Sample records for ysz-supported pd-pt-o coatings

  1. Thermal barrier coatings with (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and 8YSZ top coat on Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Yao, Junqi; He, Yedong; Wang, Deren; Peng, Hui; Guo, Hongbo; Gong, Shengkai

    2013-12-01

    Developing new bond coat has been acknowledged as an effective way to extend the service life of thermal barrier coating (TBC) during high temperature. In this study, novel thermal barrier coating system, which is composed with an (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and a YSZ top coat on Ni-based superalloy, has been prepared by magnetron sputtering and EB-PVD, respectively. It is demonstrated, from the cyclic oxidation tests in air at 1100 °C for 200 h, that the YSZ top coat and alloy substrate can be bonded together effectively by the (Al2O3-Y2O3)/(Pt or Pt-Au) composite coating, showing excellent resistance to oxidation, cracking and buckling. These beneficial results can be attributed to the sealing effect of such composite coating, by which the alloy substrate can be protected from oxidation and the interdiffusion between the bond coat and alloy substrate can be avoided; and the toughening effect of noble metals and composite structure of bond coat, by which the micro-cracks propagation can be inhibited and the stress in bond coat can be relaxed. This ceramic/noble metal composite coating can be a considerable structure which would has great application prospect in the TBC.

  2. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  3. Synthesis, characterization, and photocatalytic application of Pd/ZrO2 and Pt/ZrO2

    NASA Astrophysics Data System (ADS)

    Saeed, Khalid; Sadiq, Mohammad; Khan, Idrees; Ullah, Saleem; Ali, Nauman; Khan, Adnan

    2018-05-01

    Zirconia-supported palladium (Pd/ZrO2) and Zirconia-supported platinum (Pt/ZrO2) nanoparticles (NPs) are synthesized from their precursors via impregnation technique. The Pd/ZrO2 and Pt/ZrO2 NPs were analyzed via SEM and EDX, while the study of indigo disulfonate dye degradation was carried out by UV/VIS spectrophotometer. The SEM micrographs illustrated that the Pd and Pt NPs were well placed on ZrO2 surface. The Pd/ZrO2 and Pt/ZrO2 NPs were also employed as photocatalysts for the photodegradation of indigo disulfonate in an aqueous medium under UV-light irradiation. The photodegradation study presented that Pd/ZrO2 and Pt/ZrO2 NPs degraded 96 and 94% of indigo disulfonate in 14 h, respectively. The effect of pH of medium and catalyst dosage and efficiency of recovered Pd/ZrO2 and Pt/ZrO2 NPs on the photocatalytic degradation were also studied. It was also found that the maximum degradation of dye was found at pH 10 (95-97%) and at 0.02 g weight (40.28%).

  4. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt

    NASA Astrophysics Data System (ADS)

    Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit

    2018-04-01

    Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.

  5. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    PubMed

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  6. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue; Luo, Ming; Huang, Hongwen

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  7. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE PAGES

    Wang, Xue; Luo, Ming; Huang, Hongwen; ...

    2016-09-06

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  8. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  9. Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Steve Stecura

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Miller, Robert A.

    2017-01-01

    Thermal barrier coatings are widely used in all turbine engines, typically using a 7 wt% Y2O3-ZrO2 formulation. Extensive research and development over many decades have refined the processing and structure of these coatings for increased durability and reliability. New compositions demonstrate some unique advantages and are gaining in application. However, the "7YSZ" formulation predominates and is still in widespread use. This special composition has been universally found to produce nanoscale precipitates of metastable t' tetragonal phase, giving rise to a unique toughening mechanism via ferro-elastic switching under stress. This note recalls the original study that identified superior properties of 6 to 8 wt% YSZ plasma sprayed thermal barrier coatings, published in 1978. The impact of this discovery, arguably, continues in some form to this day. At one point, 7YSZ thermal barrier coatings were used in every new aircraft and ground power turbine engine produced worldwide. It is a tribute to its inventor, Dr. Stephan J. Stecura, NASA retiree.

  10. Effect of Nano-Si3N4 Additives and Plasma Treatment on the Dry Sliding Wear Behavior of Plasma Sprayed Al2O3-8YSZ Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Zhang, Jian; Zhang, Qiwen; Wang, You; Wang, Chaohui

    2017-04-01

    In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.

  11. Dual-functional Pt-on-Pd supported on reduced graphene oxide hybrids: peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic.

    PubMed

    Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi

    2015-03-01

    In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    NASA Astrophysics Data System (ADS)

    Félix-Navarro, R. M.; Beltrán-Gastélum, M.; Salazar-Gastélum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Pérez-Sicairos, S.; Lin, S. W.; Paraguay-Delgado, F.; Alonso-Núñez, G.

    2013-08-01

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O2 to H2O2. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H2SO4 electrolyte using dissolved O2. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H2O2 electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H2O2 alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  13. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    PubMed

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  14. Antibacterial studies of ZnO nanoparticle coatings on nanocrystalline YSZ irradiated with femtosecond laser light

    NASA Astrophysics Data System (ADS)

    Alvarez, Crysthal; Garcia, Valeria; Cuando, Natanael; Aguilar, Guillermo

    2018-02-01

    Recently, efforts have been made to create a transparent ceramic cranial implant comprised of nanocrystalline yttriastabilized zirconia (nc-YSZ) that will provide optical access to the brain. This has been referred to as Window to the Brain (WttB) in the literature. WttB will allow the use of laser and photonic treatments and diagnostics in areas with difficult optical access in the brain. Nevertheless, infection is still one of the frequent cranial implant complications. In most cases a second surgery is required to replace the infected implant. To address potential infections in the WttB platform, we have studied the antibacterial effect of a Zinc Oxide (ZnO) nanoparticles coating on nc-YSZ. After coating with ZnO nanoparticles, the implant was irradiated with infrared femtosecond laser light. We synthesized ZnO nanoparticles through the Laser Ablation of Solids in Liquids (LASL) method, using a Zinc solid target in a liquid medium (water/acetone). Antibacterial coatings were obtained by air brush, using a precursor solution of ZnO nanoparticles in distilled water. Escherichia coli (E. coli) have been used as representative, clinical relevant bacteria to probe the antibacterial effect of the coating. Our previous studies suggested that the use of ZnO nanoparticles inhibit bacterial growth. Laser irradiation treatment alone also offers inhibition of bacterial growth, up to 70%. The incorporation of nanoparticles offers an additional 20% inhibition. Thus, this work represents the next step towards the development of a clinically-oriented transparent cranial implant.

  15. Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.

    2013-08-01

    The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, whichmore » was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.« less

  16. Hydrogen absorption of Pd/ZrO2 composites prepared from Zr65Pd35 and Zr60Pd35Pt5 amorphous alloys

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Katsuragawa, Naoya; Hattori, Masatomo; Yogo, Toshinobu; Yamamura, Shin-ichi

    2018-01-01

    Metal-dispersed composites were derived from amorphous Zr65Pd35 and Zr65Pd30Pt5 alloys and their hydrogen absorption behavior was studied. X-ray diffractograms and scanning electron micrographs indicated that mixtures containing ZrO2, the metallic phase of Pd, and PdO were formed for both amorphous alloys heat-treated in air. In the composites, micron-sized Pd-based metal precipitates were embedded in a ZrO2 matrix after heat treatment at 800 °C in air. The hydrogen temperature-programmed reduction was applied to study the reactivity of hydrogen gas with the oxidized Zr65Pd35 and Zr65Pd30Pt5 materials. Rapid hydrogen absorption and release were observed on the composite derived from the amorphous alloy below 100 °C. The hydrogen pressure-concentration isotherm showed that the absorbed amount of hydrogen in materials depended on the formation of the Pd or Pt-doped Pd phase and its large interface area to the matrix in the nanocomposites. The results indicate the importance of the composite structure for the fabrication of a new type of hydrogen storage material prepared from amorphous alloys.

  17. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    PubMed

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al2O3

    PubMed Central

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-01-01

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO2 and Pt/α-Al2O3 catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO2, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H2, while H2 combustion was activated by repeated exposure to H2 gas during the periodic gas test. Selective CO sensing of the micro-TGS against H2 was attempted using a double catalyst structure with 0.3–30 wt% Pt/α-Al2O3 as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al2O3 catalyst, by cancelling out the combustion heat from the AuPtPd/SnO2 catalyst. In addition, the AuPtPd/SnO2 and 0.3 wt% Pt/α-Al2O3 double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H2. PMID:26694397

  19. Size-dependent effects in supported highly dispersed Fe2O3 catalysts, doped with Pt and Pd

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Zara; Shopska, Maya; Mitov, Ivan; Kadinov, Georgi

    2010-06-01

    Series of Fe and Fe-Me (Me = Pt or Pd) catalyst supported on γ-Al2O3, TiO2 (anatase) or diatomite were prepared by the incipient wetness impregnation method. The metal loading was 8 wt.% Fe and 0.7 wt.% noble metal. The preparation and pretreatment conditions of all studied samples were kept to be the same. X-ray diffraction, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction are used for characterization of the supports and the samples at different steps during their treatment and catalytic tests. The catalytic activity of the samples was tested in the reaction of total benzene oxidation. The physicochemical and catalytic properties of the obtained materials are compared with respect of the different chemical composition, dispersion of used carriers and of the supported phases. Samples with the same composition prepared by mechanical mixing are studied as catalysts for comparison and for clearing up the presence of size-dependent effect, also.

  20. Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-05-01

    A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k

  1. In situ {sup 13}C MAS NMR study of n-hexane conversion on Pt and Pd supported on basic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, I.I.; Pasau-Claerbout, A.; Seivert, M.

    n-Hexane conversion was studied in situ on Pt and Pd supported on aluminum-stabilized magnesium oxide and Pt on Zeolite KL catalysts (Pt/Mg(Al)O, Pd/Mg(Al)O and Pt/KL) by means of {sup 13}C MAS NMR spectroscopy. n-Hexane 1-{sup 13}C was used as a labelled reactant. Forty NMR lines corresponding to 14 different products were resolved and identified. The NMR line assignments were confirmed by adsorption of model compounds. The NMR results were further quantified and compared with continuous flow microreactor tests. Four parallel reaction pathways were identified under flow conditions: isomerization, cracking, dehydrocyclization, and dehydrogenation. Aromatization occurs via two reaction routes: (1) n-hexanemore » dehydrogenation towards hexadienes and hexatrienes, followed by dehydrogenation of a cyclic intermediate. The former reaction pathway is prevented under NMR batch conditions. High pressures induced in the NMR cells at high reaction temperatures (573, 653 K) shift the reaction equilibrium towards hydrogenation. NMR experiments showed that on Pt catalysts aromatization occurs via a cyclohexane intermediate, whereas on Pd it takes place via methylcyclopentane ring enlargement. 54 refs., 15 figs., 3 tabs.« less

  2. The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Bal, Emre; Karabaş, Muhammet; Yılmaz Taptık, İ.

    2018-06-01

    The purpose of this research is to produce CMAS resistant YSZ based TBCs and compare thermal cycle performance of the TBCs before and after CMAS interaction. Plasma sprayed YSZ (Y), YSZ + Alumina (YA), YSZ + Titania (YT), and YSZ + Alumina + Titania (YTA) coatings have been exposed to CMAS at 1250 °C for 18 h. Thermal cycling tests were carried out with a propane + oxygen flame at 1250 ± 50 °C. Thermal cycle lifetime of YSZ, YA, YT, YTA, and CMAS contaminated Y, YA, YT, YTA coatings are 450, 416, 426, 438, 122, 211, 141, 298 respectively. After CMAS interaction, while the life span of other coatings has fallen to their life span’s quarter, the life span of YTA coating has decreased slightly. Damages in the coatings after thermal cycle tests have been studied by using SEM to observe the microstructure and x-ray diffraction techniques to analyze the phase composition. Also to see areal distribution of the CMAS through the coating, EDS mapping has been carried out.

  3. Gram-Scale Synthesized Pd2Co-Supported PtMonolayers Electrocatalysts for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, W.P.; Sasaki, K.; Su, D.

    2010-04-21

    Gram-scale synthesis of Pt{sub ML} electrocatalysts with a well-defined core-shell structure has been carried out using method involving galvanic displacement of an underpotential deposition Cu layer. The Pt shell thickness can be controlled by stepwise deposition. The Pt{at}Pd{sub 2}Co/C nanoparticles were characterized by X-ray powder diffraction, aberration-corrected scanning transmission electron microscopy, high-resolution energy-loss spectrometry, and in situ X-ray absorption spectroscopy. A complete Pt shell of 0.6 nm on a Pd{sub 2}Co core has been confirmed. The Pt{at}Pd{sub 2}Co/C core-shell electrocatalysts showed a very high activity for the oxygen reduction reaction; the Pt mass and specific activity were 0.72 A mg{supmore » -1}{sub Pt} and 0.5 mA cm{sup -2}, respectively (3.5 and 2.5 times higher than the corresponding values for commercial Pt catalysts), at 0.9 V in 0.1 M HClO{sub 4} at room temperature. In an accelerated potential cycling test, a loss in active surface area and a decrease in catalytic activity for gram-scale-synthesized Pt{sub ML} catalysts were also determined.« less

  4. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry.

    PubMed

    Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C

    2010-05-04

    Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt < PtPd < Pd, indicating that BT adsorbs most strongly to nanoscale Pd. Yet, BT Raman scattering intensities, measured in situ over time scales of minutes to hours, are most persistent on the film of nanostructured Pt. Raman spectra indicate that adsorbed BT desorbs from nanoscale Pt at oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

  5. Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability

    DOE PAGES

    Goodman, Emmett D.; Dai, Sheng; Yang, An-Chih; ...

    2017-05-18

    Bimetallic catalytic materials are in widespread use for numerous reactions, as the properties of a monometallic catalyst are often improved upon addition of a second metal. In studies with bimetallic catalysts, it remains challenging to establish clear structure–property relationships using traditional impregnation techniques, due to the presence of multiple coexisting active phases of different sizes, shapes, and compositions. Here, a convenient approach to prepare small and uniform Pt/Pd bimetallic nanocrystals with tailorable composition is demonstrated, despite the metals being immiscible in the bulk. By depositing this set of controlled nanocrystals onto a high-surface-area alumina support, we systematically investigate the effectmore » of adding platinum to palladium catalysts for methane combustion. At low temperatures and in the absence of steam, all bimetallic catalysts show activity nearly identical with that of Pt/Al 2O 3, with much lower rates in comparison to that of the Pd/Al 2O 3 sample. BUt, unlike Pd/Al 2O 3, which experiences severe low-temperature steam poisoning, all Pt/Pd bimetallic catalysts maintain combustion activity on exposure to excess steam. These features are due to the influence of Pt on the Pd oxidation state, which prevents the formation of a bulk-type PdO phase. Despite lower initial combustion rates, hydrothermal aging of the Pd-rich bimetallic catalyst induces segregation of a PdO phase in close contact to a Pd/Pt alloy phase, forming more active and highly stable sites for methane combustion. Altogether, this work unambiguously clarifies the activity and stability attributes of Pt/Pd phases which often coexist in traditionally synthesized bimetallic catalysts and demonstrates how well-controlled bimetallic catalysts elucidate structure–property relationships.« less

  6. Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Emmett D.; Dai, Sheng; Yang, An-Chih

    Bimetallic catalytic materials are in widespread use for numerous reactions, as the properties of a monometallic catalyst are often improved upon addition of a second metal. In studies with bimetallic catalysts, it remains challenging to establish clear structure–property relationships using traditional impregnation techniques, due to the presence of multiple coexisting active phases of different sizes, shapes, and compositions. Here, a convenient approach to prepare small and uniform Pt/Pd bimetallic nanocrystals with tailorable composition is demonstrated, despite the metals being immiscible in the bulk. By depositing this set of controlled nanocrystals onto a high-surface-area alumina support, we systematically investigate the effectmore » of adding platinum to palladium catalysts for methane combustion. At low temperatures and in the absence of steam, all bimetallic catalysts show activity nearly identical with that of Pt/Al 2O 3, with much lower rates in comparison to that of the Pd/Al 2O 3 sample. BUt, unlike Pd/Al 2O 3, which experiences severe low-temperature steam poisoning, all Pt/Pd bimetallic catalysts maintain combustion activity on exposure to excess steam. These features are due to the influence of Pt on the Pd oxidation state, which prevents the formation of a bulk-type PdO phase. Despite lower initial combustion rates, hydrothermal aging of the Pd-rich bimetallic catalyst induces segregation of a PdO phase in close contact to a Pd/Pt alloy phase, forming more active and highly stable sites for methane combustion. Altogether, this work unambiguously clarifies the activity and stability attributes of Pt/Pd phases which often coexist in traditionally synthesized bimetallic catalysts and demonstrates how well-controlled bimetallic catalysts elucidate structure–property relationships.« less

  7. In situ {sup 13}C MAS NMR study of n-hexane conversion on Pt and Pd supported on basic materials. II. On the mechanism of isomerization and hydrocracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, I.I.; Seirvert, M.; Pasau-Claerbout, A.

    {sup 13}C MAS NMR spectroscopy was performed in situ to investigate the mechanisms of n-hexane isomerization and hydrocracking on Pt and Pd supported on Al-stabilized magnesia (Pt/Mg(Al)O and Pd/Mg(Al)O), and Pt on KL zeolite (Pt/KL). All the catalysts had high metal dispersion, the metal particle sizes being 13, 11, and 18 {Angstrom}, respectively. n-Hexane 1-{sup 13}C was used for in situ label tracer experiments. {sup 13}C MAS NMR spectra were obtained during the time course of the reaction at 573 and 653 K. The NMR results were then quantified, and the reaction kinetics were studied. Identification of the primary andmore » secondary labeled reaction products led to the conclusion that both cyclic and bond-shift isomerization mechanisms operate on the three catalysts. In the case of Pt/Mg(Al)O, the cyclic mechanism accounts for 80% of the isomerization products. In the case of Pt/KL and Pd/Mg(Al)O, the contribution of bond-shift reactions increases due to restricted formation of the methylcyclopentane intermediate on the former and to suppressed hydrogenolysis of methylcyclopentane on the latter. A nonselective cyclic isomerization mechanism operates on magnesia catalysts, while on Pt/KL selective bisecondary bond rupturing occurs. Mechanistic pathways of bond-shift and hydrocracking reactions involve both 1,3- and 2,4-metallocyclobutane intermediates in the case of magnesia-supported catalysts, while in the case of the Pt/KL catalyst a 1,3-metallocyclobutane intermediate is preferentially formed. Only terminal scission occurs on Pt/KL. The Pd catalyst demonstrates enhanced activity in demethylation. The observed differences in the mechanistic pathways are explained on the basis of the specific properties of the metal and support. 64 refs., 14 figs., 6 tabs.« less

  8. Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei

    2008-09-01

    YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.

  9. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Hernández, Z.E.; CICATA—Altamira, IPN. Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México; Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphatemore » buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.« less

  10. Facile synthesis of porous Pt-Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Lv, Jing-Jing; Hu, Yuan-Yuan; Zheng, Jie-Ning; Chen, Jian-Rong; Wang, Ai-Jun; Feng, Jiu-Ju

    2014-02-01

    In this study, a simple, facile, and effective wet-chemical strategy was developed in the synthesis of uniform porous Pt-Pd nanospheres (Pt-Pd NSs) supported on reduced graphene oxide nanosheets (RGOs) under ambient temperature, where octylphenoxypolye thoxyethanol (NP-40) is used as a soft template, without any seed, organic solvent or special instruments. The as-prepared nanocomposites display enhanced electrocatalytic activity and good stability toward methanol oxidation, compared with commercial Pd/C and Pt/C catalysts. This strategy may open a new route to design and prepare advanced electrocatalysts for fuel cells.

  11. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  12. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

    NASA Astrophysics Data System (ADS)

    Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza

    2017-04-01

    In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

  13. Preparation of functional layers for anode-supported solid oxide fuel cells by the reverse roll coating process

    NASA Astrophysics Data System (ADS)

    Mücke, R.; Büchler, O.; Bram, M.; Leonide, A.; Ivers-Tiffée, E.; Buchkremer, H. P.

    The roll coating technique represents a novel method for applying functional layers to solid oxide fuel cells (SOFCs). This fast process is already used for mass production in other branches of industry and offers a high degree of automation. It was utilized for coating specially developed anode (NiO + 8YSZ, 8YSZ: 8 mol% yttria-stabilized zirconia) and electrolyte (8YSZ) suspensions on green and pre-sintered tape-cast anode supports (NiO + 8YSZ). The layers formed were co-fired in a single step at 1400 °C for 5 h. As a result, the electrolyte exhibited a thickness of 14-18 μm and sufficient gas tightness. Complete cells with a screen-printed and sintered La 0.65Sr 0.3MnO 3- δ (LSM)/8YSZ cathode yielded a current density of 0.9-1.1 A cm -2 at 800 °C and 0.7 V, which is lower than the performance of non-co-fired slip-cast or screen-printed Jülich standard cells with thinner anode and electrolyte layers. The contribution of the cell components to the total area-specific resistance (ASR) was calculated by analyzing the distribution function of the relaxation times (DRTs) of measured electrochemical impedance spectra (EIS) and indicates the potential improvement in the cell performance achievable by reducing the thickness of the roll-coated layers. The results show that the anode-supported planar half-cells can be fabricated cost-effectively by combining roll coating with subsequent co-firing.

  14. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    PubMed

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys

    NASA Astrophysics Data System (ADS)

    De Clercq, A.; Giorgio, S.; Mottet, C.

    2016-02-01

    The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.

  16. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    NASA Astrophysics Data System (ADS)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  17. Heterogeneous electrolyte (YSZ-Al 2O 3) based direct oxidation solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Thokchom, J. S.; Xiao, H.; Rottmayer, M.; Reitz, T. L.; Kumar, B.

    Bilayers comprised of dense and porous YSZ-Al 2O 3 (20 wt%) composite were tape cast, processed, and then fabricated into working solid oxide fuel cells (SOFCs). The porous part of the bilayer was converted into anode for direct oxidation of fuels by infiltrating CeO 2 and Cu. The cathode side of the bilayer was coated with an interlayer [YSZ-Al 2O 3 (20 wt%)]: LSM (1:1) and LSM as cathode. Several button cells were evaluated under hydrogen/air and propane/air atmospheres in intermediate temperature range and their performance data were analyzed. For the first time the feasibility of using YSZ-Al 2O 3 material for fabricating working SOFCs with high open circuit voltage (OCV) and power density is demonstrated. AC impedance spectroscopy and scanning electron microscopy (SEM) techniques were used to characterize the membrane and cell.

  18. Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Weiping; Zhu, Jing; Han, Lili

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). A highly active, durable, carbon supported, and monolayer Pt coated Pd–Co–Zn nanoparticle is synthesized via a simple impregnation–reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition–activity volcano curve for the Pd–Co–Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd 8CoZn/C nanoparticles show a substantial enhancement in bothmore » the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd 8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N 2-saturated 0.1 M HClO 4 solution, Pd 8CoZn@Pt/C shows improved mass activity (2.62 A mg -1Pt) and specific activity (4.76 A m -2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O 2-saturated 0.1 M HClO 4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. Our results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.« less

  19. Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    DOE PAGES

    Xiao, Weiping; Zhu, Jing; Han, Lili; ...

    2016-07-15

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). A highly active, durable, carbon supported, and monolayer Pt coated Pd–Co–Zn nanoparticle is synthesized via a simple impregnation–reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition–activity volcano curve for the Pd–Co–Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd 8CoZn/C nanoparticles show a substantial enhancement in bothmore » the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd 8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N 2-saturated 0.1 M HClO 4 solution, Pd 8CoZn@Pt/C shows improved mass activity (2.62 A mg -1Pt) and specific activity (4.76 A m -2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O 2-saturated 0.1 M HClO 4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. Our results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.« less

  20. Evaluation of thermal barrier coating systems on novel substrates

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Wright, I. G.; Brindley, W. J.

    2000-06-01

    Testing was conducted on both plasma-sprayed (PS) and electron beam-physical vapor deposited (EB-PVD) Y2O3-stabilized ZrO2 (YSZ) thermal barrier coatings (TBCs) applied directly to oxidation-resistant substrates such as β-NiAl, oxide-dispersed FeCrAl, and NiCr. On an alloy that forms a very adherent alumina scale, β-NiAl+Zr, the coating lifetime of YSZ in furnace cyclic tests was 6 or more times longer than on state-of-the-art, YSZ coatings on single-crystal Ni-base superalloys with MCrAlY or Pt aluminide bond coats. Coatings on FeCrAl alloys appear to be a viable option for applications such as the external skin of the X-33, single stage to orbit, reusable launch vehicle. Model chromia-forming bond coat compositions also show promise for power generation applications at temperatures where hot corrosion may be a major problem. In general, while this work examined unique materials systems, many of the same fundamental failure mechanisms observed in conventional TBCs were observed.

  1. RETRACTED: Chemical densification of plasma sprayed yttria stabilized zirconia (YSZ) coatings for high temperature wear and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ye, Yaping; Fehr, Karl Thomas; Faulstich, Martin; Wolf, Gerhard

    2012-12-01

    Plasma-sprayed yttria stabilized zirconia (YSZ) ceramic coatings have been widely used as wear- and corrosion-resistant coatings in high temperature applications and an aggressive environment due to their high hardness, wear resistance, heat and chemical resistance, and low thermal conductivity. The highly porous structure of plasma-sprayed ceramic coatings and their poor adhesion to the substrate usually lead to the coating degradation and failure. In this study, a two-layer system consisting of atmospheric plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) and Ni-based alloy coatings was post-treated by means of a novel chemical sealing process at moderate temperatures of 600-800 °C. Microstructure characteristics of the YSZ coatings were studied using an electron probe micro-analyzer (EPMA). Results revealed that the ceramic top coat was densified by the precipitated zirconia in the open pores. Therefore, the sealed YSZ coatings exhibit reduced porosity, higher hardness and a better adhesion onto the bond coat. The mechanisms for the sealing process were also proposed.

  2. Performance and durability of carbon black-supported Pd catalyst covered with silica layers in membrane-electrode assemblies of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Fujii, Keitaro; Ito, Mizuki; Sato, Yasushi; Takenaka, Sakae; Kishida, Masahiro

    2015-04-01

    Pd metal particles supported on a high surface area carbon black (Pd/CB) were covered with silica layers to improve the durability under severe cathode condition of proton exchange membrane fuel cells (PEMFCs). The performance and the durability of the silica-coated Pd/CB (SiO2/Pd/CB) were investigated by rotating disk electrode (RDE) in aqueous HClO4 and single cell test of the membrane-electrode assemblies (MEAs). SiO2/Pd/CB showed excellent durability exceeding Pt/CB during potential cycle in single cell test as well as in RDE measurement while Pd/CB significantly degraded. Furthermore, the MEA using SiO2/Pd/CB as the cathode catalyst showed higher performance than that using Pd/CB even in the initial state. The catalytic activity of SiO2/Pd/CB was higher than that of Pd/CB, and the drop of the cell performances due to the inhibition of electron conduction, proton conduction, and oxygen diffusion by the silica layer was not significant. It has been shown that the silica-coating is a very practical technique that can stabilize metal species originally unstable in the cathode condition of PEMFCs without a decrease in the cell performance.

  3. Polypropylene Oil as a Fuel for Ni-YSZ | YSZ | LSCF Solid Oxide Fuel Cell

    NASA Astrophysics Data System (ADS)

    Pratiwi, Andini W.; Rahmawati, Fitria; Rochman, Refada A.; Syahputra, Rahmat J. E.; Prameswari, Arum P.

    2018-01-01

    This research aims to convert polypropylene plastic to polypropylene oil through pyrolysis method and use the polypropylene oil as fuel for Solid Oxide Fuel Cell, SOFC, to produce electricity. The material for SOFC single cell are Ni-YSZ, YSZ, and LSCF as anode, electrolyte and cathode, respectively. YSZ is yttria-stabilized-zirconia. Meanwhile, LSCF is a commercial La0.6Sr0.4Co0.2Fe0.8O3. The Ni-YSZ is a composite of YSZ with nickel powder. LSCF and Ni-YSZ slurry coated both side of YSZ electrolyte pellet through screen printing method. The result shows that, the produced polypropylene oil consist of C8 to C27 hydrocarbon chain. Meanwhile, a single cell performance test at 673 K, 773 K and 873 K with polypropylene oil as fuel, found that the maximum power density is 1.729 μW. cm-2 at 673 K with open circuit voltage value of 9.378 mV.

  4. In Situ Generation of Pd-Pt Core-Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins.

    PubMed

    Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek

    2017-01-25

    Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.

  5. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  6. A density functional theory study of self-regenerating catalysts LaFe(1-x)M(x)O(3-y) (M = Pd, Rh, Pt).

    PubMed

    Hamada, Ikutaro; Uozumi, Akifumi; Morikawa, Yoshitada; Yanase, Akira; Katayama-Yoshida, Hiroshi

    2011-11-23

    Periodic density functional theory was used to investigate the stability and electronic structures of precious-metal atoms in the vicinity of LaFe(1-x)M(x)O(3) (M = Pd, Rh, Pt) perovskite catalyst surfaces. It was found that the surface segregation of Pd and Pt is significantly stabilized by the introduction of O vacancies, whereas the solid-solution phase is favorable for Rh, suggesting an important role of O vacancies in the self-regeneration of Pd and Pt. On the basis of the results, we propose a possible scenario for the self-regeneration of the precious metal in the perovskite catalyst.

  7. The adsorption and dissociation of O2 on Pd and Pt modified TaC (1 0 0) surface: A first principles study

    NASA Astrophysics Data System (ADS)

    Meng, Yanan; Zhang, Xilin; Mao, Jianjun; Xu, Xiaopei; Yang, Zongxian

    2018-05-01

    The adsorption and dissociation of O2 on the palladium and platinum modified TaC (1 0 0) surfaces were investigated based on the density functional theory calculations. It is found that the adsorption sites of O2 are the Ta-Ta bridge sites on both the partially covered TaC (1 0 0) surfaces by Pd and Pt, M4/TaC (1 0 0) (M = Pd and Pt), while the 4-fold metal hollow sites and the metal-metal bridge sites are preferred on the fully covered TaC (1 0 0) surfaces by Pd and Pt monolayer, MML/TaC (1 0 0), respectively. The deposition of Pd or Pt can enhance the oxidation resistance of TaC (1 0 0). Meanwhile, the TaC (1 0 0) decorated by monolayer Pd still exhibited outstanding catalytic activity for O2 dissociation. Our study might be useful to designing efficient catalysts for the oxygen reduction reaction.

  8. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    NASA Astrophysics Data System (ADS)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  9. Fabrication and characterization of {110}-oriented Pb(Zr,Ti)O3 thin films on Pt/SiO2/Si substrates using PdO//Pd buffer layer

    NASA Astrophysics Data System (ADS)

    Oshima, Naoya; Uchiyama, Kiyoshi; Ehara, Yoshitaka; Oikawa, Takahiro; Ichinose, Daichi; Tanaka, Hiroki; Sato, Tomoya; Uchida, Hiroshi; Funakubo, Hiroshi

    2017-10-01

    A strongly {110}-oriented perovskite-type thin film of tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) was successfully obtained on a (100)Si substrate using a {101}PdO//{111}Pd thin film as a buffer layer. The {101}PdO//{111}Pd thin film buffer layer was obtained by oxidizing {111}Pd after depositing {111}Pd on a {111}Pt/TiO x /SiO2/{100}Si substrate. Using this buffer layer, a {110} c -oriented SrRuO3 (SRO) thin film was deposited by sputtering as a bottom electrode of PZT thin films. Subsequently, the {110}-oriented PZT thin film can be deposited on a (110) c SRO thin film by metal-organic chemical deposition (MOCVD) and its properties can be compared with those of PZT thin films with other orientations of {100} and {111}. Among the {100}, {110}, {111}-oriented PZT films, the {100}-oriented one showed the largest remnant polarization, which is in good agreement with those of the PZTs epitaxially grown in the 〈100〉, 〈110〉, and 〈111〉 directions. The other properties, i.e., piezoelectricity and dielectric constants, also showed similar anisotropic tendencies, which is in good agreement with the data reported in the epitaxially grown PZTs.

  10. Preparation and Characterization of Zirconia-Coated Nanodiamonds as a Pt Catalyst Support for Methanol Electro-Oxidation

    PubMed Central

    Lu, Jing; Zang, Jianbing; Wang, Yanhui; Xu, Yongchao; Xu, Xipeng

    2016-01-01

    Zirconia-coated nanodiamond (ZrO2/ND) electrode material was successfully prepared by one-step isothermal hydrolyzing from ND-dispersed ZrOCl2·8H2O aqueous solution. High-resolution transmission electron microscopy reveals that a highly conformal and uniform ZrO2 shell was deposited on NDs by this simple method. The coating obtained at 90 °C without further calcination was mainly composed of monoclinic nanocrystalline ZrO2 rather than common amorphous Zr(OH)4 clusters. The ZrO2/NDs and pristine ND powder were decorated with platinum (Pt) nanoparticles by electrodeposition from 5 mM chloroplatinic acid solution. The electrochemical studies indicate that Pt/ZrO2/ND catalysts have higher electrocatalytic activity and better stability for methanol oxidation than Pt/ND catalysts in acid. PMID:28335361

  11. Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnOx and Pd-Pt alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xiangyu; Liu, Yuxi; Deng, Jiguang; Xie, Shaohua; Zhao, Xingtian; Zhang, Yang; Zhang, Kunfeng; Arandiyan, Hamidreza; Guo, Guangsheng; Dai, Hongxing

    2017-05-01

    Three-dimensionally ordered macroporous (3DOM) CoFe2O4, zMnOx/3DOM CoFe2O4 (z = 4.99-12.30 wt%), and yPd-Pt/6.70 wt% MnOx/3DOM CoFe2O4 (y = 0.44-1.81 wt%; Pd/Pt molar ratio = 2.1-2.2) have been prepared using the polymethyl methacrylate microspheres-templating, incipient wetness impregnation, and bubble-assisted polyvinyl alcohol-protected reduction strategies, respectively. All of the samples were characterized by means of various techniques. Catalytic performance of the samples was measured for methane combustion. It is shown that the as-prepared samples exhibited a high-quality 3DOM structure (103 ± 20 nm in pore size) and a surface area of 19-28 m2/g, and the noble metal or alloy nanoparticles (NPs) with a size of 2.2-3.0 nm were uniformly dispersed on the macropore wall surface of 3DOM CoFe2O4. The loading of MnOx on CoFe2O4 gave rise to a slight increase in activity, however, the dispersion of Pd-Pt NPs on 6.70MnOx/3DOM CoFe2O4 significantly enhanced the catalytic performance, with the 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 sample showing the highest activity (T10% = 255 °C, T50% = 301 °C, and T90% = 372 °C at a space velocity of 20,000 mL/(g h)). We believe that the excellent catalytic activity of 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 was related to its well-dispersed Pd-Pt alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between MnOx or Pd-Pt NPs and 3DOM CoFe2O4.

  12. Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell.

    PubMed

    Kaewsai, Duanghathai; Hunsom, Mali

    2018-05-04

    The oxygen reduction reaction (ORR) activity and stability of platinum (Pt) and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotube (PtM/PANI-CNT) were explored and compared with the commercial Pt/C catalyst (ETEK). The Pt/PANI-CNT catalyst exhibited higher ORR activity and stability than the commercial Pt/C catalyst even though it had larger crystallite/particle sizes, lower catalyst dispersion and lower electrochemical surface area (ESA), probably because of its high electrical conductivity. The addition of second metal (M) enhanced the ORR activity and stability of the Pt/PANI-CNT catalyst, because the added M induced the formation of a PtM alloy and shifted the d -band center to downfield, leading to a weak chemical interaction between oxygenated species and the catalyst surface and, therefore, affected positively the catalytic activity. Among all the tested M, the addition of Cr was optimal. Although it improved the ORR activity of the Pt/PANI-CNT catalyst slightly less than that of Pd (around 4.98%) in low temperature (60 °C)/pressure (1 atm abs), it reduced the ESA loss by around 14.8% after 1000 cycles of repetitive cyclic voltammetry (CV). In addition, it is cheaper than Pd metal. Thus, Cr was recommended as the second metal to alloy with Pt on the PANI-CNT support.

  13. Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell

    PubMed Central

    Kaewsai, Duanghathai; Hunsom, Mali

    2018-01-01

    The oxygen reduction reaction (ORR) activity and stability of platinum (Pt) and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotube (PtM/PANI-CNT) were explored and compared with the commercial Pt/C catalyst (ETEK). The Pt/PANI-CNT catalyst exhibited higher ORR activity and stability than the commercial Pt/C catalyst even though it had larger crystallite/particle sizes, lower catalyst dispersion and lower electrochemical surface area (ESA), probably because of its high electrical conductivity. The addition of second metal (M) enhanced the ORR activity and stability of the Pt/PANI-CNT catalyst, because the added M induced the formation of a PtM alloy and shifted the d-band center to downfield, leading to a weak chemical interaction between oxygenated species and the catalyst surface and, therefore, affected positively the catalytic activity. Among all the tested M, the addition of Cr was optimal. Although it improved the ORR activity of the Pt/PANI-CNT catalyst slightly less than that of Pd (around 4.98%) in low temperature (60 °C)/pressure (1 atm abs), it reduced the ESA loss by around 14.8% after 1000 cycles of repetitive cyclic voltammetry (CV). In addition, it is cheaper than Pd metal. Thus, Cr was recommended as the second metal to alloy with Pt on the PANI-CNT support. PMID:29734719

  14. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    PubMed

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Maugeri, P.; Cacciato, G.; Zimbone, M.; Grimaldi, M. G.

    2016-09-01

    In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures. Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5-1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the

  16. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  17. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Behafarid, F.; Cuenya, B. Roldan

    2016-06-01

    Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the

  18. Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings.

    PubMed

    Deng, Wen; An, Yulong; Hou, Guoliang; Li, Shuangjian; Zhou, Huidi; Chen, Jianmin

    2018-09-01

    Inconel 718 was used as the substrate and preheated at different temperatures to deposit yttrium stabilized zirconia (denoted as YSZ) coatings by atmospheric plasma spraying. The microstructure of the as-deposited YSZ coatings and those after cavitation-erosion tests were characterized by field emission scanning electron microscopy, Raman spectroscopy, and their hardness and toughness as well as cavitation-erosion resistance were evaluated in relation to the effect of substrate preheating temperature. Results indicate that the as-deposited YSZ coatings exhibit typical layered structure and consist of columnar crystals. With the increase of the substrate preheating temperature, the compactness and cohesion strength of coatings are obviously enhanced, which result in the increases in the hardness, elastic modulus and toughness as well as cavitation-erosion resistance of the ceramic coatings therewith. Particularly, the YSZ coating deposited at a substrate preheating temperature of 800 °C exhibits the highest hardness and toughness as well as the strongest lamellar interfacial bonding and cavitation-erosion resistance (its cavitation-erosion life is as much as 8 times than that of deposited at room temperature). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction.

    PubMed

    Wang, Deli; Xin, Huolin L; Yu, Yingchao; Wang, Hongsen; Rus, Eric; Muller, David A; Abruña, Hector D

    2010-12-22

    A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.

  20. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts.

    PubMed

    Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-06-22

    The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.

  1. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-06-01

    The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.

  2. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    PubMed Central

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  3. A study of the dispersity of iron oxide and iron oxide-noble metal (Me = Pd, Pt) supported systems

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z. P.; Shopska, M. G.; Krstić, J. B.; Jovanović, D. M.; Mitov, I. G.; Kadinov, G. B.

    2007-09-01

    Samples of one-(Fe) and two-component (Fe-Pd and Fe-Pt) catalysts were prepared by incipient wetness impregnation of four different supports: TiO2 (anatase), γ-Al2O3, activated carbon, and diatomite. The chosen synthesis conditions resulted in the formation of nanosized supported phases—iron oxide (in the one-component samples), or iron oxide-noble metal (in the two-component ones). Different agglomeration degrees of these phases were obtained as a result of thermal treatment. Ultradisperse size of the supported phase was maintained in some samples, while a process of partial agglomeration occurred in others, giving rise to nearly bidisperse (ultra-and highdisperse) supported particles. The different texture of the used supports and their chemical composition are the reasons for the different stability of the nanosized supported phases. The samples were tested as heterogeneous catalysts in total benzene oxidation reaction.

  4. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    PubMed

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts

    PubMed Central

    Jedsukontorn, Trin; Saito, Nagahiro; Hunsom, Mali

    2018-01-01

    In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. PMID:29690645

  6. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    PubMed

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  7. Pt-Decorated PdCo@Pd/C Core-Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Deli; Xin, Huolin L.; Yu, Yingchao

    2010-11-24

    A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuelmore » cell applications.« less

  8. The effect of environment on thermal barrier coating lifetime

    DOE PAGES

    Pint, Bruce A.; Unocic, Kinga A.; Haynes, James Allen

    2016-03-15

    While the water vapor content of the combustion gas in natural gas-fired land-based turbines is ~10%, it can be 20–85% with coal-derived (syngas or H 2) fuels or innovative turbine concepts for more efficient carbon capture. Additional concepts envisage working fluids with high CO 2 contents to facilitate carbon capture and sequestration. To investigate the effects of changes in the gas composition on thermal barrier coating (TBC) lifetime, furnace cycling tests (1-h and 100-h cycles) were performed in air with 10, 50, and 90 vol. % water vapor and CO 2-10% H 2O and compared to prior results in drymore » air or O 2. Two types of TBCs were investigated: (1) diffusion bond coatings (Pt-diffusion or Pt-modified aluminide) with commercial electron-beam physical vapor-deposited yttria-stabilized zirconia (YSZ) top coatings on second-generation superalloy N5 and N515 substrates and (2) high-velocity oxygen fuel (HVOF) sprayed MCrAlYHfSi bond coatings with air plasma-sprayed YSZ top coatings on superalloys X4, 1483, or 247 substrates. For both types of coatings exposed in 1-h cycles, the addition of water vapor resulted in a decrease in coating lifetime, except for Pt-diffusion coatings which were unaffected by the environment. In 100-h cycles, environment was less critical, perhaps because coating failure was chemical (i.e., due to interdiffusion) rather than mechanical. As a result, in both 1-h and 100-h cycles, CO 2 did not appear to have any negative effect on coating lifetime.« less

  9. Thermal Aging Behavior of Axial Suspension Plasma-Sprayed Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan

    2015-02-01

    7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.

  10. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2015-03-01

    Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  11. Reactions of Pd(II) and Pt(II) Complexes With Tetraethylthiouram Disulfide

    PubMed Central

    Cervantes, G.; Molins, E.; Miravitlles, C.

    1997-01-01

    The reactions of tetraethylthiouram disulfide (DTS), an inhibitor of the nephrotoxicity of Pt(II) drugs, an efficient agent in the treatment of chronic alcoholism, in the treatment of HIV infections, AIDS and heavy metal toxicity, and a fungicide and herbicide, with K2[PtCl4], in ratio 1:1 and 1:2, gave the compounds [PtCl2DTS] and [Pt(S2CNEt2)2] respectively. The reaction of the complexes K2[PdCl4], Pd(AcO)2 and [PdCl2(PhCN)2], where PhCN = Benzonitrile, with tetraethylthiouram disulfide in ratio 1:1 or 1:2, yielded orange crystals identified as [Pd(S2CNEt2)2]. The crystals were suitable for study by X-ray diffraction. The -S-S- bridge in the tetraethylthiouram disulfude molecule was broken and the two molecules of the thiocarbamate derivative were bound to the Pd(II) by the equivalents sulfur atoms. All the compounds were characterized by IR, 1H and 13C NMR spectroscopies. PMID:18475812

  12. Pt and Pd catalyzed oxidation of Li 2O 2 and DMSO during Li–O 2 battery charging

    DOE PAGES

    Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark; ...

    2016-01-01

    Rechargeable Li-O 2 and Li-air batteries require electrode and electrolyte materials that synergistcally promote long-term cell operation. We investigate the role of noble metals Pt and Pd as catalysts for the Li-O 2 oxidation process and their compatibility with a dimethyl sulfoxide (DMSO) based electrolyte. Lastly, we identify a basis for low potential Li 2O 2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products.

  13. Amplified cathodic electrochemiluminescence of luminol based on Pd and Pt nanoparticles and glucose oxidase decorated graphene as trace label for ultrasensitive detection of protein.

    PubMed

    Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Liu, Huijing; Liao, Yuhong; Zhuo, Ying

    2013-09-15

    An ultrasensitive electrochemiluminescence (ECL) immunosensor was constructed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on an amplified cathodic ECL of luminol at low potential. Firstly, Au nanoparticles (AuNPs) were electrodeposited onto single walled carbon nanotube-graphene composites (CNTs-Gra) coated glass carbon electrode (GCE) with enhanced surface area and good biocompatibility to capture primary antibody (Ab1) and then bind the antigen analytes. Secondly, Pd and Pt nanoparticles (Pd&PtNPs) decorated reduced graphene oxide (Pd&PtNPs@rGO) and glucose oxidase (GOD) labeled secondary antibody (Pd&PtNPs@ rGO-GOD-Ab2) could be captured onto the electrode surface by a sandwich immunoassay protocol to generate amplified cathodic ECL signals of luminol in the presence of glucose. The Pd&PtNPs@rGO composites and loaded GOD promoted luminol cathodic ECL response by efficiently catalyzing glucose to in-situ produce amount of hydrogen peroxide (H2O2) working as a coreactant of luminol. Then in turn Pd&PtNPs catalyzed H2O2 to generate various reactive oxygen species (ROSs), which accelerated the cathodic ECL reaction of luminol, enhanced the cathodic ECL intensity of luminol and improved the sensitivity of the immunosensor. The as-proposed ECL immunosensor exhibited sensitive response on the detection of CEA ranging from 0.0001 ng mL(-1) to 160 ng mL(-1) with a detection limit of 0.03 pg mL(-1) (S/N=3). Moreover, the stability, specificity, lifetime and reproducibility tests demonstrated the feasibility of the developed immunoassay, which can be further extended to the detection of other disease biomarkers. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  15. Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping

    2018-02-01

    La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.

  16. Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue; Vera, Madeline; Chi, Miaofang

    Here, we report a facile synthesis of multiply twinned Pd@Pt core shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 degrees C, naturally generating a core shell structure covered by concave facets. The nonuniformity inmore » the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm 2 pt) and mass (1.60 A/mg/ 2 pt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm 2 pt and 0.32 A/mg pt, respectively). After 10 000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mg pt, more than twice that of the pristine Pt/C catalyst.« less

  17. Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability

    DOE PAGES

    Wang, Xue; Vera, Madeline; Chi, Miaofang; ...

    2015-11-13

    Here, we report a facile synthesis of multiply twinned Pd@Pt core shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 degrees C, naturally generating a core shell structure covered by concave facets. The nonuniformity inmore » the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm 2 pt) and mass (1.60 A/mg/ 2 pt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm 2 pt and 0.32 A/mg pt, respectively). After 10 000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mg pt, more than twice that of the pristine Pt/C catalyst.« less

  18. A pathway for the growth of core-shell Pt-Pd nanoparticles

    DOE PAGES

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; ...

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less

  19. Methane combustion reactivity during the metal→metallic oxide transformation of Pd-Pt catalysts: Effect of oxygen pressure

    NASA Astrophysics Data System (ADS)

    Qi, Wenjie; Ran, Jingyu; Zhang, Zhien; Niu, Juntian; Zhang, Peng; Fu, Lijuan; Hu, Bo; Li, Qilai

    2018-03-01

    Density functional theory combined with kinetic models were used to probe different kinetics consequences by which methane activation on different oxygen chemical potential surfaces as oxygen pressure increased. The metallic oxide → metal transformation temperature of Pd-Pt catalysts increased with the increase of the Pd content or/and O2 pressure. The methane conversion rate on Pt catalyst increased and then decreased to a constant value when increasing the O2 pressure, and Pd catalyst showed a poor activity performance in the case of low O2 pressure. Moreover, its activity increased as the oxygen chemical potential for O2 pressure increased in the range of 2.5-10 KPa. For metal clusters, the Csbnd H bond and Odbnd O bond activation steps occurred predominantly on *-* site pairs. The methane conversion rate was determined by O2 pressure because the adsorbed O atoms were rapidly consumed by other adsorbed species in this kinetic regime. As the O2 pressure increased, the metallic active sites for methane activation were decreased and there was no longer lack of adsorbed O atoms, resulting in the decrease of the methane conversion rate. Furthermore, when the metallic surfaces were completely covered by adsorbed oxygen atoms at higher oxygen chemical potentials, Pt catalyst showed a poor activity due to a high Csbnd H bond activation barrier on O*sbnd O*. In the case of high O2 pressure, Pd atoms preferred to segregate to the active surface of Pd-Pt catalysts, leading to the formation of PdO surfaces. The increase of Pd segregation promoted a subsequent increase in active sites and methane conversion rate. The PdO was much more active than metallic and O* saturated surfaces for methane activation, inferred from the theory and experimental study. Pd-rich bimetallic catalyst (75% molar Pd) showed a dual high methane combustion activity on O2-poor and O2-rich conditions.

