin film and the YSZ substrate in the sample without the ITO electrode. In addition, orthorhombic Bi2WO6 lamellar nanopillars were formed between WO3 and BiVO4 due to interdiffusion. Such a WO3-Bi2WO6-BiVO4 double heterojunction photoanode may promote the photo-generated charge separation and further improve the photoelectrochemical water splitting properties.

  19. Highly Oriented Growth of Piezoelectric Thin Films on Silicon Using Two-Dimensional Nanosheets as Growth Template Layer.

    PubMed

    Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus

    2016-11-16

    Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.

  20. Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity.

    PubMed

    Tu, Xuecou; Jiang, Chengtao; Xiao, Peng; Kang, Lin; Zhai, Shimin; Jiang, Zhou; Feng Su, Run; Jia, Xiaoqing; Zhang, Labao; Chen, Jian; Wu, Peiheng

    2018-04-02

    Fabricating resonant cavities with conventional methods to improve the coupling efficiency of a detector in the terahertz (THz) region is difficult for the wavelength is too long. Here, we propose a solution by using the substrate cavity effect given that the substrate wavelength and thickness of the preparation device are in the same order. The planar dipole antenna-coupled Nb 5 N 6 microbolometers with different substrate thicknesses were fabricated. The interference effect of the substrate cavity on the optical voltage response of the detector is analyzed experimentally and theoretically. The experimental results show that the optical response of the detector is determined by the length of the substrate cavity. Thus, the THz devices with different detection frequencies can be designed by changing the substrate cavity length. Furthermore, on the basis of this substrate cavity effect, an asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a movable metallic planar mirror at the backside of the Si substrate. The incident THz radiation on the Nb 5 N 6 microbolometer can be effectively manipulated by changing the substrate-mirror distance to modulate the phase relation between the reflect wave and the incident wave. The distinct radiation control can be observed, and the experiments can be well explained by numerically analyzing the responsivity dynamics that highlights the role of the FP cavity effect during radiation. All of the results discussed here can be extended to a broad range of frequency and other type of THz detectors.

  1. Mapping the Substrate Binding Site of Phenylacetone Monooxygenase from Thermobifida fusca by Mutational Analysis▿†

    PubMed Central

    Dudek, Hanna M.; de Gonzalo, Gonzalo; Torres Pazmiño, Daniel E.; Stępniak, Piotr; Wyrwicz, Lucjan S.; Rychlewski, Leszek; Fraaije, Marco W.

    2011-01-01

    Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope. PMID:21724896

  2. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOEpatents

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  3. Automatic classification of blank substrate defects

    NASA Astrophysics Data System (ADS)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  4. Masking ability of a zirconia ceramic on composite resin substrate shades.

    PubMed

    Tabatabaian, Farhad; Shabani, Sima; Namdari, Mahshid; Sadeghpour, Koroush

    2017-01-01

    Masking ability of a restorative material plays an important role to cover discolored tooth structure; however, this ability has not yet been well understood in zirconia-based restorations. This study assessed the masking ability of a zirconia ceramic on composite resin substrates with different shades. Ten zirconia disc specimens, with 0.5 mm thickness and 10 mm diameter, were fabricated by a computer-aided design/computer-aided manufacturing system. A white substrate (control) and six composite resin substrates with different shades including A1, A2, A3, B2, C2, and D3 were prepared. The substrates had a cylindrical shape with 10 mm diameter and height. The specimens were placed onto the substrates for spectrophotometric evaluation. A spectrophotometer measured the L*, a*, and b* values for the specimens. ΔE values were calculated to determine the color differences between the groups and the control and then were compared with a perceptional threshold (ΔE = 2.6). Repeated measures ANOVA and Bonferroni tests were used for data analysis ( P < 0.05). The mean and standard deviation of ΔE values for A1, A2, A3, B2, C2, and D3 groups were 6.78 ± 1.59, 8.13 ± 1.66, 9.81 ± 2.64, 9.61 ± 1.38, 9.59 ± 2.63, and 8.13 ± 1.89, respectively. A significant difference was found among the groups in the ΔE values ( P = 0.006). The ΔE values were more than the perceptional threshold in all the groups ( P < 0.0001). Within the limitations of this study, it can be concluded that the tested zirconia ceramic could not thoroughly mask different shades of the composite resin substrates. Moreover, color masking of zirconia depends on the shade of substrate.

