Sample records for ytterbium-doped solid-core photonic

  1. Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorova, O N; Semenov, S L; Vel'miskin, V V

    2011-01-24

    A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)

  2. Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W

    PubMed Central

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-01-01

    Single-mode ytterbium-doped phosphate all-solid photonic crystal fiber (AS-PCF) with 13.8 W output power and 32% slope efficiency was reported. By altering the diameter of the rods around the doped core and thus breaking the symmetry of the fiber, a polarization-maintaining AS-PCF with degree of polarization of >85% was also achieved, for the first time to knowledge, in a phosphate PCF. PMID:25684731

  3. Polarizing Ytterbium-Doped all-Solid Photonic Bandgap Fiber with 1150 micrometers2 Effective Mode Area

    DTIC Science & Technology

    2015-02-11

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Liang Dong Fanting Kong,, Guancheng Gu,, Thomas W. Hawkins ,, Joshua Parsons, Maxwell Jones,, Christopher...Dunn,, Monica T. Kalichevsky-Dong,, Benjamin Pulford,, Iyad Dajani,, Kunimasa Saitoh,, Stephen P. Palese,, Eric Cheung,, Liang Dong c. THIS PAGE The...ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area Fanting Kong,1,* Guancheng Gu,1 Thomas W. Hawkins ,1 Joshua Parsons

  4. Studies on output characteristics of stable dual-wavelength ytterbium-doped photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian

    2016-06-01

    A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.

  5. Seven-core neodymium-doped phosphate all-solid photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Chen, Danping

    2016-01-01

    We demonstrate a single-mode seven-core Nd-doped phosphate photonic crystal fiber with all-solid structure with an effective mode field diameter of 108 μm. The multicore fiber is first theoretically investigated through the finite-difference time-domain method. Then the in-phase mode is selected experimentally by a far-field mode-filtering method. The obtained in-phase mode has 7 mrad mode field divergences, which approximately agrees with the predicted 5.6 mrad in seven-core fiber. Output power of 15.5 W was extracted from a 25 cm fiber with slope efficiency of 57%.

  6. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.

    PubMed

    Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A

    2006-01-15

    A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 < 1.4 for 92.6 W launched pump power from a diode stack at 976 nm. The slope efficiency at pump powers well above threshold was approximately 84%, which compares favorably with the slope efficiencies achievable with conventional straight-core Yb-doped double-clad fiber lasers.

  7. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role inmore » photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.« less

  8. Solid-State Laser Cooling of Ytterbium-Doped Tungstate Crystals

    DTIC Science & Technology

    2001-01-01

    namely the heavy metal fluoride glass ZBLAN and yttrium aluminum garnet . Favorable properties of the ytterbium-tungstates include exceptionally high...Optical refrigeration in Nd-doped yttrium aluminum garnet ,” Phys. Rev. Lett. 21, 1172 (1968). 2M.S. Chang, S.S. Elliott, T.K. Gustafson, C. Hu, and...idea gained experimental feasibility. Even with this tool, early failures to optically cool condensed media such as Nd3+ doped in yttrium aluminum

  9. Core-pumped mode-locked ytterbium-doped fiber laser operating around 980 nm

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Dai, Yitang; Li, Jianqiang; Yin, Feifei; Dai, Jian; Zhang, Tian; Xu, Kun

    2018-07-01

    In this letter, we first demonstrate a core-pumped passively mode-locked all-normal-dispersion ytterbium-doped fiber oscillator based on nonlinear polarization evolution operating around 980 nm. The dissipative soliton fiber laser pulse can be compressed down to 250 fs with 1 nJ pulse energy, and the slope efficiency of the oscillator can be as high as 19%. To improve the dissipative soliton laser output spectrum smoothness, we replace the birefringent plate based intracavity filter with a diffraction-grating based filter. The output pulse duration can then be further compressed down to 180 fs with improved spectral-smoothness. These schemes have potential applications in seeding cryogenic Yb:YLF amplifiers and underwater exploration of marine resources.

  10. Role of oxygen hole centres in the photodarkening of ytterbium-doped phosphosilicate fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybaltovsky, A A; Bobkov, K K; Likhachev, M E

    2013-11-30

    We have studied the photodarkening in active fibres with an ytterbium-doped phosphosilicate glass core under IR irradiation with a pump source (920 nm) and UV irradiation (193 nm). Analysis of absorption and luminescence spectra suggests that such irradiations produce phosphorus – oxygen – hole centres (P-OHCs) in the core glass network and lead to the reduction of the ytterbium ions to a divalent state (Yb{sup 2+}). The photoinduced optical loss in the fibres in the visible range (400 – 700 nm) is mainly due to absorption by the P-OHCs. A quantum-mechanical model is proposed for P-OHC and Yb{sup 2+} formation.more » (nonlinear optical phenomena)« less

  11. Modeling of visible-extended supercontinuum generation from a tapered Ytterbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Song, Rui; Lei, Chengmin; Han, Kai; Chen, Zilun; Pu, Dongsheng; Hou, Jing

    2017-05-01

    Supercontinuum generation directly from a nonlinear fiber amplifier, especially from a nonlinear ytterbium-doped fiber amplifier, attracts more and more attention due to its all-fiber structure, high optical to optical conversion efficiency, and high power output potential. However, the modeling of supercontinuum generation from a nonlinear fiber amplifier has been rarely reported. In this paper, the modeling of a tapered Ytterbium-doped fiber amplifier for visible extended to infrared supercontinuum generation is proposed based on the combination of the laser rate equations and the generalized nonlinear Schrödinger equation. Ytterbium-doped fiber amplifier generally can not generate visible extended supercontinuum due to its pumping wavelength and zero-dispersion wavelength. However, appropriate tapering and four-wave mixing makes the visible extended supercontinuum generation from an ytterbium-doped fiber amplifier possible. Tapering makes the zero-dispersion wavelength of the ytterbium-doped fiber shift to the short wavelength and minimizes the dispersion matching. Four-wave mixing plays an important role in the visible spectrum generation. The influence of pulse width and pump power on the supercontinuum generation is calculated and analyzed. The simulation results imply that it is promising and possible to fabricate a visible-to-infrared supercontinuum with low pump power and flat spectrum by using the tapered ytterbium-doped fiber amplifier scheme as long as the related parameters are well-selected.

  12. Modelling the competition between photo-darkening and photo-bleaching effects in high-power ytterbium-doped fibre amplifiers

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Vinçont, C.; Pierre, Ch.; Boullet, J.

    2017-08-01

    We propose an innovative, fully space-time model to take into account the seed-dependent nature of ageing penalties in high-power ytterbium-doped fibre amplifiers. Ageing is shown to be based on the on-going competition between photo-darkening and photo-bleaching phenomena. Our approach is based on the natural interplay between the excited states of co-existing ytterbium pairs and colour centres in highly doped fibres, in the presence of thermal coupling between the closely spaced excited states. As initiated from IR photons, the excitation of colour centres up to the UV band is supposed to be governed by multi-photon absorption. The interactions of interest in the kinetics of photo-bleaching then take the form of highly efficient charge transfers, which imply the reduction of some fraction of the basically trivalent ions to their divalent state. Due to the activation of ytterbium pairs by means of energy transfer up-conversion, these interactions get more and more effective at elevated operating powers. Computational results using these principles actually help to fit our experimental data regarding seeding effects, as well as fully generic trends already evidenced in the literature. This gives a fine demonstration for the need to discriminate co-active pump and signal contributions. Our self-consistent, still simplified model then consists of a valuable tool to help for a deeper understanding of the ageing issues. Furthermore, considering higher-order ytterbium aggregates, this should open new routes towards more comprehensive models.

  13. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, K K; Rybaltovsky, A A; Vel'miskin, V V

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicatemore » glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)« less

  14. Atomic frequency reference at 1033 nm for ytterbium (Yb)-doped fiber lasers and applications exploiting a rubidium (Rb) 5S_1/2 to 4D_5/2 one-colour two-photon transition

    NASA Astrophysics Data System (ADS)

    Roy, Ritayan; Condylis, Paul C.; Johnathan, Yik Jinen; Hessmo, Björn

    2017-04-01

    We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5$S_{1/2}$) to the excited state (4$D_{5/2}$), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.

  15. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    NASA Astrophysics Data System (ADS)

    Selleri, S.; Poli, F.; Passaro, D.; Cucinotta, A.; Lægsgaard, J.; Broeng, J.

    2009-05-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Ybdoped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has been applied to properly design the low refractive index ring in the fiber core, which can provide an increase of the differential overlap between the fundamental and the higher-order mode. Then, the gain competition among the guided modes along the Yb-doped rod-type fibers has been investigated with a spatial and spectral amplifier model. Simulation results have shown the effectiveness of the sectioned core doping in worsening the higher-order mode overlap on the doped area, thus providing an effective single-mode behavior of the Yb-doped rod-type photonic crystal fibers.

  16. Heavily Yb-doped phosphate large-mode area all-solid photonic crystal fiber operating at 990 nm

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-07-01

    We demonstrate, for the first time to our knowledge, a 16 wt.% Yb-doped phosphate large-mode area all-solid photonic crystal fiber (AS-PCF) laser operating at 990 nm. By carefully tailoring the absorption and emission properties of the active glass and designing the structure of AS-PCF, the excitation of the 990 nm laser and the depression of the laser above 1 µm can be easily realized even without any wavelength-selective optics. The single-mode behavior of PCF with a 35 µm doped core, the largest core diameter of approximately 1 µm in phosphate fiber, is theoretically investigated by finite-difference time-domain method and experimentally confirmed.

  17. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  18. Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber

    PubMed Central

    Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili

    2015-01-01

    We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850

  19. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    NASA Astrophysics Data System (ADS)

    Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.

    2016-03-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.

  20. Exploiting nonlinear properties of pure and Sn-doped Bi2Te2Se for passive Q-switching of all-polarization maintaining ytterbium- and erbium-doped fiber lasers.

    PubMed

    Bogusławski, Jakub; Kowalczyk, Maciej; Iwanowski, Przemysław; Hruban, Andrzej; Diduszko, Ryszard; Piotrowski, Kazimierz; Dybko, Krzysztof; Wojciechowski, Tomasz; Aleszkiewicz, Marta; Sotor, Jarosław

    2017-08-07

    Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi 2 Te 2 Se (BTS) and Sn-doped Bi 2 Te 2 Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

  1. Pump-Induced, Dual-Frequency Switching in a Short-Cavity, Ytterbium-Doped Fiber Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, W.; Marciante, J.R.

    2008-07-23

    Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.

  2. Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.

    PubMed

    Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi

    2005-09-05

    Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.

  3. Electrically tunable liquid crystal photonic bandgap fiber laser

    NASA Astrophysics Data System (ADS)

    Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders

    2010-02-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.

  4. Towards diode-pumped mid-infrared praseodymium-ytterbium-doped fluoride fiber lasers

    NASA Astrophysics Data System (ADS)

    Woodward, R. I.; Hudson, D. D.; Jackson, S. D.

    2018-02-01

    We explore the potential of a new mid-infrared laser transition in praseodymium-doped fluoride fiber for emission around 3.4 μm, which can be conveniently pumped by 0.975 μm diodes via ytterbium sensitizer co-doping. Optimal cavity designs are determined through spectroscopic measurements and numerical modeling, suggesting that practical diode-pumped watt-level mid-infrared fiber sources beyond 3 μm could be achieved.

  5. Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications

    NASA Astrophysics Data System (ADS)

    Bayramian, Andrew James

    2000-11-01

    A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator

  6. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm rangemore » and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)« less

  7. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope

    PubMed Central

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-01-01

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10−5 deg/h. PMID:29072605

  8. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    PubMed

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  9. Electronic Structure of Ytterbium-Doped Strontium Fluoroapatite: Photoemission and Photoabsorption Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Art J.; Van Buuren, Tony W.; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium-doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure and Sr 3d, P 2p and 2s, Yb 4d and 4p, F 1s and O 1s core lines were used to evaluate the surface and near surface chemistry of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N4,5-edge), Sr 3d (M4,5-edge), P 2p (L2,3-edge), F 1s and O 1s (K-edges) absorption edges. These results provide themore » first measurements of the electronic structure and surface chemistry of this material.« less

  10. Demonstration of optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber pumped by a picosecond mode-locked ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Si-Gang; Wang, Xiao-Jian; Gou, Dou-Dou; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong

    2014-01-01

    We report the experimental demonstration of the optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber (PCF) with a zero group velocity dispersion (GVD) wavelength of 1062 nm pumped by a homemade tunable picosecond mode-locked ytterbium-doped fiber laser. A broad parametric gain band is obtained by pumping the PCF in the anomalous GVD regime with a relatively low power. Two separated narrow parametric gain bands are observed by pumping the PCF in the normal GVD regime. The peak of the parametric gain profile can be tuned from 927 to 1038 nm and from 1099 to 1228 nm. This widely tunable parametric gain band can be used for a broad band optical parametric amplifier, large span wavelength conversion or a tunable optical parametric oscillator.

  11. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    PubMed

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  12. The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser.

    PubMed

    Sotsuka, Yohei; Nishimoto, Soh; Tsumano, Tomoko; Kawai, Kenichiro; Ishise, Hisako; Kakibuchi, Masao; Shimokita, Ryo; Yamauchi, Taisuke; Okihara, Shin-ichiro

    2014-05-01

    Currently, laser radiation is used routinely in medical applications. For infrared lasers, bone ablation and the healing process have been reported, but no laser systems are established and applied in clinical bone surgery. Furthermore, industrial laser applications utilize computer and robot assistance; medical laser radiations are still mostly conducted manually nowadays. The purpose of this study was to compare the histological appearance of bone ablation and healing response in rabbit radial bone osteotomy created by surgical saw and ytterbium-doped fiber laser controlled by a computer with use of nitrogen surface cooling spray. An Ytterbium (Yb)-doped fiber laser at a wavelength of 1,070 nm was guided by a computer-aided robotic system, with a spot size of 100 μm at a distance of approximately 80 mm from the surface. The output power of the laser was 60 W at the scanning speed of 20 mm/s scan using continuous wave system with nitrogen spray level 0.5 MPa (energy density, 3.8 × 10(4) W/cm(2)). Rabbits radial bone osteotomy was performed by an Yb-doped fiber laser and a surgical saw. Additionally, histological analyses of the osteotomy site were performed on day 0 and day 21. Yb-doped fiber laser osteotomy revealed a remarkable cutting efficiency. There were little signs of tissue damage to the muscle. Lased specimens have shown no delayed healing compared with the saw osteotomies. Computer-assisted robotic osteotomy with Yb-doped fiber laser was able to perform. In rabbit model, laser-induced osteotomy defects, compared to those by surgical saw, exhibited no delayed healing response.

  13. Mode instability in a Yb-doped stretched core fiber

    NASA Astrophysics Data System (ADS)

    Xia, N.; Yoo, S.

    2017-02-01

    In this work we present the theoretical study of transverse mode instability (TMI) in ytterbium (Yb)-doped rectangular core fibers with different core aspect ratios using the fast Fourier transform (FFT) beam propagation method (BPM). As expected, the rectangular core fiber with larger aspect ratio (AR.) offers more efficient heat dissipation than a circular core fiber. However, it is found that the rectangular core fiber does not benefit from the better heat dissipation to suppress the TMI when compared to the circular core counterpart. The temperature building in the rectangular core fiber decreases by up to 24.6% with a 10:1 aspect ratio core, while threshold pump power drops by up to 38.3% when compared with a circular core fiber with the same core area. Our study reveals that a smaller effective refractive index difference between modes and a weaker gain saturation effect compensate the thermal advantage from more efficient heat dissipation.

  14. Observation of defect-assisted enhanced visible whispering gallery modes in ytterbium-doped ZnO microsphere

    NASA Astrophysics Data System (ADS)

    Khanum, Rizwana; Moirangthem, Rakesh S.; Das, Nayan Mani

    2017-06-01

    Smooth surfaced and crystalline undoped and ytterbium doped zinc oxide (ZnO) microspheres having an approximate size of 3-5 μm were synthesized by hydrothermal process. Out of these microspheres, a single microparticle was chosen and engaged as a whispering gallery wave microresonator. The defect induced luminescence from an individual ZnO microsphere was investigated with micro-photoluminescence measurement in the spectral range of 565 to 740 nm under the excitation of a green laser having a centered wavelength at 532 nm. The defects-related emissions from a single ZnO microsphere show optical resonance peaks so-called "whispering gallery modes" (WGMs) which are confirmed with the theoretical calculation. Further, ZnO microspheres were chemically doped with the different molar percentages of Ytterbium (Yb), and enhancement in their emission properties was investigated. Our experimental results show that ZnO microspheres with 0.5 mol. % doping of Yb gives the strongest optical emission and has highest Q-factor which can be employed in the development of WGM based optical biosensor or laser.

  15. Sensing and splicing applications of small core Ge-doped photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Brueckner, Sven; Kobelke, Jens; Rothhardt, Manfred; Ecke, Wolfgang; Willsch, Reinhardt; Bartelt, Hartmut

    2008-04-01

    Sensor related properties of a small core (4.1μm) Ge-doped photonic crystal fiber (PCF) are being reported. Fiber Bragg gratings with 35% and almost 100 % reflectivity were written in the Ge-doped PCF before and after hydrogen loading, respectively, by use of a UV laser. A 5.6pm/°C temperature sensitivity of the FBG was observed. Additionally, a novel method is demonstrated to splice such PCF by use of a commercial fusion splicer with default splice parameters for standard single mode fibers (SMF). No parameter adjustments are required to splice the PCF to various SMFs and a low splice loss of 1.0 ~ 1.4dB can be achieved. No splice interface emerges at the splice joint, which is of advantage for the sensing applications of such a PCF.

  16. Cladding-pumped ytterbium-doped fiber laser with radially polarized output.

    PubMed

    Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A

    2014-09-15

    A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.

  17. Comparative Analysis of Hexagonal Solid Silica and Nitro-benzene Filled Hollow Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Shahiruddin; Singh, Dharmendra K.; Hassan, M. A.

    2018-02-01

    A comparative study of five ring solid core and nitrobenzene filled hollow core liquid filled photonic crystal fiber (PCF) are presented. Considering the same structure, one is used as solid silica and another one is filled with nitrobenzene in the core. Here the paper elaborates the confinement loss, dispersion properties and birefringence of an index-guiding PCF with asymmetric cladding designed and analyzed by the finite-element method. The proposed structure shows the low confinement loss in case of solid silica, negative dispersion in nitrobenzene filled hollow core PCF and high birefringence in both the cases. The calculated values shows flat zero confinement loss in 0.7 µm to 1.54 µm range, flat zero dispersion is achieved in solid core and -2000 ps/km-nm in nitrobenzene filled hollow core PCF and high birefringence in the range of 10-3 in nitrobenzene filled hollow core PCF. Results show the relative analysis at different air fill fraction.

  18. Characterization and Power Scaling of Beam-Combinable Ytterbium-Doped Microstructured Fiber Amplifier

    NASA Astrophysics Data System (ADS)

    Mart, Cody W.

    In this dissertation, high-power ytterbium-doped fiber amplifiers designed with advanced waveguide concepts are characterized and power scaled. Fiber waveguides utilizing cladding microstructures to achieve wave guidance via the photonic bandgap (PBG) effect and a combination of PBG and modified total internal reflection (MTIR) have been proposed as viable single-mode waveguides. Such novel structures allow larger core diameters (>35 ?m diameters) than conventional step-index fibers while still maintaining near-diffraction limited beam quality. These microstructured fibers are demonstrated as robust single-mode waveguides at low powers and are power scaled to realize the thermal power limits of the structure. Here above a certain power threshold, these coiled few-mode fibers have been shown to be limited by modal instability (MI); where energy is dynamically transferred between the fundamental mode and higher-order modes. Nonlinear effects such as stimulated Brillouin scattering (SBS) are also studied in these fiber waveguides as part of this dissertation. Suppressing SBS is critical towards achieving narrow optical bandwidths (linewidths) necessary for efficient fiber amplifier beam combining. Towards that end, new effects that favorably reduce acoustic wave dispersion to increase the SBS threshold are discovered and reported. The first advanced waveguide examined is a Yb-doped 50/400 mum diameter core/clad PBGF. The PBGF is power scaled with a single-frequency 1064 nm seed to an MI-limited 410 W with 79% optical-to-optical efficiency and near-diffraction limited beam quality (M-Squared < 1.25) before MI onset. To this author's knowledge, this represents 2.4x improvement in power output from a PBGF amplifier without consideration for linewidth and a 16x improvement in single-frequency power output from a PBGF amplifier. During power scaling of the PBGF, a remarkably low Brillouin response was elicited from the fiber even when the ultra large diameter 50 mum core

  19. Development of a method to overcome the power threshold during supercontinuum generation based on an Yb-doped photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés Fabián; Hartmann, Peter

    2018-02-01

    Optical coherence tomography benefits from the high brightness and bandwidth, as well as the spatial coherence of supercontinuum (SC) sources. The increase of spectral power density (SPD) over conventional light sources leads to shorter measuring times and higher resolutions. For some applications, only a portion of the broad spectral range can be used. Therefore, an increase of the SPD in specific limited spectral regions would provide a clear advantage over spectral filtering. This study describes a method to increase the SPD of SC sources by amplifying the excitation wavelength inside of a nonlinear photonic crystal fiber (PCF). An ytterbium-doped PCF was manufactured by a nanopowder process and used in a fiber amplifier setup as the nonlinear fiber medium. The performance of the fiber was compared with a conventional PCF that possesses comparable parameters. Finally, the system as a whole was characterized in reference to common solid-state laser-based photonic SC light sources. An order-of-magnitude improvement of the power density was observed between the wavelengths from 1100 to 1350 nm.

  20. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  1. Deterministic chaos in an ytterbium-doped mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Mélo, Lucas B. A.; Palacios, Guillermo F. R.; Carelli, Pedro V.; Acioli, Lúcio H.; Rios Leite, José R.; de Miranda, Marcio H. G.

    2018-05-01

    We experimentally study the nonlinear dynamics of a femtosecond ytterbium doped mode-locked fiber laser. With the laser operating in the pulsed regime a route to chaos is presented, starting from stable mode-locking, period two, period four, chaos and period three regimes. Return maps and bifurcation diagrams were extracted from time series for each regime. The analysis of the time series with the laser operating in the quasi mode-locked regime presents deterministic chaos described by an unidimensional Rossler map. A positive Lyapunov exponent $\\lambda = 0.14$ confirms the deterministic chaos of the system. We suggest an explanation about the observed map by relating gain saturation and intra-cavity loss.

  2. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    PubMed

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  3. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  4. Tailoring Nd3+ emission spectrum by a neodymium-doped tellurite all-solid photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Tong, Hoang Tuan; Demichi, Daisuke; Suzuki, Takenobu; Ohishi, Yasutake

    2018-02-01

    A tellurite all-solid photonic bandgap fiber (ASPBF) whose cladding consists of 60 high-index rods arranged periodically around a central core was successfully fabricated. The diameter of high-index rod was about 5.0 μm and the distance between the center of two adjacent high-index rods was approximately 8.0 μm. The high-index rod was made of the TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN) glass, the cladding was made of the TeO2-ZnO-Na2O-La2O3 (TZNL) glass as the background glass material and the central core was made of TZNL glass doped with 0.5 wt% of Nd2O3. A supercontinuum light from 0.6 to 2.4 μm was coupled into the core of fiber which is 2.2 cm long to measure its transmission spectrum. High transmission bands were obtained in the vicinity of 0.75 and 1.3 μm but the transmission was suppressed in the wavelength range from 1.0 to 1.06 μm. When a titanium∶Sapphire laser source at 0.75 μm was used, the emission spectrum was obtained with two peaks at 1.06 and 1.33 μm which are attributed to the 4F3/2->4I11/2 and 4F3/2->4I13/2 transitions of Nd3+ ion, respectively. The intensities of those emission peaks were compared with those obtained from a bulk glass having the same doping concentration of Nd3+. The results showed that by using tellurite ASPBF, the intensity of the 1.06-μm emission was suppressed by one-twelfth but the intensity of the 1.33-μm emission was maintained. This feature is very advantageous to filter out the 1.06-μm emission of Nd3+ ion in order to realize practical amplifier devices at 1.3 μm.

  5. Frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akulov, V A; Kablukov, S I; Babin, Sergei A

    2012-02-28

    This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less

  6. Numerical analysis of lasing characteristics in highly bend-compensated large-mode-area ytterbium-doped double-clad leakage channel fibers.

    PubMed

    Thavasi Raja, G; Halder, Raktim; Varshney, S K

    2015-12-10

    The bend-induced mode-area reduction and thermal effects are vital factors that affect the power scaling of fiber lasers. Recently, bend-compensated large-mode-area double-clad modified hybrid leakage channel fiber (M-HLCF) has been reported with a mode area greater than 1000  μm, while sustaining the single-mode behavior at 1064 nm for high-temperature environments. In this work, the lasing characteristics of a newly designed ytterbium-doped double-clad M-HLCF (YDMHLCF) have been numerically investigated for strongly pumped conditions. The doped region size is optimally found through simulations, equivalent to the size of core diameter ∼38  μm in order to achieve maximum conversion efficiency for the bent and straight cases. Numerical simulations further confirm that a 2 m long YDMHLCF exhibits slope efficiency of 78% and conversion efficiency of 79% for the straight case and also almost the same for the practical bending radius of 7.5 cm when pumped with a 975 nm laser source.

  7. Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, Han; Wang, Zinan; Fan, Mengqiu; Li, Jiaqi; Meng, Qingyang; Xu, Dangpeng; Rao, Yunjiang

    2018-03-01

    In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.

  8. Solid-Core Photonic Bandgap Fibers for Cladding-Pumped Raman Amplification

    DTIC Science & Technology

    2011-06-03

    L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb- doped double-cladding distributed spectral filtering photonic crystal fibers ,” Opt... fiber amplifiers are analyzed theoretically as possible candidates for power scaling. An example fiber design with a mode field diameter of 46 µm and... doped fiber laser with true single-mode output using W-type structure,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2006

  9. Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayramian, Andrew J.

    One of the major motivators of this work is the Mercury Project, which is a 1 kW scalable diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL). Major goals include 100 J pulses, 10% wallplug efficiency, 10 Hz repetition rate, and a 5 times diffraction limited beam. To achieve these goals the Mercury laser incorporates ytterbium doped Sr 5(PO 4) 3F (S-FAP) as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material which are necessary for proper design and modeling of the system. Ytterbium doped fluorapatites,more » which were previously investigated at LLNL, were found to be ideal candidate materials for a high power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals were grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Sr 5-xBa x(PO 4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8 times enhancement) of absorption bandwidth and 6.9 nm (1.4 times enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The extraction data was successfully fit to a homogeneous extraction model. The crystal quality of Czochralski grown Yb:S-FAP crystals, which have been plagued by many defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. The very best crystals grown to date were found to have adequate crystal quality for use in the Mercury laser system. In addition to phase distortions which are fixed by material growth, thermal

  10. Simultaneous effects of photo- and radio- darkening in ytterbium-doped aluminosilicate fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchez, Jean-Bernard, E-mail: jbduchez@unice.fr; Mady, Franck, E-mail: jbduchez@unice.fr; Mebrouk, Yasmine, E-mail: jbduchez@unice.fr

    2014-10-21

    We present original characterizations of photo-radio-darkening in ytterbium-doped silica optical fibers submitted to the simultaneous action of the pump and of an ionizing radiation. We present the interplay between both radiations, showing e.g. that the pump is able to darken or bleach the fiber depending on the ionizing dose. The photo-resistance of the fiber is shown to play a crucial role on its radio-resistance, and that photo-resistant fibers should be also radio-resistant in low dose rate conditions. All the results are thoroughly explained by a physical model presented in a separate article by Mady et al. (this conference proceeding)

  11. Ytterbium-doped glass-ceramics for optical refrigeration.

    PubMed

    Filho, Elton Soares de Lima; Krishnaiah, Kummara Venkata; Ledemi, Yannick; Yu, Ye-Jin; Messaddeq, Younes; Nemova, Galina; Kashyap, Raman

    2015-02-23

    We report for the first time the characterization of glass-ceramics for optical refrigeration. Ytterbium-doped nanocrystallites were grown in an oxyfluoride glass matrix of composition 2YbF(3):30SiO(2)-15Al(2)O(3)-25CdF(2)-22PbF(2)-4YF(3), forming bulk glass-ceramics at three different crystalisation levels. The samples are compared with a corresponding uncrystalised (glass) sample, as well as a Yb:YAG sample which has presented optical cooling. The measured X-ray diffraction spectra, and thermal capacities of the samples are reported. We also report for the first time the use of Yb:YAG as a reference for absolute photometric quantum efficiency measurement, and use the same setup to characterize the glass and glass-ceramic samples. The cooling figure-of-merit was measured by optical calorimetry using a fiber Bragg grating and found to depend on the level of crystallization of the sample, and that samples with nanocrystallites result in higher quantum efficiency and lower background absorption than the pure-glass sample. In addition to laser-induced cooling, the glass-ceramics have the potential to serve as a reference for quantum efficiency measurements.

  12. Stabilized and tunable single-longitudinal-mode erbium fiber laser employing ytterbium-doped fiber based interference filter

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng

    2017-02-01

    In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.

  13. Optical properties of solid-core photonic crystal fibers filled with nonlinear absorbers.

    PubMed

    Butler, James J; Bowcock, Alec S; Sueoka, Stacey R; Montgomery, Steven R; Flom, Steven R; Friebele, E Joseph; Wright, Barbara M; Peele, John R; Pong, Richard G S; Shirk, James S; Hu, Jonathan; Menyuk, Curtis R; Taunay, T F

    2013-09-09

    A theoretical and experimental investigation of the transmission of solid-core photonic crystal fibers (PCFs) filled with nonlinear absorbers shows a sharp change in the threshold for optical limiting and in leakage loss as the refractive index of the material in the holes approaches that of the glass matrix. Theoretical calculations of the mode profiles and leakage loss of the PCF are in agreement with experimental results and indicate that the change in limiting response is due to the interaction of the evanescent field of the guided mode with the nonlinear absorbers in the holes.

  14. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process

    NASA Astrophysics Data System (ADS)

    Barnini, A.; Robin, T.; Cadier, B.; Aka, G.; Caurant, D.; Gotter, T.; Guyon, C.; Pinsard, E.; Guitton, P.; Laurent, A.; Montron, R.

    2017-02-01

    One key parameter in the race toward ever-higher power fiber lasers remains the rare earth doped optical core quality. Modern Large Mode Area (LMA) fibers require a fine radial control of the core refractive index (RI) close to the silica level. These low RI are achieved with multi-component materials that cannot be readily obtained using conventional solution doping based Modified Chemical Vapor Deposition (MCVD) technology. This paper presents a study of such optical material obtained through a full-vapor phase Surface Plasma Chemical Vapor Deposition (SPCVD). The SPCVD process generates straight glassy films on the inner surface of a thermally regulated synthetic silica tube under vacuum. The first part of the presented results points out the feasibility of ytterbium-doped aluminosilicate fibers by this process. In the second part we describe the challenge controlling the refractive index throughout the core diameter when using volatile fluorine to create efficient LMA fiber profiles. It has been demonstrated that it is possible to counter-act the loss of fluorine at the center of the core by adjusting the core composition locally. Our materials yielded, when used in optical fibers with numerical apertures ranging from 0.07 to 0.09, power conversion efficiency up to 76% and low background losses below 20 dB/km at 1100nm. Photodarkening has been measured to be similar to equivalent MCVD based fibers. The use of cerium as a co-dopant allowed for a complete mitigation of this laser lifetime detrimental effect. The SPCVD process enables high capacity preforms and is particularly versatile when it comes to radial tailoring of both rare earth doping level and RI. Large core diameter preforms - up to 4mm - were successfully produced.