  20. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less

  1. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    DOE PAGES

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; ...

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less

  2. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.

    2012-12-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.

  3. A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites.

    PubMed

    Singhal, Chaitali; Pundir, C S; Narang, Jagriti

    2017-11-15

    An electrochemical genosensor based on Zinc oxide/platinum-palladium (ZnO/Pt-Pd) modified fluorine doped tin oxide (FTO) glass plate was fabricated for detection of consensus DNA sequence of Dengue virus (DENV) using methylene blue (MB) as an intercalating agent. To achieve it, probe DNA (PDNA) was immobilized on the surface of ZnO/Pt-Pd nanocomposites modified FTO electrode. The synthesized nano-composites were characterized by high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM), UV-Vis spectroscopy, X-ray diffraction (XRD) analysis and Fourier transform infra-red (FTIR) spectroscopy. This PDNA modified electrode (PDNA/ZnO/Pt-Pd/FTO) served as a signal amplification platform for the detection of the target hybridized DNA (TDNA). The hybridization between PDNA and TDNA was detected by reduction in current, generated by interaction of anionic mediator, i.e., methylene blue (MB) with free guanine (3'G) of ssDNA. The sensor showed a dynamic linear range of 1 × 10 -6 M to 100 × 10 -6 M with LOD as 4.3 × 10 -5 M and LOQ as 9.5 × 10 -5 M. Till date, majorly serotype specific biosensors for dengue detection have been developed. The genosensor reported here eliminates the possibility of false result as in case of serotype specific DNA sensor. This is the report where conserved sequences present in all the serotypes of Dengue virus has been employed for fabrication of a genosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Temperature-dependent local structural properties of redox Pt nanoparticles on TiO 2 and ZrO 2 supports

    DOE PAGES

    Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...

    2015-01-21

    This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less

  5. Palladium-zinc catalysts on mesoporous titania prepared by colloid synthesis. II. Synthesis and characterization of PdZn/TiO2 coating on inner surface of fused silica capillary

    NASA Astrophysics Data System (ADS)

    Okhlopkova, Lyudmila B.; Kerzhentsev, Michail A.; Tuzikov, Fedor V.; Larichev, Yurii V.; Ismagilov, Zinfer R.

    2012-09-01

    Nanoparticle-doped mesoporous titania coating was synthesized by incorporation of PdZn nanoparticles into TiO2 sol followed by dip coating of the sol on inner surface of fused silica capillary. Monodispersed PdZn bimetallic colloidal particles with average particle diameters of approximately 2 nm have been prepared by an ethylene glycol reduction of ZnCl2 and Pd(CH3COO)2 in the presence of polyvinylpyrrolidone. The textural properties, surface structure, chemical composition, and morphology of the samples were investigated by means of N2 sorption measurements, TEM, and X-ray diffraction. PdZn/TiO2 coating has been further analyzed by quantitative analysis of the SAXS data in combination with the density contrast method, providing direct structural-dispersion information about the active component and support. Calcination conditions suitable for surfactant removal have been optimized to obtain PdZn/TiO2 coatings with required metal particle size and composition. The high dispersion and chemical composition of the nanoparticles embedded in mesoporous titania coating have been retained with no modification after thermal treatment in vacuum at 300 °C. Results suggest how porous structure of the PdZn coating may be fine-tuned to improve the accessibility of the pores to reactants. The control of the pore size in the range of 4.9-6.8 nm of the mesoporous titania was achieved by adding co-surfactants, such as n-butanol.

  6. Interactions of NO and CO with Pd and Pt atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.W.; Carter, E.A.

    1991-03-21

    The authors report ab initio generalized valence bond and correlation-consistent configuration interaction studies of CO and NO interacting with Pd and Pt atoms. They find dramatically different bonding mechanisms for the two ligands, which are easily understood in terms of changes in the electronic structure of the metal and the ligand. CO bonds to both Pd and pt by a {sigma} donor/{pi} back-bonding mechanism, yielding linear geometries. Their calculations predict that the ground ({sup 1}{Sigma}{sup +}) state of PdCO is bound by 27 kcal/mol, while the ground ({sup 1}{Sigma}{sup +}) state of PtCO is bound by only 18.5 kcal/mol. Bymore » contrast, PdNO and PtNO are both bent, with the dominant bonding involving a covalent {sigma} bond between a singly occupied metal d{sigma} orbital and the singly occupied NO 2{pi}* orbital. While the ground ({sup 2}A{prime}) state of PtNO is strongly bound (D{sub e}(Pt-NO) {approximately} 20 kcal/mol), NO binds very weakly to Pd (D{sub e}(Pd-NO) {le} 4 kcal/mol). Linear excited states ({sup 2}{Sigma} and {sup 2}{Pi}) of PtNO and PdNO are predicted to be only weakly bound or unbound. However, corresponding linear cationic states ({sup 1}{Sigma}{sup +} and {sup 3}{Pi}) are strongly bound, but the cationic bent ({sup 1}A{prime}) states are still the ground states of PtNO{sup +} and PdNO{sup +}. These stark contrasts, in which NO binds strongly to Pt but weakly to Pd while CO binds much more strongly to Pd, are due to the preference for closed-shell species to bind strongly to other closed-shell species (e.g., CO to Pd) and for radicals to bind strongly to other radicals (e.g., NO to Pt).« less

  7. Manufacturing of Composite Coatings by Atmospheric Plasma Spraying Using Different Feed-Stock Materials as YSZ and MoSi2

    NASA Astrophysics Data System (ADS)

    Koch, D.; Mauer, G.; Vaßen, R.

    2017-04-01

    Yttria-stabilized zirconia (YSZ) is the state-of-the-art material for the top coat of thermal barrier coatings. To increase the efficiency and lifetime of gas turbines, the integration of MoSi2 as a healing material was proposed. A new method of manufacture was explored in order to enable the spraying of a homogeneous mixed layer of YSZ and MoSi2. As the chemical and physical properties of these powders are very different, they require contrasting process conditions. Due to the evaporation of Si from MoSi2 at spraying conditions suitable for YSZ, more moderate conditions and a shorter time of flight are required for depositing MoSi2. At the same time, the spraying conditions still need to be sufficient for melting the YSZ particles in order to produce a coating. To obtain a homogeneous mixture, both conditions can be matched using an injection system that allows powder injection at two different locations of the plasma jet. Two-color pyrometry during flight (DPV-2000, Tecnar) was used to monitor the actual particle temperature. By optimizing the injection point for the MoSi2, a mixed coating was obtained without decomposition of the MoSi2, which has been analyzed by means of XRD and SEM.

  8. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method

    PubMed Central

    Duan, Nan-Qi; Yan, Dong; Chi, Bo; Pu, Jian; Jian, Li

    2015-01-01

    Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO3-δ (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm−2 and was greatly enhanced to the range from 308 to 1220 mW cm−2 by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm−2 and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run. PMID:25640168

  9. Multi-functional ultrathin Pd xCu 1-x and Pt~Pd xCu 1-x one-dimensional nanowire motifs for various small molecule oxidation reactions

    DOE PAGES

    Liu, Haiqing; Wong, Stanislaus S.; Adzic, Radoslav R.

    2015-11-18

    Developing novel electrocatalysts for small molecule oxidation processes, including formic acid oxidation (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), denoting the key anodic reactions for their respective fuel cell configurations, is a significant and relevant theme of recent efforts in the field. Herein, in this report, we demonstrated a concerted effort to couple and combine the benefits of small size, anisotropic morphology, and tunable chemical composition in order to devise a novel “family” of functional architectures. In particular, we have fabricated not only ultrathin 1-D Pd 1–xCu x alloys but also Pt-coated Pd 1–xCu x (i.e., Pt~Pdmore » 1–xCu x; herein the ~ indicates an intimate association, but not necessarily actual bond formation, between the inner bimetallic core and the Pt outer shell) core–shell hierarchical nanostructures with readily tunable chemical compositions by utilizing a facile, surfactant-based, wet chemical synthesis coupled with a Cu underpotential deposition technique. Our main finding is that our series of as-prepared nanowires are functionally flexible. More precisely, we demonstrate that various examples within this “family” of structural motifs can be tailored for exceptional activity with all 3 of these important electrocatalytic reactions. In particular, we note that our series of Pd 1–xCu x nanowires all exhibit enhanced FAOR activities as compared with not only analogous Pd ultrathin nanowires but also commercial Pt and Pd standards, with Pd 9Cu representing the “optimal” composition. Moreover, our group of Pt~Pd 1–xCu x nanowires consistently outperformed not only commercial Pt NPs but also ultrathin Pt nanowires by several fold orders of magnitude for both the MOR and EOR reactions in alkaline media. As a result, the variation of the MOR and EOR performance with the chemical composition of our ultrathin Pt~Pd 1–xCu x nanowires was also discussed.« less

  10. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    NASA Astrophysics Data System (ADS)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  11. Electrical behaviour of heterobimetallic [MM'(EtCS2)4] (MM'=NiPd, NiPt, PdPt) and MM'X-chain polymers [PtM(EtCS2)4I] (M=Ni, Pd).

    PubMed

    Givaja, Gonzalo; Castillo, Oscar; Mateo, Eva; Gallego, Almudena; Gómez-García, Carlos J; Calzolari, Arrigo; di Felice, Rosa; Zamora, Félix

    2012-11-26

    Herein, we report the isolation of new heterobimetallic complexes [Ni(0.6)Pd(1.4)(EtCS(2))(4)] (1), [NiPt(EtCS(2))(4)] (2) and [Pd(0.4)Pt(1.6)(EtCS(2))(4)] (3), which were constructed by using transmetallation procedures. Subsequent oxidation with iodine furnished the MM'X monodimensional chains [Ni(0.6)Pt(1.4)(EtCS(2))(4)I] (4) and [Ni(0.1)Pd(0.3)Pt(1.6)(EtCS(2))(4)I] (5). The physical properties of these systems were investigated and the chain structures 4 and 5 were found to be reminiscent of the parent [Pt(2)(EtCS(2))(4)I] species. However, they were more sensitively dependent on the localised nature of the charge on the Ni ion, which caused spontaneous breaking of the conduction bands. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pd n Ag (4-n) and Pd n Pt (4-n) clusters on MgO (100): a density functional surface genetic algorithm investigation

    DOE PAGES

    Heard, Christopher J.; Heiles, Sven; Vajda, Stefan; ...

    2014-08-07

    We employed the novel surface mode of the Birmingham Cluster Genetic Algorithm (S-BCGA) for the global optimisation of noble metal tetramers upon an MgO(100) substrate at the GGA-DFT level of theory. The effect of element identity and alloying in surface-bound neutral subnanometre clusters is determined by energetic comparison between all compositions of Pd nAg (4-n) and Pd nPt (4-n). And while the binding strengths to the surface increase in the order Pt > Pd > Ag, the excess energy profiles suggest a preference for mixed clusters for both cases. The binding of CO is also modelled, showing that the adsorptionmore » site can be predicted solely by electrophilicity. Comparison to CO binding on a single metal atom shows a reversal of the 5s-d activation process for clusters, weakening the cluster surface interaction on CO adsorption. Charge localisation determines homotop, CO binding and surface site preferences. Furthermore, the electronic behaviour, which is intermediate between molecular and metallic particles allows for tunable features in the subnanometre size range.« less

  13. Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    2017-01-01

    Dendritic nanostructures are capturing increasing attentions in electrocatalysis owing to their unique structural features and low density. Herein, we report for the first time bromide ions mediated synthesis of low-Pt-content PdCuPt ternary nanodendrites via galvanic replacement reaction between Pt precursor and PdCu template in aqueous solution. The experimental results show that the ternary PdCuPt nanodendrites present enhanced electrocatalytic performance for oxygen reduction reaction in acid solution compared with commercial Pt/C as well as some state-of-the-art catalysts. In details, the mass activity of the PdCuPt catalyst with optimized composition is 1.73 A/mgPt at 0.85 V vs RHE, which is 14 timesmore » higher than that of commercial Pt/C catalyst. Moreover, the long-term stability test demonstrates its better durability in acid solution. After 5k cycles, there is still 70% electrochemical surface area maintained. This method provides an efficient way to synthesize trimetallic alloys with controllable composition and specific structure for oxygen reduction reaction.« less

  14. Kinetic and mechanistic study of bimetallic Pt-Pd/Al 2O 3 catalysts for CO and C 3H 6 oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazlett, Melanie J.; Moses-Debusk, Melanie; Parks, III, James E.

    2016-09-21

    Low temperature combustion (LTC) diesel engines are being developed to meet increased fuel economy demands. However, some LTC engines emit higher levels of CO and hydrocarbons and therefore diesel oxidation catalyst (DOC) efficiency will be critical. Here, CO and propylene oxidation were studied, as representative LTC exhaust components, over model bimetallic Pt-Pd/γ-Al 2O 3 catalysts. During CO oxidation tests, monometallic Pt suffered the most extensive inhibition which was correlated to a greater extent of dicarbonyl species formation. Pd and Pd-rich bimetallics were inhibited by carbonate formation at higher temperatures. The 1:1 and 3:1 Pt:Pd bimetallic catalysts did not form themore » dicarbonyl species to the same extent as the monometallic Pt sample, and therefore did not suffer from the same level of inhibition. Similarly they also did not form carbonates to as large an extent as the Pd-rich samples and were therefore not as inhibited from this intermediate surface species at higher temperature. The Pd-rich samples were relatively poor propylene oxidation catalysts; and partial oxidation product accumulation deactivated these catalysts. Byproducts observed include acetone, ethylene, acetaldehyde, acetic acid, formaldehyde and CO. For CO and propylene co-oxidation, the onset of propylene oxidation was not observed until complete CO oxidation was achieved, and the bimetallics showed higher activity. In conclusion, this was again related to less extensive poisoning, less dicarbonyl species formation and less overall partial oxidation product accumulation.« less

  15. Structures of small Pd Pt bimetallic clusters by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cheng, Daojian; Huang, Shiping; Wang, Wenchuan

    2006-11-01

    Segregation phenomena of Pd-Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd-Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd-Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd-Pt bimetallic clusters.

  16. Synthesis and Catalytic Activity of Pt Monolayer on Pd Tetrahedral Nanocrystals with CO-adsorption-induced Removal of Surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong K.; Vukmirovic M.B.; Ma C.

    2011-11-01

    We synthesized the Pt monolayer shell-Pd tetrahedral core electrocatalysts that are notable for their high activity and stable performance. A small number of low-coordination sites and defects, and high content of the (1 1 1)-oriented facets on Pd tetrahedron makes them a suitable support for a Pt monolayer to obtain an active O{sub 2} reduction reaction (ORR) electrocatalyst. The surfactants, used to control size and shape of Pd tetrahedral nanoparticles, are difficult to remove and cause adverse effects on the ORR. We describe a simple and noninvasive method to synthesize high-purity tetrahedral Pd nanocrystals (TH Pd) by combining a hydrothermalmore » route and CO adsorption-induced removal of surfactants. Poly(vinylpyrrolidone) (PVP), used as a protecting and reducing agent in hydrothermal reactions, is strongly bonded to the surface of the resulting nanocrystals. We demonstrate that PVP was displaced efficiently by adsorbed CO. A clean surface was achieved upon CO stripping at a high potential (1.0 V vs RHE). It played a decisive role in improving the activity of the Pt monolayer/TH Pd electrocatalyst for the ORR. Furthermore, the results demonstrate a versatile method for removal of surfactants from various nanoparticles that severely limited their applications.« less

  17. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    NASA Astrophysics Data System (ADS)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  18. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    NASA Astrophysics Data System (ADS)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  19. Single Pd Atoms on θ-Al2O3 (010) Surface do not Catalyze NO Oxidation.

    PubMed

    Narula, Chaitanya K; Allard, Lawrence F; Moses-DeBusk, Melanie; Stocks, G Malcom; Wu, Zili

    2017-04-03

    New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO 2 which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.

  20. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe 3O 4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO 4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly,more » our study offers a general approach to enhance Pd catalysis in acid for ORB.« less

  1. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; ...

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe 3O 4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO 4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly,more » our study offers a general approach to enhance Pd catalysis in acid for ORB.« less

  2. CO 2 hydrogenation on Pt, Pt/SiO 2 and Pt/TiO 2: Importance of synergy between Pt and oxide support

    DOE PAGES

    Kattel, Shyam; Yan, Binhang; Chen, Jingguang G.; ...

    2016-01-27

    In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO 2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO 2 binding on the catalyst. Once CO 2 is stabilized, the hydrogenation of CO 2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH 4 is lessmore » significant and no CH 3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH 4 and CH 3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H 2COH species. Using SiO 2 and TiO 2 as the support, Pt NP is able to promote the overall CO 2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. Finally, the enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.« less

  3. CO 2 hydrogenation on Pt, Pt/SiO 2 and Pt/TiO 2: Importance of synergy between Pt and oxide support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattel, Shyam; Yan, Binhang; Chen, Jingguang G.

    In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO 2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO 2 binding on the catalyst. Once CO 2 is stabilized, the hydrogenation of CO 2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH 4 is lessmore » significant and no CH 3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH 4 and CH 3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H 2COH species. Using SiO 2 and TiO 2 as the support, Pt NP is able to promote the overall CO 2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. Finally, the enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.« less

  4. Zirconia-based mixed potential sensor with Pt electrode prepared by spin-coating of polymeric precursor

    NASA Astrophysics Data System (ADS)

    Chrzan, A.; Woźniak, Ł.; Szymczewska, D.; Jasiński, P.

    2016-11-01

    Many types of yttria-stabilized zirconia (YSZ) based gas sensors have been explored extensively in recent years. Great attention have been directed to mixed-potential-type gas sensors. It is due to growing concerns with environmental issues. Not without a significance is the fact of very attractive performance of this type of sensor allowing to detect low concentration of pollutant gases. In this paper two types of YSZ based mixed-potential planar sensors were investigated, with platinum electrode painted using commercial paste and with spin coated platinum layer. Both types had second electrode in the form of porous gold. Measurements were performed at 400 °C in synthetic air and different concentrations of SO2. Gas flow was set to 100 cm3min-1 and the concentration of 50 ppm SO2 was tested. During this measurements the sensor was sintered in-situ at increasing temperatures. Sensor with 100 nm spin-coated platinum layer sintered at 700 °C was shown to exhibit two times smaller response than sensor with 5 μm porous electrode, while consisting of over 20 times smaller amount of Pt. The influence of sintering temperature on electrical conductivity of platinum films was also examined. Moreover, the platinum microstructure was investigated using SEM microscopy.

  5. Ultrasensitive detection of superoxide anion released from living cells using a porous Pt-Pd decorated enzymatic sensor.

    PubMed

    Zhu, Xiang; Liu, Tingting; Zhao, Hongli; Shi, Libo; Li, Xiaoqing; Lan, Minbo

    2016-05-15

    Considering the critical roles of superoxide anion (O2(∙-)) in pathological conditions, it is of great urgency to establish a reliable and durable approach for real-time determination of O2(∙-). In this study, we propose a porous Pt-Pd decorated superoxide dismutase (SOD) sensor for qualitative and quantitative detection O2(∙-). The developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 16 to 1,536 μM (R(2)=0.9941), with a detection limit of 0.13 μM (S/N=3) and a low Michaelis-Menten constant of 1.37 μM which indicating a high enzymatic activity and affinity to O2(∙-). Inspiringly, the proposed sensor possesses an ultrahigh sensitivity of 1270 μA mM(-1)cm(-2). In addition, SOD/porous Pt-Pd sensor exhibits excellent anti-interference property, reproducibility and long-term storage stability. Beyond our expectation, the trace level of O2(∙-) released from living cells has also been successfully captured. These satisfactory results are mainly ascribed to (1) the porous interface with larger surface area and more active sites to provide a biocompatible environment for SOD (2) the specific biocatalysis of SOD towards O2(∙-) and (3) porous Pt-Pd nanomaterials fastening the electron transfer. The superior electrochemical performance makes SOD/porous Pt-Pd sensor a promising candidate for monitoring the dynamic changes of O2(∙-)in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Derivative effect of laser cladding on interface stability of YSZ@Ni coating on GH4169 alloy: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping

    2018-01-01

    Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 < QO-Ni = 0.220) compared to that in ZrO2/Ni, TGO Al2O3 can improve the oxidation resistance of the metal matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.

  7. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoxiong; Xu, Zhihua; Cheng, Bei; Jiang, Chuanjia

    2017-05-01

    Formaldehyde (HCHO) removal from air at room (ambient) temperature by effective catalysts is of significance for improving indoor air quality, and catalysts with high efficiency and good recyclability are highly desirable. In this study, platinum (Pt) supported on nanorod-shaped Co3O4 (Pt/Co3O4) was prepared by calcination of microwave-assisted synthesized Co3O4 precursor followed by NaBH4-reduction of Pt precursor. The as-prepared Co3O4 exhibited a morphology of nanorods with lengths of 400-700 nm and diameters of approximately 40-50 nm, which were self-assembled by nanoparticles. The Pt/Co3O4 catalyst exhibited a superior catalytic performance for HCHO oxidation at room temperature compared to Pt supported on commercial Co3O4 (Pt/Co3O4-c) and Pt supported on commercial TiO2 (Pt/TiO2), which is mainly due to the high oxygen mobility resulting from its distinct nanorod morphology, strong metal-support interaction between Pt and Co3O4, and the intrinsic redox nature of the Co3O4 support. This study provides new insights into the fabrication of high-performance catalysts for indoor air purification.

  8. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.

    PubMed

    Mednikov, Evgueni G; Jewell, Matthew C; Dahl, Lawrence F

    2007-09-19

    Presented herein are the preparation and crystallographic/microanalytical/magnetic/spectroscopic characterization of the Pt-centered four-shell 165-atom Pd-Pt cluster, (mu(12)-Pt)Pd(164-x)Pt(x)(CO)(72)(PPh(3))(20) (x approximately 7), 1, that replaces the geometrically related capped three-shell icosahedral Pd(145) cluster, Pd(145)(CO)(x)(PEt(3))(30) (x approximately 60), 2, as the largest crystallographically determined discrete transition metal cluster with direct metal-metal bonding. A detailed comparison of their shell-growth patterns gives rise to important stereochemical implications concerning completely unexpected structural dissimilarities as well as similarities and provides new insight concerning possible synthetic approaches for generation of multi-shell metal clusters. 1 was reproducibly prepared in small yields (<10%) from the reaction of Pd(10)(CO)(12)(PPh(3))(6) with Pt(CO)(2)(PPh(3))(2). Its 165-atom metal-core geometry and 20 PPh(3) and 72 CO ligands were established from a low-temperature (100 K) CCD X-ray diffraction study. The well-determined crystal structure is attributed largely to 1 possessing cubic T(h) (2/m3) site symmetry, which is the highest crystallographic subgroup of the noncrystallographic pseudo-icosahedral I(h) (2/m35) symmetry. The "full" four-shell Pd-Pt anatomy of 1 consists of: (a) shell 1 with the centered (mu(12)-Pt) atom encapsulated by the 12-atom icosahedral Pt(x)Pd(12-x) cage, x = 1.2(3); (b) shell 2 with the 42-atom nu(2) icosahedral Pt(x)Pd(42-x) cage, x = 3.5(5); (c) shell 3 with the anti-Mackay 60-atom semi-regular rhombicosidodecahedral Pt(x)Pd(60-x) cage, x = 2.2(6); (d) shell 4 with the 50-atom nu(2) pentagonal dodecahedral Pd(50) cage. The total number of crystallographically estimated Pt atoms, 8 +/- 3, which was obtained from least-squares (Pt(x)/Pd(1-x))-occupancy analysis of the X-ray data that conclusively revealed the central atom to be pure Pt (occupancy factor, x = 1.00(3)), is fortuitously in agreement

  9. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Valizade-Shahmirzadi, N.; Pakizeh, T.

    2018-04-01

    In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.

  10. Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: An in situ EXAFS and XRD study

    DOE PAGES

    Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.; ...

    2017-12-27

    In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less

  11. Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: An in situ EXAFS and XRD study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.

    In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less

  12. Electrochemically assisted localized etching of ZnO single crystals in water using a catalytically active Pt-coated atomic force microscopy probe

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto

    2017-09-01

    This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.

  13. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    PubMed

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  14. Dip-coated ZrO2-Y2O3 coatings tested in molten salts for CSP applications

    NASA Astrophysics Data System (ADS)

    Pérez, Francisco Javier; Encinas-Sánchez, Víctor; Lasanta, María Isabel; de Miguel, María Teresa; García-Martín, Gustavo

    2017-06-01

    In the present work, the behaviour of ZrO2 - Y2O3 coatings in contact with molten salts at 500 °C has been studied. The coatings were prepared by sol-gel and deposited by dip-coating on AISI 304 specimens previously prepared by sanding and polishing. The behaviour in contact with molten salt was studied through static corrosion tests by the immersion of the coated samples in an alkali-nitrate mixture with a composition of 60 wt.% NaNO3/40 wt.% KNO3 (commonly known as Solar Salt). Prior to test, the deposited coatings were characterized using Scanning Electron Microscopy and X-Ray Diffraction, showing a compacted, homogeneous and uniform aspect and t-YSZ as main component. After corrosion tests, the samples were characterized via gravimetric, Scanning Electron Microscopy and X-Ray Diffraction. The results show a good behaviour of the coated samples compared with the bare coupon samples. However after 1000 h of testing m-ZrO2 appears in the composition,. At this preliminary study, results confirm the suitability of ZrO2 - Y2O3 coatings in solar applications after those working hours, although it is necessary to optimize the coating and study its behaviour at longer times.

  15. Enhanced Sintering of β"-Al2O3/YSZ with the Sintering Aids of TiO2 and MnO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong

    2015-07-11

    β"-Al2O3 has been the dominated choice for the electrolyte materials of sodium batteries because of its high ionic conductivity, excellent stability with the electrode materials, satisfactory mechanical strength, and low material cost. To achieve adequate electrical and mechanical performance, sintering of β"-Al2O3 is typically carried out at temperatures above 1600oC with deliberate efforts on controlling the phase, composition, and microstructure. Here, we reported a simple method to fabricate β"-Al2O3/YSZ electrolyte at relatively lower temperatures. With the starting material of boehmite, single phase of β"-Al2O3 can be achieved at as low as 1200oC. It was found that TiO2 was extremely effectivemore » as a sintering aid for the densification of β"-Al2O3 and similar behavior was observed with MnO2 for YSZ. With the addition of 2 mol% TiO2 and 5 mol% MnO2, the β"-Al2O3/YSZ composite was able to be densified at as low as 1400oC with a fine microstructure and good electrical/mechanical performance. This study demonstrated a new approach of synthesis and sintering of β"-Al2O3/YSZ composite, which represented a simple and low-cost method for fabrication of high-performance β"-Al2O3/YSZ electrolyte.« less

  16. Enhanced electrocatalytic activity and stability of Pd 3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    DOE PAGES

    Liu, Sufen; Han, Lili; Zhu, Jing; ...

    2015-09-14

    In this study, carbon supported Pd 3V bimetallic alloy nanoparticles (Pd 3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H 2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd 3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd 3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd 3V/C nanoparticles. The catalytic activity and stability of the Pd 3V@Pt/C and Pt-Pd 3V/C catalystsmore » for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd 3V@Pt/C and Pt-Pd 3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd 3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less

  17. Comparative study of different carbon-supported Fe2O3-Pt catalysts for oxygen reduction reaction.

    PubMed

    Tellez-Cruz, M M; Padilla-Islas, M A; Pérez-González, M; Solorza-Feria, O

    2017-11-01

    One of the challenges in electrocatalysis is the adequate dispersion of the catalyst on an appropriate porous support matrix, being up to now the most commonly used the carbon-based supports. To overcome this challenge, carbon supports must first be functionalized to guide the catalyst's nucleation, thereby, improving the dispersion and allowing the use of smaller amount of the catalyst material to achieve a higher electrochemically active surface area. This study present the effect of functionalized Vulcan carbon XC72 (FVC) and functionalized Black Pearl carbon (FBPC) as supports on the catalytic activity of decorated Fe 2 O 3 with Pt. Both carbons were functionalized with HNO 3 and subsequently treated with ethanolamine. Fe 2 O 3 nanoparticles were synthesized by chemical reduction and decorated with platinum by epitaxial growth. Pt and Fe 2 O 3 structural phases were identified by XRD and XPS; the Pt content was measured by XPS, and results showed to a high Pt content in Fe 2 O 3 -Pt/FBPC. TEM micrographs reveal nanoparticles with an average size of 2 nm in both supported catalysts. The Fe 2 O 3 -Pt/FVC catalyst presents the highest specific activity and mass activity, 0.21 mA cm -2 Pt and 140 mA mg Pt -1 , respectively, associated to the appropriate distribution of platinum on the Fe 2 O 3 nanoparticles.

  18. Influences of superalloy composition and Pt content on the oxidation behavior of gamma–gamma prime NiPtAl bond coatings

    DOE PAGES

    Haynes, James A.; Unocic, Kinga A.; Lance, Michael J.; ...

    2016-09-13

    Here, the effects of superalloy composition and Pt content on the high-temperature oxidation behavior of γ–γ’ NiPtAl diffusion coatings were investigated over the temperature range of 1050–1150 °C. Simple NiPtAl diffusion coatings with 7 or 12 µm electroplated Pt thickness were evaluated in 1-h cycles in dry O 2 for up to 2500 cycles on four superalloys: directionally solidified (DS) alloy 142, 1st generation single-crystal (SX) alloy 1483, and 2nd generation SX alloys X4 and N5. Coatings on high-Hf alloy 142 experienced severe internal oxidation of Hf at all temperatures. Coatings on ~5 at.% Ti alloy 1483 were protective atmore » 1050 °C, but exhibited severe scale spallation at 1100 °C, with extensive formation of Ti- and Ni-rich oxides at the gas interface. Coatings with 7-µm Pt on X 4 were extremely protective at 1100 °C, but failed rapidly at 1150 °C, which also was associated with the formation of Ti-rich oxides. Increasing the coating Pt content on X 4 improved the 1150 °C oxidation behavior. Coatings on Ti-free N 5 showed the best performance at 1150 °C, especially with 12-µm Pt. Although γ–γ’ coatings can exhibit outstanding cyclic oxidation resistance with minimal Al depletion, they appear to be sensitive to substrate composition, as well as eventual Pt depletion due to interdiffusion.« less

  19. One-pot synthesis of a PtPd dendritic nanocube cage superstructure on graphenes as advanced catalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanyuan; Qiao, Junhua; Yuan, Junhua; Shen, Jianfeng; Wang, Ai-Jun; Gong, Peijun

    2018-03-01

    How to use Pt economically and efficiently in the oxygen reduction reaction (ORR) is of theoretical and practical significance for the industrialization of the proton-exchange membrane fuel cells. In order to minimize Pt consumption and optimize the ORR performance, the ORR catalysts are recommended to be designed as a porous nanostructure. Herein, we report a one-pot solvothermal strategy to prepare PtPd dendritic nanocube cages via a galvanic replacement mechanism triggered by an I- ion. These PtPd alloy crystals are nanoporous, and uniformly dispersed on reduced graphene oxides (RGOs). The size of the PtPd dendritic nanocube cages can be easily tuned from 20-80 nm by controlling their composition. Their composition is optimized to be 1:5 Pt/Pd atomic ratio for these RGO-supported PtPd dendritic nanocages. This catalyst shows superior ORR performance with a specific activity of 2.01 mA cm-2 and a mass activity of 4.45 A mg-1 Pt, far above those for Pt/C catalysts (0.288 mA cm-2 for specific activity, and 0.21 A mg-1 Pt for mass activity). In addition to ORR activity, it also exhibits robust durability with almost negligible decay in ORR mass activity after 10 000 voltammetric cycling.

  20. Interaction of bimetallic PtCo layers with bare and graphene-covered ZnO(0001) supports

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Mélart, Christophe; Rach, Alain; Sutter, Christophe; Zafeiratos, Spyridon

    2018-03-01

    PtCo bimetallic overlayers supported on bare and graphene covered ZnO(0001) substrates have been successfully prepared and used to investigate the effect of graphene interlayer on the arrangement and the redox behaviour of PtCo. We found that Co is readily oxidized at the PtCo/ZnO interface during annealing in ultra-high vacuum (UHV) and low pressure O2 atmosphere, while after inserting a layer of graphene in-between, the oxidation of Co is restricted. In addition, the reduction of Co oxides by H2 is more pronounced when PtCo is supported on graphene covered ZnO. Apart from the cobalt oxidation state, graphene insertion at the interface also influences the PtCo arrangement by favouring their intermixing. Raman spectra show that low intensity defects are introduced into graphene layer after the deposition of PtCo and are enhanced by high temperature annealing. This study highlights the prospect of using graphene to tune the interaction between alloys and oxide supports which finds potential applications in catalysis.

  1. Surface Chemistry of Trimethylaluminum on Pd(111) and Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharachorlou, Amir; Detwiler, Michael D.; Mayr, Lukas

    The behavior of trimethylaluminum (TMA) was investigated on the surfaces of Pt(111) and Pd(111) single crystals. TMA was found to dissociatively adsorb on both surfaces between 300–473 K. Surfaces species observed by high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS) after TMA adsorption at 300 K included Al-CH3 and CHx,ads (x = 1, 2, or 3) on Pt(111), and ethylidyne (CCH3), CHx,ads (x = 1, 2, or 3), and metallic Al on Pd(111). Density functional theory (DFT) calculations predicted methylaluminum (MA, Al-CH3) to be the most kinetically favorable TMA decomposition product on (111) terraces of both surfaces,more » however, HREELS signatures for Al-CH3 were detected only on Pt(111), whereas ethylidyne was observed on Pd(111). XPS demonstrated higher amounts of carbonaceous species on Pt(111) than on Pd(111). DFT calculations showed that further dissociation of MA to metallic aluminum and methyl groups to be more kinetically favorable on step sites of both metals. In our proposed reaction mechanism, MA migrates to and dissociates at Pd(111) steps at 300 K forming adsorbed methyl groups and metallic Al. Some methyl groups dehydrogenate and recombine forming ethylidyne. Metallic Al or ejected Pd atoms from steps diffuse across Pd(111) terraces until coalescing into irregularly shaped islands on terraces or steps, as observed by scanning tunneling microscopy (STM). Upon heating above 300 K, the Pd–Al alloy diffuses into the Pd bulk. On Pt(111), a high coverage of carbon-containing species following TMA adsorption at 300 K prevented MA diffusion and dissociation at steps, as evidenced by isolated clusters of MA in STM images. Heating above 300 K resulted in MA dissociation, but no Pt–Al alloy formation was observed. We conclude that the differing abilities of Pd and Pt to hydrogenate carbonaceous species plays a key role in MA dissociation and alloy formation, and therefore, the adsorption and dissociation

  2. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by solution precursor plasma spraying with axial feedstock injection

    NASA Astrophysics Data System (ADS)

    Metcalfe, Craig; Lay-Grindler, Elisa; Kesler, Olivera

    2014-02-01

    Nickel and yttria-stabilized zirconia (YSZ) anodes were fabricated by solution precursor plasma spraying (SPPS) and incorporated into metal-supported solid oxide fuel cells (SOFC). A power density of 0.45 W cm-2 at 0.7 V and a peak power density of 0.52 W cm-2 at 750 °C in humidified H2 was obtained, which are the first performance results reported for an SOFC having an anode fabricated by SPPS. The effects of solution composition, plasma gas composition, and stand-off distance on the composition of the deposited Ni-YSZ coatings by SPPS were evaluated. It was found that the addition of citric acid to the aqueous solution delayed re-solidification of NiO particles, improving the deposition efficiency and coating adhesion. The composition of the deposited coatings was found to vary with torch power. Increasing torch power led to coatings with decreasing Ni content, as a result of Ni vaporizing in-flight at stand-off distances less than 60 mm from the torch nozzle exit.

  3. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Liu, Haiou; Zhang, Xiongfu

    2018-03-01

    Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.

  4. Characterization of the Ternary Compound Pd5Pt3Ni2 for PEMFC Cathode Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Karalee; Zhao, J; Allard Jr, Lawrence Frederick

    2010-01-01

    Research on proton exchange membrane fuel cells (PEMFC) has increased over the last decade due to an increasing demand for alternative energy solutions. Most PEMFCs use Pt on carbon support as electrocatalysts for oxygen reduction reactions (ORR) [1]. Due to the high cost of Pt, there is a strong drive to develop less expensive catalysts that meet or exceed the performance of Pt. Binary and ternary Pt alloys with less expensive metals are a possible route [1]. In this work, a ternary alloy with composition Pd5Pt3Ni2 was studied as a potential cathode material. Preliminary results showed similar catalytic performance tomore » pure Pt in single-cell tests. However, to enhance its performance, it is necessary to understand how this ternary catalyst behaves during fuel cell operation. Various electron microscopy techniques were used to characterize the ternary Pd5Pt3Ni2 catalysts within the membrane-electrode assembly (MEA) both before and after fuel cell operation.« less

  5. Fabrication and characterization of La2Zr2O7 films on different buffer architectures for YBa2Cu3O7-δ coated conductors by RF magnetron sputtering.

    PubMed

    Xu, Da; Liu, Linfei; Xiao, Guina; Li, Yijie

    2013-02-27

    La2Zr2O7 (LZO) films were grown on different buffer architectures by radio frequency magnetron sputtering for the large-scale application of YBa2Cu3O7-x (YBCO)-coated conductors. The three different buffer architectures were cerium oxide (CeO2), yttria-stabilized zirconia (YSZ)/CeO2, and CeO2/YSZ/CeO2. The microstructure and surface morphology of the LZO film were studied by X-ray diffraction, optical microscopy, field emission scanning electron microscopy, and atomic force microscopy. The LZO films prepared on the CeO2, YSZ/CeO2, and CeO2/YSZ/CeO2 buffer architectures were preferentially c-axis-oriented and highly textured. The in-plane texture of LZO film on CeO2 single-buffer architecture was ∆ φ = 5.5° and the out-of-plane texture was ∆ ω = 3.4°. All the LZO films had very smooth surfaces, but LZO films grown on YSZ/CeO2 and CeO2/YSZ/CeO2 buffer architectures had cracks. The highly textured LZO film grown on CeO2-seed buffered NiW tape was suitable for the epitaxial growth of YBCO film with high currents.

  6. Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Weiping; Liutheviciene Cordeiro, Marco Aurelio; Gong, Mingxing

    Controlling of the particle size and surface strain is the key to tuning the surface chemistry and optimizing the catalytic performance of electrocatalysts. In this study, we show that by introducing both Fe and Co into Pd lattices, the surface strain of Pd nanocatalysts can be tuned to optimize their oxygen reduction activity in both fuel cells and Zn–air batteries. The Pd 2FeCo/C alloy particles are uniquely coated with an ultrathin Fe 2O 3 shell which is in situ formed during a thermal annealing treatment. The thin shell acts as an effective barrier that prevents the coalescence and ripening ofmore » Pd 2FeCo/C nanoparticles. Compared with Pd/C, Pd 2FeCo/C exhibits higher catalytic activity and long-term stability for the ORR, signifying changes in catalytic behavior due to particle sizes and strain effects. Moreover, by spontaneous decoration of Pt on the surface of Pd 2FeCo/C, the Pd 2FeCo@Pt/C core@shell structure was formed and the Pt mass activity was about 37.6 and 112.5 times higher than that on Pt/C in a 0.1 M HClO 4 and KOH solution at 0.9 V, respectively, suggesting an enhanced ORR performance after Pt decoration. More interestingly, Pd 2FeCo@Pt/C also shows a power density of ~308 mW cm -2, which is much higher than that of Pt/C (175 mW cm -2), and excellent durability in a home-made Zn–air battery.« less

  7. Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size

    DOE PAGES

    Xiao, Weiping; Liutheviciene Cordeiro, Marco Aurelio; Gong, Mingxing; ...

    2017-04-18

    Controlling of the particle size and surface strain is the key to tuning the surface chemistry and optimizing the catalytic performance of electrocatalysts. In this study, we show that by introducing both Fe and Co into Pd lattices, the surface strain of Pd nanocatalysts can be tuned to optimize their oxygen reduction activity in both fuel cells and Zn–air batteries. The Pd 2FeCo/C alloy particles are uniquely coated with an ultrathin Fe 2O 3 shell which is in situ formed during a thermal annealing treatment. The thin shell acts as an effective barrier that prevents the coalescence and ripening ofmore » Pd 2FeCo/C nanoparticles. Compared with Pd/C, Pd 2FeCo/C exhibits higher catalytic activity and long-term stability for the ORR, signifying changes in catalytic behavior due to particle sizes and strain effects. Moreover, by spontaneous decoration of Pt on the surface of Pd 2FeCo/C, the Pd 2FeCo@Pt/C core@shell structure was formed and the Pt mass activity was about 37.6 and 112.5 times higher than that on Pt/C in a 0.1 M HClO 4 and KOH solution at 0.9 V, respectively, suggesting an enhanced ORR performance after Pt decoration. More interestingly, Pd 2FeCo@Pt/C also shows a power density of ~308 mW cm -2, which is much higher than that of Pt/C (175 mW cm -2), and excellent durability in a home-made Zn–air battery.« less

  8. Growth of L1{sub 0}-ordered crystal in FePt and FePd thin films on MgO(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futamoto, Masaaki, E-mail: futamoto@elect.chuo-u.ac.jp; Nakamura, Masahiro; Ohtake, Mitsuru

    2016-08-15

    Formation of L1{sub 0}-oredered structure from disordered A1 phase has been investigated for FePt and FePd films on MgO(001) substrates employing a two-step method consisting of low temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. L1{sub 0}-(001) variant crystal with the c-axis perpendicular to the substrate grows preferentially in FePd films whereas L1{sub 0}-(100), (010) variants tend to be mixed with the L1{sub 0}-(001) variant in FePt films. The structure analysis by X-ray diffraction indicates that a difference in A1 lattice strain is the influential factor that determines the resulting L1{sub 0}-variant structure in ordered thinmore » films. Misfit dislocations and anti-phase boundaries are observed in high-resolution transmission electron micrographs of 10 nm-thick Fe(Pt, Pd) film consisting of L1{sub 0}-(001) variants which are formed through atomic diffusion at 600 °C in a laterally strained FePt/PeFd epitaxial thin film. Based on the experimental results, a nucleation and growth model for explaining L1{sub 0}-variant formation is proposed, which suggests a possibility in tailoring the L1{sub 0} variant structure in ordered magnetic thin films by controlling the alloy composition, the layer structure, and the substrate material.« less

  9. Investigation on the thermo-chemical reaction mechanism between yttria-stabilized zirconia (YSZ) and calcium-magnesium-alumino-silicate (CMAS)

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Bo; Wang, Bin-Yi; Cao, Jian; Song, Guan-Yu; Liu, Juan-Bo

    2015-03-01

    Thermal barrier coatings (TBCs) with Y2O3-stabilized ZrO2 (YSZ) top coat play a very important role in advanced turbine blades by considerably increasing the engine efficiency and improving the performance of highly loaded blades. However, at high temperatures, environment factors result in the failure of TBCs. The influence of calcium-magnesium-alumino-silicate (CMAS) is one of environment factors. Although thermo-physical effect is being paid attention to, the thermo-chemical reaction becomes the hot-spot in the research area of TBCs affected by CMAS. In this paper, traditional twolayered structured TBCs were prepared by electron beam physical vapor deposition (EBPVD) as the object of study. TBCs coated with CMAS were heated at 1240°C for 3 h. Additionally, 15 wt.% simulated molten CMAS powder and YSZ powder were mixed and heated at 1240°C or 1350°C for 48 h. SEM and EDS were adopted to detect morphology and elements distribution. According to XRD and TEM results, it was revealed that CMAS react with YSZ at high temperature and form ZrSiO4, Ca0.2Zr0.8O1.8 and Ca0.15Zr0.85O1.85 after reaction, as a result, leading to the failure of TBCs and decreasing the TBC lifetime.

  10. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    PubMed

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  11. Extraction behaviour and mechanism of Pt(iv) and Pd(ii) by liquid-liquid extraction with an ionic liquid [HBBIm]Br.

    PubMed

    Liu, Wenhui; Wang, Qi; Zheng, Yan; Wang, Shubin; Yan, Yan; Yang, Yanzhao

    2017-06-06

    In this study, a method of one-step separation and recycling of high purity Pd(ii) and Pt(iv) using an ionic liquid, 1-butyl-3-benzimidazolium bromate ([HBBIm]Br), was investigated. The effects of [HBBIm]Br concentration, initial metal concentration, and loading capacity of [HBBIm]Br were examined in detail. It was observed that [HBBIm]Br was a very effective extractant for selectively extracting Pd(ii) and precipitating Pt(iv). Through selectively extracting Pd(ii) and precipitating Pt(iv), each metal with high purity was separately obtained from mixed Pd(ii) and Pt(iv) multi-metal solution. The method of one-step separation of Pd(ii) and Pt(iv) is simple and convenient. The anion exchange mechanism between [HBBIm]Br and Pt(iv) was proven through Job's method and FTIR and 1 H NMR spectroscopies. The coordination mechanism between [HBBIm]Br and Pd(ii) was demonstrated via single X-ray diffraction and was found to be robust and distinct, as supported by the ab initio quantum-chemical studies. The crystals of the [PdBr 2 ·2BBIm] complex were formed first. Moreover, the influence of the concentrations of hydrochloric acid, sodium chloride, and sodium nitrate on the precipitation of Pt(iv) and extraction of Pd(ii) was studied herein. It was found that only the concentration of H + could inhibit the separation of Pt(iv) because H + could attract the anion PtCl 6 2- ; thus, the exchange (anion exchange mechanism) between the anions PtCl 6 2- and Br - was prevented. However, both the concentration of H + and Cl - can obviously inhibit the extraction of Pd(ii) because H + and Cl - are the reaction products and increasing their concentration can inhibit the progress of the reaction (coordination mechanism).

  12. Valence-Band Electronic Structures of High-Pressure-Phase PdF2-type Platinum-Group Metal Dioxides MO2 (M = Ru, Rh, Ir, and Pt)

    NASA Astrophysics Data System (ADS)

    Soda, Kazuo; Kobayashi, Daichi; Mizui, Tatsuya; Kato, Masahiko; Shirako, Yuichi; Niwa, Ken; Hasegawa, Masashi; Akaogi, Masaki; Kojitani, Hiroshi; Ikenaga, Eiji; Muro, Takayuki

    2018-04-01

    The valence-band electronic structures of high-pressure-phase PdF2-type (HP-PdF2-type) platinum-group metal dioxides MO2 (M = Ru, Rh, Ir, and Pt) were studied by synchrotron radiation photoelectron spectroscopy and first-principles calculations. The obtained photoelectron spectra for HP-PdF2-type RuO2, RhO2, and IrO2 agree well with the calculated valence-band densities of states (DOSs) for these compounds, indicating their metallic properties, whereas the DOS of HP-PdF2-type PtO2 (calculated in the presence and absence of spin-orbit interactions) predicts that this material may be metallic or semimetallic, which is inconsistent with the electric conductivity reported to date and the charging effect observed in current photoelectron measurements. Compared with the calculated results, the valence-band spectrum of PtO2 appears to have shifted toward the high-binding-energy side and reveals a gradual intensity decrease toward the Fermi energy EF, implying a semiconductor-like electronic structure. Spin-dependent calculations predict a ferromagnetic ground state with a magnetization of 0.475 μB per formula unit for HP-PdF2-type RhO2.