  5. Properties of Nanocrystalline Cubic Silicon Carbide Thin Films Prepared by Hot-Wire Chemical Vapor Deposition Using SiH4/CH4/H2 at Various Substrate Temperatures

    NASA Astrophysics Data System (ADS)

    Tabata, Akimori; Komura, Yusuke; Hoshide, Yoshiki; Narita, Tomoki; Kondo, Akihiro

    2008-01-01

    Silicon carbide (SiC) thin films were prepared by hot-wire chemical vapor deposition from SiH4/CH4/H2 gases, and the influence of substrate temperature, Ts (104 < Ts < 434 °C), on the properties of the SiC thin films was investigated. X-ray diffraction patterns and Raman scattering spectra revealed that nanocrystalline cubic SiC (nc-3C-SiC) films grew at Ts above 187 °C, while completely amorphous films grew at Ts = 104 °C. Fourier transform infrared absorption spectra revealed that the crystallinity of the nc-3C-SiC was improved with increasing Ts up to 282 °C and remained almost unchanged with a further increase in Ts from 282 to 434 °C. The spin density was reduced monotonically with increasing Ts.

  6. The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Waldbillig, David; Kesler, Olivera

    2013-03-01

    Suspension plasma-sprayed YSZ coatings were deposited at lab-scale and production-type facilities to investigate the effect of process equipment on coating properties. The target application for these coatings is solid oxide fuel cell (SOFC) electrolytes; hence, dense microstructures with low permeability values were preferred. Both facilities had the same torch but different suspension feeding systems, torch robots, and substrate holders. The lab-scale facility had higher torch-substrate relative speeds compared with the production-type facility. On porous stainless steel substrates, permeabilities and microstructures were comparable for coatings from both facilities, and no segmentation cracks were observed. Coating permeability was further reduced by increasing substrate temperatures during deposition or reducing suspension feed rates. On SOFC cathode substrates, coatings made in the production-type facility had higher permeabilities and more segmentation cracks compared with coatings made in the lab-scale facility. Increased cracking in coatings from the production-type facility was likely caused mainly by its lower torch-substrate relative speed.

  7. Method for fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Ma, Beihai; Miller, Dean

    2006-03-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y2O3 and then a layer of CeO2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  8. Colorimetric assay for urinary track infection disease diagnostic on flexible substrate

    NASA Astrophysics Data System (ADS)

    Safavieh, Mohammadali; Ahmed, Minhaz Uddin; Zourob, Mohammed

    2012-10-01

    We are presenting cassette as a novel point of care diagnostic device. This device is easy to use, low cost to prepare, high throughput and can analyze several samples at the same time. We first, demonstrate the preparation method of the device. Then, fabrication of the flexible substrate has been presented. The device has been used for detection of the real sample of E.coli bacteria following by colorimetric detection. We have shown that we could detect 30 cfu/ml bacteria and 100 fg/μl of Staphylococous aureus DNA in 1 hr using LAMP amplification technique. This device will be helpful in hospitals and doctor's office for analysis of several patients' samples at the same time.

  9. Mechanism of Contact between a Droplet and an Atomically Smooth Substrate

    NASA Astrophysics Data System (ADS)

    Lo, Hau Yung; Liu, Yuan; Xu, Lei

    2017-04-01

    When a droplet gently lands on an atomically smooth substrate, it will most likely contact the underlying surface in about 0.1 s. However, theoretical estimation from fluid mechanics predicts a contact time of 10-100 s. What causes this large discrepancy, and how does nature speed up contact by 2 orders of magnitude? To probe this fundamental question, we prepare atomically smooth substrates by either coating a liquid film on glass or using a freshly cleaved mica surface, and visualize the droplet contact dynamics with 30-nm resolution. Interestingly, we discover two distinct speed-up approaches: (1) droplet skidding due to even minute perturbations breaks rotational symmetry and produces early contact at the thinnest gap location, and (2) for the unperturbed situation with rotational symmetry, a previously unnoticed boundary flow around only 0.1 mm /s expedites air drainage by over 1 order of magnitude. Together, these two mechanisms universally explain general contact phenomena on smooth substrates. The fundamental discoveries shed new light on contact and drainage research.