  15. Highly non-linear solid core photonic crystal fiber with one nano hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwar, Rahul Kumar, E-mail: rahul0889@gmail.com; Bhardwaj, Vanita, E-mail: bhardwajphy12@gmail.com; Singh, Vinod Kumar, E-mail: singh.vk.ap@ismdhanbad.co.in

    2015-08-28

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm{sup 2}), high nonlinearity (36.34 W{sup −1}km{sup −1}) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for themore » SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.« less

  16. Role of ytterbium-erbium co-doped gadolinium molybdate (Gd2(MoO4)3:Yb/Er) nanophosphors in solar cells.

    PubMed

    Jin, Xiao; Li, Haiyang; Li, Dongyu; Zhang, Qin; Li, Feng; Sun, Weifu; Chen, Zihan; Li, Qinghua

    2016-09-05

    Insufficient harvest of solar light energy is one of the obstacles for current photovoltaic devices to achieve high performance. Especially, conventional organic/inorganic hybrid solar cells (HSCs) based on PTB7 as p-type semiconductor can only utilize 400-800 nm solar spectrum. One effective strategy to overcome this obstacle is the introduction of up-conversion nanophosphors (NPs), in the virtue of utilizing the near infrared region (NIR) of solar radiation. Up-conversion can convert low-energy photons to high-energy ones through multi-photon processes, by which the solar spectrum is tailored to well match the absorptive domain of the absorber. Herein we incorporate erbium-ytterbium co-doped gadolinium molybdate (Gd2(MoO4)3, GMO), denoted as GMO:Yb/Er, into TiO2 acceptor film in HSCs to enhance the light harvest. Here Er3+ acts as activator while Yb-MoO4 2- is the joint sensitizer. Facts proved that the GMO:Yb/Er single crystal NPs are capable of turning NIR photons to visible photons that can be easily captured by PTB7. Studies on time-resolved photoluminescence demonstrate that electron transfer rate at the interface increases sharply from 0.65 to 1.42 × 109 s-1. As a result, the photoelectric conversion efficiency of the GMO:Yb/Er doped TiO2/PTB7 HSCs reach 3.67%, which is increased by around 25% compared to their neat PTB7/TiO2 counterparts (2.94%). This work may open a hopeful way to take the advantage of those conversional rare-earth ion doped oxides that function in tailoring solar light spectrum for optoelectronic applications.

  17. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khudyakov, D V; Borodkin, A A; Vartapetov, S K

    2015-09-30

    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes. (lasers)

  18. 978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Shujie; Xu, Lixin; Gu, Chun

    2018-01-01

    A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.

  19. All-fibre ytterbium laser tunable within 45 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullina, S R; Babin, S A; Vlasov, A A

    2007-12-31

    A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)

  20. Single-step synthesis of Er3+ and Yb3+ ions doped molybdate/Gd2O3 core-shell nanoparticles for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Kamińska, Izabela; Elbaum, Danek; Sikora, Bożena; Kowalik, Przemysław; Mikulski, Jakub; Felcyn, Zofia; Samol, Piotr; Wojciechowski, Tomasz; Minikayev, Roman; Paszkowicz, Wojciech; Zaleszczyk, Wojciech; Szewczyk, Maciej; Konopka, Anna; Gruzeł, Grzegorz; Pawlyta, Mirosława; Donten, Mikołaj; Ciszak, Kamil; Zajdel, Karolina; Frontczak-Baniewicz, Małgorzata; Stępień, Piotr; Łapiński, Mariusz; Wilczyński, Grzegorz; Fronc, Krzysztof

    2018-01-01

    Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd2O3 doped rare earth ions (erbium, Er3+ and ytterbium, Yb3+) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core-shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ—gadolinium molybdates and ξ—molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb3+-{{{{MoO}}}4}2- (∣2F7/2, 3T2〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd2O3:Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core-shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.

  1. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    PubMed Central

    Stępień, Ryszard; Franczyk, Marcin; Pysz, Dariusz; Kujawa, Ireneusz; Klimczak, Mariusz; Buczyński, Ryszard

    2014-01-01

    In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt%) of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index) and thermal proprieties (thermal expansion coefficient, rheology). The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity. PMID:28788702

  2. Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.

    2018-03-01

    We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.

  3. Photoemission and Photoabsorption Investigation of the Electronic Structure of Ytterbium Doped Strontium Fluoroapatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A J; van Buuren, T; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure was used to evaluate the density of occupied states of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N{sub 4,5}-edge), Sr 3d (M{sub 4,5}-edge), P 2p (L{sub 2,3}-edge), F 1s and O 1s (K-edges) absorption edges. These results provide the first measurements of the electronic structure and surface chemistry of this material.

  4. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  5. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction

    PubMed Central

    Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han

    2014-01-01

    By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108

  6. Development of Ceramic Solid-State Laser Host Material

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  7. Realization of reliable solid-state quantum memory for photonic polarization qubit.

    PubMed

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-11

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  8. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    PubMed

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  9. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  10. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography.

    PubMed

    Portilho, Filipe Leal; Helal-Neto, Edward; Cabezas, Santiago Sánchez; Pinto, Suyene Rocha; Dos Santos, Sofia Nascimento; Pozzo, Lorena; Sancenón, Félix; Martínez-Máñez, Ramón; Santos-Oliveira, Ralph

    2018-02-27

    Cancer is responsible for more than 12% of all causes of death in the world, with an annual death rate of more than 7 million people. In this scenario melanoma is one of the most aggressive ones with serious limitation in early detection and therapy. In this direction we developed, characterized and tested in vivo a new drug delivery system based on magnetic core-mesoporous silica nanoparticle that has been doped with dacarbazine and labelled with technetium 99 m to be used as nano-imaging agent (nanoradiopharmaceutical) for early and differential diagnosis and melanoma by single photon emission computed tomography. The results demonstrated the ability of the magnetic core-mesoporous silica to be efficiently (>98%) doped with dacarbazine and also efficiently labelled with 99mTc (technetium 99 m) (>99%). The in vivo test, using inducted mice with melanoma, demonstrated the EPR effect of the magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable when injected intratumorally and the possibility to be used as systemic injection too. In both cases, magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable showed to be a reliable and efficient nano-imaging agent for melanoma.

  11. Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core.

    PubMed

    Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang

    2016-08-10

    We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20  dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate.

  12. Deep-tissue two-photon imaging in brain and peripheral nerve with a compact high-pulse energy ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Fontaine, Arjun K.; Kirchner, Matthew S.; Caldwell, John H.; Weir, Richard F.; Gibson, Emily A.

    2018-02-01

    Two-photon microscopy is a powerful tool of current scientific research, allowing optical visualization of structures below the surface of tissues. This is of particular value in neuroscience, where optically accessing regions within the brain is critical for the continued advancement in understanding of neural circuits. However, two-photon imaging at significant depths have typically used Ti:Sapphire based amplifiers that are prohibitively expensive and bulky. In this study, we demonstrate deep tissue two-photon imaging using a compact, inexpensive, turnkey operated Ytterbium fiber laser (Y-Fi, KM Labs). The laser is based on all-normal dispersion (ANDi) that provides short pulse durations and high pulse energies. Depth measurements obtained in ex vivo mouse cortex exceed those obtainable with standard two-photon microscopes using Ti:Sapphire lasers. In addition to demonstrating the capability of deep-tissue imaging in the brain, we investigated imaging depth in highly-scattering white matter with measurements in sciatic nerve showing limited optical penetration of heavily myelinated nerve tissue relative to grey matter.

  13. Quantum storage of a photonic polarization qubit in a solid.

    PubMed

    Gündoğan, Mustafa; Ledingham, Patrick M; Almasi, Attaallah; Cristiani, Matteo; de Riedmatten, Hugues

    2012-05-11

    We report on the quantum storage and retrieval of photonic polarization quantum bits onto and out of a solid state storage device. The qubits are implemented with weak coherent states at the single photon level, and are stored for a predetermined time of 500 ns in a praseodymium doped crystal with a storage and retrieval efficiency of 10%, using the atomic frequency comb scheme. We characterize the storage by using quantum state tomography, and find that the average conditional fidelity of the retrieved qubits exceeds 95% for a mean photon number μ=0.4. This is significantly higher than a classical benchmark, taking into account the poissonian statistics and finite memory efficiency, which proves that our crystal functions as a quantum storage device for polarization qubits. These results extend the storage capabilities of solid state quantum light matter interfaces to polarization encoding, which is widely used in quantum information science.

  14. End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration.

    PubMed

    Yin, Shupeng; Yan, Ping; Gong, Mali

    2008-10-27

    An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.

  15. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  16. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.

    PubMed

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-17

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  17. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  18. Thermoluminescence Response of Ge-Doped Cylindrical-, Flat- and Photonic Crystal Silica-Fibres to Electron and Photon Radiation

    PubMed Central

    Entezam, A.; Khandaker, M. U.; Amin, Y. M.; Ung, N. M.; Bradley, D. A.; Maah, J.; Safari, M. J.; Moradi, F.

    2016-01-01

    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6–10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1–5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications. PMID:27149115

  19. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    NASA Astrophysics Data System (ADS)

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  20. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    PubMed Central

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  1. Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Miyagi, Kazuya; Namihira, Yoshinori; Kasamatsu, Yuho; Hossain, Md. Anwar

    2013-07-01

    We demonstrate dynamic control of the effective area ( A eff) of photonic crystal fibers (PCFs) in the range of 18.1-8.22 μm2 and the mode field diameter in the range of 4.78-3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δ n Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius ( d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.

  2. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications.

    PubMed

    Krishnaiah, Kummara Venkata; de Lima Filho, Elton Soares; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-02-26

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb(3+)) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb(3+) concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb(3+): glass and decreases with increasing Yb(3+) concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm(3+) and Er(3+) ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb(3+): (2)F5/2 → (2)F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb(3+) with increasing Yb(3+) concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed.

  3. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications

    PubMed Central

    Krishnaiah, Kummara Venkata; Soares de Lima Filho, Elton; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-01-01

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb3+) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb3+ concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb3+: glass and decreases with increasing Yb3+ concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm3+ and Er3+ ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb3+: 2F5/2 → 2F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb3+ with increasing Yb3+ concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed. PMID:26915817

  4. High Energy Solid State and Free Electron Laser Systems in Tactical Aviation

    DTIC Science & Technology

    2005-06-01

    specifically neodymium and ytterbium doped yttrium aluminum garnet (Nd:YAG and Yb:YAG) have been shown to produce pump absorption efficiencies (i.e...Search Radar Dish Aluminum Alloy 2.71 10.0 0.91 321 932 300 22.1 SAM nosecone Ceramic* 3.0 1.0 0.9 1600 3300 250 12.1 T-72 Tank Armor Steel...development at Lawrence Livermore National Laboratory, is the solid-state heat capacity laser, which is an array of diode- pumped neodymium-doped gadolinium

  5. Control of pulse format in high energy per pulse all-fiber erbium/ytterbium laser systems

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Block, Matthew K.; Deffenbaugh, James; Fitzpatrick, Zak G.; Urioste, Michael T.; Henry, Leanne J.; Jain, Ravinder

    2017-02-01

    A multi-stage linearly polarized (PM) (15 dB) pulsed fiber laser system at 1550 nm capable of operating at repetition rates between 3 and 20 kHz was investigated. A narrow linewidth seed source was linewidth broadened to approximately 20 GHz and pulses were created and shaped via an electro-optic modulator (EOM) in conjunction with a home built arbitrary waveform generator. As expected, a high repetition rate pulse train with a near diffraction limited beam quality (M2 1.12) was achieved. However, the ability to store energy was limited by the number of active ions within the erbium/ytterbium doped gain fiber within the various stages. As a result, the maximum energy per pulse achievable from the system was approximately 0.3 and 0.38 mJ for 300 ns and 1 μs pulses, respectively, at 3 kHz. Because the system was operated at high inversion, the erbium/ytterbium doped optical fiber preferred to lase at 1535 nm versus 1550 nm resulting in amplified spontaneous emission (ASE) both intra- and inter-pulse. For the lower power stages, the ASE was controllable via a EOM whose function was to block the energy between pulses as well as ASE filters whose purpose was to block spectral components outside of the 1550 nm passband. For the higher power stages, the pump diodes were pulsed to enable strategic placement of an inversion resulting in higher intrapulse energies as well as an improved spectrum of the signal. When optimized, this system will be used to seed higher power solid state amplifier stages.

  6. Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser.

    PubMed

    Gaponov, D A; Février, S; Devautour, M; Roy, P; Likhachev, M E; Aleshkina, S S; Salganskii, M Y; Yashkov, M V; Guryanov, A N

    2010-07-01

    Very large-mode-area Yb(3+)-doped single-mode photonic bandgap (PBG) Bragg fiber oscillators are considered. The transverse hole-burning effect is numerically modeled, which helps properly design the PBG cladding and the Yb(3+)-doped region for the high-order mode content to be carefully controlled. A ratio of the Yb(3+)-doped region diameter to the overall core diameter of 40% allows for single-mode emission, even for small spool diameters of 15 cm. Such a fiber was manufactured and subsequently used as the core element of a cw oscillator. Very good beam quality parameter M(2)=1.12 and slope efficiency of 80% were measured. Insensitivity to bending, exemplified by the absence of temporal drift of the beam, was demonstrated for curvature diameter as small as 15 cm.

  7. A physical model of the photo- and radiation-induced degradation of ytterbium-doped silica optical fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mady, Franck, E-mail: franck.mady@unice.fr; Duchez, Jean-Bernard, E-mail: franck.mady@unice.fr; Mebrouk, Yasmine, E-mail: franck.mady@unice.fr

    2014-10-21

    We propose a model to describe the photo- or/and the radiation-induced darkening of ytterbium-doped silica optical fibers. This model accounts for the well-established experimental features of photo-darkening. Degradation behaviors predicted for fibers pumped in harsh environments are also fully confirmed by experimental data reported in the work by Duchez et al. (this proceeding), which gives a detailed characterization of the interplay between the effects of the pump and those of a superimposed ionizing irradiation (actual operation conditions in space-based applications for instance). In particular, dependences of the darkening build-up on the pump power, the total ionizing dose and the dosemore » rate are all correctly reproduced. The presented model is a ‘sufficient’ one, including the minimal physical ingredients required to reproduce experimental features. Refinements could be proposed to improve, e.g., quantitative kinetics.« less

  8. Noise-like pulse generation in an ytterbium-doped fiber laser using tungsten disulphide

    NASA Astrophysics Data System (ADS)

    Zhang, Wenping; Song, Yanrong; Guoyu, Heyang; Xu, Runqin; Dong, Zikai; Li, Kexuan; Tian, Jinrong; Gong, Shuang

    2017-12-01

    We demonstrated the noise-like pulse (NLP) generation in an ytterbium-doped fiber (YDF) laser with tungsten disulphide (WS2). Stable fundamental mode locking and second-order harmonic mode locking were observed. The saturable absorber (SA) was a WS2-polyvinyl alcohol film. The modulation depth of the WS2 film was 2.4%, and the saturable optical intensity was 155 MW cm-2. Based on this SA, the fundamental NLP with a pulse width of 20 ns and repetition rate of 7 MHz were observed. The autocorrelation trace of output pulses had a coherent spike, which came from NLP. The average pulse width of the spike was 550 fs on the top of a broad pedestal. The second-order harmonic NLP had a spectral bandwidth of 1.3 nm and pulse width of 10 ns. With the pump power of 400 mW, the maximum output power was 22.2 mW. To the best of our knowledge, this is the first time a noise-like mode locking in an YDF laser based on WS2-SA in an all normal dispersion regime was obtained.

  9. Nanophotonic photon echo memory based on rare-earth-doped crystals

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan; Miyazono, Evan; Faraon, Andrei; Caltech nano quantum optics Team

    2015-03-01

    Rare earth ions (REIs) are promising candidates for implementing solid-state quantum memories and quantum repeater devices. Their high spectral stability and long coherence times make REIs a good choice for integration in an on-chip quantum nano-photonic platform. We report the coupling of the 883 nm transition of Neodymium (Nd) to a Yttrium orthosilicate (YSO) photonic crystal nano-beam resonator, achieving Purcell enhanced spontaneous emission by 21 times and increased optical absorption. Photon echoes were observed in nano-beams of different doping concentrations, yielding optical coherence times T2 up to 80 μs that are comparable to unprocessed bulk samples. This indicates the remarkable coherence properties of Nd are preserved during nanofabrication, therefore opening the possibility of efficient on-chip optical quantum memories. The nano-resonator with mode volume of 1 . 6(λ / n) 3 was fabricated using focused ion beam, and a quality factor of 3200 was measured. Purcell enhanced absorption of 80% by an ensemble of ~ 1 × 106 ions in the resonator was measured, which fulfills the cavity impedance matching condition that is necessary to achieve quantum storage of photons with unity efficiency.

  10. Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications

    NASA Astrophysics Data System (ADS)

    Anjana, R.; K. M., Kurias; M. K., Jayaraj

    2017-08-01

    Upconversion luminescence, visible emission on infra red (IR) excitation was achieved in a biocompatible material, fluoroapatite. Fluoroapatite crystals are well known biomaterials, which is a component of tooth enamel. Also it can be considered as an excellent host material for lanthanide doping since the ionic radii of lanthanide is similar to that of calcium ion(Ca2+) hence successful incorporation of dopants within the lattice is possible. Erbium (Er), Ytterbium (Yb) co-doped fluorapatite (FAp) nanoparticles were prepared by precipitation method. The particles show intense visible emission when excited with 980 nm laser. Since upconversion luminescence is a multiphoton process the excitation power dependence on emission will give number of photons involved in the emission of single photon. Excitation power dependence studies show that two photons are involved in the emission of single photons. The value of slope was different for different emission peak because of the difference in intermediate energy level involved. The crystal structure and morphology of the particle were determined using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). These particles with surface functionalisation can be used for live cell imaging.

  11. Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter.

    PubMed

    Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao

    2013-09-20

    A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.

  12. Effects of adding metals to MoS2 in a ytterbium doped Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Khaleque, Abdul; Liu, Liming

    2018-03-01

    Molybdenum disulfide (MoS2) is widely used in lubricants, metallic alloys and in electronic and optical components. It is also used as saturable absorbers (SAs) in lasers (e.g. fiber lasers): a simple deposition of MoS2 on the fiber end can create a saturable absorber without the necessity of extensive alignment of the optical beam. In this article, we study the effects of adding different metals (Cr, Au, and Al) to MoS2 in a ytterbium (Yb)-doped Q-switched fiber laser. Experimental results show that the addition of a thin layer of gold and aluminium can reduce pulse durations to about 5.8 μs and 8.5 μs, respectively, compared with pure MoS2 with pulse duration of 12 μs. Experimental analysis of the combined metal and MoS2 based composite SAs can be useful in fiber laser applications where it may also find applications in medical, three dimensional (3D) active imaging and dental applications.

  13. Multiple Doped Erbium Glasses,

    DTIC Science & Technology

    GLASS, LASERS, ERBIUM, ERBIUM COMPOUNDS, DOPING, OXIDES, OPTIMIZATION, ATOMIC ENERGY LEVELS, PHOSPHATES , YTTERBIUM COMPOUNDS, NEODYMIUM COMPOUNDS, OPTICAL PUMPING, FLUORESCENCE, LIFE EXPECTANCY(SERVICE LIFE), BAND SPECTRA.

  14. LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window

    NASA Astrophysics Data System (ADS)

    Ximendes, Erving Clayton; Rocha, Uéslen; Kumar, Kagola Upendra; Jacinto, Carlos; Jaque, Daniel

    2016-06-01

    We report on Ytterbium and Neodymium codoped LaF3 core/shell nanoparticles capable of simultaneous heating and thermal sensing under single beam infrared laser excitation. Efficient light-to-heat conversion is produced at the Neodymium highly doped shell due to non-radiative de-excitations. Thermal sensing is provided by the temperature dependent Nd3+ → Yb3+ energy transfer processes taking place at the core/shell interface. The potential application of these core/shell multifunctional nanoparticles for controlled photothermal subcutaneous treatments is also demonstrated.

  15. Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Sharma, Dimple; Malik, B. P.; Gaur, Arun

    2015-12-01

    The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3-5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.

  16. The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations.

    PubMed

    Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H

    2009-03-01

    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.

  17. Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Muhammad, A. R.; Emami, S. D.; Hmood, J. K.; Sayar, K.; Penny, R.; Abdul-Rashid, H. A.; Ahmad, H.; Harun, S. W.

    2014-11-01

    This work proposes a new method to enhance the performance of an S-band fiber laser by using a thulium-doped photonic crystal fiber (PCF). The proposed method is based on amplified spontaneous emission (ASE) suppression provided by the thulium-doped PCF unique geometric structure. The enhanced performance of this filter based PCF is dependent on the short and long cut-off wavelength characteristics that define the fiber transmission window. Realizing the short wavelength cut-off location requires the PCF cladding to be doped with a high index material, which provides a refractive index difference between the core and cladding region. Achieving the long cut-off wavelength necessitates enlarging the size of the air holes surrounding the rare-earth doped core region. The PCF structure is optimized so as to achieve the desired ASE suppression regions of below 0.8 μm and above 1.8 μm. The laser performance is simulated for different host media, namely pure silica, alumino-silicate, and fluoride-based fiber ZBLAN based on this thulium-doped PCF design. The host media spectroscopic details, including lifetime variations and quantum efficiency effect on the lasing emission are also discussed. Information on the filter based PCF design is gathered via a full-vectorial finite element method analysis and specifically a numerical modelling solution for the energy level rate equation using the Runge-Kutta method. Results are analyzed for gain improvement, lasing cavity, laser efficiency and effect of core size diameter variation. Results are compared with conventional thulium-doped fiber and thulium-doped PCF for every single host media. We observe that the ZBLAN host media is the most promising candidate due to its greater quantum efficiency.

  18. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.

    PubMed

    Liu, Zhi-Bo; He, Xiaoying; Wang, D N

    2011-08-15

    We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable absorber can be successfully fabricated. The output pulses obtained have a center wavelength, pulse width, and repetition rate of 1561.2 nm, 4.85 ns, and 7.68 MHz, respectively. This method provides a simple and efficient approach to integrate the graphene into the optical fiber system. © 2011 Optical Society of America

  19. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeltner, R.; Russell, P. St.J.; Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particlemore » material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.« less

  20. Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Mohsin Al-Hayali, Sarah Kadhim; Hadi Al-Janabi, Abdul

    2018-07-01

    We report on the generation of a triple-wavelength passively Q-switched ytterbium-doped fibre laser using a saturable absorber (SA) based on zinc oxide nanoparticles (ZnO NPs) film. The SA was fabricated by embedding ZnO NPs powder into a polyvinyl alcohol as a host polymer. By properly adjusting the pump power and the polarization state, single-, dual- and triple-wavelength Q-switching are stably generated without additional components (such as optical filter, or fibre grating). For the triple wavelength operation, the fibre laser generates a maximum pulse repetition of 87.9 kHz with the shortest pulse duration of 2.7 μs. To the best of authors' knowledge, it's the first demonstration of triple-wavelength passively Q-switching fibre laser using ZnO NPs as a SA. Our results suggest that ZnO is a promising SA for multi-wavelength laser operation.

  1. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  2. Sub-200 femtosecond dispersion-managed soliton ytterbium-doped fiber laser based on carbon nanotubes saturable absorber.

    PubMed

    Hou, Lei; Guo, Hongyu; Wang, Yonggang; Sun, Jiang; Lin, Qimeng; Bai, Yang; Bai, Jintao

    2018-04-02

    Ultrafast fiber laser light sources attract enormous interest due to the booming applications they are enabling, including long-distance communication, optical metrology, detecting technology of infra-biophotons, and novel material processing. In this paper, we demonstrate 175 fs dispersion-managed soliton (DMS) mode-locked ytterbium-doped fiber (YDF) laser based on single-walled carbon nanotubes (SWCNTs) saturable absorber (SA). The output DMSs have been achieved with repetition rate of 21.2 MHz, center wavelength of 1025.5 nm, and a spectral width of 32.7 nm. The operation directly pulse duration of 300 fs for generated pulse is the reported shortest pulse width for broadband SA based YDF lasers. By using an external grating-based compressor, the pulse duration could be compressed down to 175 fs. To the best of our knowledge, it is the shortest pulse duration obtained directly from YDF laser based on broadband SAs. In this paper, SWCNTs-SA has been utilized as the key optical component (mode locker) and the grating pair providing negative dispersion acts as the dispersion controller.

  3. Resonant optical scattering in nanoparticle-doped polymer photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumberg, J. J.; Pursiainen, O. L.; Spahn, P.

    2009-11-15

    A broadband hyperspectral technique is used to measure the coherent optical backscatter across a wide spectral bandwidth, showing the resonant suppression of the photon transport mean free path around the photonic bandgap of a shear-assembled polymer photonic crystal. By doping with carbon nanoscale scatterers that reside at specific points within the photonic crystal lattice, the ratio between photon mean free path and optical penetration is tuned from 10 to 1, enhancing forward scatter at the expense of back-scatter. The back-scattering strength of different polarisations is not explained by any current theory.

  4. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    PubMed

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  5. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    NASA Astrophysics Data System (ADS)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  6. Ag@Aggregation-induced emission dye core/shell nanostructures with enhanced one- and two-photon fluorescence

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang

    2017-10-01

    Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.

  7. DBR and DFB Lasers in Neodymium- and Ytterbium-Doped Photothermorefractive Glasses

    NASA Technical Reports Server (NTRS)

    Ryasnyanskiy, Aleksandr; Vorobiev, N.; Smirnov, V.; Lumeau, J.; Glebov, A.; Mokhun, O..; Spiegelberg, Ch.; Krainak, Michael A.; Glebov, A.; Glebov, L.

    2014-01-01

    The first demonstration, to the best of our knowledge, of distributed Bragg reflector (DBR) and monolithic distributed feedback (DFB) lasers in photothermorefractive glass doped with rare-earth ions is reported. The lasers were produced by incorporation of the volume Bragg gratings into the laser gain elements. A monolithic single-frequency solid-state laser with a line width of 250 kHz and output power of 150 mW at 1066 nm is demonstrated.

  8. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber.

    PubMed

    Jain, D; Sidharthan, R; Moselund, P M; Yoo, S; Ho, D; Bang, O

    2016-11-14

    We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date.

  9. Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.

    PubMed

    Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo

    2018-06-25

    It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9

  10. Fabrication and characterization of an all-solid tellurite-phosphate photonic bandgap fiber.

    PubMed

    Cheng, Tonglei; Sakai, Yukiko; Suzuki, Takenobu; Ohishi, Yasutake

    2015-05-01

    We present an all-solid tellurite-phosphate photonic bandgap fiber (PBGF) with two layers of high-index rods (TeO2-Li2O-WO3-MoO3-Nb2O5, TLWMN) in the cladding (TeO2-ZnO-Li2O-K2O-Al2O3-P2O5, TZLKAP). TLWMN and TZLKAP glasses have good compatibility for fabricating the all-solid PBGF. Photonic bandgap (PBG) properties are calculated by the plane wave expansion method (PWM), and the results agree well with the measured transmission spectrum. Furthermore, the modal field patterns are measured at ∼1300 and 1520 nm, respectively. The light is confined to the core at ∼1300  nm and lost in the cladding at ∼1520  nm, which match well with the calculated modal field intensities.

  11. In-line flat-top comb filter based on a cascaded all-solid photonic bandgap fiber intermodal interferometer.

    PubMed

    Geng, Youfu; Li, Xuejin; Tan, Xiaoling; Deng, Yuanlong; Yu, Yongqin

    2013-07-15

    In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.

  12. Spectral characterization and white light generation by yttrium silicate nanopowders undoped and doped with Ytterbium(III) at different concentrations when excited by a laser diode at 975 nm

    NASA Astrophysics Data System (ADS)

    Cinkaya, Hatun; Eryurek, Gonul; Bilir, Gokhan; Collins, John; Di Bartolo, Baldassare

    2017-01-01

    We have studied nanophosphors of yttrium silicate (YSO) undoped and doped with different concentration of ytterbium (Yb3+) synthesized by using the sol-gel method. Structural and luminescence properties of the nanophosphors were studied experimentally by using different analytical techniques. For the structural analysis, we performed X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectrometry (EDS) measurements. Upconversion (UC) and the white light (WL) emission properties were investigated by using the near infrared cw laser excitation of 975 nm. The spectral properties have been found to depend on several physical parameters.

  13. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    NASA Astrophysics Data System (ADS)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  14. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    NASA Astrophysics Data System (ADS)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  15. Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror.

    PubMed

    Fabert, Marc; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Crunteanu, Aurelian; Bouyge, David; Blondy, Pierre

    2008-12-22

    We present an Ytterbium fibre laser operating in the Q-switch regime by using a Micro- Opto- Electro- Mechanical System (MOEMS) of novel design. The cantilever-type micro-mirror is designed to generate short laser pulses with duration between 20 ns and 100 ns at repetition rates ranging from a few kilohertz up to 800 kHz. The bent profile of this new type of MOEMS ensures a high modulation rate of the laser cavity losses while keeping a high actuating frequency.

  16. Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters.

    PubMed

    Wang, Yiping; Bartelt, Hartmut; Brueckner, Sven; Kobelke, Jens; Rothhardt, Manfred; Mörl, Klaus; Ecke, Wolfgang; Willsch, Reinhardt

    2008-05-12

    A novel technique for splicing a small core Ge-doped photonic crystal fiber (PCF) was demonstrated using a commercial fusion splicer with default discharge parameters for the splicing of two standard single mode fibers (SMFs). Additional discharge parameter adjustments are not required to splice the PCF to several different SMFs. A low splice loss of 1.0 approximately 1.4 dB is achieved. Low or no light reflection is expected at the splice joint due to the complete fusion of the two fiber ends. The splice joint has a high bending strength and does not break when the bending radius is decreased to 4 mm.

  17. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra

    2016-01-26

    Near Infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) have recently been proposed in order to broaden the absorption range and to boost upconversion efficiency. However, implementing this strategy has been limited only to bare core UCNP structures that are faintly luminescent. Herein, we report on an approach to achieve significantly enhanced upconversion luminescence in dye-sensitized core-active shell UCNPs with a broadened absorption range via the doping of ytterbium ions in the UCNP shell in order to bridge the energy transfer from the dye to the UCNP core. As a result, we have been able to synergize the two most practical upconversionmore » booster effectors (dye-sensitizing and core/shell enhancement). The absolute quantum yield of our dye-sensitized core/active shell UCNPs at 800 nm was determined to be ~6% at 2 W/cm2, about 33 times larger than the highest value reported to date for existing 800 nm excitable UCNPs. Moreover, for the first time, by using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a wavelength that is compatible with deep tissue penetrable near the infrared wavelength at 800 nm. Finally, amphiphilic triblock copolymer, Pluronic F127 coatings permit the transfer of hydrophobic UCNPs into water, resulting in water-soluble nanoparticles with well-preserved optical property in aqueous solution. We believe that this research offers a new solution to enhance upconversion efficiency for photonic and biophotonic purposes and opens up new opportunities to use UCNPs as a NIR relay for optogenetic applications.« less

  18. Remote p-type Doping in GaSb/InAs Core-shell Nanowires

    PubMed Central

    Ning, Feng; Tang, Li-Ming; Zhang, Yong; Chen, Ke-Qiu

    2015-01-01

    By performing first-principles calculation, we investigated the electronic properties of remotely p-type doping GaSb nanowire by a Zn-doped InAs shell. The results show that for bare zinc-blende (ZB) [111] GaSb/InAs core-shell nanowire the Zn p-type doped InAs shell donates free holes to the non-doped GaSb core nanowire without activation energy, significantly increasing the hole density and mobility of nanowire. For Zn doping in bare ZB [110] GaSb/InAs core-shell nanowire the hole states are compensated by surface states. We also studied the behaviors of remote p-type doing in two-dimensional (2D) GaSb/InAs heterogeneous slabs, and confirmed that the orientation of nanowire side facet is a key factor for achieving high efficient remote p-type doping. PMID:26028535

  19. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2015-01-01

    To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420

  20. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu

    2018-04-01

    We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.

  1. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

    PubMed

    Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-06-07

    The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

  2. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.

    PubMed

    O'Brien, Christopher; Lauk, Nikolai; Blum, Susanne; Morigi, Giovanna; Fleischhauer, Michael

    2014-08-08

    We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare-earth doped crystals, we make use of a special transfer protocol using staggered π pulses. We predict total transfer efficiencies on the order of 90%.

  3. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less

  4. Photonic doping of epsilon-near-zero media

    NASA Astrophysics Data System (ADS)

    Liberal, Iñigo; Mahmoud, Ahmed M.; Li, Yue; Edwards, Brian; Engheta, Nader

    2017-03-01

    Doping a semiconductor with foreign atoms enables the control of its electrical and optical properties. We transplant the concept of doping to macroscopic photonics, demonstrating that two-dimensional dielectric particles immersed in a two-dimensional epsilon-near-zero medium act as dopants that modify the medium’s effective permeability while keeping its effective permittivity near zero, independently of their positions within the host. The response of a large body can be tuned with a single impurity, including cases such as engineering perfect magnetic conductor and epsilon-and-mu-near-zero media with nonmagnetic constituents. This effect is experimentally demonstrated at microwave frequencies via the observation of geometry-independent tunneling. This methodology might provide a new pathway for engineering electromagnetic metamaterials and reconfigurable optical systems.

  5. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber

    PubMed Central

    Zhang, M.; Hu, Guohua; Hu, Guoqing; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T.

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm2 saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  6. Hollow-core photonic-crystal fibres for laser dentistry.