  13. Selective hydrogenation of citral over supported Pt catalysts: insight into support effects

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Hu, Weiming; Deng, Baolin; Liang, Xinhua

    2017-04-01

    Highly dispersed platinum (Pt) nanoparticles (NPs) were deposited on various substrates by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. The substrates included multi-walled carbon nanotubes (MWCNTs), silica gel (SiO2), commercial γ-Al2O3, and ALD-prepared porous Al2O3 particles (ALD-Al2O3). The results of TEM analysis showed that 1.3 nm Pt NPs were highly dispersed on all different supports. All catalysts were used for the reaction of selective hydrogenation of citral to unsaturated alcohols (UA), geraniol, and nerol. Both the structure and acidity of supports affected the activity and selectivity of Pt catalysts. Pt/SiO2 showed the highest activity due to the strong acidity of SiO2 and the conversion of citral reached 82% after 12 h with a selectivity of 58% of UA. Pt/MWCNTs showed the highest selectivity of UA, which reached 65% with a conversion of 38% due to its unique structure and electronic effect. The cycling experiments indicated that Pt/MWCNTs and Pt/ALD-Al2O3 catalysts were more stable than Pt/SiO2, as a result of the different interactions between the Pt NPs and the supports.

  14. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO2, CeO2, Al2O3 and SiO2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO2 was much smaller than those in im-Pd/TiO2 and pd-Pd/TiO2. Pd particle size of the dp-Pd/TiO2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO2 exhibited a much higher catalytic activity than those on other supports. Furthermore, dp-Pd/TiO2 was found to be more active than im-Pd/TiO2 and pd-Pd/TiO2.

  15. Simple preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n], n=1, 2 (Q=TBA+, PPN+) and structural characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10].C7H8.

    PubMed

    Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona

    2008-02-04

    The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.

  16. Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation.

    PubMed

    Pang, H L; Zhang, X H; Zhong, X X; Liu, B; Wei, X G; Kuang, Y F; Chen, J H

    2008-03-01

    Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.

  17. Neutral Ni(II), Pd(II) and Pt(II) ONS-pincer complexes of 5-acetylbarbituric-4N-dimethylthiosemicarbazone: synthesis, characterization and properties.

    PubMed

    Castiñeiras, Alfonso; Fernández-Hermida, Nuria; García-Santos, Isabel; Gómez-Rodríguez, Lourdes

    2012-11-21

    Octahedral 1:1 Ni(II) and square-planar 1:1 Pd(II) and Pt(II) complexes of formulae [Ni(HAcb4DM)(AcO)(H2O)2]·H2O (1), [Pd(HAcb4DM)Cl]·5H2O (2) and [Pt(HAcb4DM)Cl]·3H2O (3), where H2Acb4DM = 5-acetylbarbituric-4N-dimethylthiosemicarbazone (H2 denoting its two dissociable protons, one enolic and one thiolic), have been synthesized and characterized by elemental analysis and by 1H and 13C NMR, UV-vis, and IR spectroscopy. Crystallisation of compounds 1–3 from DMSO afforded complexes of formulae [Ni(HAcb4DM)2]·2H2O (1a), [Pd(Acb4DM)(DMSO)]·DMSO (2a) and [Pt(Acb4DM)(DMSO)]·DMSO (3a), the molecular and crystal structures of which were determined by X-ray diffractometry. The thiosemicarbazone in 1a coordinates to the metal ions in an ONS-tridentate manner in the O-enolate/S-thione form, but in complexes 2a and 3a the thiosemicarbazone binds Pd(II) or Pt(II) as an ONS-pincer ligand in the O-enolate/S-thiolate form. The 195Pt NMR spectrum of 3 shows a signal at −2950 ppm along with two new signals at −3348 and −2731 ppm, indicating the presence of solvolysis products. The catalytic activity of complex 2a has been explored in aryl–aryl Suzuki cross-coupling reactions. H2Acb4DM and complexes 2 and 3 were screened for in vitro cytotoxicity against a human tumour cell line (HeLa-229), with the clinically employed drug cisplatin as a reference.

  18. UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles

    PubMed Central

    Wysocka, Izabela; Trzciński, Konrad; Łapiński, Marcin; Nowaczyk, Grzegorz; Zielińska-Jurek, Anna

    2018-01-01

    The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhances the separation and recoverable properties of nanosized TiO2 photocatalyst. Metal-modified (Me = Pd, Au, Pt, Cu) TiO2/SiO2@Fe3O4 nanocomposites were prepared by an ultrasonic-assisted sol-gel method. All prepared samples were characterized by X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), Mott-Schottky analysis and photoluminescence spectroscopy (PL). Phenol oxidation pathways of magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles proceeded by generation of reactive oxygen species, which oxidized phenol to benzoquinone, hydroquinone and catechol. Benzoquinone and maleic acid were products, which were determined in the hydroquinone oxidation pathway. The highest mineralization rate was observed for Pd-TiO2/SiO2@Fe3O4 and Cu-TiO2/SiO2@Fe3O4 photocatalysts, which produced the highest concentration of catechol during photocatalytic reaction. For Pt-TiO2/SiO2@Fe3O4 nanocomposite, a lack of catechol after 60 min of irradiation resulted in low mineralization rate (CO2 formation). It is proposed that the enhanced photocatalytic activity of palladium and copper-modified photocatalysts is related to an increase in the amount of adsorption sites and efficient charge carrier separation, whereas the keto-enol tautomeric equilibrium retards the rate of phenol photomineralization on Au-TiO2/SiO2@Fe3O4. The magnetization hysteresis loop indicated that the obtained hybrid photocatalyst showed magnetic properties and therefore could be easily separated after treatment process. PMID:29316667

  19. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

    PubMed Central

    2012-01-01

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure. PMID:22546416

  20. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Shen, Yu-Lin; Chen, Shih-Yun; Song, Jenn-Ming; Chen, In-Gann

    2012-06-01

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure.

  1. Pt-Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites.

    PubMed

    Ma, Yanxia; Yin, Lisi; Cao, Guojian; Huang, Qingli; He, Maoshuai; Wei, Wenxian; Zhao, Hong; Zhang, Dongen; Wang, Mingyan; Yang, Tao

    2018-04-01

    Exploration of highly efficient electrocatalysts is significantly urgent for the extensive adoption of the fuel cells. Because of their high activity and super stability, Pt-Pd bimetal nanocrystals have been widely recognized as one class of promising electrocatalysts for oxygen reduction. This article presents the synthesis of popcorn-shaped Pt-Pd bimetal nanoparticles with a wide composition range through a facile hydrothermal strategy. The hollow-centered nanoparticles are surrounded by several petals and concave surfaces. By exploring the oxygen reduction reaction on the carbon supported Pt-Pd popcorns in perchloric acid solution, it is found that compared with the commercial Pt/C catalyst the present catalysts display superior catalytic performances in aspects of catalytic activity and stability. More importantly, the Pt-Pd popcorns display minor performance degradations through prolonged potential cycling. The enhanced performances can be mainly attributed to the unique popcorn structure of the Pt-Pd components, which allows the appearance and long existence of the high active sites with more accessibility. The present work highlights the key roles of accessible high active sites in the oxygen reduction reaction, which will ultimately guide the design of highly durable Pt-Pd catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tuneable reactivity with PPh3 and SnX2 of four- and five-coordinate Pd(II) and Pt(II) complexes containing polyphosphines.

    PubMed

    Fernández-Anca, Damián; García-Seijo, M Inés; García-Fernández, M Esther

    2013-07-28

    The reactivity of the unusual d(8) trigonal-bipyramidal systems [MX(PP3)]X (X = Cl: M = Pd(1a), Pt(2a); X = Br: M = Pd(3a), Pt(4a); X = I: M = Pd(5a), Pt(6a); PP3 = tris[2-(diphenylphosphino)ethyl]phosphine) in CHCl3-CH3OH, the square-pyramidal compounds [MCl(NP3)]Cl (M = Pd(7a); Pt(8a); NP3 = tris[2-(diphenylphosphino)ethyl]amine) in CD3OD-DMF and the distorted square-planar mononuclear [MX(PNP)]X (M = Pd: X = Cl(10a); M = Pt: X = I(10b); PNP = bis[2-(diphenylphosphino)ethyl]amine) and the heteronuclear [PdAu2X4(PP3)] [X = I(9a), Cl(14a), Br(15a)] and [MAuX2(PP3)]X [M = Pd: X = Cl(16a); M = Pt: X = Cl(17a), Br(18a)] species in CDCl3 with PPh3 + SnX2 has been explored to establish the factors that influence the nature of the products. With the mononuclear precursors the course of the reaction is strongly dependent on the tripodal or linear arrangement of the polydentate ligand and in the former case on the halogen. Thus, while for chlorides (1a-2a, 7a-8a) and bromides (3a-4a) the reaction led to the trigonal-bipyramidal compounds [M(SnCl3)(AP3)][SnCl3] [A = P: M = Pd(1), Pt(2); A = N: M = Pd(7), Pt(8)], [MBr(PP3)][SnBr3] [M = Pd(4), Pt(6)] containing M-Sn and M-Br bonds, respectively, for iodides (5a-6a) resulted in the unknown neutral square-planar compounds [MI2(PP(PO)2)(SnI2)2] [M = Pd(9) and Pt(10)] bearing two dangling P=O-SnI2 units and P2MI2 environments. However, complexes of the type [PtCl(PP2PO)X]X' [X = SnCl2, X' = [SnCl3](-)(11)] and [M(PP(PO)2)2X4]X'2 [X = SnCl2, X' = [SnCl3](-): M = Pd(12), Pt(13)] showing P=O-SnCl2 arms were obtained by direct reaction of [PtCl(PP2PO)]Cl (11a) and [M(PP(PO)2)2]Cl2 [M = Pd(12a), Pt(13a)] with SnCl2 in CH3OH. Although complex 9 was also prepared by interaction of the heteronuclear iodide 9a with PPh3 + SnI2 in CDCl3, the use of the neutral and ionic heteronuclear chlorides and bromides (14a-18a) as starting materials afforded the distorted square-planar ionic systems [MAuX'(PP3)(PPh3)][SnX3]2 [M = Pd: X = Cl, X' = Sn

  3. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E.

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% molmore » Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.« less

  4. Interaction of Pd(II) and Pt(II) Amino Acid Complexes With Dinucleotides

    PubMed Central

    Vicens, Margarita; Caubet, Amparo

    1997-01-01

    The interaction of the dinucleotides d(ApG) and d(ApA) with [Pd(aa)Cl2], where aa = L- or D-histidine or the methyl ester of L-histidine, and with [Pt(Met)Cl2], where Met = L-methionine was studied by 1H and 13C NMR and CD measurements. In the case of the L-histidine and L-histidineOMe, the reaction with d(ApG) appeared to give the bifunctional adducts Pd(L-Histidine)N1(1)N7(2) and Pd(L-HisOMe)N1(1)N7(2), but the behavior with D-histidine suggested the formation of the monofunctional adduct Pd(D-His)N7(2). The reaction of L-histidine with d(ApA) seemed to form the bimetallic adduct (L-His)PdN7(1)N7(2)Pd(L-His). The Pt(II)-L-methionine complex in both reactions with d(ApG) and d(ApA) seemed to yield mainly adducts Pt(L-Met)N7(1)N7(2) but the existence of adducts Pt(L-Met)N1(1)N7(2) cannot be ruled out. PMID:18475765

  5. Effects of metal composition and ratio on peptide-templated multimetallic PdPt nanomaterials

    DOE PAGES

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; ...

    2017-02-03

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bioinspired approaches have become increasingly popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a three-dimensional template for formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive toward a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratiomore » to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted, which indicated a slight catalytic enhancement for the multicomponent materials. Finally, these results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.« less

  6. Pd(II) and Pt(II) complexes of α-keto stabilized sulfur ylide: Synthesis, structural, theoretical and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Sabounchei, Seyyed Javad; Hashemi, Ali; Sedghi, Asieh; Bayat, Mehdi; Akhlaghi Bagherjeri, Fateme; Gable, Robert W.

    2017-05-01

    Reaction of dimethyl sulfide with 2, 3‧-dibromoacetophenone led to formation of sulfonium salt [Me2SCH2C(O)C6H4-m-Br]Br (1). The resulted sulfonium salt was treated with NaOH and gave the α-keto stabilized sulfur ylide Me2SC(H)C(O)C6H4-m-Br (2). This ligand was reacted with [MCl2(cod)] (M = Pd, Pt; cod = 1,5-cyclooctadiene) to form the new cis- and trans-[MCl2(ylide)2] (M = Pd (cis- and trans-3), Pt (cis- and trans-4)) complexes. Characterization of the obtained compounds was performed by elemental analysis, IR, 1H and 13C NMR. Recrystallization of dichlorobis(ylide) palladium(II) and platinum(II) complexes from DMSO solution yielded the crystalline products, which X-ray diffraction data revealed that the both compounds were crystallized as cis-[MCl2(ylide)(DMSO)] (M = Pd (5), Pt (6)) complexes. Also, a theoretical study on structure and nature of the Msbnd C bonding between the Y ligand (ylide) and [MCl2·DMSO] fragments in [YMCl2·DMSO] (M = Pd, Pt) complexes has been reported via NBO and energy-decomposition analysis (EDA). Furthermore, the palladium catalyzed Suzuki-Miyaura reaction of various aryl chlorides with arylboronic acids was performed. The results showed that the Pd(II) complexes cis- and trans-3 catalyzed efficiently coupling reactions at low catalyst loading and short reaction time.

  7. Effects of Laser Remelting and Oxidation on NiCrAlY/8Y2O3-ZrO2 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Xu, S. Q.; Zhu, C.; Zhang, Y.

    2018-02-01

    In this study, three groups of thermal barrier coatings (TBCs) samples were remelted by CO2 laser with different laser energy densities (1, 5 and 10 J/mm2) to seal the surface of yttria-stabilized zirconia (YSZ) coatings. Microscopic observations showed that the cracks size and the remelted depth in YSZ coatings increased. A 50-μm-thick dense layer was formed on the surface of YSZ coating in samples with 1 J/mm2 energy density. Microindentation tests showed that the Vickers hardness of YSZ coatings increases with the increase in laser energy density. After isothermal oxidation at 1200 °C for 200 h, thinner thermally growth oxides were found in laser remelted YSZ samples under energy density of 1 J/mm2 (6.32 ± 0.28 μm). Cyclic oxidation results showed that the weight gain per unit area of low energy density laser remelted TBCs was smaller than that of the high energy density laser remelted and as-sprayed TBCs.

  8. The Study on the Performance of Carbon Supported PtSnM (M = W, Pd, and Ni) Ternary Electro-Catalysts for Ethanol Electro-Oxidation Reaction.

    PubMed

    Noh, Chang Soo; Heo, Dong Hyun; Lee, Ki Rak; Jeon, Min Ku; Sohn, Jung Min

    2016-05-01

    PtSn/C and Pt5Sn4M/C (M = W, Pd, Ni) electrocatalysts were prepared by impregnation method using NaBH4 as a reducing agent. Chemical composition, crystalline size, and alloy formation were determined by EDX, XRD and TEM. The average particle sizes of the synthesized catalysts were approximately 3.64-4.95 nm. The electro-chemical properties were measured by CO stripping, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. The maximum specific activity of the electro-catalysts for ethanol electro-oxidation was 406.08 mA m(-2) in Pt5Sn4Pd/C. The poisoning rate of the Pt5Sn4Pd/C (0.0017% s(-1)) was 4.5 times lower than that of the PtSn/C (0.0076% s(-1)).

  9. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang

    2017-10-01

    Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.

  10. Fabrication of Pd and Pt Nanotubes and Their Catalytic Study on p-Nitrophenol Reduction

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Wang, Jiankang; Chen, JingYi

    2018-03-01

    Pd and Pt nanotubes were fabricated using self-assembled DC8,9PC lipid tubules under mild conditions at room temperature. Scan electron microscope (SEM) show the hollow and open-ended structures of prepared Pd and Pt nanotubes. The Pd and Pt nanotubes demonstrate both high catalytic activity toward p-nitrophenol reduction and excellent stability. This work has indicated the application potentials of lipid tubules in fabricating hollow metal nanomaterials.

  11. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  12. Thermal Barrier Coatings Resistant to Glassy Deposits

    NASA Astrophysics Data System (ADS)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  13. Effect of the nanosized TiO2 particles in Pd/C catalysts as cathode materials in direct methanol fuel cells.

    PubMed

    Choi, Mahnsoo; Han, Choonsoo; Kim, In-Tae; Lee, Ji-Jung; Lee, Hong-Ki; Shim, Joongpyo

    2011-07-01

    Pd-TiO2/C catalysts were prepared by impregnating titanium dioxide (TiO2) on carbon-supported Pd (Pd/C) for use as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells (DMFCs). Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were carried to confirm the distribution, morphology and structure of Pd and TiO2 on the carbon support. In fuel cell test, we confirmed that the addition of TiO2 nanoparticles make the improved catalytic activity of oxygen reduction. The electrochemical characterization of the Pd-TiO2/C catalyst for the ORR was carried out by cyclic voltammetry (CV) in the voltage window of 0.04 V to 1.2 V with scan rate of 25 mV/s. With the increase in the crystallite size of TiO2, the peak potential for OH(ads) desorption on the surface of Pd particle shifted to higher potential. This implies that TiO2 might affect the adsorption and desorption of oxygen molecules on Pd catalyst. The performance of Pd-TiO2/C as a cathode material was found to be similar to or better performance than that of Pt/C.

  14. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer.

    PubMed

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (G n -PPI) terminated with N-containing 15-membered triolefinic macrocycle (G n M) ( n  = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts G n M-(Pt x /Pd 10- x ) ( x  = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between G n M and the complexes of Pt(PPh 3 ) 4 and Pd(PPh 3 ) 4 . The structure and catalytic properties of G n M-(Pt x /Pd 10- x ) were characterized via Fourier transform infrared spectroscopy, 1 H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations ( n ) of G n M-(Pt 3 /Pd 7 ) ( n  = 2, 3, 4, 5).

  15. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bio-inspired approaches have become increasing popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a 3D template for the formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive towards a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Ptmore » ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.« less

  16. Deactivation Mechanisms of Pt/Pd-based Diesel Oxidation Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebenga, Michelle H.; Kim, Chang H.; Schmieg, Steven J.

    2012-04-30

    Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for the oxidation of hydrocarbon and NO in diesel exhaust hydrocarbon oxidation. The present work has been carried out to investigate the deactivation mechanisms of the DOC from its real-world vehicle operation by coupling its catalytic activity measurements with surface characterization including x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectroscopy. A production Pt-Pd DOC was obtained after being aged on a vehicle driven for 135,000 miles in order to study its deactivation behavior. The performance of the vehicle-aged part was correlated withmore » that of the simulated hydrothermal lab aged sample assuming that Pt-Pd sintering plays a major role in irreversible catalyst deactivation. In addition to the hydrothermal sintering, the deterioration of hydrocarbon and NO oxidation performance was caused by surface poisoning. The role of the various aging factors in determining long-term performance in mobile applications will be discussed.« less

  17. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Wu, Huarui

    2018-03-01

    Density functional theory calculations are carried out to investigate the adsorption characteristics of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulfide (H2S), nitrogen (N2), and oxygen (O2) on the surface of pyridine-like nitrogen doped graphene (PNG) as well as noble metal (Rh, Pt, Pd) decorated PNG to elaborate their potentials as gas sensors. The adsorption intensities of biogas on noble metal (Rh, Pt, Pd) decorated PNG are in the order of O2> H2S> N2> CH4> CO2> H2, which are corresponded to the order of their sensitivity on surface. Compared with biogas adsorption on pristine PNG, there exist higher adsorption ability, higher charge transfer and higher orbital hybridization upon adsorption on noble metal (Rh, Pt, Pd) decorated PNG. Consequently, the noble metal (Rh, Pt, Pd) decorated PNG can transform the existence of CH4, CO2, H2, H2S, N2, and O2 molecules into electrical signal and they could potentially be used as ideal sensors for detection of biogas in ambient situation.

  18. Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.

    PubMed

    Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P

    2008-04-01

    We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.

  19. Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO2 for hydroconversion of methyl laurate

    NASA Astrophysics Data System (ADS)

    Nie, Ziyang; Zhang, Zhena; Chen, Jixiang

    2017-10-01

    SiO2 supported bifunctional MoP catalysts modified with different metal promoters (Ni, Ru, Pd, Pt), where Mo/Ni and Mo/M(M = Ru, Pd and Pt) atomic ratios was respectively 10 and 40, were prepared by TPR method from the phosphate precursors. It was found that the introduction of metal promoters facilitated the reduction of phosphate precursor and enhanced the dispersion of MoP. However, the MoP catalyst acidity was scarcely influenced by the small amount of metal promoters. In the hydroconversion of methyl laurate, the promoters enhanced the MoP catalyst activity for conversion of methyl laurate and hydrogenation of alkenes (intermediate), but reduced isomerization ability. Among the promoters, Ru was an optimum to decrease selectivity to alkenes while maintain high selectivity to iso-alkanes, and Mo40RuP showed better stability than MoP. At 380 °C and 3.0 MPa, the conversion of methyl laurate, the total selectivity to C11 and C12 hydrocarbons and the selectivity to iso-alkanes maintained at 100%, ∼94% and ∼30% on Mo40RuP during 102 h, respectively. The good stability of Mo40RuP is ascribed to that the presence of Ru prevented the sintering of MoP particles and suppressed carbon deposition.

  20. Constructing hierarchical interfaces: TiO 2-supported PtFe-FeO x nanowires for room temperature CO oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Huiyuan; Wu, Zili; Dong, Su

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO 2-supported PtFe–FeO x nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeO x within each NW and the interactions between NWs and support (TiO 2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeO x and TiO 2 participate in the initial CO oxidation, facilitating the reactionmore » through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeO x/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.« less

  1. Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media

    NASA Astrophysics Data System (ADS)

    Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.

    2015-03-01

    In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).

  2. Synthesis of Pd 9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung

    2014-11-22

    Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, Pd xRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of Pd xRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in anmore » oxygen-saturated 0.1 M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  3. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    PubMed

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  4. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE PAGES

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...

    2017-11-02

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  5. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  6. Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis.

    PubMed

    Yue, Chaoyang; Qiu, Longhui; Trudeau, Michel; Antonelli, David

    2007-06-11

    A series of early metal-promoted Ru-, Pd-, Pt-, and Rh-doped mesoporous tantalum oxide catalysts were synthesized using a variety of dopant ratios and dopant precursors, and the effects of these parameters on the catalytic activity of NH3 synthesis from H2 and N2 were explored. Previous studies on this system supported an unprecedented mechanism in which N-N cleavage occurred at the Ta sites rather than on Ru. The results of the present study showed, for all systems, that Ba is a better promoter than Cs or La and that the nitrate is a superior precursor for Ba than the isopropoxide or the hydroxide. 15N-labeling studies showed that residual nitrate functions as the major ammonia source in the first hour but that it does not account for the ammonia produced after the nitrate is completely consumed. Ru3(CO)12 proved to be a better Ru precursor than RuCl(3).3H2O, and an almost linear increase in activity with increasing Ru loading level was observed at 350 degrees C (623 K). However, at 175 degrees C (448 K), the increase in Ru had no effect on the reaction rate. Pd functioned with comparable rates to Ru, while Pt and Rh functioned far less efficiently. The surprising activities for the Pd-doped catalysts, coupled with XPS evidence for low-valent Ta in this catalyst system, support a mechanism in which cleavage of the N-N triple bond occurs on Ta rather than the precious metal because the Ea value for N-N cleavage on Pd is 2.5 times greater than that for Ru, and the 9.3 kJ mol-1 Ea value measured previously for the Ru system suggests that N-N cleavage cannot occur at the Ru surface.

  7. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong; Kwon, Chorong; Eom, Kwangsup; Kim, Jihyun; Cho, Eunae

    2017-03-01

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2.

  8. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability.

    PubMed

    Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe

    2017-03-14

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO 2 (Nb-TiO 2 ) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO 2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb 0.25 Ti 0.75 O 2 ). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO 2 -nanofibers (Pt/Nb-TiO 2 ) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO 2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO 2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO 2 nanofiber catalyst can be attributed to high corrosion resistance of TiO 2 and strong interaction between Pt and TiO 2 .

  9. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability

    PubMed Central

    Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe

    2017-01-01

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2. PMID:28290503

  10. Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO 2 supports

    DOE PAGES

    Kim, Mi -Young; Kyriakidou, Eleni A.; Choi, Jae -Soon; ...

    2016-01-18

    In this study, we investigated the impact of ZrO 2 on the performance of palladium-based oxidation catalysts with respect to low-temperature activity, hydrothermal stability, and sulfur tolerance. Pd supported on ZrO 2 and SiO 2 were synthesized for a comparative study. Additionally, in an attempt to maximize the ZrO 2 surface area and improve sulfur tolerance, a Pd support with ZrO 2-dispersed onto SiO 2 was studied. The physicochemical properties of the catalysts were examined using ICP, N 2 sorption, XRD, SEM, TEM, and NH 3-, CO 2-, and NO x-TPD. The activity of the Pd catalysts were measured frommore » 60 to 600 °C in a flow of 4000 ppm CO, 500 ppm NO, 1000 ppm C 3H 6, 4% O 2, 5% H 2O, and Ar balance. The Pd catalysts were evaluated in fresh, sulfated, and hydrothermally aged states. Overall, the ZrO 2-containing catalysts showed considerably higher CO and C 3H 6 oxidation activity than Pd/SiO 2 under the reaction conditions studied.« less

  11. Role of the Support and Reaction Conditions on the Vapor-Phase Deoxygenation of m-Cresol over Pt/C and Pt/TiO 2 Catalysts

    DOE PAGES

    Griffin, Michael B.; Ferguson, Glen A.; Ruddy, Daniel A.; ...

    2016-03-23

    The catalytic deoxygenation of biomass fast pyrolysis vapors offers a promising route for the sustainable production of liquid transportation fuels. However, a clear understanding of the mechanistic details involved in this process has yet to be achieved, and questions remain regarding the role of the catalyst support and the influence of reaction conditions. In order to gain insight into these questions, the deoxygenation of m-cresol was investigated over Pt/C and Pt/TiO 2 catalysts using experimental and computational techniques. The performance of each catalyst was evaluated in a packed-bed reactor under two conditions (523 K, 2.0 MPa and 623 K, 0.5more » MPa), and the energetics of the ring hydrogenation, direct deoxygenation, and tautomerization mechanisms were calculated over hydrogen-covered Pt(111) and oxygen vacancies on the surface of TiO 2(101). Over Pt(111), ring hydrogenation to 3-methylcyclohexanone and 3-methylcyclohexanol was found to be the most energetically favorable pathway. Over TiO 2(101), tautomerization and direct deoxygenation to toluene were identified as additional energetically favorable routes. These calculations are consistent with the experimental data, in which Pt/TiO 2 was more active on a metal site basis and exhibited higher selectivity to toluene at 623 K relative to Pt/C. On the basis of these results, it is likely that the reactivity of Pt/TiO 2 and Pt/C is driven by the metallic phase at 523 K, while contributions from the TiO 2 support enhance deoxygenation at 623 K. These results highlight the synergistic effects between hydrogenation catalysts and reducible metal oxide supports and provide insight into the reaction pathways responsible for their enhanced deoxygenation performance.« less

  12. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokuoka, Y.; Seto, Y.; Kato, T., E-mail: takeshik@nuee.nagoya-u.ac.jp

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5 nm) and FePd-Ag (5 nm) films were grown on MgO (001) substrate at temperatures of 250–400 °C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 10–20 at. % was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with themore » reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.« less

  13. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the Highly Selective Conversion of CO2 to CO.

    PubMed

    Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping

    2018-05-02

    A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.

  14. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    NASA Astrophysics Data System (ADS)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  15. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes.

    PubMed

    Rivera Gavidia, Luis M; Sebastián, David; Pastor, Elena; Aricò, Antonino S; Baglio, Vincenzo

    2017-05-25

    Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm -2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.

  16. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes

    PubMed Central

    Rivera Gavidia, Luis M.; Sebastián, David; Pastor, Elena; Aricò, Antonino S.; Baglio, Vincenzo

    2017-01-01

    Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation. PMID:28772937

  17. Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    NASA Astrophysics Data System (ADS)

    Caminale, M.; Ghosh, A.; Auffret, S.; Ebels, U.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Bailey, W. E.

    2016-07-01

    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81Fe19 films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δ α on the heavy-metal spin-sink layer thicknesses tN in direct-contact Ni81Fe19 /(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81Fe19 and (Pd, Pt) are separated by 3 nm Cu. We attribute the quasilinear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81Fe19 , quantified using x-ray magnetic circular dichroism measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length.

  18. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    NASA Astrophysics Data System (ADS)

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10-x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10-x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5).

  19. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  20. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering.

    PubMed

    Huang, T; Cheng, J; Zheng, Y F

    2014-02-01

    In order to obtain biodegradable Fe-based materials with similar mechanical properties as 316L stainless steel and faster degradation rate than pure iron, Fe-5 wt.%Pd and Fe-5 wt.%Pt composites were prepared by spark plasma sintering with powders of pure Fe and Pd/Pt, respectively. The grain size of Fe-5 wt.%Pd and Fe-5 wt.%Pt composites was much smaller than that of as-cast pure iron. The metallic elements Pd and Pt were uniformly distributed in the matrix and the mechanical properties of these materials were improved. Uniform corrosion of Fe-Pd and Fe-Pt composites was observed in both electrochemical tests and immersion tests, and the degradation rates of Fe-Pd and Fe-Pt composites were much faster than that of pure iron. It was found that viabilities of mouse fibroblast L-929 cells and human umbilical vein endothelial cells (ECV304) cultured in extraction mediums of Fe-Pd and Fe-Pt composites were close to that of pure iron. After 4 days' culture, the viabilities of L-929 and ECV304 cells in extraction medium of experimental materials were about 80%. The result of direct contact cytotoxicity also indicated that experimental materials exhibited no inhibition on vascular endothelial process. Meanwhile, iron ions released from experimental materials could inhibit proliferation of vascular smooth muscle cells (VSMC), which may be beneficial for hindering vascular restenosis. Furthermore, compared with that of as-cast pure iron, the hemolysis rates of Fe-Pd and Fe-Pt composites were slightly higher, but still within the range of 5%, which is the criteria for good blood compatibility. The numbers of platelet adhered on the surface of Fe-Pd and Fe-Pt composites were lower than that of pure iron, and the morphology of platelets kept spherical. To sum up, the Fe-5 wt.%Pd and Fe-5 wt.%Pt composites exhibited good mechanical properties and degradation behavior, closely approaching the requirements for biodegradable metallic stents. © 2013.

  1. Degradation Of Environmental Barrier Coatings (EBC) Due To Chemical and Thermal Expansion Incompatibility

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; King, Deboran (Technical Monitor)

    2001-01-01

    Current environmental barrier coatings (EBCs) consist of multiple layers, with each layer having unique properties to meet the various requirements for successful EBCs. As a result, chemical and thermal expansion compatibility between layers becomes an important issue to maintaining durability. Key constituents in current EBCs are mullite (3Al2O3-2SiO2), BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2), and YSZ (ZrO2-8 wt.% Y2O3). The mullite-BSAS combination appears benign although significant diffusion occurs. Mullite-YSZ and BSAS-YSZ combinations do not react up to 1500 C. Thermally grown SiO2- BSAS and mullite-BSAS-YSZ combinations are most detrimental, forming low melting glasses. Thermal expansion mismatch between YSZ and mullite or BSAS causes severe cracking and delamination.

  2. PdNi- and Pd-coated electrodes prepared by electrodeposition from ionic liquid for nonenzymatic electrochemical determination of ethanol and glucose in alkaline media.

    PubMed

    Huang, Hsin-Yi; Chen, Po-Yu

    2010-12-15

    Nonenzymatic electrochemical determination of ethanol and glucose was respectively achieved using PdNi- and Pd-coated electrodes prepared by electrodeposition from the novel metal-free ionic liquid (IL); N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA). BMP-DCA provided an excellent environment and wide cathodic limit for electrodeposition of metals and alloys because many metal chlorides could dissolve in this IL where the reduction potentials of Pd(II) and Ni(II) indeed overlapped, leading to the convenience of potentiostatic codeposition. In aqueous solutions, the reduction potentials of Pd(II) and Ni(II) are considerably separated. The bimetallic PdNi coatings with atomic ratios of ∼ 80/20 showed the highest current for ethanol oxidation reaction (EOR). Ethanol was detected by either cyclic voltammetry (CV) or hydrodynamic amperometry (HA). Using CV, the dependence of EOR peak current on concentration was linear from 4.92 to 962 μM with a detection limit of 2.26 μM (σ=3), and a linearity was observed from 4.92 to 988 μM using HA (detection limit 0.83 μM (σ=3)). The Pd-coated electrodes prepared by electrodeposition from BMP-DCA showed electrocatalytic activity to glucose oxidation and CV, HA, and square-wave voltammetry (SWV) were employed to determine glucose. SWV showed the best sensitivity and linearity was observed from 2.86 μM to 107 μM, and from 2.99 mM to 10.88 mM with detection limits of 0.78 μM and 25.9 μM (σ=3), respectively. For glucose detection, the interference produced from ascorbic acid, uric acid, and acetaminophen was significantly suppressed, compared with a regular Pt disk electrode. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  4. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate.

  5. Effect of thermally growth oxides (TGO) on adhesion strength for high purity yitria stabilised zirconia (YSZ) and rare - Earth lanthanum zirconates (LZ) multilayer thermal barrier coating before and after isothermal heat treatment

    NASA Astrophysics Data System (ADS)

    Yunus, Salmi Mohd; Johari, Azril Dahari; Husin, Shuib

    2017-12-01

    Investigation on the effect of Thermally Growth Oxides (TGO) on the adhesion strength for thermal barrier coating (TBC) was carried out. The TBC under studied was the multilayer systems which consist of NiCrAlY bond coat and YSZ/LZ ceramic coating deposited on Ni-based superalloy substrates. The development of thermally growth oxides (TGO) for both TBC systems after isothermal heat treatment was measured. Isothermal heat treatment was carried out at 1100 ˚C for 100 hours to age the samples. ASTM D4541: Standard Test Method for Pull-off Strength of Coatings using Portable Adhesion Tester was used to measure the adhesion strength of both TBC systems before and after heat treatment. The effect of the developed TGO on the measured adhesion strength was examined and correlation between them was established individually for both TBC systems. The failure mechanism of the both system was also identified; either cohesive or adhesive or the combination of both. The results showed that TGO has more than 50% from the bond coat layer for rare-earth LZ system compared to the typical YSZ system, which was less than 10 % from the bond coat layer. This leads to the lower adhesion strength of rare-earth LZ coating system compared to typical YSZ system. Failure mechanism during the pull-off test also was found to be different for both TBC systems. The typical YSZ system experienced cohesive failure whereas the rare-earth LZ system experienced the combination of cohesive and adhesive failure.

  6. Radiochemical synthesis of a carbon-supported Pt-SnO2 bicomponent nanostructure exhibiting enhanced catalysis of ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Ohkubo, Yuji; Akita, Tomoki; Nitani, Hiroaki; Yamamoto, Takao A.

    2015-03-01

    Carbon-supported Pt-SnO2 electrocatalysts with various Sn/Pt molar ratios were prepared by an electron beam irradiation method. These catalysts were composed of metallic Pt particles approximately 5 nm in diameter together with low crystalline SnO2. The contact between the Pt and SnO2 in these materials varied with the amount of dissolved oxygen in the precursor solutions and it was determined that intimate contact between the Pt and SnO2 significantly enhanced the catalytic activity of these materials during the ethanol oxidation reaction. The mechanism by which the contact varies is discussed based on the radiochemical reduction process.

  7. PdCuPt Nanocrystals With Multi-branches for Enzyme-free Glucose Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    By carefully controlling the synthesis condition, branched PtCu bimetallic templates were synthesized in aqueous solution. After the galvanic replacement reaction between PtCu templates and the Pt precursors, PdCuPt trimetallic nanocrystals with branched structures were obtained. Owing to the open structure and the optimized composition, the electrochemical experimental results reveal that the PdCuPt trimetallic nanocrystals exhibit high electrocatalytic activity, selectivity and stability for the oxidation of glucose in alkaline solution. In details, a sensitivity of 378 μA/mM/cm2 and a detection limit of 1.29 μM can be achieved. The good electrocatalytic performance should be attributed to the unique branched nanostructure as wellmore » as the synergistic effect among metals. The superior catalytic properties suggest that these nanocrystals are promising for enzyme-free detection of glucose.« less

  8. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Joong; Kim, Manjin; Neoh, Ke Chean; Han, Gwon Deok; Bae, Kiho; Shin, Jong Mok; Kim, Gyu-Tae; Shim, Joon Hyung

    2016-09-01

    Thin ceramic bi-layered membrane comprising yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is fabricated by the cost-effective slurry spin coating technique, and it is evaluated as an electrolyte of solid oxide fuel cells (SOFCs). It is demonstrated that the slurry spin coating method is capable of fabricating porous ceramic films by adjusting the content of ethyl-cellulose binders in the source slurry. The porous GDC layer deposited by spin coating under an optimal condition functions satisfactorily as a cathode-electrolyte interlayer in the test SOFC stack. A 2-μm-thick electrolyte membrane of the spin-coated YSZ/GDC bi-layer is successfully deposited as a dense and stable film directly on a porous NiO-YSZ anode support without any interlayers, and the SOFC produces power output over 200 mW cm-2 at 600 °C, with an open circuit voltage close to 1 V. Electrochemical impedance spectra analysis is conducted to evaluate the performance of the fuel cell components in relation with the microstructure of the spin-coated layers.

  9. Modelling free and oxide-supported nanoalloy catalysts: comparison of bulk-immiscible Pd-Ir and Au-Rh systems and influence of a TiO2 support.

    PubMed

    Demiroglu, Ilker; Fan, Tian-E; Li, Z Y; Yuan, Jun; Liu, Tun-Dong; Piccolo, Laurent; Johnston, Roy L

    2018-05-24

    The relative stabilities of different chemical arrangements of Pd-Ir and Au-Rh nanoalloys (and their pure metal equivalents) are studied, for a range of compositions, for fcc truncated octahedral 38- and 79-atom nanoparticles (NPs). For the 38-atom NPs, comparisons are made of pure and alloy NPs supported on a TiO2(110) slab. The relative energies of different chemical arrangements are found to be similar for Pd-Ir and Au-Rh nanoalloys, and depend on the cohesive and surface energies of the component metals. For supported nanoalloys on TiO2, the interaction with the surface is greater for Ir (Rh) than Pd (Au): most of the pure NPs and nanoalloys preferentially bind to the TiO2 surface in an edge-on configuration. When Au-Rh nanoalloys are bound to the surface through Au, the surface binding strength is lower than for the pure Au NP, while the Pd-surface interaction is found to be greater for Pd-Ir nanoalloys than for the pure Pd NP. However, alloying leads to very little difference in Ir-surface and Rh-surface binding strength. Comparing the relative stabilities of the TiO2-supported NPs, the results for Pd-Ir and Au-Rh nanoalloys are the same: supported Janus NPs, whose Ir (Rh) atoms bind to the TiO2 surface, bind most strongly to the surface, becoming closer in energy to the core-shell configurations (Ir@Pd and Rh@Au) which are favoured for the free particles.

  10. Activated adsorption of methane on clean and oxygen-modified Pt?111? and Pd?110?

    NASA Astrophysics Data System (ADS)

    Valden, M.; Pere, J.; Hirsimäki, M.; Suhonen, S.; Pessa, M.

    1997-04-01

    Activated adsorption of CH 4 on clean and oxygen modified Pt{111} and Pd{110} has been studied using molecular beam surface scattering. The absolute dissociation probability of CH 4 was measured as a function of the incident normal energy ( E) and the surface temperature ( Ts). The results from clean Pt{111} and Pd{110} are consistent with a direct dissociation mechanism. The dissociative chemisorption dynamics of CH 4 is addressed by using quantum mechanical and statistical models. The influence of adsorbed oxygen on the dissociative adsorption of CH 4 on both Pt{111} and Pd{110} shows that the dissociation probability decreases linearly with increasing oxygen coverage.

  11. Advanced study of thermal behaviour of CSZ comparing with the classic YSZ coating

    NASA Astrophysics Data System (ADS)

    Dragomirescu, A.; Constantin, N.; Ştefan, A.; Manoliu, V.; Truşcă, R.

    2017-01-01

    Thermal barrier coatings (TBC) are advanced materials typically applied to metal surfaces subjected to extreme temperatures to protect them and increase their lifetime. Ceria stabilized zirconia ceramic layer (CSZ) is increasingly used as an alternative improved as replace for classical TBC system - yttria stabilized zirconia - thanks to superior properties, including mechanical and high resistance to thermal corrosion. The paper describes the thermal shock testing of two types of thermal barrier coatings used to protect a nickel super alloy. For the experimental procedure, it was used plate samples from nickel super alloy with a bond coat and a ceramic top coat. The top coat was different: on some samples, it was used YSZ and on others CSZ. Ni based super alloys have good corrosion resistance in reducing environments action, but poor in oxidizing conditions. Extreme environments can lead to loss of material by oxidation / corrosion, along with decreased mechanical properties of the substrate due to damaging elements which diffuses into the substrate at high temperatures. Using laboratory equipment, the TBC systems were exposed repeatedly to extreme high temperatures for a short time and then cooled. After the thermal shock tests, the samples were morph-structured characterized using electronic microscopy to analyze the changes. The experimental results were compared to rank the TBC systems in order of performance.

  12. Smart Pd Catalyst with Improved Thermal Stability Supported on High-Surface-Area LaFeO3 Prepared by Atomic Layer Deposition.

    PubMed

    Onn, Tzia Ming; Monai, Matteo; Dai, Sheng; Fonda, Emiliano; Montini, Tiziano; Pan, Xiaoqing; Graham, George W; Fornasiero, Paolo; Gorte, Raymond J

    2018-04-11

    The concept of self-regenerating or "smart" catalysts, developed to mitigate the problem of supported metal particle coarsening in high-temperature applications, involves redispersing large metal particles by incorporating them into a perovskite-structured support under oxidizing conditions and then exsolving them as small metal particles under reducing conditions. Unfortunately, the redispersion process does not appear to work in practice because the surface areas of the perovskite supports are too low and the diffusion lengths for the metal ions within the bulk perovskite too short. Here, we demonstrate reversible activation upon redox cycling for CH 4 oxidation and CO oxidation on Pd supported on high-surface-area LaFeO 3 , prepared as a thin conformal coating on a porous MgAl 2 O 4 support using atomic layer deposition. The LaFeO 3 film, less than 1.5 nm thick, was shown to be initially stable to at least 900 °C. The activated catalysts exhibit stable catalytic performance for methane oxidation after high-temperature treatment.

  13. Thermal barrier coatings

    DOEpatents

    Alvin, Mary Anne [Pittsburg, PA

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  14. The complex behavior of the Pd 7 cluster supported on TiO 2 (110) during CO oxidation: adsorbate-driven promoting effect

    DOE PAGES

    An, Wei; Liu, Ping

    2016-09-07

    When using the TiO 2(110)-supported Pd7 cluster as a model catalyst, we identified the dynamics of supported metal nanoparticles using density functional theory calculations, at the sub-nanometer scale and under reactive environments. Increasing the CO coverage can induce a structural transformation from Pd 7-3D/TiO 2(110) at low coverage to Pd 7-2D/TiO 2(110) at the saturation coverage wherein CO saturation-driven Pd7-2D/TiO 2(110) structure displays superior CO oxidation activity at the interfacial sites, which are highly active for catalyzing O 2 dissociation and CO oxidation via bifunctional synergy.

  15. Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

    DOE PAGES

    Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; ...

    2016-01-01

    In this study, the performance of Y 2O 3-stabilized ZrO 2 (YSZ), Y 2O 3, and Al 2O 3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al 2O 3 coating performed well while the YSZ and Y 2O 3 coating showed clear areas of attack.more » These results are attributed to the evolution of gaseous Mg at 820 °C leading to the formation of MgO and MgAl 2O 4.« less

  16. Improved Oxidation Life of Segmented Plasma Sprayed 8YSZ Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Smialek, James L.

    2004-03-01

    Unconventional plasma sprayed thermal barrier coating (TBC) systems were produced and evaluated by interrupted or cyclic furnace oxidation life testing. First, approximately 250 µm thick 8YSZ coatings were directly sprayed onto grit blasted surfaces of PWA 1484, without a bond coat, to take advantage of the excellent oxidation resistance of this superalloy. For nominal sulfur (S) contents of 1 ppmw, total coating separation took place at relatively short times (200 h at 1100°C). Reductions in the S content, by melt desulfurization commercially (0.3 ppmw) or by hydrogen (H2) annealing in the laboratory (0.01 ppmw), improved scale adhesion and extended life appreciably, by factors of 5-10. However, edge-initiated failure persisted, producing massive delamination as one sheet of coating. Secondly, surfaces of melt desulfurized PWA 1484 were machined with a grid of grooves or ribs (˜250 µm wide and high), resulting in a segmented TBC surface macrostructure, for the purpose of subverting this failure mechanism. In this case, failure occurred only as independent, single-segment events. For grooved samples, 1100 °C segment life was extended to ˜1000h for 5 mm wide segments, with no failure observed out to 2000 h for segments ≤2.5 mm wide. Ribbed samples were even more durable, and segments ≤6 mm remained intact for 2000 h. Larger segments failed by buckling at times inversely related to the segment width and decreased by oxidation effects at higher temperatures. This critical buckling size was consistent with that predicted for elastic buckling of a TBC plate subject to thermal expansion mismatch stresses. Thus, low S substrates demonstrate appreciable coating lives without a bond coat, while rib segmenting extends life considerably.

  17. Metallaborane reaction chemistry. A predicted and found tailored facile and reversible capture of SO2 by a B-frame-supported bimetallic: structures of [(PMe2Ph)2PtPd(phen)B10H10] and [(PMe2Ph)2Pt(SO2)Pd(phen)B10H10].

    PubMed

    Bould, Jonathan; Kennedy, John D

    2008-06-07

    The formally closo twelve-vertex {ortho-M2B10} dimetallaborane system has been predictively tailored for reversible uptake of SO2 across the metal-metal bond, as exemplified by the formation of [(PMe2Ph)2Pt(SO2)Pd(phen)B10H10] from [(PMe2Ph)2PtPd(phen)B10H10].

  18. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    PubMed

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO₂ Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al₂O₃.

    PubMed

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-12-15

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H₂, while H₂ combustion was activated by repeated exposure to H₂ gas during the periodic gas test. Selective CO sensing of the micro-TGS against H₂ was attempted using a double catalyst structure with 0.3-30 wt% Pt/α-Al₂O₃ as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al₂O₃ catalyst, by cancelling out the combustion heat from the AuPtPd/SnO₂ catalyst. In addition, the AuPtPd/SnO₂ and 0.3 wt% Pt/α-Al₂O₃ double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H₂.

  20. Chemical vapor deposition of yttria-stabilized zirconia as a thermal barrier coating for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Varanasi, Venu Gopal

    The gas turbine engine uses an yttria-stabilized zirconia (YSZ) coating to provide thermal insulation for its turbine blades. This YSZ coating must be tetragonal in crystal structure, columnar in microstructure, and be 100--250 mum thick to provide for adequate protection for the turbine blades in the severe engine environment. Currently, YSZ coatings are fabricated by electron-beam physical vapor deposition (EB-PVD), but this fabrication method is cost intensive. Chemical vapor deposition (CVD) is a more commercially viable processing method and a possible alternative to EB-PVD. The deposition of tetragonal YSZ from gaseous metal and oxidation sources were studied. A chemical equilibrium analysis modeled the feasibility of depositing tetragonal YSZ for both chloride CVD (Zr-Y-C-O-Cl-H-Inert system) and metal-organic CVD (MOCVD) (Zr-Y-C-O-H system). Pure thermochemical properties and the assessed YSZ phase diagram were used in this analysis. Using the molar input of metals ((nY + nZr) and ( nY/(nY + nZr ) = 0.08)) as bases, equilibrium calculations showed that tetragonal YSZ formation was feasible. Tetragonal YSZ formation was feasible with high oxygen content (nO/(nY + nZr) > 8) and high temperature (T > 100°C) in the case of chloride CVD (Zr-Y-C-O-Cl-H-Inert). Tetragonal YSZ formation was feasible with high oxygen content (nO/( nY + nZr) > 5) and high temperature (T > 950°C) in the case of MOCVD (Zr-Y-C-O-H). Although solid carbon formation did not appear in chloride CVD, additional oxygen (nO/( nY + nZr) > 32) and low hydrogen content relative to carbon (nH/nC < 2) were required to avoid solid carbon formation in MOCVD. Coatings were deposited using a set of base conditions derived from the chemical equilibrium analysis. In chloride CVD, YCl3 was not included because of its low vapor pressure, thus, ZrCl4 was oxidized with the H2-CO2 gas mixture. Monoclinic ZrO2 coatings were deposited at the thermochemically optimized conditions (n O/(nY + nZr) > 8, T > 1004

  1. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures

    NASA Astrophysics Data System (ADS)

    Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng

    2015-11-01

    In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials

  2. Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2018-01-01

    A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.