  10. Methods for immobilizing nucleic acids on a gel substrate

    DOEpatents

    Mirzabekov, Andrei Darievich; Proudnikov, Dimitri Y.; Timofeev, Edward N.; Kochetkova, Svetlana V.; Florentiev, Vladimir L.; Shick, Valentine V.

    1999-01-01

    A method for labeling oligonucleotide molecules, and for immobilizing oligonucleotide and DNA molecules is provided comprising modifying the molecules to create a chemically active group, and contacting activated fluorescent dyes to the region. A method for preparing an immobilization substrate is also provided comprising modifying a gel to contain desired functional groups which covalently interact with certain moieties of the oligonucleotide molecules. A method for immobilizing biomolecules and other molecules within a gel by copolymerization of allyl-substituted oligonucleotides, DNA and proteins with acrylamide is also provided.

  11. Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.

    PubMed

    Yousafzai, Muhammad Sulaiman; Coceano, Giovanna; Bonin, Serena; Niemela, Joseph; Scoles, Giacinto; Cojoc, Dan

    2017-07-26

    The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells. Copyright © 2017. Published by Elsevier Ltd.

  12. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  13. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  14. Coated substrates and process

    DOEpatents

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  15. Ultra-thin layer chromatography and surface enhanced Raman spectroscopy on silver nanorod array substrates prepared by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-06-01

    We demonstrate the potential use of silver nanorod (AgNR) array substrates for on-chip separation and detection of chemical mixtures by ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The capability of the AgNR substrates to separate different compounds in a mixture was explored using a mixture of the food colorant Brilliant Blue FCF and lactic acid, and the mixtures of Methylene Violet and BSA at various concentrations. After the UTLC process, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the capability of separating Brilliant Blue from lactic acid, as well as revealing the SERS signal of Methylene Violet from the massive BSA background after a simple UTLC step. This technique may have significant practical implications in actual detection of small molecules from complex food or clinical backgrounds.

  16. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    PubMed

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  17. Highly effective carbon sphere counter electrodes based on different substrates for dye-sensitized solar cell.

    PubMed

    Han, Qianji; Wang, Hongrui; Liu, Yali; Yan, Yajing; Wu, Mingxing

    2017-11-15

    A monodisperse carbon sphere with high uniformity, high catalytic activity and conductivity are successfully synthesized. Versatile counter electrodes using this carbon sphere catalyst on different substrates of fluorine-doped tin oxide (FTO) glass, indium-doped tin oxide polyethylenena phthalate (ITO-PEN), and Ti foil are fabricated for dye-sensitized solar cell (DSC). The impacts of substrates on the catalytic activities of the carbon sphere counter electrodes have been also evaluated by electrochemical analysis technologies, such as cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. With cobalt electrolyte, the DSC using carbon sphere counter electrodes based on FTO glass, ITO-PEN, and Ti substrates yield high power conversion efficiency values of 8.57%, 6.66%, and 9.10%, respectively. The catalytic activities of the prepared carbon sphere counter electrodes on different substrates are determined by the apparent activation energy for the cobalt redox couple regeneration on these electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Substrate quality alters microbial mineralization of added substrate and soil organic carbon

    NASA Astrophysics Data System (ADS)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

    2014-03-01

    The rate and extent of decomposition of soil organic carbon (SOC) is dependent on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial processing of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly-labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils, despite an initial delay in respiration. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days was sufficient to model decomposition of simple substrates (glucose and starch) with three pools, but was insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality imparts considerable control on microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and added substrates.

  19. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  20. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.