    PubMed

    Konorov, Stanislav O; Mitrokhin, Vladimir P; Fedotov, Andrei B; Sidorov-Biryukov, Dmitrii A; Beloglazov, Valentin I; Skibina, Nina B; Wintner, Ernst; Scalora, Michael; Zheltikov, Aleksei M

    2004-04-07

    Hollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 microm Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 microm and are focused on a tooth surface in vitro to ablate dental tissue. The hollow-core PCF is shown to support the single-fundamental-mode regime for 1.06 microm laser radiation, serving as a spatial filter and allowing the laser beam quality to be substantially improved. The same fibre is used to transmit emission from plasmas produced by laser pulses on the tooth surface in the backward direction for detection and optical diagnostics.

  7. Inverse Photonic Glasses by Packing Bidisperse Hollow Microspheres with Uniform Cores.

    PubMed

    Kim, Seung-Hyun; Magkiriadou, Sofia; Rhee, Do Kyung; Lee, Doo Sung; Yoo, Pil J; Manoharan, Vinothan N; Yi, Gi-Ra

    2017-07-19

    A major fabrication challenge is producing disordered photonic materials with an angle-independent structural red color. Theoretical work has shown that such a color can be produced by fabricating inverse photonic glasses with monodisperse, nontouching voids in a silica matrix. Here, we demonstrate a route toward such materials and show that they have an angle-independent red color. We first synthesize monodisperse hollow silica particles with precisely controlled shell thickness and then make glassy colloidal structures by mixing two types of hollow particles with the same core size and different shell thicknesses. We then infiltrate the interstices with index-matched polymers, producing disordered porous materials with uniform, nontouching air voids. This procedure allows us to control the light-scattering form factor and structure factor of these porous materials independently, which is not possible to do in photonic glasses consisting of packed solid particles. The structure factor can be controlled by the shell thickness, which sets the distance between pores, whereas the pore size determines the peak wave vector of the form factor, which can be set below the visible range to keep the main structural color pure. By using a binary mixture of 246 and 268 nm hollow silica particles with 180 nm cores in an index-matched polymer matrix, we achieve angle-independent red color that can be tuned by controlling the shell thickness. Importantly, the width of the reflection peak can be kept constant, even for larger interparticle distances.

  8. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    DOE PAGES

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; ...

    2016-01-06

    A near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) can broaden the absorption range and boost upconversion efficiency of UCNPs. We achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb 3+ ) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. As a result, we synergized the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. We also demonstrated two biomedical applications using these UCNPs. By using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogeneticmore » neuron excitation window to a biocompatible and deep tissue penetrable 800 nm wavelength. Furthermore, UCNPs were water-solubilized with Pluronic F127 with high upconversion efficiency and can be imaged in a mouse model.« less

  9. Bright Photon Upconversion on Composite Organic Lanthanide Molecules through Localized Thermal Radiation.

    PubMed

    Ye, Huanqing; Bogdanov, Viktor; Liu, Sheng; Vajandar, Saumitra; Osipowicz, Thomas; Hernández, Ignacio; Xiong, Qihua

    2017-12-07

    Converting low-energy photons via thermal radiation can be a potential approach for utilizing infrared (IR) photons to improve photovoltaic efficiency. Lanthanide-containing materials have achieved great progress in IR-to-visible photon upconversion (UC). Herein, we first report bright photon, tunable wavelength UC through localized thermal radiation at the molecular scale with low excitation power density (<10 W/cm 2 ) realized on lanthanide complexes of perfluorinated organic ligands. This is enabled by engineering the pathways of nonradiative de-excitation and energy transfer in a composite of ytterbium and terbium perfluoroimidodiphosphinates. The IR-excited thermal UC and wavelength control is realized through the terbium activators sensitized by the ytterbium sensitizers having high luminescence efficiency. The metallic molecular composite thus can be a potential energy material in the use of the IR solar spectrum for thermal photovoltaic applications.

  10. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    PubMed

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  11. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals.

    PubMed

    Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua

    2016-08-08

    A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.

  12. Enhanced linear photonic nanojet generated by core-shell optical microfibers

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen

    2017-05-01

    The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.

  13. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    NASA Astrophysics Data System (ADS)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  14. Backward pumping kilowatt Yb3+-doped double-clad fiber laser

    NASA Astrophysics Data System (ADS)

    Han, Z. H.; Lin, X. C.; Hou, W.; Yu, H. J.; Zhou, S. Z.; Li, J. M.

    2011-09-01

    A ytterbium-doped double-clad fiber laser generating up to 1026 W of continuous-wave output power at 1085 nm with a slope efficiency of 74% by single-ended backward pumping configuration is reported. The core diameter was 20 μm with a low numerical aperture of 0.06, and a good beam quality (BPP < 1.8 mm mrad) is achieved without special mode selection methods. No undesirable roll-over was observed in output power with increasing pump power, and the maximum output power was limited by the available pump power. The instability of maximum output power was better than ±0.6%. Different pumping configurations were also compared in experiment, which shows good agreements with theoretical analyses.

  15. Particle levitation and guidance in hollow-core photonic crystal fiber.

    PubMed

    Benabid, Fetah; Knight, J; Russell, P

    2002-10-21

    We report the guidance of dry micron-sized dielectric particles in hollow core photonic crystal fiber. The particles were levitated in air and then coupled to the air-core of the fiber using an Argon ion laser beam operating at a wavelength of 514 nm. The diameter of the hollow core of the fiber is 20 m . A laser power of 80 mW was sufficient to levitate a 5 m diameter polystyrene sphere and guide it through a ~150 mm long hollow-core crystal photonic fiber. The speed of the guided particle was measured to be around 1 cm/s.

  16. Temperature measurements in an ytterbium fiber amplifier up to the mode instability threshold

    NASA Astrophysics Data System (ADS)

    Beier, F.; Heinzig, M.; Sattler, Bettina; Walbaum, Till; Haarlammert, N.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2016-03-01

    We report on the measurement of the longitudinal temperature distribution in a fiber amplifier fiber during high power operation. The measurement signal of an optical frequency domain reflectometer is coupled to an ytterbium doped amplifier fiber via a wavelength division multiplexer. The longitudinal temperature distribution was examined for different pump powers with a sub mm resolution. The results show even small temperature variations induced by slight changes of the environmental conditions along the fiber. The mode instability threshold of the fiber under investigation was determined to be 480W and temperatures could be measured overall the measured output power values.

  17. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Navratil, P.; Peterka, P.; Honzatko, P.; Kubecek, V.

    2017-03-01

    Self-induced laser line sweeping of various regimes of sweep direction is reported for an experimental ytterbium fiber laser. The regimes involve sweeping from shorter to longer wavelengths (1076~\\text{nm}\\to 1083 nm)—so-called normal self-sweeping; from longer to shorter wavelengths (1079~\\text{nm}\\to 1073 nm)—so-called reverse self-sweeping; and a mixed regime in which a precarious balance of the normal and reverse sweeping exists and the sweep direction can change between consecutive sweeps. The regimes of sweeping were selected by changing the pump wavelength only. A detailed explanation of this sweep direction dynamics is presented based on a semi-empirical model. This model also provides a way to predict the sweep direction of fiber lasers based on other rare-earth-doped laser media.

  18. Highly birefringent suspended-core photonic microcells for refractive-index sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057; Jin, Wa

    2014-08-11

    An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.

  19. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  20. Multi-wavelength laser emission in dye-doped photonic liquid crystals.

    PubMed

    Wang, Chun-Ta; Lin, Tsung-Hsien

    2008-10-27

    Multi-wavelength lasing in a dye-doped cholesteric liquid crystal (CLC) cell is demonstrated. By adding oversaturated chiral dopant, the multi-photonic band CLC structure can be obtained with non-uniform chiral solubility. Under appropriate excitation, multi-wavelength lasing can be achieved with a multi-photonic band edge CLC structure. The number of lasing wavelengths can be controlled under various temperature processes. Nine wavelength CLC lasings were observed simultaneously. The wavelength range covers around 600-675nm. Furthermore, reversible tuning of multi-wavelength lasing was achieved by controlling CLC device temperature.

  1. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  2. Polarization splitter in three-core photonic crystal fibers.

    PubMed

    Saitoh, Kunimasa; Sato, Y; Koshiba, M

    2004-08-23

    A novel design of polarization splitter in three-core photonic crystal fibers (PCFs) has been proposed. The three-core PCF consists of two given identical cores with two-fold symmetry separated by a core with high birefringence. The polarization splitter is based on the phenomenon of resonant tunneling. Numerical simulations with a full vectorial beam propagation method demonstrate that it is possible to obtain a 1.9-mm-long splitter with the extinction ratio better than -20 dB and a bandwidth of 37nm.

  3. "Photonic lantern" spectral filters in multi-core Fiber.

    PubMed

    Birks, T A; Mangan, B J; Díez, A; Cruz, J L; Murphy, D F

    2012-06-18

    Fiber Bragg gratings are written across all 120 single-mode cores of a multi-core optical Fiber. The Fiber is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode "photonic lantern" filter with astrophotonic applications. The tapered structure is also an effective mode scrambler.

  4. Nonlinear optics in hollow-core photonic bandgap fibers.

    PubMed

    Bhagwat, Amar R; Gaeta, Alexander L

    2008-03-31

    Hollow-core photonic-bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. In this review we summarize the nonlinear optics experiments that have been performed using these hollow-core fibers.

  5. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    DOE PAGES

    Li, Yutao; Zhou, Weidong; Xin, Sen; ...

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li 2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li 2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li +/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li 2OHCl. As a result, an all-solid-state Li/LiFePO 4 with F-dope Li 2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  6. N-Doped Graphene with Low Intrinsic Defect Densities via a Solid Source Doping Technique.

    PubMed

    Liu, Bo; Yang, Chia-Ming; Liu, Zhiwei; Lai, Chao-Sung

    2017-09-30

    N-doped graphene with low intrinsic defect densities was obtained by combining a solid source doping technique and chemical vapor deposition (CVD). The solid source for N-doping was embedded into the copper substrate by NH₃ plasma immersion. During the treatment, NH₃ plasma radicals not only flattened the Cu substrate such that the root-mean-square roughness value gradually decreased from 51.9 nm to 15.5 nm but also enhanced the nitrogen content in the Cu substrate. The smooth surface of copper enables good control of graphene growth and the decoupling of height fluctuations and ripple effects, which compensate for the Coulomb scattering by nitrogen incorporation. On the other hand, the nitrogen atoms on the pre-treated Cu surface enable nitrogen incorporation with low defect densities, causing less damage to the graphene structure during the process. Most incorporated nitrogen atoms are found in the pyrrolic configuration, with the nitrogen fraction ranging from 1.64% to 3.05%, while the samples exhibit low defect densities, as revealed by Raman spectroscopy. In the top-gated graphene transistor measurement, N-doped graphene exhibits n-type behavior, and the obtained carrier mobilities are greater than 1100 cm²·V -1 ·s -1 . In this study, an efficient and minimally damaging n-doping approach was proposed for graphene nanoelectronic applications.

  7. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    PubMed Central

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  8. Rydberg atoms in hollow-core photonic crystal fibres.

    PubMed

    Epple, G; Kleinbach, K S; Euser, T G; Joly, N Y; Pfau, T; Russell, P St J; Löw, R

    2014-06-19

    The exceptionally large polarizability of highly excited Rydberg atoms-six orders of magnitude higher than ground-state atoms--makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. However, if they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturized devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n=40. Besides small energy-level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.

  9. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; Spencer, James E.; /SLAC

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less

  10. Four-terminal circuit element with photonic core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less

  11. Research on the synergistic doped effects and the catalysis properties of Cu2+ and Zn2+ co-doped CeO2 solid solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Guofang; Li, Yiming; Hou, Zhonghui; Xv, Jianyi; Wang, Qingchun; Zhang, Yanghuan

    2018-08-01

    The Cu2+ and Zn2+ co-doped CeO2-based solid solutions were synthesized via hydrothermal method. The microstructure and the spectra features of the solid solutions were characterized systematically. The XRD results showed that the dopants were incorporated into the CeO2 lattice to form Ce1-xCu0.5xZn0.5xO2 solid solutions when x was lower than 0.14. The cell parameters and the crystalline size decreased linearly, and the lattice strain gradually increased with increasing the doping level. The TEM patterns showed that the particle size in the solid solution was lower than 10 nm which is in accordance with the XRD results. The ICP analysis indicated that the real doped content in the solid solution was close to the nominal proportion. XPS proved that the Ce3+ component was increased by doping. The Raman and PL spectra indicated that the lattice distortion and the oxygen vacancies also increased following the same trend. At the same time, the synergistic effects of two ions co-doped solid solutions were studied by comparing them with that of single ions doped samples. The catalysis effects of Cu2+ and Zn2+ co-doped CeO2-based solid solutions on the hydrogen storage electrochemical and kinetic properties of Mg2Ni alloys were detected. The electrochemistry properties of the Mg2Ni-Ni-5 wt% Ce1-xCu0.5xZn0.5xO2 composites indicated that the doped catalysts could provide better optimizations to improve the maximum discharge capacities and the discharge potentials. On the other hand, the charge transfer abilities on the surface and diffusion rate of H atoms in the bulk of alloys also got improved. The DSC measurements showed that the hydrogen desorption activation of the hydrogenated composites with Ce0.88Cu0.06Zn0.06O2 solid solutions decreased to 77.03 kJ mol-1, while that of the composites with pure CeO2 was 97.62 kJ mol-1. The catalysis effect was enhanced by the doped content increase that means that the catalysis mechanism had close links to the oxygen vacancy

  12. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    PubMed

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  13. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  14. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    NASA Astrophysics Data System (ADS)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  15. Photonic bandgap of inverse opals prepared from core-shell spheres

    PubMed Central

    2012-01-01

    In this study, we synthesized monodispersed polystyrene (PS)-silica core-shell spheres with various shell thicknesses for the fabrication of photonic crystals. The shell thickness of the spheres was controlled by various additions of tetraethyl orthosilicate during the shell growth process. The shrinkage ratio of the inverse opal photonic crystals prepared from the core-shell spheres was significantly reduced from 14.7% to within 3%. We suspected that the improvement resulted from the confinement of silica shell to the contraction of PS space during calcination. Due to the shell effect, the inverse opals prepared from the core-shell spheres have higher filling fraction and larger wavelength of stop band maximum. PMID:22894600

  16. Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation

    NASA Astrophysics Data System (ADS)

    Lozano-Hernandez, T.; Jauregui-Vazquez, D.; Estudillo-Ayala, J.; Herrera-Piad, L. A.; Rojas-Laguna, R.; Hernandez-Garcia, J. M.; Sierra-Hernandez, J. M.

    2018-02-01

    We present an experimental study of liquid refractive index effects into Ytterbium ring fiber laser cavity configuration. The laser is operated using a bi-tapered optical fiber immersed in water-alcohol concentrations. When the tapered fiber is dipped into a distilled water, a single lasing line with a peak power centered at 1025 nm is achieved. Afterward, by changing the polarization state into the cavity the lasing line can be switched. Moreover, by modifying the refractive index liquid surrounding media the lasing lines can be controlled and special liquid provide nonlinear response. The laser offers compactness, low effective cost and good stability.

  17. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    PubMed

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  18. Tapered polysilicon core fibers for nonlinear photonics.

    PubMed

    Suhailin, Fariza H; Shen, Li; Healy, Noel; Xiao, Limin; Jones, Maxwell; Hawkins, Thomas; Ballato, John; Gibson, Ursula J; Peacock, Anna C

    2016-04-01

    We propose and demonstrate a novel approach to obtaining small-core polysilicon waveguides from the silicon fiber platform. The fibers were fabricated via a conventional drawing tower method and, subsequently, tapered down to achieve silicon core diameters of ∼1  μm, the smallest optical cores for this class of fiber to date. Characterization of the material properties have shown that the taper process helps to improve the local crystallinity of the silicon core, resulting in a significant reduction in the material loss. By exploiting the combination of small cores and low losses, these tapered fibers have enabled the first observation of nonlinear transmission within a polycrystalline silicon waveguide of any type. As the fiber drawing method is highly scalable, it opens a route for the development of low-cost and flexible nonlinear silicon photonic systems.

  19. Room-temperature ferromagnetic Cr-doped Ge/GeOx core-shell nanowires.

    PubMed

    Katkar, Amar S; Gupta, Shobhnath P; Seikh, Md Motin; Chen, Lih-Juann; Walke, Pravin S

    2018-06-08

    The Cr-doped tunable thickness core-shell Ge/GeO x nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr 3+ in core-shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core-shell thickness and intriguing room temperature ferromagnetism is realized only in core-shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (T C  > 300 K) with the dominating values of its magnetic remanence (M R ) and coercivity (H C ) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeO X core-shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  20. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  1. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  2. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood ( n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  3. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-08

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  4. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    PubMed

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  5. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  6. Two-Photon Antenna-Core Oxygen Probe with Enhanced Performance

    PubMed Central

    2015-01-01

    Recent development of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen enabled first noninvasive high-resolution measurements of tissue oxygenation in vivo in 3D, providing valuable physiological information. The so far developed two-photon-enhanced phosphorescent probes comprise antenna-core constructs, in which two-photon absorbing chromophores (antenna) capture and channel excitation energy to a phosphorescent core (metalloporphyrin) via intramolecular excitation energy transfer (EET). These probes allowed demonstration of the methods’ potential; however, they suffer from a number of limitations, such as partial loss of emissivity to competing triplet state deactivation pathways (e.g., electron transfer) and suboptimal sensitivity to oxygen, thereby limiting spatial and temporal resolution of the method. Here we present a new probe, PtTCHP-C307, designed to overcome these limitations. The key improvements include significant increase in the phosphorescence quantum yield, higher efficiency of the antenna-core energy transfer, minimized quenching of the phosphorescence by electron transfer and increased signal dynamic range. For the same excitation flux, the new probe is able to produce up to 6-fold higher signal output than previously reported molecules. Performance of PtTCHP-C307 was demonstrated in vivo in pO2 measurements through the intact mouse skull into the bone marrow, where all blood cells are made from hematopoietic stem cells. PMID:24848643

  7. Nanoparticles Doped Liquid Crystal Filled Photonic Bandgap Fibers

    NASA Astrophysics Data System (ADS)

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders

    2008-10-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum to the one achieved with undoped liquid crystals. New interesting features such as frequency dependent behavior and a transmission spectrum with tunable attenuation on the short wavelength side of the bandgap suggest a potential application of this device as a tunable all-in-fiber gain equalization filter. The tunability of the device is demonstrated by changing the temperature of the liquid crystal and by varying both the amplitude and the frequency of the applied external electric field.

  8. Photonic crystal fiber technology for high-performance all-fiber monolithic ultrafast fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Papior, Sidsel R.; Weirich, Johannes; Johansen, Mette M.; Jakobsen, Christian; Michieletto, Mattia; Triches, Marco; Kristensen, Torben; Olesen, Anders S.; Petersen, Christian; Andersen, Thomas V.; Maack, Martin D.; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology for ultrafast fiber amplifiers traditionally uses air holes as key elements for large mode area (LMA) fiber designs. These air holes are crucial for the performance of high-end LMA PCFs, but makes splicing and interfacing more complex. To reduce this complexity in mid-range amplifiers, we present single-mode polarization-maintaining Yb-doped LMA PCFs without air holes for easier splicing into monolithic all-fiber amplifier designs. A 30 μm core all-solid spliceable PCF is presented, and amplification of 1064 nm light above 50 W with an optical to optical efficiency of 80 % is demonstrated. Furthermore, to demonstrate the excellent reliability of PCF based monolithic amplifiers, we demonstrate ultra-longterm performance data of > 35 khrs on a 14 μm core step-index type PCF amplifier with low long-term power degradation slope of < 1.5 % / 10,000 h.

  9. Liquid-core photonic crystal fiber platform for raman scattering measurements of microliter analyte solutions

    NASA Astrophysics Data System (ADS)

    Han, Yun; Oo, Maung Khaing; Zhu, Yinian; Sukhishvili, Svetlana; Xiao, Limin; Demokan, M. Süleyman; Jin, Wei; Du, Henry

    2007-09-01

    We have explored the use of index-guiding liquid-core photonic crystal fiber (LC-PCF) as a platform for sensing and measurements of analyte solutions of minute volume by normal and surface-enhanced Raman scattering (SERS). The index-guiding LC-PCF was fabricated by selectively sealing via fusion splicing the cladding air channels of a hollow-core PCF (HC-PCF) while leaving the center core open at both ends of the fiber. The center core of the resultant fiber was subsequently filled with water-ethanol solution mixtures at various ethanol concentrations for normal Raman scattering measurements and with water-thiocynate solutions containing Ag nanoparticle aggregates for SERS detection of thiocynate at trace concentrations. The light-guiding nature in the solution phase inside the LC-PCF allows direct and strong light-field overlap with the solution phase over the entire length of the PCF (~30 cm). This detection scheme also dramatically reduces the contribution of silica to Raman spectral background, compared with the solid-core counterpart, thus its potential interference in spectral analysis. These features attribute to ready normal Raman measurements of water, ethanol, and water (99 vol.%)-ethanol (1 vol.%) solutions as well as sensitive and reproducible SERS detection of ~10 ppb thiocynate in water, all at a volume of ~0.1 μL.

  10. Facile synthesis N-doped hollow carbon spheres from spherical solid silica.

    PubMed

    Wenelska, K; Ottmann, A; Moszyński, D; Schneider, P; Klingeler, R; Mijowska, E

    2018-02-01

    Nitrogen-doped core/shell carbon nanospheres (NHCS are prepared and their capability as an anode material in lithium-ion batteries is investigated. The synthesis methodology is based on a fast template route. The resulting molecular nanostructures are characterized by X-ray diffraction, transmission electron microscopy, thermal analysis, and nitrogen adsorption/desorption measurement as well as by cyclic voltammetry and galvanostatic cycling. The core/shell structure provides a rapid lithium transport pathway and boasts a highly reversible capacity. For undoped HCS the BET specific surface area is 623m 2 /g which increases up to 1000m 2 /g upon N-doping. While there is no significant effect of N-doping on the electrochemical performance at small scan rates, the doped NHCS shows better specific capacities than the pristine HCS at elevated rates. For instance, the discharge capacities in the 40th cycle, obtained at 1000mA/g, amount to 170mAh/g and 138mAh/g for NHCS and HCS, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Thermoluminescence properties of Yb-Tb-doped SiO2 optical fiber subject to 6 and 10 MV photon irradiation

    NASA Astrophysics Data System (ADS)

    Sahini, M. H.; Wagiran, H.; Hossain, I.; Saeed, M. A.; Ali, H.

    2014-08-01

    This paper reports thermoluminescence characteristics of thermoluminescence dosimetry 100 chips and Yb-Tb-doped optical fibers irradiated with 6 and 10 MV photons. Thermoluminescence response of both dosimeters increases over a wide photon dose range from 0.5 to 4 Gy. Yb-Tb-doped optical fibers demonstrate useful thermoluminescence properties and represent a good candidate for thermoluminescence dosimetry application with ionizing radiation. The results of this fiber have been compared with those of commercially available standard thermoluminescence dosimetry-100 media. Commercially available Yb-Tb-doped optical fibers and said standard media are found to yield a linear relationship between dose- and thermoluminescence signal, although Yb-Tb-doped optical fibers provide only 10 % of the sensitivity of thermoluminescence dosimetry-100. With better thermoluminescence characteristics such as small size (125 μm diameter), high flexibility, easy of handling and low cost, as compared to other thermoluminescence materials, indicate that commercial Yb-Tb-doped optical fiber is a promising thermoluminescence material for variety of applications.

  12. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations.

    PubMed

    Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D

    2014-11-17

    We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region.

  13. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    PubMed

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film

  14. Charge-doping and chemical composition-driven magnetocrystalline anisotropy in CoPt core-shell alloy clusters

    NASA Astrophysics Data System (ADS)

    Ruiz-Díaz, P.; Muñoz-Navia, M.; Dorantes-Dávila, J.

    2018-03-01

    Charge-doping together with 3 d-4 d alloying emerges as promising mechanisms for tailoring the magnetic properties of low-dimensional systems. Here, throughout ab initio calculations, we present a systematic overview regarding the impact of both electron(hole) charge-doping and chemical composition on the magnetocrystalline anisotropy (MA) of CoPt core-shell alloy clusters. By taking medium-sized Co n Pt m ( N = n + m = 85) octahedral-like alloy nanoparticles for some illustrative core-sizes as examples, we found enhanced MA energies and large induced spin(orbital) moments in Pt-rich clusters. Moreover, depending on the Pt-core-size, both in-plane and off-plane directions of magnetization are observed. In general, the MA of these binary compounds further stabilizes upon charge-doping. In addition, in the clusters with small MA, the doping promotes magnetization switching. Insights into the microscopical origins of the MA behavior are associated to changes in the electronic structure of the clusters. [Figure not available: see fulltext.

  15. Photon emission from massive projectile impacts on solids.

    PubMed

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  16. Photon emission from massive projectile impacts on solids

    PubMed Central

    Fernandez-Lima, F. A.; Pinnick, V. T.; Della-Negra, S.; Schweikert, E. A.

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Aun+q (1 ≤ n ≤ 400; q = 1–4) projectiles with impact energies in the range of 28–136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact. PMID:21603128

  17. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  18. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  19. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  20. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.

    PubMed

    De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2013-01-01

    Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

  1. All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber

    NASA Astrophysics Data System (ADS)

    Muhammad, A. R.; Haris, H.; Arof, H.; Tan, S. J.; Ahmad, M. T.; Harun, S. W.

    2018-05-01

    We demonstrate the generation of a passively Q-switched ytterbium-doped fibre laser (YDFL) using a bismuth-doped fibre (BDF) as a solid-state fibre saturable absorber (FSA) in a ring cavity. The BDF used has a wide and low absorption band of 5 dB/m at the 1.0 μm region due to the ion transition of ? that occurs around the region. When introduced into a YDFL laser cavity, a stable Q-switched pulse operation was observed and the pulse repetition rate was proportional to the input pump power. It was limited to 72.99 kHz by the maximum power that the laser diode could supply. Meanwhile, the pulse width decreased from 12.22 to 4.85 μs as the pump power was increased from 215.6 to 475.6 mW. The finding suggests that BDF could be used as a potential SA for the development of robust, compact, efficient and low cost Q-switched fibre lasers operating at 1 micron region.

  2. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm.

    PubMed

    Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca

    2018-02-05

    We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.

  3. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  4. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    NASA Astrophysics Data System (ADS)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  5. Ytterbium trifluoride as a radiopaque agent for dental cements.

    PubMed

    Collares, F M; Ogliari, F A; Lima, G S; Fontanella, V R C; Piva, E; Samuel, S M W

    2010-09-01

    To evaluate the radiopacity, degree of conversion (DC) and flexural strength of an experimental dental cement, with several added radiopaque substances. Titanium dioxide, quartz, zirconia, bismuth oxide, barium sulphate and ytterbium trifluoride were added to the experimental cement in five different concentrations. Radiopacity was evaluated with a phosphor plate system, and the radiodensity of specimens was compared with an aluminium step-wedge. DC was evaluated with FT-infrared spectroscopy following 20 s of photo-activation. Specimens with dimensions of 12 x 2 x 2 mm were used for the flexural strength test. Data were analysed with two-way anova and Tukey's post hoc test. Radiopacity of the experimental dental cements with barium sulphate and bismuth oxide at 40% and ytterbium fluoride at 30% and 40% showed no significant differences in comparison with 3 mm of Al (181, 96). The experimental dental cements with at least 30% added ytterbium trifluoride had satisfactory radiopacity without influencing other properties.

  6. Structural and magnetic properties of ytterbium substituted spinel ferrites

    NASA Astrophysics Data System (ADS)

    Alonizan, Norah H.; Qindeel, Rabia

    2018-06-01

    Chemical co-precipitation route adopted to synthesize the magnetic materials. In the present work, iron is replaced by ytterbium ion in manganese-based spinel ferrites. The yield chemically represented by MnYb x Fe2- x O4 ( x = 0.00, 0.025, 0.05, 0.075, 0.10) and its structural, magnetic and electrical properties were observed. The cubic structure of spinel ferrites was confirmed by X-ray diffraction analysis. Spherically shaped grains were perceived in SEM pictures and size lessened with the growth of ytterbium concentration. SEM profile also shows little irregularity in spherical particles. The substitution of ytterbium (Yb) results in the enhancement of electrical resistivity. The resistivity was reduced with the gradual increase in temperature from 303 to 693 K. The trend of activation energy was found to be similar to that of room temperature resistivity. The coercivity of samples was raised with Yb-ion substitution while saturation magnetization and remanence reduced.

  7. Microstructured optical fiber photonic wires with subwavelength core diameter.

    PubMed

    Lizé, Yannick; Mägi, Eric; Ta'eed, Vahid; Bolger, Jeremy; Steinvurzel, Paul; Eggleton, Benjamin

    2004-07-12

    We demonstrate fabrication of robust, low-loss silica photonic wires using tapered microstructured silica optical fiber. The fiber is tapered by a factor of fifty while retaining the internal structure and leaving the air holes completely open. The air holes isolate the core mode from the surrounding environment, making it insensitive to surface contamination and contact leakage, suggesting applications as nanowires for photonic circuits . We describe a transition between two different operation regimes of our photonic wire from the embedded regime, where the mode is isolated from the environment, to the evanescent regime, where more than 70% of the mode intensity can propagate outside of the fiber. Interesting dispersion and nonlinear properties are identified.

  8. Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs

    NASA Astrophysics Data System (ADS)

    Rieländer, Daniel; Lenhard, Andreas; Jime`nez Farìas, Osvaldo; Máttar, Alejandro; Cavalcanti, Daniel; Mazzera, Margherita; Acín, Antonio; de Riedmatten, Hugues

    2018-01-01

    We demonstrate frequency-bin entanglement between ultra-narrowband photons generated by cavity enhanced spontaneous parametric down conversion. Our source generates photon pairs in widely non-degenerate discrete frequency modes, with one photon resonant with a quantum memory material based on praseodymium doped crystals and the other photon at telecom wavelengths. Correlations between the frequency modes are analyzed using phase modulators and narrowband filters before detection. We show high-visibility two photon interference between the frequency modes, allowing us to infer a coherent superposition of the modes. We develop a model describing the state that we create and use it to estimate optimal measurements to achieve a violation of the Clauser-Horne (CH) Bell inequality under realistic assumptions. With these settings we perform a Bell test and show a significant violation of the CH inequality, thus proving the entanglement of the photons. Finally we demonstrate the compatibility with a quantum memory material by using a spectral hole in the praseodymium (Pr) doped crystal as spectral filter for measuring high-visibility two-photon interference. This demonstrates the feasibility of combining frequency-bin entangled photon pairs with Pr-based solid state quantum memories.

  9. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  10. Photodarkening kinetics in a high-power YDFA versus CW or short-pulse seed conditions

    NASA Astrophysics Data System (ADS)

    Jolly, Alain; Vinçont, Cyril; Boullet, Johan

    2017-02-01

    We propose an innovating model to describe the kinetics of competing photo-darkening and photo-bleaching phenomena in high-power, Ytterbium-Doped-Fibre-Amplifiers. This model makes use of aggregated species of trivalent Ytterbium and divalent ions, which operate as primarily efficient color-centers. This ensures multi-photon excitation, partly from the pump and partly from the signal. The fit of numerical computations with dedicated experiments help to validate our theoretical assumptions, in the definition of the involved physics. Potential applications of this study include further discussions for the selection of processing options with fibre-manufacturers and the optimization of operating conditions.

  11. Large-pitch kagome-structured hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Couny, F.; Benabid, F.; Light, P. S.

    2006-12-01

    We report the fabrication and characterization of a new type of hollow-core photonic crystal fiber based on large-pitch (˜12μm) kagome lattice cladding. The optical characteristics of the 19-cell, 7-cell, and single-cell core defect fibers include broad optical transmission bands covering the visible and near-IR parts of the spectrum with relatively low loss and low chromatic dispersion, no detectable surface modes and high confinement of light in the core. Various applications of such a novel fiber are also discussed, including gas sensing, quantum optics, and high harmonic generation.

  12. Rare-earth doped transparent nano-glass-ceramics: a new generation of photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Rodríguez-Armas, Vicente Daniel; Tikhomirov, Victor K.; Méndez-Ramos, Jorge; Yanes, Angel C.; Del-Castillo, Javier; Furniss, David; Seddon, Angela B.

    2007-05-01

    We report on optical properties and prospect applications on rare-earth doped oxyfluoride precursor glass and ensuing nano-glass-ceramics. We find out the spectral optical gain of the nano-glass-ceramics and show that its flatness and breadth are advantageous as compared to contemporary used erbium doped optical amplifiers. We present the possibility of flat gain cross-section erbium doped waveguide amplifiers as short 'chip', all-optical, devices capable of dense wavelength division multiplexing, including the potential for direct writing of these devices inside bulk glasses for three-dimensional photonic integration. We carried out a comparative study of the up-conversion luminescence in Er 3+-doped and Yb 3+-Er 3+-Tm 3+ co-doped samples, which indicates that these materials can be used as green/red tuneable up-conversion phosphors and white light simulation respectively. Observed changes in the spectra of the up-conversion luminescence provide a tool for tuning the colour opening the way for producing 3-dimensional optical recording.

  13. Structural Color Palettes of Core-Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals.

    PubMed

    Lee, Sang Seok; Seo, Hyeon Jin; Kim, Yun Ho; Kim, Shin-Hyun

    2017-06-01

    Photonic microcapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light-handedness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Compact fs ytterbium fiber laser at 1010 nm for biomedical applications.

    PubMed

    Kong, Cihang; Pilger, Christian; Hachmeister, Henning; Wei, Xiaoming; Cheung, Tom H; Lai, Cora S W; Huser, Thomas; Tsia, Kevin K; Wong, Kenneth K Y

    2017-11-01

    Ytterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses. Unfortunately, the operating wavelengths of fs YDFLs have mostly been confined to two spectral bands, i.e., 970-980 nm through the three-level energy transition and 1030-1100 nm through the quasi three-level energy transition, leading to a spectral gap (990-1020 nm) in between, which is attributed to an intrinsically weak gain in this wavelength range. Here we demonstrate a high-power mode-locked fs YDFL operating at 1010 nm, which is accomplished in a compact and cost-effective package. It exhibits superior performance in terms of both short-term and long-term stability, i.e., <0.3% (peak intensity over 2.4 μs) and <4.0% (average power over 24 hours), respectively. To illustrate the practical applications, it is subsequently employed as a versatile fs laser for high-quality nonlinear imaging of biological samples, including two-photon excited fluorescence microscopy of mouse kidney and brain sections, as well as polarization-sensitive second-harmonic generation microscopy of potato starch granules and mouse tail muscle. It is anticipated that these efforts will largely extend the capability of fs YDFLs which is continuously tunable over 970-1100 nm wavelength range for wideband hyperspectral operations, serving as a promising complement to the gold-standard Ti:sapphire fs lasers.

  15. Compact fs ytterbium fiber laser at 1010 nm for biomedical applications

    PubMed Central

    Kong, Cihang; Pilger, Christian; Hachmeister, Henning; Wei, Xiaoming; Cheung, Tom H.; Lai, Cora S. W.; Huser, Thomas; Tsia, Kevin. K.; Wong, Kenneth K. Y.

    2017-01-01

    Ytterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses. Unfortunately, the operating wavelengths of fs YDFLs have mostly been confined to two spectral bands, i.e., 970-980 nm through the three-level energy transition and 1030-1100 nm through the quasi three-level energy transition, leading to a spectral gap (990-1020 nm) in between, which is attributed to an intrinsically weak gain in this wavelength range. Here we demonstrate a high-power mode-locked fs YDFL operating at 1010 nm, which is accomplished in a compact and cost-effective package. It exhibits superior performance in terms of both short-term and long-term stability, i.e., <0.3% (peak intensity over 2.4 μs) and <4.0% (average power over 24 hours), respectively. To illustrate the practical applications, it is subsequently employed as a versatile fs laser for high-quality nonlinear imaging of biological samples, including two-photon excited fluorescence microscopy of mouse kidney and brain sections, as well as polarization-sensitive second-harmonic generation microscopy of potato starch granules and mouse tail muscle. It is anticipated that these efforts will largely extend the capability of fs YDFLs which is continuously tunable over 970-1100 nm wavelength range for wideband hyperspectral operations, serving as a promising complement to the gold-standard Ti:sapphire fs lasers. PMID:29188091

  16. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  17. A solid state source of photon triplets based on quantum dot molecules

    PubMed Central

    Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2017-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705

  18. An enhanced effective mode area fluorine doped octagonal photonic crystal fiber with extremely low loss

    NASA Astrophysics Data System (ADS)

    Kabir, Sumaiya; Razzak, S. M. Abdur

    2018-07-01

    In our paper an enhanced effective mode area octagonal photonic crystal fiber (PCF) is presented. This PCF ensures large effective mode area along with ultra-low confinement loss and bending loss. Both the elimination of air-holes from the rings near the core region and inclusion of low index fluorine doped silica rods in an octagonal pattern are the vital design features. We have used full vectorial finite element method (FEM) based software with circularly perfectly matched layer (PML) to simulate the guiding properties of PCF. Our proposed fiber achieves effective mode area of 1110 μm2. Moreover, it offers ultra-low confinement loss of 1.14 × 10-15 dB/m and can be bent as small as 30 cm without any significant bending loss of 6.49 × 10-9 dB/m. The PCF also ensures low non-linearity with small amount of splice loss. However, our proposed PCF can be used in applications like fiber amplifiers and lasers.

  19. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Quantum entanglement between an optical photon and a solid-state spin qubit.

    PubMed

    Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D

    2010-08-05

    Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.

  1. Liquid-filled simplified hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Gao, Wei; Li, Hongwei; Dong, Yongkang; Zhang, Hongying

    2014-12-01

    We report on a novel type of liquid-filled simplified hollow-core photonic crystal fibers (HC-PCFs), and investigate their transmission properties with various filling liquids, including water, ethanol and FC-40. The loss and dispersion characterizations are calculated for different fiber parameters including strut thickness and core diameter. The results show that there are still low-loss windows existing for liquid-filled simplified HC-PCFs, and the low-loss windows and dispersions can be easily tailored by filling different liquids. Such liquid-filled simplified HC-PCFs open up many possibilities for nonlinear fiber optics, optical, biochemical and medical sensing.

  2. Exploring high power, extreme wavelength operating potential of rare-earth-doped silica fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Li, Ruixian; Xiao, Hu; Huang, Long; Zhang, Hanwei; Leng, Jinyong; Chen, Zilun; Xu, Jiangmin; Wu, Jian; Wang, Xiong

    2017-08-01

    Ytterbium-doped fiber laser (YDFL) and Thulium doped fiber laser (TDFL) have been two kinds of the most widely studied fiber laser in recent years. Although both silica-based Ytterbium-doped fiber and Thulium doped fiber have wide emission spectrum band (more than 200 nm and 400 nm, respectively), the operation spectrum region of previously demonstrated high power YDFL and TDFL fall into 1060-1100 nm and 1900-2050nm. Power scaling of YDFL and TDFL operates at short-wavelength or long-wavelength band, especially for extreme wavelength operation, although is highly required in a large variety of application fields, is quite challenging due to small net gain and strong amplified spontaneous emission (ASE). In this paper, we will present study on extreme wavelength operation of high power YDFL and TDFL in our group. Comprehensive mathematical models are built to investigate the feasibility of high power operation and propose effective technical methods to achieve high power operation. We have achieved (1) Diodepumped 1150nm long wavelength YDFL with 120-watt level output power (2) Diode-pumped 1178nm long wavelength YDFL operates at high temperature with 30-watt level output power (3) Random laser pumped 2153nm long wavelength TDFL with 20-watt level output power (4) Diode-pumped 1018nm short wavelength YDFL with a record 2 kilowatt output power is achieved by using home-made fiber combiner.

  3. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  4. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  5. Optical Fiber Design And Fabrication: Discussion On Recent Developments

    NASA Astrophysics Data System (ADS)

    Roy, Philippe; Devautour, Mathieu; Lavoute, Laure; Gaponov, Dmitry; Brasse, Gurvan; Hautreux, Stéphanie; Février, Sébastien; Restoin, Christine; Auguste, Jean-Louis; Gérôme, Frédéric; Humbert, Georges; Blondy, Jean-Marc

    2008-10-01

    Level of emitted power and beam quality of singlemode fiber lasers have been drastically increased at the expense of loss due to bend sensitivity, simplicity of manufacturing and packaging. Furthermore, the extension of the spectral coverage was primarily explored by exploiting non-linear effects, neglecting numerous possible transitions of rare earths. Through different research areas, we demonstrate the possibilities offered by new fiber designs and alternative methods of manufacturing. Photonic Band Gap fibers reconcile diffraction limited beam and large mode area with low bending loss. 80% slope efficiency is demonstrated together with a robust propagation allowing the fiber to be tightly bent until wounding radii as small as 6 cm. Highly ytterbium doped multimode core surrounded by high refractive index rods fiber exhibits a transverse singlemode behavior under continuous wave laser regime. A robust LP01 mode is observed and filtering effect is clearly observed. A non CVD process based on silica sand vitrification allows the synthesis of large and highly doped core with high index homogeneity, opening the way to design of efficient large mode area fiber lasers. 74% slope efficiency is measured, demonstrating the good quality of the core material. Finally, the use of rare earth (Er3+) doped zirconia nanocrystals in silica matrix offers a large panel of ignored energy transitions for visible or off-usual band of emission.

  6. Study of energy transfer and spectral downshifting in Ce, RE (RE = Nd and Yb) co-doped lanthanum phosphate

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Omanwar, S. K.

    2017-03-01

    The phosphors LaPO4 (Lanthanum phosphate) doped with Ce(III)/Ce3+ and co-doped with Ce3+-Nd3+ and Ce3+-Yb3+ were effectively synthesized by conventional solid state reaction method. The prepared samples were characterized by powder X-ray diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infrared (NIR) and ultraviolet visible (UV-VIS) region. Additionally the luminescence time decay curves of samples were investigated to confirm energy transfer (ET) process. The Ce3+-Nd3+ ion co-doped LaPO4 phosphors can convert a photon of UV region (278 nm) into photons of NIR region (1058 nm). While Ce3+-Yb3+ ion doped LaPO4 phosphors convert photons of UV region (278 nm) into photons of NIR region (979 nm). The Ce3+ ion acts like sensitizer and Nd3+/Yb3+ ions act as activators. Both kinds of emissions are suitable for improving spectral response of solar cells.

  7. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2011-11-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  8. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2012-03-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  9. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  10. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  11. Preparation of a Ytterbium-tagged Gunshot Residue Standard for Quality Control in the Forensic Analysis of GSR.

    PubMed

    Hearns, Nigel G R; Laflèche, Denis N; Sandercock, Mark L

    2015-05-01

    Preparation of a ytterbium-tagged gunshot residue (GSR) reference standard for scanning electron microscopy and energy dispersive X-ray spectroscopic (SEM-EDS) microanalysis is reported. Two different chemical markers, ytterbium and neodymium, were evaluated by spiking the primers of 38 Special ammunition cartridges (no propellant, no projectile) and discharging them onto 12.7 mm diameter aluminum SEM pin stubs. Following SEM-EDS microanalysis, the majority of tri-component particles containing lead, barium, and antimony (PbBaSb) were successfully tagged with the chemical marker. Results demonstrate a primer spiked with 0.75% weight percent of ytterbium nitrate affords PbBaSb particles characteristic of GSR with a ytterbium inclusion efficiency of between 77% and 100%. Reproducibility of the method was verified, and durability of the ytterbium-tagged tri-component particles under repeated SEM-EDS analysis was also tested. The ytterbium-tagged PbBaSb particles impart synthetic traceability to a GSR reference standard and are suitable for analysis alongside case work samples, as a positive control for quality assurance purposes. © 2015 American Academy of Forensic Sciences.

  12. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  13. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  14. CdSe/AsS core-shell quantum dots: preparation and two-photon fluorescence.

    PubMed

    Wang, Junzhong; Lin, Ming; Yan, Yongli; Wang, Zhe; Ho, Paul C; Loh, Kian Ping

    2009-08-19

    Arsenic(II) sulfide (AsS)-coated CdSe core-shell nanocrystals can be prepared by a cluster-complex deposition approach under mild conditions. At 60 degrees C, growth of an AsS shell onto a CdSe nanocrystal can be realized through the crystallization of a cluster complex of AsS/butylamine in a mixed solvent of isopropanol/chloroform. The new, type I core-shell nanocrystal exhibits markedly enhanced one-photon fluorescence as well two-photon upconversion fluorescence. The nanocrystals can be used for infrared-excited upconversion cellular labeling.

  15. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    NASA Astrophysics Data System (ADS)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  16. GaN based nanorods for solid state lighting

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Waag, Andreas

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  17. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jaehyun, E-mail: jaehyun.ahn@utexas.edu; Koh, Donghyi; Roy, Anupam

    2016-03-21

    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration ofmore » 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.« less

  18. Slow light generation in single-mode rectangular core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Sandeep; Saini, Than Singh; Kumar, Ajeet, E-mail: ajeetdph@gmail.com

    2016-05-06

    In this paper, we have designed and analyzed a rectangular core photonic crystal fiber (PCF) in Tellurite material. For the designed photonics crystal fiber, we have calculated the values of confinement loss and effective mode area for different values of air filling fraction (d/Λ). For single mode operation of the designed photonic crystal fiber, we have taken d/Λ= 0.4 for the further calculation of stimulated Brillouin scattering based time delay. A maximum time delay of 158 ns has been achieved for input pump power of 39 mW. We feel the detailed theoretical investigations and simulations carried out in the study have themore » potential impact on the design and development of slow light-based photonic devices.« less

  19. Coherent manipulation of a solid-state artificial atom with few photons.

    PubMed

    Giesz, V; Somaschi, N; Hornecker, G; Grange, T; Reznychenko, B; De Santis, L; Demory, J; Gomez, C; Sagnes, I; Lemaître, A; Krebs, O; Lanzillotti-Kimura, N D; Lanco, L; Auffeves, A; Senellart, P

    2016-06-17

    In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

  20. Residual stresses and phase transformations in Ytterbium silicate environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Fabian

    Due to their high melting temperature, low density, and good thermomechanical stability, silicon-based ceramics (SiC, Si3N4) are some of the most promising materials systems for high temperature structural applications in gas turbine engines. However, their silica surface layer reacts with water vapor contained in combustion environments. The resulting hydroxide layer volatilizes, leading to component recession. Environmental barrier coatings (EBCs) have been developed to shield the substrate from degradation. Next generation coatings for silicon-based ceramics based on ytterbium silicates have shown a promising combination of very low and good thermomechanical properties. The focus of this thesis is threefold: In the first part, phase transformations in plasma sprayed ytterbium silicates were investigated. Plasma sprayed materials are known to contain large amounts of amorphous material. Phase changes during the conversion from amorphous to crystalline materials were investigated as they have been known to lead to failure in many coatings. The second part of this work focused on measuring residual stresses in multilayer EBCs using synchrotron X-ray diffraction (XRD). Strains were resolved spatially, with probe sizes as small as 20 um. Stresses were calculated using mechanical properties of ytterbium silicates, determined with in-situ loading and heating experiments. In-situ and ex-situ heating experiments allowed for the study of changes in stress states that occur in these EBC materials during heating and cooling cycles. Lastly, the interaction of ytterbium silicates with low-melting environmental calcium-magnesium-aluminosilicate (CMAS) glasses was studied. Synchrotron XRD was used to study the influence of CMAS on the stress state in the coating, X-ray computed tomography was used to provide 3D images of coatings, and EDS and TEM analysis were used to study the interactions at the CMAS/ytterbium silicate interface in detail.

  1. Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III).

    PubMed

    Crawford, Scott E; Andolina, Christopher M; Kaseman, Derrick C; Ryoo, Bo Hyung; Smith, Ashley M; Johnston, Kathryn A; Millstone, Jill E

    2017-12-13

    Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10 6 M -1 cm -1 ) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.

  2. Two-photon excitation of 2,5-diphenyloxazole using a low power green solid state laser

    NASA Astrophysics Data System (ADS)

    Luchowski, Rafal

    2011-01-01

    This Letter concerns two-photon excitation of 2,5-diphenyloxazole (PPO) upon illumination from a pulsed 532 nm solid state laser, with an average power of 30 mW, and a repetition rate of 20 MHz. A very agreeable emission spectrum position and shape has been achieved for PPO receiving one- and two-photon excitation, which suggests that the same excited state is involved for both excitation modes. Also, a perfect quadratic dependence of laser power in the emission intensity function has been recorded. We tested the application of a small solid state green laser to two-photon induced time-resolved fluorescence, revealing the emission anisotropy of PPO to be considerably higher for two-photon than for one-photon excitation.

  3. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    PubMed

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  4. Etudes optiques de nouveaux materiaux laser: Des orthosilicates dopes a l'ytterbium: Le yttrium (lutetium,scandium) pentoxide de silicium

    NASA Astrophysics Data System (ADS)

    Denoyer, Aurelie

    La decouverte et l'elaboration de nouveaux materiaux laser solides suscitent beaucoup d'interet parmi la communaute scientifique. En particulier les lasers dans la gamme de frequence du micron debouchent sur beaucoup d'applications, en telecommunication, en medecine, dans le domaine militaire, pour la, decoupe des metaux (lasers de puissance), en optique non lineaire (doublage de frequence, bistabilite optique). Le plus couramment utilise actuellement est le Nd:YAG dans cette famille de laser, mais des remplacants plus performants sont toujours recherches. Les lasers a base d'Yb3+ possedent beaucoup d'avantages compares aux lasers Nd3+ du fait de leur structure electronique simple et de leur deterioration moins rapide. Parmi les matrices cristallines pouvant accueillir l'ytterbium, les orthosilicates Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5 se positionnent tres bien, du fait de leur bonne conductivite thermique et du fort eclatement de leur champ cristallin necessaire a l'elaboration de lasers quasi-3 niveaux. De plus l'etude fine et systematique des proprietes microscopiques de nouveaux materiaux s'avere toujours tres interessante du point de vue de la recherche fondamentale, c'est ainsi que de nouveaux modeles sont concus (par exemple pour le champ cristallin) ou que de nouvelles proprietes inhabituelles sont decouvertes, menant a de nouvelles applications. Ainsi d'autres materiaux dopes a l'ytterbium sont connus pour leurs proprietes de couplage electron-phonon, de couplage magnetique, d'emission cooperative ou encore de bistabilite optique, mais ces proprietes n'ont encore jamais ete mises en evidence dans Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5. Ainsi, cette these a pour but l'etude des proprietes optiques et des interactions microscopiques dans Yb:Y2SiO 5, Yb:Lu2SiO5 et Yb:Sc2SiO5. Nous utilisons principalement les techniques d'absorption IR et de spectroscopie Raman pour determiner les excitations du champ cristallin et les modes de vibration dans le materiau

  5. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  6. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    NASA Astrophysics Data System (ADS)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  7. Proposal and proof-of-principle demonstration of non-destructive detection of photonic qubits using a Tm:LiNbO3 waveguide

    PubMed Central

    Sinclair, N.; Heshami, K.; Deshmukh, C.; Oblak, D.; Simon, C.; Tittel, W.

    2016-01-01

    Non-destructive detection of photonic qubits is an enabling technology for quantum information processing and quantum communication. For practical applications, such as quantum repeaters and networks, it is desirable to implement such detection in a way that allows some form of multiplexing as well as easy integration with other components such as solid-state quantum memories. Here, we propose an approach to non-destructive photonic qubit detection that promises to have all the mentioned features. Mediated by an impurity-doped crystal, a signal photon in an arbitrary time-bin qubit state modulates the phase of an intense probe pulse that is stored during the interaction. Using a thulium-doped waveguide in LiNbO3, we perform a proof-of-principle experiment with macroscopic signal pulses, demonstrating the expected cross-phase modulation as well as the ability to preserve the coherence between temporal modes. Our findings open the path to a new key component of quantum photonics based on rare-earth-ion-doped crystals. PMID:27853153

  8. Suppressing 1.06- μm spontaneous emission of neodymium ions using a novel tellurite all-solid photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Tong, Hoang Tuan; Demichi, Daisuke; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2018-05-01

    In order to take advantage of the 1.3- μm emission of neodymium (Nd3+) ions for many practical applications, we propose a tellurite all-solid photonic bandgap fiber (ASPBGF) to filter out the competing emission at 1.06 μm which is most prominent in the emission spectrum of Nd3+ ion. A novel Nd3+-doped tellurite ASPBGF is fabricated by using our developed tellurite glasses which have high compatibility of thermal properties and their refractive index difference is 0.096 at 1320 nm. The fiber is designed with 4 layers of high-index rods to have low confinement loss. The measured transmission spectrum of a 2.2-cm-long section of the fabricated fiber exhibits high transmission bands near 0.75 and 1.33 μm (about -20 dB and -19 dB) and a low transmission band in the vicinity of 1.06 μm which is about -27 dB. By using our fabricated Nd3+-doped tellurite ASPBGF, it is demonstrated for the first time that the 1.06- μm emission peak due to the 4F3/2→4I11/2 transition of Nd3+ ions is greatly suppressed about 12 times as compared to that obtained by using a bulk samples with the same doping concentration.

  9. Investigation and optimal design of Photonic Crystal Fiber Bragg Grating using the Bat Algorithm and Binary Morse-Thue fractal Sequence, for eye-safe Tunable Fiber and Solid-State Lasers

    NASA Astrophysics Data System (ADS)

    Al-Muraeb, Ahmed Mohammed Maim

    This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and

  10. Monolithic photonic crystals created by partial coalescence of core-shell particles.

    PubMed

    Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun

    2014-03-11

    Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.

  11. Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy

    PubMed Central

    Fernández, A.; Grüner-Nielsen, L.; Andreana, M.; Stadler, M.; Kirchberger, S.; Sturtzel, C.; Distel, M.; Zhu, L.; Kautek, W.; Leitgeb, R.; Baltuska, A.; Jespersen, K.; Verhoef, A.

    2017-01-01

    A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy. PMID:28856032

  12. Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy.

    PubMed

    Fernández, A; Grüner-Nielsen, L; Andreana, M; Stadler, M; Kirchberger, S; Sturtzel, C; Distel, M; Zhu, L; Kautek, W; Leitgeb, R; Baltuska, A; Jespersen, K; Verhoef, A

    2017-08-01

    A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy.

  13. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure

    NASA Astrophysics Data System (ADS)

    Petchsang, N.; Pon-On, W.; Hodak, J. H.; Tang, I. M.

    2009-07-01

    The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3xFe 2xCo x(PO 4) 6(OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2O 4. Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+/Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe 2O 4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped ( x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2O 3 impurity phase seen in the XRD patterns.

  14. Low concentration biomolecular detection using liquid core photonic crystal fiber (LCPCF) SERS sensor

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Zhang, Yi; Gu, Claire; Seballos, Leo; Zhang, Jin Z.

    2008-02-01

    This work demonstrates the use of a highly sensitive Liquid Core Photonic Crystal Fiber (LCPCF) Surface Enhanced Raman Scattering (SERS) sensor in detecting biological and biochemical molecules. The Photonic Crystal Fiber (PCF) probe was prepared by carefully sealing the cladding holes using a fusion splicer while leaving the central hollow core open, which ensures that the liquid mixture of the analyte and silver nanoparticles only fills in the hollow core of the PCF, therefore preserving the photonic bandgap. The dependence of the SERS signal on the excitation power and sample concentration was fully characterized using Rhodamine 6G (R6G) molecules. The result shows that the LCPCF sensor has significant advantages over flat surface SERS detections at lower concentrations. This is attributed to the lower absorption at lower concentration leading to a longer effective interaction length inside the LCPCF, which in turn, results in a stronger SERS signal. Several biomolecules, such as Prostate Specific Antigen (PSA) and alpha-synuclein, which are indicators of prostate cancer and Parkinson's disease, respectively, and fail to be detected directly, are successfully detected by the LCPCF sensor. Our results demonstrate the potential of the LCPCF SERS sensor for biomedical detection at low concentrations.

  15. Fiber Optical Parametric Oscillator for High Power, High Efficiency Short-Wavelength Generation

    DTIC Science & Technology

    2010-12-05

    the spectral region about 1550 nm, this project has explored the possibility of using ytterbium - doped fiber lasers (YDFL) and amplifiers (YDFA) as...integration. From this point of view, an ytterbium - doped fiber -based pump source looks most attractive. Of particular interest is the master- oscillator... ytterbium - doped fiber amplifiers (YDFA). The MOPA constructed for this work is shown in Figure 1. It consists of a CW fiber ring-laser centered at

  16. Doped sesquioxide ceramic for eye-safe solid state laser materials

    NASA Astrophysics Data System (ADS)

    Kim, Woohong; Baker, Colin; Florea, Catalin; Frantz, Jesse; Villalobos, Guillermo; Shaw, Brandon; Bowman, Steve; O'Connor, Shawn; Sadowski, Bryan; Hunt, Michael; Aggalwar, Ishwar; Sanghera, Jasbinder

    2013-03-01

    In this paper, we present our recent results in the development of Ho3+ doped sesquioxides for eye-safe solid state lasers. We have synthesized optical quality Lu2O3 nanopowders doped with concentrations of 0.1, 1.0, 2.0, and 5% Ho3+. The powders were synthesized by a co-precipitation method beginning with nitrates of holmium and lutetium. The nanopowders were hot pressed into optical quality ceramic discs. The optical transmission of the ceramic discs is excellent, nearly approaching the theoretical limit. The optical, spectral and morphological properties as well as the lasing performance from highly transparent ceramics are presented.

  17. Bridging visible and telecom wavelengths with a single-mode broadband photon pair source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeller, C.; Brecht, B.; Mosley, P. J.

    We present a spectrally decorrelated photon pair source bridging the visible and telecom wavelength regions. Tailored design and fabrication of a solid-core photonic crystal fiber (PCF) lead to the emission of signal and idler photons into only a single spectral and spatial mode. Thus no narrowband filtering is necessary and the heralded generation of pure photon number states in ultrafast wave packets at telecom wavelengths becomes possible.

  18. Thermal Evolution of Earht's Core during Accretion: a Preliminary Solid Inner Core at the End of Accrfetion.

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.

    2015-12-01

    Growth of an inner core has conventionally been related to core cooling blow the liquidus of iron. It is however possible that the core of the proto-Earth solidifies upon pressure increase during accretion. The lithostatic pressure in the proto-Earth increases immediately after merging each impactor, and the pressure-dependent liquidus of iron may supersede the temperature near the center resulting in a solid inner core. Assuming that Earth is formed by accreting a few dozen Moon to Mars size planetary embryos, the thermal evolution of the proto-Earth's core is investigated during accretion. The collision of an embryo heats the Earth differentially and the rotating low-viscosity, differentially heated core stratifies, creating a spherically symmetric stable and radially increasing temperature distribution. Convection occurs in the outer core while heat transfers by conduction in deeper parts. It is assumed that the iron core of an embryo pools at the bottom of partially molten mantle and thermally equilibrates with surroundings. It then descends as an iron diapir in the solid silicate mantle, while releasing its gravitational energy. Depending on its temperature when arrives at the core mantle boundary, it may spread on the core creating a hot layer or plunge into the core and descend to a neutrally buoyant level while further releasing its gravitational energy. A few dozen thermal evolution models of the core are investigates to examine effects of major parameters such as: total number of impacting embryos; partitioning of the gravitational energy released during the descent of the diaper in the mantle (between the silicate mantle and the iron diaper), and in the core (between the proto-Earth's core and that of the embryo); and gravitational energy and latent heat released due to the core solidification. All of the models predict a large solid inner core, about 1500 to 2000 km in radius, at the end of accretion.

  19. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.

    PubMed

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-10-15

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.

  20. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    PubMed Central

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  1. Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study.

    PubMed

    Rauh, Astrid; Carl, Nico; Schweins, Ralf; Karg, Matthias

    2018-01-23

    Periodic superstructures of plasmonic nanoparticles have attracted significant interest because they can support coupled plasmonic modes, making them interesting for plasmonic lasing, metamaterials, and as light-management structures in thin-film optoelectronic devices. We have recently shown that noble metal hydrogel core-shell colloids allow for the fabrication of highly ordered 2-dimensional plasmonic lattices that show surface lattice resonances as the result of plasmonic/diffractive coupling (Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971). In the present work, we study the photonic properties and structure of 3-dimensional crystalline superstructures of gold hydrogel core-shell colloids and their pitted counterparts without gold cores. We use far-field extinction spectroscopy to investigate the optical response of these superstructures. Narrow Bragg peaks are measured, independently of the presence or absence of the gold cores. All crystals show a significant reduction in low-wavelength scattering. This leads to a significant enhancement of the plasmonic properties of the samples prepared from gold-nanoparticle-containing core-shell colloids. Plasmonic/diffractive coupling is not evident, which we mostly attribute to the relatively small size of the gold cores limiting the effective coupling strength. Small-angle neutron scattering is applied to study the crystal structure. Bragg peaks of several orders clearly assignable to an fcc arrangement of the particles are observed for all crystalline samples in a broad range of volume fractions. Our results indicate that the nanocrystal cores do not influence the overall crystallization behavior or the crystal structure. These are important prerequisites for future studies on photonic materials built from core

  2. Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters

    NASA Astrophysics Data System (ADS)

    Buterakos, Donovan; Barnes, Edwin; Economou, Sophia E.

    2017-10-01

    Quantum repeaters are nodes in a quantum communication network that allow reliable transmission of entanglement over large distances. It was recently shown that highly entangled photons in so-called graph states can be used for all-photonic quantum repeaters, which require substantially fewer resources compared to atomic-memory-based repeaters. However, standard approaches to building multiphoton entangled states through pairwise probabilistic entanglement generation severely limit the size of the state that can be created. Here, we present a protocol for the deterministic generation of large photonic repeater states using quantum emitters such as semiconductor quantum dots and defect centers in solids. We show that arbitrarily large repeater states can be generated using only one emitter coupled to a single qubit, potentially reducing the necessary number of photon sources by many orders of magnitude. Our protocol includes a built-in redundancy, which makes it resilient to photon loss.

  3. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    PubMed

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  4. Nonsequential two-photon absorption from the K shell in solid zirconium

    DOE PAGES

    Ghimire, Shambhu; Fuchs, Matthias; Hastings, Jerry; ...

    2016-10-21

    Here, we report the observation of nonsequential two-photon absorption from the K shell of solid Zr (atomic number Z=40) using intense x-ray pulses from the Spring-8 Angstrom Compact Free-Electron Laser (SACLA). We determine the generalized nonlinear two-photon absorption cross section at the two-photon threshold in the range of 3.9–57 ×10 –60 cm 4s bounded by the estimated uncertainty in the absolute intensity. The lower limit is consistent with the prediction of 3.1 ×10 –60 cm 4s from the nonresonant Z –6 scaling for hydrogenic ions in the nonrelativistic, dipole limit.

  5. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    NASA Astrophysics Data System (ADS)

    Rana, Amit Kumar; J, Aneesh; Kumar, Yogendra; M. S, Arjunan; Adarsh, K. V.; Sen, Somaditya; Shirage, Parasharam M.

    2015-12-01

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration. We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.

  6. Temporal Multimode Storage of Entangled Photon Pairs

    NASA Astrophysics Data System (ADS)

    Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas

    2016-12-01

    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

  7. Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Kaur, Ramanjot; Pandey, O. P.; Wei, Xueyong; Sharma, Manoj

    2015-07-01

    In this work, cadmium free core-shell ZnS:X/ZnS (X = Mn, Cu) nanoparticles have been synthesized and used for white light generation. First, the doping concentration of Manganese (Mn) was varied from 1% to 4% to optimize the dopant related emission and its optimal value was found to be 1%. Then, ZnS shell was grown over ZnS:Mn(1%) core to passivate the surface defects. Similarly, the optimal concentration of Copper (Cu) was found to be 0.8% in the range varied from 0.6% to 1.2%. In order to obtain an emission in the whole visible spectrum, dual doping of Mn and Cu was done in the core and the shell, respectively. A solid-solid mixing in different ratios of separately doped quantum dots (QDs) emitting in the blue green and the orange region was performed. Results show that the optimum mixture of QDs excited at 300 nm gives Commission Internationale del'Éclairage color coordinates of (0.35, 0.36), high color rendering index of 88, and correlated color temperature of 4704 K with minimum self-absorption.

  8. Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source.

    PubMed

    Maddi, Chiranjeevi; Bourquard, Florent; Barnier, Vincent; Avila, José; Asensio, Maria-Carmen; Tite, Teddy; Donnet, Christophe; Garrelie, Florence

    2018-02-19

    New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped 'few-layer' graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology.

  9. Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides

    NASA Astrophysics Data System (ADS)

    Jiang, Yihong

    The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during

  10. Single-polarization hollow-core square photonic bandgap waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eguchi, Masashi, E-mail: megu@ieee.org; Tsuji, Yasuhide, E-mail: y-tsuji@mmm.muroran-it.ac.jp

    Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized wavesmore » is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.« less

  11. Radiation Effects on Ytterbium-doped Optical Fibers

    DTIC Science & Technology

    2014-06-02

    Erbium (Er3+) has long been the most prevalent RE dopant because of erbium’s ability to amplify signals at common communications wavelengths (1330 and...composition of the core and cladding along with dopants (intentional or inadvertent) (Friebele, 1992), preform production and fiber drawing process...inclusion of other elemental dopants along with the RE-ions in order to stabilize the RE-ions and prevent them from clustering, which can degrade

  12. New interpretation of data of the Earth's solid core

    NASA Astrophysics Data System (ADS)

    Guliyev, H. H.

    2017-06-01

    The commonly accepted scientific opinions on the inner core as the deformable solid globe are based on the solution of the problem on the distribution of elastic parameters in the inner structures of the Earth. The given solution is obtained within the necessary integral conditions on its self-weight, moment of inertia concerning the axes of rotation and periods of free oscillations of the Earth. It is shown that this solution does not satisfy the mechanics of the deformable solid body with sufficient local conditions following from basic principles concerning the strength, stability and actuality of velocities of propagation of elastic waves. The violation of local conditions shows that the inner core cannot exist in the form of the deformable solid body within the commonly accepted elastic parameters.

  13. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    PubMed

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  14. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  15. Photonic bandgap narrowing in conical hollow core Bragg fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightlymore » smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.« less

  16. A Large Solid Inner Core at Mercury

    NASA Astrophysics Data System (ADS)

    Genova, A.; Goossens, S.; Mazarico, E.; Lemoine, F. G.; Neumann, G. A.; Kuang, W.; Sabaka, T. J.; Smith, D. E.; Zuber, M. T.

    2018-05-01

    New measurements of the polar moments of inertia of the whole planet and of the outer layers (crust+mantle), and simulations of Mercury’s magnetic field dynamo suggest the presence of a solid inner core with a Ric 0.3-0.5 Roc.

  17. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Zhang, Xuedian; Nie, Fukun; Lu, Xinglian; Chang, Min

    2018-07-01

    We present a 5-layer air-hole dispersion-compensating photonic crystal fiber (PCF) with a modified dual concentric core structure, based on central rod doping. The finite element method (FEM) was used to investigate the structure numerically. If the structural parameters remain unchanged, a high degree of linear correlation between the central rod refractive index and the operating wavelength can be achieved in the wavelength range of 1.5457-1.5857 μm, which suggests that the operating wavelength can be determined by the refractive index of the centre rod. A negative dispersion coefficient between -5765.2 ps/km/nm and -6115.8 ps/km/nm was obtained by calculation and within the bandwidth of 108 nm (1.515-1.623 μm) around 1.55 μm, a dispersion coefficient of -3000 ps/km/nm can be ensured for compensation. In addition, this proposed PCF also has the advantage of low confinement loss, between 0.00011 and 0.00012 dB/m, and ease of fabrication with existing technology. The proposed PCF has good prospects in dispersion-compensating applications.

  18. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    A simple method for evacuating, refilling and connectorizing hollow-core photonic crystal fiber for use asgas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to amechanical splice between regular and hollow-core fibers.

  19. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Amit Kumar; Kumar, Yogendra; Arjunan, M.S.

    2015-12-07

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration.more » We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.« less

  20. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    NASA Astrophysics Data System (ADS)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  1. Luminescence of ytterbium(III) in mixed-ligand compounds with cinnamic acid and neutral phosphorus-containing ligands

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.

    2014-09-01

    The luminescence spectral characteristics of mixed-ligand compounds of ytterbium(III) with cinnamic acid and neutral phosphorus-containing ligands were studied by luminescence spectroscopy. The intensity of luminescence of the compounds was determined. The highest intensity of luminescence was found for the ytterbium(III) compound with triphenylphosphine oxide.

  2. Theoretical and experimental study of bent fully aperiodic large-pitch fibers for enhancing the high-order modes delocalization

    NASA Astrophysics Data System (ADS)

    du Jeu, Rémi; Dauliat, Romain; Darwich, Dia; Auguste, Jean-Louis; Benoît, Aurélien; Leconte, Baptiste; Malleville, Marie-Alicia; Jamier, Raphaël.; Schuster, Kay; Roy, Philippe

    2018-02-01

    The power scaling of fiber lasers and amplifiers has triggered an extensive development of large-mode area fibers among which the most promising are the distributed mode filtering fibers and the large-pitch fibers. These structures enable for an effective higher-order modes delocalization and subsequently a singlemode emission. An interesting alternative consists in using the fully-aperiodic large-pitch fibers, into which the standard air-silica photonic crystal cladding is replaced by an aperiodic pattern made of solid low-index inclusions cladding. However, in such a structure, the core and the background cladding material surrounding it must have rigorously the same refractive index. Current synthesis processes and measurement techniques offer respectively a maximum resolution of 5×10-4 and 1×10-4 while the indexmatching must be as precise as 1×10-5 . Lately a gain material with a refractive index 1.5×10-4 higher than that of the background cladding material was fabricated, thus re-confining the first higher-order modes in the core. A numerical study is carried out on the benefit of bending such fully-aperiodic fiber to counteract this phenomenon. Optimized bending axis and radius have been determined. Experiments are done in a laser cavity operating at 1030 nm using an 88cm-long 51μm core diameter ytterbium-doped fiber. Results demonstrate an improvement of the M2 from 1.7 when the fiber is kept straight to 1.2 when it is bent with a 100 to 60 cm bend radius. These primary results are promising for future power scaling.

  3. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in ordermore » to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.« less

  4. Transient quantum coherent effects in the acetylene-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Rodríguez Casillas, N.; Ocegueda Miramontes, M.; Hernández Hernández, E.

    2017-02-01

    Low-pressure acetylene in the hollow-core photonic crystal structure fibers is an excellent medium for the room-temperature investigation of the coherent quantum effects in communication wavelength region. Pulsed excitation enables observation of new coherent phenomena like optical nutation or photon echo and evaluation of important temporal characteristics of the light-molecule interactions. We also report original experimental results on the pulsed excitation of the electromagnetically induced transparency in co- and counter-propagation configurations.

  5. Synthesis of Core-shell Lanthanide-doped Upconversion Nanocrystals for Cellular Applications.

    PubMed

    Ai, Xiangzhao; Lyu, Linna; Mu, Jing; Hu, Ming; Wang, Zhimin; Xing, Bengang

    2017-11-10

    Lanthanide-doped upconversion nanocrystals (UCNs) have attracted much attention in recent years based on their promising and controllable optical properties, which allow for the absorption of near-infrared (NIR) light and can subsequently convert it into multiplexed emissions that span over a broad range of regions from the UV to the visible to the NIR. This article presents detailed experimental procedures for high-temperature co-precipitation synthesis of core-shell UCNs that incorporate different lanthanide ions into nanocrystals for efficiently converting deep-tissue penetrable NIR excitation (808 nm) into a strong blue emission at 480 nm. By controlling the surface modification with biocompatible polymer (polyacrylic acid, PAA), the as-prepared UCNs acquires great solubility in buffer solutions. The hydrophilic nanocrystals are further functionalized with specific ligands (dibenzyl cyclooctyne, DBCO) for localization on the cell membrane. Upon NIR light (808 nm) irradiation, the upconverted blue emission can effectively activate the light-gated channel protein on the cell membrane and specifically regulate the cation (e.g., Ca 2+ ) influx in the cytoplasm. This protocol provides a feasible methodology for the synthesis of core-shell lanthanide-doped UCNs and subsequent biocompatible surface modification for further cellular applications.

  6. Endo-Fullerenes and Doped Diamond Nanocrystallite Based Solid-State Qubits

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Srivastava, Deepak; Cho, K.

    2001-01-01

    This viewgraph presentation provides information on the use of endo-fullerenes and doped diamond nanocrystallites in the development of a solid state quantum computer. Arrays of qubits, which have 1/2 nuclear spin, are more easily fabricated than arrays of similar bare atoms. H-1 can be encapsulated in a C20D20 fullerene, while P-31 can be encapsulated in a diamond nanocrystallite.

  7. Novel approach for solid state cryocoolers.

    PubMed

    Volpi, Azzurra; Di Lieto, Alberto; Tonelli, Mauro

    2015-04-06

    Laser cooling in solids is based on anti-Stokes luminescence, via the annihilation of lattice phonons needed to compensate the energy of emitted photons, higher than absorbed ones. Usually the anti-Stokes process is obtained using a rare-earth active ion, like Yb. In this work we demonstrate a novel approach for optical cooling based not only to Yb anti-Stokes cycle but also to virtuous energy-transfer processes from the active ion, obtaining an increase of the cooling efficiency of a single crystal LiYF(4) (YLF) doped Yb at 5at.% with a controlled co-doping of 0.0016% Thulium ions. A model for efficiency enhancement based on Yb-Tm energy transfer is also suggested.

  8. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.

    PubMed

    Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena

    2016-09-28

    The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  9. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    PubMed Central

    Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena

    2016-01-01

    The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925

  10. The use of hollow-core photonic crystal fibres as biological sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinin, A V; Skibina, Yu S; Tuchin, Valerii V

    2011-04-30

    The results of development and study of a new type of a hollow-core photonic crystal fibre with radially increasing diameter of capillaries in the structured cladding are presented. The waveguide possesses a specific transmission spectrum and can be used as an efficient analyser of biological media. (optical technologies in biophysics and medicine)

  11. High Intensity Mirror-Free Nanosecond Ytterbium Fiber Laser System in Master Oscillator Power Amplification

    NASA Astrophysics Data System (ADS)

    Chun-Lin, Louis Chang

    Rare-earth-doped fiber lasers and amplifiers are relatively easy to efficiently produce a stable and high quality laser beam in a compact, robust, and alignment-free configuration. Recently, high power fiber laser systems have facilitated wide spread applications in academics, industries, and militaries in replacement of bulk solid-state laser systems. The master oscillator power amplifier (MOPA) composed of a highly-controlled seed, high-gain preamplifiers, and high-efficiency power amplifiers are typically utilized to scale up the pulse energy, peak power, or average power. Furthermore, a direct-current-modulated nanosecond diode laser in single transverse mode can simply provide a compact and highly-controlled seed to result in the flexible output parameters, such as repetition rate, pulse duration, and even temporal pulse shape. However, when scaling up the peak power for high intensity applications, such a versatile diode-seeded nanosecond MOPA laser system using rare-earth-doped fibers is unable to completely save its own advantages compared to bulk laser systems. Without a strong seeding among the amplifiers, the guided amplified spontaneous amplification is easy to become dominant during the amplification, leading to the harmful self-lasing or pulsing effects, and the difficulty of the quantitative numerical comparison. In this dissertation, we study a high-efficiency and intense nanosecond ytterbium fiber MOPA system with good beam quality and stability for high intensity applications. The all-PM-fiber structure is achieved with the output extinction ratio of >12 dB by optimizing the interconnection of high power optical fibers. The diode-seeded MOPA configuration without parasitic stimulated amplification (PAS) is implemented using the double-pass scheme to extract energy efficiently for scaling peak power. The broadband PAS was studied experimentally, which matches well with our numerical simulation. The 1064-nm nanosecond seed was a direct

  12. Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source.

    PubMed

    Loredo, J C; Broome, M A; Hilaire, P; Gazzano, O; Sagnes, I; Lemaitre, A; Almeida, M P; Senellart, P; White, A G

    2017-03-31

    A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.

  13. Tunable Magnetic Exchange Interactions in Manganese-Doped Inverted Core-Shell ZnSe-CdSe Nanocrystals

    DTIC Science & Technology

    2009-01-01

    exchange coupling even for a singlemagnetic dopant atom12,17. Whereas magnetically doped monocomponent nanocrystals are well established16, wavefunction...Solid State Commun. 114, 547–550 (2000). 13. Radovanovic, P. V. & Gamelin, D. R. Electronic absorption spectroscopy of cobalt ions in diluted magnetic...D. R. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): Physical property dependence on dopant locale. J. Am. Chem. Soc

  14. Arc-Induced Long Period Gratings from Standard to Polarization-Maintaining and Photonic Crystal Fibers

    PubMed Central

    Campopiano, Stefania; Iadicicco, Agostino

    2018-01-01

    In this work, we report about our recent results concerning the fabrication of Long Period Grating (LPG) sensors in several optical fibers, through the Electric Arc Discharge (EAD) technique. In particular, the following silica fibers with both different dopants and geometrical structures are considered: standard Ge-doped, photosensitive B/Ge codoped, P-doped, pure-silica core with F-doped cladding, Panda type Polarization-maintaining, and Hollow core Photonic crystal fiber. An adaptive platform was developed and the appropriate “recipe” was identified for each fiber, in terms of both arc discharge parameters and setup arrangement, for manufacturing LPGs with strong and narrow attenuation bands, low insertion losses, and short length. As the fabricated devices have appealing features from the application point of view, the sensitivity characteristics towards changes in different external perturbations (i.e., surrounding refractive index, temperature, and strain) are investigated and compared, highlighting the effects of different fiber composition and structure. PMID:29558407

  15. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber.

    PubMed

    Cheng, Tonglei; Liao, Meisong; Gao, Weiqing; Duan, Zhongchao; Suzuki, Takenobu; Ohishi, Yasutake

    2012-12-17

    A new way to suppress stimulated Brillouin scattering by using an all-solid chalcogenide-tellurite photonic bandgap fiber is presented in the paper. The compositions of the chalcogenide and the tellurite glass are As(2)Se(3) and TeO(2)-ZnO-Li(2)O-Bi(2)O(3). The light and the acoustic wave are confined in the fiber by photonic bandgap and acoustic bandgap mechanism, respectively. When the pump wavelength is within the photonic bandgap and the acoustic wave generated by the pump light is outside the acoustic bandgap, the interaction between the optical and the acoustic modes is very weak, thus stimulated Brillouin scattering is suppressed in the photonic bandgap fiber.

  16. Impact of material absorption on supercontinuum generation in liquid core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Raja, Vasantha Jayakantha; Uthayakumar, T.; Porsezian, K.

    2013-06-01

    The impact of material absorption on supercontinuum generation (SCG) in liquid core photonic crystal fiber (LCPCF) is presented. While PCFs with cores made from different glasses are well studied in previous works with saturable nonlinear response (SNL), in this paper, it is planned to investigate the dynamics of nonlinear processes of supercontinuum generation in high-index fiber with material absorption to understand the physical phenomena of pulse propagation.

  17. Conductivity measurements on CdCl2 doped PVA solid polymeric electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Baraker, Basavarajeshwari M.; Lobo, Blaise

    2018-04-01

    Ionic conductivity of pure polyvinyl alcohol (PVA) and 6.3 wt% of CdCl2 doped PVA solid polymeric electrolyte have been studied using DC and AC electrical measurements. From DC electrical results, the determination transference number confirmed that ions are the dominant charge carriers in CdCl2 doped PVA. Interestingly, the ion transference number (ti) for 6.3 wt% CdCl2 doped sample is significantly more (0.993), when compared to that of pure PVA (for which, ti is 0.988). Temperature dependent dielectric studies showed interesting results at different frequencies: 120 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz and 100 kHz.

  18. Multidimensional microstructured photonic device based on all-solid waveguide array fiber and magnetic fluid

    NASA Astrophysics Data System (ADS)

    Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Yang, Xiaoping; Yao, Jianquan

    2017-01-01

    An all-solid waveguide array fiber (WAF) is one kind of special microstructured optical fiber in which the higher-index rods are periodically distributed in a low-index silica host to form the transverse two-dimensional photonic crystal. In this paper, one kind of multidimensional microstructured optical fiber photonic device is proposed by using electric arc discharge method to fabricate periodic tapers along the fiber axis. By tuning the applied magnetic field intensity, the propagation characteristics of the all-solid WAF integrated with magnetic fluid are periodically modulated in both radial and axial directions. Experimental results show that the wavelength changes little while the transmission loss increases for an applied magnetic field intensity range from 0 to 500 Oe. The magnetic field sensitivity is 0.055 dB/Oe within the linear range from 50 to 300 Oe. Meanwhile, the all-solid WAF has very similar thermal expansion coefficient for both high- and low-refractive index glasses, and thermal drifts have a little effect on the mode profile. The results show that the temperature-induced transmission loss is <0.3 dB from 26°C to 44°C. Further tuning coherent coupling of waveguides and controlling light propagation, the all-solid WAF would be found great potential applications to develop new micro-nano photonic devices for optical communications and optical sensing applications.

  19. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, J.P.; Young, J.E.

    1983-10-12

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  20. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  1. An atom interferometer inside a hollow-core photonic crystal fiber

    PubMed Central

    Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu

    2018-01-01

    Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180

  2. Cladding pumped Yb-doped HOM power amplifier with high gain

    NASA Astrophysics Data System (ADS)

    Abedin, Kazi S.; Ahmad, Raja; DeSantolo, Anthony M.; Nicholson, Jeffrey W.; Westbrook, Paul S.; Headley, Clifford; DiGiovanni, David J.

    2018-02-01

    Higher-order mode (HOM) fibers have been engineered to allow propagation of linearly polarized symmetric modes LP0,N in a robust way. Compared with the fundamental mode LP(0,1), HOMs exhibits an effective area that can be larger by over two order magnitude, and thus propagating light in these modes could greatly suppress the effect of nonlinear effects. HOM fibers could also be doped with rare earth ions in order to amplify light propagating in these modes, which offers the enormous potential for generating high-intensity pulses. Excitation of HOM gain fiber using cladding pumping with multimode pump source is attractive for ytterbium based amplifiers, because of the availability of low-cost multimode pump diodes in the 975nm wavelength range. One problem associated with cladding pumping which leads to excitation of the large doped core (over 100 μm diameter) is that it could result in a large amount of amplifiedspontaneous- emission (ASE) noise, particularly when the input signal is weak. Optimization of amplifier design is critical in order to suppress ASE and achieve high gain and pump-to-signal conversion efficiency. We conducted numerical modeling of a cladding pumped HOM-amplifier, which revealed that this problem could be mitigated by using a relatively long gain-fiber that allowed reabsorption of the forward propagating ASE resulting in a further amplification of the signal. We demonstrate efficient amplification of a LP0,10 mode with an effective area 3140μm2 in an Yb-doped HOM amplifier cladding pumped at 975nm. We have successfully obtained a 20.2dB gain for 0.95 W 1064 nm input seed signal to more than 105W.

  3. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. Copyright © 2013 Wiley Periodicals, Inc.

  4. Photochemistry on soft-glass hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Cubillas, Ana M.; Jiang, Xin; Euser, Tijmen G.; Taccardi, Nicola; Etzold, Bastian J. M.; Wasserscheid, Peter; Russell, Philip St. J.

    2014-05-01

    Hollow-core photonic crystal fibre (HC-PCF) offers strong light confinement and long interaction lengths in an optofluidic channel. These unique advantages have motivated its recent use as a highly efficient and versatile microreactor for liquid-phase photochemistry and catalysis. In this work, we use a soft-glass HC-PCF to carry out photochemical experiments in a high-index solvent such as toluene. The high-intensity and strong confinement in the fibre is demonstrated to enhance the performance of a proof-of-principle photolysis reaction.

  5. A solid-state amorphous selenium avalanche technology for low photon flux imaging applications

    PubMed Central

    Wronski, M. M.; Zhao, W.; Reznik, A.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2010-01-01

    Purpose: The feasibility of a practical solid-state technology for low photon flux imaging applications was investigated. The technology is based on an amorphous selenium photoreceptor with a voltage-controlled avalanche multiplication gain. If this photoreceptor can provide sufficient internal gain, it will be useful for an extensive range of diagnostic imaging systems. Methods: The avalanche photoreceptor under investigation is referred to as HARP-DRL. This is a novel concept in which a high-gain avalanche rushing photoconductor (HARP) is integrated with a distributed resistance layer (DRL) and sandwiched between two electrodes. The avalanche gain and leakage current characteristics of this photoreceptor were measured. Results: HARP-DRL has been found to sustain very high electric field strengths without electrical breakdown. It has shown avalanche multiplication gains as high as 104 and a very low leakage current (≤20 pA∕mm2). Conclusions: This is the first experimental demonstration of a solid-state amorphous photoreceptor which provides sufficient internal avalanche gain for photon counting and photon starved imaging applications. PMID:20964217

  6. Mode-Selective Amplification in a Large Mode Area Yb-Doped Fiber Using a Photonic Lantern

    DTIC Science & Technology

    2016-05-15

    in a few mode, double- clad Yb-doped large mode area (LMA) fiber, utilizing an all-fiber photonic lantern. Amplification to multi-watt output power is...that could enable dynamic spatial mode control in high power fiber lasers . © 2016 Optical Society of America OCIS codes: (060.2320) Fiber optics...amplifiers and oscillators; (060.2340) Fiber optics components. http://dx.doi.org/10.1364/OL.41.002157 The impressive growth experienced by fiber lasers and

  7. Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate

    NASA Astrophysics Data System (ADS)

    Good, Brian

    2015-03-01

    Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the diffusion of oxygen and water vapor through these coatings is undesirable if high temperature corrosion is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated oxygen diffusion in Ytterbium Disilicate. Oxygen vacancy site energies and diffusion barrier energies are computed using Density Functional Theory. We find that many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small in the pure material, with the result that the material is unlikely to exhibit significant oxygen permeability.

  8. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, William F.; Payne, Stephen A.; Chase, Lloyd L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises Ytterbium doped apatite (Yb:Ca.sub.5 (PO.sub.4).sub.3 F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  9. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, W.F.; Payne, S.A.; Chase, L.L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca{sub 5}(PO{sub 4}){sub 3}F) or Yb:FAP, or ytterbium doped crystals structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  10. Optimization of anisotropic photonic density of states for Raman cooling of solids

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chung; Ghosh, Indronil; Schleife, André; Carney, P. Scott; Bahl, Gaurav

    2018-04-01

    Optical refrigeration of solids holds tremendous promise for applications in thermal management. It can be achieved through multiple mechanisms including inelastic anti-Stokes Brillouin and Raman scattering. However, engineering of these mechanisms remains relatively unexplored. The major challenge lies in the natural unfavorable imbalance in transition rates for Stokes and anti-Stokes scattering. We consider the influence of anisotropic photonic density of states on Raman scattering and derive expressions for cooling in such photonically anisotropic systems. We demonstrate optimization of the Raman cooling figure of merit considering all possible orientations for the material crystal and two example photonic crystals. We find that the anisotropic description of the photonic density of states and the optimization process is necessary to obtain the best Raman cooling efficiency for systems having lower symmetry. This general result applies to a wide array of other laser cooling methods in the presence of anisotropy.

  11. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  12. Strong coupling of a single electron in silicon to a microwave photon

    NASA Astrophysics Data System (ADS)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.

    2017-01-01

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.

  13. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-01

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique

  14. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging

    NASA Astrophysics Data System (ADS)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-01

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.

  15. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO{sub 2} lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golyshev, A A; Malikov, A G; Orishich, A M

    Processes of cutting stainless steel by ytterbium fibre and CO{sub 2} lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO{sub 2} laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO{sub 2} laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  16. Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Ye, Lihua; Wang, Yan; Feng, Yangyang; Liu, Bo; Gu, Bing; Cui, Yiping; Lu, Yanqing

    2018-03-01

    By changing the doping concentration of the chiral agent to adjust the relative position of the reflection band of cholesteric liquid crystals and the fluorescence emission spectrum of the dye, photonic band-edge and random lasing were observed, respectively. The reflection band of the cholesteric phase liquid crystal can also be controlled by adjusting the temperature: the reflection band is blue-shifted with increasing temperature, and a reversible switch from photonic band-edge to random lasing is obtained. Furthermore, the laser line width can be thermally adjusted from 1.1 nm (at 27 °C) to 4.6 nm (at 32.1 °C). A thermally tunable polarization state of a random laser from dual cells was observed, broadening the field of application liquid crystal random lasers.

  17. Ytterbium-porphyrins as a new class of the luminescent labels

    NASA Astrophysics Data System (ADS)

    Tsvirko, M.; Korovin, Yu; Rusakova, N.

    2007-08-01

    New complexes of ytterbium with asymmetric porphyrins containing substituents in β-positions and hydrophobic meso-(monophenyl-p-oxypropyl)triphenylporphyrin (OPP) were obtained and characterized by elemental analysis, IR, UV-Vis absorption and luminescence spectroscopy. Electronic absorption, luminescence and luminescence excitation spectra of these complexes were studied at 295 K in DMF solutions and in the water-lecithin medium. The 4f-luminescence of ytterbium-porphyrins in the near infrared (IR) spectral region (λmax = 980 nm) is observed under excitation in Soret band (400-430 nm). The effect of substituent in porphyrin macroring on the 4f-luminescent properties was also investigated. The conjugates of these compounds with protein molecules - bovine serum albumin (BSA) were investigated as well. These compounds are interesting at the initial stage of diagnostics of tumor tissues as IR-luminescent probes due to their spectral-luminescent characteristics and some biochemical properties.

  18. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  19. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  20. Design of elliptical-core mode-selective photonic lanterns with six modes for MIMO-free mode division multiplexing systems.

    PubMed

    Sai, Xiaowei; Li, Yan; Yang, Chen; Li, Wei; Qiu, Jifang; Hong, Xiaobin; Zuo, Yong; Guo, Hongxiang; Tong, Weijun; Wu, Jian

    2017-11-01

    Elliptical-core few mode fiber (EC-FMF) is used in a mode division multiplexing (MDM) transmission system to release multiple-input-multiple-output (MIMO) digital-signal-processing, which reduces the cost and the complexity of the receiver. However, EC-FMF does not match with conventional multiplexers/de-multiplexers (MUXs/DeMUXs) such as a photonic lantern, leading to extra mode coupling loss and crosstalk. We design elliptical-core mode-selective photonic lanterns (EC-MSPLs) with six modes, which can match well with EC-FMF in MIMO-free MDM systems. Simulation of the EC-MSPL using the beam propagation method was demonstrated employing a combination of either step-index or graded-index fibers with six different sizes of cores, and the taper transition length of 8 cm or 4 cm. Through numerical simulations and optimizations, both types of photonic lanterns can realize low loss transmission and low crosstalk of below -20.0  dB for all modes.

  1. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehud Greenspan

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  2. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.

    PubMed

    Man, Weining; Florescu, Marian; Matsuyama, Kazue; Yadak, Polin; Nahal, Geev; Hashemizad, Seyed; Williamson, Eric; Steinhardt, Paul; Torquato, Salvatore; Chaikin, Paul

    2013-08-26

    We report the first experimental demonstration of a TE-polarization photonic band gap (PBG) in a 2D isotropic hyperuniform disordered solid (HUDS) made of dielectric media with a dielectric index contrast of 1.6:1, very low for PBG formation. The solid is composed of a connected network of dielectric walls enclosing air-filled cells. Direct comparison with photonic crystals and quasicrystals permitted us to investigate band-gap properties as a function of increasing rotational isotropy. We present results from numerical simulations proving that the PBG observed experimentally for HUDS at low index contrast has zero density of states. The PBG is associated with the energy difference between complementary resonant modes above and below the gap, with the field predominantly concentrated in the air or in the dielectric. The intrinsic isotropy of HUDS may offer unprecedented flexibilities and freedom in applications (i. e. defect architecture design) not limited by crystalline symmetries.

  3. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    NASA Astrophysics Data System (ADS)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  4. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    NASA Astrophysics Data System (ADS)

    Robindro Singh, L.; Ningthoujam, R. S.; Sudarsan, V.; Srivastava, Iti; Dorendrajit Singh, S.; Dey, G. K.; Kulshreshtha, S. K.

    2008-02-01

    Nanoparticles of Eu3+ doped Y2O3 (core) and Eu3+ doped Y2O3 covered with Y2O3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 °C, followed by heating at 500 and 900 °C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 °C heated samples respectively. Based on the luminescence studies of 500 and 900 °C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu3+ environment in amorphous Y (OH)3 is different from that in crystalline Y2O3. For a fixed concentration of Eu3+ doping, there is a reduction in Eu3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu3+ increases with increase of crystallinity.

  5. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  6. Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties

    NASA Astrophysics Data System (ADS)

    Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong

    2017-09-01

    A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.

  7. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, W.F.; Payne, S.A.; Chase, L.L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  8. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, W.F.; Payne, S.A.; Chase, L.L.; Smith, L.K.

    1994-01-18

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  9. Nonlinear optical moiety-doped polymers with improved optical properties for photonic devices

    NASA Astrophysics Data System (ADS)

    Lee, Myung-Hyun; Kim, Hwan K.; Kim, Hye-Young; Lee, Hyuek J.; Kang, K. H.; Won, Yong Hyub; Jeon, Eunsuk S.; Wu, Jeong W.

    1994-05-01

    An electro-optic polymer guest-host system has been constructed and demonstrated. The polymer host is a polyimide (PIQ2200) and the guest chromophores are dimethyl (or diethyl) amino alkyl sulfone stilbenes. The alkylated-NLO moieties as guest chromophores have been modified, yielding new alkylated-NLO moieties. The higher content of alkylated-NLO moieties, compared to unmodified NLO moieties, was doped into a polyimide host system due to the improved solubility of new alkylated-NLO moieties. To the 40 wt%, the new alkylated- NLO moiety has been completely dissolved in the preliminary experiment, leading to the increase of refractive index by 0.0016. These polyimide-based guest-host systems exhibited a significant improvement in the thermal stability at high temperatures exceeding 250 degree(s)C. The electro-optic coefficient reported in the present study is 13 pm/V for the 40 wt% DASS-6- doped polymer system poled at the 135 V/micrometers . However, further increase up to 25 pm/V may easily be achieved by increasing the amount of guest moieties and/or the intensity of the poling field. This work presents new materials for photonic switching devices with low operating voltage.

  10. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

    NASA Astrophysics Data System (ADS)

    Zopf, Michael; Keil, Robert; Chen, Yan; HöFer, Bianca; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G.

    Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (< 1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum repeater - among many other key enabling quantum photonic elements - can be practically implemented with this new material. Financially supported by BMBF Q.Com-H (16KIS0106) and the Euro- pean Union Seventh Framework Programme 209 (FP7/2007-2013) under Grant Agreement No. 601126 210 (HANAS).

  11. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges.

    PubMed

    Xiao, Limin; Jin, Wei; Demokan, M S

    2007-01-15

    We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.

  12. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges

    NASA Astrophysics Data System (ADS)

    Xiao, Limin; Jin, Wei; Demokan, M. S.

    2007-01-01

    We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.

  13. Luminescence study of Eu3+ doped GdVO4 nanoparticles: Concentration, particle size, and core/shell effects

    NASA Astrophysics Data System (ADS)

    Singh, N. Shanta; Ningthoujam, R. S.; Devi, L. Romila; Yaiphaba, N.; Sudarsan, V.; Singh, S. Dorendrajit; Vatsa, R. K.; Tewari, R.

    2008-11-01

    Nanoparticles of GdVO4 doped with Eu3+ and core/shell of GdVO4:Eu3+/GdVO4 are prepared by urea hydrolysis method using ethylene glycol as capping agent as well as reaction medium at 130 °C. Unit cell volume increases when GdVO4 is doped with Eu3+ indicating the substitution of Gd3+ lattice sites by Eu3+. From luminescence study, it is confirmed that there is no particle size effect on emission positions of Eu3+. Optimum luminescence intensity is found to be in 5-10 at. % Eu3+. Above these concentrations, luminescence intensity decreases due to concentration quenching effect. There is an enhancement in luminescence intensity of core/shell nanoparticles. This has been attributed to the reduction in surface inhomogenities of Eu3+ surroundings by bonding to GdVO4 shell. The lifetime for D50 level increases with annealing and core/shell formation.

  14. Hollow-core photonic-crystal-fiber-based optical frequency references

    NASA Astrophysics Data System (ADS)

    Holá, Miroslava; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2016-12-01

    This research deals with preparation of an optical frequency references based on hollow-core photonic crystal fibers (HC-PCF). This fiber-based type of absorption cells represents a effiecient way how to replace classic bulky and fragile glass made tubes references with low-weight and low-volume optical fibers. This approach allows not only to increase possible interaction length between incident light and absorption media but it also carries a possibility of manufacturing of easy-operable reference which is set up just by plugging-in of optical connectors into the optical setup. We present the results of preparation, manufacturing and filling of a set of fiber-based cells intended for lasers frequency stabilization. The work deals with setting and optimalization of HC-PCF splicing processes, minimalization of optical losses between HC-PCF and SMF fiber transitions and finishing of HC-PCF spliced ends with special care for optimal closing of hollow-core structure needed for avoiding of absorption media leakage.

  15. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  16. Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime

    NASA Astrophysics Data System (ADS)

    Islam, Saiful; Islam, Mohammad Rakibul; Faisal, Mohammad; Arefin, Abu Sayeed Muhammad Shamsul; Rahman, Hasan; Sultana, Jakeya; Rana, Sohel

    2016-07-01

    A porous-core octagonal photonic crystal fiber (PC-OPCF) with ultralow effective material loss (EML), high core power fraction, and ultra flattened dispersion is proposed for terahertz (THz) wave propagation. At an operating frequency of 1 THz and core diameter of 345 μm, simulation results display an extremely low EML of 0.047 cm-1, 49.1% power transmission through core air holes, decreased confinement loss with the increase of frequency, and dispersion variation of 0.15 ps/THz/cm. In addition, the proposed PCF can successfully operate in single-mode condition. All the simulations are performed with finite-element modeling package, COMSOL v4.2. The design can be fabricated using a stacking and drilling method. Thus, the proposed fiber has the potential of being an effective transmission medium of broadband THz waves.

  17. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Xingang; Tan, Jiang; Wang, Qingfu; Wen, Hao; Zhang, Chuhong

    2017-02-01

    Nitrogen-doped graphene nanosheets (NGNS) are prepared by a novel mechanochemical method via all-solid-state ball-milling graphite with urea. The ball-milling process does not only successfully exfoliate the graphite into multi-layer (<10 layers) graphene nanosheets, but at the same time, enables the N element to be doped onto the graphene. Urea, acting as a new solid doping and assist-grinding agents, has the advantages of low cost and good water solubility that can simplify the fabrication process. The as-prepared NGNS are investigated in detail by XRD, SEM, HRTEM, TGA, XPS and Raman spectroscopy. The doping nitrogens are around 3.15% and dominated (>94%) by pyrindic-N and pyrrolic-N which facilitates the NGNS with enhanced electronic conductivity and Li-ion storage capability. For the first time, we demonstrate that the all-solid-state prepared NGNS exhibits, especially at high currents, enhanced cycling stability and rate capability as Lithium ion battery (LIB) anode active material when compared to pristine graphite and undoped graphene in half-cell configuration. The method presented in this article may provide a simple, clean, economical and scalable strategy for preparation of NGNS as a feasible and promising anode material for LIBs.

  18. Magnetically separable {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core-shell nanocomposites: Fabrication and visible-light-driven photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minqiang, E-mail: jbmwgkc@126.com; Li, Di; Jiang, Deli

    2012-08-15

    Novel visible-light-induced {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts capable of magnetic separation have been synthesized by a facile sol-gel and after-annealing process. The as-obtained core-shell nanocomposite is composed of a central {gamma}-Fe{sub 2}O{sub 3} core with a strong response to external fields, an interlayer of SiO{sub 2}, and an outer layer of Ce-doped TiO{sub 2} nanocrystals. UV-vis spectra analysis indicates that Ce doping in the compound results in a red-shift of the absorption edge, thus offering increased visible light absorption. We show that such a {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite with appreciated Ce doping amount exhibitsmore » much higher visible-light photocatalytic activity than bare TiO{sub 2} and undoped {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-TiO{sub 2} core-shell nanocomposite toward the degradation of rhodamine B (RhB). Moreover, the {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts could be easily separated and reused from the treated water under application of an external magnetic field. - Graphical abstract: Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core/shell nanocomposite photocatalysts with enhanced photocatalytic activity and fast magnetic separability were prepared. Highlights: Black-Right-Pointing-Pointer Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core/shell composite photocatalysts were prepared. Black-Right-Pointing-Pointer The resulting core/shell composite show high visible light photocatalytic activity. Black-Right-Pointing-Pointer The nanocomposite photocatalysts can be easily recycled with excellent durability.« less

  19. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber.

    PubMed

    Ming, Na; Tao, Shina; Yang, Wenqing; Chen, Qingyun; Sun, Ruyi; Wang, Chang; Wang, Shuyun; Man, Baoyuan; Zhang, Huanian

    2018-04-02

    Previously, PbS/CdS core/shell quantum dots with excellent optical properties have been widely used as light-harvesting materials in solar cell and biomarkers in bio-medicine. However, the nonlinear absorption characteristics of PbS/CdS core/shell quantum dots have been rarely investigated. In this work, PbS/CdS core/shell quantum dots were successfully employed as nonlinear saturable absorber (SA) for demonstrating a mode-locked Er-doped fiber laser. Based on a film-type SA, which was prepared by incorporating the quantum dots with the polyvinyl alcohol (PVA), mode-locked Er-doped operation with a pulse width of 54 ps and a maximum average output power of 2.71 mW at the repetition rate of 3.302 MHz was obtained. Our long-time stable results indicate that the CdS shell can effectively protect the PbS core from the effect of photo-oxidation and PbS/CdS core/shell quantum dots were efficient SA candidates for demonstrating pulse fiber lasers due to its tunable absorption peak and excellent saturable absorption properties.

  20. Yb-doped polarizing fiber

    NASA Astrophysics Data System (ADS)

    Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.

    2017-02-01

    An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.

  1. Strong coupling of a single electron in silicon to a microwave photon.

    PubMed

    Mi, X; Cady, J V; Zajac, D M; Deelman, P W; Petta, J R

    2017-01-13

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots. Copyright © 2017, American Association for the Advancement of Science.

  2. Multifunctional manganese-doped Prussian blue nanoparticles for two-photon photothermal therapy and magnetic resonance imaging.

    PubMed

    Ali, Lamiaa M A; Mathlouthi, Emna; Kajdan, Marilyn; Daurat, Morgane; Long, Jérôme; Sidi-Boulenouar, Rahima; Cardoso, Maïda; Goze-Bac, Christophe; Amdouni, Nourredine; Guari, Yannick; Larionova, Joulia; Gary-Bobo, Magali

    2018-06-01

    Here we demonstrate for the first time that Mn 2+ -doped Prussian blue nanoparticles of c.a. 70 nm act as effective agents for photothermal therapy under two-photon excitation with an almost total eradication of malignant cells (97 and 98%) at a concentration of 100 μg mL -1 24 h after NIR excitation. This effect combined with interesting longitudinal NMR relaxivity values offer new perspectives for effective imaging and cancer treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. On-demand generation of background-free single photons from a solid-state source

    NASA Astrophysics Data System (ADS)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  4. Manipulating transmission and reflection properties of a photonic crystal doped with quantum dot nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solookinejad, G.; Panahi, M.; Sangachin, E. A.

    The transmission and reflection properties of incident light in a defect dielectric structure is studied theoretically. The defect structure consists of donor and acceptor quantum dot nanostructures embedded in a photonic crystal. It is shown that the transmission and reflection properties of incident light can be controlled by adjusting the corresponding parameters of the system. The role of dipole–dipole interaction is considered as a new parameter in our calculations. It is noted that the features of transmission and reflection curves can be adjusted in the presence of dipole–dipole interaction. It is found that the absorption of weak probe light canmore » be converted to the probe amplification in the presence of dipole–dipole interaction. Moreover, the group velocity of transmitted and reflected probe light is discussed in detail in the absence and presence of dipole–dipole interaction. Our proposed model can be used as a new all-optical devices based on photonic materials doped with nanoparticles.« less

  5. Controlled spontaneous emission in erbium-doped microphotonic materials

    NASA Astrophysics Data System (ADS)

    Kalkman, Jeroen

    2005-03-01

    Erbium is a rare-earth metal that, when incorporated in a solid, can emit light at a wavelength of 1.5 μm. It plays a key role in current day telecommunication technology as the principle ingredient of optical fiber amplifiers. In this thesis the control of the Er spontaneous emission in three different types of microphotonic materials is described. Part I of this thesis focuses on the effect of a metallo-dielectric interface on the spontaneous emission of optical emitters in silica glass. It is shown that Er ions near a Ag interface can couple to surface plasmons (SPs) via a near-field interaction. By coupling SPs out into the far field, large changes in the Er photoluminescence emission distribution, spectra, and polarization can be observed. The excitation of SPs also results in an increase of the Er photoluminescence decay rate. The observed decay rates are in good agreement with calculations based on a classical dipole oscillator model. From the change in photoluminescence decay rate of Si nanocrystals near a Ag interface it is shown that Si nanocrystals can efficiently excite SPs and have an internal quantum efficiency of 77 %. Part II focuses on the effect of a microcavity on the spontaneous emission of Er and describes how ion implantation can be used to dope dielectric microresonators with optically active Er ions. The fabrication and characterization of an Er ion-implanted silica microsphere resonator is described that shows lasing at 1.5 μm when pumped above its lasing threshold. Ion implantation is also used to dope toroidal microcavities on a Si chip with Er. The microtoroids are doped by either pre-implantation into the SiO2 base material, or by post-implantation in a fully fabricated microtoroid. The optical activation of Er ions in the microtoroid is investigated and Er lasing at 1.5 μm is observed for both types of microcavities with the lowest threshold (4.5 μW) for the pre-implanted microtoroids. Part III describes the fabrication of an Er-doped

  6. Solid charged-core model of ball lightning

    NASA Astrophysics Data System (ADS)

    Muldrew, D. B.

    2010-01-01

    In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon - a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  7. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    PubMed Central

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-01-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role. PMID:27804981

  8. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    NASA Astrophysics Data System (ADS)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  9. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

    DOE PAGES

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.; ...

    2015-12-09

    A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moietiesmore » during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.« less

  10. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.

    A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moietiesmore » during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.« less

  11. First-principles prediction of Si-doped Fe carbide as one of the possible constituents of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Das, Tilak; Chatterjee, Swastika; Ghosh, Sujoy; Saha-Dasgupta, Tanusri

    2017-09-01

    We perform a computational study based on first-principles calculations to investigate the relative stability and elastic properties of the doped and undoped Fe carbide compounds at 200-364 GPa. We find that upon doping a few weight percent of Si impurities at the carbon sites in Fe7C3 carbide phases, the values of Poisson's ratio and density increase while VP, and VS decrease compared to their undoped counterparts. This leads to marked improvement in the agreement of seismic parameters such as P wave and S wave velocity, Poisson's ratio, and density with the Preliminary Reference Earth Model (PREM) data. The agreement with PREM data is found to be better for the orthorhombic phase of iron carbide (o-Fe7C3) compared to hexagonal phase (h-Fe7C3). Our theoretical analysis indicates that Fe carbide containing Si impurities can be a possible constituent of the Earth's inner core. Since the density of undoped Fe7C3 is low compared to that of inner core, as discussed in a recent theoretical study, our proposal of Si-doped Fe7C3 can provide an alternative solution as an important component of the Earth's inner core.

  12. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of

  13. Optoelectronic oscillator incorporating hollow-core photonic bandgap fiber.

    PubMed

    Mutugala, U S; Kim, J; Bradley, T D; Wheeler, N V; Sandoghchi, S R; Hayes, J R; Numkam Fokoua, E; Poletti, F; Petrovich, M N; Richardson, D J; Slavík, R

    2017-07-01

    We demonstrate, to the best of our knowledge, the first optoelectronic oscillator that uses hollow-core photonic bandgap fiber (HC-PBGF) as a delay element of a sufficient length to allow for low-noise operation. We show experimentally that HC-PBGF can improve the temperature stability of the oscillator by a factor of more than 15, as compared to standard optical fiber. We also measured the oscillator's phase noise, allowing evaluation of the suitability of HC-PBGF for this application. Additionally, this Letter also provides, to the best of our knowledge, the first characterization of the temperature stability of a long length (>800  m in our Letter) of low-thermal sensitivity (2  ps/km/K) HC-PBGF wound on a spool.

  14. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃.

    PubMed

    Dou, Zhiyuan; Song, Yanrong; Tian, Jinrong; Liu, Jinghui; Yu, Zhenhua; Fang, Xiaohui

    2014-10-06

    We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be removed, thus the heat deposition was relieved and damage threshold could be improved. The modulation depth of the Bi₂Se₃ film was measured to be 5.2%. When we used the Bi₂Se₃ film in the Yb-doped fiber laser, the mode locked pulses with pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz were obtained. The maximum average output power was 33.7 mW. When the pump power exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse regime can be realized. This contribution indicates that Bi₂Se₃ has an attractive optoelectronic property at 1μm waveband.

  15. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  16. Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers.

    PubMed

    Im, Song-Jin; Husakou, Anton; Herrmann, Joachim

    2009-07-20

    Dispersion properties, loss and optimum design of kagome lattice hollow-core photonic crystal fibers filled with argon are studied for the purpose of possible applications in ultrafast nonlinear optics. As will be shown numerically and by using an approximate analytical formula these fibers exhibit anomalous dispersion for visible or UV wavelengths both for a 1-cell-core as well for a 3-ring-core which can be controlled by the gas pressure and do not suffer from high loss. It is shown that while the loss is mainly influenced by the strut thickness of the kagome lattice the group velocity dispersion is almost independently controlled by the core size. These results demonstrate that kagome lattice hollow fibers have a promising potential in ultrashort pulse delivering of high-energy pulses and in several interesting applications in ultrafast nonlinear optics.

  17. Collision-induced stimulated photon echoes in ‘strong’ magnetic field

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2018-05-01

    Collision-induced stimulated photon echoes formed in a gaseous medium on the transition with the angular momentum change Ja=0 → Jb=1 under the action of ‘strong’ longitudinal magnetic field, when the echo pulse becomes unpolarized, are considered with an account of elastic depolarizing collisions. In the case of narrow spectral line the explicit expressions for the echo polarization density matrix and the degree of polarization are obtained. In the case of broad spectral line the results of the numeric calculations reproduce qualitatively the curve obtained in the experiments with ytterbium vapor.

  18. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, Stephen A.; Kway, Wayne L.; DeLoach, Laura D.; Krupke, William F.; Chai, Bruce H. T.

    1994-01-01

    Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

  19. Characterization of bubble core and cloudiness in Yb3+:Sr5(PO4)3F crystals using Micro-Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Y; Roy, U N; Bai, L

    Ytterbium doped strontium fluoroapatite Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb: S-FAP) crystals have been used in High Average Power Laser systems as gain medium. Growth induced defects associated with the crystal often affect their performance. In order to improve the crystal quality and its optical applications, it is imperative to understand the nature of these defects. In this study, we utilize Micro-Raman spectroscopy to characterize two common growth-induced defects: bubble core and cloudiness. We find the bubble core consist of voids and microcrystals of Yb: S-FAP. These microcrystals have very different orientation from that of the pure crystal outside themore » bubble core. In contrast to a previous report, neither Sr{sub 3}(PO{sub 4}){sub 2} nor Yb{sub 2}O{sub 3} are observed in the bubble core regions. On the other hand, the cloudy regions are made up of the host materials blended with a structural deformation along with impurities which include CaCO{sub 3}, YbPO{sub 4}, SrHPO{sub 4} and Sr{sub 2}P{sub 2}O{sub 7}. The impurities are randomly distributed in the cloudy regions. This analysis is necessary for understanding and eliminating these growth defects in Yb:S-FAP crystals.« less

  20. Dynamic fiber delivery of 3 W 160 fs pulses with photonic crystal hollow core fiber patchcord

    NASA Astrophysics Data System (ADS)

    Resan, Bojan; Auchli, Raffael; Holtz, Ronald

    2017-02-01

    We report output characteristics from the FC/APC connectorized photonics crystal hollow core fiber when is subjected to coiling down to 50 mm radius, bending, torsion etc. We achieved coupling efficiency up to 75%, output average power 2 W and 24 nJ pulse energy. With proper coupling the depolarization could be as low as 7%. Torsion of the photonic crystal patchcord destroys the polarization and other pulse properties.

  1. Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang

    2013-10-01

    Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance. Electronic supplementary information (ESI) available: Experimental details, XRD pattern, FT-IR absorption spectrum and CV curves of TiO2@PPy NWs, and SEM images of the PPy. See DOI: 10.1039/c3nr03578f

  2. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    PubMed

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  3. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  4. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    NASA Astrophysics Data System (ADS)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-03-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  5. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    NASA Astrophysics Data System (ADS)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-06-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  6. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

    NASA Astrophysics Data System (ADS)

    Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua

    2018-01-01

    A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

  7. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Savio, R.; Galli, M.; Liscidini, M.

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54 μm, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission inmore » a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.« less

  8. Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications.

    PubMed

    Park, Jiyoung; Kang, Doo-Eui; Paulson, Bjorn; Nazari, Tavakol; Oh, Kyunghwan

    2014-07-14

    A defectless hexagonal air-silica photonic crystal fiber (PCF) structure with its central hole selectively filled by a low-refractive-index liquid is numerically analyzed. Despite the fact that the refractive index of the liquid is significantly lower than that of silica, we found an optimal range of waveguide parameters to ensure light guidance through the liquid core in the fundamental mode, maximizing the light-liquid interaction over a desired wavelength range. Using the vectorial finite element method (FEM), we report detailed parametric studies in terms of the effective index, chromatic dispersion, optical loss, and modal intensity distribution of the liquid core PCFs.

  9. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    PubMed

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  10. A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.

    2016-07-12

    Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less

  11. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions.

    PubMed

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-28

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.

  12. All-optical switch based on doped graphene quantum dots in a defect layer of a one-dimensional photonic crystal.

    PubMed

    Sahrai, Mostafa; Abbasabadi, Majid

    2018-01-20

    We discuss the light pulse propagation in a one-dimensional photonic crystal doped by graphene quantum dots in a defect layer. The graphene quantum dots behave as a three-level quantum system and are driven by three coherent laser fields. It is shown that the group velocity of the transmitted and reflected pulses can be switched from subluminal to superluminal light propagation by adjusting the relative phase of the applied fields. Furthermore, it is found that by proper choice of the phase difference between applied fields, the weak probe field amplification is achieved through a one-dimensional photonic crystal. In this way, the result is simultaneous subluminal transmission and reflection.

  13. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  14. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  15. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    NASA Astrophysics Data System (ADS)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  16. High energy, single-polarized, single-transverse-mode, nanosecond pulses generated by a multi-stage Yb-doped photonic crystal fiber amplifier

    NASA Astrophysics Data System (ADS)

    Shen, Xinglai; Zhang, Haitao; Hao, He; Li, Dan; Li, Qinghua; Yan, Ping; Gong, Mali

    2015-06-01

    We report the construction of a cascaded fiber amplifier where a 40-μm-core-diameter photonic crystal fiber is utilized in the main amplifier stage. Single-transverse-mode, linearly-polarized, 7.5 ns pulses with 1.5 mJ energy, 123 kW peak power and 10 nm spectral bandwidth centered at 1062 nm are generated. To our knowledge, the pulse energy we obtain is the highest from 40-μm-core-diameter photonic crystal fibers, and also the highest for long pulses (>1 ns) with linear polarization and single transverse mode.

  17. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations

  18. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  19. Elastic and plastic buckling of simply supported solid-core sandwich plates in compression

    NASA Technical Reports Server (NTRS)

    Seide, Paul; Stowell, Elbridge Z

    1950-01-01

    A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.

  20. Highly birefringent elliptical core photonic crystal fiber for terahertz application

    NASA Astrophysics Data System (ADS)

    Sultana, Jakeya; Islam, Md. Saiful; Faisal, Mohammad; Islam, Mohammad Rakibul; Ng, Brian W.-H.; Ebendorff-Heidepriem, Heike; Abbott, Derek

    2018-01-01

    We present a novel strategy for designing a highly birefringent photonic crystal fiber (PCF) with near zero flattened dispersion properties by applying elliptical air holes in the core area. The elliptical structure of the air holes in the porous-core region introduces asymmetry between x and y polarization modes, which consequently offers ultra-high birefringence. Also the compact geometry of the conventional hexagonal structure in the cladding confines most of the useful power. The optical properties including birefringence, dispersion, confinement loss, effective material loss (EML) and single modeness of the fiber are investigated using a full-vector finite element method. Simulation results show an ultra-high birefringence of 0 . 086 ultra-flattened near zero dispersion of 0 . 53 ± 0 . 07 ps/THz/cm in a broad frequency range. The practical implementation of the proposed fiber is feasible using existing fabrication technology and is applicable to the areas of terahertz sensing and polarization maintaining systems.

  1. More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing.

    PubMed

    Chen, Z; Xiong, C; Xiao, L M; Wadsworth, W J; Birks, T A

    2009-07-15

    We have formed low-loss fusion splices from highly nonlinear (HNL) photonic crystal fibers (PCFs) with small cores and high air-filling fractions to fibers with much larger mode field diameters (MFDs). The PCF core was locally enlarged by the controlled collapse of holes around the core while keeping other holes open. The fiber was then cleaved at the enlarged core and spliced to the large MFD fiber with a conventional electric arc fusion splicer. Splice losses as low as 0.36 dB were achieved between a PCF and a standard single-mode fiber (SMF) with MFDs of 1.8 microm and 5.9 microm, respectively.

  2. Erbium-doped zinc-oxide waveguide amplifiers for hybrid photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    O'Neal, Lawrence; Anthony, Deion; Bonner, Carl; Geddis, Demetris

    2016-02-01

    CMOS logic circuits have entered the sub-100nm regime, and research is on-going to investigate the quantum effects that are apparent at this dimension. To avoid some of the constraints imposed by fabrication, entropy, energy, and interference considerations for nano-scale devices, many have begun designing hybrid and/or photonic integrated circuits. These circuits consist of transistors, light emitters, photodetectors, and electrical and optical waveguides. As attenuation is a limiting factor in any communications system, it is advantageous to integrate a signal amplifier. There are numerous examples of electrical amplifiers, but in order to take advantage of the benefits provided by optically integrated systems, optical amplifiers are necessary. The erbium doped fiber amplifier is an example of an optical amplifier which is commercially available now, but the distance between the amplifier and the device benefitting from amplification can be decreased and provide greater functionality by providing local, on-chip amplification. Zinc oxide is an attractive material due to its electrical and optical properties. Its wide bandgap (≍3.4 eV) and high refractive index (≍2) make it an excellent choice for integrated optics systems. Moreover, erbium doped zinc oxide (Er:ZnO) is a suitable candidate for optical waveguide amplifiers because of its compatibility with semiconductor processing technology, 1.54 μm luminescence, transparency, low resistivity, and amplification characteristics. This research presents the characterization of radio frequency magnetron sputtered Er:ZnO, the design and fabrication of integrated waveguide amplifiers, and device analysis.

  3. X-ray Excitation Triggers Ytterbium Anomalous Emission in CaF2:Yb but Not in SrF2:Yb.

    PubMed

    Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A; Seijo, Luis; Barandiarán, Zoila

    2017-03-16

    Materials that luminesce after excitation with ionizing radiation are extensively applied in physics, medicine, security, and industry. Lanthanide dopants are known to trigger crystal scintillation through their fast d-f emissions; the same is true for other important applications as lasers or phosphors for lighting. However, this ability can be seriously compromised by unwanted anomalous emissions often found with the most common lanthanide activators. We report high-resolution X-ray-excited optical (IR to UV) luminescence spectra of CaF 2 :Yb and SrF 2 :Yb samples excited at 8949 eV and 80 K. Ionizing radiation excites the known anomalous emission of ytterbium in the CaF 2 host but not in the SrF 2 host. Wave function-based ab initio calculations of host-to-dopant electron transfer and Yb 2+ /Yb 3+ intervalence charge transfer explain the difference. The model also explains the lack of anomalous emission in Yb-doped SrF 2 excited by VUV radiation.

  4. Multipurpose silicon photonics signal processor core.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José

    2017-09-21

    Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

  5. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  6. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, J.E.

    1985-05-20

    Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  7. High numerical aperture large-core photonic crystal fiber for a broadband infrared transmission

    NASA Astrophysics Data System (ADS)

    Pniewski, J.; Stepniewski, G.; Kasztelanic, R.; Siwicki, B.; Pierscinska, D.; Pierscinski, K.; Pysz, D.; Borzycki, K.; Stepien, R.; Bugajski, M.; Buczynski, R.

    2016-11-01

    In this paper we present a large mode area photonic crystal fiber made of the heavy metal oxide glass CS-740, dedicated for a broadband light guidance in the visible, near- and mid-infrared regions of wavelengths from 0.4 to 4.7 μm. The fiber is effectively multi-mode in the considered wavelength range. It is composed of a ring of air-holes surrounding the core, with a high linear filling factor of 0.97. The fiber was made using a standard stack-and-draw technique. Each hole has a size of approx. 2.5 × 3.0 μm and diameter of core is 80 μm. Fiber attenuation is below 3 dB/m in the 0.9-1.7 μm wavelength range, while at 4.4 μm (mid-IR) it is approx. 5 dB/cm. Bending loss at the 1.55 μm wavelength is 0.45 dB per loop of 8 mm radius. Fiber numerical aperture is 0.53 at 1.55 μm. The effective mode area of the fundamental mode is approx. 2400 μm2 in the wavelength range of 0.8-1.7 μm. We present a proof-of-concept demonstration that our large core photonic crystal fiber is able to efficiently collect light directly from a mid-IR quantum cascade laser without use of additional optics and can be used for pigtailing mid-IR sources and detectors.

  8. Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: The case of n -doped SnO2

    NASA Astrophysics Data System (ADS)

    Borgatti, Francesco; Berger, J. A.; Céolin, Denis; Zhou, Jianqiang Sky; Kas, Joshua J.; Guzzo, Matteo; McConville, C. F.; Offi, Francesco; Panaccione, Giancarlo; Regoutz, Anna; Payne, David J.; Rueff, Jean-Pascal; Bierwagen, Oliver; White, Mark E.; Speck, James S.; Gatti, Matteo; Egdell, Russell G.

    2018-04-01

    The longstanding problem of interpretation of satellite structures in core-level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO2. Comparison of ab initio many-body calculations with experimental hard x-ray photoemission spectra of the Sn 4 d states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core-level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.

  9. Methodology of splicing large air filling factor suspended core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Jaroszewicz, L. R.; Murawski, M.; Nasilowski, T.; Stasiewicz, K.; Marć, P.; Szymański, M.; Mergo, P.

    2011-06-01

    We report the methodology of effective low-loss fusion splicing a photonic crystal fibre (PCF) to itself as well as to a standard single mode fibre (SMF). Distinctly from other papers in this area, we report on the results for splicing suspended core (SC) PCF having tiny core and non-Gaussian shape of guided beam. We show that studied splices exhibit transmission losses strongly dispersive and non-reciprocal in view of light propagation direction. Achieved splicing losses, defined as larger decrease in transmitted optical power comparing both propagation directions, are equal to 2.71 ±0.25 dB, 1.55 ±0.25 dB at 1550 nm for fibre SC PCF spliced to itself and to SMF, respectively.

  10. Optical properties of pure and PbSe doped TiS2 nanodiscs

    NASA Astrophysics Data System (ADS)

    Parvaz, M.; Islamuddin; Khan, Zishan H.

    2018-06-01

    Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.

  11. Efficient, high-power, and radially polarized fiber laser

    PubMed Central

    Lin, Di; Xia, Kegui; Li, Jianlang; Li, Ruxin; Ueda, Ken-ichi; Li, Guoqiang; Li, Xiaojun

    2017-01-01

    We demonstrate an ytterbium-doped fiber laser that emits high-power radially polarized light efficiently. In this study, a photonic crystal grating (PCG) was used as a polarization-selective output coupler, and the power of the radially polarized laser reached 2.42 W with a slope efficiency of 45.9% and a polarization purity of 96%. The results reveal that the inclusion of the PCG mirror into the fiber laser are particularly promising for generating high-power radially polarized light efficiently in view of its many important applications. PMID:20596223

  12. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids.

    PubMed

    Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2018-05-11

    In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  13. Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting.

    PubMed

    Monguzzi, Angelo; Oertel, Amadeus; Braga, Daniele; Riedinger, Andreas; Kim, David K; Knüsel, Philippe N; Bianchi, Alberto; Mauri, Michele; Simonutti, Roberto; Norris, David J; Meinardi, Francesco

    2017-11-22

    Upconversion is a photon-management process especially suited to water-splitting cells that exploit wide-bandgap photocatalysts. Currently, such catalysts cannot utilize 95% of the available solar photons. We demonstrate here that the energy-conversion yield for a standard photocatalytic water-splitting device can be enhanced under solar irradiance by using a low-power upconversion system that recovers part of the unutilized incident sub-bandgap photons. The upconverter is based on a sensitized triplet-triplet annihilation mechanism (sTTA-UC) obtained in a dye-doped elastomer and boosted by a fluorescent nanocrystal/polymer composite that allows for broadband light harvesting. The complementary and tailored optical properties of these materials enable efficient upconversion at subsolar irradiance, allowing the realization of the first prototype water-splitting cell assisted by solid-state upconversion. In our proof-of concept device the increase of the performance is 3.5%, which grows to 6.3% if concentrated sunlight (10 sun) is used. Our experiments show how the sTTA-UC materials can be successfully implemented in technologically relevant devices while matching the strict requirements of clean-energy production.

  14. Silicon-Chip-Based Optical Frequency Combs

    DTIC Science & Technology

    2015-10-26

    waveform generation, frequency metrology, and astronomical spectrograph calibration [2,3,4]. Traditionally, modelocked solid-state and fiber lasers have...different external-cavity diode lasers covering a total tuning range between 1450 nm and 1640 nm. Lensed fibers are used to couple into and out of the...cavity resonance of a Si3N4 microring resonator with a single-frequency tunable diode laser amplified by a ytterbium-doped fiber amplifier. We use a

  15. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    PubMed

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Shirakawa, Akira; Tanisho, Motoyuki; Ueda, Ken-Ichi

    2006-12-01

    Structural birefringent properties of a hollow-core photonic-bandgap fiber were carefully investigated and applied to all-fiber chirped-pulse amplification as a compressor. The group birefringence of as high as 6.9×10-4 and the dispersion splitting by as large as 149 ps/nm/km between the two principal polarization modes were observed at 1557 nm. By launching the amplifier output to one of the polarization modes a 17-dB polarization extinction ratio was obtained without any pulse degradation originating from polarization-mode dispersion. A hybrid fiber stretcher effectively compensates the peculiar dispersion of the photonic-bandgap fiber and pedestal-free 440-fs pulses with a 1-W average power and 21-nJ pulse energy were obtained. Polarization-maintaining fiber-pigtail output of high-power femtosecond pulses is useful for various applications.

  17. Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors.

    PubMed

    Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang

    2013-11-21

    Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.

  18. A theoretical investigation of soliton induced supercontinuum generation in liquid core photonic crystal fiber and dual core optical fiber

    NASA Astrophysics Data System (ADS)

    Porsezian, K.; Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Ganapathy, R.

    2013-07-01

    The supercontinuum generation (SCG) in liquid core photonic crystal fiber (LCPCF) with versatile nonlinear response and the spectral broadening in dual core optical fiber is presented. The analysis is presented in two phase, phase I deals with the SCG in LCPCF with the effect of saturable nonlinearity and re-orientational nonlinearity. We identify and discuss the generic nature of the saturable nonlinearity and reorientational nonlinearity in the SCG, using suitable model. For the physical explanation, modulational instability and soliton fission techniques is implemented to investigate the impact of saturable nonlinear response and slow nonlinear response, respectively. It is observed that the saturable nonlinearity inevitably suppresses the MI and the subsequent SCG. On the other hand, the re-orientational nonlinearity contributes to the slow nonlinear response in addition to the conventional fast response due to the electronic contribution. The phase II features the exclusive investigation of the spectral broadening in the dual core optical fiber.

  19. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  20. Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2015-01-01

    Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.

  1. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  2. A review on single photon sources in silicon carbide.

    PubMed

    Lohrmann, A; Johnson, B C; McCallum, J C; Castelletto, S

    2017-03-01

    This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

  3. Extremely small-core photonic crystal fiber fusion splicing with a single-mode fiber

    NASA Astrophysics Data System (ADS)

    Tiburcio, Bruno D.; Fernandes, Gil M.; Pinto, Armando N.

    2013-11-01

    We present a low-loss fusion splicing of a non-linear photonic-crystal fiber (NL-PCF) with a single-mode fiber (SMF), helped by an intermediate fiber, using a electric-arc splicer. We also analysed the splice loss between SMF and intermediate fiber, as a function of the electrical discharge duration, to achieve a low-loss transition between SMF and intermediate fiber, through a thermally expanded core splice (TEC). The NL-PCF has a external cladding diameter of 105 μm, a core diameter of 1.7 μm and mode-field diameter (MFD) of 1.5 μm. We also performed mechanical strength tests to verify the robustness of the splice joints obtained.

  4. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    PubMed

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  5. Beyond-Born-Oppenheimer effects in sub-kHz-precision photoassociation spectroscopy of ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Borkowski, Mateusz; Buchachenko, Alexei A.; Ciuryło, Roman; Julienne, Paul S.; Yamada, Hirotaka; Kikuchi, Yuu; Takahashi, Kakeru; Takasu, Yosuke; Takahashi, Yoshiro

    2017-12-01

    We present high-resolution two-color photoassociation spectroscopy of Bose-Einstein condensates of ytterbium atoms. The use of narrow Raman resonances and careful examination of systematic shifts enabled us to measure 13 bound-state energies for three isotopologues of the ground-state ytterbium molecule with standard uncertainties of the order of 500 Hz. The atomic interactions are modeled using an ab initio based mass-scaled Born-Oppenheimer potential whose long-range van der Waals parameters and total WKB phase are fitted to experimental data. We find that the quality of the fit of this model, of about 112.9 kHz (rms) can be significantly improved by adding the recently calculated beyond-Born-Oppenheimer (BBO) adiabatic corrections [J. J. Lutz and J. M. Hutson, J. Mol. Spectrosc. 330, 43 (2016), 10.1016/j.jms.2016.08.007] and by partially treating the nonadiabatic effects using distance-dependent reduced masses. Our BBO interaction model represents the experimental data to within about 30.2 kHz on average, which is 3.7 times better than the "reference" Born-Oppenheimer model. We calculate the s -wave scattering lengths for bosonic isotopic pairs of ytterbium atoms with error bars over two orders of magnitude smaller than previous determinations. For example, the s -wave scattering length for 174Yb is +5.55812 (50 ) nm.

  6. Laser ablation of dental tissues with picosecond pulses of 1.06-microm radiation transmitted through a hollow-core photonic-crystal fiber.

    PubMed

    Konorov, Stanislav O; Mitrokhin, Vladimir P; Fedotov, Andrei B; Sidorov-Biryukov, Dmitrii A; Beloglazov, Valentin I; Skibina, Nina B; Shcherbakov, Andrei V; Wintner, Ernst; Scalora, Michael; Zheltikov, Aleksei M

    2004-04-10

    Sequences of picosecond pulses of 1.06-microm Nd:YAG laser radiation with a total energy of approximately 2 mJ are transmitted through a hollow-core photonic-crystal fiber with a core diameter of approximately 14 microm and are focused onto a tooth's surface in vitro to ablate dental tissue. The hollow-core photonic-crystal fiber is shown to support the single-fundamental-mode regime for 1.06-microm laser radiation, serving as a spatial filter and allowing the laser beam's quality to be substantially improved. The same fiber is used to transmit emission from plasmas produced by laser pulses onto the tooth's surface in the backward direction for detection and optical diagnostics.

  7. Combustion of metal agglomerates in a solid rocket core flow

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  8. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes

    PubMed Central

    Fattah, N. F. A.; Ng, H. M.; Mahipal, Y. K.; Numan, Arshid; Ramesh, S.; Ramesh, K.

    2016-01-01

    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application. PMID:28773573

  9. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes.

    PubMed

    Fattah, N F A; Ng, H M; Mahipal, Y K; Numan, Arshid; Ramesh, S; Ramesh, K

    2016-06-06

    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge-discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g -1 , which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.

  10. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  11. Density of photon states in dye-doped chiral nematic liquid crystal cells in the presence of losses and gain.

    PubMed

    Mavrogordatos, Th K; Morris, S M; Castles, F; Hands, P J W; Ford, A D; Coles, H J; Wilkinson, T D

    2012-07-01

    We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures.

  12. Analysis of photonic band gap in novel piezoelectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  13. Ligand-core NLO-phores: a combined experimental and theoretical approach to the two-photon absorption and two-photon excited emission properties of small-ligated silver nanoclusters.

    PubMed

    Russier-Antoine, Isabelle; Bertorelle, Franck; Calin, Nathalie; Sanader, Željka; Krstić, Marjan; Comby-Zerbino, Clothilde; Dugourd, Philippe; Brevet, Pierre-François; Bonačić-Koutecký, Vlasta; Antoine, Rodolphe

    2017-01-19

    We report a combined experimental and theoretical study of the two-photon absorption and excited emission properties of monodisperse ligand stabilized Ag 11 , Ag 15 and Ag 31 nanoclusters in aqueous solutions. The nanoclusters were synthesized using a cyclic reduction under oxidative conditions and separated by vertical gel electrophoresis. The two-photon absorption cross-sections of these protected noble metal nanoclusters measured within the biologically attractive 750-900 nm window are several orders of magnitude larger than that reported for commercially available standard organic dyes. The two-photon excited fluorescence spectra are also presented for excitation wavelengths within the same excitation spectral window. They exhibit size-tunability. Because the fundamental photophysical mechanisms underlying these multiphoton processes in ligand protected clusters with only a few metal atoms are not fully understood yet, a theoretical model is proposed to identify the key driving elements. Elements that regulate the dipole moments and the nonlinear optical properties are the nanocluster size, its structure and the charge distribution on both the metal core and the bound ligands. We coined this new class of NLO materials as "Ligand-Core" NLO-phores.

  14. Structural and electrical properties of trimethylboron-doped silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, K.-K.; Pan Ling; Bogart, Timothy E.

    2004-10-11

    Trimethylboron (TMB) was investigated as a p-type dopant source for the vapor-liquid-solid growth of boron-doped silicon nanowires (SiNWs). The boron concentration in the nanowires was measured using secondary ion mass spectrometry and results were compared for boron-doping using TMB and diborane (B{sub 2}H{sub 6}) sources. Boron concentrations ranging from 1x10{sup 18} to 4x10{sup 19} cm{sup -3} were obtained by varying the inlet dopant/SiH{sub 4} gas ratio. TEM characterization revealed that the B{sub 2}H{sub 6}-doped SiNWs consisted of a crystalline core with a thick amorphous Si coating, while the TMB-doped SiNWs were predominantly single crystal even at high boron concentrations. Themore » difference in structural properties was attributed to the higher thermal stability and reduced reactivity of TMB compared to B{sub 2}H{sub 6}. Four-point resistivity and gate-dependent conductance measurements were used to confirm p-type conductivity in the TMB-doped nanowires and to investigate the effect of dopant concentration on nanowire resistivity.« less

  15. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    deviation from circular fiber outer shape may be an effective method to mitigate HOM loss reduction from coherent reflection from fiber outer boundary. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. We will show that all-solid photonic bandgap fibers with effective mode area of 920microm2 can be made with excellent higher order mode suppression. We then demonstrate a 50microm-core-diameter Yb-doped all-solid photonic bandgap fiber laser. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. It is well known that incorporation of additional smaller cores in the cladding can be used to resonantly out-couple higher-order modes from a main core to suppress higher-order-mode propagation in the main core. Using a novel design with multiple coupled smaller cores in the cladding, we further scaled up the mode area and have successfully demonstrated a single-mode photonic bandgap fiber with record effective mode area of 2650microm2. Detailed numeric studies have been conducted for multiple cladding designs. For the optimal designs, the simulated minimum higher-order-mode losses are well over two orders of magnitudes higher than that of fundamental mode when expressed in dBs. We have also experimentally validated one of the designs. M 2<1.08 across the transmission band was demonstrated. Lowering quantum defect heating is another approach to mitigate mode instability. Highly-efficient high-power fiber lasers operating at wavelength below 1020nm are critical for tandem-pumping in >10kW fiber lasers to provide high pump

  16. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, David; Lowell, David; Mao, Michelle

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  17. Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Order

    PubMed Central

    2017-01-01

    Molecular p-doping of the conjugated polymer poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is a widely studied model system. Underlying structure–property relationships are poorly understood because processing and doping are often carried out simultaneously. Here, we exploit doping from the vapor phase, which allows us to disentangle the influence of processing and doping. Through this approach, we are able to establish how the electrical conductivity varies with regard to a series of predefined structural parameters. We demonstrate that improving the degree of solid-state order, which we control through the choice of processing solvent and regioregularity, strongly increases the electrical conductivity. As a result, we achieve a value of up to 12.7 S cm–1 for P3HT:F4TCNQ. We determine the F4TCNQ anion concentration and find that the number of (bound + mobile) charge carriers of about 10–4 mol cm–3 is not influenced by the degree of solid-state order. Thus, the observed increase in electrical conductivity by almost 2 orders of magnitude can be attributed to an increase in charge-carrier mobility to more than 10–1 cm2 V–1 s–1. Surprisingly, in contrast to charge transport in undoped P3HT, we find that the molecular weight of the polymer does not strongly influence the electrical conductivity, which highlights the need for studies that elucidate structure–property relationships of strongly doped conjugated polymers. PMID:29093606

  18. Diode-pumped ytterbium-doped Sr{sub 5}(PO{sub 4}){sub 3}F laser performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Smith, L.K.; Beach, R.J.

    The performance of the first diode-pumped Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sup 3}F (Yb:S-FAP) solid-state laser is discussed. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. The saturation fluence for diode pumping was deduced to be 5.5 J/cm{sup 2} for the particular 2.8 kW peak power diode array utilized in the studies. This is 2.5{times} higher than the intrinsic 2.2 J/cm{sup 2} saturation fluence as is attributed to the 6.5 nm bandwidth of the diode pump array. The small signal gain is consistent with the previously measuredmore » emission cross section of 6.0 {times} 10{sup {minus}20} cm{sup 2}, obtained from a narrowband-laser pumped gain experiment. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. In a free running configuration, diode-pumped slope efficiencies up to 43% (laser output energy/absorbed pump energy) were observed with output energies up to {approximately}0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {micro}s pulses.« less

  19. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids

    NASA Astrophysics Data System (ADS)

    Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.

    2018-05-01

    In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the Y89 3 + nuclear spins through their superhyperfine coupling with the Er3 + electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y3 + nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  20. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.

    PubMed

    Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut

    2015-09-15

    We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers.

  1. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg.

    PubMed

    Alajerami, Y S M; Hashim, S; Ramli, A T; Saleh, M A; Saripan, M I; Alzimami, K; Min Ung, Ngie

    2013-08-01

    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Intrinsic cavity QED and emergent quasinormal modes for a single photon

    NASA Astrophysics Data System (ADS)

    Dong, H.; Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.

    2009-06-01

    We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference device circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.

  3. Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods.

    PubMed

    Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław

    2009-03-01

    Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.

  4. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less

  5. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  6. Unidirectional photonic wire laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.

    Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less

  7. Unidirectional photonic wire laser

    DOE PAGES

    Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.; ...

    2017-08-07

    Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less

  8. Engineering a light-emitting planar defect within three-dimensional photonic crystals

    PubMed Central

    Liu, Guiqiang; Chen, Yan; Ye, Zhiqing

    2009-01-01

    Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap. PMID:27877309

  9. Tunable properties of light propagation in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Szaniawska, K.; Nasilowski, T.; Woliński, T. R.; Thienpont, H.

    2006-12-01

    Tunable properties of light propagation in photonic crystal fibers filled with liquid crystals, called photonic liquid crystal fibers (PLCFs) are presented. The propagation properties of PLCFs strongly depend on contrast between refractive indices of the solid core (pure silica glass) and liquid crystals (LCs) filing the holes of the fiber. Due to relatively strong thermo-optical effect, we can change the refractive index of the LC by changing its temperature. Numerical analysis of light propagation in PLCF, based on two simulation methods, such as finite difference (FD) and multipole method (MM) is presented. The numerical results obtained are in good agreement with our earlier experimental results presented elsewhere [1].

  10. Recent development on high-power tandem-pumped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian

    2016-11-01

    High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.

  11. Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Sidorov-Biryukov, D.A.; Zheltikov, A.M.

    Hollow-core photonic-crystal fibers (PCFs) capable of transporting sub-100-fs pulses of Ti:sapphire laser radiation in one of their transmission peaks centered around 800 nm have been designed and demonstrated. These fibers are shown to enhance self-phase modulation of submicrojoule 100-fs Ti:sapphire laser pulses, allowing a spectral bandwidth of 35 nm to be achieved with an 8-cm PCF sample.

  12. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  13. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  14. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration

    PubMed Central

    Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N.; Chen, Guanying

    2014-01-01

    The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF4:Yb3+30%/Tm3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF4:Yb3+30%/Tm3+0.5%)/NaYbF4/NaYF4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF4:Yb3+30%/Tm3+0.5%)/NaYF4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb3+/Tm3+-codoped NaYF4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles. PMID:28348285

  15. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration.

    PubMed

    Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N; Chen, Guanying

    2014-01-03

    The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF₄:Yb 3+ 30%/Tm 3+ 0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYbF₄/NaYF₄ design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYF₄ active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb 3+ /Tm 3+ -codoped NaYF₄ nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.

  16. Photonic jet with ultralong working distance by hemispheric shell.

    PubMed

    Hengyu, Zhu; Zaichun, Chen; Chong, Chong Tow; Minghui, Hong

    2015-03-09

    Micro-particle assisted nano-imaging has proven its success in the past few years since it can magnify the nano-objects, especially the metallic objects, into an image then collected by a conventional microscope. Micro-shell, which is a novel design of micro-particle in the configuration of a hemisphere with a hollow core region, is proposed and optimized in this paper in order to obtain a long photonic jet far away from its flat surface, thus increasing its working distance. Its dependence on the configuration and refractive index is investigated numerically. A micro-shell with the outer and inner radii of 5 and 2.5 µm and the refractive index of 1.5 can focus the incident light of 400 nm wavelength 2.7 µm away from the micro-shell flat surface, although the photonic jet intensity decreases to 25.8% compared to the solid hemisphere. Meanwhile, the photonic jet length of the micro-shell under the incident light of 400 nm and 1000 nm wavelengths are 1.7 µm and 4.3 µm, respectively, because its hollow core region tends to reduce the angle variation of the Poynting vectors in the photonic jet. With the long working distance and long photonic jet, the micro-shell could be used to scan over a sample to obtain a large area image when coupled with a conventional microscope, which is especially useful for the samples with the rough surfaces.

  17. Power Systems and Energy Storage Modeling for Directed Energy Weapons

    DTIC Science & Technology

    2014-06-01

    neodymium or ytterbium doped yttrium aluminum garnet (YAG) crystal.6 The Maritime Laser Demonstration (MLD) features several 15 kW slab lasers combined...The laser substrate is similar to a fiber optic cable that is doped with a rare earth element (typically neodymium or ytterbium); many fibers can be...but with different elements. A typical construction consists of a sheet of Lithium- cobalt -oxide and a sheet of carbon separated by an insulator

  18. Design and process development of a photonic crystal polymer biosensor for point-of-care diagnostics

    NASA Astrophysics Data System (ADS)

    Dortu, F.; Egger, H.; Kolari, K.; Haatainen, T.; Furjes, P.; Fekete, Z.; Bernier, D.; Sharp, G.; Lahiri, B.; Kurunczi, S.; Sanchez, J.-C.; Turck, N.; Petrik, P.; Patko, D.; Horvath, R.; Eiden, S.; Aalto, T.; Watts, S.; Johnson, N. P.; De La Rue, R. M.; Giannone, D.

    2011-07-01

    In this work, we report advances in the fabrication and anticipated performance of a polymer biosensor photonic chip developed in the European Union project P3SENS (FP7-ICT4-248304). Due to the low cost requirements of point-ofcare applications, the photonic chip is fabricated from nanocomposite polymeric materials, using highly scalable nanoimprint- lithography (NIL). A suitable microfluidic structure transporting the analyte solutions to the sensor area is also fabricated in polymer and adequately bonded to the photonic chip. We first discuss the design and the simulated performance of a high-Q resonant cavity photonic crystal sensor made of a high refractive index polyimide core waveguide on a low index polymer cladding. We then report the advances in doped and undoped polymer thin film processing and characterization for fabricating the photonic sensor chip. Finally the development of the microfluidic chip is presented in details, including the characterisation of the fluidic behaviour, the technological and material aspects of the 3D polymer structuring and the stable adhesion strategies for bonding the fluidic and the photonic chips, with regards to the constraints imposed by the bioreceptors supposedly already present on the sensors.

  19. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz,more » with photon energies that cover the first Brillouin zone of most materials.« less

  20. Ge and B doped collapsed photonic crystal optical fibre, a potential TLD material for low dose measurements

    NASA Astrophysics Data System (ADS)

    Rozaila, Z. Siti; Alyahyawi, Amjad; Khandaker, M. U.; Amin, Y. M.; Bradley, D. A.; Maah, M. J.

    2016-09-01

    Offering a number of advantageous features, tailor-made silica-based fibres are attracting attention as thermoluminesence (TL) dosimeters. We have performed a detailed study of the TL properties of Ge-doped and Ge-B-doped collapsed photonic crystal fibres (PCFc), most particularly with regard to their potential use for the environmental and X-ray diagnostic dose monitoring. Extrinsic doping and defects generated by strain at the fused inner walls of the collapsed fibres result in the PCFc-Ge-B and PCFc-Ge fibres producing markedly greater TL response than that of the phosphor-based dosimeter TLD-100, by some 9 and 7×, respectively. The linearity of TL yield has been investigated for X-ray doses from 0.5 mGy to 10 mGy. For a dose of 1 Gy, the energy response of the PCFs and TLD-100 has been studied using X-rays generated at accelerating potentials from 20 kVp through to 200 kVp and for the 1.25 MeV mean gamma-ray energy from 60Co. The effective atomic number , Zeffof PCFc-Ge and PCFc-Ge-B was estimated to be 12.5 and 14.4, respectively. Some 35 days post-irradiation, fading of the stored TL signal from PCFc-Ge-B and PCFc-Ge were found to be ∼15% and 20% respectively, with mean loss in TL emission of 0.4-0.5% per day. The present doped-silica collapsed PCFs provide greatly improved TLD performance compared to that of previous fibre designs and phosphor-based TLD-100.

  1. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm.

    PubMed

    Lim, Hyungsik; Jiang, Yi; Wang, Yimin; Huang, Yu-Chih; Chen, Zhongping; Wise, Frank W

    2005-05-15

    We report a compact, high-power, fiber-based source for ultrahigh-resolution optical coherence tomography (OCT) near 1 microm. The practical source is based on a short-pulse, ytterbium-doped fiber laser and on generation of a continuum spectrum in a photonic crystal fiber. The broadband emission has an average power of 140 mW and offers an axial resolution of 2.1 microm in air (<1.6 microm in biological tissue). The generation of a broad bandwidth is robust and efficient. We demonstrate ultrahigh-resolution, time-domain OCT imaging of in vitro and in vivo biological tissues.

  2. Cross-section imaging and p-type doping assessment of ZnO/ZnO:Sb core-shell nanowires by scanning capacitance microscopy and scanning spreading resistance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lin, E-mail: lin.wang@insa-lyon.fr; Brémond, Georges; Sallet, Vincent

    2016-08-29

    ZnO/ZnO:Sb core-shell structured nanowires (NWs) were grown by the metal organic chemical vapor deposition method where the shell was doped with antimony (Sb) in an attempt to achieve ZnO p-type conduction. To directly investigate the Sb doping effect in ZnO, scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) were performed on the NWs' cross-sections mapping their two dimensional (2D) local electrical properties. Although no direct p-type inversion in ZnO was revealed, a lower net electron concentration was pointed out for the Sb-doped ZnO shell layer with respect to the non-intentionally doped ZnO core, indicating an evident compensating effectmore » as a result of the Sb incorporation, which can be ascribed to the formation of Sb-related acceptors. The results demonstrate SCM/SSRM investigation being a direct and effective approach for characterizing radial semiconductor one-dimensional (1D) structures and, particularly, for the doping study on the ZnO nanomaterial towards its p-type realization.« less

  3. Hybrid photonic-crystal fiber

    NASA Astrophysics Data System (ADS)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  4. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.

    PubMed

    Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2015-11-11

    Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.

  5. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  6. Ce Core-Level Spectroscopy, and Magnetic and Electrical Transport Properties of Lightly Ce-Doped YCoO3

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshihiko; Koike, Tsuyoshi; Okawa, Mario; Takayanagi, Ryohei; Takei, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Yasui, Akira; Ikenaga, Eiji; Saitoh, Tomohiko; Asai, Kichizo

    2016-11-01

    We have investigated the Ce and Co core level spectroscopy, and the magnetic and electrical transport properties of lightly Ce-doped YCoO3. We have successfully synthesized single-phase Y1-xCexCoO3 for 0.0 ≤ x ≤ 0.1 by the sol-gel method. Hard X-ray photoelectron and X-ray absorption spectroscopy experiments reveal that the introduced Ce ions are tetravalent, which is considered to be the first case of electron doping into bulk trivalent Co oxides with perovskite RECoO3 (RE: rare-earth element or Y) caused by RE site substitution. The magnitude of the effective magnetic moment peff obtained from the temperature dependence of magnetic susceptibility χ(T) at higher temperatures is close to that for high-spin Co2+ introduced by the Ce doping, implying that the electrons doped into the Co site induce Co2+ with a high-spin state. For x = 0.1, ferromagnetic ordering is observed below about 7 K. Electrical transport properties such as resistivity and thermoelectric power show that negative electron-like carriers are introduced by Ce substitution.

  7. Photonic quantum state transfer between a cold atomic gas and a crystal.

    PubMed

    Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues

    2017-11-22

    Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552  nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.

  8. High harmonic generation in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Baer, C. R. E.; Kränkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J. S.; Tisch, J. W. G.; Couny, F.; Light, P.; Benabid, F.; Keller, U.

    2009-10-01

    :270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).

  9. Crystal structure of YbCu6In6 and mixed valence behavior of Yb in YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution.

    PubMed

    Subbarao, Udumula; Peter, Sebastian C

    2012-06-04

    High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) Å and c = 5.3976(11) Å. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.

  10. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, R.H.; Schaffers, K.I.; Waide, P.A.

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beammore » profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.« less

  11. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)

    NASA Astrophysics Data System (ADS)

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F.; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Electronic supplementary information (ESI) available: Figures S1 to S12, Tables S1 and S2. See DOI: 10.1039/c1nr10930h

  12. Anion dependent ion pairing in concentrated ytterbium halide solutions

    NASA Astrophysics Data System (ADS)

    Klinkhammer, Christina; Böhm, Fabian; Sharma, Vinay; Schwaab, Gerhard; Seitz, Michael; Havenith, Martina

    2018-06-01

    We have studied ion pairing of ytterbium halide solutions. THz spectra (30-400 cm-1) of aqueous YbCl3 and YbBr3 solutions reveal fundamental differences in the hydration structures of YbCl3 and YbBr3 at high salt concentrations: While for YbBr3 no indications for a changing local hydration environment of the ions were experimentally observed within the measured concentration range, the spectra of YbCl3 pointed towards formation of weak contact ion pairs. The proposed anion specificity for ion pairing was confirmed by supplementary Raman measurements.

  13. Encapsulation of Polymer Colloids in a Sol-Gel Matrix. Direct-Writing of Coassembling Organic-Inorganic Hybrid Photonic Crystals.

    PubMed

    Mikosch, Annabel; Kuehne, Alexander J C

    2016-03-22

    The spontaneous self-assembly of polymer colloids into ordered arrangements provides a facile strategy for the creation of photonic crystals. However, these structures often suffer from defects and insufficient cohesion, which result in flaking and delamination from the substrate. A coassembly process has been developed for convective assembly, resulting in large-area encapsulated colloidal crystals. However, to generate patterns or discrete deposits in designated places, convective assembly is not suitable. Here we experimentally develop conditions for direct-writing of coassembling monodisperse dye-doped polystyrene particles with a sol-gel precursor to form solid encapsulated photonic crystals. In a simple procedure the colloids are formulated in a sol-gel precursor solution, drop-cast on a flat substrate, and dried. We here establish the optimal parameters to form reproducible highly ordered photonic crystals with good optical performance. The obtained photonic crystals interact with light in the visible spectrum with a narrow optical stop-gap.

  14. Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.

    PubMed

    Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra

    2012-01-01

    The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society

  15. Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities

    NASA Astrophysics Data System (ADS)

    Wein, Stephen; Lauk, Nikolai; Ghobadi, Roohollah; Simon, Christoph

    2018-05-01

    Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-state emitters and ultrasmall mode volume cavities. We derive and analyze an expression for photon indistinguishability that accounts for relevant detrimental effects, such as plasmon-induced quenching and pure dephasing. We then provide the general cavity and emitter conditions required to achieve efficient indistinguishable photon emission and also discuss constraints due to phonon sideband emission. Using these conditions, we propose that a nanodiamond negatively charged silicon-vacancy center combined with a plasmonic-Fabry-Pérot hybrid cavity is an excellent candidate system.

  16. All-fiber Faraday Devices Based on Terbium-doped Fiber

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Surface damage is one of the most problematic power limits in high-power fiber laser systems. All-fiber Faraday components are demonstrated as a solution to this problem, since they can be completely fusion-spliced into existing systems, eliminating all glass-air interfaces. Beam filamentation due to self-focusing places another limit on the peak power attainable from fiber laser systems. The limits imposed by this phenomenon are analyzed for the first time. The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25-wt% terbium-doped-core phosphate fiber to be --6.2 rad/(Tm) at 1053 nm, which is six times larger than silica fiber. The result agrees well with Faraday rotation theory in optical fiber. A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystals used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4°. An all-fiber optical magnetic field sensor is also demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt%-terbium-doped silicate fiber with a Verdet

  17. CsPbBr{sub 3} nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Li, Yue; Xu, Jianqiu

    Cesium lead halide perovskite nanocrystals (CsPbX{sub 3}, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr{sub 3} nanocrystal films and characterize their physical properties. Broadband linear absorption from ∼0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr{sub 3} saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr{sub 3} liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm{sup 2}, respectively. With this SA, mode-locking operationmore » of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ∼216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ∼1076 nm. This work shows that CsPbBr{sub 3} films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.« less

  18. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.

    PubMed

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-17

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k·p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  19. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    NASA Astrophysics Data System (ADS)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  20. Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Xiong, Hui; Zhang, Yun-Shan; Ma, Yong; Zheng, Jia-Jin

    2017-12-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61405096 and 61504058), the Introduction of Talent Research and Research Fund of Nanjing University of Posts and Telecommunications, China (Grant No. NY214158), the Open Fund of Laboratory of Solid State Microstructures, Nanjing University, China (Grant No. M28035), and the Open Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (Grant No. SKLST201404).

  1. Preparation of nitrogen-doped carbon tubes

    DOEpatents

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  2. GaAs core--shell nanowires for photovoltaic applications.

    PubMed

    Czaban, Josef A; Thompson, David A; LaPierre, Ray R

    2009-01-01

    We report the use of Te as an n-type dopant in GaAs core-shell p-n junction nanowires for use in photovoltaic devices. Te produced significant change in the morphology of GaAs nanowires grown by the vapor-liquid-solid process in a molecular beam epitaxy system. The increase in radial growth of nanowires due to the surfactant effect of Te had a significant impact on the operating characteristics of photovoltaic devices. A decrease in solar cell efficiency occurred when the Te-doped GaAs growth duration was increased.

  3. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A., E-mail: baldo@mit.edu

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator ismore » 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.« less

  4. Photon Antibunching in the Fluorescence of a Single Dye Molecule Trapped in a Solid

    DTIC Science & Technology

    1992-06-08

    number) FIELD GROUP SUB-GROUP single-molecule spectroscopy in solids, photon antibunching, quantum-optics, nonclassical effects pentacene in p-terphenyl...emitted by an optically pumped single molecule of pentacene In a p-terphenyl host has been Investigated at short times. The correlation function...excitation tcclnique, certain individual pentacene impurity molecules in a p-terphenyl crystal 11 were observed to spectrally diffuse, i.e. their absorption

  5. Experimental Realization of Efficient, Room Temperature Single-Photon Sources with Definite Circular and Linear Polarizations

    NASA Astrophysics Data System (ADS)

    Boutsidis, Christos

    In this thesis I present experimental demonstrations of room-temperature, single-photon sources with definite linear and circular polarizations. Definite photon polarization increases the efficiency of quantum communication systems. In contrast with cryogenic-temperature single-photon sources based on epitaxial quantum dots requiring expensive MBE and nanofabrication, my method utilizes a mature liquid crystal technology, which I made consistent with single-emitter fluorescence microscopy. The structures I have prepared are planar-aligned cholesteric liquid crystals forming 1-D photonic bandgaps for circularly-polarized light, which were used to achieve definite circularly-polarized fluorescence of single emitters doped in this environment. I also used planar-aligned nematic liquid crystals to align single molecules with linear dipole moments and achieved definite linearly-polarized fluorescence. I used single nanocrystal quantum dots, single nanodiamond color-centers, rare-earth-doped nanocrystals, and single terrylene and DiIC18(3) dye molecules as emitters. For nanocrystal quantum dots I observed circular polarization dissymmetry factors as large as ge = --1.6. In addition, I observed circularly-polarized resonances in the fluorescence of emitters within a cholesteric microcavity, with cavity quality factors of up to Q ˜ 250. I also showed that the fluorescence of DiIC18(3) dye molecules in planar-aligned nematic cells exhibits definite linear polarization, with a degree of polarization of rho = --0.58 +/- 0.03. Distributed Bragg reflectors form another type of microcavity that can be used to realize a single-photon source. I characterized the fluorescence from nanocrystal quantum dots doped in the defect layers of such microcavites, both organic and inorganic. Finally, to demonstrate the single-photon properties of single-emitter-doped cholesteric and nematic liquid crystal structures and distributed Bragg reflector microcavities, I present observations of

  6. Optical bandwidth in coupling: the multicore photonic switch.

    PubMed

    Attard, Alfred E

    2003-05-20

    In the present study, the bandwidth of a photonic switch described previously [Appl. Opt. 37,2296 (1998); 38, 3239 (1999)] is evaluated. First the optical bandwidth is evaluated for coupling between two fiber-core waveguides, in which the cores are embedded within the same cladding. Then the coupling bandwidth is determined for a fiber-core-to-slab-core waveguide, in which the cores are embedded within the same cladding. These bandwidths are then compared and contrasted with the bandwidths of the photonic switch, which consists of two fiber cores and a control waveguide. Two configurations of the photonic switch are considered: one in which the control waveguide is a fiber core and one in which the control waveguide is a slab core. For the photonic switch, the bandwidth characteristics are more complicated than for the coupled pairs, and these characteristics are discussed in detail.

  7. Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Vahid, S. Afshar; Benabid, F.; Luiten, A. N.

    2018-04-01

    Strong photon-photon interactions are a required ingredient for deterministic two-photon optical quantum logic gates. Multiphoton transitions in dense atomic vapors have been shown to be a promising avenue for producing such interactions. The strength of a multiphoton interaction can be enhanced by conducting the interaction in highly confined geometries such as small-cross-section optical waveguides. We demonstrate, both experimentally and theoretically, that the strength of such interactions scale only with the optical mode diameter, d , not d2 as might be initially expected. This weakening of the interaction arises from atomic motion inside the waveguides. We create an interaction between two optical signals, at 780 and 776 nm, using the 5 S1 /2→5 D5 /2 two-photon transition in rubidium vapor within a range of hollow-core fibers with different core sizes. The interaction strength is characterized by observing the absorption and phase shift induced on the 780-nm beam, which is in close agreement with theoretical modeling that accounts for the atomic motion inside the fibers. These observations demonstrate that transit-time effects upon multiphoton transitions are of key importance when engineering photon-photon interactions within small-cross-section waveguides that might otherwise be thought to lead to enhanced optical nonlinearity through increased intensities.

  8. Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.

    2017-04-01

    The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.

  9. Radially polarized and passively Q-switched Yb-doped fiber laser based on intracavity birefringent mode discrimination

    NASA Astrophysics Data System (ADS)

    Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang

    2018-05-01

    In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.

  10. Rapid solid-state metathesis route to transition-metal doped titanias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G., E-mail: edward-gillan@uiowa.edu

    2015-12-15

    Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M–TiO{sub 2}). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M–TiO{sub 2} samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganesemore » doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO{sub 2} was observed in all cases. The M–TiO{sub 2} samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M–TiO{sub 2} powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.« less

  11. Hybrid solid state laser system using a neodymium-based master oscillator and an ytterbium-based power amplifier

    DOEpatents

    Payne, Stephen A.; Marshall, Christopher D.; Powell, Howard T.; Krupke, William F.

    2001-01-01

    In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.

  12. Early Stage of Origin of Earth (interval after Emergence of Sun, Formation of Liquid Core, Formation of Solid Core)

    NASA Astrophysics Data System (ADS)

    Pechernikova, G. V.; Sergeev, V. N.

    2017-05-01

    Gravitational collapse of interstellar molecular cloud fragment has led to the formation of the Sun and its surrounding protoplanetary disk, consisting of 5 × 10^5 dust and gas. The collapse continued (1 years. Age of solar system (about 4.57×10^9 years) determine by age calcium-aluminum inclusions (CAI) which are present at samples of some meteorites (chondrites). Subsidence of dust to the central plane of a protoplanetary disk has led to formation of a dust subdisk which as a result of gravitational instability has broken up to condensations. In the process of collisional evolution they turned into dense planetesimals from which the planets formed. The accounting of a role of large bodies in evolution of a protoplanetary swarm in the field of terrestrial planets has allowed to define times of formation of the massive bodies permitting their early differentiation at the expense of short-lived isotopes heating and impacts to the melting temperature of the depths. The total time of Earth's growth is estimated about 10^8 years. Hf geochronometer showed that the core of the Earth has existed for Using W about 3×10^7 Hf geohronometer years since the formation of the CAI. Thus data W point to the formation of the Earth's core during its accretion. The paleomagnetic data indicate the existence of Earth's magnetic field past 3.5×10^9 years. But the age of the solid core, estimated by heat flow at the core-mantle boundary is 1.7×10^9 (0.5 years). Measurements of the thermal conductivity of liquid iron under the conditions that exist in the Earth's core, indicate the absence of the need for a solid core of existence to support the work geodynamo, although electrical resistivity measurements yield the opposite result.

  13. Bi2Te3 based passively Q-switched at 1042.76 and 1047 nm wavelength

    NASA Astrophysics Data System (ADS)

    Salim, M. A. M.; Shaharuddin, R. A.; Ismail, M. A.; Harun, S. W.; Ahmad, H.; Azzuhri, Saaidal R.

    2017-12-01

    In this paper, we propose and demonstrate the generation of dual wavelength based photonic crystal fiber passively Q-switched using few-layer TI:Bi2Te3 (bismuth telluride) saturable absorbers in a 1 micron waveband. The system employs a few-layer bismuth, induced onto a fiber ferrule using a dry oven method. A centered dual-wavelength output at 1042.76 and 1047.0 nm was produced from the Ytterbium doped fiber laser setup by incorporating 10 cm of photonic crystal fiber and finely adjusting the polarization controller. The self-started Q-switch had a pump power of 132.15 mW and a frequency ranging from 3.79 to 15.63 kHz. Therefore, TI:Bi2Te3 was suitable as a potential broadband SA in a 1 micron region.

  14. Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing

    PubMed Central

    Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo

    2017-01-01

    We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046

  15. Parameter analysis of a photonic crystal fiber with raised-core index profile based on effective index method

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Rashidi, Mahnaz; Khasheie, Vajieh

    2006-08-01

    Photonic crystal fibers (PCFs) with a stepped raised-core profile and one layer equally spaced holes in the cladding are analyzed. Using effective index method and considering a raised step refractive index difference between the index of the core and the effective index of the cladding, we improve the characteristic parameters such as numerical aperture and V-parameter, and reduce its bending loss to about one tenth of a conventional PCF. Implementing such a structure in PCFs may be one step forward to achieve low loss PCFs for communication applications.

  16. High-beam quality, high-efficiency laser based on fiber with heavily Yb(3+)-doped phosphate core and silica cladding.

    PubMed

    Egorova, O N; Semjonov, S L; Medvedkov, O I; Astapovich, M S; Okhrimchuk, A G; Galagan, B I; Denker, B I; Sverchkov, S E; Dianov, E M

    2015-08-15

    We have fabricated and tested a composite fiber with an Yb(3+)-doped phosphate glass core and silica cladding. Oscillation with a slope efficiency of 74% was achieved using core pumping at 976 nm with fiber lengths of 48-90 mm in a simple laser configuration, where the cavity was formed by a high-reflectivity Bragg grating and the cleaved fiber end. The measured M(2) factors were as low as 1.05-1.22 even though the fiber was multimode at the lasing wavelength.

  17. Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.

  18. Tunable Solid-State Quantum Memory Using Rare-Earth-Ion-Doped Crystal, Nd(3+):GaN

    DTIC Science & Technology

    2017-04-01

    by plasma-assisted molecular beam epitaxy in a modular Gen II reactor using liquid gallium, solid Nd, and a nitrogen plasma. The photoluminescence (PL...provide a tunable memory. To vary the applied field, we designed and grew a series of Nd-doped GaN p-i-n structures, strain- balanced superlattice...27 Fig. 23 Electric field vs. GaN well/ AlxGa(1-x)N barrier thickness for strain- balanced superlattice (SBSL) structures with

  19. SOLID-STATE SYNTHESIS AND SOME PROPERTIES OF MAGNESIUM-DOPED COPPER ALUMINUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Ren, Fei; Wang, Hsin

    2010-01-01

    Copper aluminum oxide (CuAlO2) with delafossite structure is a promising candidate for high temperature thermoelectric applications because of its modest band gap, high stability and low cost. We investigate magnesium doping on the aluminum site as a means of producing higher electrical conductivity and optimized Seebeck coefficient. Powder samples were synthesized using solid-state reaction and bulk samples were prepared using both cold-pressing and hot-pressing techniques. Composition analysis, microstructural examination and transport property measurements were performed, and the results suggest that while hot-pressing can achieve high density samples, secondary phases tend to form and lower the performance of the materials.

  20. 174Yb 3P1 level relaxation found via weak magnetic field dependence of collision-induced stimulated photon echo

    NASA Astrophysics Data System (ADS)

    Rubtsova, N. N.; Gol’dort, V. G.; Khvorostov, E. B.; Kochubei, S. A.; Reshetov, V. A.

    2018-06-01

    Collision-induced stimulated photon echo generated at transition was analyzed theoretically and investigated experimentally in the gaseous mixture of ytterbium vapour diluted with a large amount of buffer gas xenon in the presence of a weak longitudinal magnetic field. The inter-combination transition of 174Yb (6s2) 1S(6s6p) 3P1 was used; all experimental parameters were carefully controlled for their correspondence to the broad spectral line conditions. The curve representing the collision-induced stimulated photon echo variations versus a weak magnetic field strength showed very good agreement with the corresponding theoretical curve; this agreement permitted getting the decay rates for 174Yb level 3P1 orientation and alignment in collisions with Xe.

  1. Stress-induced phase sensitivity of small diameter polarization maintaining solid-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin

    2017-09-01

    Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.

  2. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    PubMed

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  3. Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li4Ti5O12 anode material

    NASA Astrophysics Data System (ADS)

    Seo, Inseok; Lee, Cheul-Ro; Kim, Jae-Kwang

    2017-09-01

    To improve the electrochemical properties, fine Zr-doping Li4Ti5O12 anode materials for rechargeable lithium batteries with a uniform particle size distribution were synthesized by a modified solid-state reaction using fine Li2CO3 and TiO2 (anatase) powders as precursors with a Li:Ti molar ratio of 4:5. The use of fine Li2CO3 and TiO2 (anatase) powders as precursors prevented the formation of ZrO2 at 0.1 mol Zr-doping. XRD analysis revealed that the substitution of Zr for Ti leads to the increase of lattice parameters, allowing improved Li diffusion. The discharge capacity retention increased slightly with Zr-doping and the 0.1 mol Zr-doped Li4Ti5O12 electrode achieved 99% retention of discharge capacity.

  4. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films

    NASA Astrophysics Data System (ADS)

    Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.

    2009-04-01

    We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.

  5. Ytterbium-doped Y 2O 3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Kalita, M. P.; Boyland, A. J.; Webb, A. S.; Standish, R. J.; Sahu, J. K.; Paul, M. C.; Das, S.; Bhadra, S. K.; Pal, M.

    2010-09-01

    We report efficient laser demonstration and spectroscopic characteristics of a Yb-doped Y 2O 3 (or Y 3Al 5O 12) nanoparticle silica fiber developed by conventional fiber fabrication technique. The spectroscopy study evidences modification in the environment of Yb ions by the Y 2O 3 nanoparticles. As a result, photodarkening induced loss is reduced by 20 times relative to Yb-doped aluminosilicate fibers. The fiber is suitable for power scaling with good laser slope efficiency of 79%.

  6. Luminescence spectra of a cholesteric photonic crystal

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2017-05-01

    The transmission and luminescence spectra of a cholesteric photonic crystal doped with an organic dye are measured. The density of photon states is calculated using the material parameters obtained from the comparison of the experimental and theoretical spectra. The shape of the luminescence spectra is modified with respect to the density of photon states owing to the difference in the structure of the normal modes of the photonic crystal near the short-wavelength and long-wavelength edges of the photonic quasi-band gap upon the "pushing" of the photon states from the gap and to the nonvanishing orientation ordering of the luminescent molecules. The luminescence spectrum calculated taking into account the chiral structure of the photonic crystal agrees with the experimental spectrum.

  7. Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation

    PubMed Central

    2014-01-01

    We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT–polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics. PMID:24735347

  8. Antimicrobial Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Eliminating Multidrug-Resistant Species in Dual-Modality Photodynamic Therapy and Bioimaging under Two-Photon Excitation.

    PubMed

    Kuo, Wen-Shuo; Shao, Yu-Ting; Huang, Keng-Shiang; Chou, Ting-Mao; Yang, Chih-Hui

    2018-05-02

    Developing a nanomaterial, for use in highly efficient dual-modality two-photon photodynamic therapy (PDT) involving reactive oxygen species (ROS) generation and for use as a two-photon imaging contrast probe, is currently desirable. Here, graphene quantum dots (GQDs) doped with nitrogen and functionalized with an amino group (amino-N-GQDs) serving as a photosensitizer in PDT had the superior ability to generate ROS as compared to unmodified GQDs. Multidrug-resistant (MDR) species were completely eliminated at an ultralow energy (239.36 nJ pixel -1 ) through only 12 s two-photon excitation (TPE) in the near-infrared region (800 nm). Furthermore, the amino-N-GQDs had an absorption wavelength of approximately 800 nm, quantum yield of 0.33, strong luminescence, an absolute cross section of approximately 54 356 Göeppert-Mayer units, a lifetime of 1.09 ns, a ratio of the radiative to nonradiative decay rates of approximately 0.49, and high two-photon stability under TPE. These favorable properties enabled the amino-N-GQDs to act as a two-photon contrast probe for tracking and localizing analytes through in-depth two-photon imaging in a three-dimensional biological environment and concurrently easily eliminating MDR species through PDT.

  9. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    PubMed

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  10. 3D Porous Nanoarchitectures Derived from SnS/S-Doped Graphene Hybrid Nanosheets for Flexible All-Solid-State Supercapacitors.

    PubMed

    Liu, Chunyan; Zhao, Shulin; Lu, Yanan; Chang, Yingxue; Xu, Dongdong; Wang, Qi; Dai, Zhihui; Bao, Jianchun; Han, Min

    2017-03-01

    3D porous nanoarchitectures derived from SnS/S-doped graphene hybrid nanosheets are successfully prepared by controllable thermal conversion of oleylamine-capped mixed-phase SnS 2 -SnS nanodisks precursors, and employed as electroactive material to fabricate flexible, symmetric, all-solid-state supercapacitors. The fabricated solid devices exhibit very high areal specific capacitance (2.98 mF cm -2 ), good cycling stability (99% for 10 000 cycles), excellent flexibility, and desirable mechanical stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.

  12. Chrystal structure properties of Al-doped Li{sub 4}Ti{sub 5}O{sub 12} synthesized by solid state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandi, Dianisa Khoirum, E-mail: dianisa875@gmail.com; Suryana, Risa, E-mail: rsuryana@staff.uns.ac.id; Priyono, Slamet, E-mail: slam013@lipi.go.id

    2016-02-08

    This research aim is to analyze the effect of Aluminum (Al) doping in the structural properties of Al-doped Li{sub 4}Ti{sub 5}O{sub 12} as anode in lithium ion battery. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} powders were synthesized by solid state reaction method. LiOH.H{sub 2}O, TiO{sub 2}, and Al{sub 2}O{sub 3} were raw materials. These materials were milled for 15 h, calcined at temperature of 750{sup o}C and sintered at temperature of 800{sup o}C. Mole percentage of doping Al (x) was varied at x=0; x=0.025; and x =0.05. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} powders were synthesized by solid state reaction method. X-ray diffractionmore » was employed to determine the structure of Li{sub 4}Ti{sub 5}O{sub 12}. The PDXL software was performed on the x-ray diffraction data to estimate the phase percentage, the lattice parameter, the unit cell volume, and the crystal density. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} has cubic crystal structure. Al-doping at x=0 and x=0.025 does not change the phase as Li{sub 4}Ti{sub 5}O{sub 12} while at x=0.050 the phase changes to the LiTiAlO{sub 4}. The diffraction patterns show that the angle shifted to the right as the increase of x which indicated that Al substitute Ti site. Percentage of Li{sub 4}Ti{sub 5}O{sub 12} phase at x=0 and x=0.025 was 97.8% and 96.8%, respectively. However, the lattice parameters, the unit cell volume, and the crystal density does not change significantly at x=0; x=0.025; and x=0.050. Based on the percentage of Li{sub 4}Ti{sub 5}O{sub 12} phase, the Al-doped Li at x=0 and x=0.025 is promising as a lithium battery anode.« less

  13. Spectral engineering of optical fiber through active nanoparticle doping

    NASA Astrophysics Data System (ADS)

    Lindstrom-James, Tiffany

    The spectral engineering of optical fiber is a method of intentional doping of the core region in order to absorb/emit specific wavelengths of light therby providing enhanced performance over current fibers. Efforts here focused on developing an understanding of optically active nanoparticles based on alkaline earth fluorides that could be easily and homogeneously incorporated into the core of a silica based optical fiber preform and result in efficient and tailorable spectral emissions. Doped and undoped calcium, strontium and barium fluoride nanoparticles were successfully synthesized and characterized for their physical, chemical, and optical behavior. Distinct spectroscopic differences as a result of different host materials, varying rare earth doping levels and processing conditions, indicated the ability to influence the spectral behavior of the doped nanoparticle. By using photoluminescence to predict diffusion behavior, the application of a simple one dimensional model for diffusion provided a method for predicting the diffusion coefficient of europium ions in alkaline earth fluorides with order of magnitude accuracy. Modified chemical vapor deposition derived silica preforms were individually solution doped with europium doped alkaline earth fluoride nanoparticles. By using the rare earth doped alkaline earth fluoride nanoparticles as the dopant materials in the core of optical fiber preforms, the resultant optical properties of the glass were significantly influenced by their presence in the core. The incorporation of these rare earth doped alkaline earth fluoride nanoparticles was found to significantly influence the local chemical and structural environment about the rare earth ion, demonstrated homogeneity and uniform distribution of the rare earth dopant and resulted in specifically unique spectral behavior when compared to conventional doping methods. A more detailed structural model of the doped core glass region has been developed based on the

  14. 5  W output power from a double-clad hybrid fiber with Yb-doped phosphate core and silicate cladding.

    PubMed

    Wang, Longfei; He, Dongbing; Zhang, Lei; Yu, Chunlei; Feng, Suya; Wang, Meng; Chen, Danping; Hu, Lili

    2017-08-01

    For the first time, to the best of our knowledge, we report on the realization of a laser from a Yb-doped phosphate core/silicate cladding double-clad hybrid fiber. 5 W output power was extracted with 14.6% slope efficiency and a laser spectrum of a 1027 nm central wavelength from a 20 cm long single-mode fiber with a ∼10  μm core diameter in a 20%-4% laser cavity. The laser efficiency can be significantly enhanced by correspondingly adjusting and optimizing the laser oscillator.

  15. An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor.

    PubMed

    Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi

    2017-05-05

    A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.

  16. 2.05-μm Holmium-doped all-fiber continuous-wave laser at in-core diode-pumping at 1.125 μm

    NASA Astrophysics Data System (ADS)

    Kir'yanov, Alexander V.; Barmenkov, Yuri O.

    2017-08-01

    We report a Holmium-doped all-fiber laser oscillating in continuous-wave at 2.05 μm, at in-core pumping by a 1.125-μm laser diode. The active fibers employed are alumino-germano-silicate fibers doped with Ho3+ at concentrations of 1.2×1019 and 1.8×1019 cm-3. The laser is implemented in non-optimized Fabry-Perot cavity's geometry, composed of a couple of fiber Bragg gratings with reflectivity of 99 and 90%. When using the lower doped Holmium-doped fiber of proper length (1.4 m), low threshold ( 370 mW) and moderate slope efficiency ( 13%) of 2.05-μm lasing were obtained. High-brightness (laser line's width is 60 pm) and good noise-to-signal ratio (<0.006) are the laser's attractivities. In case of the heavier doped fiber of optimal length (1.2 m), the laser output (threshold of 430 mW, slope efficiency of 9%, output power of 9 mW, laser line's width of 110 pm, noise-to-signal ratio of <0.009) is worse, with a probable reason being deteriorating Ho3+ concentration effects.

  17. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    PubMed

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  18. Mg-Doped CuFeO 2 Photocathodes for Photoelectrochemical Reduction of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jing; Wuttig, Anna; Krizan, Jason W.

    2013-05-22

    Mg-doped CuFeO 2 delafossite is reported to be photoelectrochemically active for CO 2 reduction. The material was prepared via conventional solid-state methods, and subsequently assembled into an electrode as a pressed pellet. Addition of a Mg 2+ dopant is found to substantially improve the conductivity of the material, with 0.05% Mg-doped CuFeO 2 electrodes displaying photocathodic currents under visible irradiation. Photocurrent is found to onset at irradiation wavelengths of ~800 nm with the incident photon-to-current efficiency reaching a value of 14% at 340 nm using an applied electrode potential of –0.4 V vs SCE. Photoelectrodes were determined to have amore » –1.1 V vs SCE conduction band edge and were found capable of the reduction of CO 2 to formate at 400 mV of underpotential. The conversion efficiency is maximized at –0.9 V vs SCE, with H 2 production contributing as a considerable side reaction. Lastly, these results highlight the potential to produce Mg-doped p-type metal oxide photocathodes with a band structure tuned to optimize CO 2 reduction.« less

  19. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre.

    PubMed

    Urich, A; Maier, R R J; Mangan, B J; Renshaw, S; Knight, J C; Hand, D P; Shephard, J D

    2012-03-12

    In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.

  20. Quantum phases of dipolar soft-core bosons

    NASA Astrophysics Data System (ADS)

    Grimmer, D.; Safavi-Naini, A.; Capogrosso-Sansone, B.; Söyler, Ş. G.

    2014-10-01

    We study the phase diagram of a system of soft-core dipolar bosons confined to a two-dimensional optical lattice layer. We assume that dipoles are aligned perpendicular to the layer such that the dipolar interactions are purely repulsive and isotropic. We consider the full dipolar interaction and perform path-integral quantum Monte Carlo simulations using the worm algorithm. Besides a superfluid phase, we find various solid and supersolid phases. We show that, unlike what was found previously for the case of nearest-neighbor interaction, supersolid phases are stabilized by doping the solids not only with particles but with holes as well. We further study the stability of these quantum phases against thermal fluctuations. Finally, we discuss pair formation and the stability of the pair checkerboard phase formed in a bilayer geometry, and we suggest experimental conditions under which the pair checkerboard phase can be observed.

  1. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    NASA Astrophysics Data System (ADS)

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-11-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  2. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    PubMed

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  3. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    PubMed Central

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-01-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. PMID:26597223

  4. 1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers.

    PubMed

    Emami, Siamak Dawazdah; Dashtabi, Mahdi Mozdoor; Lee, Hui Jing; Arabanian, Atoosa Sadat; Rashid, Hairul Azhar Abdul

    2017-10-06

    This paper presents short wavelength operation of tunable thulium-doped mode-locked lasers with sweep ranges of 1702 to 1764 nm and 1788 to 1831 nm. This operation is realized by a combination of the partial amplified spontaneous emission suppression method, the bidirectional pumping mechanism and the nonlinear polarization rotation (NPR) technique. Lasing at emission bands lower than the 1800 nm wavelength in thulium-doped fiber lasers is achieved using mode confinement loss in a specially designed photonic crystal fiber (PCF). The enlargement of the first outer ring air holes around the core region of the PCF attenuates emissions above the cut-off wavelength and dominates the active region. This amplified spontaneous emission (ASE) suppression using our presented PCF is applied to a mode-locked laser cavity and is demonstrated to be a simple and compact solution to widely tunable all-fiber lasers.

  5. Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Mengfei; Jean, Joel; Bulović, Vladimir; Baldo, Marc A.

    2017-05-01

    Infrared-to-visible photon upconversion has potential applications in photovoltaics, sensing, and bioimaging. We demonstrate a solid-state thin-film device that utilizes sensitized triplet-triplet exciton annihilation, converting infrared photons absorbed by colloidal lead sulfide nanocrystals (NCs) into visible photons emitted from a luminescent dopant in rubrene at low incident light intensities. A typical bilayer device consisting of a monolayer of NCs and a doped film of rubrene is limited by low infrared absorption in the thin NC film. Here, we augment the bilayer with an optical spacer layer and a silver-film back reflector, resulting in interference effects that enhance the optical field and thus the absorption in the NC film. The interference-enhanced device shows an order-of-magnitude increase in the upconverted emission at the wavelength of λ = 610 nm when excited at λ = 980 nm. At incident light intensities above 1.1 W/cm2, the device attains maximum efficiency, converting (1.6 ± 0.2)% of absorbed infrared photons into higher-energy singlet excitons in rubrene.

  6. Broadband near-infrared downconversion luminescence in Yb3+-doped BaZn2(BO3)2

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Deng, Degang; Su, Weitao; Li, Chenxia; Xu, Shiqing

    2018-06-01

    BaZn2(BO3)2 self-activated phosphors were prepared by the conventional high temperature solid-state method. The PL spectra of BaZn2(BO3)2 powders prepared under reductive and air atmosphere consist of a weak ultraviolet emission band (∼410 nm) and a broad emission band which were centered at ∼ 500 and 545 nm, respectively. According to the spectral analysis and EPR results, the green and yellow emissions may arise from the transitions of photo-generated electron close to the conduction band to the deeply trapped hole in single ionized oxygen vacancy (V+ o) centers and single negatively charged interstitial oxygen ion (O- i), respectively. An efficient broadband near-infrared (NIR) quantum cutting was demonstrated in Yb3+ doped BaZn2(BO3)2 phosphor. Upon excitation with an ultraviolet photon at 375 nm, the emissions of two NIR photons at 983 nm from Yb3+ ions were achieved. The dependences of the visible and NIR emissions, the decay lifetime, the energy transfer efficiency, and the quantum efficiency on the Yb3+ doping content were investigated in detail. The results indicated that the maximum energy transfer and the corresponding downconversion quantum efficiency could reach between 68.5% and 168.5%.

  7. Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian

    2013-04-15

    We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed opticalmore » dipole trap and cooled evaporatively to quantum degeneracy.« less

  8. Circularly polarized guided modes in dielectrically chiral photonic crystal fiber.

    PubMed

    Li, Junqing; Su, Qiyao; Cao, Yusheng

    2010-08-15

    The effect of dielectric chirality on the polarization states and mode indices of guided modes in photonic crystal fiber (PCF) is investigated by a modified plane-wave expansion (PWE) method. Using a solid-core chiral PCF as a numerical example, we show that circular polarization is the eigenstate of the fundamental mode. Mode index divergence between right-handed circularly polarized (RCP) and left-handed circularly polarized (LCP) states is demonstrated. Chirality's effect on mode index and circular birefringence (CB) in such a PCF is found to be similar to that in bulk chiral media.

  9. Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM-Ro-FSO transmission systems

    NASA Astrophysics Data System (ADS)

    Chaudhary, Sushank; Amphawan, Angela

    2018-07-01

    Radio over free space (Ro-FSO) provides an ambitious platform for seamless integration of radio networks to optical networks. Three independent channels, each carrying 2.5 Gbps–5 GHz data, are successfully transmitted over a free space link of 2.5 km by using mode division multiplexing (MDM) of three modes LG 00, LG 01, and LG 02 modes in conjunction with solid core photonic crystal fibers (SC-PCFs). Moreover, SC-PCFs are used as a mode selector in the proposed MDM-Ro-FSO system. The results are reported in terms of bit error rate, mode spectrum, and spatial profiles. The performance of the proposed Ro-FSO system is also evaluated under the influence of atmospheric turbulence in the form of different levels of fog, namely, light fog, thin fog, and heavy fog.

  10. A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications

    NASA Astrophysics Data System (ADS)

    Islam, Md. Saiful; Sultana, Jakeya; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-04-01

    A novel waveguide consisting of oligo-porous core photonic crystal fiber (PCF) with a kagome lattice cladding has been designed for highly birefringent and near zero dispersion flattened applications of terahertz waves. The wave guiding properties of the designed PCF including birefringence, dispersion, effective material loss (EML), core power fraction, confinement loss, and modal effective area are investigated using a full vector Finite Element Method (FEM) with Perfectly Matched Layer (PML) absorbing boundary condition. Simulation results demonstrate that an ultra-high birefringence of 0.079, low EML of 0.05 cm-1, higher core power fraction of 44% and negligible confinement loss of 7 . 24 × 10-7 cm-1 can be achieved at 1 THz. Furthermore, for the y-polarization mode a near zero flattened dispersion of 0 . 49 ± 0 . 05 ps/THz/cm is achieved within a broad frequency range of 0.8-1.7 THz. The fabrication of the proposed fiber is feasible using the existing fabrication technology. Due to favorable wave-guiding properties, the proposed fiber has potential for terahertz imaging, sensing and polarization maintaining applications in the terahertz frequency range.

  11. Photon energy upconverting nanopaper: a bioinspired oxygen protection strategy.

    PubMed

    Svagan, Anna J; Busko, Dmitry; Avlasevich, Yuri; Glasser, Gunnar; Baluschev, Stanislav; Landfester, Katharina

    2014-08-26

    The development of solid materials which are able to upconvert optical radiation into photons of higher energy is attractive for many applications such as photocatalytic cells and photovoltaic devices. However, to fully exploit triplet-triplet annihilation photon energy upconversion (TTA-UC), oxygen protection is imperative because molecular oxygen is an ultimate quencher of the photon upconversion process. So far, reported solid TTA-UC materials have focused mainly on elastomeric matrices with low barrier properties because the TTA-UC efficiency generally drops significantly in glassy and semicrystalline matrices. To overcome this limit, for example, combine effective and sustainable annihilation upconversion with exhaustive oxygen protection of dyes, we prepare a sustainable solid-state-like material based on nanocellulose. Inspired by the structural buildup of leaves in Nature, we compartmentalize the dyes in the liquid core of nanocellulose-based capsules which are then further embedded in a cellulose nanofibers (NFC) matrix. Using pristine cellulose nanofibers, a sustainable and environmentally friendly functional nanomaterial with ultrahigh barrier properties is achieved. Also, an ensemble of sensitizers and emitter compounds are encapsulated, which allow harvesting of the energy of the whole deep-red sunlight region. The films demonstrate excellent lifetime in synthetic air (20.5/79.5, O2/N2)-even after 1 h operation, the intensity of the TTA-UC signal decreased only 7.8% for the film with 8.8 μm thick NFC coating. The lifetime can be further modulated by the thickness of the protective NFC coating. For comparison, the lifetime of TTA-UC in liquids exposed to air is on the level of seconds to minutes due to fast oxygen quenching.

  12. The In Vivo Effect of Ytterbium-Doped Fiber Laser on Rat Buccal Mucosa as a Simulation of Its Effect on the Urinary Tract: A Preclinical Histopathological Evaluation.

    PubMed

    Piao, Songzhe; Wang, Yue; Lee, Young Ju; Hong, Seungsoo; Jeong, Yoonchan; Oh, Seung-June

    2017-04-01

    The aim of this study was to perform a histological analysis of the effect of a ytterbium-doped fiber (YDF) laser on oral buccal mucosa tissue in vivo to simulate its effect on the mucosa of the lower urinary tract. A total of 90 8-week-old Sprague-Dawley rats were anesthetized with urethrane (1.2 g/kg intraperitoneally). A prespecified inner buccal mucosal site was irradiated with a YDF master-oscillator power amplifier (MOPA) system for 60 seconds, with output power settings of 0.5, 1, and 2 W, respectively, in 3 treatment groups. Specimens of irradiated tissue were harvested at 2 hours, 24 hours, 2 weeks, and 4 weeks after irradiation. The tissue specimens were stained with hematoxylin and eosin for histological analysis. In the group treated with 0.5 W, basal cell elongation and vacuolization were observed at 2 hours and 24 hours after treatment, respectively. No evident injury was observed after 2 or 4 weeks. The group treated with 1 W presented partial basal layer separation, and even complete epidermal ablation, within 2 hours. At 24 hours after laser treatment, new capillaries on an edematous background of fibroblasts and myofibroblasts, as well as profuse infiltration of the neutrophils to the basal layer, were observed. Collagen deposition and reepithelization were observed in specimens taken 2 weeks and 4 weeks after treatment. The group treated with 2 W presented bigger and deeper injuries at 2 hours after irradiation. Meanwhile, subepidermal bullae with full-thickness epidermal necrosis and underlying inflammatory infiltrate were observed 24 hours after treatment. The presence of fibrous connective tissue and collagen deposition were observed 2 weeks and 4 weeks after the treatment. To our knowledge, this is the first report regarding the effect of a YDF laser on living tissue. Our study demonstrated that the typical histological findings of the tissue reaction to the YDF MOPA apparatus were very similar to those associated with thermal injuries. The

  13. Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Bai, Jinxi; Li, Ping; Guo, Lei; Zhang, Baitao; Hu, Qiongyu; Wang, Lili; Liu, Binghai; Chen, Xiaohan

    2018-05-01

    Au nanocages/SiO2 (Au-NCs/SiO2) with the surface plasmon resonance peak at 1060 nm were fabricated and experimentally exploited as the saturable absorber in an all-fiber passively Q-switched ytterbium-doped fiber laser for the first time. Under a pump power of 440 mW, the average output power of 10.6 mW was obtained with the pulse duration 1.4 µs and the repetition rate of 126.9 kHz at 1060.5 nm with the 3 dB spectral width of 0.131 nm. The results indicate that Au-NCs/SiO2 exhibits the potential for applications in the field of pulse lasers.

  14. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    NASA Astrophysics Data System (ADS)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  15. Experimental evidence of body centered cubic iron in Earth's core

    NASA Astrophysics Data System (ADS)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  16. Solution processable and optically switchable 1D photonic structures.

    PubMed

    Paternò, Giuseppe M; Iseppon, Chiara; D'Altri, Alessia; Fasanotti, Carlo; Merati, Giulia; Randi, Mattia; Desii, Andrea; Pogna, Eva A A; Viola, Daniele; Cerullo, Giulio; Scotognella, Francesco; Kriegel, Ilka

    2018-02-23

    We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only.

  17. Further optimization of barium cerate properties via co-doping strategy for potential application as proton-conducting solid oxide fuel cell electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Shen, Jianxing; Zhu, Zhiwen; Wang, Zhihao; Cao, Yanxin; Guan, Xiaoli; Wang, Yueyue; Wei, Zhaoling; Chen, Meina

    2018-05-01

    Yttrium-doped BaCeO3 is one of the most promising electrolyte candidates for solid oxide fuel cells because of its high ionic conductivity. Nd and Y co-doped BaCeO3 strategy is adopted for the further optimization of Y-doped BaCeO3 electrolyte properties. X-ray diffraction results indicate that the structure of BaCe0.8Y0.2-xNdxO3-δ (x = 0, 0.05, 0.1, 0.15) with orthorhombic perovskite phase becomes more symmetric with increasing Nd concentration. The scanning electron microscope observation demonstrates that the densification and grain size of the sintered pellets significantly enhance with the increase of Nd doping level. Whether in dry and humid hydrogen or air, the increase of Nd dopant firstly increases the conductivities of BaCe0.8Y0.2-xNdxO3-δ (x = 0, 0.05, 0.1, 0.15) and then decrease them after reaching the peak value at x = 0.05. Electrochemical impedance spectra at 350 °C can distinguish clearly the contribution of grain and grain boundary to total conductivity and the highest conductivity of BaCe0.8Y0.15Nd0.05O3-δ ascribes to the decrease in bulk and grain boundary resistances due to the synergistic effect of Nd and Y doping. The anode-supported single cell with BaCe0.8Y0.15Nd0.05O3-δ electrolyte shows an encouraging peak power density of 660 mW cm-2 at 700 °C, suggesting that BaCe0.8Y0.15Nd0.05O3-δ is a potential electrolyte material for the highly-efficient proton-conducting solid oxide fuel cell.

  18. Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan

    2015-08-01

    A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Determination of the active volumes of solid-state photon-beam dosimetry detectors using the PTB proton microbeam.

    PubMed

    Poppinga, Daniela; Delfs, Bjoern; Meyners, Jutta; Langner, Frank; Giesen, Ulrich; Harder, Dietrich; Poppe, Bjoern; Looe, Hui K

    2018-05-04

    This study aims at the experimental determination of the diameters and thicknesses of the active volumes of solid-state photon-beam detectors for clinical dosimetry. The 10 MeV proton microbeam of the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig) was used to examine two synthetic diamond detectors, type microDiamond (PTW Freiburg, Germany), and the silicon detectors Diode E (PTW Freiburg, Germany) and Razor Diode (Iba Dosimetry, Germany). The knowledge of the dimensions of their active volumes is essential for their Monte Carlo simulation and their applications in small-field photon-beam dosimetry. The diameter of the active detector volume was determined from the detector current profile recorded by radially scanning the proton microbeam across the detector. The thickness of the active detector volume was determined from the detector's electrical current, the number of protons incident per time interval and their mean stopping power in the active volume. The mean energy of the protons entering this volume was assessed by comparing the measured and the simulated influence of the thickness of a stack of aluminum preabsorber foils on the detector signal. For all detector types investigated, the diameters measured for the active volume closely agreed with the manufacturers' data. For the silicon Diode E detector, the thickness determined for the active volume agreed with the manufacturer's data, while for the microDiamond detectors and the Razor Diode, the thicknesses measured slightly exceeded those stated by the manufacturers. The PTB microbeam facility was used to analyze the diameters and thicknesses of the active volumes of photon dosimetry detectors for the first time. A new method of determining the thickness values with an uncertainty of ±10% was applied. The results appear useful for further consolidating detailed geometrical knowledge of the solid-state detectors investigated, which are used in clinical small-field photon-beam dosimetry.

  20. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    PubMed Central

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-01-01

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607