  3. A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol.

    PubMed

    Zhang, Quan; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang

    2013-06-15

    A high efficiency microreactor with Pt coated ZnO (Pt/ZnO) nanorod arrays on the inner wall was successfully fabricated by pumping a Pt sol into the microchannel containing preformed ZnO nanorod arrays. Phenol was selected as a persistent organic pollutant to evaluate the photocatalytic performance of the microreactors. The microreactor which was coated by Pt sol for 5 min showed the best photocatalytic performance compared with other Pt/ZnO nanorod array-modified microreactors. The presence of Pt nanoparticles on the surfaces of ZnO nanorods promoted the separation of photoinduced electron-hole pairs and thus enhanced the photocatalytic activity. In addition, the recyclable property of the microcreator was investigated. It was found that the microreactor displayed higher durability during the continuous photocatalytic process. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Growth of Pt/Cu(100): An Atomistic Modeling Comparison with the Pd/Cu(100) Surface Alloy

    NASA Technical Reports Server (NTRS)

    Demarco, Gustavo; Garces, Jorge E.; Bozzolo, Guillermo

    2002-01-01

    The Bozzolo, Ferrante, and Smith (BFS) method for alloys is applied to the study of Pt deposition on Cu(100). The formation of a Cu-Pt surface alloy is discussed within the framework of previous results for Pd/Cu(100). In spite of the fact that both Pd and Pt share the same basic behavior when deposited on Cu, it is seen that subtle differences become responsible for the differences in growth observed at higher cover-ages. In agreement with experiment, all the main features of Pt/Cu(100) and Pd/Cu(100) are obtained by means of a simple modeling scheme, and explained in terms of a few basic ingredients that emerge from the BFS analysis.

  5. Synthesis, characterization of Ag(I), Pd(II) and Pt(II) complexes of a triazine-3-thione and their interactions with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuying; Li, Shuyan; Yang, Lin; Fan, Changqing

    2007-11-01

    Ag(I), Pd(II) and Pt(II) complexes of 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione (LH 2OCH 3) have been synthesized and characterized by elemental analysis, molar conductance, 1H NMR, IR spectra, UV spectra and thermal analysis (TG-DTA). The components of the three complexes are [Ag(C 15H 10N 3S)] 6, Pd(C 15H 10N 3S) 2 and Pt(C 15H 10N 3S) 2·C 3H 6O·2H 2O, respectively. All the complexes are nonelectrolyte and have high thermodynamic stability. The ligand may act as bidentate NS donor for Pd(II) and Pt(II) complexes, while it seems to be bidentate NS bridging via sulphur atom for Ag(I) complex. A planar quadrangular structure is proposed for Pd(II) and Pt(II) complexes and Ag(I) complex may be a hexanuclear cluster. Their interactions with bovine serum albumin (BSA) are investigated using steady state fluorescence technology. It is observed that all of them can quench the intrinsic fluorescence of BSA through static quenching procedure. The binding constants ( KA) at different temperatures, thermodynamic parameters enthalpy changes (Δ H) and entropy changes (Δ S) between BSA and the compounds are calculated. Based on the values of Δ H and Δ S, it is judged that the main acting force of PtL 2·C 3H 6O·2H 2O with BSA may be electrostatic interaction, and for the LH 2OCH 3, Ag 6L 6 and PdL 2, hydrophobic and electrostatic interactions may be involved in their binding processes.

  6. Thermal Barrier Coatings Chemically and Mechanically Resistant to High Temperature Attack by Molten Ashes

    NASA Astrophysics Data System (ADS)

    Gledhill, Andrew

    Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation. These coatings insulate the underlying metal components and allow for much higher engine operating temperatures, improving the engine efficiency. These increase temperatures engender a new set of materials problems for TBCs. Operating temperatures in engines are now high enough for silicate impurities, either present in the fuel or ingested into the engines, to melt and adhere to the surface of the TBCs. The effects of four such impurities, two coal fly ashes, a petroleum coke-fly ash blend, and volcanic ash from the Eyjafjallajokull volcano were tested with conventional yttria-stabilized zirconia (YSZ) coatings, and found to penetrate through the entire thickness of the coating. This penetration reduces the strain tolerance of the coatings, and can result in premature failure. Testing on a newly built thermal gradient burner rig with simultaneous injection of ash impurities has shown a reduction of life up to 99.6% in these coatings when ash is present. Coatings of an alternative ceramic, gadolinium zirconate (Gd2Zr 2O7), were found to form a dense reaction layer with each of these impurities, preventing further penetration of the molten ash. This dense layer also reduces the strain tolerance, but these coatings were found to have a significantly higher life than the YSZ coatings. Testing with a small amount of ash baked onto the samples showed thirteen times the life of YSZ coatings. When the ash is continuously sprayed onto the hot sample, the life of the Gd2Zr2O7 coatings was nearly twice that of the YSZ. Finally, a delamination model was employed to explain the degradation of both types of coatings. This elastic model that takes into account the degree of penetration, differential cooling in thermal gradient testing, and thermal expansion mismatch with the underlying substrate, predicted the failure of

  7. Al-doped TiO{sub 2} mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com

    Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction andmore » increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.« less

  8. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Nan

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedesmore » the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al 2O 3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni 3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O 3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni 3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (~970 C) in the very early stage of oxidation. It was

  9. Methane Oxidation on Pd-Ceria. A DFT Study of the Combustion Mechanism over Pd, PdO and Pd-ceria Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayernick, Adam D.; Janik, Michael J.

    2010-12-24

    Palladium/ceria exhibits unique catalytic activity for hydrocarbon oxidation; however, the chemical and structural properties of active sites on the palladium–ceria surface are difficult to characterize. Strong interactions between palladium and the ceria support stabilize oxidized Pd δ+ species, which may contribute to the significant activity of Pd/ceria for methane oxidation. We present a density functional theory (DFT + U) investigation into methane oxidation over Pd/ceria and quantify the activity of the Pd xCe 1-xO 2(1 1 1) mixed oxide surface in comparison with the PdO(1 0 0) and Pd(1 1 1) surfaces. The methane activation barrier is lowest over themore » Pd xCe 1-xO 2(1 1 1) surface, even lower than over the Pd(1 1 1) surface or low coordinated stepped or kinked Pd sites. Subsequent reaction steps in complete oxidation, including product desorption and vacancy refilling, are considered to substantiate that methane activation remains the rate-limiting step despite the low barrier over Pd xCe 1-xO 2(1 1 1). The low barrier over the Pd xCe 1-xO 2(1 1 1) surface demonstrates that mixed ceria-noble metal oxides offer the potential for improved hydrocarbon oxidation performance with respect to dispersed noble metal particles on ceria.« less

  10. MEMS-Based Gas Sensor Using PdO-Decorated TiO2 Thin Film for Highly Sensitive and Selective H2 Detection with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon

    2018-03-01

    We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.

  11. MEMS-Based Gas Sensor Using PdO-Decorated TiO2 Thin Film for Highly Sensitive and Selective H2 Detection with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon

    2018-05-01

    We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.

  12. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain.

    PubMed

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-06-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc 2 O 3 multilayers as a function of the thick-ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec-trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al 2 O 3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y 2 O 3 -multilayers with similar microstructure. Using the Nernst-Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter-face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain.

  13. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain

    PubMed Central

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-01-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc2O3 multilayers as a function of the thick­ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec­trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al2O3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y2O3-multilayers with similar microstructure. Using the Nernst–Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter­face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain. PMID:27877580

  14. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-04

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

  15. Cluster Chemistry in Electron-Poor Ae-Pt-Cd Systems (Ae=Ca, Sr, Ba): (Sr,Ba)Pt2Cd4, Ca6Pt8Cd16, and Its Known Antitype Er6Pd16Sb8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.

    Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse ofmore » the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.« less

  16. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation.

    PubMed

    Sedona, Francesco; Rizzi, Gian Andrea; Agnoli, Stefano; Llabrés i Xamena, Francesc X; Papageorgiou, Anthoula; Ostermann, Dieter; Sambi, Mauro; Finetti, Paola; Schierbaum, Klaus; Granozzi, Gaetano

    2005-12-29

    produce TiO2 nanoclusters on top of the different monolayer films, as supported both by XPS and STM data. Besides the formation of TiO(x) surfaces phases, wormlike features are found on the bare parts of the substrate by STM. We suggest that these structures, probably multilayer disordered TiO2, represent growth precursors of the ordered phases. Our results on the different nanostructures are compared with literature data on similar systems, e.g., VO(x)/Pd(111), VO(x)/Rh(111), TiO(x)/Pd(111), TiO(x)/Pt(111), and TiO(x)/Ru(0001). Similar and distinct features are observed in the TiO(x)/Pt(111) case, which may be related to the different chemical natures of the overlayer and of the substrate.

  17. Reactivity of Transition Metals (Pd Pt Cu Ag Au) toward Molecular Hydrogen Dissociation: Extended Surfaces versus Particles Supported on TiC(001) or Small Is Not Always Better and Large Is Not Always Bad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez J. A.; Gomez T.; Florez E.

    2011-06-16

    The reactivity of Pd{sub 4}, Pt{sub 4}, Cu{sub 4}, Ag{sub 4}, and Au{sub 4} clusters supported on TiC(001) toward molecular hydrogen dissociation has been studied by means of density functional based theory and periodic models and compared to that of the (111) and (001) surfaces. Pd{sub 4} and Pt{sub 4} interact rather strongly with the TiC(001) substrate, but the interaction of molecular hydrogen with the Pd{sub 4}/TiC and Pt{sub 4}/TiC systems is also very strong. As a consequence of the substantial admetal {leftrightarrow} carbide interactions, the adsorbed H{sub 2} molecule becomes more difficult to dissociate than on the corresponding extendedmore » (111) and (001) surfaces. Here, having a small supported particle does not lead to an enhanced chemical activity. On the contrary, for the Cu{sub 4}/TiC, Ag{sub 4}/TiC, and Au{sub 4}/TiC systems the combination of the small size of the particle and the polarization induced by the underlying carbide facilitates the dissociation of the hydrogen molecule with respect to the case of the extended surfaces. Here, the reduced size effectively enhances the activity of the supported particle. Thus, our results for the M(111), M(100), and M{sub 4}/TiC(001) systems show the complex interplay that can take place among the nature of the admetal, particle size effects, and support interactions.« less

  18. Reactivity of Transition Metals (Pd, Pt, Cu, Ag, Au) toward Molecular Hydrogen Dissociation: Extended Surfaces versus Particles Supported on TiC(001) or Small Is Not Always Better and Large Is Not Always Bad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.A.; Gomez, T.; Florez, E.

    2011-05-11

    The reactivity of Pd{sub 4}, Pt{sub 4}, Cu{sub 4}, Ag{sub 4}, and Au{sub 4} clusters supported on TiC(001) toward molecular hydrogen dissociation has been studied by means of density functional based theory and periodic models and compared to that of the (111) and (001) surfaces. Pd{sub 4} and Pt{sub 4} interact rather strongly with the TiC(001) substrate, but the interaction of molecular hydrogen with the Pd{sub 4}/TiC and Pt{sub 4}/TiC systems is also very strong. As a consequence of the substantial admetal {leftrightarrow} carbide interactions, the adsorbed H{sub 2} molecule becomes more difficult to dissociate than on the corresponding extendedmore » (111) and (001) surfaces. Here, having a small supported particle does not lead to an enhanced chemical activity. On the contrary, for the Cu{sub 4}/TiC, Ag{sub 4}/TiC, and Au{sub 4}/TiC systems the combination of the small size of the particle and the polarization induced by the underlying carbide facilitates the dissociation of the hydrogen molecule with respect to the case of the extended surfaces. Here, the reduced size effectively enhances the activity of the supported particle. Thus, our results for the M(111), M(100), and M{sub 4}/TiC(001) systems show the complex interplay that can take place among the nature of the admetal, particle size effects, and support interactions.« less

  19. Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS)

    NASA Astrophysics Data System (ADS)

    Li, Wenshuai; Zhao, Huayu; Zhong, Xinghua; Wang, Liang; Tao, Shunyan

    2014-08-01

    Yttria (Y2O3) and zirconia (ZrO2) stabilized by 8 and 20 wt.%Y2O3 thermal barrier coatings (TBCs) subjected to calcium-magnesium-alumino-silicate (CMAS) have been investigated. Free-standing Y2O3, 8 and 20 wt.%YSZ coatings covered with synthetic CMAS slurry were heated at 1300 °C in air for 24 h in order to assess the effect of Y2O3 on the corrosion resistance of the coatings subjected to CMAS. The microstructures and phase compositions of the coatings were characterized by SEM, EDS, XRD, RS, and TEM. TBCs with higher Y2O3 content exhibited better CMAS corrosion resistance. Phase transformation of ZrO2 from tetragonal (t) to monoclinic (m) occurred during the interaction of 8YSZ TBCs and CMAS, due to the depletion of Y2O3 in the coating. Some amounts of original c-ZrO2 still survived in 20YSZ TBCs along with a small amount of m-ZrO2 that appeared after reaction with CMAS. Furthermore, Y2O3 coating was found to be particularly highly effective in resisting the penetration of molten CMAS glass at high temperature (1300 °C). This may be ascribed to the formation of sealing layers composed of Y-apatite phase [based on Ca4Y6 (SiO4)6O and Y4.67(SiO4)3O] by the high-temperature chemical interactions of Y2O3 coating and CMAS glass.

  20. Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.

  1. Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts

    DOE PAGES

    Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2018-05-14

    Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.

  2. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    NASA Technical Reports Server (NTRS)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  3. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores.

    PubMed

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.

  4. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    NASA Astrophysics Data System (ADS)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  5. CO oxidation on Ru-Pt bimetallic nanoclusters supported on TiO2(101): The effect of charge polarization

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyi; Zhong, Wenhui; Deng, Mingsen; Jiang, Jun

    2018-03-01

    Pt-based catalyst is widely used in CO oxidation, while its catalytic activity is often undermined because of the CO poisoning effect. Here, using density functional theory, we propose the use of a Ru-Pt bimetallic cluster supported on TiO2 for CO oxidation, to achieve both high activity and low CO poisoning effect. Excellent catalytic activity is obtained in a Ru1Pt7/TiO2(101) system, which is ascribed to strong electric fields induced by charge polarization between one Ru atom and its neighboring Pt atoms. Because of its lower electronegativity, the Ru atom donates electrons to neighboring Pt. This induces strong electric fields around the top-layered Ru, substantially promoting the adsorption of O2/CO + O2 and eliminating the CO poisoning effect. In addition, the charge polarization also drives the d-band center of the Ru1Pt7 cluster to up-shift to the Fermi level. For surface O2 activation/CO oxidation, the strong electric field and d-band center close to the Fermi level can promote the adsorption of O2 and CO as well as reduce the reaction barrier of the rate-determining step. Meanwhile, since O2 easily dissociates on Ru1Pt7/TiO2(101) resulting in unwanted oxidation of Ru and Pt, a CO-rich condition is necessary to protect the catalyst at high temperature.

  6. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  7. Synthesis of functional ceramic supports by ice templating and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klotz, Michaela; Weber, Matthieu; Deville, Sylvain; Oison, Didier; Iatsunskyi, Igor; Coy, Emerson; Bechelany, Mikhael

    2018-05-01

    In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ) and atomic layer deposition (ALD) of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.

  8. A Sinter-Resistant Catalytic System Based on Platinum Nanoparticles Supported on TiO2 Nanofibers and Covered by Porous Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yunqian; Lim, Byungkwon; Yang, Yong

    2010-10-25

    Platinum is a key catalyst that is invaluable in many important industrial processes such as CO oxidation in catalytic converters, oxidation and reduction reactions in fuel cells, nitric acid production, and petroleum cracking.[1] Many of these applications utilize Pt nanoparticles supported on oxides or porous carbon.[2] However, in practical applications that involve high temperatures (typically higher than 3008C), the Pt nanoparticles tend to lose their specific surface area and thus catalytic activity during operation because of sintering. Recent studies have shown that a porous oxide shell can act as a physical barrier to prevent sintering of unsupported metal nanoparticles and,more » at the same time, provide channels for chemical species to reach the surface of the nanoparticles, thus allowing the catalytic reaction to occur. This concept has been demonstrated in several systems, including Pt@SiO2,[3] Pt@CoO,[4] Pt/CeO2@SiO2,[5] Pd@SiO2,[6] Au@SiO2,[7] Au@SnO2 [8] and Au@ZrO2 [9] core– shell nanostructures. Despite these results, a sinter-resistant system has not been realized in supported Pt nanoparticle catalysts.« less

  9. Geometric, electronic, and bonding properties of AuNM (N = 1-7, M = Ni, Pd, Pt) clusters.

    PubMed

    Yuan, D W; Wang, Yang; Zeng, Zhi

    2005-03-15

    Employing first-principles methods, based on density functional theory, we report the ground state geometric and electronic structures of gold clusters doped with platinum group atoms, Au(N)M (N = 1-7, M = Ni, Pd, Pt). The stability and electronic properties of Ni-doped gold clusters are similar to that of pure gold clusters with an enhancement of bond strength. Due to the strong d-d or s-d interplay between impurities and gold atoms originating in the relativistic effects and unique properties of dopant delocalized s-electrons in Pd- and Pt-doped gold clusters, the dopant atoms markedly change the geometric and electronic properties of gold clusters, and stronger bond energies are found in Pt-doped clusters. The Mulliken populations analysis of impurities and detailed decompositions of bond energies as well as a variety of density of states of the most stable dopant gold clusters are given to understand the different effects of individual dopant atom on bonding and electronic properties of dopant gold clusters. From the electronic properties of dopant gold clusters, the different chemical reactivity toward O(2), CO, or NO molecule is predicted in transition metal-doped gold clusters compared to pure gold clusters.

  10. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    NASA Astrophysics Data System (ADS)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  11. Nanocomposite tribological coatings with "chameleon" surface adaptation

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.

    2002-07-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept

  12. Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room‐Temperature Electron Reduction for Oxygen Reduction Reaction

    PubMed Central

    Wang, Wei; Wang, Zongyuan; Wang, Jiajun; Zhong, Chuan‐Jian

    2017-01-01

    Carbon‐supported platinum (Pt) and palladium (Pd) alloy catalyst has become a promising alternative electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this work, the synthesis of highly active and stable carbon‐supported Pt–Pd alloy catalysts is reported with a room‐temperature electron reduction method. The alloy nanoparticles thus prepared show a particle size around 2.6 nm and a core–shell structure with Pt as the shell. With this structure, the breaking of O–O bands and desorption of OH are both promoted in electrocatalysis of ORR. In comparison with the commercial Pt/C catalyst prepared by conventional method, the mass activity of the Pt–Pd/C catalyst for ORR is shown to increase by a factor of ≈4. After 10 000‐cycle durability test, the Pt–Pd/C catalyst is shown to retain 96.5% of the mass activity, which is much more stable than that of the commercial Pt/C catalyst. PMID:28435780

  13. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    NASA Astrophysics Data System (ADS)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  14. Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Rajesh, Dhanushkotti; Indra Neel, Pulidindi; Pandurangan, Arumugam; Mahendiran, Chinnathambi

    2018-06-01

    The synthesis of Pd-NiO nanoparticles decorated multiwalled carbon nanotubes (MWCNTs) on reduced graphene oxide (rGO) for ethanol electrooxidation is reported. NiO nanoparticles (NPs) were deposited on functionalized MWCNTs by wet impregnation method. Pd nanoparticles were formed on NiO-MWCNTs by the addition of PdCl2 and its reduction using NaBH4. The Pd-NiO/MWCNTs nanocomposite then deposited on rGO support using ultrasound irradiation which led to the formation of the Pd-NiO/MWCNTs/rGO electrocatalyst. The prepared electrocatalysts were characterized by XRD, SEM, HR-TEM and XPS analysis. Electrochemical measurements demonstrate that as synthesized Pd-NiO/MWCNTs/rGO electrocatalyst exhibit higher catalytic activity (90.89 mA/cm2) than either Pd/MWCNTs/rGO (43.05 mA/cm2) or Pd/C (28.0 mA/cm2) commercial catalyst. Chronoamperometry study of Pd-NiO/MWCNTs/rGO electrocatalyst showed long-term electrochemical stability. The enhanced catalytic activity of Pd-NiO/MWCNTs/rGO electrocatalyst for electrooxidation of ethanol can be attributed to the synergistic effect between Pd & NiO active sites.

  15. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction

    DOE PAGES

    Xie, Shuifen; Choi, Sang -Il; Lu, Ning; ...

    2014-05-05

    Here, an effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the depositedmore » Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@Pt nL (n = 1–6) core–shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt 2–3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt 1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.« less

  16. Effect of the co-spun anode functional layer on the performance of the direct-methane microtubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Meng, Xiuxia; Gong, Xun; Yin, Yimei; Yang, Naitao; Tan, Xiaoyao; Ma, Zi-Feng

    2014-02-01

    NiO-YSZ/porous YSZ (NiO-YSZ/p-YSZ) dual-layer hollow fibers have been fabricated by a co-spinning-sintering method, on which a dense YSZ films has been formed by a dip-coating and sintering process. A LSM-YSZ ink has been dip-coated on the dense YSZ films as cathode, while the Cu-CeO2 carbon-resistant catalyst has been impregnated in the p-YSZ layer to form double-anode supported micro tubular fuel cells (MT-SOFCs). The thickness of the Ni-YSZ layer, so called anode functional layer (AFL), is controlled from 74 μm to 13 μm by varying the spinning rates of the NiO-YSZ dopes. The maximum power density of an MT-SOFC, which is fabricated based on a thin co-spun AFL, reaches 566 mW cm-2 operated at 850 °C fed with dry methane, and is stably operated for 85 h without power declination.

  17. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  18. Molecular Dynamics Simulation of the Structure and Ion Transport in the Ce1 - x Gd x O2 - δ|YSZ Heterosystem

    NASA Astrophysics Data System (ADS)

    Galin, M. Z.; Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    Molecular dynamics simulation has been used to develop a realistic atomistic model of two-layer Ce1 - x Gd x O2 - δ|YSZ heterosystem. It is shown that Ce1 - x Gd x O2 - δ and YSZ layers (about 15 and 16 Å thick, respectively) retain their crystal structure on the whole. The main structural distortions are found to occur near the Ce1 - x Gd x O2 - δ|YSZ geometric interface, within a narrow interfacial region of few angstroms thick. Both the generalized diffusion characteristics of the system as a whole and the oxygen diffusion coefficients in the layers are calculated, and the diffusion activation energies are determined.

  19. V-doped TiO2 supported Pt as a promising oxygen reduction reaction catalyst: Synthesis, characterization and in-situ evaluation in proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Bharti, Abha; Cheruvally, Gouri

    2017-09-01

    This study deals with the synthesis and characterization of V-doped, TiO2 supported Pt catalyst (Pt/V-TiO2) for oxygen reduction reaction (ORR) and its in-situ performance investigation in proton exchange membrane (PEM) fuel cell. Pt/V-TiO2 nanocomposite catalyst is prepared via a facile sol-gel and microwave assisted, modified chemical reduction route and its performance is compared with the undoped TiO2 supported catalyst, Pt/TiO2 prepared in an identical way. The prepared Pt/V-TiO2 and Pt/TiO2 catalysts are employed as cathode catalyst in PEM fuel cell and compared with standard Pt/C catalyst. Their comparative studies are conducted with physical and electrochemical techniques. In-situ electrochemical characterization studies show improved ORR catalytic activity of Pt/V-TiO2 compared to Pt/TiO2. Furthermore, both Pt/TiO2 and Pt/V-TiO2 are more stable than Pt/C when subjected to 6000 voltammetric cycles in the range of 0.2-1.2 V vs. standard hydrogen electrode in operating fuel cell conditions, losing only <20% of its electrochemical surface area as compared to 50% loss exhibited by Pt/C. This study thus demonstrates Pt/V-TiO2 nanocomposite material as a potential cathode catalyst for PEM fuel cell with immense scope for further investigation.

  20. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.

    Hydrogenation of phenol in aqueous phase was studied over a series of ZrO2-supported Pd catalysts in order to explore the effects of particle size and of Ag addition on the activity of Pd. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO2 sample. The turnover frequency (TOF) increases with the Pd particle size. The reaction orders in phenol and H2 indicate that the surface coverages by phenol, H2 and their derived intermediates are higher on 0.5% Pd/ZrO2 than on other samples. Themore » activation energy was the lowest on the least active sample (0.5% Pd/ZrO2), while being identical on 1% and 2% Pd/ZrO2 catalysts. Thus, the significantly lower activity of the small Pd particles (1-2 nm on average) in 0.5%Pd/ZrO2 is explained by the unfavorable activation entropies for the strongly bound species. The presence of Ag increases considerably the TOF of the reaction by decreasing the Ea and increasing the coverages of phenol and H2.« less

  1. Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials

    NASA Astrophysics Data System (ADS)

    Merati, Zohreh; Basiri Parsa, Jalal

    2018-03-01

    Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.

  2. Preparation of Platinum (Pt) Counter Electrode Coated by Electrochemical Technique at High Temperature for Dye-sensitized Solar Cell (DSSC) Application

    NASA Astrophysics Data System (ADS)

    Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit

    2017-09-01

    Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.

  3. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    EPA Science Inventory

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  4. Elucidation of structure and nature of the PdO-Pd transformation using in situ PDF and XAS techniques.

    PubMed

    Keating, Jonathan; Sankar, Gopinathan; Hyde, Timothy I; Kohara, Shinji; Ohara, Koji

    2013-06-14

    The PdO-Pd phase transformation in a 4 wt% Pd/Al2O3 catalyst has been investigated using in situ X-ray absorption spectroscopy (XAS) and in situ X-ray total scattering (also known as high-energy X-ray diffraction) techniques. Both the partial and total pair distribution functions (PDF) from these respective techniques have been analysed in depth. New information from PDF analysis of total scattering data has been garnered using the differential PDF (d-PDF) approach where only correlations orginating from PdO and metallic Pd are extracted. This method circumvents problems encountered in characerising the catalytically active components due to the diffuse scattering from the disordered γ-Al2O3 support phase. Quantitative analysis of the palladium components within the catalyst allowed for the phase composition to be established at various temperatures. Above 850 °C it was found that PdO had converted to metallic Pd, however, the extent of reduction was of the order ca. 70% Pd metal and 30% PdO. Complementary in situ XANES and EXAFS were performed, with heating to high temperature and subsequent cooling in air, and the results of the analyses support the observations, that residual PdO is detected at elevated temperatures. Hysteresis in the transformation upon cooling is confirmed from XAS studies where reoxidation occurs below 680 °C.

  5. Structural evolution of plasma-sprayed nanoscale 3 mol% and 5 mol% yttria-stabilized zirconia coatings during sintering

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Yang

    2017-12-01

    The microstructure of plasma-sprayed nanostructured yttria-stabilized zirconia (YSZ) coatings may change during high-temperature exposure, which would influence the coating performance and service lifetime. In this study, the phase structure and the microstructural evolution of 3YSZ (zirconia-3 mol% yttria) and 5YSZ (zirconia-5 mol% yttria) nanostructured coatings were investigated by means of sintering at 1400 °C for 50-100 h. The microhardness, elastic moduli, and thermal shock cycles of the 3YSZ and 5YSZ nanostructured coatings were also investigated. The results showed that the redistribution of yttrium ions at 1400 °C caused the continuous increase of monoclinic-phase zirconia, but no obvious inter-splat cracking formed at the cross-sections, even after 100 h. Large voids appeared around the nanoporous zone because of the sintering of nanoscale granules upon high-temperature exposure. The microhardness and elastic moduli of the nanostructured coatings first increased and then decreased with increasing sintering times. The growth rate of the nanograins in the 3YSZ coating was lower than that in 5YSZ, which slowed the changes in 3YSZ coating porosity during sintering. Although the 3YSZ coating was prone to monoclinic phase transition, the experimental results showed that the thermal shock resistance of the 3YSZ coating was better than that of the 5YSZ coating.

  6. Pd-PEPPSI-IPent-SiO2 : A Supported Catalyst for Challenging Negishi Coupling Reactions in Flow.

    PubMed

    Price, Gregory A; Hassan, Abbas; Chandrasoma, Nalin; Bogdan, Andrew R; Djuric, Stevan W; Organ, Michael G

    2017-10-16

    A silica-supported precatalyst, Pd-PEPPSI-IPent-SiO 2 , has been prepared and evaluated for its proficiency in the Negishi cross-coupling of hindered and electronically deactivated coupling partners. The precatalyst Pd-PEPPSI-IPent loaded onto packed bed columns shows high catalytic activity for the room-temperature coupling of deactivated/hindered biaryl partners. Also for the first time, the flowed Csp 3 -Csp 2 coupling of secondary alkylzinc reagents to (hetero)aromatics has been achieved with high selectivity with Pd-PEPPSI-IPent-SiO 2 . These couplings required residence times as short as 3 minutes to effect completion of these challenging transformations with excellent selectivity for the nonrearranged product. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of

  8. Sintering of Pt nanoparticles via volatile PtO 2: Simulation and comparison with experiments

    DOE PAGES

    Plessow, Philipp N.; Abild-Pedersen, Frank

    2016-09-23

    It is a longstanding question whether sintering of platinum under oxidizing conditions is mediated by surface migration of Pt species or through the gas phase, by PtO 2(g). Clearly, a rational approach to avoid sintering requires understanding the underlying mechanism. A basic theory for the simulation of ripening through the vapor phase has been derived by Wynblatt and Gjostein. Recent modeling efforts, however, have focused entirely on surface-mediated ripening. In this work, we explicitly model ripening through PtO 2(g) and study how oxygen pressure, temperature, and shape of the particle size distribution affect sintering. On the basis of the availablemore » data on α-quartz, adsorption of monomeric Pt species on the support is extremely weak and has therefore not been explicitly simulated, while this may be important for more strongly interacting supports. Our simulations clearly show that ripening through the gas phase is predicted to be relevant. Assuming clean Pt particles, sintering is generally overestimated. This can be remedied by explicitly including oxygen coverage effects that lower both surface free energies and the sticking coefficient of PtO 2(g). Additionally, mass-transport limitations in the gas phase may play a role. Using a parameterization that accounts for these effects, we can quantitatively reproduce a number of experiments from the literature, including pressure and temperature dependence. Lastly, this substantiates the hypothesis of ripening via PtO 2(g) as an alternative to surface-mediated ripening.« less

  9. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl

    2017-12-01

    For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.

  10. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    NASA Astrophysics Data System (ADS)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  11. Oxygen reduction reaction (orr) on bimetallic AuPt and AuPd(1 0 0)-electrodes: Effects of the heteroatomic junction on the reaction paths

    NASA Astrophysics Data System (ADS)

    Schulte, E.; Belletti, G.; Arce, M.; Quaino, P.

    2018-05-01

    The seek for materials to enhance the oxygen reduction reaction (orr) rate is a highly relevant topic due to its implication in fuel cell devices. Herein, the orr on bimetallic electrocatalysts based on Au-M (M = Pt, Pd) has been studied computationally, by performing density functional theory calculations. Bimetallic (1 0 0) electrode surfaces with two different Au:M ratios were proposed, and two possible pathways, associative and dissociative, were considered for the orr. Changes in the electronic properties of these materials with respect to the pure metals were acknowledged to gain understanding in the overall reactivity trend. The effect of the bimetallic junction on the stability of the intermediates O2 and OOH was also evaluated by means of geometrical and energetic parameters; being the intermediates preferably adsorbed on Pt/Pd atoms, but presenting in some cases higher adsorption energies compared with bare metals. Finally, the kinetics of the Osbnd O bond breaking in O2∗ and OOH∗ adsorbed intermediates in the bimetallic materials and the influence of the Au-M junction were studied by means of the nudge elastic-band method. A barrierless process for the scission of O2∗ was found in Au-M for the higher M ratios. Surprisingly, for Au-M with lower M ratios, the barriers were much lower than for pure Au surfaces, suggesting a highly reactive surface towards the orr. The Osbnd O scission of the OOH∗ was found to be a barrierless process in Ausbnd Pt systems and nearly barrierless in all Ausbnd Pd systems, implying that the reduction ofO2 in these systems proceeds via the full reduction of O2 to H2O , avoiding H2O2 formation.

  12. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    PubMed Central

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-01-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode – a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2–based nanowire arrays for constructing next-generation supercapacitors. PMID:24132040

  13. Fabrication of functional ultrathin single-crystal nanowires from quasi-one dimensional van der Waals crystals Ta2(Pd or Pt)3Se8

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Zhu, Yibo; Sanchez, Ana; Antipina, Liubov; Sorokin, Pavel

    Micromechanical exfoliation or wet exfoliation of two-dimensional van der Waals materials has triggered an explosive interest in 2D material research. In our work, we extend this idea to 1D van der Waals material. By using micromechanical exfoliation or wet exfoliation, 1D nanowire with size as small as six molecular ribbons can be readily achieved in the Ta2(Pd or Pt)3Se8 system. The semiconducting properties of exfoliated Ta2Pd3Se8 nanowires show n-type, whereas Ta2Pt3Se8 nanowires are p-type. Our electronic band structure calculation for Ta2Pd3Se8 nanowire reveals that from multi-ribbon to single-ribbon the band gap evolves from indirect 0.5eV in bulk to direct 1eV in single-ribbon. A functional ``NOT'' gate consisting of field-effect transistors based on these two types of complementary nanowires has also been successfully realized. Moreover, the photocurrent response of Ta2Pd3Se8 nanowire transistors has been studied as well. Ta2(Pd or Pt)3Se8 system, as an intrinsic quasi-1D material, provides a viable platform for the study of low dimensional condensed matter physics. We acknowledge the financial support from DOE and BoRSF.

  14. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y2 O3 -ZrO2 Electrolyte of Solid Oxide Fuel Cells.

    PubMed

    Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping

    2017-03-09

    Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

    PubMed Central

    Baccar, Hamdi; Clément, Pierrick; Abdelghani, Adnane

    2015-01-01

    Summary Here we report on the gas sensing properties of multiwalled carbon nanotubes decorated with sputtered Pt or Pd nanoparticles. Sputtering allows for an oxygen plasma treatment that removes amorphous carbon from the surface of the carbon nanotubes and creates oxygenated surface defects in which metal nanoparticles nucleate within a few minutes. The decoration with the 2 nm Pt or the 3 nm Pd nanoparticles is very homogeneous. This procedure is performed at the device level (i.e., for carbon nanotubes deposited onto sensor substrates) for many devices in one batch, which illustrates the scalability for the mass production of affordable nanosensors. The response to selected aromatic and non-aromatic volatile organic compounds, as well as pollutant gases has been studied. Pt- and Pd-decorated multiwalled carbon nanotubes show a fully reversible response to the non-aromatic volatile organic compounds tested when operated at room temperature. In contrast, these nanomaterials were not responsive to the aromatic compounds studied (measured at concentrations up to 50 ppm). Therefore, these sensors could be useful in a small, battery-operated alarm detector, for example, which is able to discriminate aromatic from non-aromatic volatile organic compounds in ambient. PMID:25977863

  16. Ultra-thin L1{sub 0}-FePt for perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Pin; Chow, Gan Moog; Chen, Jing-Sheng, E-mail: msecj@nus.edu.sg

    2014-05-07

    Perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves (PSVs) with ultra-thin L1{sub 0}-FePt alloy free layer possessing high anisotropy and thermal stability have been fabricated and studied. The thickness of the L1{sub 0}-FePt layer was varied between 2 and 4 nm. The PSV became increasingly decoupled with reduced L1{sub 0}-FePt thickness due to the larger difference between the coercivity of the L1{sub 0}-FePt and [Co/Pd]{sub 30} films. The PSV with an ultra-thin L1{sub 0}-FePt free layer of 2 nm displayed a high K{sub u} of 2.21 × 10{sup 7} ergs/cm{sup 3}, high thermal stability of 84 and a largest giant magnetoresistance of 0.54%.

  17. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    PubMed

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H 2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H 2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H 2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  18. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  19. Detectors based on Pd-doped and PdO-functionalized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Postica, V.; Lupan, O.; Ababii, N.; Hoppe, M.; Adelung, R.; Chow, L.; Sontea, V.; Aschehoug, P.; Viana, V.; Pauporté, Th.

    2018-02-01

    In this work, zinc oxide (ZnO) nanostructured films were grown using a simple synthesis from chemical solutions (SCS) approach from aqueous baths at relatively low temperatures (< 95 °C). The samples were doped with Pd (0.17 at% Pd) and functionalized with PdO nanoparticles (NPs) using the PdCl2 aqueous solution and subsequent thermal annealing at 650 °C for 30 min. The morphological, micro-Raman and optical properties of Pd modified samples were investigated in detail and were demonstrated to have high crystallinity. Gas sensing studies unveiled that compared to pure ZnO films, the Pd-doped ZnO (ZnO:Pd) nanostructured films showed a decrease in ethanol vapor response and slight increase in H2 response with low selectivity. However, the PdO-functionalized samples showed excellent H2 gas sensing properties with possibility to detect H2 gas even at room temperature (gas response of 2). Up to 200 °C operating temperature the samples are highly selective to H2 gas, with highest response of 12 at 150 °C. This study demonstrates that surface functionalization of n-ZnO nanostructured films with p-type oxides is very important for improvement of gas sensing properties.

  20. Energy efficiency enhancement of ethanol electrooxidation on Pd-CeO(2)/C in passive and active polymer electrolyte-membrane fuel cells.

    PubMed

    Bambagioni, Valentina; Bianchini, Claudio; Chen, Yanxin; Filippi, Jonathan; Fornasiero, Paolo; Innocenti, Massimo; Lavacchi, Alessandro; Marchionni, Andrea; Oberhauser, Werner; Vizza, Francesco

    2012-07-01

    Pd nanoparticles have been generated by performing an electroless procedure on a mixed ceria (CeO(2))/carbon black (Vulcan XC-72) support. The resulting material, Pd-CeO(2)/C, has been characterized by means of transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray diffraction (XRD) techniques. Electrodes coated with Pd-CeO(2)/C have been scrutinized for the oxidation of ethanol in alkaline media in half cells as well as in passive and active direct ethanol fuel cells (DEFCs). Membrane electrode assemblies have been fabricated using Pd-CeO(2)/C anodes, proprietary Fe-Co cathodes, and Tokuyama anion-exchange membranes. The monoplanar passive and active DEFCs have been fed with aqueous solutions of 10 wt% ethanol and 2 M KOH, supplying power densities as high as 66 mW cm(-2) at 25 °C and 140 mW cm(-2) at 80 °C. A comparison with a standard anode electrocatalyst containing Pd nanoparticles (Pd/C) has shown that, at even metal loading and experimental conditions, the energy released by the cells with the Pd-CeO(2)/C electrocatalyst is twice as much as that supplied by the cells with the Pd/C electrocatalyst. A cyclic voltammetry study has shown that the co-support ceria contributes to the remarkable decrease of the onset oxidation potential of ethanol. It is proposed that ceria promotes the formation at low potentials of species adsorbed on Pd, Pd(I)-OH(ads), that are responsible for ethanol oxidation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    NASA Astrophysics Data System (ADS)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  2. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    PubMed

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  3. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Highly Unsaturated Platinum and Palladium Carbenes PtC3 and PdC3 Isolated and Characterized in the Gas Phase

    PubMed Central

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.

    2016-01-01

    Abstract Carbenes of platinum and palladium, PtC3 and PdC3, were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and ab initio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty‐six isotopologues. The results are consistent with the proposal of an autogenic isolobal relationship between O, Au+, and Pt atoms. PMID:26879473

  5. Highly Unsaturated Platinum and Palladium Carbenes PtC 3 and PdC 3 Isolated and Characterized in the Gas Phase

    DOE PAGES

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.; ...

    2016-02-16

    Carbenes of platinum and palladium, PtC 3 and PdC 3 , were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and abinitio calculations confirm that both molecules are linear. The geometry of PtC 3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues. In conclusion, the results are consistent with the proposal of an autogenic isolobal relationship between O, Au + , and Ptatoms.

  6. Corrosion and Wear Response of Oxide-Reinforced Nickel Composite Coatings

    NASA Astrophysics Data System (ADS)

    Tirlapur, Pradeep; Muniprakash, M.; Srivastava, Meenu

    2016-07-01

    Various grades of fuels are used in automobiles, as a result the engine components are continuously subjected to simultaneous action of corrosion and wear. Ni-SiC composite coating is the most widely investigated and commercialized wear-resistant coating in the automotive industry. However, this coating cannot be used at temperatures above 450 °C due to the tendency of SiC to react with Ni and form brittle silicides. An alternate approach is to use oxide-reinforced coatings. In the present study, zirconia, ZrO2 and, yttria-stabilized zirconia, YSZ-reinforced Ni composite coatings have been developed by electrodeposition method. It was observed from the microhardness studies that there is no significant difference in the values for Ni-SiC and Ni-ZrO2 coatings. The corrosion behavior was evaluated using polarization and electrochemical impedance studies. The studies showed that oxide particle-reinforced Ni coatings possessed better corrosion resistance due to their lower corrosion current density, I corr. Tribo-corrosion studies were carried out to understand the synergistic effect of wear and corrosion on the performance of Ni-based composite coatings in 0.5 M Na2SO4. Among various composite coatings, Ni-YSZ exhibited less material loss thereby showing better tribo-corrosion behavior.

  7. Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires

    NASA Astrophysics Data System (ADS)

    Pan, Ko-Ying; Wei, Da-Hua

    2018-01-01

    Platinum nanoparticles (Pt NPs) were decorated on vanadium pentoxide nanowires (V2O5 NWs) to form the core-shelled vanadium-platinum nanowires (Pt@V2O5 NWs) and their electrochemical activities for methanol oxidation were investigated. The synthetic procedure involved the synthesis of abundant vanadium pentoxide nanowires (V2O5 NWs) by a direct vapor-solid growth process (VS method), followed by atomic layer depositions (ALD) of platinum nanoparticles (Pt NPs) onto the V2O5 NWs. After the physical examinations, three designed deposition parameters (50, 100 and 150 cycles) of Pt NPs onto the V2O5 NWs by ALD process were successful. From the measurements of current-voltage (I-V) and cyclic voltammetry (CV) curves respectively, both the conductivity and the ratio of the forward anodic peak current (IF) to the reverse anodic peak current (IR) are enhancing proportionately to the deposition cycles of ALD process, which denotes that coating Pt atomic layers onto V2O5 nanowires indeed improves the catalytic performances than that of pure V2O5 nanowires.

  8. Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun

    2017-08-01

    Thermally sprayed coatings are essentially layered materials, and lamellar interfaces are of great importance to coatings' performances. In the present study, to investigate the microstructures and defect features at thermally sprayed coating interfaces, homoepitaxial 8 mol.% yttria-stabilized zirconia (YSZ) and heteroepitaxial lanthanum zirconia (LZ) films were fabricated. The epitaxial interfaces were examined by high-resolution transmission electron microscope (HR-TEM) in detail. As a result, we report, for the first time, an anomalous incommensurate homoepitaxial growth with mismatch-induced dislocations in thermally sprayed YSZ splats to create a homointerface. We also find the anomalous heteroepitaxial growth in thermally sprayed LZ splats. The mechanism of the anomalous incommensurate growth was analyzed in detail. Essentially, it is a pseudo-heteroepitaxy because of the lattice mismatch between the film and the locally heated substrate, as the locally heated substrate is significantly strained by its cold surroundings. Moreover, the super-high-density dislocations were found in the interfacial region, which resulted from sufficient thermal fluctuations and extremely rapid cooling rates. Both the anomalous lattice mismatch and super-high-density dislocations lead to weak interfaces and violent cracking in thermally sprayed coatings. These were also the essential differences between the conventional and the present epitaxy by thermal spray technique.

  9. Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.

    1990-01-01

    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.

  10. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    PubMed

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Elevated Temperature Solid Particle Erosion Performance of Plasma-Sprayed Co-based Composite Coatings with Additions of Al2O3 and CeO2

    NASA Astrophysics Data System (ADS)

    Nithin, H. S.; Desai, Vijay; Ramesh, M. R.

    2017-11-01

    In this paper, investigation into solid particle erosion behavior of atmospheric plasma-sprayed composite coating of CoCrAlY reinforced with Al2O3 and CeO2 oxides on Superni 76 at elevated temperature of 600 °C is presented. Alumina particles are used as erodent at two impact angles of 30° and 90°. The microstructure, porosity, hardness, toughness and adhesion properties of the as-sprayed coatings are studied. The effects of temperature and phase transformation in the coatings during erosion process are analyzed using XRD and EDS techniques. Optical profilometer is used for accurate elucidation of erosion volume loss. CoCrAlY/CeO2 coating showed better erosion resistance with a volume loss of about 50% of what was observed in case of CoCrAlY/Al2O3/YSZ coating. Lower erosion loss is observed at 90° as compared to 30° impact angle. The erosion mechanism evaluated using SEM micrograph revealed that the coatings experienced ductile fracture exhibiting severe deformation with unusual oxide cracks. Reinforced metal oxides provide shielding effect for erodent impact, enabling better erosion resistance. The oxidation of the coating due to high-temperature exposure reforms erosion process into oxidation-modified erosion process.

  12. Thermal Measurement during Electrolysis of Pd-Ni Thin-film -Cathodes in Li2SO4/H2O Solution

    NASA Astrophysics Data System (ADS)

    Castano, C. H.; Lipson, A. G.; S-O, Kim; Miley, G. H.

    2002-03-01

    Using LENR - open type calorimeters, measurements of excess heat production were carried out during electrolysis in Li_2SO_4/H_2O solution with a Pt-anode and Pd-Ni thin film cathodes (2000-8000 Åthick) sputtered on the different dielectric substrates. In order to accurately evaluate actual performance during electrolysis runs in the open-type calorimeter used, considering effects of heat convection, bubbling and possible H_2+O2 recombination, smooth Pt sheets were used as cathodes. Pt provides a reference since it does not produce excess heat in the light water electrolyte. To increase the accuracy of measurements the water dissociation potential was determined for each cathode taking into account its individual over-voltage value. It is found that this design for the Pd-Ni cathodes resulted in the excess heat production of ~ 20-25 % of input power, equivalent to ~300 mW. In cases of the Pd/Ni- film fracture (or detachment from substrate) no excess heat was detected, providing an added reference point. These experiments plus use of optimized films will be presented.

  13. Comparative study of n-hexane aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts: Clean and sulfur-containing feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, G.; Padro, C.L.; Resasco, D.E.

    The n-hexane aromatization has been studied on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts at 773 K using sulfur-free and 0.6 ppm sulfur containing feedstocks. Examination of the product distribution as a function of conversion suggests that the formation of benzene is preceded by the formation of hexenes. In contrast with previous reports, it has been found that the Pt/KL catalyst exhibits much higher aromatization activity than the Pt/Mg(Al)O catalyst. On Pt/KL the main product is benzene, with hexenes and lighter compounds as the principal by-products. By contrast, on the Pt/Mg(Al)O, the main products were hexenes. Since hexenes are primary productsmore » and benzene is a secondary product, the exceptional aromatization activity of Pt/KL is explained in terms of its ability to convert hexene into benzene. In the presence of sulfur, the Pt/KL exhibits a rapid loss in n-hexane conversion and benzene selectivity. Under these conditions, the sulfided Pt/KL catalyst presents a catalytic behavior typical of Pt/Mg(Al)O and Pt/SiO{sub 2}, generating larger amounts of hexenes. The observed results are consistent with the hypothesis that the most important role of the zeolite is to inhibit bimolecular interactions that lead to coke formation. The formation of coke has the net effect of selectively deactivating aromatization sites which require a large ensemble of atoms to constitute the active site but not affecting the dehydrogenation activity which is less ensemble-sensitive. Therefore, those particles that are not protected against coking inside the channels of the zeolite rapidly become unselective. In support of this hypothesis, the hydrogenolysis reaction which also requires a large ensemble of atoms, decreases in parallel with the aromatization reaction. The high sensitivity of Pt/KL to sulfur may be due to a combination of effects which may involve growth of metal particles outside the zeolite which would become unselective and partial poisoning of the

  14. Comparative Reliability Studies and Analysis of Au, Pd-Coated Cu and Pd-Doped Cu Wire in Microelectronics Packaging

    PubMed Central

    Chong Leong, Gan; Uda, Hashim

    2013-01-01

    This paper compares and discusses the wearout reliability and analysis of Gold (Au), Palladium (Pd) coated Cu and Pd-doped Cu wires used in fineline Ball Grid Array (BGA) package. Intermetallic compound (IMC) thickness measurement has been carried out to estimate the coefficient of diffusion (Do) under various aging conditions of different bonding wires. Wire pull and ball bond shear strengths have been analyzed and we found smaller variation in Pd-doped Cu wire compared to Au and Pd-doped Cu wire. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The obtained weibull slope, β of three bonding wires are greater than 1.0 and belong to wearout reliability data point. Pd-doped Cu wire exhibits larger time-to-failure and cycles-to-failure in both wearout reliability tests in Highly Accelerated Temperature and Humidity (HAST) and Temperature Cycling (TC) tests. This proves Pd-doped Cu wire has a greater potential and higher reliability margin compared to Au and Pd-coated Cu wires. PMID:24244344

  15. High-Temperature Creep Degradation of the AM1/NiAlPt/EBPVD YSZ System

    NASA Astrophysics Data System (ADS)

    Riallant, Fanny; Cormier, Jonathan; Longuet, Arnaud; Milhet, Xavier; Mendez, José

    2014-01-01

    The failure mechanisms of a NiAlPt/electron beam physical vapor deposition yttria-stabilized-zirconia thermal barrier coating system deposited on the AM1 single crystalline substrate have been investigated under pure creep conditions in the temperature range from 1273 K to 1373 K (1000 °C to 1100 °C) and for durations up to 1000 hours. Doubly tapered specimens were used allowing for the analysis of different stress states and different accumulated viscoplastic strains for a given creep condition. Under such experiments, two kinds of damage mechanisms were observed. Under low applied stress conditions ( i.e., long creep tests), microcracking is localized in the vicinity of the thermally grown oxide (TGO). Under high applied stress conditions, an unconventional failure mechanism at the substrate/bond coat interface is observed because of large creep strains and fast creep deformation, hence leading to a limited TGO growth. This unconventional failure mechanism is observed although the interfacial bond coat/top coat TGO thickening is accelerated by the mechanical applied stress beyond a given stress threshold.

  16. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.

    The impact of particle size of ZrO 2-supported Pd and of alloying with Ag was explored for hydrogenation of phenol in aqueous phase. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO 2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO 2 sample. The catalytic activity normalized to accessible Pd (turnover frequency, TOF) increased with the particle size of Pd. Reaction orders in phenol and H 2 and lower activation energies suggest that smaller particles bind the reacting substrates more strongly, leading to higher surface coverages by phenol. But, surprisingly,more » smaller Pd particles exhibited lower TOFs. The lower activity of the small Pd particles is attributed to lower activation entropies for the strongly bound species. Furthermore, the presence of Ag increased the catalyst activity by decreasing the apparent energy of activation and increasing the coverages of phenol and H 2, without negatively affecting the activation entropy.« less

  17. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    DOE PAGES

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.; ...

    2017-08-05

    The impact of particle size of ZrO 2-supported Pd and of alloying with Ag was explored for hydrogenation of phenol in aqueous phase. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO 2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO 2 sample. The catalytic activity normalized to accessible Pd (turnover frequency, TOF) increased with the particle size of Pd. Reaction orders in phenol and H 2 and lower activation energies suggest that smaller particles bind the reacting substrates more strongly, leading to higher surface coverages by phenol. But, surprisingly,more » smaller Pd particles exhibited lower TOFs. The lower activity of the small Pd particles is attributed to lower activation entropies for the strongly bound species. Furthermore, the presence of Ag increased the catalyst activity by decreasing the apparent energy of activation and increasing the coverages of phenol and H 2, without negatively affecting the activation entropy.« less

  18. Mixed cerium-platinum oxides: Electronic structure of [CeO]Pt{sub n} (n = 1, 2) and [CeO{sub 2}]Pt complex anions and neutrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Manisha; Kafader, Jared O.; Topolski, Josey E.

    The electronic structures of several small Ce–Pt oxide complexes were explored using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. Pt and Pt{sub 2} both accept electron density from CeO diatomic molecules, in which the cerium atom is in a lower-than-bulk oxidation state (+2 versus bulk +4). Neutral [CeO]Pt and [CeO]Pt{sub 2} complexes are therefore ionic, with electronic structures described qualitatively as [CeO{sup +2}]Pt{sup −2} and [CeO{sup +}]Pt{sub 2}{sup −}, respectively. The associated anions are described qualitatively as [CeO{sup +}]Pt{sup −2} and [CeO{sup +}]Pt{sub 2}{sup −2}, respectively. In both neutrals and anions, the most stable molecularmore » structures determined by calculations feature a distinct CeO moiety, with the positively charged Ce center pointing toward the electron rich Pt or Pt{sub 2} moiety. Spectral simulations based on calculated spectroscopic parameters are in fair agreement with the spectra, validating the computationally determined structures. In contrast, when Pt is coupled with CeO{sub 2}, which has no Ce-localized electrons that can readily be donated to Pt, the anion is described as [CeO{sub 2}]Pt{sup −}. The molecular structure predicted computationally suggests that it is governed by charge-dipole interactions. The neutral [CeO{sub 2}]Pt complex lacks charge-dipole stabilizing interactions, and is predicted to be structurally very different from the anion, featuring a single Pt–O–Ce bridge bond. The PE spectra of several of the complexes exhibit evidence of photodissociation with Pt{sup −} daughter ion formation. The electronic structures of these complexes are related to local interactions in Pt-ceria catalyst-support systems.« less

  19. Reverse Micelle Synthesis and Characterization of Supported Pt/Ni Bimetallic Catalysts on gamma-Al2O3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Cheney; J Lauterbach; J Chen

    2011-12-31

    Reverse micelle synthesis was used to improve the nanoparticle size uniformity of bimetallic Pt/Ni nanoparticles supported on {gamma}-Al{sub 2}O{sub 3}. Two impregnation methods were investigated to optimize the use of the micelle method: (1) step-impregnation, where Ni nanoparticles were chemically reduced in microemulsion and then supported, followed by Pt deposition using incipient wetness impregnation, and (2) co-impregnation, where Ni and Pt were chemically reduced simultaneously in microemulsion and then supported. Transmission electron microscopy (TEM) was used to characterize the particle size distribution. Atomic absorption spectroscopy (AAS) was used to perform elemental analysis of bimetallic catalysts. Extended X-ray absorption fine structuremore » (EXAFS) measurements were utilized to confirm the formation of the Pt-Ni bimetallic bond in the step-impregnated catalyst. CO pulse chemisorption and Fourier transform infrared spectroscopy (FTIR) studies of 1,3-butadiene hydrogenation in a batch reactor were performed to determine the catalytic activity. Step-impregnated Pt/Ni catalyst demonstrated enhanced hydrogenation activity over the parent monometallic Pt and Ni catalysts due to bimetallic bond formation. The catalyst synthesized using co-impregnation showed no enhanced activity, behaving similarly to monometallic Ni. Overall, our results indicate that reverse micelle synthesis combined with incipient wetness impregnation produced small, uniform nanoparticles with bimetallic bonds that enhanced hydrogenation activity.« less

  20. Seed-mediated photodeposition route to Ag-decorated SiO2@TiO2 microspheres with ideal core-shell structure and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jianqi; Guo, Xiaohua; Ge, Hongguang; Tian, Guanghui; Zhang, Qiang

    2018-03-01

    Ag-decorated SiO2@TiO2 microspheres (SiO2@TiO2-Ag) with ideal core-shell structure and enhanced photocatalytic activity were successfully fabricated by combining both coating anatase TiO2 on the surface of SiO2 spheres and subsequent depositing face-centered cubic Ag nanoparticles (NPs) on the coated TiO2 surface via novel sol-gel method and Ag-seed-mediated photodeposition (PD) route, respectively. The morphology, structure, composition and optical properties of the resulting composites were characterized in detail. The results reveal that the monodisperse SiO2 spheres of ∼260 nm were covered uniformly and perfectly by the TiO2 nanoparticle coating layer with the thickness of ca. 55 nm by the novel sol-gel method. Further, homogeneously and highly dispersed Ag NPs with an average size of 8 ± 1.5 nm were strongly anchored onto the TiO2 surface in SiO2@TiO2 core-shell spheres by the modified PD process (Ag-seed-mediated PD route), whereas polydispersed Ag aggregates and detached Ag NPs were irregularly deposited over the TiO2 surface in previous works, which is the inherent problem and has not been effectively solved for depositing noble metal NPs such as Au, Ag, Pt, Pd on TiO2 surface by conventional PD method. The formation mechanism of small and uniformly dispersed Ag NPs with narrow size distribution via the modified PD method is tentatively explained by both nucleation kinetics and growth kinetics. The key reason is that the pre-deposited seeds firmly tethered on SiO2@TiO2 spheres served as nucleation sites and anchoring points for the further nucleation and subsequent growth of Ag via photoreduction of Ag+.

  1. Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study

    NASA Astrophysics Data System (ADS)

    Habibi-Yangjeh, Aziz; Basharnavaz, Hadi

    2018-05-01

    We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.

  2. Methane oxidation on Pd–Ceria: A DFT study of the mechanism over PdxCe1-xO2, Pd, and PdO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayernick, Adam D.; Janik, Michael J.

    2011-02-14

    Palladium/ceria exhibits unique catalytic activity for hydrocarbon oxidation; however, the chemical and structural properties of active sites on the palladium–ceria surface are difficult to characterize. Strong interactions between palladium and the ceria support stabilize oxidized Pdδ+ species, which may contribute to the significant activity of Pd/ceria for methane oxidation. We present a density functional theory (DFT + U) investigation into methane oxidation over Pd/ceria and quantify the activity of the Pd xCe 1-xO 2(1 1 1) mixed oxide surface in comparison with the PdO(1 0 0) and Pd(1 1 1) surfaces. The methane activation barrier is lowest over the Pdmore » xCe 1-xO 2(1 1 1) surface, even lower than over the Pd(1 1 1) surface or low coordinated stepped or kinked Pd sites. Subsequent reaction steps in complete oxidation, including product desorption and vacancy refilling, are considered to substantiate that methane activation remains the rate-limiting step despite the low barrier over Pd xCe 1-xO 2(1 1 1). The low barrier over the Pd xCe 1-xO 2(1 1 1) surface demonstrates that mixed ceria-noble metal oxides offer the potential for improved hydrocarbon oxidation performance with respect to dispersed noble metal particles on ceria.« less

  3. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    PubMed Central

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  4. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-01-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  5. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-05-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  6. CO 2 hydrogenation over oxide-supported PtCo catalysts: The role of the oxide support in determining the product selectivity

    DOE PAGES

    Kattel, Shyam; Yu, Weiting; Yang, Xiaofang; ...

    2016-05-09

    By simply changing the oxide support, the selectivity of a metal–oxide catalysts can be tuned. For the CO 2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO 2, ZrO 2, and TiO 2), replacing a TiO 2 support by CeO 2 or ZrO 2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo–oxide interface, leading to a different product selectivity. Lastly, these results reveal mechanistic insights into how the catalytic performance of metal–oxide catalysts can be fine-tuned.

  7. Sintering behavior of spin-coated FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Shishou; Jia, Zhiyong; Zoto, I.; Reed, D.; Nikles, David E.; Harrell, J. W.; Thompson, Gregory; Mankey, Gary; Krishnamurthy, Vemuru V.; Porcar, L.

    2006-04-01

    FePt and [FePt]95Au5 nanoparticles with an average size of about 4 nm were chemically synthesized and spin coated onto silicon substrates. Samples were subsequently thermally annealed at temperatures ranging from 250 to 500 °C for 30 min. Three-dimensional structural characterization was carried out with small-angle neutron scattering (SANS) and small-angle x-ray diffraction (SAXRD) measurements. For both FePt and [FePt]95Au5 particles before annealing, SANS measurements gave an in-plane coherence length parameter a=7.3 nm, while SAXRD measurements gave a perpendicular coherence length parameter c=12.0 nm. The ratio of c/a is about 1.64, indicating the as-made particle array has a hexagonal close-packed superstructure. For both FePt and FePtAu nanoparticles, the diffraction peaks shifted to higher angles and broadened with increasing annealing temperature. This effect corresponds to a shrinking of the nanoparticle array, followed by agglomeration and sintering of the nanoparticles, resulting in the eventual loss of positional order with increasing annealing temperature. The effect is more pronounced for FePtAu than for FePt. Dynamic coercivity measurements show that the FePtAu nanoparticles have both higher intrinsic coercivity and higher switching volume at the same annealing temperature. These results are consistent with previous studies that show that additive Au both lowers the chemical ordering temperature and promotes sintering.

  8. From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst.

    PubMed

    Yong, P; Paterson-Beedle, M; Mikheenko, I P; Macaskie, L E

    2007-04-01

    Biosynthesis of nano-scale platinum and palladium was achieved via enzymatically-mediated deposition of metal ions from solution. The bio-accumulated Pt(0) and Pd(0) crystals were dried, applied onto carbon paper and tested as anodes in a polymer electrolyte membrane (PEM) fuel cell for power production. Up to 100% and 81% of the maximum power generation was achieved by the bio-Pt and bio-Pd catalysts, respectively, compared to commercial fuel cell grade Pt catalyst. Hence, biomineralisation could pave the way for economical production of fuel cell catalysts since previous studies have shown that precious metals can be biorecovered from wastes into catalytically active bionanomaterials.

  9. Review of model sensor studies on Pd/SnO2(110) surfaces

    NASA Technical Reports Server (NTRS)

    Fryberger, Teresa B.; Semancik, Steve

    1990-01-01

    Studies performed at the National Institute of Standards and Technology on the model gas sensor system, Pd/SnO2(110), are reviewed. Adsorption and interfacial effects play a primary role in the gas sensing process, as they do in catalysis. For this reason, researchers have used a variety of surface sensitive techniques in the research, including x ray and ultraviolet photoelectron spectroscopies (XPS and UPS), low energy electron diffraction (LEED), and ion scattering spectroscopy (ISS). By combining these complementary techniques with in situ gas response (conductance) measurements, researchers were able to correlate directly sensor activity with the composition and structure of the Pd/SnO2 interface. Although the intent of this work is to develop an understanding of gas sensing mechanisms, its relevance to Pt/SnO2 catalytic systems is obvious.

  10. Effect of flattened surface morphology of anodized aluminum oxide templates on the magnetic properties of nanoporous Co/Pt and Co/Pd thin multilayered films

    NASA Astrophysics Data System (ADS)

    Nguyen, T. N. Anh; Fedotova, J.; Kasiuk, J.; Bayev, V.; Kupreeva, O.; Lazarouk, S.; Manh, D. H.; Vu, D. L.; Chung, S.; Åkerman, J.; Altynov, V.; Maximenko, A.

    2018-01-01

    For the first time, nanoporous Al2O3 templates with smoothed surface relief characterized by flattened interpore areas were used in the fabrication of Co/Pd and Co/Pt multilayers (MLs) with strong perpendicular magnetic anisotropy (PMA). Alternating gradient magnetometry (AGM) revealed perfectly conserved PMA in the Co/Pd and Co/Pt porous MLs (antidot arrays) with a ratio of remanent magnetization (Mr) to saturation magnetization (MS) of about 0.99, anisotropy fields (Ha) of up to 2.6 kOe, and a small deviation angle of 8° between the easy magnetization axis and the normal to the film surface. The sufficient magnetic hardening of the porous MLs with enhanced coercive field HC of up to ∼1.9 kOe for Co/Pd and ∼1.5 kOe for Co/Pt MLs, as compared to the continuous reference samples (∼1.5-2 times), is associated with the pinning of the magnetic moments on the nanopore edges. Application of the Stoner-Wohlfarth model for fitting the experimental M/MS(H) curves yielded clear evidence of the predominantly coherent rotation mechanism of magnetization reversal in the porous films.

  11. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio S.; Marple, Basil R.

    2017-03-01

    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  12. The role of charge transfer in the oxidation state change of Ce atoms in the TM13-CeO2(111) systems (TM = Pd, Ag, Pt, Au): a DFT + U investigation.

    PubMed

    Tereshchuk, Polina; Freire, Rafael L H; Ungureanu, Crina G; Seminovski, Yohanna; Kiejna, Adam; Da Silva, Juarez L F

    2015-05-28

    Despite extensive studies of transition metal (TM) clusters supported on ceria (CeO2), fundamental issues such as the role of the TM atoms in the change in the oxidation state of Ce atoms are still not well understood. In this work, we report a theoretical investigation based on static and ab initio molecular dynamics density functional theory calculations of the interaction of 13-atom TM clusters (TM = Pd, Ag, Pt, Au) with the unreduced CeO2(111) surface represented by a large surface unit cell and employing Hubbard corrections for the strong on-site Coulomb correlation in the Ce f-electrons. We found that the TM13 clusters form pyramidal-like structures on CeO2(111) in the lowest energy configurations with the following stacking sequence, TM/TM4/TM8/CeO2(111), while TM13 adopts two-dimensional structures at high energy structures. TM13 induces a change in the oxidation state of few Ce atoms (3 of 16) located in the topmost Ce layer from Ce(IV) (itinerant Ce f-states) to Ce(III) (localized Ce f-states). There is a charge flow from the TM atoms to the CeO2(111) surface, which can be explained by the electronegativity difference between the TM (Pd, Ag, Pt, Au) and O atoms, however, the charge is not uniformly distributed on the topmost O layer due to the pressure induced by the TM13 clusters on the underlying O ions, which yields a decrease in the ionic charge of the O ions located below the cluster and an increase in the remaining O ions. Due to the charge flow mainly from the TM8-layer to the topmost O-layer, the charge cannot flow from the Ce(IV) atoms to the O atoms with the same magnitude as in the clean CeO2(111) surface. Consequently, the effective cationic charge decreases mainly for the Ce atoms that have a bond with the O atoms not located below the cluster, and hence, those Ce atoms change their oxidation state from IV to III. This increases the size of the Ce(III) compared with the Ce(IV) cations, which builds-in a strain within the topmost Ce layer, and

  13. One-Electron Oxidation of [M(P(t) Bu3 )2 ] (M=Pd, Pt): Isolation of Monomeric [Pd(P(t) Bu3 )2 ](+) and Redox-Promoted C-H Bond Cyclometalation.

    PubMed

    Troadec, Thibault; Tan, Sze-Yin; Wedge, Christopher J; Rourke, Jonathan P; Unwin, Patrick R; Chaplin, Adrian B

    2016-03-07

    Oxidation of zero-valent phosphine complexes [M(P(t) Bu3 )2 ] (M=Pd, Pt) has been investigated in 1,2-difluorobenzene solution using cyclic voltammetry and subsequently using the ferrocenium cation as a chemical redox agent. In the case of palladium, a mononuclear paramagnetic Pd(I) derivative was readily isolated from solution and fully characterized (EPR, X-ray crystallography). While in situ electrochemical measurements are consistent with initial one-electron oxidation, the heavier congener undergoes C-H bond cyclometalation and ultimately affords the 14 valence-electron Pt(II) complex [Pt(κ(2) PC -P(t) Bu2 CMe2 CH2 )(P(t) Bu3 )](+) with concomitant formation of [Pt(P(t) Bu3 )2 H](+) . © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Thermal Conductivity and Expansion Coefficient of (Sm1- x Yb x )2Ce2O7 Ceramics for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Xiaoge, Chen; Hongsong, Zhang; Kun, Sun; Xudan, Dang; Haoming, Zhang; Bo, Ren; An, Tang

    2017-12-01

    In the current paper, the (Sm1- x Yb x )2Ce2O7 ceramics were prepared via sol-gel and high-temperature solid reaction methods. The phase composition, microstructure, thermal conductivity, and expansion coefficient were investigated. Results indicate that pure (Sm1- x Yb x )2Ce2O7 ceramics with single defect-fluorite structure are synthesized successfully. Owing to the phonon scattering caused by Yb addition, the thermal conductivity of (Sm1- x Yb x )2Ce2O7 ceramics decreases with increasing Yb2O3 content at identical temperatures, which is lower than that of YSZ. Due to the relatively low ionic radius of Yb3+ ions, the addition of Yb2O3 decreases the thermal expansion coefficient of (Sm1- x Yb x )2Ce2O7 ceramics, which is higher than that of 8YSZ. The synthesized (Sm1- x Yb x )2Ce2O7 ceramics can be explored as candidate materials for thermal barrier coatings.

  15. Pt/Pd electrocatalyst electrons for fuel cells

    DOEpatents

    Stonehart, P.

    1981-11-03

    This invention relates to improved electrochemical cells and to novel electrodes for use therein. In particular, the present invention comprises a fuel cell used primarily for the consumption of impure hydrogen fuels containing carbon monoxide or carbonaceous fuels where the electrode in contact with the fuel is not substantially poisoned by carbon monoxide. The anode of the fuel cell comprises a Pd/Pt alloy supported on a graphitized or partially graphitized carbon material. Fuel cells which comprise as essential elements a fuel electrode, an oxidizing electrode, and an electrolyte between said electrodes are devices for the direct production of electricity through the electrochemical combustion of a fuel and oxidant. These devices are recognized for their high efficiency as energy conversion units, since unlike conventional combustion engines, they are not subject to the limitations of the Carnot heat cycle. It is the primary object of the present invention to provide an electrode having high electrochemical activity for an electrochemical cell. It is another object of the present invention to provide an electrode having an electro-catalyst which is highly resistant to the corrosive environment of an electrochemical cell.

  16. Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Sufen; Xiao, Weiping; Wang, Jie

    Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. We report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to Pd6CoCu/Cmore » and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Furthermore, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. Our findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells.« less

  17. Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction

    DOE PAGES

    Liu, Sufen; Xiao, Weiping; Wang, Jie; ...

    2016-08-01

    Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. We report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to Pd6CoCu/Cmore » and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Furthermore, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. Our findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells.« less

  18. Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-01

    Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The

  19. Density functional theory study of structural, electronic, and thermal properties of Pt, Pd, Rh, Ir, Os and PtPd X (X = Ir, Os, and Rh) alloys

    NASA Astrophysics Data System (ADS)

    Shabbir, Ahmed; Muhammad, Zafar; M, Shakil; M, A. Choudhary

    2016-03-01

    The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.

  20. Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane.

    PubMed

    An, Kwangjin; Alayoglu, Selim; Musselwhite, Nathan; Na, Kyungsu; Somorjai, Gabor A

    2014-05-14

    Selective isomerization toward branched hydrocarbons is an important catalytic process in oil refining to obtain high-octane gasoline with minimal content of aromatic compounds. Colloidal Pt nanoparticles with controlled sizes of 1.7, 2.7, and 5.5 nm were deposited onto ordered macroporous oxides of SiO2, Al2O3, TiO2, Nb2O5, Ta2O5, and ZrO2 to investigate Pt size- and support-dependent catalytic selectivity in n-hexane isomerization. Among the macroporous oxides, Nb2O5 and Ta2O5 exhibited the highest product selectivity, yielding predominantly branched C6 isomers, including 2- or 3-methylpentane, as desired products of n-hexane isomerization (140 Torr n-hexane and 620 Torr H2 at 360 °C). In situ characterizations including X-ray diffraction and ambient-pressure X-ray photoelectron spectroscopy showed that the crystal structures of the oxides in Pt/oxide catalysts were not changed during the reaction and oxidation states of Nb2O5 were maintained under both H2 and O2 conditions. Fourier transform infrared spectra of pyridine adsorbed on the oxides showed that Lewis sites were the dominant acidic site of the oxides. Macroporous Nb2O5 and Ta2O5 were identified to play key roles in the selective isomerization by charge transfer at Pt-oxide interfaces. The selectivity was revealed to be Pt size-dependent, with improved isomer production as Pt sizes increased from 1.7 to 5.5 nm. When 5.5 nm Pt nanoparticles were supported on Nb2O5 or Ta2O5, the selectivity toward branched C6 isomers was further increased, reaching ca. 97% with a minimum content of benzene, due to the combined effects of the Pt size and the strong metal-support interaction.

  1. Crystal structure and physical properties of new Ca{sub 2}TGe{sub 3} (T = Pd and Pt) germanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimczuk, T., E-mail: tomasz.klimczuk@pg.gda.pl; Xie, Weiwei; Winiarski, M.J.

    The crystallographic, electronic transport and thermal properties of Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3} are reported. The compounds crystalize in an ordered variant of the AlB{sub 2} crystal structure, in space group P6/mmm, with the lattice parameters a = 8.4876(4) Å/8.4503(5) Å and c = 4.1911(3) Å/4.2302(3) Å for Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3}, respectively. The resistivity data exhibit metallic behavior with residual-resistivity-ratios (RRR) of 13 for Ca{sub 2}PdGe{sub 3} and 6.5 for Ca{sub 2}PtGe{sub 3}. No superconducting transition is observed down to 0.4 K. Specific heat studies reveal similar values of the Debye temperatures and Sommerfeldmore » coefficients: Θ{sub D} = 298 K, γ = 4.1 mJ mol{sup −1} K{sup −2} and Θ{sub D} = 305 K, γ = 3.2 mJ mol{sup −1} K{sup −2} for Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3}, respectively. The low value of γ is in agreement with the electronic structure calculations.« less

  2. JT90 thermal barrier coated vanes

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.

    1982-01-01

    The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.

  3. Electrochemical oxidation of hydrolyzed poly oxymethylene-dimethyl ether by PtRu catalysts on Nb-doped SnO(2-δ) supports for direct oxidation fuel cells.

    PubMed

    Kakinuma, Katsuyoshi; Kim, In-Tae; Senoo, Yuichi; Yano, Hiroshi; Watanabe, Masahiro; Uchida, Makoto

    2014-12-24

    We synthesized Pt and PtRu catalysts supported on Nb-doped SnO(2-δ) (Pt/Sn0.99Nb0.01O(2-δ), PtRu/Sn0.99Nb0.01O(2-δ)) for direct oxidation fuel cells (DOFCs) using poly oxymethylene-dimethyl ether (POMMn, n = 2, 3) as a fuel. The onset potential for the oxidation of simulated fuels of POMMn (methanol-formaldehyde mixtures; n = 2, 3) for Pt/Sn0.99Nb0.01O(2-δ) and PtRu/Sn0.99Nb0.01O(2-δ) was less than 0.3 V vs RHE, which was much lower than those of two commercial catalysts (PtRu black and Pt2Ru3/carbon black). In particular, the onset potential of the oxidation reaction of simulated fuels of POMMn (n = 2, 3) for PtRu/Sn0.99Nb0.01O(2-δ) sintered at 800 °C in nitrogen atmosphere was less than 0.1 V vs RHE and is thus considered to be a promising anode catalyst for DOFCs. The mass activity (MA) of PtRu/Sn0.99Nb0.01O(2-δ) sintered at 800 °C was more than five times larger than those of the commercial catalysts in the measurement temperature range from 25 to 80 °C. Even though the MA for the methanol oxidation reaction was of the same order as those of the commercial catalysts, the MA for the formaldehyde oxidation reaction was more than five times larger than those of the commercial catalysts. Sn from the Sn0.99Nb0.01O(2-δ) support was found to have diffused into the Pt catalyst during the sintering process. The Sn on the top surface of the Pt catalyst accelerated the oxidation of carbon monoxide by a bifunctional mechanism, similar to that for Pt-Ru catalysts.

  4. A Strategy for Fabricating Porous PdNi@Pt Core-shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation

    PubMed Central

    Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei

    2015-01-01

    Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190

  5. Kinetics of oxygen-enhanced water gas shift on bimetallic catalysts and the roles of metals and support

    NASA Astrophysics Data System (ADS)

    Kugai, Junichiro

    The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However, the conventional process consists of three steps, i.e. two steps of water gas shift (WGS) and preferential oxidation (PROX) of CO, and it is not suitable for mobile applications due to the large volume of water gas shift (WGS) catalysts and conditioning and/or regeneration necessary for these catalysts. Aiming at replacing those three steps by a simple one-step process, small amount of oxygen was added to WGS (the reaction called oxygen-enhanced water gas shift or OWGS) to promote the reaction kinetics and low pyrophoric ceria-supported bimetallic catalysts were employed for stable performance in this reaction. Not only CO conversion, but also H2 yield was found to increase by the O2 addition on CeO2-supported catalysts. The characteristics of OWGS, high H2 production rate at 200 to 300°C at short contact time where unreacted O2 exists, evidenced the impact of O2 addition on surface species on the catalyst. Around 1.5 of reaction order in CO for various CeO2-supported metal catalysts for OWGS compared to reaction orders in CO ranging from -0.1 to 0.6 depending on metal species for WGS shows O2 addition decreases CO coverage to free up the active sites for co-reactant (H2O) adsorption and activation. Among the monometallic and bimetallic catalysts, Pt-Cu and Pd-Cu bimetallic catalysts were superior to monometallic catalysts in OWGS. These bimetallic components were found to form alloys where noble metal is surrounded mainly by Cu to have strong interaction between noble metal and copper resulting in high OWGS activity and low pyrophoric property. The metal loadings were optimized for CeO2-supported Pd-Cu bimetallic system and 2 wt% Pd with 5 -- 10 wt% Cu were found to be the optimum for the present OWGS condition. In the kinetic study, Pd in Pd-Cu was shown to increase the active sites for H2O

  6. Geochemical behaviour of palladium in soils and Pd/PdO model substances in the presence of the organic complexing agents L-methionine and citric acid.

    PubMed

    Zereini, Fathi; Wiseman, Clare L S; Vang, My; Albers, Peter; Schneider, Wolfgang; Schindl, Roland; Leopold, Kerstin

    2016-01-01

    Risk assessments of platinum group metal (PGE) emissions, notably those of platinum (Pt), palladium (Pd) and rhodium (Rh), have been mostly based on data regarding the metallic forms used in vehicular exhaust converters, known to be virtually biologically inert and immobile. To adequately assess the potential impacts of PGE, however, data on the chemical behaviour of these metals under ambient conditions post-emission is needed. Complexing agents with a high affinity for metals in the environment are hypothesized to contribute to an increased bioaccessibility of PGE. The purpose of this study is to examine the modulating effects of the organic complexing agents, L-methionine and citric acid, on the geochemical behavior of Pd in soils and model substances (Pd black and PdO). Batch experimental tests were conducted with soils and model substances to examine the impacts of the concentration of complexing agents, pH and length of extraction period on Pd solubility and its chemical transformation. Particle surface chemistry was examined using X-ray photoelectron spectroscopy (XPS) on samples treated with solutions under various conditions, including low and high O2 levels. Pd was observed to be more soluble in the presence of organic complexing agents, compared to Pt and Rh. Pd in soils was more readily solubilized with organic complexing agents compared to the model substances. After 7 days of extraction, L-methionine (0.1 M) treated soil and Pd black samples, for instance, had mean soluble Pd fractions of 12.4 ± 5.9% and 0.554 ± 0.024%, respectively. Surface chemistry analyses (XPS) confirmed the oxidation of metallic Pd surfaces when treated with organic complexing agents. The type of organic complexing agent used for experimental purposes was observed to be the most important factor influencing solubility, followed by solution pH and time of extraction. The results demonstrate that metallic Pd can be transformed into more bioaccessible species in the presence of

  7. Opportunities for functional oxides in yttrium oxide-titanium oxide-zirconium oxide system: Applications for novel thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Francillon, Wesley

    This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is

  8. Determination of Pd, Pt and Rh in vehicles escape fumes by GF-AAS and ICP-OES.

    PubMed

    Goncalves, Antonio; Domínguez, José R; Alvarado, José

    2008-04-15

    Automotive exhaust gases from vehicles using catalytic converters were filtered through cellulose filter papers to collect suspended particles expulsed along with the engine's escape fumes. A specially designed sample collector was used for supporting the filter papers during collection. The collector was manufactured from a new car's exhaust pipe. A cellulose circular paper filter, 11 cm diameter, was attached to one end of the pipe and kept centered by pressing it against the borders of the pipe by means of a perforated aluminum cap, slightly wider than the pipe, used to cover this end of the collector. Filter papers loaded with the solid particles were acid-digested using a modified domestic microwave oven to bring the solid material into solution. The resulting solutions were analyzed for Pt by graphite furnace atomic absorption spectrometry (GF-AAS) and for Pd and Rh by inductively coupled plasma (ICP-OES). Results indicate that concentration of these analytes in the particulate is higher for new vehicles, having new catalytic converters, than for old ones. Maximum Pd, Pt and Rh in the samples analyzed were found to be 5.36, 12.60 and 1.03 microg g(-1), respectively.

  9. Highly efficient catalytic systems based on Pd-coated microbeads

    NASA Astrophysics Data System (ADS)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  10. Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base

    DOE PAGES

    Alia, Shaun M.; Yan, Yushan

    2015-05-09

    The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 timesmore » greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.« less

  11. In situ Van der Pauw measurements of the Ni/YSZ anode during exposure to syngas with phosphine contaminant

    NASA Astrophysics Data System (ADS)

    Demircan, Oktay; Xu, Chunchuan; Zondlo, John; Finklea, Harry O.

    Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H 2, H 2O, CO, and CO 2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h -1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH 3. XRD analysis suggested that Ni 5P 2 and P 2O 5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.

  12. Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.

    PubMed

    Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin

    2010-05-01

    Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.

  13. Corrosion Behavior of Yttria-Stabilized Zirconia-Coated 9Cr-1Mo Steel in Molten UCl3-LiCl-KCl Salt

    NASA Astrophysics Data System (ADS)

    Jagadeeswara Rao, Ch.; Venkatesh, P.; Prabhakara Reddy, B.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2017-02-01

    For the electrorefining step in the pyrochemical reprocessing of spent metallic fuels of future sodium cooled fast breeder reactors, 9Cr-1Mo steel has been proposed as the container material. The electrorefining process is carried out using 5-6 wt.% UCl3 in LiCl-KCl molten salt as the electrolyte at 500 °C under argon atmosphere. In the present study, to protect the container vessel from hot corrosion by the molten salt, 8-9% yttria-stabilized zirconia (YSZ) ceramic coating was deposited on 9Cr-1Mo steel by atmospheric plasma spray process. The hot corrosion behavior of YSZ-coated 9Cr-1Mo steel specimen was investigated in molten UCl3-LiCl-KCl salt at 600 °C for 100-, 500-, 1000- and 2000-h duration. The results revealed that the weight change in the YSZ-coated specimen was insignificant even after exposure to molten salt for 2000 h, and delamination of coating did not occur. SEM examination showed the lamellar morphology of the YSZ coating after the corrosion test with occluded molten salt. The XRD analysis confirmed the presence of tetragonal and cubic phases of ZrO2, without any phase change. Formation of UO2 in some regions of the samples was evident from XRD results.

  14. UV Light-Assisted Synthesis of Highly Efficient Pd-Based Catalyst over NiO for Hydrogenation of o-Chloronitrobenzene

    PubMed Central

    Jiang, Weidong; Xu, Bin; Fan, Guangyin; Zhang, Kaiming; Xiang, Zhen; Liu, Xiaoqiang

    2018-01-01

    Supported Pd-based catalyst over active nickel oxide (NiO) was repared using the impregnation method companying with UV-light irradiation. Moreover, the catalytic performance of the obtained Pd-based catalysts was evaluated towards the hydrogenation of o-chloronitrobenzene (o-CNB). Observations indicate that the as-prepared UV-irradiated Pd/NiO catalyst with a mole fraction 0.2% (0.2%Pd/NiO) has higher activity and selectivity in the o-CNB hydrogenation. Especially, UV-light irradiation played a positive role in the improvement of catalytic activity of 0.2%Pd/NiO catalyst, exhibiting an excess 11-fold activity superiority in contrast with non-UV-irradiated 0.2%Pd/NiO catalyst. In addition, it was investigated that effects of varied factors (i.e., reaction time, temperature, o-CNB/Pd ratio, Pd loading, hydrogen pressure) on the selective hydrogenation of ο-CNB catalyzed by UV-irradiated 0.2%Pd/NiO catalyst. Under the reaction conditions of 60 °C, 0.5 h, 1 MPa H2 pressure, 100% conversion of o-CNB, and 81.1% o-CAN selectivity were obtained, even at high molar ratio (8000:1) of o-CNB to Pd. PMID:29662004

  15. UV Light-Assisted Synthesis of Highly Efficient Pd-Based Catalyst over NiO for Hydrogenation of o-Chloronitrobenzene.

    PubMed

    Jiang, Weidong; Xu, Bin; Fan, Guangyin; Zhang, Kaiming; Xiang, Zhen; Liu, Xiaoqiang

    2018-04-14

    Supported Pd-based catalyst over active nickel oxide (NiO) was repared using the impregnation method companying with UV-light irradiation. Moreover, the catalytic performance of the obtained Pd-based catalysts was evaluated towards the hydrogenation of o -chloronitrobenzene ( o -CNB). Observations indicate that the as-prepared UV-irradiated Pd/NiO catalyst with a mole fraction 0.2% (0.2%Pd/NiO) has higher activity and selectivity in the o -CNB hydrogenation. Especially, UV-light irradiation played a positive role in the improvement of catalytic activity of 0.2%Pd/NiO catalyst, exhibiting an excess 11-fold activity superiority in contrast with non-UV-irradiated 0.2%Pd/NiO catalyst. In addition, it was investigated that effects of varied factors (i.e., reaction time, temperature, o -CNB/Pd ratio, Pd loading, hydrogen pressure) on the selective hydrogenation of ο -CNB catalyzed by UV-irradiated 0.2%Pd/NiO catalyst. Under the reaction conditions of 60 °C, 0.5 h, 1 MPa H₂ pressure, 100% conversion of o -CNB, and 81.1% o -CAN selectivity were obtained, even at high molar ratio (8000:1) of o -CNB to Pd.

  16. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

    NASA Astrophysics Data System (ADS)

    Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-08-01

    This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.

  17. Experimental and theoretical investigations of the polar intermetallics SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegemann, Frank; Benndorf, Christopher; Touzani, Rachid St.

    SrPt{sub 3}Al{sub 2}, a CaCu{sub 5} relative (P6/mmm; a = 566.29(3), c = 389.39(3) pm; wR{sub 2} = 0.0202, 121 F{sup 2} values, 9 parameters), and Sr{sub 2}Pd{sub 2}Al, isostructural to Ca{sub 2}Pt{sub 2}Ge (Fdd2; a = 1041.45(5), b = 1558.24(7), c = 604.37(3) pm; wR{sub 2} = 0.0291, 844 F{sup 2} values, 25 parameters) have been prepared from the elements. The crystal structures have been investigated by single crystal X-ray diffraction. Structural relaxation confirmed the electronic stability of SrPt{sub 3}Al{sub 2}, while orthorhombic Sr{sub 2}Pd{sub 2}Al might be a metastable polymorph as it is energetically competitive to its monoclinicmore » variant. Both compounds are predicted to be metallic conductors as their density-of-states (DOS) are non-zero at the Fermi level. COHP bonding analysis coupled with Bader effective charge analysis suggest that the title compounds are polar intermetallic phases in which strong Pt–Al and Pd–Al covalent bonds are present, while a significant electron transfer from Sr atoms to the [Pt{sub 3}Al{sub 2}]{sup δ–} or [Pd{sub 2}Al]{sup δ–} network is found. - Graphical abstract: Chains of Pd atoms in the crystal structure of Sr{sub 2}Pd{sub 2}Al get connected by Al atoms in the shape of a distorted tetrahedra. The band structure calculations confirm weak Pd–Pd interactions. - Highlights: • SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al discovered and crystallographically investigated. • DFT predicts the here reported orthorhombic Sr{sub 2}Pd{sub 2}Al to be competitive in energy to the presently unknown monoclinic Sr{sub 2}Pd{sub 2}Al. • Bader charge analysis indicates SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al are polar intermetallics.« less

  18. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  19. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    NASA Astrophysics Data System (ADS)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  20. Rutile-Deposited Pt–Pd clusters: A Hypothesis Regarding the Stability at 50/50 Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Mai-Anh; Dadras, Mostafa J.; Alexandrova, Anastassia N.

    2014-10-03

    Mixed Pt–Pd clusters deposited on oxides have been of great interest to catalysis. Clusters containing Pt and Pd in roughly equal proportions were found to be unusually stable against sintering, one of the major mechanisms of catalyst deactivation. After aging of such catalysts, the 50/50 Pt–Pd and Pd–O clusters appeared to be the two most prevalent phases. The reason for the enhanced stability of these equally proportioned clusters has remained unclear. In the following, sintering of mixed Pt–Pd clusters on TiO2(110) for various initial atomic concentrations of Pt and Pd and at a range of catalytically relevant temperatures was simulated.more » It is confirmed that equally mixed clusters have the relatively highest survival rate. Surprisingly, subnanoclusters containing Pt and Pd in all proportions have very similar geometries and chemical bonding, revealing no apparent explanation for favoring the 1:1 Pt/Pd ratio. However, it was discovered that at high temperatures, the 50/50 clusters have considerably more thermally accessible isomers than clusters containing Pt and Pd in other proportions. Hence, one of the reasons for stability is entropic stabilization. Electrostatics also plays a key role as a subtle charge redistribution, and a shift of electron density to the slightly more electronegative Pt results in the partially charged atoms being further stabilized by intracluster Coulomb attraction; this effect is greatest for 1:1 mixtures.« less

  1. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media

    NASA Astrophysics Data System (ADS)

    He, Qinggang; Chen, Wei; Mukerjee, Sanjeev; Chen, Shaowei; Laufek, František

    Carbon-supported Pd 4Au- and Pd 2.5Sn-alloyed nanoparticles were prepared by a chemical reduction method, and characterized by a wide array of experimental techniques including mass spectrometry, transmission electron microscopy, and X-ray diffraction spectroscopy. Ethanol electrooxidation on the as-synthesized catalysts and commercial Pt/C was then investigated and compared in alkaline media by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy studies at room temperature. Voltammetric and chronoamperometric measurements showed higher current density and longer term stability in ethanol oxidation with the palladium alloy nanocatalysts than with the commercial one. Electrochemical impedance spectroscopy and Tafel plots were employed to examine the charge-transfer kinetics of ethanol electrooxidation. The results suggest that whereas the reaction kinetics might be somewhat more sluggish on the Pd-based alloy catalysts than on commercial Pt/C, the former appeared to have a higher tolerance to surface poisoning. Overall, the Pd-based alloy catalysts represent promising candidates for the electrocatalytic oxidation of ethanol, and Pd 4Au/C displays the best catalytic activity among the series for the ethanol oxidation in alkaline media.

  2. Electrochemical oxidation of methanol using dppm-bridged Ru/Pd, Ru/Pt and Ru/Au catalysts.

    PubMed

    Yang, Ying; McElwee-White, Lisa

    2004-08-07

    The electrochemical oxidation of methanol was carried out using a series of dppm-bridged Ru/Pd, Ru/Pt and Ru/Au heterobimetallic complexes as catalysts. The major oxidation products were formaldehyde dimethyl acetal (dimethoxymethane, DMM) and methyl formate (MF). The Ru/Pd and Ru/Pt bimetallic catalysts generally afforded lower product ratios of DMM/MF and higher current efficiencies than the Ru/Au catalysts. The Ru/Au bimetallics exhibited product ratios and current efficiencies similar to those obtained from the Ru mononuclear compound CpRu(PPh(3))(2)Cl. Increasing the methanol concentration afforded higher current efficiencies, while the addition of water to the samples shifted the product distribution toward the more highly oxidized product, MF.

  3. ALD Produced B{sub 2}O{sub 3}, Al{sub 2}O{sub 3} and TiO{sub 2} Coatings on Gd{sub 2}O{sub 3} Burnable Poison Nanoparticles and Carbonaceous TRISO Coating Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weimer, Alan

    2012-11-26

    This project will demonstrate the feasibility of using atomic layer deposition (ALD) to apply ultrathin neutron-absorbing, corrosion-resistant layers consisting of ceramics, metals, or combinations thereof, on particles for enhanced nuclear fuel pellets. Current pellet coating technology utilizes chemical vapor deposition (CVD) in a fluidized bed reactor to deposit thick, porous layers of C (or PyC) and SiC. These graphitic/carbide materials degrade over time owing to fission product bombardment, active oxidation, thermal management issues, and long-term irradiation effects. ALD can be used to deposit potential ceramic barrier materials of interest, including ZrO{sub 2}, Y{sub 2}O{sub 3}:ZrO{sub 2} (YSZ), Al{sub 2}O{sub 3},more » and TiO{sub 2}, or neutron-absorbing materials, namely B (in BN or B{sub 2}O{sub 3}) and Gd (in Gd{sub 2}O{sub 3}). This project consists of a two-pronged approach to integrate ALD into the next-generation nuclear plant (NGNP) fuel pellet manufacturing process:« less

  4. The effect of CNTs on structures and catalytic properties of AuPd clusters for H2O2 synthesis.

    PubMed

    Yang, Hua-feng; Xie, Peng-yang; Yu, Hui-you; Li, Xiao-nian; Wang, Jian-guo

    2012-12-28

    The structures and catalytic properties of AuPd clusters supported on carbon nanotubes (CNTs) for H(2)O(2) synthesis have been investigated by means of density functional theory calculations. Firstly, the structures of AuPd clusters are strongly influenced by CNTs, in which the bottom layers are mainly composed of Pd and the top layers are a mix of Au and Pd due to the stronger binding of Pd than Au on CNTs. Especially, it is found that O(2) adsorption on the Pd/CNTs interfacial sites is much weaker than that on the only Pd sites, which is in contrast to transition metal oxide (for example TiO(2), Al(2)O(3), CeO(2)) supported metal clusters. Furthermore, Pd ensembles on the interfacial sites have far superior catalytic properties for H(2)O(2) formation than those away from CNT supports due to the changes in electronic structures caused by the CNTs. Therefore, our study provides a physical insight into the enhanced role of carbon supports in H(2)O(2) synthesis over supported AuPd catalysts.

  5. Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.

    PubMed

    Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro

    2011-01-01

    The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.

  6. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  7. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon

    2014-08-01

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.

  8. Sandwich-like TiO2@ZnO-based noble metal (Ag, Au, Pt, or Pd) for better photo-oxidation performance: Synergistic effect between noble metal and metal oxide phases

    NASA Astrophysics Data System (ADS)

    Li, Shunxing; Cai, Jiabai; Wu, Xueqing; Zheng, Fengying

    2018-06-01

    The performance of different noble metals (NMs) with controllable size (5 nm) as co-catalyst on the photocatalytic oxidation of TiO2@ZnO hollow spheres was tested with benzyl alcohol in the presence of water under ambient conditions. A new type of solar-light-driven TiO2@NMs@ZnO nanocomposite was fabricated by using a template (surface functionalized polystyrene balls), hydrothermal reaction, and calcination. Under simulated sunlight irradiation, the photo-oxidation rate of benzyl alcohol was in the following of TiO2@Ag@ZnO > TiO2@Au@ZnO > TiO2@Pt@ZnO > TiO2@Pd@ZnO > TiO2@ZnO. This result was due to the combination of TiO2 and ZnO, as well as the sandwiched Ag NPs as electron trap site, which can store and shuttle photo-generated electrons, and then enhance photo-generation of active radicals. Electron paramagnetic resonance (EPR) spectroscopy, as well as photo-luminescence (PL), photo-reduction of Cr(VI) and electrochemical measurements were taken to verify this conclusion. Taking into account the multi-functional combination of precious metals and semiconductor materials, this work could provide new insights for the design of high-performance photocatalysts.

  9. Progress in Metal-Supported Axial-Injection Plasma Sprayed Solid Oxide Fuel Cells Using Nanostructured NiO-Y0.15Zr0.85O1.925 Dry Powder Anode Feedstock

    NASA Astrophysics Data System (ADS)

    Metcalfe, C.; Harris, J.; Kuhn, J.; Marr, M.; Kesler, O.

    2013-06-01

    A composite NiO-Y0.15Zr0.85O1.925 (YSZ) agglomerated feedstock having nanoscale NiO and YSZ primary particles was used to fabricate anodes having sub-micrometer structure. These anodes were incorporated into two different metal-supported SOFC architectures, which differ in the order of electrode deposition. The composition of the composite Ni-YSZ anodes is controllable by selection of the agglomerate size fraction and standoff distance, while the porosity is controllable by selection of agglomerate size fraction and addition of a sacrificial pore-forming material. A bi-layer anode was fabricated having a total porosity of 33% for the diffusion layer and 23% porosity for the functional layer. A power density of 630 mW/cm2 was obtained at 750 °C in humidified H2 with cells having the bi-layer anode deposited on the metal support. Cells having the cathode deposited on the metal support showed poor performance due to a significant number of vertical cracks through the electrolyte, allowing excessive gas cross-over between the anode and the cathode compartments.

  10. An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel

    Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less

  11. An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

    DOE PAGES

    Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel; ...

    2017-03-24

    Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less

  12. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.

    PubMed

    Wang, Fagen; Zhang, Haojie; He, Dannong

    2014-01-01

    The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.

  13. Synthesis of Pt@TiO2@CNTs Hierarchical Structure Catalyst by Atomic Layer Deposition and Their Photocatalytic and Photoelectrochemical Activity.

    PubMed

    Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew

    2017-04-29

    Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation.

  14. Synthesis of Pt@TiO2@CNTs Hierarchical Structure Catalyst by Atomic Layer Deposition and Their Photocatalytic and Photoelectrochemical Activity

    PubMed Central

    Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew

    2017-01-01

    Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation. PMID:28468248

  15. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor

    PubMed Central

    Tamaekong, Nittaya; Liewhiran, Chaikarn; Wisitsoraat, Anurat; Phanichphant, Sukon

    2009-01-01

    Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2–2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate as precursors dissolved in xylene. The particle properties were analyzed by XRD, BET, SEM and TEM. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spheroidal and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5–20 nm wide and 20–40 nm long. ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thin films by spin coating technique. The thin film morphology was analyzed by SEM technique. The gas sensing properties toward hydrogen (H2) was found that the 0.2 at.% Pt/ZnO sensing film showed an optimum H2 sensitivity of ∼164 at hydrogen concentration in air of 1 volume% at 300 °C and a low hydrogen detection limit of 50 ppm at 300 °C operating temperature. PMID:22399971

  16. Roadside Accumulation of Pt, Pd, Rh and Other Trace Elements From Automobiles: Catalytic Converter Attrition and Platinum-Group Element Mobility in the Roadside Environment.

    NASA Astrophysics Data System (ADS)

    Ely, J. C.; Dahlheimer, S. R.; Neal, C. R.

    2003-12-01

    Elemental abundances of Pt, Pd and Rh have been documented across the industrialized world in roadside environments due to attrition of automotive catalytic converters (Zereini and Alt, 2000, Anthropogenic PGE Emissions, Springer, 308pp; Ely et al., 2001, EnvSci&Tech, 35:3816-3822; Whiteley and Murray, 2003, SciTotEnv, in press). In our ongoing study, the highest reported roadside Pt abundance 1.8 ppm has been found immediately adjacent to the road at a field site in South Bend, IN, USA. Furthermore, initial studies show positive correlations of Pt, Pd and Rh with some trace elements (Ni, Cu, Zn and Pb), which has been confirmed by further analysis for these and other elements (Ce, Cr). It has been demonstrated that elements such as Ce are present in catalytic converters at concentrations of 100's ppm to 3-wt.%. These elements are also being attrited with Pt, Pd and Rh and aerially transported and deposited. Our field site was established next to US-933 adjacent to the Notre Dame campus. Areas were cleared of the top 2-4 cm of soil (removing surficial Pt, Pd and Rh) at 1, 5, 10 and 50 meters from the roadside. Within 3 months the 1-meter site contained 67% of the initial Rh and Pt concentrations and 100% of the initial Pd concentration. The sites at 5, 10 and 50 meters showed similar results, in some cases exceeding the initial concentrations. After 6 months the concentrations of Pt, Pd and Rh were all within error of the initial concentrations, indicating steady state abundances had probably been reached. Grass samples from each site showed that washed vs. unwashed samples were within error of each other, and there may be a slight enrichment (approx. 1 ppb) in the grasses of Pd and Pt, but this enrichment was independent of distance from the road. The steady-state situation suggests that the PGEs are being removed from the immediate roadside environment, which requires that the metals are being oxidized and/or complexed in such a way to facilitate transport. The

  17. Hydrodeoxygenation of p -Cresol over Pt/Al 2 O 3 Catalyst Promoted by ZrO 2 , CeO 2 , and CeO 2 –ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weiyan; Wu, Kui; Liu, Pengli

    2016-07-20

    ZrO 2-Al 2O 3 and CeO 2-Al 2O 3 were prepared by a co-precipitation method and selected as supports for Pt catalysts. The effects of CeO 2 and ZrO 2 on the surface area and Brønsted acidity of Pt/Al 2O 3 were studied. In the hydrodeoxygenation (HDO) of p-cresol, the addition of ZrO 2 promoted the direct deoxygenation activity on Pt/ZrOO 2-Al 2O 3 via Caromatic-O bond scission without benzene ring saturation. Pt/CeOO 2-Al 2O 3 exhibited higher deoxygenation extent than Pt/Al 2O 3 due to the fact that Brønsted acid sites on the catalyst surface favored the adsorption ofmore » p-cresol. With the advantages of CeO 2 and ZrO 2 taken into consideration, CeO 2-ZrOO 2-Al 2O 3 was prepared, leading to the highest HDO activity of Pt/CeO 2-ZrOO 2-Al 2O 3. The deoxygenation extent for Pt/CeO 2-ZrOO 2-Al 2O 3 was 48.4% and 14.5% higher than that for Pt/ZrO2O 2-Al 2O 3 and Pt/CeOO 2-Al 2O 3, respectively.« less

  18. Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Guan, Huijuan; Chao, Cong; Kong, Weixiao; Hu, Zonggao; Zhao, Yafei; Yuan, Siguo; Zhang, Bing

    2017-06-01

    In this work, the mesoporous SiO2 nanofibers from pyrolyzing precursor of electrospun nanofibers were employed as support to immobilize PtNi nanocatalyst (PtNi/SiO2 nanofibers). AFM, XRD, SEM, TEM, XPS, ICP-AES and N2 adsorption/desorption analysis were applied to systematically investigate the morphology and microstructure of as-prepared products. Results showed that PtNi alloy nanoparticles with average diameter of 18.7 nm were formed and could be homogeneously supported on the surface of porous SiO2 nanofiber, which further indicated that the SiO2 nanofibers with well-developed porous structure, large specific surface area, and roughened surface was a benefit for the support of PtNi alloy nanoparticles. The PtNi/SiO2 nanofibers catalyst exhibited an excellent catalytic activity towards the reduction of p-nitrophenol, and the catalyst's kinetic parameter ( k n = 434 × 10-3 mmol s-1 g-1) was much higher than those of Ni/SiO2 nanofibers (18 × 10-3 mmol s-1 g-1), Pt/SiO2 nanofibers (55 × 10-3 mmol s-1 g-1) and previous reported PtNi catalysts. The catalyst could be easily recycled from heterogeneous reaction system based on its good magnetic properties (the Ms value of 11.48 emu g-1). In addition, PtNi/SiO2 nanofibers also showed an excellent stability and the conversion rate of p-nitrophenol still could maintain 94.2% after the eighth using cycle.

  19. Sliding Wear Response of Nanostructured YSZ Suspension Plasma-Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Kossman, S.; Chicot, D.; Decoopman, X.; Iost, A.; van Gorp, A.; Meillot, E.; Puchi-Cabrera, E. S.; Santana, Y. Y.; Staia, M. H.

    2014-12-01

    Nanostructured yttria-stabilized zirconia coatings for applications in high-temperature environments can be deposited by suspension plasma spraying (SPS) techniques. The present research has been conducted in order to study the sliding wear response of a SPS ZrO2-8% mol. Y2O3 coating (75 μm in thickness) deposited onto a Haynes 230 substrate, using pin-on-disc tests. Some of the coated samples were subsequently heat-treated for 1 h at 300 and 600 °C. Samples characterization prior and after the wear tests was carried out by SEM, EDS, XRD and optical profilometry techniques. Instrumented indentation was employed to determine elastic modulus and hardness. The results have shown that the as-sprayed and heat-treated samples experienced severe wear (10-13 m3/Nm) and the worst wear performance corresponded to the sample heat treated at 600 °C. Such a behavior could be related to both the structural changes that took place during heat treatment and the nature and level of the residual stresses in the coatings. In general, the morphologies of the wear tracks observed by SEM have shown a smoothing of the surface, brittle fracture, smearing and grain pull-out.

  20. Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)18 (M = Pd, Pt) nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y.; Nobusada, Katsuyuki; Jin, Rongchao

    2016-03-01

    Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au25(SR)18 cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared

  1. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    PubMed

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  2. High-pressure/high-temperature synthesis and characterization of the first palladium or platinum containing lithium transition-metal sulfides Li2M3S4 (M=Pd, Pt)

    NASA Astrophysics Data System (ADS)

    Heymann, Gunter; Niehaus, Oliver; Krüger, Hannes; Selter, Philipp; Brunklaus, Gunther; Pöttgen, Rainer

    2016-10-01

    The new lithium transition-metal sulfides Li2M3S4 (M=Pd, Pt) were obtained via multianvil high-pressure/high-temperature syntheses at 8 GPa and 1150 °C starting from a stoichiometric mixture of lithium nitride, sulfur, and palladium or platinum. Single crystal structure analyses indicated the space group P21/c (no. 14) with the following lattice parameters and refinement results: a=492.9(1), b=1005.9(2), c=614.9(2) pm, β=110.9 (1)°, R1=0.0165, wR2=0.0308 (all data) for Li2Pd3S4 and a=498.2(1), b=1005.5(2), c=613.0(2) pm, β=110.8(1)°, R1=0.0215, wR2=0.0450 (all data) for Li2Pt3S4. The crystal structures are built up from two distinct Pd/Pt sites, one of which is a special position (0,0,0), two sulfur sites, and one lithium site. The atoms Pd2/Pt2 form isolated square planar PdS4/PtS4 units, whereas the Pd1/Pt1 atoms form pairs of square planar PdS4/PtS4 units, which are connected via a common edge. These two structural motives built up a three-dimensional network structure by linking through common corners. The lithium atoms are positioned inside of the so formed channels. Li2M3S4 (M=Pd, Pt) are isostructural to the minerals jaguéite, Cu2Pd3Se4 and chrisstanleyite, Ag2Pd3Se4, which are up to now the only representatives of this structure type. Both compounds were studied with respect to their magnetic properties and can be classified as Pauli paramagnetic or diamagnetic. Regarding the possibility of lithium mobility inside the channels, of the structure, solid state 7Li NMR and high-temperature single crystal investigations revealed localization of the lithium atoms on their crystallographic sites.

  3. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt LIII XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos

    2008-02-28

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied (Al2O3, BaO/Al2O3, Pt/Al2O3 and Pt-BaO/Al2O3) were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. Even if bariummore » and aluminum sites are available for SO2 to form sulfate, for the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, S XANES spectroscopy results show that barium sulfates are preferentially produced over aluminum sulfates . When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the redox nature of the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g. SO2+H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g. SO2+O2) continue to show the presence of Pt-O bonds. In addition, the former condition was found to give rise to a higher degree of Pt sintering than the latter one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g. sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  4. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt Llll XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,D.; Kwak, J.; Szanyi, J.

    2008-01-01

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, themore » presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  5. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    PubMed

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (<1 mm thick) to one surface and fired under manufacturer's recommended protocol. Scanning electron microscopy (SEM) with integrated electron dispersive X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  6. Magnetically Separable Fe3O4@DOPA-Pd: A Heterogeneous Catalyst for Aqueous Heck Reaction

    EPA Science Inventory

    Magnetically separable Fe3O4@DOPA-Pd catalyst has been synthesized via anchoring of palladium over dopamine-coated magnetite via non-covalent interaction and the catalyst is utilized for expeditious Heck coupling in aqueous media.

  7. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    NASA Astrophysics Data System (ADS)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  8. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction

    PubMed Central

    Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)

    2015-01-01

    A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247

  9. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.

    PubMed

    Salem, Mohamed A; Bakr, Eman A; El-Attar, Heba G

    2018-01-05

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17nm for Pt@Ag and 8.8nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH 4 ) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH 4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes. Copyright © 2017. Published by Elsevier B.V.

  10. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  11. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  12. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells

    DOE PAGES

    Zhang, Xiaoming; Liu, Ping; Yu, Shansheng; ...

    2015-05-21

    We employed density functional theory (DFT) to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in fuel cells. A pseudomorphic surface alloy (PSA) with a Pt monolayer (Pt 1ML) supported on an M surface, Pt 1ML/M(111) or (001), was considered as a model system. Different sets of candidate M cores were identified to achieve a stable Pt 1ML shell depending on the conditions. In vacuum conditions, the Pt 1ML shell can be stabilized on the mostmore » of M cores except Cu, Ag, and Au. The situation varies under various electrochemical conditions. Depending on the solutions and the operating reaction pathways of the ORR, different M should be considered. Pd and Ir are the only core metals studied, being able to keep the Pt ML shell intact in perchloric acid, sulfuric acid, phosphoric acid, and alkaline solutions as well as under the ORR conditions via different pathways. Ru and Os cores should also be paid attention, which only fall during the ORR via the *OOH intermediate. Rh core works well as long as the ORR does not undergo the pathway via *O intermediate. Our results show that PSAs can behave differently from the near surface alloy, Pt 1ML/M 1ML/Pt(111), highlighting the importance of considering both chemical environments and the atomic structures in rational design of highly stable core-shell nanocatalysts. Finally, the roles that d-band center of a core M played in determining the stability of supported Pt 1ML shell were also discussed.« less

  13. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoming; Yu, Shansheng; Zheng, Weitao, E-mail: wtzheng@jlu.edu.cn, E-mail: pingliu3@bnl.gov

    2015-05-21

    We employed density functional theory to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in fuel cells. A pseudomorphic surface alloy (PSA) with a Pt monolayer (Pt{sub 1ML}) supported on an M surface, Pt{sub 1ML}/M(111) or (001), was considered as a model system. Different sets of candidate M cores were identified to achieve a stable Pt{sub 1ML} shell depending on the conditions. In vacuum conditions, the Pt{sub 1ML} shell can be stabilized on the most ofmore » M cores except Cu, Ag, and Au. The situation varies under various electrochemical conditions. Depending on the solutions and the operating reaction pathways of the ORR, different M should be considered. Pd and Ir are the only core metals studied, being able to keep the Pt{sub ML} shell intact in perchloric acid, sulfuric acid, phosphoric acid, and alkaline solutions as well as under the ORR conditions via different pathways. Ru and Os cores should also be paid attention, which only fall during the ORR via the *OOH intermediate. Rh core works well as long as the ORR does not undergo the pathway via *O intermediate. Our results show that PSAs can behave differently from the near surface alloy, Pt{sub 1ML}/M{sub 1ML}/Pt(111), highlighting the importance of considering both chemical environments and the atomic structures in rational design of highly stable core-shell nanocatalysts. Finally, the roles that d-band center of a core M played in determining the stability of supported Pt{sub 1ML} shell were also discussed.« less

  14. Synthesis of Supported Pd 0 Nanoparticles from a Single-Site Pd 2+ Surface Complex by Alkene Reduction

    DOE PAGES

    Mouat, Aidan R.; Whitford, Cassandra L.; Chen, Bor-Rong; ...

    2018-02-02

    Here, a surface metal–organic complex, (-AlO x)Pd(acac) (acac = acetylacetonate), is prepared by chemically grafting the precursor Pd(acac) 2 onto γ-Al 2O 3 in toluene at 25 °C. The resulting surface complex is characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and dynamic nuclear polarization surface-enhanced solid-state nuclear magnetic resonance spectroscopy (DNP SENS). This surface complex is a precursor in the direct synthesis of size-controlled Pd nanoparticles under mild reductive conditions and in the absence of additional stabilizers or pretreatments. Indeed, upon exposure to gaseous ethylene or liquid 1-octene at 25more » °C, the Pd 2+ species is reduced to form Pd 0 nanoparticles with a mean diameter of 4.3 ± 0.6 nm, as determined by scanning transmission electron microscopy (STEM). These nanoparticles are catalytically relevant using the aerobic 1-phenylethanol oxidation as a probe reaction, with rates comparable to a conventional Pd/Al 2O 3 catalyst but without an induction period. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed reaction mass spectrometry (TPR-MS) reveal that the surface complex reduction with ethylene coproduces H 2, acetylene, and 1,3-butadiene. This process reasonably proceeds via an olefin activation/coordination/insertion pathway, followed by β-hydride elimination to generate free Pd 0. Lastly, the well-defined nature of the single-site supported Pd 2+ precursor provides direct mechanistic insights into this unusual and likely general reductive process.« less

  15. Synthesis of Supported Pd 0 Nanoparticles from a Single-Site Pd 2+ Surface Complex by Alkene Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouat, Aidan R.; Whitford, Cassandra L.; Chen, Bor-Rong

    Here, a surface metal–organic complex, (-AlO x)Pd(acac) (acac = acetylacetonate), is prepared by chemically grafting the precursor Pd(acac) 2 onto γ-Al 2O 3 in toluene at 25 °C. The resulting surface complex is characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and dynamic nuclear polarization surface-enhanced solid-state nuclear magnetic resonance spectroscopy (DNP SENS). This surface complex is a precursor in the direct synthesis of size-controlled Pd nanoparticles under mild reductive conditions and in the absence of additional stabilizers or pretreatments. Indeed, upon exposure to gaseous ethylene or liquid 1-octene at 25more » °C, the Pd 2+ species is reduced to form Pd 0 nanoparticles with a mean diameter of 4.3 ± 0.6 nm, as determined by scanning transmission electron microscopy (STEM). These nanoparticles are catalytically relevant using the aerobic 1-phenylethanol oxidation as a probe reaction, with rates comparable to a conventional Pd/Al 2O 3 catalyst but without an induction period. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed reaction mass spectrometry (TPR-MS) reveal that the surface complex reduction with ethylene coproduces H 2, acetylene, and 1,3-butadiene. This process reasonably proceeds via an olefin activation/coordination/insertion pathway, followed by β-hydride elimination to generate free Pd 0. Lastly, the well-defined nature of the single-site supported Pd 2+ precursor provides direct mechanistic insights into this unusual and likely general reductive process.« less

  16. Synthesis, structure, and magnetic properties of LaTMg and CeTMg (T = Pd, Pt, Au)

    NASA Astrophysics Data System (ADS)

    Gibson, B. J.; Das, A.; Kremer, R. K.; Hoffmann, R.-D.; Pöttgen, R.

    2002-05-01

    The title compounds were prepared from the elements by reactions in sealed tantalum tubes in a water-cooled sample chamber of a high-frequency furnace. They crystallize with the ZrNiAl-type structure, space group P bar 6 2m. The structures of the cerium compounds were refined from single-crystal x-ray diffraction data: a = 767.3(1) pm, c = 410.37(4) pm, wR2 = 0.0324, 521 F2-values for CePdMg; a = 755.02(7) pm, c = 413.82(4) pm, wR2 = 0.0393, 514 F2-values for CePtMg; and a = 774.1(3) pm, c = 421.6(1) pm, wR2 = 0.0355, 395 F2-values for CeAuMg, with 14 variables for each refinement. The palladium compound shows a small homogeneity range: CePd1+xMg1-x. The structures contain two crystallographically different transition metal sites T1 and T2 which are located in tri-capped trigonal prisms: [T1 Mg6Ce3] and [T2 Ce6Mg3]. Magnetic susceptibility and heat capacity measurements reveal long-range magnetic ordering at 2.1(2) K for CePdMg, 3.6(2) K for CePtMg, and 2.0(2) K for CeAuMg. Curie-Weiss behaviour at higher temperatures shows that the cerium ions are in the 3+ oxidation state. The isotypic LaTMg compounds are Pauli paramagnetic down to lowest temperatures (T = 0.3 K). All the compounds, RETMg (RE = La, Ce; T = Pd, Pt, Au) show metallic behaviour.

  17. Gadolinia doped hafnia (Gd2O3- HfO 2) thermal barrier coatings for gas turbine applications

    NASA Astrophysics Data System (ADS)

    Gullapalli, Satya Kiran

    Thermal efficiency of the gas turbines is influenced by the operating temperature of the hot gas path components. The material used for the hot gas path components can only withstand temperature up to a certain limit. Thermal barrier coatings (TBC) provide the additional thermal protection for these components and help the gas turbine achieve higher firing temperatures. Traditionally available yttria stabilized zirconia (YSZ) TBCs have a limitation up to 1200 C due to their phase transformation. The present work focuses on gadolinia based hafnia (GSH) TBCs to study their potential to replace the YSZ coatings. Different compositions of gadolinia doped hafnia coatings have been deposited using electron beam physical vapor deposition (EB-PVD) technique and characterized using x-ray diffraction (XRD) and scanning electron microscope (SEM). The crystal structure analysis performed using XRD confirmed the stabilization of the high temperature cubic phase of hafnia. Cross sectional analysis confirmed the presence of columnar structure in the coatings which is a signature of the EB-PVD coatings. Mechanical properties of the coatings were investigated using nanoindentation and nano impact testing at both room temperature and high temperature. Indentation tests indicate a reduction in hardness with an increase in temperature and gadolinia content in hafnia. Impact testing reveals the fracture resistance of the coatings as a function of stabilizer content and heat treatment. Thermal measurements and impedance testing was performed on the bulk material to study the effect of gadolinia content. Thermal cycling was performed to study the spallation behavior of the as deposited and aged samples. Finite element models were developed to study the interfacial stress development in the coatings subjected to thermal cycling.

  18. Influence of Pt substitution on magnetic properties of multipolar ordering compounds Ce(Pd,Pt)3S4

    NASA Astrophysics Data System (ADS)

    Michimura, S.; Nishikawa, Ushio; Shimizu, Akihide; Kosaka, Masashi; Numakura, Ryosuke; Iizuka, Ryosuke; Katano, Susumu

    2018-05-01

    We have studied the magnetic properties of the multipolar ordering compounds Ce(Pd1-xPtx) 3S4 with 0.00 ≤ x ≤ 0.53 by means of magnetic susceptibility and magnetization measurements. In CePd3S4 , a simultaneous phase transition of the antiferro quadrupolar (AFQ) ordering and ferro magnetic (FM) ordering has been observed at 6.3 K. It has been suggested that the primary order parameter of CePd3S4 is the quadrupole moments, and it has not been understood why the FM ordering occurs at very high temperature which is almost the same magnetic transition temperature of GdPd3S4 . GdPd3S4 shows an antiferromagnetic (AFM) transition at 5.8 K. With increasing Pt substitution in CePd3S4 , the FM transition temperature TC (x) is rapidly suppressed to 2.4 K for x ≃ 0.3 and approaches asymptotically to 1.9 K (x = 0.53) . The results of magnetization curve suggest that the ordered state below TC (x) remains FM and AFQ ordered state for the whole range of x. For x ≥ 0.29 , TC (x) reaches at around 2 K, a new AFM transition was observed at TN (x) ≃ 7 K . We determined the T - x phase diagram, and discuss the phase transitions at TC (x) and TN (x) . The results suggest the possibility of the presence of the correlation between the magnetic interaction and the quadrupole interaction, and the correlation is not understood based on the previous multipolar model.

  19. Bottom-up meets top-down: tailored raspberry-like Fe3O4-Pt nanocrystal superlattices.

    PubMed

    Qiu, Fen; Vervuurt, René H J; Verheijen, Marcel A; Zaia, Edmond W; Creel, Erin B; Kim, Youngsang; Urban, Jeffrey J; Bol, Ageeth A

    2018-03-29

    Supported catalysts are widely used in industry and can be optimized by tuning the composition, chemical structure, and interface of the nanoparticle catalyst and oxide support. Here we firstly combine a bottom up colloidal synthesis method with a top down atomic layer deposition (ALD) process to achieve a raspberry-like Pt-decorated Fe3O4 (Fe3O4-Pt) nanoparticle superlattices. This nanocomposite ensures the precision of the catalyst/support interface, improving the catalytic efficiency of the Fe3O4-Pt nanocomposite system. The morphology of the hybrid nanocomposites resulting from different cycles of ALD was monitored by scanning transmission electron microscopy, giving insight into the nucleation and growth mechanism of the ALD process. X-ray photoelectron spectroscopy studies confirm the anticipated electron transfer from Fe3O4 to Pt through the nanocomposite interface. Photocurrent measurement further suggests that Fe3O4 superlattices with controlled decoration of Pt have substantial promise for energy-efficient photoelectrocatalytic oxygen evolution reaction. This work opens a new avenue for designing supported catalyst architectures via precisely controlled decoration of single component superlattices with noble metals.

  20. Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode.

    PubMed

    Savych, Iuliia; Subianto, Surya; Nabil, Yannick; Cavaliere, Sara; Jones, Deborah; Rozière, Jacques

    2015-07-14

    Novel platinum-catalysed, corrosion-resistant, loose-tube-structured electrocatalysts for proton exchange membrane fuel cells have been obtained using single-needle electrospinning associated with a microwave-assisted polyol method. Monodisperse platinum particles supported on Nb-SnO2 demonstrated higher electrochemical stability than conventional Pt/C electrodes during ex situ potential cycling and comparable activity in the oxygen reduction reaction. In situ fuel cell operation under accelerated stress test conditions of a membrane electrode assembly elaborated using a Pt/C anode and Pt/Nb-SnO2 cathode confirmed that the voltage loss is significantly lower for the novel cathode than for an MEA prepared using conventional Pt/C supported electrocatalysts. Furthermore, the Nb-SnO2 stabilised the supported platinum nanoparticles against dissolution, migration and reprecipitation in the membrane. Pt/Nb-SnO2 loose-tubes constitute a mitigation strategy for two known degradation mechanisms in PEMFC: corrosion of the carbon support at the cathode, and dissolution of Pt at high cell voltages.

  1. Gyroscope-like molecules consisting of PdX₂/PtX₂ rotators within three-spoke dibridgehead diphosphine stators: syntheses, substitution reactions, structures, and dynamic properties.

    PubMed

    Nawara-Hultzsch, Agnieszka J; Stollenz, Michael; Barbasiewicz, Michał; Szafert, Sławomir; Lis, Tadeusz; Hampel, Frank; Bhuvanesh, Nattamai; Gladysz, John A

    2014-04-14

    Threefold intramolecular ring-closing metatheses of trans-[MCl2(P{(CH2)(m)CH=CH2}3)2] are effected with Grubbs' catalyst. Following hydrogenation catalyzed by [RhCl(PPh3)3], the title complexes trans-[MCl2(P((CH2)n)3P)] (n=2m+2; M/n=Pt/14, 4 c; Pt/16, 4 d; Pt/18, 4 e; Pd/14, 5 c; Pd/18, 5 e) and sometimes isomers partly derived from intraligand metathesis, trans-[MCl2{P(CH2)n(CH2)n}P(CH2)n)] (4'c-e, 5'e), are isolated. These react with LiBr, NaI, and KCN to give the corresponding MBr2, MI2, and M(CN)2 species (58-99%). (13)C NMR data show that the MX2 moieties rapidly rotate within the diphosphine cage on the NMR timescale, even at -120 °C. The reaction of 4 c and KSCN gives separable Pt(NCS)2 and Pt(NCS)(SCN) adducts (13 c, 28%; 14 c, 20%), and those of 4 c,e and Ph2Zn give PtPh2 species (15 c, 61%; 15 e, 90%). (13)C NMR spectra of 13 c-15 c show two sets of CH2 signals (ca. 2:1 intensity ratios), indicating that MX2 rotation is no longer rapid. Reactions of 4 c or 4'c and excess NaC≡CH afford the free diphosphines P{(CH2)14}3P (91%) and (CH2)14P(CH2)14P(CH2)14 (90%). The latter has been crystallographically characterized as a bis(BH3) adduct. The crystal structures of eight complexes with P(CH2)14P linkages (PtCl2, PtBr2, PtI2, Pt(NCS)2, PtPh2, PdCl2, PdBr2, PdI2) and 15 e have been determined, and intramolecular distances analyzed with respect to MX2 rotation. The conformations of the (CH2)14 moieties and features of the crystal lattices are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Delamination-Indicating Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2007-01-01

    The risk of premature failure of thermal barrier coatings (TBCs), typically composed of yttria-stabilized zirconia (YSZ), compromises the reliability of TBCs used to provide thermal protection for turbine engine components. Unfortunately, TBC delamination proceeds well beneath the TBC surface and cannot be monitored by visible inspection. Nondestructive diagnostic tools that could reliably probe the subsurface damage state of TBCs would alleviate the risk of TBC premature failure by indicating when the TBC needs to be replaced before the level of TBC damage threatens engine performance or safety. To meet this need, a new coating design for thermal barrier coatings (TBCs) that are self-indicating for delamination has been successfully implemented by incorporating a europium-doped luminescent sublayer at the base of a TBC composed of YSZ. The luminescent sublayer has the same YSZ composition as the rest of the TBC except for the addition of low-level europium doping and therefore does not alter TBC performance.

  3. Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)18 (M = Pd, Pt) nanoclusters.

    PubMed

    Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y; Nobusada, Katsuyuki; Jin, Rongchao

    2016-04-07

    Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au25(SR)18 cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.

  4. Effects of single atom doping on the ultrafast electron dynamics of M 1Au 24(SR) 18 (M = Pd, Pt) nanoclusters

    DOE PAGES

    Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y.; ...

    2016-02-29

    Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M 1@Au 24(SR) 18 (M = Pd, Pt; R = CH 2CH 2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M 1Au 12 core states; (2) core to shell relaxation in a few picoseconds; and (3)more » relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au 25(SR) 18 cluster. As a result, the detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.« less

  5. Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4

    NASA Astrophysics Data System (ADS)

    Tong, Tong; Zhu, Bicheng; Jiang, Chuanjia; Cheng, Bei; Yu, Jiaguo

    2018-03-01

    Single atoms of platinum (Pt), palladium (Pd) or gold (Au) trapped by two-dimensional graphitic carbon nitride (g-C3N4) exhibit superior photocatalytic performance. However, the underlying mechanism of single-atom noble metal/g-C3N4 photocatalytic system is still unclear. Herein, the structural, electronic and optical properties of single-atom Pt, Pd and Au loaded on bilayer g-C3N4 (BL-g-C3N4) substrate were investigated by density functional theory (DFT) simulations. The results indicate that single-atom Pt/Pd/Au loading can significantly narrow the band gap of g-C3N4 and thus increase its light absorption in the visible-light region. Rather than being adsorbed on the surface, Pt and Pd atoms tend to be embedded into g-C3N4 interlayer and act as bridges to facilitate the interlayer charge carrier transfer due to the effects of conduction band offset. In particular, an internal electric field is generated in Pt/BL-g-C3N4, which is further beneficial for separating charge carrier of photoexcited g-C3N4. By contrast, Au can only be adsorbed on the g-C3N4 surface (in the six-fold cavity) and deliver a limited amount of charge carrier excited in the N-conjugated aromatic pore of g-C3N4 surface. Our finding is conducive to understanding the interactive relationship between single-atom noble metal co-catalysts and g-C3N4 and to the design of high-efficiency photocatalyst.

  6. High-pressure/high-temperature synthesis and characterization of the first palladium or platinum containing lithium transition-metal sulfides Li{sub 2}M{sub 3}S{sub 4} (M=Pd, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heymann, Gunter, E-mail: Gunter.Heymann@uibk.ac.at; Niehaus, Oliver; Krüger, Hannes

    The new lithium transition-metal sulfides Li{sub 2}M{sub 3}S{sub 4} (M=Pd, Pt) were obtained via multianvil high-pressure/high-temperature syntheses at 8 GPa and 1150 °C starting from a stoichiometric mixture of lithium nitride, sulfur, and palladium or platinum. Single crystal structure analyses indicated the space group P2{sub 1}/c (no. 14) with the following lattice parameters and refinement results: a=492.9(1), b=1005.9(2), c=614.9(2) pm, β=110.9 (1)°, R1=0.0165, wR2=0.0308 (all data) for Li{sub 2}Pd{sub 3}S{sub 4} and a=498.2(1), b=1005.5(2), c=613.0(2) pm, β=110.8(1)°, R1=0.0215, wR2=0.0450 (all data) for Li{sub 2}Pt{sub 3}S{sub 4}. The crystal structures are built up from two distinct Pd/Pt sites, one of whichmore » is a special position (0,0,0), two sulfur sites, and one lithium site. The atoms Pd2/Pt2 form isolated square planar PdS{sub 4}/PtS{sub 4} units, whereas the Pd1/Pt1 atoms form pairs of square planar PdS{sub 4}/PtS{sub 4} units, which are connected via a common edge. These two structural motives built up a three-dimensional network structure by linking through common corners. The lithium atoms are positioned inside of the so formed channels. Li{sub 2}M{sub 3}S{sub 4} (M=Pd, Pt) are isostructural to the minerals jaguéite, Cu{sub 2}Pd{sub 3}Se{sub 4} and chrisstanleyite, Ag{sub 2}Pd{sub 3}Se{sub 4}, which are up to now the only representatives of this structure type. Both compounds were studied with respect to their magnetic properties and can be classified as Pauli paramagnetic or diamagnetic. Regarding the possibility of lithium mobility inside the channels, of the structure, solid state {sup 7}Li NMR and high-temperature single crystal investigations revealed localization of the lithium atoms on their crystallographic sites. - Graphical abstract: The ternary lithium transition-metal sulfides Li{sub 2}M{sub 3}S{sub 4} (M=Pd, Pt) were prepared via multianvil high-pressure/high-temperature syntheses. They are built up from square planar Pt

  7. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites.

    PubMed

    Ramoraswi, Nteseng O; Ndungu, Patrick G

    2015-12-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m(2)/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  8. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ramoraswi, Nteseng O.; Ndungu, Patrick G.

    2015-10-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m2/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  9. Single Pd Atoms on θ-Al 2O 3 (010) Surface do not Catalyze NO Oxidation

    DOE PAGES

    Narula, Chaitanya K.; Allard, Lawrence F.; Moses-DeBusk, Melanie; ...

    2017-04-03

    New convenient wet chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms. The majority of single supported atoms have been synthesized on active supports which participate in oxidation reactions. The single supported atoms on inert substrates (e.g. alumina) are limited to Pt adatoms and Pd cations, and are generally active toward CO oxidation. In this manuscript, we show that single Pd atoms on -alumina show high CO oxidation activity; however, they exhibit no detectable NO oxidation under our experimental conditions. This led us to employ first principles modeling to explore multiplemore » Langmuir-Hinshelwood-type pathways to explain high CO oxidation activity but lack of NO oxidation activity. For completeness, we have also examined Eley-Riedel pathways. We find that a pathway that involves carbonate or nitrate as an intermediate can explain the experimental results of CO and NO oxidation on single alumina supported Pd cations.« less

  10. An anomalous Pt-Pd occurrence below the JM reef, Stillwater Complex, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlveen, C.L.

    1993-04-01

    The late Archean Stillwater Complex, in south-central Montana, consists of the Basal, Ultramafic, and Banded series. The Lower Banded series contains several anomalous platinum-group element (PGE) occurrences, with the JM reef having the highest values (an average of 6,250 ppb Pt and 24,000 ppb Pd) and greatest lateral persistence. The Coors anomaly, below the reef, is near the middle of the complex. This zone contains bronzite cumulates which range from 100--14,600 ppb Pt, with an average of 1,250 ppb. Pt:Pd ratios in the Coors zone average 1:1.7, compared to 1:3.8 in the reef. Sulfides associated with the PGE's show immisciblemore » textures indicating a magmatic origin similar to the reef. The anomaly lies approximately 200 m below the reef along the Banded-Ultramafic series contact where the Gabbronorite 1 zone is virtually absent. Layering between the reef and the Ultramafic series bronzitite is irregular and thin compared to the normal 400-m thickness exposed elsewhere in the complex. Bronzitites which contain the PGE's are podiform and often pegmatoidal. Norites adjacent to the bronzities also tend to be pegmatoidal and sulfide-bearing, but contain an average of only 75 ppb Pt. Microprobe analyses of bronzites in this zone show abruptly lower Mg/(Mg + Fe) of 0.77 compared to 0.83 in the uppermost bronzitite. The disrupted layering and thinning in the Coors area may have formed by slumping, scouring, or thermal erosion in the cumulate pile during crystallization. Coors mineralization may have developed through processes similar to those in the JM reef. However, occurrence of the coors mineralization with irregular layering and higher PGE ratios suggest an origin different than that in the reef.« less

  11. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    EPA Science Inventory

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  12. Zircon-Based Ceramics Composite Coating for Environmental Barrier Coating

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Sodeoka, S.; Inoue, T.

    2008-09-01

    Studies on plasma spraying of zircon (ZrSiO4) have been carried out by the authors as one of the candidates for an environmental barrier coating (EBC) application, and had reported that substrate temperature is one of the most important factors to obtain crack-free and highly adhesive coating. In this study, several amounts of yttria were added to zircon powder, and the effect of the yttria addition on the structure and properties of the coatings were evaluated to improve the stability of the zircon coating structure at elevated temperature. The coatings obtained were composed of yttria-stabilized zirconia (YSZ), glassy silica, whereas the one prepared from monolithic zircon powder was composed of the metastable high temperature tetragonal phase of zirconia and glassy silica. After the heat treatment over 1200 °C, silica and zirconia formed zircon in all coatings. However, coatings with higher amounts of yttria exhibited lower amounts of zircon. This resulted in the less open porosity of the coating at elevated temperature. These yttria-added coatings also showed good adhesion even after the heat treatment, while monolithic zircon coating pealed off.

  13. Large-area thin self-supporting carbon foils with MgO coatings

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna; Maier-Komor, Peter

    2002-03-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 μg/cm 2, coated with approximately 4 μg/cm 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  14. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)

    PubMed Central

    Xu, Zhen-Feng; Wang, Yixuan

    2011-01-01

    The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt3Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920

  15. Strong metal support interaction of Pt on TiO2 grown by atomic layer deposition and physical vapor deposition for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Hansen, Robin Paul

    Several roadblocks prevent the large-scale commercialization of hydrogen fuel cells, including the stability of the Pt catalysts and their substrates, as well as the high cost of Pt. This is particularly true for the cathode, which requires a higher Pt loading because of the slow kinetics of the oxygen reduction reaction (ORR). The problem with the stability of the substrate can be solved by replacing the traditional carbon support with a conductive metal oxide such as reduced TiO2, which will not easily corrode and should result in longer lasting fuel cells. In this study, Pt was deposited either by atomic layer deposition (ALD) or physical vapor deposition (PVD). The typical size of the Pt islands that were grown using these deposition techniques was 3-8 nm. One factor that can inhibit the catalytic activity of a metal catalyst on a metal oxide is the strong metal support interaction (SMSI). This is where a metal on a reducible metal oxide can be encapsulated by a layer of the metal oxide support material at elevated temperatures. The processing of materials through atomic layer deposition can exceed this temperature. The TiO2 substrates used in this study were either grown by ALD, which results in a polycrystalline anatase film, or were single-crystal rutile TiO2(110) samples prepared in ultra-high vacuum (UHV). The Pt/TiO2 samples were tested electrochemically using cyclic voltammetry (CV) to determine the level of catalytic activity. To determine the effect of the SMSI interaction on the catalytic activity of the PVD grown samples, CV was performed on samples that were annealed in high vacuum after Pt deposition. Additional characterization was performed with scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), and four point probe analysis. Platinum that was deposited by PVD was used as a standard since it is not affected by the SMSI at the low temperature of the substrate during deposition

  16. Phase analysis of plasma-sprayed zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Berndt, C. C.; Herman, H.

    1983-01-01

    Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.

  17. Quasi-zero-dimensional cobalt-doped CeO2 dots on Pd catalysts for alcohol electro-oxidation with enhanced poisoning-tolerance.

    PubMed

    Tan, Qiang; Zhu, Haiyan; Guo, Shengwu; Chen, Yuanzhen; Jiang, Tao; Shu, Chengyong; Chong, Shaokun; Hultman, Benjamin; Liu, Yongning; Wu, Gang

    2017-08-31

    Deactivation of an anode catalyst resulting from the poisoning of CO ad -like intermediates is one of the major problems for methanol and ethanol electro-oxidation reactions (MOR & EOR), and remains a grand challenge towards achieving high performance for direct alcohol fuel cells (DAFCs). Herein, we report a new approach for the preparation of ultrafine cobalt-doped CeO 2 dots (Co-CeO 2 , d = 3.6 nm), which can be an effective anti-poisoning promoter for Pd catalysts towards MOR and EOR in alkaline media. Compared to Pd/CeO 2 and pure Pd, the hybrid Pd/Co-CeO 2 nanocomposite catalyst exhibited a much enhanced activity and remarkable anti-poisoning ability for both MOR and EOR. The nanocomposite catalyst showed much higher mass activity (4×) than a state-of-the-art PtRu catalyst. The promotional mechanism was elucidated using extensive characterization and density-functional theory (DFT). A bifunctional effect of the Co-CeO 2 dots was discovered to be due to (i) an enhanced electronic interaction between Co-CeO 2 and Pd dots and (ii) the increased oxygen storage capacity of Co-CeO 2 dots to facilitate the oxidation of CO ad . Therefore, the Pd/Co-CeO 2 nanocomposite appears to be a promising catalyst for advanced DAFCs with low cost and high performance.

  18. Contact interaction of the Bi12GeO20, Bi12SiO20, and Bi4Ge3O12 melts with noble metals

    NASA Astrophysics Data System (ADS)

    Denisov, V. M.; Podkopaev, O. I.; Denisova, L. T.; Kuchumova, O. V.; Istomin, S. A.; Pastukhov, E. A.

    2014-02-01

    The sessile drop method is used to study the contact interaction of Ag, Au, Pd, Pt, and Ir with the Bi2O3-GeO2 and Bi2O3-SiO2 melts. These melts spread over Ag and Pd and, in some cases, over Au and Pt at a rather high speed and form equilibrium contact angles on Ir.

  19. Spin-orbit driven phenomena in the isoelectronic L 10 -Fe(Pd,Pt) alloys from first principles

    NASA Astrophysics Data System (ADS)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2017-12-01

    The anomalous Hall effect (AHE) and the Gilbert damping (GD) are studied theoretically for the partially ordered L 10 -Fe(Pd,Pt) alloys. The varying alloy order and the spin-orbit coupling, which are due to the change in the Pd/Pt composition, allow for a chemical tuning of both phenomena which play an important role in the spintronic applications. The impact of the antisite disorder on the residual resistivity, AHE, and GD is studied from first principles using recently developed methods employing the Kubo-Bastin approach and the nonlocal torque operator method. The most interesting result is a different behavior of samples with low and high chemical orders. Good agreement between calculated and measured concentration trends is obtained for all quantities studied, while the absolute GD values are underestimated.

  20. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    NASA Astrophysics Data System (ADS)

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-05-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol.

  1. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-humidifying proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Ko, Y. D.; Yang, H. N.; Züttel, Andreas; Kim, S. D.; Kim, W. J.

    2017-11-01

    The Pt-supported hollow structured Pt-HZrO2 with the shell thickness of 27 nm is successfully synthesized. The water retention ability of Pt-HZrO2 is significantly enhanced compared with that of SiO2@ZrO2 due to the hydrophilic hollow structured HZrO2with high BET surface area. Pt-C and Pt-HZrO2 are combined with different weight fractions to prepare the double catalyst electrode (DCE). The membrane electrode assembly with the DCE is fabricated and applied to both anode and cathode or anode side only. The water flooding and thus rapid voltage drop is affected by the presence/or absence of the DCE at the cathode side. The cell test and visual experiment suggests that the Pt-HZrO2 layer adsorb the water molecules generated by the oxygen reduction reaction (ORR), preventing the water flooding. The power generation under RH 0% strongly suggests the back-diffusion of water molecules generated by the ORR. The flow rate to the cathode significantly affects the water flooding and cell performance. Higher flow rate to the cathode is advantageous to expel the water generated by the ORR, thus preventing water flooding and enhancing the cell performance. Therefore, the weight fraction of Pt-C to Pt-HZrO2 and the flow rate to the cathode should be well balanced.

  2. Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Liu, Junjie; Liu, Mingquan; Zhao, Zhicheng; Song, Yapeng; Tang, Xiufeng; Luo, Jianyi; Zeng, Qingguang; He, Xin

    2018-05-01

    Core-shell structure PtO2@Pt nanodots have been self-assembly by vacuum sputtering and high temperature annealing. First, Pt thin films with a small amount of PtO2 are grown on the sapphire substrates by vacuum sputtering. And then high temperature annealing on the thin films is carried out at 800 °C for 2 min to form Pt nanodots. During the cooling process, the atmosphere is deployed to supplant the nitrogen. Finally, even distributed core-shell structure PtO2@Pt nanodots with a diameter from 100 to 300 nm are achieved. Furthermore, the formation evolution of core-shell structure PtO2@Pt nanodots is also proposed. This work open up a new approach for fabricating core-shell structure nanodots.

  3. Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-12-01

    The present work deals with Pd/ZnO nanoparticles based Schottky diode for detection of NO2 at room temperature (298 K). To fabricate Pd/ZnO Schottky diode, zinc oxide (ZnO) nanoparticles (NPs) based film was developed on glass substrate using sol-gel spin coating process. Subsequently; Pd was deposited on ZnO using thermal evaporation technique. The structural properties of developed ZnO film were studied using energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The particles size of the developed film was in range of ~25 to ~110 nm. The response of fabricated Pd/ZnO Schottky diode was studied upon exposure to NO2 in terms of change in I-V characteristics. The magnitude of barrier height and ideality factor has been evaluated with concentration of NO2 ranging from 10 to 50 ppm. The developed sensor has good sensitivity of ~45.2%, with fast response and recovery time; 67 s and 250 s respectively for 50 ppm concentration of NO2 with excellent repeatability. The obtained results have been explained in terms of surface and subsurface adsorption of NO2 on Pd, subsequently dissociation of NO2 and its diffusion, which creates dipole moment at the Pd/ZnO interface.

  4. Bipolar resistance switching in Pt/CuO x /Pt via local electrochemical reduction

    DOE PAGES

    D'Aquila, Kenneth; Phatak, Charudatta; Holt, Martin V.; ...

    2014-06-17

    We investigated the local changes in copper oxidation state and the corresponding resistance changes in Pt/CuO x/Pt nanoscale heterostructures using x-ray nanoprobe spectro-microscopy and current-voltage characterization. After gentle electroforming, during which the current-voltage behavior remains non-linear, the low resistance state was reached, and we also observed regions of 160 nm width that show an increase in Cu K-alpha fluorescence intensity, indicative of partial reduction of the CuO x. Analysis of the current voltage curves showed that the dominant conduction mechanism is Schottky emission and that the resistance state is correlated with the Schottky barrier height. We also propose that themore » reversible resistivity change in these Pt/CuO x/Pt heterostructures occurs through local electrochemical reduction leading to change of the Schottky barrier height at the interface between Pt and the reduced CuO x layers and to change of the CuO x resistivity within laterally confined portions of the CuO x layer. Our experiments reveal important insights into the mechanism of resistance switching of Pt/CuO x/Pt performed in a current and voltage regime that does not create a metallic conduction path.« less

  5. Carbon-supported Pd-Co as cathode catalyst for APEMFCs and validation by DFT.

    PubMed

    Maheswari, S; Karthikeyan, S; Murugan, P; Sridhar, P; Pitchumani, S

    2012-07-21

    Carbon supported PdCo catalysts in varying atomic ratios of Pd to Co, namely 1 : 1, 2 : 1 and 3 : 1, were prepared. The oxygen reduction reaction (ORR) was studied on commercial carbon-supported Pd and carbon-supported PdCo nanocatalysts in aqueous 0.1 M KOH solution with and without methanol. The structure, dispersion, electrochemical characterization and surface area of PdCo/C were determined by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV), respectively. The electrochemical activity for ORR was evaluated from Linear Sweep Voltammograms (LSV) obtained using a rotating ring disk electrode. The catalysts were evaluated for their electrocatalytic activity towards oxygen reduction reaction (ORR) in Alkaline Polymer Electrolyte Membrane Fuel Cells (APEMFCs). PdCo(3 : 1)/C gives higher performance (85 mW cm(-2)) than PdCo(1 : 1)/C, PdCo(2 : 1)/C and Pd/C. The maximum electrocatalytic activity for ORR in the presence of methanol was observed for PdCo(3 : 1)/C. First principles calculations within the framework of density functional theory were performed to understand the origin of its catalytic activity based on the energy of adsorption of an O(2) molecule on the cluster, structural variation and charge transfer mechanism.

  6. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    NASA Astrophysics Data System (ADS)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  7. Fast Synthesis of Pt Nanocrystals and Pt/Microporous La2O3 Materials Using Acoustic Levitation.

    PubMed

    Yu, Yinkai; Qu, Shaohua; Zang, Duyang; Wang, Liuding; Wu, Hongjing

    2018-02-13

    Usually, we must use an appropriate support material to keep the metal species stable and finely dispersed as supported metal nanoparticles for industry application. Therefore, the choice of support material is a key factor in determining the dispersion and particle size of the noble metal species. Here, we report the synthesis of a single-atom Pt material in the solution and supported Pt nanoclusters on microporous La 2 O 3 by a one-step acoustic levitation method without any pretreatment/modification of raw oxide. We have strongly contributed to the synthetic methodology of the surface/interfacial heterogeneous catalysts in this study, and this finding could open another door for synthesis of supported metal nanoparticles on porous materials for environmental catalysis.

  8. Fast Synthesis of Pt Nanocrystals and Pt/Microporous La2O3 Materials Using Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Yu, Yinkai; Qu, Shaohua; Zang, Duyang; Wang, Liuding; Wu, Hongjing

    2018-02-01

    Usually, we must use an appropriate support material to keep the metal species stable and finely dispersed as supported metal nanoparticles for industry application. Therefore, the choice of support material is a key factor in determining the dispersion and particle size of the noble metal species. Here, we report the synthesis of a single-atom Pt material in the solution and supported Pt nanoclusters on microporous La2O3 by a one-step acoustic levitation method without any pretreatment/modification of raw oxide. We have strongly contributed to the synthetic methodology of the surface/interfacial heterogeneous catalysts in this study, and this finding could open another door for synthesis of supported metal nanoparticles on porous materials for environmental catalysis.

  9. Evaluation of Pd Nanoparticle-Decorated CeO2-MWCNT Nanocomposite as an Electrocatalyst for Formic Acid Fuel Cells

    NASA Astrophysics Data System (ADS)

    Saleem, Junaid; Safdar Hossain, SK.; Al-Ahmed, Amir; Rahman, Ateequr; McKay, Gordon; Hossain, Mohammed M.

    2018-04-01

    In this work, CeO2-modified Pd/CeO2-carbon nanotube (CNT) electrocatalyst for the electro-oxidation of formic acid has been investigated. The support CNT was first modified with different amounts (5-30 wt.%) of CeO2 using a precipitation-deposition method. The electrocatalysts were developed by dispersing Pd on the CeO2-CNT supports using the borohydride reduction method. The synthesized electrocatalysts were analyzed for composition, morphology and electronic structure using x-ray diffraction (XRD), scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) techniques. The formation of Pd nanoparticles on the CeO2-CNT support was confirmed using TEM. The activity of Pd/CeO2-CNT and of Pd-CNT samples upon oxidation of formic acid was evaluated by using carbon monoxide stripping voltammetry, cyclic voltammetry, and chronoamperometry. The addition of moderate amounts of cerium oxide (up to 10 wt.%) significantly improved the activity of Pd/CeO2-CNT compared to the unmodified Pd-CNT. Pd/10 wt.% CeO2-CNT showed a current density of 2 A mg-1, which is ten times higher than that of the unmodified Pd-CNT (0.2 A mg-1). Similarly, the power density obtained for Pd/10 wt.% CeO2-CNT in an air-breathing formic acid fuel cell was 6.8 mW/cm2 which is two times higher than Pd-CNT (3.2 mW/cm2), thus exhibiting the promotional effects of CeO2 to Pd/CeO2-CNT. A plausible justification for the improved catalytic performance and stability is provided in the light of the physical characterization results.

  10. Atmospheric-pressure plasma jet processed Pt/ZnO composites and its application as counter-electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Chun; Wan, Ting-Hao; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2018-04-01

    Nitrogen dc-pulse atmospheric pressure plasma jet (APPJ) is used to fabricate Pt/ZnO composites as the counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). Due to the synergetic effect of the reactive plasma species and heat in nitrogen APPJ, the spin-coated precursors including chloroplatinic acid and zinc acetate can be reduced on fluorine-doped tin oxide (FTO) glass substrates in a few seconds. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses indicate that the precursors are reduced to Pt/ZnO under APPJ calcination. Electrochemical impedance spectroscopy (EIS) and Tafel measurement show the promising catalytic activities of Pt/ZnO CEs with low charge transfer resistance and high exchange current density. The efficiency of a DSSC with a 30-s APPJ-calcined Pt/ZnO CE is similar to that with a conventional furnace-annealed Pt CE for 15 min. The results indicate that nitrogen dc-pulse APPJ treatment is an efficient tool for rapidly fabricating Pt/ZnO composite CEs of DSSCs.

  11. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    NASA Astrophysics Data System (ADS)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  12. Synthesis and characterization of Pd(0), PdS, and Pd-PdO core-shell nanoparticles by solventless thermolysis of a Pd-thiolate cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, Deepa; Jagirdar, Balaji R., E-mail: jagirdar@ipc.iisc.ernet.i

    2010-09-15

    Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8{+-}0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, [Pd(SC{sub 12}H{sub 25}){sub 2}]{sub 6} but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS,more » and Pd-PdO core-shell nanoparticles thus demonstrating its versatility. These Pd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. - Graphical abstract: Solventless thermolysis of a single palladium-thiolate cluster affords various Pd systems such as Pd(0), Pd-PdO core-shell, and PdS nanoparticles demonstrating the versatility of the precursor and the methodology.« less

  13. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    PubMed

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalysts].

    PubMed

    Sun, Hong; Quan, Xie; Zhang, Yao-bin; Zhao, Ya-zhi

    2008-06-01

    Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst was prepared by sol-gel and impregnation. Furthermore, selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst with propylene under lean burn condition was studied. The effects of the concentration of tetra-n-butyl titanate and dipcoat cycles on TiO2 washcoat were studied by SEM, and the effects of Pd concentration, O2 concentration and gas velocity on catalytic activity were investigated. The experimental results showed that the TiO2 washcoat on wire-mesh support is even and crack-free when the support is impregnated in 20.0% tetra- n-butyl titanate sol for 2 cycles. The NOx conversion decreases with Pd concentration increase. When Pd concentration is 0.23%, NOx conversion is highest. NOx conversion increases with oxygen concentration increase in the range of 1.5%-6.0%. However, when oxygen concentration is higher than 6.0%, NOx conversion decreases with increasing oxygen concentration. The NOx conversion decreases with gas velocity increase and its effect is severer at high temperature than low temperature.

  15. Optimized hydrogen sensing characteristic of Pd/ZnO nanoparticles based Schottky diode on glass substrate

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-10-01

    The present work deals with the development of the Pd/ZnO naoparticles based sensor for detection of hydrogen (H2) gas at relatively low temperature (75-110 °C). Pd/ZnO Schottky diode was fabricated by ZnO nanoparticles based thin film on glass substrate using sol-gel spin coating technique. These ZnO nanoparticles have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive x-ray spectroscope (EDS), and field emission scanning electron microscope (FE-SEM) which reveals the ZnO film having particles size in the range of ~25 to ~110 nm with ~52.73 nm surface roughness. Gas dependent diode parameters such as barrier height and ideality factor have been evaluated upon exposure of H2 gas concentration in the range from 200-2000 ppm over the temperature range from 75 to 110 °C. The sensitivity of the Pd/ZnO sensor has been studied in terms of change in diode forward current upon exposure to H2 gas. Experimental result shows the optimized sensitivity ~246.22% for H2 concentration of 2000 ppm at temperature 90 °C. The hydrogen sensing mechanism has been explained by surface and subsurface adsorption of H2 molecules on Pd surface; subsequently, dissociation of H2 molecules into H  +  H atoms and diffusion to trap sites (oxygen ions) available on ZnO surface, resulting in formation of dipole moments at Pd/ZnO interface. The variation in the sensitivity, response and recovery time with temperature of Pd/ZnO sensor has also been studied.

  16. SiO2 decoration dramatically enhanced the stability of PtRu electrocatalysts with undetectable deterioration in fuel cell performance.

    PubMed

    Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei

    2018-06-15

    Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO 2 , which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO 2 -decorated electrocatalysts originate from the SiO 2 coating, since Ru atoms are partially ionized during SiO 2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO 2 . The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.

  17. SiO2 decoration dramatically enhanced the stability of PtRu electrocatalysts with undetectable deterioration in fuel cell performance

    NASA Astrophysics Data System (ADS)

    Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei

    2018-06-01

    Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO2, which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO2-decorated electrocatalysts originate from the SiO2 coating, since Ru atoms are partially ionized during SiO2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO2. The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.

  18. Infrared Radiative Properties of Yttria-Stabilized Zirconia Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeff I.; Spuckler, Charles M.; Street, Ken W.; Markham, Jim R.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The infrared (IR) transmittance and reflectance of translucent thermal barrier coatings (TBCs) have important implications for both the performance of these coatings as radiation barriers and emitters as well as affecting measurements of TBC thermal conductivity, especially as TBCs are being pushed to higher temperatures. In this paper, the infrared spectral directional-hemispherical transmittance and reflectance of plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) TBCs are reported. These measurements are compared to those for single crystal YSZ specimens to show the effects of the plasma-sprayed coating microstructure. It is shown that the coatings exhibit negligible absorption at wavelengths up to about 5 micrometers, and that internal scattering rather than surface reflections dominates the hemispherical reflectance. The translucent nature of the 8YSZ TBCs results in the absorptance/emittance and reflectance of TBC-coated substrates depending on the TBC thickness, microstructure, as well as the radiative properties of the underlying substrate. The effects of these properties on TBC measurements and performance are discussed.

  19. Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOx–Al2O3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachrach, Mark; Morlanes-Sanchez, Natalia; Canlas, Christian P.

    2014-09-11

    Catalysts consisting of Pd nanoparticles supported on highly dispersed TiOx–Al2O3, TaOx–Al2O3, and MoOx–Al2O3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H2. The Pd/MOx–Al2O3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H2 for a given level of denitrogenation relative to an unmodified Pd/Al2O3 catalyst.

  20. Intermediate coating layer for high temperature rubbing seals for rotary regenerators

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1995-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.

  1. Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MO x–Al 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachrach, Mark; Morlanes-Sanchez, Natalia; Canlas, Christian P.

    2014-09-11

    Catalysts consisting of Pd nanoparticles supported on highly dispersed TiO x–Al 2O 3, TaO x–Al 2O 3, and MoO x–Al 2O 3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H 2. Lastly, the Pd/MO x–Al 2O 3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H 2 for a given level of denitrogenation relative to an unmodified Pd/Al 2O 3 catalyst.

  2. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  3. Photocatalytic activity of Pt-TiO2 films supported on hydroxylated fly ash cenospheres under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Yang, Zewei; An, Hao; Zhai, Jianping; Li, Qin; Cui, Hao

    2015-01-01

    TiO2 was coated on the surface of hydroxylated fly ash cenospheres (FACs) by the sol-gel method. Platinum (Pt) was then deposited on these TiO2/FAC particles by a photoreduction method to form PTF photocatalyst. The photocatalytic activity of PTF for the degradation of methylene blue (MB) under visible-light irradiation was determined. The PTF sample that was calcined at 450 °C and had a Pt/TiO2 mass ratio of 1.5% exhibited the optimal photocatalytic activity for degradation of MB with a catalyst concentration of 3 g L-1. MB was photodecomposed by PTF in aqueous solution more effectively at alkali pH than at acidic pH, because more MB molecules were adsorbed on the surface of PTF under alkaline conditions than that under acidic. The effect of various inorganic anions (HCO3-, F-, SO42-, NO3-, and Cl-) on the photodegradation of MB by PTF was also investigated. Addition of anions with a concentration of 5 mM enhanced the photocatalytic efficiency of PTF because of the improved adsorption of MB. This effect weakened as the anion concentration was increased, which was attributed to the ability of the anions to scavenge hydroxyl radicals and holes. Our results indicated that the photodegradation of MB took place mainly on the catalyst surface. The generation of hydroxyl radicals in the photocatalytic reaction was measured by the fluorescence method. KI was used to determine the participation of holes in the photocatalytic reaction. Both hydroxyl radicals and valence-band holes were detected in the PTF system. Recycling tests revealed that calcination of the used PTF helped to regain its photocatalytic activity.

  4. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    NASA Astrophysics Data System (ADS)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  5. Catalysts for selective hydrogenation of furfural derived from the double complex salt [Pd(NH 3 ) 4 ](ReO 4 ) 2 on γ-Al 2 O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Simon T.; Lamb, H. Henry

    The double complex salt [Pd(NH3)4](ReO4)2 was employed as precursor of supported bimetallic catalysts for selective hydrogenation of furfural. Direct reduction of [Pd(NH3)4](ReO4)2 on γ-Al2O3 in flowing H2 at 400 °C yields bimetallic nanoparticles 1–2 nm in size that exhibit significant interaction between the metals, as evidenced by temperature-programmed hydride decomposition (complete suppression of β-PdHx formation), extended X-ray absorption fine structure spectroscopy at the Pd K and Re LIII edges (PdRe distance = 2.72 Å), and scanning transmission electron microscopy with energy dispersive X-ray analysis. In contrast, calcination of [Pd(NH3)4](ReO4)2 on γ-Al2O3 at 350 °C in air and subsequent reduction inmore » H2 at 400 °C results in metal segregation and formation of large (>50 nm) supported Pd particles; Re species cover the Pd particles and γ-Al2O3 support. A PdRe 1:2 catalyst prepared by sequential impregnation and calcination using HReO4 and [Pd(NH3)4](NO3)2 has a similar morphology. The catalyst derived by direct reduction of [Pd(NH3)4](ReO4)2 on γ-Al2O3 exhibits remarkably high activity for selective hydrogenation of furfural to furfuryl alcohol (FAL) at 150 °C and 1 atm. Suppression of H2 chemisorption via elimination of Pd threefold sites, as evidenced by CO diffuse-reflectance infrared Fourier transform spectroscopy, correlates with increased FAL selectivity.« less

  6. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    NASA Astrophysics Data System (ADS)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  7. Double enzymatic cascade reactions within FeSe-Pt@SiO2 nanospheres: synthesis and application toward colorimetric biosensing of H2O2 and glucose.

    PubMed

    Qiao, Fengmin; Wang, Zhenzhen; Xu, Ke; Ai, Shiyun

    2015-10-07

    A facile process was developed for the synthesis of FeSe-Pt@SiO2 nanospheres based on the hydrothermal treatment of FeCl3·6H2O, selenium and NaBH4 in ethanolamine solvent, followed by reducing HPtCl4 with NaBH4 in the presence of FeSe particles to obtain FeSe coated with Pt NPs (FeSe-Pt), ending with a surfactant assembled sol-gel process to obtain FeSe-Pt@SiO2. The morphology and composition of FeSe-Pt@SiO2 were characterized by transmission electron microscopy, high resolution TEM, X-ray diffraction and Fourier transform infrared spectroscopy. Structural analyses revealed that FeSe-Pt@SiO2 nanospheres were of regular spherical shape with smooth surfaces due to the SiO2 shells, compared with FeSe particles with 150 nm lateral diameter. The prepared FeSe-Pt@SiO2 nanospheres possessed both intrinsic glucose oxidase (GOx-) and peroxidase-mimic activities, and we engineered an artificial enzymatic cascade system with high activity and stability based on this nanostructure. The good catalytic performance of the composites could be attributed to the synergy between the functions of FeSe particles and Pt NPs. Significantly, the FeSe-Pt@SiO2 nanospheres as robust nanoreactors can catalyze a self-organized cascade reaction, which includes oxidation of glucose by oxygen to yield gluconic acid and H2O2, and then oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a colour change. Colorimetric detection of H2O2 and glucose using the FeSe-Pt@SiO2 nanospheres was conducted with high detection sensitivities, 0.227 nM and 1.136 nM, respectively, demonstrating the feasibility of practical sensing applications. It is therefore believed that our findings in this study could open up the possibility of utilizing FeSe-Pt@SiO2 nanospheres as enzymatic mimics in diagnostic and biotechnology fields.

  8. Simultaneous leaching of Pt, Pd and Rh from automotive catalytic converters in chloride-containing solutions

    NASA Astrophysics Data System (ADS)

    Hasani, M.; Khodadadi, A.; Koleini, S. M. J.; Saeedi, A. H.; Meléndez, A. M.

    2017-01-01

    Dissolution of platinum group metals (PGM; herein Pt, Pd and Rh) in different chloride-based leaching systems from spent auto catalysts was performed. Response surface methodology and a five-level-five-factor central composite design were used to evaluate the effects of 1) temperature, 2) liquid-to-solid ratio, 3) stirring speed, 4) acid concentration and 5) particle size on extraction yield of PGM by aqua regia. Analysis of variance was used to determine the optimum conditions and most significant factors affecting the overall metal extraction. In the optimum conditions, leaching of Pt, Pd and Rh was 91.58%, 93.49% and 60.15%, respectively. The effect of different oxidizing agents on the PGM dissolution in chloride medium was studied comparatively in the following leaching systems: a) aqua regia/sulfuric acid mixture, b) hydrogen peroxide in sulfuric acid (piranha solution), c) sodium hypochlorite and d) copper(II). Dissolution of Rh is increased in both aqua regia and hydrogen peroxide/hydrochloric acid solutions by adding sulfuric acid.

  9. Ternary Pt/SnO(x)/TiO2 photocatalysts for hydrogen production: consequence of Pt sites for synergy of dual co-catalysts.

    PubMed

    Gu, Quan; Long, Jinlin; Zhuang, Huaqiang; Zhang, Chaoqiang; Zhou, Yangen; Wang, Xuxu

    2014-06-28

    A variety of ternary nanoheterostructures composed of Pt nanoparticles (NPs), SnOx species, and anatase TiO2 are designed elaborately to explore the effect of interfacial electron transfer on photocatalytic H2 evolution from a biofuel-water solution. Among numerous factors controlling the H2 evolution, the significance of Pt sites for the H2 evolution is highlighted by tuning the loading procedure of Pt NPs and SnOx species over TiO2. A synergistic enhancement of H2 evolution can be achieved over the Pt/SnOx/TiO2 heterostructures formed by anchoring Pt NPs at atomically-isolated Sn-oxo sites, whereas the Pt/TiO2/SnOx counterparts prepared by grafting single-site Sn-oxo species on Pt/TiO2 show a marked decrease in the rate of H2 evolution. The characterization results clearly reveal that the synergy of Pt NPs and SnOx species originates from the vectorial electron transfer of TiO2 → SnOx → Pt occurring on the former, while the latter results from the competitive electron transfer from TiO2 to SnOx and to Pt NPs.

  10. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings

    DOE PAGES

    Lance, Michael J.; Unocic, Kinga A.; Haynes, James A.; ...

    2015-09-04

    Directionally-solidified (DS) superalloy components with advanced thermal barrier coatings (TBC) to lower the metal operating temperature have the potential to replace more expensive single crystal superalloys for large land-based turbines. In order to assess relative TBC performance, furnace cyclic testing was used with superalloys 1483, X4 and Hf-rich DS 247 substrates and high velocity oxygen fuel (HVOF)-NiCoCrAlYHfSi bond coatings at 1100 °C with 1-h cycles in air with 10% H 2O. With these coating and test conditions, there was no statistically-significant effect of substrate alloy on the average lifetime of the air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coatingsmore » on small coupons. Using photo-stimulated luminescence piezospectroscopy maps at regular cycling intervals, the residual compressive stress in the α-Al 2O 3 scale underneath the YSZ top coating and on a bare bond coating was similar for all three substrates and delaminations occurred at roughly the same rate and frequency. As a result, x-ray fluorescence (XRF) measurements collected from the bare bond coating surface revealed higher Ti interdiffusion occurring with the 1483 substrate, which contained the highest Ti content.« less

  12. Environmental Barrier Coatings for Silicon-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Fox, Dennis S.; Robinson, Raymond C.; Bansal, Narottam P.

    2001-01-01

    Silicon-based ceramics, such as SiC fiber-reinforced SiC (SiC/SiC ceramic matrix composites (CMC) and monolithic silicon nitride (Si3N4), are prime candidates for hot section structural components of next generation gas turbine engines. Silicon-based ceramics, however, suffer from rapid surface recession in combustion environments due to volatilization of the silica scale via reaction with water vapor, a major product of combustion. Therefore, application of silicon-based ceramic components in the hot section of advanced gas turbine engines requires development of a reliable method to protect the ceramic from environmental attack. An external environmental barrier coating (EBC) is considered a logical approach to achieve protection and CP long-term stability. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 Wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program (5). They consist of three layers, a silicon first bond coat, a mullite or a mullite + BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2) second bond coat, and a BSAS top coat. The EPM EBCs were applied on SiC/SiC CMC combustor liners in three Solar Turbines (San Diego, CA) Centaur 50s gas turbine engines. The combined operation of the three engines has accumulated over 24,000 hours without failure (approximately 1,250 C maximum combustor liner temperature), with the engine in Texaco, Bakersfield, CA, accumulating about 14,000 hours. As the

  13. Effect of counterpart metals in carbon-supported Pt-based catalysts prepared using radiation chemical method

    NASA Astrophysics Data System (ADS)

    Okazaki, Tomohisa; Seino, Satoshi; Matsuura, Yoshiyuki; Otake, Hiroaki; Kugai, Junichiro; Ohkubo, Yuji; Nitani, Hiroaki; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    The process of nanoparticle formation by radiation chemical synthesis in a heterogeneous system has been investigated. Carbon-supported Pt-based bimetallic nanoparticles were synthesized using a high-energy electron beam. Rh, Cu, Ru, and Sn were used as counterpart metals. The nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry, transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. PtRh formed a uniform random alloy nanoparticle, while Cu partially formed an alloy with Pt and the remaining Cu existed as CuO. PtRu formed an alloy structure with a composition distribution of a Pt-rich core and Ru-rich shell. No alloying was observed in PtSn, which had a Pt-SnO2 structure. The alloy and oxide formation mechanisms are discussed considering the redox potentials, the standard enthalpy of oxide formation, and the solid solubilities of Pt and the counterpart metals.

  14. On the origin of high-temperature phenomena in Pt/Al2O3.

    PubMed

    Lisitsyn, Alexander S; Yakovina, Olga A

    2018-01-24

    Treatments of Pt/γ-Al 2 O 3 with H 2 under harsh conditions have long been known to strongly influence the properties of this important catalytic system, but the true causes of the high-temperature effects still remain unclear. We have performed a more detailed study of this issue, having used H 2 -TPD as a sensitive probe of metal-support interactions. The experimental results are in accordance with previous studies and demonstrate strong changes in adsorption and catalytic properties of Pt/γ-Al 2 O 3 after high-temperature H 2 treatments, as well as the possibility to reverse the changes, completely or in part, through O 2 and H 2 O treatments. Thorough examination has shown that such behaviour is an intrinsic property of Pt/γ-Al 2 O 3 and cannot be attributed to impurities or experimental artifacts. Moreover, there is no abrupt transition to a high-temperature state, but the system undergoes smooth and gradual changes upon increasing the H 2 -treatment temperature (T TR ), with the changes being already apparent at a T TR of ∼ 300 °C. The results suggest that hydrogen can generate oxygen vacancies on the surface of the support in close vicinity to the Pt particles, and the system appears under equilibrium to be kinetically driven by temperature and thermodynamically driven by the P H 2 /P H 2 O ratio or local concentration of surface hydroxyls near Pt particles. The generated vacancies change the properties of contacting particles, and the changes are most pronounced for sub-nanometric Pt clusters and single atoms. Implications of the phenomena for the synthesis, study, and use of Pt/γ-Al 2 O 3 and its related nanosystems are discussed.

  15. Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications.

    PubMed

    Yuan, Jiaquan; Choo, Eugene Shi Guang; Tang, Xiaosheng; Sheng, Yang; Ding, Jun; Xue, Junmin

    2010-05-07

    The photocatalytic behaviors of ZnO nanoparticles have been intensively studied recently. However, the photocatalytic efficiency of pure ZnO nanoparticles always suffers from the quick recombination of photoexcited electrons and holes. In order to suppress the electron-hole recombination and then raise the photocatalytic efficiency of ZnO, metal nanoparticles have been combined with ZnO to form ZnO-metal heterostructures. In this work, the feasibility of synthesizing ZnO-Pt composite nanoflowers for optimized catalytic properties was studied. Three different Pt nanocrystals, i.e. cubic Pt nanocrystals enclosed by {100} facets, octahedral Pt nanocrystals enclosed by {111} facets, and truncated octahedral Pt nanocrystals enclosed by both {111} and {100} facets, were selected as seeds for epitaxial growth of ZnO. A ZnO-Pt flowerlike nanostructure was formed by selective growth of ZnO nanolobes at {111} facets of the truncated octahedral Pt nanocrystals. The resultant nanoflowers had well defined ZnO-Pt interfaces and exposed Pt {100} facets, as confirmed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) measurements. The photocatalytic behaviors of the resultant ZnO-Pt nanoflowers were demonstrated in the photodegradation of ethyl violet. In comparison with the commercial TiO(2) photocatalyst P25, the ZnO-Pt flowerlike nanostructures showed improved catalytic efficiency. Notable ferromagnetism of the obtained ZnO-Pt flowerlike nanostructures was also observed. It is believed that the ZnO-Pt interface played an important role in the enlarged magnetic coercivity of the ZnO-Pt nanoflowers.

  16. Porous nanocrystalline silicon supported bimetallic Pd-Au catalysts: preparation, characterization and direct hydrogen peroxide synthesis

    NASA Astrophysics Data System (ADS)

    Potemkin, Dmitriy I.; Maslov, Dmitry K.; Loponov, Konstantin; Snytnikov, Pavel V.; Shubin, Yuri V.; Plyusnin, Pavel E.; Svintsitskiy, Dmitry A.; Sobyanin, Vladimir A.; Lapkin, Alexei A.

    2018-03-01

    Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterised by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 at selectivity of 50 % and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at -10 °C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process.

  17. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    NASA Astrophysics Data System (ADS)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  18. One-pot facile synthesis of reusable tremella-like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) three layers core-shell nanostructures as highly efficient catalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yadong; Fang, Zhen; Kuai, Long; Geng, Baoyou

    2014-07-01

    In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and storage systems.In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and

  19. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negreiros, Fabio R.; Halder, Avik; Yin, Chunrong

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, inmore » which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.« less

  20. Oxidation of palladium on Au(111) and ZnO(0001) supports

    DOE PAGES

    Lallo, J.; Tenney, S. A.; Kramer, A.; ...

    2014-10-21

    The oxidation of supported Pd-deposits on Au(111) and ZnO(0001) single crystals has been studied by x- ray photoemission spectroscopy (XPS). Oxidation has been carried out ex-situ in a high-pressure cell with subsequent vacuum-transfer and characterization by XPS in ultrahigh vacuum (UHV), as well as using in-situ characterization by synchrotron based near-ambient pressure XPS. On Au(111) alloying of Pd with the substrate competes with oxidation and only sufficiently thick Pd films have been found to oxidize. For Pd on ZnO the oxidation conditions depend on the amount of deposited Pd. Thicker Pd deposits behave similar to bulk Pd, while thinner filmsmore » oxidize already at lower temperatures. Interestingly, for very small amounts of Pd, in-situ XPS shows full oxidation at room temperature and at less than 0.6 mbar O₂ pressure. This indicates a lowering of the kinetic barriers for oxidation of very small supported Pd-clusters. The formed oxide is, however, not stable in UHV and a slow reduction is observed. The instability of this oxide indicates that the Pd-oxide formed at the interface to ZnO may have different chemical properties compared to bulk PdO or surface oxides on Pd.« less

  1. Development and characterization of PdCr temperature-compensated wire resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1989-01-01

    A temperature-compensated resistance static strain gage with potential to be used to 600 C was recently developed. Gages were fabricated from specially developed palladium-13 w/o chromium (Pd-13Cr) wire and platinum (Pt) compensator. When bonded to high temperature Hastelloy X, the apparent strain from room temperature to 600 C was within 400 microstrain for gages with no preheat treatment and within 3500 microstrain for gages with 16 hours prestabilization at 640 C. The apparent strain versus temperature relationship of stabilized PdCr gages were repeatable with the reproducibility within 100 microstrain during three thermal cycles to 600 C and an 11 hours soak at 600 C. The gage fabrication, construction and installation is described. Also, the coating system used for this compensated resistance strain gage is explained. The electrical properties of the strain sensing element and main characteristics of the compensated gage including apparent strain, drift and reproducibility are discussed.

  2. Y0.08Sr0.88TiO3-CeO2 composite as a diffusion barrier layer for stainless-steel supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Kun Joong; Kim, Sun Jae; Choi, Gyeong Man

    2016-03-01

    A new diffusion barrier layer (DBL) is proposed for solid oxide fuel cells (SOFCs) supported on stainless-steel where DBL prevents inter-diffusion of atoms between anode and stainless steel (STS) support during fabrication and operation of STS-supported SOFCs. Half cells consisting of dense yttria-stabilized zirconia (YSZ) electrolyte, porous Ni-YSZ anode layer, and ferritic STS support, with or without Y0.08Sr0.88TiO3-CeO2 (YST-CeO2) composite DBL, are prepared by tape casting and co-firing at 1250 and 1350 °C, respectively, in reducing (H2) atmosphere. The porous YST-CeO2 layer (t ∼ 60 μm) blocks inter-diffusion of Fe and Ni, and captures the evaporated Cr during cell fabrication (1350 °C). The cell with DBL and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode achieved a maximum power density of ∼220 mW cm-2 which is stable at 700 °C. In order to further improve the power performance, Ni coarsening in anode during co-firing must be prevented or alternative anode which is resistive to coarsening is suggested. This study demonstrates that the new YST-CeO2 layer is a promising as a DBL for stainless-steel-supported SOFCs fabricated with co-firing process.

  3. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl

    2017-09-01

    The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.

  4. Skeletal reactions of n-hexane over Pt-NaY, Pt/SiO{sub 2}, HY, and mixed Pt/SiO{sub 2} + HY catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paal, Z.; Zhan, Z.; Manninger, I.

    The activity and selectivity of three samples of 8% Pt-NaY calcined at 633, 723, and 823 K, respectively, have been probed with n-hexane as the model reactant at 603 K and subatmospheric pressures in a glass closed-loop reactor. These catalysts were compared with 6.3% Pt/SiO{sub 2} (EUROPT-1), HY, and a physical mixture of the latter two. The activity of all Pt-NaY catalysts is superior to EUROPT-1 and they deactivate more slowly. The selectivity pattern of all Pt-NaY samples is closer to that characteristic of monofunctional Pt catalysts, as opposed to the pronounced acidic character of pure HY and the mechanicalmore » mixtures. The sample calcined at 633 K, which has the highest dispersion and probably contains Pt particles anchored to the support as [Pt{sub n} - H{sub x}]{sup x+} entities, shows the highest aromatization selectivity. The sample precalcined at 823 K with the lowest dispersion has a pronouncedly high skeletal isomerization selectivity. The isomerization pathway may be related to the C{sub 5} cyclic route on metal sites that are more abundant on the larger crystallites of this catalyst and are more easily accessible with its partially collapsed zeolite framework. Characteristic differences between samples in the response of their catalytic performance to changes in hydrogen and hydrocarbon pressure are discussed. 37 refs., 5 figs., 4 tabs.« less

  5. Calorimetry, activity, and micro-FTIR analysis of CO chemisorption, titration, and oxidation on supported Pt

    NASA Technical Reports Server (NTRS)

    Sermon, Paul A.; Self, Valerie A.; Vong, Mariana S. W.; Wurie, Alpha T.

    1990-01-01

    The value of in situ analysis on CO chemisorption, titration and oxidation over supported Pt catalysts using calorimetry, catalytic and micro-FTIR methods is illustrated using silica- and titania-supported samples. Isothermal CO-O and O2-CO titrations have not been widely used on metal surfaces and may be complicated if some oxide supports are reduced by CO titrant. However, they can illuminate the kinetics of CO oxidation on metal/oxide catalysts since during such titrations all O and CO coverages are scanned as a function of time. There are clear advantages in following the rates of the catalyzed CO oxidation via calorimetry and gc-ms simultaneously. At lower temperatures the evidence they provide is complementary. CO oxidation and its catalysis of CO oxidation have been extensively studied with hysteresis and oscillations apparent, and the present results suggest the benefits of a combined approach. Silica support porosity may be important in defining activity-temperature hysteresis. FTIR microspectroscopy reveals the chemical heterogeneity of the catalytic surfaces used; it is interesting that the evidence with regard to the dominant CO surface species and their reactivities with regard to surface oxygen for present oxide-supported Pt are different from those seen on graphite-supported Pt.

  6. Resistance of Nanostructured Environmental Barrier Coatings to the Movement of Molten Salts

    NASA Astrophysics Data System (ADS)

    Rao, S.; Frederick, L.; McDonald, A.

    2012-09-01

    Corrosion of components in a recovery boiler is a major problem faced by the pulp and paper industry. The superheater tubes become severely corroded due to the presence of sulfidic gases in the boiler and molten salts which are deposited on the surface of the tubes. As a result, the boiler must be decommissioned for expensive maintenance and repairs. Yttria-stabilized zirconia (YSZ) coatings have been shown to provide corrosion resistance when applied on gas turbines operating at high temperatures. Air plasma-sprayed YSZ environmental barrier coatings on Type 309 stainless steel were exposed to three different corrosive environments: Test A—600 °C, salt vapors, flue gases, 168 h; Test B—600 °C, molten salt, air, 168 h; and Test C—600 °C, molten salt, flue gases, 168 h. Two different types of YSZ coatings—conventional YSZ and nanostructured YSZ—were tested to study their resistance to corrosion and molten salt penetration. The performances of both types of coatings were evaluated, and a comparative study was conducted. It was found that the nanostructured YSZ samples protected the stainless steel substrate better than their conventional counterparts. This superior performance was attributed to the presence of semi-molten nano-agglomerates present in the coating microstructure, which acted as collection points for the penetrating molten salts.

  7. 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction.

    PubMed

    Berillo, Dmitriy; Cundy, Andrew

    2018-07-15

    3D-macroporous chitosan-based scaffolds (cryogels) were produced via growth of metal-polymer coordinated complexes and electrostatic interactions between oppositely charged groups of chitosan and metal ions under subzero temperatures. A mechanism of reduction of noble metal complexes inside the cryogel walls by glutaraldehyde is proposed, which produces discrete and dispersed noble metal nanoparticles. 3D-macroporous scaffolds prepared under different conditions were characterised using TGA, FTIR, nitrogen adsorption, SEM, EDX and TEM, and the distribution of platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) in the material assessed. The catalytic activity of the in situ synthesised PdNPs, at 2.6, 12.5 and 21.0 μg total mass, respectively, was studied utilising a model system of 4-nitrophenol reduction. The kinetics of the reaction under different conditions (temperature, concentration of catalyst) were examined, and a decrease of catalytic activity was not observed over 17 treatment cycles. Increasing the temperature of the catalytic reaction from 10 to 22 and 35 °C by PdNPs supported within the cryogel increased the kinetic rate by 44 and 126%, respectively. Turnover number and turnover frequency of the PdNPs catalysts at room temperature were in the range 0.20-0.53 h -1 . The conversion degree of 4-nitrophenol at room temperature reached 98.9% (21.0 μg PdNPs). Significantly less mass of palladium nanoparticles (by 30-40 times) was needed compared to published data to obtain comparable rates of reduction of 4-nitrophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Preparation of Pd supported on La(Sr)-Mn-O Perovskite by microwave Irradiation Method and Its Catalytic Performances for the Methane Combustion

    PubMed Central

    Wang, Wei; Yuan, Fulong; Niu, Xiaoyu; Zhu, Yujun

    2016-01-01

    In this work, a series of palladium supported on the La0.8Sr0.2MnO3.15 perovskite catalysts (Pd/LSM-x) with different Pd loading were prepared by microwave irradiation processing plus incipient wetness impregnation method and characterized by XRD, TEM, H2-TPR and XPS. These catalysts were evaluated on the lean CH4 combustion. The results show that the Pd/LSM-x samples prepared by microwave irradiation processing possess relative higher surface areas than LSM catalyst. The addition of Pd to the LSM leads to the increase in the oxygen vacancy content and the enhancement in the mobility of lattice oxygen which play an important role on the methane combustion. The Pd/LSM-3 catalysts with 4.2wt% Pd loading exhibited the best performance for CH4 combustion that temperature for 10% and 90% of CH4 conversion is 315 and 520 °C. PMID:26781628

  9. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    NASA Astrophysics Data System (ADS)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  10. Water-gas shift reaction on alumina-supported Pt-CeO x catalysts prepared by supercritical fluid deposition

    DOE PAGES

    Deal, Jacob W.; Le, Phong; Corey, C. Blake; ...

    2016-08-25

    Alumina-supported platinum catalysts, both with and without ceria, were prepared by supercritical fluid deposition and evaluated for activity for water-gas shift reaction. The organometallic precursor, platinum(II) acetylacetonate, was deposited from solution in supercritical carbon dioxide. Analysis of the catalysts by high resolution scanning transmission electron microscopy indicated that platinum was present in the form of highly dispersed metal nanoparticles. Pretreatment of the alumina-supported ceria in hydrogen prior to the deposition of the platinum precursor resulted in more platinum nucleated on ceria than non-pretreated alumina-supported ceria but varied in both particle size and structure. The ceria-containing catalyst that was not pretreatedmore » exhibited a more uniform particle size, and the Pt particles were encapsulated in crystalline ceria. Reaction rate measurements showed that the catalyst was more active for water-gas shift, with reaction rates per mass of platinum that exceeded most literature values for water-gas shift reaction on Pt-CeO x catalysts. The high activity was attributed to the significant fraction of platinum/ceria interfacial contact. We found that these results show the promise of supercritical fluid deposition as a scalable means of synthesizing highly active supported metal catalysts that offer efficient utilization of precious metals.« less

  11. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    PubMed

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  12. Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis

    PubMed Central

    Potemkin, Dmitriy I.; Maslov, Dmitry K.; Loponov, Konstantin; Snytnikov, Pavel V.; Shubin, Yuri V.; Plyusnin, Pavel E.; Svintsitskiy, Dmitry A.; Sobyanin, Vladimir A.; Lapkin, Alexei A.

    2018-01-01

    Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterized by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt (DCS) single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 mol gPd-1 h-1 at selectivity of 50% and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at −10°C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability, and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process. PMID:29637068

  13. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.

    NASA Astrophysics Data System (ADS)

    Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar

    2018-04-01

    Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.

  14. Anodized porous titanium coated with Ni-CeO2 deposits for enhancing surface toughness and wear resistance

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Ouyang, Chun

    2017-05-01

    In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.

  15. Ternary PtRuPd/C catalyst for high-performance, low-temperature direct dimethyl ether fuel cells

    DOE PAGES

    Dumont, Joseph Henry; Martinez, Ulises; Chung, Hoon T.; ...

    2016-08-19

    Here, dimethyl ether (DME) is a promising alternative fuel option for direct-feed low-temperature fuel cells. Until recently, DME had not received the same attention as alcohol fuels, such as methanol or ethanol, despite its notable advantages. These advantages include a high theoretical open-cell voltage (1.18 V at 25 °C) that is similar to that of methanol (1.21 V), much lower toxicity than methanol, and no need for the carbon–carbon bond scission that is needed in ethanol oxidation. DME is biodegradable, has a higher energy content than methanol (8.2 vs. 6.1 kWh kg –1), and, like methanol, can be synthesized frommore » recycled carbon dioxide. Although the performance of direct DME fuel cells (DDMEFCs) has progressed over the past few years, DDMEFCs have not been viewed as fully viable. In this work, we report much improved performance from the ternary Pt 55Ru 35Pd 10/C anode catalyst, allowing DDMEFCs to compete directly with direct methanol fuel cells (DMFCs). We also report results involving binary Pt alloys as reference catalysts and an in situ infrared electrochemical study to better understand the mechanism of DME electro-oxidation on ternary PtRuPd/C catalysts.« less

  16. Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings

    NASA Astrophysics Data System (ADS)

    Dwivedi, Gopal; Tan, Yang; Viswanathan, Vaishak; Sampath, Sanjay

    2015-02-01

    The continuous need of elevating operating temperature of gas turbine engines has introduced several challenges with the current state-of-the-art yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs), requiring examination of new TBC material with high temperature phase stability, lower thermal conductivity, and resistance to environmental ash particles. Gadolinium zirconate (Gd2Zr2O7) (GDZ) has been shown to meet many of these requirements, and has, in fact, been successfully implemented in to engine components. However, several fundamental issues related to the process-ability, toughness, and microstructural differences for GDZ when compared to equivalent YSZ coating. This study seeks to critically address the process-structure-property correlations for plasma-sprayed GDZ coating subjected to controlled parametric exploration. Use of in-flight diagnostics coupled with in situ and ex situ coating property monitoring allows examination and comparison of the process-property interplay and the resultant differences between the two TBC compositions. The results indicate that it is feasible to retain material chemistry and fabricate relevant microstructures of interest with GDZ with concomitant performance advantages such as low conductivity, mechanical compliance, sintering resistance, and suppression of environmentally induced damage from ash particles. This study provides a framework for optimal design and manufacturing of emergent multi-layer and multi-material TBCs.

  17. Electrochemical characterization of nano-sized Pd-based catalysts as cathode materials in direct methanol fuel cells.

    PubMed

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.

  18. High-pressure synthesis and characterizations of the R2Pt2O7 pyrochlores.

    NASA Astrophysics Data System (ADS)

    Cai, Yunqi; Cui, Qi; Cheng, Jinguang; Dun, Zhiling; Zhou, Haidong; Ma, Jie; Cruz, C. Dela; Yan, Jiaqiang; Li, Xiang; Zhou, Jianshi

    Pyrochlore R2B2O7 where R3 + stands for rear-earth ion and B4 + for a nonmagnetic cation such as Sn4 +or Ti4 +consist of an important family of geometrically frustrated magnets, which have been the focus of extensive investigations over last decades. To further enlarge the R2B2O7, we have chosen to stabilize the Pt-based cubic pyrochlores under HPHT conditions for two reasons: (1) Pt4 + is in a low-spin state which ionic radius is located in between Ti4 + (0.605\\x85) and Sn4 + (0.69\\x85), and (2) Pt4 + has a spatially much more extended 5d orbitals and thus enhanced Pt 5d-O 2p hybridizations that might modify the local anisotropic exchange interactions. Such an effect has never been taken into account in the previous studies. In this work, we will present the detailed characterizations on the pyrochlores R2Pt2O7 obtained under HPHT conditions. This work is supported by the National Science Foundation of China (Grant Nos.11304371, 11574377), part of the work was supported by the CEM, and NSF MRSEC, under Grant DMR-1420451, and Grant No. NSF-DMR-1350002.

  19. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  20. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Godoi, Denis R. M.; Villullas, Hebe M.; Zhu, Fu-Chun; Jiang, Yan-Xia; Sun, Shi-Gang; Guo, Junsong; Sun, Lili; Chen, Rongrong

    2016-04-01

    The effects of interactions of Pt nanoparticles with hybrid supports on reactivity towards ethanol oxidation in alkaline solution are investigated. Studies involve catalysts with identical Pt nanoparticles on six hybrid supports containing carbon powder and transition metal oxides (TiO2, ZrO2, SnO2, CeO2, MoO3 and WO3). In situ X-ray absorption spectroscopy (XAS) results evidence that metal-support interactions produce changes in the Pt 5d band vacancy, which appears to determine the catalytic activity. The highest and lowest activities are observed for Pt nanoparticles on hybrid supports containing TiO2 and CeO2, respectively. Further studies are presented for these two catalysts. In situ FTIR reflection spectroscopy measurements, taken using both multi-stepped FTIR spectroscopy (MS-FTIR) and single potential alteration FTIR spectroscopy (SPA-FTIR), evidence that the main product of ethanol oxidation is acetate, although signals attributed to carbonate and CO2 indicate some differences in CO2 production. Fuel cell performances of these catalysts, tested in a 4.5 cm2 single cell at different temperatures (40-90 °C) show good agreement with data obtained by electrochemical techniques. Results of this comprehensive study point out the possibility of compensating a reduction of noble metal load with an increase in activity promoted by interactions between metallic nanoparticles and a support.

  1. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    1999-01-01

    Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  2. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  3. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong

    2013-11-01

    Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.

  4. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction

    DOE PAGES

    Tian, Xinlong; Adzic, Radoslav R.; Luo, Junming; ...

    2016-02-10

    Here, the main challenges to the commercial viability of polymer electrolyte membrane fuel cells are (i) the high cost associated with using large amounts of Pt in fuel cell cathodes to compensate for the sluggish kinetics of the oxygen reduction reaction, (ii) catalyst degradation, and (iii) carbon-support corrosion. To address these obstacles, our group has focused on robust, carbon-free transition metal nitride materials with low Pt content that exhibit tunable physical and catalytic properties. Here, we report on the high performance of a novel catalyst with low Pt content, prepared by placing several layers of Pt atoms on nanoparticles ofmore » titanium nickel binary nitride. For the ORR, the catalyst exhibited a more than 400% and 200% increase in mass activity and specific activity, respectively, compared with the commercial Pt/C catalyst. It also showed excellent stability/durability, experiencing only a slight performance loss after 10,000 potential cycles, while TEM results showed its structure had remained intact. The catalyst’s outstanding performance may have resulted from the ultrahigh dispersion of Pt (several atomic layers coated on the nitride nanoparticles), and the excellent stability/durability may have been due to the good stability of nitride and synergetic effects between ultrathin Pt layer and the robust TiNiN support.« less

  5. Theoretical study of isostructural compounds MTe2 (M = Ni, Pd and Pt) on structure and thermodynamic properties under high pressures

    NASA Astrophysics Data System (ADS)

    Lei, Jin-Qiao; Liu, Ke; Huang, Sha; Mao, Xiao-Chun; Hou, Bao-Sen; Tan, Jiao; Zhou, Xiao-Lin

    2017-11-01

    The mechanical, electronic and thermodynamic properties of MTe2 (M = Ni, Pd and Pt) under high pressure were investigated via the first-principles calculations. According to our calculations of these trigonal crystals (space group of P3M1, No: 164), we found that all of them are fulfilled by the mechanical stability criteria under 31 GPa (for NiTe2), 37 GPa (for PdTe2) and 73 GPa (for PtTe2). The study on their structures revealed the elastic anisotropy of these isostructural compounds. Electronic structure calculations show that MTe2 are semi-metal. On the basis of the quasi-harmonic Debye model, we also researches their thermodynamic properties.

  6. An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles.

    PubMed

    Ye, Lingxian; Zhao, Guangying; Dou, Wenchao

    2018-05-15

    A sensitive Point-of-Care Testing (POCT) with Au-Pt bimetallic nanoparticles (Au@Pt) functionalized silica nanoparticle (SiO 2 NPs) and Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 NPs) was designed for the quantitative detection of Escherichia coli O157:H7 (E. coli O157:H7). The poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as a negatively charged polyelectrolyte can be easily coated on surface of the amino group modified SiO 2 NPs via electrostatic force. PSSMA is also a good stabilizer for water-soluble bimetallic nanostructures. The PSSMA is first time used as a "bridge" to connect the negative charge Au@Pt NPs to the SiO 2 NPs, forming Au@Pt/SiO 2 NPs. Antibody and invertase conjugated Au@Pt/SiO 2 NPs (denoted as Ab/invertase-Au@Pt/SiO 2 NPs) were used as signal labels. Monoclonal antibody against E. coli O157:H7 (Ab) functionalized magnetic nanoparticles (denoted as Ab-Fe 3 O 4 @SiO 2 NPs) were used to enrich and capture the E. coli O157:H7 in positive sample. The immunosensing platform also composed of a personal glucometer (PGM) using for signal readout. Based on this sandwich-type immunoassay, the invertase in the final formed sandwich immunocomplex catalyzed the hydrolysis of sucrose to produce a large amount of glucose for quantitative readout by the PGM. Under optimal conditions, a linear relationship between the glucose concentration and the logarithm of E. coli O157:H7 concentration was obtained in the concentration range from 3.5 × 10 2 to 3.5 × 10 8 CFU mL -1 with a detection limit of 1.83 × 10 2 CFU mL -1 (3σ). This method was used to detect E. coli O157:H7 in spiked milk samples, indicating its potential practical application. This protocol can be applied in various fields of study. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Synthesis of Highly Dispersed and Highly Stable Supported Au–Pt Bimetallic Catalysts by a Two-Step Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaofeng; Zhao, Haiyan; Wu, Tianpin

    2016-11-01

    Highly dispersed and highly stable supported bimetallic catalysts were prepared using a two-step process. Pt nanoparticles (NPs) were first deposited on porous γ-Al2O3 particles by atomic layer deposition (ALD). Au NPs were synthesized by using gold(III) chloride as the Au precursor, and then immobilized on ALD Pt/γ-Al2O3 particles. The Au–Pt bimetallic catalysts were highly active and highly stable in a vigorously stirred liquid phase reaction of glucose oxidation.

  8. A Kinetic and DRIFTS Study of Supported Pt Catalysts for NO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toops, Todd J; Ji, Yaying; Graham, Uschi

    NO oxidation was studied over Pt/CeO2 and Pt/SiO2 catalysts. Apparent activation energies (Ea) of 31.4 and 40.6 kJ/mole were determined for Pt/CeO2 and Pt/SiO2, respectively, while reaction orders for NO and O2 were fractional and positive for both catalysts. Pre-treatment of the catalysts with SO2 caused a decrease in the Ea values, while the reaction orders were only slightly changed. In situ DRIFTS measurements indicated that high concentrations of nitrate species were formed on the surface of Pt/CeO2 during NO oxidation, while almost no surface species could be detected on Pt/SiO2. The addition of SO2 resulted in the formation ofmore » a highly stable sulfate at the expense of nitrate species and caused an irreversible loss of catalytic activity for Pt/CeO2.« less

  9. Effect of PdO on TiO(sub2) Loading on Chemochromic Detection of Hydrogen

    NASA Technical Reports Server (NTRS)

    Mohajeri, Nahid; T-Rassisi, Ali; Bokerman, Gary; Captain, Janine E.; Peterson, Barbara V.; Whitten, Mary; Berger, Cristina

    2007-01-01

    Safety is always a concern in all applications that utilize hydrogen (H(sub2)) in one form or the other. Hydrogen leaks are invisible and odorless. In addition, blending odorants or additives into hydrogen in a manner similar to natural gas is generally undesirable for certain applications including proton exchange membrane fuel cells. To facilitate detection of the location of hydrogen leaks, a special chemochromic H(sub2) sensing material that employs titania (Ti0(sub2)) supported palladium oxide (PdO) pigments encapsulated within a special silicone matrix has been developed at the Florida Solar Energy Center (FSEC). Several batches of PdO H(sub2) sensing pigments were synthesized using various Ti0(sub2) supports and their hydrogen detection activity determined. TEM and Particle size distribution analysis showed that smaller particles with hemispherical crystalline structure produced faster coloration kinetics when exposed to H(sub2) gas. However, uniformly distributed PdO particles on the Ti0(sub2) surface displayed greater color contrast, quantified by delta epsilon measurements. XRD analysis indicated that the crystalline phase of Ti0(sub2) had no effect on the chemochromic performance of the pigments in laboratory environment.

  10. Theoretical study of the structures and chemical ordering of CoPd nanoalloys supported on MgO(001)

    NASA Astrophysics Data System (ADS)

    Taran, Songul; Garip, Ali Kemal; Arslan, Haydar

    2016-06-01

    Metal nanoalloys on oxide surface are a widely studied topic in surface science and technology. In this study, the structures of CoPd nanoalloys adsorbed on MgO(001) have been searched by basin-hopping global optimization method within an atomistic model. Two different sizes (34 and 38 atom) have been considered for all compositions of CoPd/MgO(001) nanoalloys. Co and Pd atoms, for all the compositions, have cube-on-cube (001) epitaxy with substrate at interface. For both sizes, we have found that Pd rich composition nanoalloys have three layers, Co rich composition nanoalloys have four layers in morphology. Excess energy and second difference in energy analyzes have been performed to investigate the relative stability of nanoalloys with respect to their size and composition.

  11. Pt-Ni/WC Alloy Nanorods Arrays as ORR Catalyst for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begum, Mahbuba; Yurukcu, Mesut; Yurtsever, Fatma

    Polymer electrolyte membrane fuel cells (PEMFCs) among the other types of fuel cell technology are attractive power sources, especially for electric vehicle applications. While significant progress and plausible prospects of PEMFCs have been achieved, there are still some challenges related to the performance, durability, and cost that need to be overcome to make them economically viable for widespread commercialization. Our strategy is to develop thin films of high-active and stable catalyst coated on vertically aligned nanorod arrays of conductive and stable support. In this work, we fabricated tungsten carbide (WC) nanorods as support and coated them with a platinum-nickel (Pt-Ni)more » alloy shell denoted as Pt-Ni/WC catalysts. The Pt- Ni/WC nanorods were deposited on glassy carbon disks as well as on silicon substrates for evaluation of their electrocatalytic oxygen reduction reaction (ORR) activity and physical properties. Cyclic voltammetry experiments using rotating disk electrode were performed in perchloric acid (0.1 M HClO4) electrolyte at room temperature to characterize the ORR activity and stability of Pt-Ni/WC nanorods catalysts. Scanning electron microscopy and X-ray diffraction techniques were utilized to study the morphology and crystallographic properties, respectively.« less

  12. Effect of milling methods on performance of Ni-Y 2O 3-stabilized ZrO 2 anode for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cho, Hyoup Je; Choi, Gyeong Man

    A Ni-YSZ (Y 2O 3-stabilized ZrO 2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni-YSZ/YSZ/Ni-YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements. Pellets made by using high-energy milled NiO-YSZ powders have much smaller particle sizes and a more uniform distribution of Ni particles than pellets made from ball-milled powder, and thus the polarization resistance of the electrode is also smaller. The maximum power density of the anode-supported cell prepared by using the high-energy milled powder is ∼850 mW cm -2 at 800 °C compared with ∼500 mW cm -2 for the cell with ball-milled powder. Thus, high-energy milling is found to be more effective in reducing particle size and obtaining a uniform distribution of Ni particles.

  13. Reactivity of O2 on Pd/Ru(0001) and PdRu/Ru(0001) surface alloys

    NASA Astrophysics Data System (ADS)

    Farías, D.; Minniti, M.; Miranda, R.

    2017-05-01

    The reactivity of a Pd monolayer epitaxially grown on Ru(0001) toward O2 has been investigated by molecular beam techniques. O2 initial sticking coefficients were determined using the King and Wells method in the incident energy range of 40-450 meV and for sample temperatures of 100 K and 300 K, and compared to the corresponding values measured on the clean Ru(0001) and Pd(111) surfaces. In contrast to the high reactivity shown by Ru(0001) at 100 K, the Pd/Ru(0001) system exhibits a monotonic decrease in the sticking probability of O2 as a function of normal incident energy. At room temperature, the system was found to be inert. Thermal desorption measurements show that O2 is adsorbed molecularly at 100 K. A completely different behaviour has been measured for the Pd0.95Ru0.05/Ru(0001) surface alloy. On this surface, the O2 sticking probability increases with incident energy and resembles the one observed on the clean Ru(0001) surface, even at 300 K. Thermal desorption measurements point to dissociative adsorption of O2 in this system. Both the charge transfer from the Pd to the Ru substrate and the compressive strain on the Pd monolayer contribute to decrease in the reactivity of the Pd/Ru(0001) system well below those of both Ru(0001) and Pd(111).

  14. One-Pot Polyol Synthesis of Pt/CeO2 and Au/CeO2 Nanopowders as Catalysts for CO Oxidation.

    PubMed

    Pilger, Frank; Testino, Andrea; Lucchini, Mattia Alberto; Kambolis, Anastasios; Tarik, Mohammed; El Kazzi, Mario; Arroyo, Yadira; Rossell, Marta D; Ludwig, Christian

    2015-05-01

    The facile one-pot synthesis of CeO2-based catalysts has been developed to prepare a relatively large amount of nanopowders with relevant catalytic activity towards CO oxidation. The method consists of a two-steps process carried out in ethylene glycol: in the first step, 5 nm well-crystallized pure CeO2 is prepared. In a subsequent second step, a salt of a noble metal is added to the CeO2 suspension and the deposition of the noble metal on the nanocrystalline CeO2 is induced by heating. Two catalysts were prepared: Pt/CeO2 and Au/CeO2. The as-prepared catalysts, the thermally treated catalysts, as well as the pure CeO2, are characterized by XRD, TGA, XPS, FTIR, HR-TEM, STEM, particle size distribution, and N2-physisorption. In spite of the identical preparation protocol, Au and Pt behave in a completely different way: Au forms rather large particles, most of them with triangular shape, easily identifiable and dispersed in the CeO2 matrix. In contrast, Pt was not identified as isolated particles. The high resolution X-ray diffraction carried out on the Pt/CeO2 thermally treated sample (500 degrees C for 1 h) shows a significant CeO2 lattice shrinkage, which can be interpreted as an at least partial incorporation of Pt into the CeO2 crystal lattice. Moreover, only Pt2+ and Pt4+ species were identified by XPS. In literature, the incorporation of Pt into the CeO2 lattice is supported by first-principle calculations and experimentally demonstrated only by combustion synthesis methods. To the best of our knowledge this is the first report where ionically dispersed Pt into the CeO2 lattice is obtained via a liquid synthesis method. The thermally treated Pt/CeO2 sample revealed good activity with 50% CO conversion at almost room temperature.

  15. Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    PubMed

    Yugeswaran, S; Yoganand, C P; Kobayashi, A; Paraskevopoulos, K M; Subramanian, B

    2012-05-01

    Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedstocks for the coatings. The effect of YSZ reinforcement on the phase formation and mechanical properties of the coatings such as hardness, adhesive strength and sliding wear rates was examined. The results showed that the reinforcement of YSZ in HA could significantly enhance the hardness and adhesive strength of the coatings. The potentiodynamic polarization and impedance measurements showed that the reinforced coatings exhibited superior corrosion resistance compared to the HA coating in SBF solution. Further the results of the bioactivity test conducted by immersion of coatings in SBF showed that after 10 days of immersion of the obtained coatings with all the above compositions commonly exhibited the onset of bioactive apatite formation except for HA+10%YSZ coating. The cytocompatibility was investigated by culturing the green fluorescent protein (GFP)-labeled marrow stromal cells (MSCs) on the coating surface. The cell culture results revealed that the reinforced coatings have superior cell growth than the pure HA coatings. Copyright © 2012. Published by Elsevier Ltd.

  16. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  17. Effects of transition metal doping in Pt/M-TiO2 (M = V, Cr, and Nb) on oxygen reduction reaction activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jun-Hyuk; Kwon, Gihan; Lim, Hankwon

    High cost and low durability are unresolved issues that impede the commercialization of proton exchange membrane fuel cells (PEMFCs). To overcome these limitations, Pt/TiO2 is reported as an alternative electrocatalyst for enhancing the oxygen reduction reaction (ORR) activity and/or durability of the system. However, the low electrical conductivity of TiO2 is a drawback that may be addressed by doping. To date, most reports related to Pt/doped-TiO2 focus on changes in the catalyst activity caused by the Pt-TiO2 interaction (metal -support interaction), instead of the effect of doping itself; doping is merely considered to enhance the electrical conductivity of TiO2. Inmore » this study, we discuss the variation in the electronic fine structure of Pt caused by the dopant, and its correlation with the ORR activity. More extensive contraction of the Pt lattice in Pt/M-TiO2 (M = V, Cr, and Nb) relative to Pt/TiO2 and Pt/C leads to outstanding ORR specific activity of Pt/M-TiO2. Notably, a fourfold increase of the specific activity is achieved with Pt/V-TiO2 relative to Pt/C. Furthermore, an accelerated durability test (ADT) of Pt/V-TiO2 demonstrates that this system is three times more durable than conventional Pt/C due to the metal support interaction.« less

  18. Magneto-optical properties of PdCo based multilayered films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Tsunashima, S.; Iwata, S.

    1989-09-01

    Magneto-optical and magnetic properties of multilayered films composed of PdCo alloy and other noble metal (Pd, Pt or Cu) layers are investigated. Multilayered films were prepared by RF magnetron sputtering method. Kerr rotation spectra (275nm-800nm) of Pd/Co multilayered films resemble those of PdCo alloys. In the films composed of PdCo alloy and Pt bilayers, the Kerr rotation increases with increasing Pt content while the perpendicular anisotropy decreases.

  19. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao

    2017-06-01

    Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.

  20. Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Wenwu; Zhang, Huanyu; Wang, Hui-gang; Zhang, Mei; Guo, Min

    2017-11-01

    Ti-mesh supported TiO2 nanowire arrays (NWAs)/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles (UC-EY-TiO2 NPs) composite structured photoanodes for fully flexible dye sensitized solar cells (DSSCs) were firstly constructed via a hydrothermal and spin coating process. UV-vis-NIR absorption spectra of the TiO2 NWAs/UC-EY-TiO2 NPs composites exhibited strong absorption around near infrared (NIR) 980 nm. The composites excited by 980 nm NIR laser could emit upconversion fluorescence at 489, 526, 549 and 658 nm, which expanded the spectral response range and sunlight capturing capability of formed flexible DSSCs. Moreover, the TiO2 NWAs/UC-EY-TiO2 NPs was coated with an Nb2O5 thin layer to further suppress electron recombination losses. The complete flexible DSSCs based on Nb2O5 coated TiO2 NWAs/2.0 mol% Er3+-1.0 mol% Yb3+ codoped TiO2 NPs photoanode and Pt/ITO-PEN counter electrode exhibited an enhanced photon to current conversion efficiency of 8.10%, a 68% improvement compared to TiO2 NWAs/undoped TiO2 NPs based DSSCs (4.82%).

  1. Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts.

    PubMed

    Xie, Shaohua; Liu, Yuxi; Deng, Jiguang; Zang, Simiao; Zhang, Zhenhua; Arandiyan, Hamidreza; Dai, Hongxing

    2017-02-21

    To overcome deactivation of Pd-based catalysts at high temperatures, we herein design a novel pathway by introducing a certain amount of CoO to the supported Au-Pd alloy nanoparticles (NPs) to generate high-performance Au-Pd-xCoO/three-dimensionally ordered macroporous (3DOM) Co 3 O 4 (x is the Co/Pd molar ratio) catalysts. The doping of CoO induced the formation of PdO-CoO active sites, which was beneficial for the improvement in adsorption and activation of CH 4 and catalytic performance. The Au-Pd-0.40CoO/3DOM Co 3 O 4 sample performed the best (T 90% = 341 °C at a space velocity of 20 000 mL g -1 h -1 ). Deactivation of the 3DOM Co 3 O 4 -supported Au-Pd, Pd-CoO, and Au-Pd-xCoO nanocatalysts resulting from water vapor addition was due to the formation and accumulation of hydroxyl on the catalyst surface, whereas deactivation of the Pd-CoO/3DOM Co 3 O 4 catalyst at high temperatures (680-800 °C) might be due to decomposition of the PdO y active phase into aggregated Pd 0 NPs. The Au-Pd-xCoO/3DOM Co 3 O 4 nanocatalysts exhibited better thermal stability and water tolerance ability compared to the 3DOM Co 3 O 4 -supported Au-Pd and Pd-CoO nanocatalysts. We believe that the supported Au-Pd-xCoO nanomaterials are promising catalysts in practical applications for organic combustion.

  2. Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels with Accelerated Gelation Kinetics and their High Electrocatalytic Activity.

    PubMed

    Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; Song, Junhua; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-10-01

    To accelerate hydrogel formation and further simplify the synthetic procedure, a series of MCu (M = Pd, Pt, and Au) bimetallic aerogels is synthesized from the in situ reduction of metal precursors through enhancement of the gelation kinetics at elevated temperature. Moreover, the resultant PdCu aerogel with ultrathin nanowire networks exhibits excellent electrocatalytic performance toward ethanol oxidation, holding promise in fuel-cell applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tunable reactivity of supported single metal atoms by impurity engineering of the MgO(001) support.

    PubMed

    Pašti, Igor A; Johansson, Börje; Skorodumova, Natalia V

    2018-02-28

    Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much more strongly when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.

  4. Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Götsch, Thomas; Klötzer, Bernhard; Penner, Simon

    2016-05-25

    Structural and chemical degradation mechanisms of metal-free yttria stabilized zirconia (YSZ-8, 8 mol% Y2O3 in ZrO2) in comparison to its pure oxidic components ZrO2 and Y2O3 have been studied in carbon-rich fuel gases with respect to coking/graphitization and (oxy)carbide formation. By combining operando electrochemical impedance spectroscopy (EIS), operando Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), the removal and suppression of CH4- and CO-induced carbon deposits and of those generated in more realistic fuel gas mixtures (syngas, mixtures of CH4 or CO with CO2 and H2O) was examined under SOFC-relevant conditions up to 1273 K and ambient pressures. Surface-near carbidization is a major problem already on the "isolated" (i.e. Nickel-free) cermet components, leading to irreversible changes of the conduction properties. Graphitic carbon deposition takes place already on the "isolated" oxides under sufficiently fuel-rich conditions, most pronounced in the pure gases CH4 and CO, but also significantly in fuel gas mixtures containing H2O and CO2. For YSZ, a comparative quantification of the total amount of deposited carbon in all gases and mixtures is provided and thus yields favorable and detrimental experimental approaches to suppress the carbon formation. In addition, the effectivity and reversibility of removal of the coke/graphite layers was comparably studied in the pure oxidants O2, CO2 and H2O and their effective contribution upon addition to the pure fuel gases CO and CH4 verified.

  5. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was < 1% and a large irrecoverable strain was obtained. The shape recovery was explained by the austenite strength. The training effect was also investigated.

  6. COI oxidation on a single Pd atom supported on magnesia.

    PubMed

    Abbet, S; Heiz, U; Häkkinen, H; Landman, U

    2001-06-25

    The oxidation of CO on single Pd atoms anchored to MgO(100) surface oxygen vacancies is studied with temperature-programmed-reaction mass spectrometry and infrared spectroscopy. In one-heating-cycle experiments, CO(2), formed from O(2) and CO preadsorbed at 90 K, is detected at 260 and 500 K. Ab-initio simulations suggest two reaction routes, with Pd(CO)(2)O(2) and PdCO(3)CO found as precursors for the low and high temperature channels, respectively. Both reactions result in annealing of the vacancy and induce migration and coalescence of the remaining Pd-CO to form larger clusters.

  7. Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt-Co alloy in HClO4 solutions.

    PubMed

    Omura, J; Yano, H; Tryk, D A; Watanabe, M; Uchida, H

    2014-01-14

    To gain deeper insight into the role of adsorbed oxygenated species in the O2 reduction reaction (ORR) kinetics on platinum and platinum-cobalt alloys for fuel cells, we carried out a series of measurements with the electrochemical quartz crystal microbalance (EQCM) and the rotating disk electrode (RDE) in acid solution. The effects of anion adsorption on the activities for the ORR were first assessed in HClO4 and HF electrolyte solutions at various concentrations. In our previous work (Part 1), we reported that the perchlorate anion adsorbs specifically on bulk-Pt, with a Frumkin-Temkin isotherm, that is, a linear relationship between Δm and log[HClO4]. Here, we find that the specific adsorption on the Pt-skin/Pt3Co alloy was significantly stronger than that on bulk-Pt, in line with its modified electronic properties. The kinetically controlled current density j(k) for the O2 reduction at the Pt-skin/Pt3Co-RDE was about 9 times larger than that of the bulk-Pt-RDE in 0.01 M HClO4 saturated with air, but the j(k) values on Pt-skin/Pt3Co decreased with increasing [HClO4] more steeply than in the case of Pt, due to the blocking of the active sites by the specifically adsorbed ClO4(-). We have detected reversible mass changes for one or more adsorbed oxygen-containing species (Ox = O2, O, OH, H2O) on the Pt-skin/Pt3Co-EQCM and Pt-EQCM in O2-saturated and He-purged 0.01 M HClO4 solutions, in which the specific adsorption of ClO4(-) anions was negligible. The coverages of oxygen species θ(Ox) on the Pt-skin/Pt3Co in the potential range from 0.86 to 0.96 V in the O2-saturated solution were found to be larger than those on pure Pt, providing strong evidence that the higher O2 reduction activity on the Pt3Co is correlated with higher θ(Ox), contrary to the conventional view.

  8. Low-energy vibrations of the group 10 metal monocarbonyl MCO (M = Ni, Pd, and Pt): rotational spectroscopy and force field analysis.

    PubMed

    Okabayashi, Toshiaki; Yamamoto, Takuya; Okabayashi, Emi Y; Tanimoto, Mitsutoshi

    2011-03-17

    The rotational spectra of NiCO and PdCO in the ground and ν(2) excited vibrational states were observed by employing a source-modulated microwave spectrometer. The NiCO and PdCO molecules were generated in a free space cell by the sputtering reaction of nickel and palladium sheets, respectively, lining the inner surface of a stainless steel cathode with a dc glow plasma of CO and Ar. The molecular constants of NiCO and PdCO were determined by least-squares analysis. By force field analysis for the molecular constants of not only NiCO and PdCO but also of PtCO as previously reported, the harmonic force constants were determined for these three group 10 metal monocarbonyls. The vibrational wavenumbers derived for the lower M-C stretching vibrations were in good agreement with those obtained from the IR spectra in noble gas matrices and those predicted by several quantum chemical calculations published in the past. The bending vibrational wavenumbers derived by the force field analysis were also consistent with most quantum chemical calculations previously reported, but showed systematic discrepancies from the matrix IR values by about 40 cm(-1), even after reassignment (ν(2) band → 2ν(2) band) of the matrix IR spectra of PdCO and PtCO.

  9. Improvement of perpendicular anisotropy of columnar FePt-ZrO2-C films with FePt insert layer

    NASA Astrophysics Data System (ADS)

    Dong, Kaifeng; Mo, Wenqin; Jin, Fang; Song, Junlei; Cheng, Weimin; Wang, Haiwei

    2018-05-01

    The effects of various thicknesses of FePt insert layer on the microstructure and magnetic properties of FePt-ZrO2-C thin films have been investigated. It is found that with inserting 0.4 nm FePt films between the TiON intermediate layer and FePt-ZrO2-C layer, the perpendicular anisotropy indicated by Hc⊥/Hc//ratio would increase from 4 to 13.1, suggesting the perpendicular anisotropy could be improved a lot with using FePt insert layer. Simultaneously, the FePt grains of FePt-ZrO2-C thin films maintained columnar structure and the grain isolation could also be improved in a certain degree. With further increase of the FePt insert layer thickness, although the perpendicular anisotropy was still larger than that without FePt insert layer, the grain size of the FePt-ZrO2-C films would increase and the isolation would be deteriorated.

  10. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-01

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.

  11. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM.

    PubMed

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-18

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.

  12. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when themore » sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  13. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  14. Graphene-cobaltite-Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells.

    PubMed

    Sharma, Chandra Shekhar; Awasthi, Rahul; Singh, Ravindra Nath; Sinha, Akhoury Sudhir Kumar

    2013-12-14

    Hybrid materials comprising of Pd, MCo2O4 (where M = Mn, Co or Ni) and graphene have been prepared for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells. Structural and electrochemical characterizations were carried out using X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry and cyclic, CO stripping, and linear sweep voltammetries. The study revealed that all the three hybrid materials are active for both methanol oxidation (MOR) and oxygen reduction (ORR) reactions in 1 M KOH. However, the Pd-MnCo2O4/GNS hybrid electrode exhibited the greatest MOR and ORR activities. This active hybrid electrode has also outstanding stability under both MOR and ORR conditions, while Pt- and other Pd-based catalysts undergo degradation under similar experimental conditions. The Pd-MnCo2O4/GNS hybrid catalyst exhibited superior ORR activity and stability compared to even Pt in alkaline solutions.

  15. Synthesis and structural characterisation of Pd(II) and Pt(II) complexes with a flexible, ferrocene-based P,S-donor amidophosphine ligand.

    PubMed

    Tauchman, Jiří; Císařová, Ivana; Stěpnička, Petr

    2014-01-28

    1'-Diphenylphosphino-1-{[(2-(methylthio)ethyl)amino]carbonyl}ferrocene (1), accessible via amidation of 1'-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) with 2-(methylthio)ethylamine, reacts with [PdCl2(cod)] (cod = cycloocta-1,5-diene) at a 1 : 1 metal-to-ligand ratio to give trans-[PdCl2(1-κ(2)P,S)] (trans-2) as the sole product. A similar reaction with [PtCl2(cod)] affords a mixture of cis- and trans-[PtCl2(1-κ(2)P,S)] (cis- and trans-3), which can be separated by fractional crystallisation. Complexation reactions performed with 2 equiv. of the ligand are less selective, yielding mixtures of the expected bis-phosphine complexes (i.e., trans-[PdCl2(1-κP)2], or a mixture of cis- and trans-[PtCl2(-κP)2]) with the respective monophosphine complexes. The structures of 1, trans-2, cis-3 and trans-3 determined by X-ray diffraction demonstrate the ability of the title ligand to act as a flexible cis- or trans-P,S-chelate donor (the ligand bite angles are 174.03(2)/173.05(2)° for trans-2/3 and 92.86(2)° for cis-3).

  16. Platinum-group elements (Rh, Pt, Pd) and Au distribution in snow samples from the Kola Peninsula, NW Russia

    NASA Astrophysics Data System (ADS)

    Gregurek, Dean; Melcher, Frank; Niskavaara, Heikki; Pavlov, Vladimir A.; Reimann, Clemens; Stumpfl, Eugen F.

    In April 1996 snowpack samples were collected from the surroundings of the ore roasting and dressing plant at Zapoljarnij and the nickel smelters at Nikel and Monchegorsk, Kola Peninsula, NW Russia. In the laboratory, filter residues of snowpack samples (fraction>0.45 μm) from 15 localities (close to the nickel processing centres) were chemically for precious metals (Rh, Pt, Pd, Au) and Te by graphite furnace atomic absorption spectrometry (GFAAS) analysis, and for Cu and Ni by ICP-MS. Values up to 2770 ng/l Pd, 650 ng/l Pt and 186 ng/l Au were found in the filter residues. Additionally, platinum-group elements (PGE) and Au contents in ore samples from Noril'sk , as well as in technogenic products ("Cu-Ni-feinstein" and copper concentrate) processed at the Monchegorsk smelter complex, were analysed using flameless atomic absorption spectroscopy (FAAS) for comparison with results obtained from snow. Rh, Pt, Pd and Au distribution data show the presence of two ore components (Noril'sk and Pechenga). Concentrations of these metals decrease with distance from the industrial sources and with the prevailing wind direction (generally north-south). Microscopic investigations and electron microprobe analysis of polished sections of snow filter residues (>0.45 μm) also reveal differences between particles from the two sources. To avoid confusion the term "Noril'sk" is used throughout the paper to denote material and/or data from the Noril'sk area and its sub-district, Noril'sk while Pechenga relates to the local ore.

  17. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles.

    PubMed

    Yan, Jun; Liu, Shi; Zhang, Zhenqin; He, Guangwu; Zhou, Ping; Liang, Haiying; Tian, Lulu; Zhou, Xuemin; Jiang, Huijun

    2013-11-01

    Pd-Pt bimetallic nanoparticles anchored on functionalized reduced graphene oxide (RGO) nanomaterials were synthesized via a one-step in situ reduction process, in which Pt and Pd ions were first attached to poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene oxide (GO) sheets, and then the encased metal ions and GO were subjected to simultaneous reduction by ethylene glycol. The as-prepared Pd3Pt1/PDDA-RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electrochemical methods. In addition, an electrochemical sensor based on the graphene nanocomposites was fabricated for the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in their ternary mixture. Three well-separated voltammetric peaks along with remarkable increasing electro-oxidation currents were obtained in differential pulse voltammetry (DPV) measurements. Under the optimized conditions, there were linear relationships between the peak currents and the concentrations in the range of 40-1200 μM for AA, 4-200 μM for DA and 4-400 μM for UA, with the limit of detection (LOD) (based on S/N=3) of 0.61, 0.04 and 0.10 μM for AA, DA and UA, respectively. This improved electrochemical performance can be attributed to the synergistic effect of metallic nanoparticles and RGO and the combination of the bimetallic nanoparticles. Furthermore, the practical electroanalytical utility of the sensor was demonstrated by the determination of AA, DA and together with UA in human urine and blood serum samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A Compendium of Scale Surface Microstructures: Ni(pt)al Coatings Oxidized at 1150 C for 2000 1-h Cycles

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita

    2010-01-01

    The surface structure of scales formed on Ni(Pt)Al coatings was characterized by SEM/EDS/BSE in plan view. Two nominally identical {100} samples of aluminide coated CMSX4 single crystal were oxidized at 1150 C for 2000 1-h cycles and were found to produce somewhat disparate behavior. One sample, with less propensity for coating grain boundary ridge deformation, presented primarily alpha-Al2O3 scale structures, with minimal weight loss and spallation. The original scale structure, still retained over most of the sample, consisted of the classic theta-alpha transformation-induced ridge network structure, with approx. 25 nm crystallographic steps and terraces indicative of surface rearrangement to low energy alumina planes. The scale grain boundary ridges were often decorated with a fine, uniform distribution of (Hf,Ti)O2 particles. Another sample, producing steady state weight losses, exhibited much interfacial spallation and a complex assortment of different structures. Broad areas of interfacial spalling, crystallographically-faceted (Ni,Co)(Al,Cr)2O4 spinel, with an alpha-Al2O3 base scale, were the dominant features. Other regions exhibited nodular spinel grains, with fine or (Ta,Ti)-rich (rutile) particles decorating or interspersed with the spinel. While these features were consistent with a coating that presented more deformation at extruded grain boundaries, the root cause of the different behavior between the duplicate samples could not be conclusively identified.

  19. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    PubMed

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  20. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  1. Magneto-optical Kerr effect in L1{sub 0} FePdPt ternary alloys: Experiments and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L.; Shi, Z.; Zhou, S. M., E-mail: wur@uci.edu, E-mail: shiming@tongji.edu.cn

    2014-05-14

    We have studied the magneto-optical Kerr effect (MOKE) of L1{sub 0} Fe{sub 0.5}(Pd{sub 1−x}Pt{sub x}){sub 0.5} alloy films with both experiments and first-principles calculations. In the visible region, negative Kerr rotation and ellipticity peaks are, respectively, observed in the regions of 1.5–2.0 eV and 1.7–2.6 eV. These peaks are shifted towards higher energies, and their magnitudes are enhanced for larger x. The MOKE evolution is mainly ascribed to the anomalous Hall conductivity contributed by the spin-down d{sub ↓,x{sup 2}−y{sup 2}} bands from Pd and Pt. We established a close correlation among the MOKE spectra, the spin orbit coupling strength, andmore » the band feature for this prototypical system.« less

  2. Catalytic processing of lactic acid over Pt/Nb(2)O(5).

    PubMed

    Serrano-Ruiz, Juan Carlos; Dumesic, James A

    2009-01-01

    Dilute aqueous solutions of lactic acid (30 %wt.) can be catalytically processed at 573 K and 57 bar over a low-metal-content Pt(0.1 %)/Nb(2)O(5) catalyst in a spontaneously separating organic phase rich in valuable products such as C(4)-C(7) ketones. An increase in the lactic acid concentration to 60 wt % allows conversion of approximately 50 % of the carbon feed in this organic layer, while maintaining good stability of the catalyst. Experiments at low conversion showed that lactic acid reacts first over Pt(0.1 %)/Nb(2)O(5) to produce acetaldehyde and propanoic acid (along with CO and CO(2) in the gas phase). These compounds (less oxygenated than lactic acid but still reactive) are the key intermediates in the overall process, and they react differently depending on the nature of the catalyst support. In particular, reaction kinetics studies with propanoic acid as feed showed that Pt(0.1 %)/Nb(2)O(5) favored the formation of pentanones by ketonization reactions, whereas a monofunctional Pt(0.1 %)/carbon catalyst produced ethane and CO(x) by decomposition reactions. In the same manner, acetaldehyde was preferentially hydrogenated to ethanol over Pt(0.1 %)/carbon, whereas the presence of niobia allowed this intermediate to react (by successive aldol condensations) to form C(4)-C(7) condensation products stored in the organic phase. Finally, reaction pathways are proposed to explain the catalytic processing of lactic acid over bifunctional Pt(0.1 %)/Nb(2)O(5). In this scheme, metal sites catalyze hydrogenation reactions and niobia promotes C--C coupling processes (ketonization and aldol condensation), in contrast to C--C cleavage reactions which take place preferentially over Pt(0.1 %)/carbon and lead to loss of carbon in the gas effluent as CO, CO(2), and methane.

  3. Synthesis, crystal structure, theoretical calculations and antimicrobial properties of [Pt(tetramethylthiourea)4] [Pt(CN)4]·4H2O

    NASA Astrophysics Data System (ADS)

    Sadaf, Haseeba; Isab, Anvarhusein A.; Ahmad, Saeed; Espinosa, Arturo; Mas-Montoya, Míriam; Khan, Islam Ullah; Ejaz; Rehman, Seerat-ur; Ali, Muhammad Akhtar Javed; Saleem, Muhammad; Ruiz, José; Janiak, Christoph

    2015-04-01

    A new platinum(II) complex, [Pt(Tmtu)4][Pt(CN)4]·4H2O (1) was synthesized by reaction of K2[PtCl4], KCN and tetramethylthiourea (Tmtu). Its structure was determined by X-ray crystallography. The [Pt(CN)4]2- anion shows regular square planar geometry at platinum, while in the [Pt(Tmtu)4]2+ cation the geometry at platinum is somewhat distorted. Hydrogen bonding between water molecules and the cyanide nitrogen of [Pt(CN)4]2- ions stabilizes the structure and leads to a supramolecular 2D network. DFT calculations support the experimentally found dinuclear (homocoordinated) ion-pair structure 1 as the most stable in comparison to noncovalent dimer [Pt(CN)2(Tmtu)2]222 that could, in turn, be involved in the formation sequence of 1. Antimicrobial activities of the complex were evaluated by minimum inhibitory concentration and the results showed that the complex exhibited moderate activities against gram-negative bacteria (Escherichiacoli, Pseudomonas aeruginosa) and molds (Aspergillus niger,Penicilliumcitrinum).

  4. Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.

    We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less

  5. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  6. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    PubMed

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO2 to Formic Acid: Elucidating the Active Pd Atoms in Alloy Nanoparticles.

    PubMed

    Mori, Kohsuke; Sano, Taiki; Kobayashi, Hisayoshi; Yamashita, Hiromi

    2018-06-22

    The hydrogenation of carbon dioxide (CO 2 ) to formic acid (FA; HCOOH), a renewable hydrogen storage material, is a promising means of realizing an economical CO 2 -mediated hydrogen energy cycle. The development of reliable heter-ogeneous catalysts is an urgent yet challenging task associated with such systems, although precise catalytic site design protocols are still lacking. In the present study, we demonstrate that PdAg alloy nanoparticles (NPs) supported on TiO 2 promote the efficient selective hydrogenation of CO 2 to give FA even under mild reaction conditions (2.0 MPa, 100 °C). Specimens made using surface engineering with atomic precision reveal a strong correlation between increased cata-lytic activity and decreased electron density of active Pd atoms resulting from a synergistic effect of alloying with Ag atoms. The isolated and electronically promoted surface-exposed Pd atoms in Pd@Ag alloy NPs exhibit a maximum turnover number of 14,839 based on the quantity of surface Pd atoms, which represents a more than ten-fold increase compared to the activity of monometallic Pd/TiO 2 . Kinetic and density functional theory (DFT) calculations show that the attack on the C atom in HCO 3 - by a dissociated H atom over an active Pd site is the rate-determining step during this reaction, and this step is boosted by PdAg alloy NPs having a low Pd/Ag ratio.

  8. Superelectrophilic tetrakis(carbonyl)palladium(II)- and -platinum(II) undecafluorodiantimonate(V), [Pd(CO)4][Sb(2)F(11)]2 and [Pt(CO)4][Sb(2)F(11)]2: syntheses, physical and spectroscopic properties, their crystal, molecular, and extended structures, and density functional calculations: an experimental, computational, and comparative study .

    PubMed

    Willner, H; Bodenbinder, M; Bröchler, R; Hwang, G; Rettig, S J; Trotter, J; von Ahsen, B; Westphal, U; Jonas, V; Thiel, W; Aubke, F

    2001-01-31

    The salts [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, are prepared by reductive carbonylation of Pd[Pd(SO(3)F)(6)], Pt(SO(3)F)(4) or PtF(6) in liquid SbF(5), or HF-SbF(5). The resulting moisture-sensitive, colorless solids are thermally stable up to 140 degrees C (M = Pd) or 200 degrees C (M = Pt). Their thermal decompositions are studied by differential scanning calorimetry (DSC). Single crystals of both salts are suitable for an X-ray diffraction study at 180 K. Both isostructural salts crystallize in the monoclinic space group P2(1)/c (No. 14). The unit cell volume of [Pt(CO)(4)][Sb(2)F(11)](2) is smaller than that of [Pd(CO)(4)][Sb(2)F(11)](2) by about 0.4%. The cations [M(CO)(4)](2+), M = Pd, Pt, are square planar with only very slight angular and out-of-plane deviations from D(4)(h)() symmetry. The interatomic distances and bond angles for both cations are essentially identical. The [Sb(2)F(11)](-) anions in [M(CO)(4)][Sb(2)F(11)](2,) M = Pd, Pt, are not symmetry-related, and both pairs differ in their Sb-F-Sb bridge angles and their dihedral angles. There are in each salt four to five secondary interionic C- -F contacts per CO group. Of these, two contacts per CO group are significantly shorter than the sum of the van der Waals radii by 0.58 - 0.37 A. In addition, structural, and spectroscopic details of recently synthesized [Rh(CO)(4)][Al(2)Cl(7)] are reported. The cations [Rh(CO)(4)](+) and [M(CO)(4)](2+), M = Pd, Pt, are characterized by IR and Raman spectroscopy. Of the 16 vibrational modes (13 observable, 3 inactive) 10 (Pd, Pt) or 9 (Rh), respectively, are found experimentally. The vibrational assignments are supported by DFT calculations, which provide in addition to band positions also intensities of IR bands and Raman signals as well as internal force constants for the cations. (13)C NMR measurements complete the characterization of the square planar metal carbonyl cations. The extensive characterization of [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, reported

  9. Modification of PdO/CeZrO2 doped with transition metals (Y and Fe) for reducibility properties

    NASA Astrophysics Data System (ADS)

    Shah, M. Nazri Abu; Jai, Junaidah; Faeqah, Nor; Ismail, Kamariah Noor; Hadi, Abdul

    2017-12-01

    This paper describes the synthesis of modified nanocatalysts of PdO/CeZrYO2(PdO/CZY), PdO/CeZrFeO2(PdO/CZF) and PdO/CeZrO2(PdO/CZ) via microemulsion followed by deposition - precipitation method. The structural, textural and redox properties of the synthesized nanocatalysts were investigated. The diffractogram of XRD showed that all the synthesized nanocatalysts indicate a symmetrical pattern of cubic phase crystallinity. The amount of PdO was detected using EDX analysis and PdO/CZF portrayed the highest Pd contents of about 4.63 %. Therefore it shows a good potential to have reducibility properties and can be manifested active at low temperature reduction.

  10. Investigation of hydrogen sulfide gas using Pd/Pt material based fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Bedi, Amna; Rao, Dusari Nageswara; Kumar, Santosh

    2018-02-01

    In this work, Pd/Pt material based fiber Bragg grating (FBG) sensors has been proposed for detection of hydrogen sulfide gas. Here, characteristics of FBG parameters were numerically calculated and simulated. The variation in reflectivity based on refractive index has been shown. The reflectivity of FBG can be varied when refractive index is changed. The proposed sensor works on very low concentration i.e., 0% to 1%, which has the capability to detect in the early stage.

  11. Voltage Oscillations in a Polymer Electrolyte Membrane Fuel Cell with Pd-Pt/C and Pd/C Anodes.

    PubMed

    Nogueira, Jéssica Alves; Varela, Hamilton

    2017-10-01

    Polymer electrolyte membrane fuel cells (PEMFC) fed with H 2 contaminated with CO may exhibit oscillatory behavior when operated galvanostatically. The self-organization of the anodic overpotential is interesting because it can be accompanied by an increase in the average performance. Herein we report experimental studies of voltage oscillations that emerge in a PEMFC equipped with a Pd/C or PdPt/C anode and fed with H 2 contaminated with CO (100 ppm). We used on-line mass spectrometry to investigate how the mass fragments associated with CO 2 and CO ( m / z 44 and 28, respectively) varied with the voltage oscillations. Overall, we observed that oscillations in the anodic overpotential are in phase with that of the CO and CO 2 signals. This fact is consistent with an autonomous adsorption-oxidation cyclic process. For both anodes, it has been observed that, in general, an increase in current density implies an increase in oscillatory frequency. By using CO stripping, we also discuss how the onset of CO oxidation is related to the maximum overpotential reached during a cycle, whereas the minimum overpotential can be associated with the catalytic activity of the electrode for H 2 oxidation.

  12. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method

    NASA Astrophysics Data System (ADS)

    Klein, Marek; Nadolna, Joanna; Gołąbiewska, Anna; Mazierski, Paweł; Klimczuk, Tomasz; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-08-01

    TiO2 (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV-vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (λ > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO2 co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15-30 nm) on TiO2 surface and enhances the Vis-induced activity of Ag/Pd-TiO2 up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV-vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for visible light photoactivity, whereas superoxide radicals (such as O2rad- and rad OOH) are responsible for pollutants degradation over metal-TiO2 composites.

  13. Theoretical studies of chemisorption and dimer model systems: Moller-Plesset and configuration interaction calculations on PdH, PdC, PdO, PdF, Pd sub 2 , and PdCO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, P.; McFeaters, J.S.; Moore, J.J.

    1991-01-01

    Ab initio SCF studies have been performed to study the molecular properties of several single-bonded palladium compounds, PdH, PdC, PdO, PdF, Pd{sub 2}, and PdCO, which are important in surface and materials science. Electron correlation effects were evaluated by a second- and third-order Moller-Plesset (MP) perturbation theory and a size-consistency-corrected configuration interaction with single and double substitutions (CISC). Relativistic effects were investigated for PdH and PdF. The ground state of PdC has been calculated at the CISC level to be a {sup 3}{Pi} state which is only 0.26 eV below the {sup 3}{Sigma}{sup {minus}} state (previously assigned ground state) andmore » 0.51 eV below the {sup 1}{Sigma}{sup +} state. PdC is predicted to be stable in the gas phase, and the possibility of preparing this compound is investigated. The bonding in CO chemisorbed on palladium is studied by using the model Pd-CO system. The effect of d{sub {pi}}-{pi}{sup *} back-bonding, discussed at the Hartree-Fock and CI level, is compared with results from multiple-scattering {Chi}{alpha} calculations. The C-O stretching frequency shift for CO on palladium was analyzed at various levels of theory, and the results indicated that the decrease in the CO force constant associated with chemisorption is not solely the result of d{sub {pi}}-{pi}{sup *} back-bonding.« less

  14. First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4

    NASA Astrophysics Data System (ADS)

    Khan, Amin; Ali, Zahid; Khan, Imad; Ahmad, Iftikhar

    2018-03-01

    Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke-Johnson, and spin-orbit coupling (GGA-SOC) exchange-correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.

  15. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    PubMed Central

    Peng, Di; Yang, Lixia; Cai, Tao; Liu, Yingzheng; Zhao, Xiaofeng; Yao, Zhiqi

    2016-01-01

    Yttria-stabilized zirconia (YSZ)-based thermal barrier coating (TBC) has been integrated with thermographic phosphors through air plasma spray (APS) for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm) on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm); a photo-multiplier tube (PMT) and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature. PMID:27690037

  16. [Preparation and Photocatalytic Properties of Supported TiO2 Photocatalytic Material].

    PubMed

    Guo, Yu; Jin, Yu-jia; Wu, Hong-mei; Li, Dong-xin

    2015-06-01

    Titanium dioxide (TiO2) supported on spherical alumina substrate was prepared by using sol-gel method combined with dip-coating process. The surface morphology and structure of the synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphology of the supported TiO2 composite material was obviously different from that of the original support. It reveals a layer formed by anatase TiO2 nanoparticles of 10-20 nm was deposited on the alumina substrate. Energy dispersive X-ray spectroscopy (EDX) analyses on the spherical alumina substrate and the resulting TiO2 composite catalyst were performed to determine the TiO2 loading content in the samples. It indicates that the TiO2 loading content on alumina substrate could be effectively increased by increasing the times of dip-coating alumina support in TiO2 sol. When dip-coating times increased to 5, the TiO2 loading content increased from 3.8 Wt. % to 15.7 Wt. %. In addition, the photocatalytic performances of the supported TiO2 materials prepared by different dip-coating times have been investigated by degrading methylene blue. It was found that the surface morphology of the supported TiO2 material was not only improved, but also the photocatalytic activity could be promoted significantly by increasing the dip-coating times. When the alumina substrate was dip-coated in TiO2 sol from 1 to 4 times, the degradation rate of methylene blue increased from 40% to 83.1%. However, after dip-coating the alumina support in TiO2 sol for 5 times, the degradation of methylene blue was only up to 85.6%. This indicates that the photocatalytic activity increased slowly when the TiO2 content in the supported catalyst was up to some extent. It is attributed to the continuous dip-coating resulted in less opportunities and weak intensity of illumination for the TiO2 nano-particles that under lower layer. The photocatalytic activity was relatively stable

  17. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Chongyang

    dehydrogenation of ethanol. Bare ZnZrOx activate ethanol conversion in the range of 280-300°C and produce undesired ethylene as product of ethanol dehydration, whereas, addition of small amount of gold (<1wt.%) was found to significantly change the product distribution in the low-temperature range (200°C-350°C). As gold passivates the strong Bronsted acid sites of ZrO2 and selectively facilitates the dehydrogenation of ethanol at low-temperature, a wide temperature range was found between the production of acetaldehyde (dehydrogenation products) and ethylene (dehydration product), which can be harnessed for the industrial application. Interestingly, the steam reforming of ethanol did not take place in the low-temperature region, thus the selectivity to acetaldehyde and hydrogen was 100% even in the presence of water. In addition to gold, palladium was also studied in this thesis work on the ZnZrOx composite oxides, and its activity and selectivity were compared to Au/ZnZrOx. Monometallic Pd catalyzes the decomposition of methanol and ethanol, resulting in different product distribution for C 1-C2 alcohol reactions. With ZnZrOx employed as the catalyst support in this thesis work, the finely dispersed ZnO species in ZrO2 were found to alloy with the supported palladium under reduction treatment. Alloying with Zn tunes the chemistry of Pd to catalyze the SRM reaction through the methanol coupling mechanism, shutting off the undesired methanol decomposition pathway. A preliminary study of the Pd/ZnZrO x system for ethanol dehydrogenation also demonstrated the modification of Pd when in the PdZn alloy form. Different from the monometallic Pd catalyst, which primarily catalyzes the C-C bond scission of ethanol, high selectivity to ethanol dehydrogenation products was found on PdZn, over the temperature range of 200-400°C. Formation of the PdZn alloy broadens the application of Pd and potentially other Group VIII metals for selective alcohol conversion reactions. In summary, this

  18. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.

    PubMed

    Cui, Zhiming; Li, Chang Ming; Jiang, San Ping

    2011-09-28

    A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.

  19. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    NASA Astrophysics Data System (ADS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  20. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

    PubMed

    Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian

    2013-04-01

    Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports