Sample records for yttrium oxide nanoparticles

  1. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying

    2016-05-01

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  2. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  3. Production and characterization of europium doped sol-gel yttrium oxide

    NASA Astrophysics Data System (ADS)

    Krebs, J. K.; Hobson, Christopher; Silversmith, Ann

    2004-03-01

    Sol-gel produced materials have recently gained attention for their use in producing nanoscale dielectric materials for confinement studies. Lanthanide impurities in the dielectric enable experimenters to optically probe the structure and dynamic properties of the nanoparticle hosts. We report on an alkoxide sol-gel production method used to produce trivalent europium doped yttrium oxide. Our process follows the standard hydrolysis of an alkoxide precursor with water containing the lanthanide ions. The sol is then aged and calcined at 800 ^oC to produce the powder samples. X-ray diffraction confirms the structure of the powder is that of Y_2O_3. The emission and excitation of the europium impurities is consistent with that of europium doped single crystal yttrium oxide, where it is known that the europium ions substitute for yttrium in the lattice. We therefore conclude that the sol-gel process enables the incorporation of europium ions into the yttrium oxide structure at temperatures far below the melting temperature. The results of preliminary dynamics measurements will also be discussed.

  4. Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging

    DOE PAGES

    Chen, Yunyun; Sanchez, Carlos; Yue, Yuan; ...

    2016-03-25

    Background: The potential transfer of engineered nanoparticles (ENPs) from plants into the food chain has raised widespread concerns. In order to investigate the effects of ENPs on plants, young cabbage plants (Brassica oleracea) were exposed to a hydroponic system containing yttrium oxide (yttria) ENPs. The objective of this study was to reveal the impacts of NPs on plants by using K-edge subtraction imaging technique. Results: Using synchrotron dual-e nergy X-ray micro-tomography with K-edge subtraction technique, we studied the uptake, accumulation, distribution and concentration mapping of yttria ENPs in cabbage plants. It was found that yttria ENPs were uptaken by themore » cabbage roots but did not effectively transferred and mobilized through the cabbage stem and leaves. This could be due to the accumulation of yttria ENPs blocked at primary-lateral-root junction. Instead, non-yttria minerals were found in the xylem vessels of roots and stem. Conclusions: Synchrotron dual-energy X-ray micro-tomography is an effective method to observe yttria NPs inside the cabbage plants in both whole body and microscale level. Furthermore, the blockage of a plant's roots by nanoparticles is likely the first and potentially fatal environmental effect of such type of nanoparticles.« less

  5. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A.

    2016-05-06

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Ymore » doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.« less

  6. The Influence of Yttrium on High Temperature Oxidation of Valve Steels

    NASA Astrophysics Data System (ADS)

    Grzesik, Z.; Migdalska, M.; Mrowec, S.

    2015-04-01

    The influence of small amounts of yttrium, electrochemically deposited on the surface of four steels utilized in the production of valves in car engines, on the protective properties of the oxide scale and its adherence to the surface of the oxidized materials has been studied under isothermal and thermal cycle conditions. Oxidation measurements have been carried out at 1173 K. It has been found that yttrium addition improves considerably the scale adherence to the substrate surface, increasing thereby corrosion resistance of the studied materials.

  7. Aqueous Assembly of Oxide and Fluoride Nanoparticles into 3D Microassemblies.

    PubMed

    Cui, Shanying; Guan, Xin N; Ghantous, Eliana; Vajo, John J; Lucas, Matthew; Hsiao, Ming-Siao; Drummy, Lawrence F; Collins, Joshua; Juhl, Abigail; Roper, Christopher S; Gross, Adam F

    2018-06-28

    We demonstrate rapid [∼mm 3 /(h·L)] organic ligand-free self-assembly of three-dimensional, >50 μm single-domain microassemblies containing up to 10 7 individual aligned nanoparticles through a scalable aqueous process. Organization and alignment of aqueous solution-dispersed nanoparticles are induced by decreasing their pH-dependent surface charge without organic ligands, which could be temperature-sensitive or infrared light absorbing. This process is exhibited by transforming both dispersed iron oxide hydroxide nanorods and lithium yttrium fluoride nanoparticles into high packing density microassemblies. The approach is generalizable to nanomaterials with pH-dependent surface charge (e.g., oxides, fluorides, and sulfides) for applications requiring long-range alignment of nanostructures as well as high packing density.

  8. The influence of implanted yttrium on the cyclic oxidation behaviour of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Riffard, F.; Buscail, H.; Caudron, E.; Cueff, R.; Issartel, C.; Perrier, S.

    2006-03-01

    High-temperature alloys are frequently used in power plants, gasification systems, petrochemical industry, combustion processes and in aerospace applications. Depending on the application, materials are subjected to corrosive atmospheres and thermal cycling. In the present work, thermal cycling was carried out in order to study the influence of implanted yttrium on the oxide scale adherence on 304 steel specimens oxidised in air at 1273 K. In situ X-ray diffraction indicates that the oxides formed at 1273 K are different on blank specimens compared to implanted specimens. Glancing angle XRD allows to analyse the oxide scale composition after cooling to room temperature. Experimental results show that yttrium implantation at a nominal dose of 10 17 ions cm -2 does not improve significantly the cyclic oxidation behaviour of the austenitic AISI 304 steel. However, it appears that yttrium implantation remarkably enhance the oxidation resistance during isothermal oxidation. It reduces the transient oxidation stage and the parabolic oxidation rate constant by one order of magnitude.

  9. OXIDATION-RESISTANT COATING ON ARTICLES OF YTTRIUM METAL

    DOEpatents

    Wilder, D.R.; Wirkus, C.D.

    1963-11-01

    A process for protecting yttrium metal from oxidation by applying thereto and firing thereon a liquid suspension of a fritted ground silicate or phosphate glass plus from 5 to 35% by weight of CeO/sub 2/ is presented. (AEC)

  10. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    NASA Astrophysics Data System (ADS)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  11. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  12. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    NASA Astrophysics Data System (ADS)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  13. Influence of Yttrium Ion-Implantation on the Growth Kinetics and Micro-Structure of NiO Oxide Film

    NASA Astrophysics Data System (ADS)

    Jin, Huiming; Adriana, Felix; Majorri, Aroyave

    2008-02-01

    Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000°C in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti-oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y-implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.

  14. Surface characterization of low-temperature grown yttrium oxide

    NASA Astrophysics Data System (ADS)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  15. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; ...

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep) 4]) compounds were developed as precursors to alkali yttrium oxide (AYO 2) nanomaterials. The reaction of yttrium amide ([Y(NR 2) 3] where R=Si(CH 3) 3) with four equivalents of H-ONep followed by addition of [A(NR 2)] (A=Li, Na, K) or A o (A o=Rb, Cs) led to the formation of a complex series of A nY(ONep) 3+n species, crystallographically identified as [Y 2Li 3(μ 3-ONep)(μ 3-HONep)(μ-ONep) 5(ONep) 3(HONep) 2] (1), [YNa 2(μ 3-ONep) 4(ONep)] 2 (2), {[Y 2K 3(μ 3-ONep) 3(μ-ONep) 4(ONep) 2(ηξ-tol) 2][Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep)more » 4]•η x-tol]} (3), [Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep) 4] (3a), [Y 2Rb 3(μ 4-ONep) 3(μ-ONep) 6] (4), and [Y 2Cs 4(μ 6-O)(μ 3-ONep) 6(μ 3-HONep) 2(ONep) 2(η x-tol) 4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing were found by powder X-ray diffraction experiments to be Y 2O 3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  16. PEO-b-P4VP/Yttrium Hydroxide Hybrid Nanotubes as Supporter for Catalyst Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Chen, Dao-yong

    2012-06-01

    The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-1min-1), and good reusability of GNTs/CHNTs.

  17. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123.

    PubMed

    Mellado-Vázquez, Rebeca; García-Hernández, Margarita; López-Marure, Arturo; López-Camacho, Perla Yolanda; de Jesús Morales-Ramírez, Ángel; Beltrán-Conde, Hiram Isaac

    2014-09-19

    Yttrium oxide (Y₂O₃) nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1). Fourier transform infrared spectroscopy (FTIR) results revealed a characteristic absorption band of Y-O vibrations typical of Y₂O₃ matrix. The structural phase was analyzed by X-ray diffraction (XRD), showing the characteristic cubic phase in all systems. The diffraction peak that presented the major intensity corresponded to the sample prepared from yttrium chloride incorporating P-123 in a molar ratio of P-123:Y = 2:1 at 900 °C. Crystallites sizes were determined by Scherrer equation as between 21 nm and 32 nm. Antioxidant properties were estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assays; the results are discussed.

  18. Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti-Ni-Hf high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kim, Jeoung Han; Kim, Kyong Min; Yeom, Jong Taek; Young, Sung

    2016-03-01

    The effect of yttrium (< 5.5 at%) on the martensite-austenite phase transformation temperatures, microstructural evolution, and hot workability of Ti-Ni-Hf high-temperature shape memory alloys is investigated. For these purposes, differential scanning calorimetry, hot compression, and thermo-gravimetric tests are conducted. The phase transformation temperatures are not noticeably influenced by the addition of yttrium up to 4.5 at%. Furthermore, the hot workability is not significantly affected by the yttrium addition up to 1.0 at%. However, when the amount of yttrium addition exceeds 1.0 at%, the hot workability deteriorates significantly. In contrast, remarkable improvement in the high temperature oxidation resistance due to the yttrium addition is demonstrated. The total thickness of the oxide layers is substantially thinner in the Y-added specimen. In particular, the thickness of (Ti,Hf) oxide layer is reduced from 200 µm to 120 µm by the addition of 0.3 at% Y.

  19. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles

    PubMed Central

    Lellouche, Jonathan; Friedman, Alexandra; Gedanken, Aharon; Banin, Ehud

    2012-01-01

    Antibiotic resistance has prompted the search for new agents that can inhibit bacterial growth. Moreover, colonization of abiotic surfaces by microorganisms and the formation of biofilms is a major cause of infections associated with medical implants, resulting in prolonged hospitalization periods and patient mortality. In this study we describe a water-based synthesis of yttrium fluoride (YF3) nanoparticles (NPs) using sonochemistry. The sonochemical irradiation of an aqueous solution of yttrium (III) acetate tetrahydrate [Y(Ac)3 · (H2O)4], containing acidic HF as the fluorine ion source, yielded nanocrystalline needle-shaped YF3 particles. The obtained NPs were characterized by scanning electron microscopy and X-ray elemental analysis. NP crystallinity was confirmed by electron and powder X-ray diffractions. YF3 NPs showed antibacterial properties against two common bacterial pathogens (Escherichia coli and Staphylococcus aureus) at a μg/mL range. We were also able to demonstrate that antimicrobial activity was dependent on NP size. In addition, catheters were surface modified with YF3 NPs using a one-step synthesis and coating process. The coating procedure yielded a homogeneous YF3 NP layer on the catheter, as analyzed by scanning electron microscopy and energy dispersive spectroscopy. These YF3 NP-modified catheters were investigated for their ability to restrict bacterial biofilm formation. The YF3 NP-coated catheters were able to significantly reduce bacterial colonization compared to the uncoated surface. Taken together, our results highlight the potential to further develop the concept of utilizing these metal fluoride NPs as novel antimicrobial and antibiofilm agents, taking advantage of their low solubility and providing extended protection. PMID:23152681

  20. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123

    PubMed Central

    Mellado-Vázquez, Rebeca; García-Hernández, Margarita; López-Marure, Arturo; López-Camacho, Perla Yolanda; Morales-Ramírez, Ángel de Jesús; Beltrán-Conde, Hiram Isaac

    2014-01-01

    Yttrium oxide (Y2O3) nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1). Fourier transform infrared spectroscopy (FTIR) results revealed a characteristic absorption band of Y–O vibrations typical of Y2O3 matrix. The structural phase was analyzed by X-ray diffraction (XRD), showing the characteristic cubic phase in all systems. The diffraction peak that presented the major intensity corresponded to the sample prepared from yttrium chloride incorporating P-123 in a molar ratio of P-123:Y = 2:1 at 900 °C. Crystallites sizes were determined by Scherrer equation as between 21 nm and 32 nm. Antioxidant properties were estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assays; the results are discussed. PMID:28788211

  1. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen.

    PubMed

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-09-01

    An electrochemical sensor was prepared by modifying a glassy carbon electrode (GCE) with a composite of yttrium (III) oxide nanoparticles (Y2O3NPs) and carbon nanotubes (CNTs) for the determination of acetaminophen (ACT). Compared with a bare GCE and CNTs/GCE, the Y2O3NPs/CNTs/GCE exhibited a well-defined redox couple for ACT and highly enhanced the current response. The separations in the anodic and cathodic peak potentials (ΔEp) for ACT were 552mV, 24mV and 10mV at ba4re GCE, CNTs/GCE and Y2O3NPs/CNTs/GCE, respectively. The observation of only 10mV of ΔEp for ACT at Y2O3NPs/CNTs/GCE was a clear indication of a great acceleration of the electrode process compared to bare GCE and GCE modified with CNTs. Also, l-ascorbic acid (l-AA) and l-tyrosine (l-TRY) did not interfere with the selective determination of ACT. Square wave voltammetry (SWV) was performed for the quantification of ACT. A linear plot was obtained for current responses versus the concentrations of ACT over the range from 1.0×10(-10) to 1.8×10(-8)M with a detection limit of 3.0×10(-11)M (based on 3Sb/m). The proposed composite material provided high electrocatalytic activity, improved voltammetric behavior, good selectivity and good reproducibility. The accurate quantification of ACT makes the proposed electrode of great interest for the public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Multifunctional rare-Earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents.

    PubMed

    Abdesselem, Mouna; Schoeffel, Markus; Maurin, Isabelle; Ramodiharilafy, Rivo; Autret, Gwennhael; Clément, Olivier; Tharaux, Pierre-Louis; Boilot, Jean-Pierre; Gacoin, Thierry; Bouzigues, Cedric; Alexandrou, Antigoni

    2014-11-25

    Collecting information on multiple pathophysiological parameters is essential for understanding complex pathologies, especially given the large interindividual variability. We report here multifunctional nanoparticles which are luminescent probes, oxidant sensors, and contrast agents in magnetic resonance imaging (MRI). Eu(3+) ions in an yttrium vanadate matrix have been demonstrated to emit strong, nonblinking, and stable luminescence. Time- and space-resolved optical oxidant detection is feasible after reversible photoreduction of Eu(3+) to Eu(2+) and reoxidation by oxidants, such as H2O2, leading to a modulation of the luminescence emission. The incorporation of paramagnetic Gd(3+) confers in addition proton relaxation enhancing properties to the system. We synthesized and characterized nanoparticles of either 5 or 30 nm diameter with compositions of GdVO4 and Gd0.6Eu0.4VO4. These particles retain the luminescence and oxidant detection properties of YVO4:Eu. Moreover, the proton relaxivity of GdVO4 and Gd0.6Eu0.4VO4 nanoparticles of 5 nm diameter is higher than that of the commercial Gd(3+) chelate compound Dotarem at 20 MHz. Nuclear magnetic resonance dispersion spectroscopy showed a relaxivity increase above 10 MHz. Complexometric titration indicated that rare-earth leaching is negligible. The 5 nm nanoparticles injected in mice were observed with MRI to concentrate in the liver and the bladder after 30 min. Thus, these multifunctional rare-earth vanadate nanoparticles pave the way for simultaneous optical and magnetic resonance detection, in particular, for in vivo localization evolution and reactive oxygen species detection in a broad range of physiological and pathophysiological conditions.

  3. Luminescent properties of ZrO2:Tb nanoparticles for applications in neuroscience

    NASA Astrophysics Data System (ADS)

    Słońska, A.; Kaszewski, J.; Wolska-Kornio, E.; Witkowski, B.; Wachnicki, Ł.; Mijowska, E.; Karakitsou, V.; Gajewski, Z.; Godlewski, M.; Godlewski, M. M.

    2016-09-01

    In this paper a new generation of non-toxic nanoparticles based on the zirconium oxide doped with 0.5%Tb and co-doped by the range of 0-70% with Y was evaluated for the use as a fluorescent biomarker of neuronal trafficking. The ZrO2:Tb nanoparticles were created by microwave driven hydrothermal method. Influence of the yttrium content and thermal processing on the Tb3+ related luminescence emission was discussed. The higher intensities were achieved, when host was cubic and for the nanoparticles with 33 nm. Presence of yttrium was associated with the energy coupling of the host and dopant, wide excitation band is present at 309 and 322 nm before and after calcination respectively.

  4. Yttrium oxide based three dimensional metamaterials for visible light cloaking

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2014-04-01

    Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.

  5. Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies.

    PubMed

    Maria Magdalane, C; Kaviyarasu, K; Judith Vijaya, J; Siddhardha, B; Jeyaraj, B

    2017-08-01

    Ceria (CeO 2 ) is an exciting alternative noble metal catalyst, because it has ability to release and absorb oxygen in the redox system, and function as an oxygen buffer. In this study, heterostructured catalysts consisting of CeO 2 /Y 2 O 3 nanocomposites were successfully synthesized by hydrothermal method in the presence of sodium hydroxide as a reducing agent from cerium nitrate and yttrium nitrate as a precursor which was then evaluated for its photocatalytic activity in the degradation of Rhodamine B (RhB) synthetic dye. Scanning electron microscopy (SEM) imparts the surface morphology and size of the prepared sample. Elemental compositions and the purity of the nanoparticles are proved by energy dispersive X-ray Spectroscopy (EDX). CeO 2 /Y 2 O 3 nanoparticles were made up of CeO and YO bonds which are confirmed by Fourier transform infrared spectroscopy (FTIR). Synthesis temperature and pressure, during hydrothermal reactions, plays a critical role in controlling the shape, size, oxygen vacancy concentration, and low temperature reducibility in CeO 2 based nanocomposites. The lattice constants and oxygen vacancy concentrations of ceria nanoparticles also depend upon the concentration of hydroxide ion which leads to better morphology at low temperature and pressure. Hydrogenation of p-nitrophenol to p-aminophenol with a reducing agent is conveniently carried out in aqueous medium by using this binary metal oxide catalyst. Further, the photocatalytic performance of the synthesized nanoparticles was monitored by photocatalytic degradation of Rhodamine B synthetic dye under UV light irradiation. To get maximum photocatalytic degradation (PCD) efficiency, we have used H 2 O 2 for the generation of excess reactive oxygen species (ROS). In addition, the antibacterial activity of nanoparticles against bacteria was also examined. The observed antibacterial activity results are comparable with the results obtained using the standard antibiotic. Copyright © 2017

  6. Electrosprayed Cerium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Azar, Pedram Bagherzadeh; Tavanai, Hossein; Allafchian, Ali Reza

    2018-04-01

    Cerium oxide nanoparticles were fabricated via the calcination of electrosprayed polyvinyl alcohol (PVA)/cerium nitrate nanoparticles. The effect of material variables of PVA/cerium nitrate electrospraying solution, i.e. viscosity, surface tension and electrical conductivity, as well as important process variables like voltage, nozzle-collector distance and feed rate on cerium oxide nanoparticle size, are investigated. Scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analysis have also been carried out. The results showed that electrospraying of PVA/cerium nitrate (25% w/v) was only possible with PVA concentrations in the range of 5-8% w/v. With other conditions constant, decreasing PVA concentration, decreasing feed rate, increasing nozzle-collector distance and increasing voltage decreased the size of the final cerium oxide nanoparticles. The gross average size of all cerium oxide nanoparticles obtained in this work was about 80 nm. FTIR analysis proved the formation of cerium oxide after the calcination process.

  7. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A ceramic composition composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to aobut 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  8. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  9. Thermoelectric properties of the yttrium-doped ceramic oxide SrTiO3

    NASA Astrophysics Data System (ADS)

    Khan, Tamal Tahsin; Ur, Soon-Chul

    2017-01-01

    The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO3 at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO3. The doping level in SrTiO3 was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO3 provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.

  10. Understanding microstrain anisotropy in yttrium oxide synthesized by sol-gel route

    NASA Astrophysics Data System (ADS)

    Murugesan, S.; Thirumurugesan, R.; Parameswaran, P.

    2018-04-01

    Yttrium oxide was synthesized by wet chemical route and calcined at various temperatures. On x-ray diffraction analysis of the material using Williamson-Hall analysis followed by Rietveld analysis indicates that the powder exists in nano crystallite size with lattice strain. The spherical harmonics analysis model of microstrain indicates the presence of strain anisotropy. The change in crystal structure lattice parameter, atomic coordinates of Y, O in yttria and the bond length analysis of the calcined powder reveals the presence of oxygen vacancies in the system.

  11. Formation of Yttrium Oxysulfide Phosphor at Room Temperature

    NASA Astrophysics Data System (ADS)

    Shoji, Masahiko; Sakurai, Kenji

    2005-12-01

    Europium-doped yttrium oxysulfide (Y2O2S:Eu) phosphor was successfully synthesized at room temperature from yttrium oxide, europium oxide, and sulfur. The method employs high-energy ball milling to enable a substitution reaction between oxygen and sulfur, unlike conventional methods, such as heating in a sulfurizing atmosphere. It was found that the material is fluorescent through X-ray irradiation, and the luminescence spectra exhibit four peaks in the wavelength region from 500 to 800 nm.

  12. Surface modification of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors.

    PubMed

    Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye

    2013-06-11

    We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.

  13. A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Cheng, Tonglei; Liao, Meisong; Xue, Xiaojie; Li, Jiang; Gao, Weiqing; Li, Xia; Chen, Danping; Zheng, Shupei; Pan, Yubai; Suzuki, Takenobu; Ohishi, Yasutake

    2016-03-01

    We design and fabricate a silica optical fiber doped with yttrium aluminosilicate (YAS, Y2O3-Al2O3-SiO2) nanoparticles in the core. The optical fiber is drawn directly from a silica tube with YAG (Y3Al5O12) ceramics and silica powders (the molar ratio 1:18) in the core at the temperature of ∼1950 °C. The YAS nanoparticles are formed during the optical fiber drawing process. Supercontinuum (SC) generation in the optical fiber is investigated at different pump wavelength. At the pump wavelength of ∼1750 nm which is in the deep anomalous dispersion region, SC spectrum evolution is mainly due to multiple solitons and dispersive waves (DWs), and three pairs of multiple optical solitons and DWs are observed. When the pump wavelength shifts to ∼1500 nm which is close to the zero-dispersion wavelength (ZDW), flattened SC spectrum with ±7 dB uniformity is obtained at the wavelength region of ∼990-1980 nm, and only one obvious soliton and DW are observed. At the pump wavelength of ∼1100 nm, a narrow SC spectrum from ∼1020 to 1180 nm is obtained in the normal dispersion region due to self-phase modulation (SPM) effect.

  14. A divalent rare earth oxide semiconductor: Yttrium monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminaga, Kenichi; Sei, Ryosuke; Department of Chemistry, Tohoku University, Sendai 980-8578

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor.more » Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.« less

  15. Effect of K3PO4 addition as sintering inhibitor during calcination of Y2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Soga, K.; Okumura, Y.; Tsuji, K.; Venkatachalam, N.

    2009-11-01

    Erbium-doped yttrium oxide nanoparticle is one of the most important for fluorescence bioimaging under near infrared excitation. Particle size of it below 100 nm is an important requirement for a cellular bioimaging. However, the synthesis with such small particles is difficult at the calcination temperature above 1200 °C due to the sintering and crystal growth of the particles. In this study, yttrium oxide nanoparticles with average size of 30 nm were successfully synthesized by using K3PO4 as a sintering inhibitor during the calcination. A single phase of cubic Y2O3 as the resultant material was confirmed by XRD, which was also confirmed to emit a bright upconversion emission under 980-nm excitation. Improvement of chemical durability due to the introduction of phosphate group on the surface of the Y2O3 particles is also reported.

  16. Titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition and a process for making the same

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1991-01-01

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  17. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key

  18. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  19. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  20. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  1. Conducting metal oxide and metal nitride nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst supportmore » in a fuel cell.« less

  2. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles.

    PubMed

    Cochran, David B; Wattamwar, Paritosh P; Wydra, Robert; Hilt, J Zach; Anderson, Kimberly W; Eitel, Richard E; Dziubla, Thomas D

    2013-12-01

    The biomedical use of superparamagnetic iron oxide nanoparticles has been of continued interest in the literature and clinic. Their ability to be used as contrast agents for imaging and/or responsive agents for remote actuation makes them exciting materials for a wide range of clinical applications. Recently, however, concern has arisen regarding the potential health effects of these particles. Iron oxide toxicity has been demonstrated in in vivo and in vitro models, with oxidative stress being implicated as playing a key role in this pathology. One of the key cell types implicated in this injury is the vascular endothelial cells. Here, we report on the development of a targeted polymeric antioxidant, poly(trolox ester), nanoparticle that can suppress oxidative damage. As the polymer undergoes enzymatic hydrolysis, active trolox is locally released, providing a long term protection against pro-oxidant agents. In this work, poly(trolox) nanoparticles are targeted to platelet endothelial cell adhesion molecules (PECAM-1), which are able to bind to and internalize in endothelial cells and provide localized protection against the cytotoxicity caused by iron oxide nanoparticles. These results indicate the potential of using poly(trolox ester) as a means of mitigating iron oxide toxicity, potentially expanding the clinical use and relevance of these exciting systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas.

    PubMed

    Tanaka, Manabu; Kageyama, Takuya; Sone, Hirotaka; Yoshida, Shuhei; Okamoto, Daisuke; Watanabe, Takayuki

    2016-04-06

    Lithium metal oxide nanoparticles were synthesized by induction thermal plasma. Four different systems-Li-Mn, Li-Cr, Li-Co, and Li-Ni-were compared to understand formation mechanism of Li-Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry and electron microscopy showed that Li-Me oxide nanoparticles were successfully synthesized in Li-Mn, Li-Cr, and Li-Co systems. Spinel structured LiMn₂O₄ with truncated octahedral shape was formed. Layer structured LiCrO₂ or LiCoO₂ nanoparticles with polyhedral shapes were also synthesized in Li-Cr or Li-Co systems. By contrast, Li-Ni oxide nanoparticles were not synthesized in the Li-Ni system. Nucleation temperatures of each metal in the considered system were evaluated. The relationship between the nucleation temperature and melting and boiling points suggests that the melting points of metal oxides have a strong influence on the formation of lithium metal oxide nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.

  4. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  5. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  6. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan [Santa Fe, NM; Mendoza, Daniel [Santa Fe, NM; Chen, Chun-Ku [Albuquerque, NM

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  7. Pulsed Laser Synthesized Magnetic Cobalt Oxide Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhatta, Hari; Gupta, Ram; Ghosh, Kartik; Kahol, Pawan; Delong, Robert; Wanekawa, Adam

    2011-03-01

    Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Biocompatible and chemically stable magnetic metal oxide nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication of magnetic cobalt oxide nanoparticles using a safe, cost effective, and easy to handle technique that is capable of producing nanoparticles free of any contamination. Cobalt oxide nanoparticles have been synthesized at room temperature using cobalt foil by pulsed laser ablation technique. These cobalt oxide nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and dynamic laser light scattering (DLLS). The magnetic cobalt oxides nanoparticles were stabilized in glucose solutions of various concentrations in deionized water. The presence of UV-Vis absorption peak at 270 nm validates the nature of cobalt oxide nanoparticles. The DLLS size distributions of nanoparticles are in the range of 110 to 300 nm, which further confirms the presence nanoparticles. This work is partially supported by National Science Foundation (DMR- 0907037).

  8. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-07-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were systematically investigated by high-resolution transmission electron microscopy. The majority of oxide nanoparticles were identified to be orthorhombic YAlO3. During hot consolidation and extrusion, they develop a coherent interface and a near cuboid-on-cube orientation relationship with the ferrite matrix in the material. After annealing at 1200 °C for 1 h, however, the orientation relationship between the oxide nanoparticles and the matrix becomes arbitrary, and their interface mostly incoherent. Annealing at 1300 °C leads to considerable coarsening of oxide nanoparticles, and a new orientation relationship of pseudo-cube-on-cube between oxide nanoparticles and ferrite matrix develops. The reason for the developing interfaces and orientation relationships between oxide nanoparticles and ferrite matrix under different conditions is discussed.

  9. Morphology and magnetic characterisation of aluminium substituted yttrium-iron garnet nanoparticles prepared using sol gel technique.

    PubMed

    Yahya, Noorhana; Al Habashi, Ramadan Masoud; Koziol, Krzysztof; Borkowski, Rafal Dunin; Akhtar, Majid Niaz; Kashif, Muhammad; Hashim, Mansor

    2011-03-01

    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.

  10. Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications.

    PubMed

    Maldonado-Camargo, Lorena; Unni, Mythreyi; Rinaldi, Carlos

    2017-01-01

    Iron oxide nanoparticles are of interest in a wide range of biomedical applications due to their response to applied magnetic fields and their unique magnetic properties. Magnetization measurements in constant and time-varying magnetic field are often carried out to quantify key properties of iron oxide nanoparticles. This chapter describes the importance of thorough magnetic characterization of iron oxide nanoparticles intended for use in biomedical applications. A basic introduction to relevant magnetic properties of iron oxide nanoparticles is given, followed by protocols and conditions used for measurement of magnetic properties, along with examples of data obtained from each measurement, and methods of data analysis.

  11. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    USDA-ARS?s Scientific Manuscript database

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  12. Dielectric properties and activation behavior of gadolinium doped nanocrystalline yttrium chromite

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Basu, S.; Meikap, A. K.

    2018-04-01

    Gadolinium doped Yttrium Chromite nanoparticles are synthesized following sol-gel method. The formation of the nanoparticles are confirmed by XRD and TEM measurements. Dielectric permittivity and dielectric loss are estimated within the temperature range 298K to 523K and in the frequency range 20 Hz to 1 MHz. Dielectric permittivity follows the power law ɛ'(f) ∝ Tm. It is observed that the temperature exponent m increases with the decreasing frequency. The temperature variation of resistivity shows that the samples have semiconducting behavior. The activation energy is also measured.

  13. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shadab Ali; Ahmad, Absar, E-mail: a.ahmad@ncl.res.in

    2013-10-15

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods formore » the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy

  14. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  15. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary tomore » purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.« less

  16. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Targeted iron oxide nanoparticles for the enhancement of radiation therapy

    PubMed Central

    Hauser, Anastasia K.; Mitov, Mihail I.; Daley, Emily F.; McGarry, Ronald C.; Anderson, Kimberly W.; Hilt, J. Zach

    2017-01-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  18. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Ferella, Francesco

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equalmore » to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.« less

  19. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  20. Proton trapping in yttrium-doped barium zirconate.

    PubMed

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C; Grey, Clare P; Haile, Sossina M

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol(-1), as well as the general activation energy, 16 kJ mol(-1), to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  1. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Yuan; Kan, Yuwei; Clearfield, Abraham

    2015-12-21

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correctingmore » factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.« less

  2. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans.

    PubMed

    Vijayanandan, Ajuy Sundar; Balakrishnan, Raj Mohan

    2018-07-15

    Metallic oxide nanoparticles have profound applications in electrochemical devices, supercapacitors, biosensors and batteries. Though four fungi were isolated from Nothapodytes foetida, Aspergillus nidulans was found to be suitable for synthesis of cobalt oxide nanoparticles, as it has proficient tolerance towards metal under study. The broth containing precursor solution and organism Aspergillus nidulans had changed from pink to orange indicating the formation of nanoparticles. Characterization by x-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive x-ray analysis (EDX) confirmed the formation of spinel cobalt oxide nanoparticles at an average size of 20.29 nm in spherical shape with sulfur-bearing proteins acting as a capping agent for the synthesized nanoparticles. The nanoparticles could be applied in energy storage, as a specific capacitance of 389 F/g showed competence. The study was a greener attempt to synthesize cobalt oxide nanoparticles using endophytic fungus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  4. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    NASA Astrophysics Data System (ADS)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  5. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  6. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin.

    PubMed

    Gruskiene, Ruta; Krivorotova, Tatjana; Staneviciene, Ramune; Ratautas, Dalius; Serviene, Elena; Sereikaite, Jolanta

    2018-05-08

    Nisin is a known bacteriocin approved as a food additive for food preservation. It exhibits a wide spectrum antimicrobial activity against Gram-positive bacteria. Iron oxide magnetic nanoparticles were synthesized and characterized by X-ray diffraction method. A main part of iron oxide nanoparticles was found to be maghemite though a small quantity of magnetite could also be present. Magnetic nanoparticles were stabilized by citric, ascorbic, gallic or glucuronic acid coating. Stable iron oxide magnetic nanoparticles were functionalized by nisin using a simple and low cost adsorption method. Nisin loading was confirmed by FT-IR spectra, thermogravimetric analysis, dynamic light scattering and atomic force microscopy methods. Nisin-loaded iron oxide magnetic nanoparticles were stable at least six weeks as judged by the measurements of zeta-potential and hydrodynamic diameter. The antimicrobial activity of nisin-loaded iron oxide magnetic nanoparticles was demonstrated toward Gram-positive bacteria. Functionalized nanoparticles could therefore find the application as antimicrobials in innovative and emerging technologies based on the magnetic field. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  8. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  9. MCrAlY bond coat with enhanced Yttrium layer

    DOEpatents

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  10. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  11. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  12. Thermal effects on the structural properties of tungsten oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Yeh; Wu, Chung-Yi; Tsai, Meng-Hung; Lin, Hong-Ming; Tsai, Wen-Li; Hwu, Yeukuang

    2004-06-01

    Tungsten oxide nanoparticles are prepared by evaporating and oxidizing the tungsten boat in helium and oxygen atmosphere and then quenched to the liquid nitrogen temperature. The as-prepared tungsten oxide nanoparticles are porous-free with uniform size. The morphology and particle size distribution of the as-prepared and after sinter treatments tungsten oxide nanoparticles are revealed by TEM and AFM. The long-range order of these nanoparticles can be examined by X-ray diffraction technique. The as-prepared nanoparticles exhibit a mixture structure of monoclinic and hexagonal crystals. Preliminary X-ray diffraction results indicate that the hexagonal structure is transformed to monoclinic structure after annealing to above 600°C. In order to better distinguish the structural properties of the tungsten oxide (WO3- x) nanoparticles before and after annealing, the X-ray absorption spectrum technique is utilized; thus, the detailed local atomic arrangement of oxygen and/or tungsten can be determined. According to the XAS result, the shape of the W L3-edge undergoes no considerable changes. This infers that structural transformation of tungsten oxide nanoparticle may be caused by the migration of oxygen after sintering. From the O K-edge of absorption spectrum, it suggests that a mixture phase structure is obtained when sintered below 300°C. And this result indicates that heat treatment to approximately 600°C produces a stable structure of a monoclinic crystal of WO3.

  13. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  14. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications.

    PubMed

    Sabir, Sidra; Arshad, Muhammad; Chaudhari, Sunbal Khalil

    2014-01-01

    Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles.

  15. Manganese oxide nanoparticles, methods and applications

    DOEpatents

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  16. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  17. Design of Fucoidan Functionalized - Iron Oxide Nanoparticles for Biomedical Applications.

    PubMed

    Tran, Khanh Nghia; Tran, Phuong Ha-Lien; Vo, Toi Van; Tran, Thao Truong-Dinh

    2016-01-01

    This research aims to develop an iron oxide nanoparticle drug delivery system utilizing a recent material discovered from ocean, fucoidan. The material has drawn much interest due to many biomedical functions that have been proven for human health. One interesting point herein is that fucoidan is not only a sulfated polysaccharide, a polymer for stabilization of iron oxide nanoparticles, but plays a role of an anticancer agent also. Various approaches were investigated to optimize the high loading efficiency and explain the mechanism of nanoparticle formations. Fucoidan was functionalized on iron oxide nanoparticles by a direct coating or via amine groups. Also, a hydrophobic part of oleic acid was conjugated to the amine groups for a more favorable loading of poorly water-soluble anticancer drugs. This study proposed a novel system and an efficient method to functionalize fucoidan on iron oxide nanoparticle systems which will lead to a facilitation of a double strength treatment of cancer.

  18. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications

    PubMed Central

    Sabir, Sidra; Arshad, Muhammad

    2014-01-01

    Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles. PMID:25436235

  19. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin, E-mail: miao2@illinois.edu; Mo, Kun; Cui, Bai

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between themore » oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.« less

  20. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  1. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle

  2. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana.

    PubMed

    Lee, Chang Woo; Mahendra, Shaily; Zodrow, Katherine; Li, Dong; Tsai, Yu-Chang; Braam, Janet; Alvarez, Pedro J J

    2010-03-01

    Phytotoxicity is an important consideration to understand the potential environmental impacts of manufactured nanomaterials. Here, we report on the effects of four metal oxide nanoparticles, aluminum oxide (nAl(2)O(3)), silicon dioxide (nSiO(2)), magnetite (nFe(3)O(4)), and zinc oxide (nZnO), on the development of Arabidopsis thaliana (Mouse-ear cress). Three toxicity indicators (seed germination, root elongation, and number of leaves) were quantified following exposure to each nanoparticle at three concentrations: 400, 2,000, and 4,000 mg/L. Among these particles, nZnO was most phytotoxic, followed by nFe(3)O(4), nSiO(2), and nAl(2)O(3), which was not toxic. Consequently, nZnO was further studied to discern the importance of particle size and zinc dissolution as toxicity determinants. Soluble zinc concentrations in nanoparticle suspensions were 33-fold lower than the minimum inhibitory concentration of dissolved zinc salt (ZnCl(2)), indicating that zinc dissolution could not solely account for the observed toxicity. Inhibition of seed germination by ZnO depended on particle size, with nanoparticles exerting higher toxicity than larger (micron-sized) particles at equivalent concentrations. Overall, this study shows that direct exposure to nanoparticles significantly contributed to phytotoxicity and underscores the need for eco-responsible disposal of wastes and sludge containing metal oxide nanoparticles.

  3. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route.

    PubMed

    Happy Agarwal; Soumya Menon; Venkat Kumar, S; Rajeshkumar, S

    2018-04-25

    A large array of diseases caused by bacterial pathogens and origination of multidrug resistance in their gene provokes the need of developing new vectors or novel drug molecules for effective drug delivery and thus, better treatment of disease. The nanoparticle has emerged as a novel drug molecule in last decade and has been used in various industrial fields like cosmetics, healthcare, agricultural, pharmaceuticals due to their high optical, electronic, medicinal properties. Use of nanoparticles as an antibacterial agent remain in current studies with metal nanoparticles like silver, gold, copper, iron and metal oxide nanoparticles like zinc oxide, copper oxide, titanium oxide and iron oxide nanoparticles. The high anti-bacterial activity of nanoparticles is due to their large surface area to volume ratio which allows binding of a large number of ligands on nanoparticle surface and hence, its complexation with receptors present on the bacterial surface. Green synthesis of Zinc Oxide Nanoparticle (ZnO NP) and its anti-bacterial application has been particularly discussed in the review literature. The present study highlights differential nanoparticle attachment to gram + and gram - bacterial surface and different mechanism adopted by nanoparticle for bacterial control. Pharmacokinetics and applications of ZnO NP are also discussed briefly. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells.

    PubMed

    Radziun, E; Dudkiewicz Wilczyńska, J; Książek, I; Nowak, K; Anuszewska, E L; Kunicki, A; Olszyna, A; Ząbkowski, T

    2011-12-01

    The rapid development of nanotechnology raises both enthusiasm and anxiety among researchers, which is related to the safety use of the manufactured materials. Thus, the aim of this study was to investigate the effect of aluminium oxide nanoparticles on the viability of selected mammalian cells in vitro. The aluminium oxide nanoparticles were characterised using SEM and BET analyses. Based on Zeta (ζ) potential measurements and particle size distribution, the tested suspensions of aluminium oxide nanoparticles in water and nutrient solutions with or without FBS were classified as unstable. Cell viability, the degree of apoptosis induction and nanoparticles internalization into the cells were assessed after 24 h of cell exposure to Al2O3 nanoparticles. Our results confirm the ability of aluminium oxide nanoparticles to penetrate through the membranes of L929 and BJ cells. Despite this, there was no significant increase in apoptosis or decrease in cell viability observed, suggesting that aluminium oxide nanoparticles in the tested range of concentrations has no cytotoxic effects on the selected mammalian cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lengyel, Attila; Tolnai, Gyula; Klencsár, Zoltán; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Herojit Singh, L.; Homonnay, Zoltán; Szalay, Roland; Németh, Péter; Szabolcs, Bálint; Ristic, Mira; Music, Svetozar; Kuzmann, Ernő

    2018-05-01

    57Fe Mössbauer spectroscopy, XRD, and TEM were used to investigate the effect of mandelic- and salicylic acid coatings on the iron oxide nanoparticles. These two carboxylic acids have similar molecules size and stoichiometry, but different structure and acidity. Significant differences were observed between the Mössbauer spectra of samples coated with mandelic acid and salicylic acid. These results indicate that the occurrence of iron microenvironments in the mandelic- and salicylic acid-coated iron oxide nanoparticles is different. The results can be interpreted in terms of the influence of the acidity of carboxylic acids on the formation, core/shell structure, and oxidation of coated iron oxide nanocomposites.

  6. Zinc oxide nanoparticles as selective killers of proliferating cells.

    PubMed

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant.

  7. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  8. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  9. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Sphericalmore » shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.« less

  10. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    PubMed Central

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2014-01-01

    To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease. PMID:24791147

  11. Viscous properties of aluminum oxide nanotubes and aluminium oxide nanoparticles - silicone oil suspensions

    NASA Astrophysics Data System (ADS)

    Thapa, Ram; French, Steven; Delgado, Adrian; Ramos, Carlos; Gutierrez, Jose; Chipara, Mircea; Lozano, Karen

    2010-03-01

    Electrorheological (ER) fluids consisting of γ-aluminum oxide nanotubes and γ-aluminum oxide nanoparticles dispersed within silicone oil were prepared. The relationship between shear stress and shear rate was measured and theoretically simulated by using an extended Bingham model for both the rheological and electrorheological features of these systems. Shear stress and viscosity showed a sharp increase for the aluminum oxide nanotubes suspensions subjected to applied electric fields whereas aluminum oxide nanoparticles suspensions showed a moderate change. It was found that the transition from liquid to solid state (mediated by the applied electric field) can be described by a power law and that for low applied voltages the relationship is almost linear.

  12. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

    PubMed

    Strayer, Megan E; Binz, Jason M; Tanase, Mihaela; Shahri, Seyed Mehdi Kamali; Sharma, Renu; Rioux, Robert M; Mallouk, Thomas E

    2014-04-16

    Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microscopy (ETEM), and synchrotron X-ray absorption and scattering techniques. Nanosheets derived from the layered oxides KCa2Nb3O10, K4Nb6O17, and RbTaO3 were compared as supports to nanosheets of Na-TSM, a synthetic fluoromica (Na0.66Mg2.68(Si3.98Al0.02)O10.02F1.96), and α-Zr(HPO4)2·H2O. High surface area SiO2 and γ-Al2O3 supports were also used for comparison in the ITC experiments. A Born-Haber cycle analysis of ITC data revealed an exothermic interaction between Rh(OH)3 nanoparticles and the layered niobate and tantalate supports, with ΔH values in the range -32 kJ·mol(-1) Rh to -37 kJ·mol(-1) Rh. In contrast, the interaction enthalpy was positive with SiO2 and γ-Al2O3 supports. The strong interfacial bonding in the former case led to "reverse" ripening of micrometer-size Rh(OH)3, which dispersed as 0.5 to 2 nm particles on the niobate and tantalate supports. In contrast, particles grown on Na-TSM and α-Zr(HPO4)2·H2O nanosheets were larger and had a broad size distribution. ETEM, X-ray absorption spectroscopy, and pair distribution function analyses were used to study the growth of supported nanoparticles under oxidizing and reducing conditions, as well as the transformation from Rh(OH)3 to Rh nanoparticles. Interfacial covalent bonding, possibly strengthened by d-electron acid/base interactions, appear to stabilize Rh(OH)3, Rh2O3, and Rh nanoparticles on niobate and tantalate supports.

  13. Synthesis of oxide-free aluminum nanoparticles for application to conductive film

    NASA Astrophysics Data System (ADS)

    Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo

    2018-02-01

    Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

  14. Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rezaei-Zarchi, Saeed; Imani, Saber; mohammad Zand, Ali; Saadati, Mojtaba; Zaghari, Zahra

    2012-09-01

    Platinum oxide nanoparticles were prepared by a simple hydrothermal route and chemical reduction using carbohydrates (fructose and sucrose) as the reducing and stabilizing agents. In comparison with other metals, platinum oxide has less environmental pollution. Therefore, Pt is considered an appropriate candidate to deal with environmental pathogens. The crystallite size of these nanoparticles was evaluated from X-ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) and was found to be 10 nm, which is the demonstration of EM bright field and transmission electron microscopy. The effect of carbohydrates on the morphology of the nanoparticles was studied using TEM. The nanoparticles were administered to the Pseudomonas stutzeri and Lactobacillus cultures, and the incubation was done at 37°C for 24 h. The nanocomposites exhibited interesting inhibitory as well as bactericidal activity against P. stutzeri and Lactobacillus species. Incorporation of nanoparticles also increased the thermal stability of the carbohydrates. The results of this paper showed that carbohydrates can serve as a carrier for platinum oxide nanoparticles, and nanocomposites can have potential biological applications.

  15. Study of physical properties of metal oxide nanoparticles obtained in acoustoplasma discharge

    NASA Astrophysics Data System (ADS)

    Bulychev, N. A.; Kazaryan, M. A.; Zakharyan, A. R.; Bodryshev, V. V.; Kirichenko, M. N.; Shevchenko, S. N.; Yakunin, V. G.; Timoshenko, V. Y.; Bychenko, A. B.

    2018-04-01

    Nanoparticles of tungsten, copper, iron, and zinc oxides were synthesized in acoustoplasma discharge. Their size distribution was studied by electron microscopy and laser correlation spectroscopy. Ultrasound was found to narrow significantly the size distribution width of zinc oxide nanoparticles. Water suspensions of zinc oxide nanoparticles showed photoluminescence in red and near infrared spectral ranges, which makes them a promising material for luminescent diagnostics of biological systems.

  16. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes duringmore » consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.« less

  17. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    DOEpatents

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2014-06-24

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  18. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    PubMed

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be

  19. IRON OXIDE NANOPARTICLE-INDUCED OXIDATIVE STRESS AND INFLAMMATION

    EPA Science Inventory

    1. Nanoparticle Physicochemical Characterizations
    2. We first focused on creating NP systems that could be used to test our hypotheses and assessing their stability in aqueous media. The iron oxide NP systems were not stable in cell culture medium o...

    3. Zinc oxide nanoparticles as selective killers of proliferating cells

      PubMed Central

      Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

      2011-01-01

      Background: It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Methods: Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. Results: In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Conclusion: Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant. PMID:21698081

  1. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide

  2. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasova, Irina I.

    Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells – myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase – to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vsmore » diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and ‘unmasking’ of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. - Highlights: • Nanoparticles can be degraded

  3. Hamaker constants of iron oxide nanoparticles.

    PubMed

    Faure, Bertrand; Salazar-Alvarez, German; Bergström, Lennart

    2011-07-19

    The Hamaker constants for iron oxide nanoparticles in various media have been calculated using Lifshitz theory. Expressions for the dielectric responses of three iron oxide phases (magnetite, maghemite, and hematite) were derived from recently published optical data. The nonretarded Hamaker constants for the iron oxide nanoparticles interacting across water, A(1w1) = 33 - 39 zJ, correlate relatively well with previous reports, whereas the calculated values in nonpolar solvents (hexane and toluene), A(131) = 9 - 29 zJ, are much lower than the previous estimates, particularly for magnetite. The magnitude of van der Waals interactions varies significantly between the studied phases (magnetite < maghemite < hematite), which highlights the importance of a thorough characterization of the particles. The contribution of magnetic dispersion interactions for particle sizes in the superparamagnetic regime was found to be negligible. Previous conjectures related to colloidal stability and self-assembly have been revisited on the basis of the new Lifshitz values of the Hamaker constants.

  4. Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in Caenorhabditis elegans

    PubMed Central

    Zanon, Tyler; Kappell, Anthony D.; Petrella, Lisa N.; Andersen, Erik C.; Hristova, Krassimira R.

    2016-01-01

    Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits

  5. High-resolution electronic spectra of yttrium oxide (YO): The D2Σ+-X2Σ+ transition.

    PubMed

    Zhang, Deping; Zhang, Qiang; Zhu, Boxing; Gu, Jingwang; Suo, Bingbing; Chen, Yang; Zhao, Dongfeng

    2017-03-21

    The D 2 Σ + -X 2 Σ + electronic absorption spectrum of the astrophysically relevant yttrium oxide (YO) molecule has been recorded for the first time in the 400-440 nm region using laser induced fluorescence. YO molecules are produced by corona discharge of oxygen between the tips of two yttrium needles in a supersonic jet expansion. An unambiguous spectroscopic identification of the D 2 Σ + -X 2 Σ + transition becomes possible from a combined analysis of the moderate-resolution laser excitation spectrum and dispersed fluorescence spectrum. We have also performed multi-state complete active space second order perturbation theory calculations on the first six doublets of YO, and the results support our assignment of the D 2 Σ + state. Accurate spectroscopic constants for D 2 Σ + ν' = 0 and 1 levels have been determined from a rotational analysis of the high resolution spectra that are recorded with a resolution of ∼0.018 cm -1 . Severe perturbations are observed in the experimental spectra and are considered to originate from interactions with at least one nearby 2/4 Π electronic state, e.g., the undetected C 2 Π state. We have also measured the radiative lifetimes of B 2 Σ + ν' = 0, and D 2 Σ + ν' = 0 and 1 states, based on which the B 2 Σ + -X 2 Σ + (0, 0) and D 2 Σ + -X 2 Σ + (0/1, 0) band oscillator strengths have been determined.

  6. High-resolution electronic spectra of yttrium oxide (YO): The D2Σ+-X2Σ+ transition

    NASA Astrophysics Data System (ADS)

    Zhang, Deping; Zhang, Qiang; Zhu, Boxing; Gu, Jingwang; Suo, Bingbing; Chen, Yang; Zhao, Dongfeng

    2017-03-01

    The D2Σ+ -X2Σ+ electronic absorption spectrum of the astrophysically relevant yttrium oxide (YO) molecule has been recorded for the first time in the 400-440 nm region using laser induced fluorescence. YO molecules are produced by corona discharge of oxygen between the tips of two yttrium needles in a supersonic jet expansion. An unambiguous spectroscopic identification of the D2Σ+ -X2Σ+ transition becomes possible from a combined analysis of the moderate-resolution laser excitation spectrum and dispersed fluorescence spectrum. We have also performed multi-state complete active space second order perturbation theory calculations on the first six doublets of YO, and the results support our assignment of the D2Σ+ state. Accurate spectroscopic constants for D2Σ+ ν ' = 0 and 1 levels have been determined from a rotational analysis of the high resolution spectra that are recorded with a resolution of ˜0.018 cm-1. Severe perturbations are observed in the experimental spectra and are considered to originate from interactions with at least one nearby 2/4Π electronic state, e.g., the undetected C2Π state. We have also measured the radiative lifetimes of B2 Σ+ ν ' = 0, and D2 Σ+ ν ' = 0 and 1 states, based on which the B2Σ+ -X2Σ+ (0, 0) and D2Σ+ -X2Σ+ (0/1, 0) band oscillator strengths have been determined.

  7. Mercury removal in wastewater by iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.

    2016-02-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.

  8. Effect of reactive element oxide coating on the high temperature oxidation behaviour of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Cueff, R.; Buscail, H.; Caudron, E.; Riffard, F.; Issartel, C.; El Messki, S.

    2004-05-01

    The influence of yttrium oxide coating (processed by the sol-gel method) on the oxidation behaviour of a commercial FeCrAl alloy (Kanthal A1) has been investigated during isothermal exposures in air at 1373 K. The scale growth kinetics of the uncoated alloy obey a parabolic rate law during the whole oxidation test, whereas the kinetic curves of the Y-coated specimen exhibit an initial transient stage for the first few hours, followed by a parabolic regime. The yttrium sol-gel coating deposited on the bare alloy does not provide the beneficial effect usually ascribed to reactive elements. No oxidation rate improvement of the coated alloy is observed, the parabolic rate constant values are strictly identical for both specimens. In situ X-ray diffraction reveals a marked influence of the reactive element on the composition of the oxide scale. The oxide layer formed on the yttrium-coated specimen comprised, in addition to α-alumina which is the main oxide also identified on the bare specimen, the presence of yttrium aluminates (YAlO 3, Y 3Al 5O 12) located in the outermost part of the layer.

  9. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution

    DOE PAGES

    Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.; ...

    2017-04-21

    Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less

  10. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.

    Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less

  11. Graphene Oxide-Promoted Reshaping and Coarsening of Gold Nanorods and Nanoparticles

    PubMed Central

    Pan, Hanqing; Low, Serena; Weerasuriya, Nisala; Shon, Young-Seok

    2015-01-01

    This paper describes thermally induced reshaping and coarsening behaviors of gold nanorods and nanoparticles immobilized on the surface of graphene oxide. Cetyltrimethylammonium bromide-stabilized gold nanorods with an aspect ratio of ~3.5 (54:15 nm) and glutathione-capped gold nanoparticles with an average core size of ~3 nm were synthesized and self-assembled onto the surface of graphene oxide. The hybrid materials were then heated at different temperatures ranging from 50 to 300 °C. The effects of heat treatments were monitored using UV–vis spectroscopy and transmission electron microscopy (TEM). These results were directly compared with those of heat-treated free-standing gold nanorods and nanoparticles without graphene oxide to understand the heat-induced morphological changes of the nanohybrids. The obtained results showed that the gold nanorods would undergo a complete reshaping to spherical particles at the temperature of 50 °C when they are assembled on graphene oxide. In comparison, the complete reshaping of free-standing gold nanorods to spherical particles would ultimately require a heating of the samples at 200 °C. In addition, the spherical gold nanoparticles immobilized on graphene oxide would undergo a rapid coarsening at the temperature of 100–150 °C, which was lower than the temperature (150–200 °C) required for visible coarsening of free-standing gold nanoparticles. The results indicated that graphene oxide facilitates the reshaping and coarsening of gold nanorods and nanoparticles, respectively, during the heat treatments. The stripping and spillover of stabilizing ligands promoted by graphene oxide are proposed to be the main mechanism for the enhancements in the heat-induced transformations of nanohybrids. PMID:25611371

  12. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  13. Adsorption of collagen to indium oxide nanoparticles and infrared emissivity study thereon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Yuming; Shan Yun; Sun Yanqing

    Adsorption of collagen to indium oxide nanoparticles was carried out in water-acetone solution at volumetric ratio of 1:1 with pH value varying from 3.2 to 9.3. As indicated by TGA, maximum collagen adsorption to indium oxide nanoparticles occurred at pH of 3.2. It was proposed that noncovalent interactions such as hydrogen bonding, hydrophilic and electrostatic interactions made main contributions to collagen adsorption. The IR emissivity values (8-14 {mu}m) of collagen-adsorbed indium oxide nanoparticles decreased significantly compared to either pure collagen or indium oxide nanoparticles possibly due to the interfacial interactions between collagen and indium oxide nanoparticles. And the lowest infraredmore » emissivity value of 0.587 was obtained at collagen adsorption of 1.94 g/100 g In{sub 2}O{sub 3}. On the chance of improved compatibility with organic adhesives, the chemical activity of adsorbed collagen was further confirmed by grafting copolymerization with methyl methacrylate by formation of polymer shell outside, as evidenced by IR spectrum and transmission electron microscopy.« less

  14. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    DOE PAGES

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; ...

    2016-11-23

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less

  15. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less

  16. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    PubMed Central

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  17. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  18. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  19. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-07-01

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a

  20. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Pulmonary Nanoparticle Exposure Disrupts Systemic Microvascular Nitric Oxide Signaling

    PubMed Central

    Nurkiewicz, Timothy R.; Porter, Dale W.; Hubbs, Ann F.; Stone, Samuel; Chen, Bean T.; Frazer, David G.; Boegehold, Matthew A.; Castranova, Vincent

    2009-01-01

    We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs is/are unclear. The purpose of this study was to identify alterations in the production of reactive species and endogenous nitric oxide (NO) after nanoparticle exposure, and determine the relative contribution of hemoproteins and oxidative enzymes in this process. Sprague-Dawley rats were exposed to fine TiO2 (primary particle diameter ∼1 μm) and TiO2 nanoparticles (primary particle diameter ∼21 nm) via aerosol inhalation at depositions of 4–90 μg per rat. As in previous intravital experiments in the spinotrapezius muscle, dose-dependent arteriolar dilations were produced by intraluminal infusions of the calcium ionophore A23187. Nanoparticle exposure robustly attenuated these endothelium-dependent responses. However, this attenuation was not due to altered microvascular smooth muscle NO sensitivity because nanoparticle exposure did not alter arteriolar dilations in response to local sodium nitroprusside iontophoresis. Nanoparticle exposure significantly increased microvascular oxidative stress by ∼60%, and also elevated nitrosative stress fourfold. These reactive stresses coincided with a decreased NO production in a particle deposition dose-dependent manner. Radical scavenging, or inhibition of either myeloperoxidase or nicotinamide adenine dinucleotide phosphate oxidase (reduced) oxidase partially restored NO production as well as normal microvascular function. These results indicate that in conjunction with microvascular dysfunction, nanoparticle exposure also decreases NO bioavailability through at least two functionally distinct mechanisms that may mutually increase local reactive species. PMID:19270016

  2. Production of Zr-89 using sputtered yttrium coin targets 89Zr using sputtered yttrium coin targets.

    PubMed

    Queern, Stacy Lee; Aweda, Tolulope Aramide; Massicano, Adriana Vidal Fernandes; Clanton, Nicholas Ashby; El Sayed, Retta; Sader, Jayden Andrew; Zyuzin, Alexander; Lapi, Suzanne Elizabeth

    2017-07-01

    An increasing interest in zirconium-89 ( 89 Zr) can be attributed to the isotope's half-life which is compatible with antibody imaging using positron emission tomography (PET). The goal of this work was to develop an efficient means of production for 89 Zr that provides this isotope with high radionuclidic purity and specific activity. We investigated the irradiation of yttrium sputtered niobium coins and compared the yields and separation efficiency to solid yttrium coins. The sputtered coins were irradiated with an incident beam energy of 17.5MeV or 17.8MeV providing a degraded transmitted energy through an aluminum degrader of 12.5MeV or 12.8MeV, respectively, with various currents to determine optimal cyclotron conditions for 89 Zr production. Dissolution of the solid yttrium coin took 2h with 50mL of 2M HCl and dissolution of the sputtered coin took 15-30min with 4mL of 2M HCl. During the separation of 89 Zr from the solid yttrium coins, 77.9 ± 11.2% of the activity was eluted off in an average of 7.3mL of 1M oxalic acid whereas for the sputtered coins, 91 ± 6% was eluted off in an average of 1.2mL of 1M oxalic acid with 100% radionuclidic purity. The effective specific activity determined via DFO-SCN titration from the sputtered coins was 108±7mCi/μmol as compared to 20.3mCi/μmol for the solid yttrium coin production. ICP-MS analysis of the yttrium coin and the sputtered coins showed 99.99% yttrium removed with 178μg of yttrium in the final solution and 99.93-100% of yttrium removed with remaining range of 0-42μg of yttrium in the final solution, respectively. The specific activity calculated for the solid coin and 3 different sputtered coins using the concentration of Zr found via ICP-MS was 140±2mCi/μmol, 300±30mCi/μmol, 410±60mCi/μmol and 1719±5mCi/μmol, respectively. Labeling yields of the 89 Zr produced via sputtered targets for 89 Zr- DFO-trastuzumab were >98%. Overall, these results show the irradiation of yttrium sputtered niobium coins

  3. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  4. Study of iron oxide nanoparticles in soil for remediation of arsenic

    NASA Astrophysics Data System (ADS)

    Shipley, Heather J.; Engates, Karen E.; Guettner, Allison M.

    2011-06-01

    There is a growing interest in the use of nanoparticles for environmental applications due to their unique physical and chemical properties. One possible application is the removal of contaminants from water. In this study, the use of iron oxide nanoparticles (19.3 nm magnetite and 37.0 nm hematite) were examined to remove arsenate and arsenite through column studies. The columns contained 1.5 or 15 wt% iron oxide nanoparticles and soil. Arsenic experiments were conducted with 1.5 wt% iron oxides at 1.5 and 6 mL/h with initial arsenate and arsenite concentrations of 100 μg/L. Arsenic release occurred after 400 PV, and 100% release was reached. A long-term study was conducted with 15 wt% magnetite nanoparticles in soil at 0.3 mL/h with an initial arsenate concentration of 100 μg/L. A negligible arsenate concentration occurred for 3559.6 pore volumes (PVs) (132.1 d). Eventually, the arsenate concentration reached about 20% after 9884.1 PV (207.9 d). A retardation factor of about 6742 was calculated indicating strong adsorption of arsenic to the magnetite nanoparticles in the column. Also, increased adsorption was observed after flow interruption. Other experiments showed that arsenic and 12 other metals (V, Cr, Co, Mn, Se, Mo, Cd, Pb, Sb, Tl, Th, U) could be simultaneously removed by the iron oxide nanoparticles in soil. Effluent concentrations were less than 10% for six out of the 12 metals. Desorption experiment showed partial irreversible sorption of arsenic to the iron oxide nanoparticle surface. Strong adsorption, large retardation factor, and resistant desorption suggest that magnetite and hematite nanoparticles have the potential to be used to remove arsenic in sandy soil possibly through in situ techniques.

  5. Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André

    2018-02-01

    An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.

  6. The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gebear-Eigzabher, Bellsabel

    Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products

  7. Facile self-assembly and stabilization of metal oxide nanoparticles.

    PubMed

    Charbonneau, Cecile; Holliman, Peter J; Davies, Matthew L; Watson, Trystan M; Worsley, David A

    2015-03-15

    This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3-5nm anatase nanocrystals and Degussa P25 titania particles (mean 21nm particle size). Our data show that the application of a high temperature heat treatment (450°C for 30min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300°C for 30min or by flash near infrared radiation sintering for 12s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect

    NASA Astrophysics Data System (ADS)

    Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming

    2017-09-01

    We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.

  9. Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Jie; Dong, Hao; Lyu, Guang-Ming; Zhang, Huai-Yuan; Ke, Jun; Kang, Li-Qun; Teng, Jia-Li; Sun, Ling-Dong; Si, Rui; Zhang, Jing; Liu, Yan-Jun; Zhang, Ya-Wen; Huang, Yun-Hui; Yan, Chun-Hua

    2015-08-01

    Due to their excellent anti-oxidation performance, CeO2 nanoparticles receive wide attention in pharmacological application. Deep understanding of the anti-oxidation mechanism of CeO2 nanoparticles is extremely important to develop potent CeO2 nanomaterials for anti-oxidation application. Here, we report a detailed study on the anti-oxidation process of CeO2 nanoparticles. The valence state and coordination structure of Ce are characterized before and after the addition of H2O2 to understand the anti-oxidation mechanism of CeO2 nanoparticles. Adsorbed peroxide species are detected during the anti-oxidation process, which are responsible for the red-shifted UV-vis absorption spectra of CeO2 nanoparticles. Furthermore, the coordination number of Ce in the first coordination shell slightly increased after the addition of H2O2. On the basis of these experimental results, the reactivity of coordination sites for peroxide species is considered to play a key role in the anti-oxidation performance of CeO2 nanoparticles. Furthermore, we present a robust method to engineer the anti-oxidation performance of CeO2 nanoparticles through the modification of the defect state and reducibility by doping with Gd3+. Improved anti-oxidation performance is also observed in cell culture, where the biocompatible CeO2-based nanoparticles can protect INS-1 cells from oxidative stress induced by H2O2, suggesting the potential application of CeO2 nanoparticles in the treatment of diabetes.Due to their excellent anti-oxidation performance, CeO2 nanoparticles receive wide attention in pharmacological application. Deep understanding of the anti-oxidation mechanism of CeO2 nanoparticles is extremely important to develop potent CeO2 nanomaterials for anti-oxidation application. Here, we report a detailed study on the anti-oxidation process of CeO2 nanoparticles. The valence state and coordination structure of Ce are characterized before and after the addition of H2O2 to understand the anti-oxidation

  10. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    NASA Astrophysics Data System (ADS)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  11. Effects of yttrium, aluminum, and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1979-01-01

    A cyclic furnace study was conducted between 990 - 280 C and 1095 - 280 C to evaluate the effects of yttrium, chromium, and aluminum concentrations in nickel base alloy bond coatings and also the effect of the bond coating thickness on the performance of yttria-stabilized zirconia thermal barrier coatings. The presence and the concentration of yttrium is very critical. Without yttrium, rapid oxidation of Ni-Al, Ni-Cr, and Ni-Cr-Al bond coatings causes zirconia thermal barrier coatings to fail very rapidly. Concentrations of chrominum and aluminum in Ni-Cr-Al-Y bond coating have a very significant effect on the thermal barrier coating life. This effect, however, is not as great as that due to yttrium. Furthermore, the thickness and the thickness uniformity also have a very significant effect on the life of the thermal barrier system.

  12. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness

    PubMed Central

    Rani, Aneela

    2016-01-01

    Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods. PMID:27413375

  13. The development of latent fingerprints by zinc oxide and tin oxide nanoparticles prepared by precipitation technique

    NASA Astrophysics Data System (ADS)

    Luthra, Deepali; Kumar, Sacheen

    2018-05-01

    Fingerprints are the very important evidence at the crime scene which must be developed clearly with shortest duration of time to solve the case. Metal oxide nanoparticles could be the mean to develop the latent fingerprints. Zinc oxide and Tin Oxide Nanoparticles were prepared by using chemical precipitation technique which were dried and characterized by X-ray diffraction, UV-Visible spectroscopy and FTIR. The size of zinc oxide crystallite was found to be 14.75 nm with minimum reflectance at 360 nm whereas tin oxide have the size of 90 nm and reflectance at minimum level 321 nm. By using these powdered samples on glass, plastic and glossy cardboard, latent fingerprints were developed. Zinc oxide was found to be better candidate than tin oxide for the fingerprint development on all the three types of substrates.

  14. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    PubMed

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  15. In situ probing of temperature in radio frequency thermal plasma using Yttrium ion emission lines during synthesis of yttria nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhamale, G. D.; Tiwari, N.; Mathe, V. L.; Bhoraskar, S. V.; Ghorui, S.

    2017-07-01

    Particle feeding is used in the most important applications of radio frequency (r.f.) thermal plasmas like synthesis of nanoparticles and particle spheroidization. The study reports an in-situ investigation of radial distribution of temperature in such devices using yttrium ion emission lines under different rates of particle loading during synthesis of yttria nanoparticles. A number of interesting facts about the response of r.f. plasma to the rate of particle loading, hitherto unknown, are revealed. Observed phenomena are supported with experimental data from fast photographic experiments and actual synthesis results. The use of the Abel inversion technique together with simultaneous multi-track acquisition of emission spectra from different spatial locations using a CCD based spectrometer allowed us to extract accurate distribution of temperature inside the plasma in the presence of inherent instabilities. The temperature profiles of this type of plasma have been measured possibly for the first time while particles are being fed into the plasma. Observed changes in the temperature profiles as the particle feed rate increases are very significant. Reaction forces resulting from particle evaporation, and increased skin depth owing to the decrease in electrical conductivity in the edge region are proposed as the two different mechanisms to account for the observed changes in the temperature profile as the powder feed rate is increased. Quantitative analyses supporting the proposed mechanisms are presented.

  16. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    NASA Astrophysics Data System (ADS)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal

  17. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India.

    PubMed

    Nagarajan, Sangeetha; Arumugam Kuppusamy, Kumaraguru

    2013-12-03

    The biosynthesis of metal nanoparticles by marine resources is thought to be clean, nontoxic, and environmentally acceptable "green procedures". Marine ecosystems are very important for the overall health of both marine and terrestrial environments. The use of natural sources like Marine biological resources essential for nanotechnology. Seaweeds constitute one of the commercially important marine living renewable resources. Seaweeds such as green Caulerpa peltata, red Hypnea Valencia and brown Sargassum myriocystum were used for synthesis of Zinc oxide nanoparticles. The preliminary screening of physico-chemical parameters such as concentration of metals, concentration of seaweed extract, temperature, pH and reaction time revealed that one seaweed S. myriocystum were able to synthesize zinc oxide nanoparticles. It was confirmed through the, initial colour change of the reaction mixture and UV visible spectrophotometer. The extracellular biosynthesized clear zinc oxide nanoparticles size 36 nm through characterization technique such as DLS, AFM, SEM -EDX, TEM, XRD and FTIR. The biosynthesized ZnO nanoparticles are effective antibacterial agents against Gram-positive than the Gram-negative bacteria. Based on the FTIR results, fucoidan water soluble pigments present in S. myriocystum leaf extract is responsible for reduction and stabilization of zinc oxide nanoparticles. by this approach are quite stable and no visible changes were observed even after 6 months. These soluble elements could have acted as both reduction and stabilizing agents preventing the aggregation of nanoparticles in solution, extracellular biological synthesis of zinc oxide nanoparticles of size 36 nm.

  18. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2013-12-01

    To develop new nanoparticle materials possessing antioxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had mode diameters in the range of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance-enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.

  19. Altering Iron Oxide Nanoparticle Surface Properties Induce Cortical Neuron Cytotoxicity

    PubMed Central

    Rivet, Christopher J.; Yuan, Yuan; Borca-Tasciuc, Diana-Andra; Gilbert, Ryan J.

    2014-01-01

    Superparamagnetic iron oxide nanoparticles, with diameters in the range of a few tens of nanometers, display the ability to cross the blood-brain barrier and are envisioned as diagnostic and therapeutic tools in neuro-medicine. However, despite the numerous applications being explored, insufficient information is available on their potential toxic effect on neurons. While iron oxide has been shown to pose a decreased risk of toxicity, surface functionalization, often employed for targeted delivery, can significantly alter the biological response. This aspect is addressed in the present study, which investigates the response of primary cortical neurons to iron oxide nanoparticles with coatings frequently used in biomedical applications: aminosilane, dextran, and polydimethylamine. Prior to administering the particles to neuronal cultures, each particle type was thoroughly characterized to assess the (1) size of individual nanoparticles, (2) concentration of the particles in solution and (3) agglomeration size and morphology. Culture results show that polydimethylamine functionalized nanoparticles induce cell death at all concentrations tested by swift and complete removal of the plasma membrane. Aminosilane coated particles affected metabolic activity only at higher concentrations while leaving the membrane intact and dextran-coated nanoparticles partially altered viability at higher concentrations. These findings suggest that nanoparticle characterization and primary cell-based cytotoxicity evaluation should be completed prior to applying nanomaterials to the nervous system. PMID:22111864

  20. Investigating the oxidation mechanism of tantalum nanoparticles at high heating rates

    NASA Astrophysics Data System (ADS)

    DeLisio, Jeffery B.; Wang, Xizheng; Wu, Tao; Egan, Garth C.; Jacob, Rohit J.; Zachariah, Michael R.

    2017-12-01

    Reduced diffusion length scales and increased specific surface areas of nanosized metal fuels have recently demonstrated increased reaction rates for these systems, increasing their relevance in a wide variety of applications. The most commonly employed metal fuel, aluminum, tends to oxidize rapidly near its melting point (660 °C) in addition to undergoing a phase change of the nascent oxide shell. To further expand on the understanding of nanosized metal fuel oxidation, tantalum nanoparticles were studied due to their high melting point (3017 °C) in comparison to aluminum. Both traditional slow heating rate and in-situ high heating rate techniques were used to probe the oxidation of tantalum nanoparticles in oxygen containing environments in addition to nanothermite mixtures. When oxidized by gas phase oxygen, the oxide shell of the tantalum nanoparticles rapidly crystallized creating cracks that may attribute to enhanced oxygen diffusion into the particle. In the case of tantalum based nanothermites, oxide shell crystallization was shown to induce reactive sintering with the metal oxide resulting in a narrow range of ignition temperatures independent of the metal oxide used. The oxidation mechanism was modeled using the Deal-Grove model to extract rate parameters, and theoretical burn times for tantalum based nanocomposites were calculated.

  1. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  2. Human nitric oxide biomarker as potential NO donor in conjunction with superparamagnetic iron oxide @ gold core shell nanoparticles for cancer therapeutics.

    PubMed

    Singh, Nimisha; Patel, Khushbu; Sahoo, Suban K; Kumar, Rajender

    2018-03-01

    Nitric oxide releasing superparamagnetic (Fe 3 O 4 -Au@NTHP) nanoparticles were synthesized by conjugation of human biomarker of nitric oxide, N-nitrosothioproline with iron oxide-gold (Fe 3 O 4 -Au) core shell nanoparticles. The structure and morphology of the prepared nanoparticles were confirmed by ATR-FTIR, HR-TEM, EDAX, XPS, DLS and VSM measurements. N-nitrosothioproline is a natural molecule and nontoxic to humans. Thus, the core shell nanoparticles prepared were highly biocompatible. The prepared Fe 3 O 4 -Au@NTHP nanoparticles also provided an excellent release of nitric oxide in dark and upon light irradiation for cancer treatment. The amount of NO release was controllable with the wavelength of light and time of irradiation. The developed nanoparticles provided efficient cellular uptake and good cytotoxicity in picomolar range when tested on HeLa cancerous cells. These nanoparticles on account of their controllable NO release can also be used to release small amount of NO for killing cancerous cells without any toxic effect. Furthermore, the magnetic and photochemical properties of these nanoparticles provides dual platform for magneto therapy and phototherapy for cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Structure and Oxidation Behavior of Nickel Nanoparticles Supported by YSZ(111)

    PubMed Central

    2017-01-01

    Nickel nanoparticles supported by the yttria-stabilized zirconia (111) surface show several preferential epitaxial relationships, as revealed by in situ X-ray diffraction. The two main nanoparticle orientations are found to have their [111] direction parallel to the substrate surface normal and ∼41.3 degrees tilted from this direction. The former orientation is described by a cube-on-cube stacking at the oxide–metal interface and the latter by a so-called coherent tilt strain-relieving mechanism, which is hitherto unreported for nanoparticles in literature. A modified Wulff construction used for the 111-oriented particles results in a value of the adhesion energy ranging from 1.4 to 2.2 Jm2, whereby the lower end corresponds to more rounded particles and the upper to relatively flat geometries. Upon oxidation at 10–3 Pa of molecular oxygen and 673 K, a NiO shell forms epitaxially on the [111]-oriented particles. Only a monolayer of metallic nickel of the top (111) facets oxidizes, whereas the side facets seem to react more severely. An apparent size increase of the remaining metallic Ni core is discussed in relation to a size-dependent oxidation mechanism, whereby smaller nanoparticles react at a faster rate. We argue that such a preferential oxidation mechanism, which inactivates the smallest and most reactive metal nanoparticles, might play a role for the long-term degradation of solid oxide fuel cells. PMID:28217243

  4. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs).

    PubMed

    Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali

    2018-03-01

    Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe 3 O 4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.

  5. In-situ diagnostics for metalorganic chemical vapor deposition of yttrium barium copper oxide

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashok Burton

    A new stagnation flow MOCVD research reactor is described that is designed to serve as a testbed to develop tools for "intelligent" thin film deposition, such as in-situ sensors and diagnostics, control algorithms, and thin film growth models. The reactor is designed in particular for the deposition of epitaxial YBa2Cu3O 7-delta on MgO, although with minor modifications it would be suitable for deposition of any metal-oxide thin films. The reactor is specifically designed to permit closed-loop thermal and stoichiometric control of the film growth process. Closed-loop control of precursor flow rates is accomplished by using ultraviolet absorption spectroscopy on each precursor line. Also integrated into the design is a Fourier Transform Infrared (FTIR) spectroscopy system which collects real-time, in-situ infrared polarized reflectance spectra of the film as it grows. Numerical simulation was used extensively to optimize the fluid dynamics and heat transfer to provide uniform fluxes to the substrate. As a result, thickness uniformity across the substrate is typically within 3% from the center to the edge of the substrate. Experimental studies of thin films grown in the Y/Ba/Cu/O system have been carried out. The films have been characterized by Rutherford Backscattering Spectrometry and X-ray Diffraction. Results indicate c-axis oriented grains with pure 1:2:3 phase YBCO, good spatial uniformity, and a low degree of c-axis wobble. Experimental growth data is used in a gas phase and surface chemistry model to calculate sticking coefficients for yttrium oxide, barium oxide, and copper oxide on YBCO. In-situ FTIR and Coherent Gradient Sensing (CGS) analysis of growing films has been performed, yielding accurate substrate temperature, film thickness monitoring, and full-field, real-time curvature maps of the films. In addition, we have implemented CGS to obtain full-field in-situ images of local curvature during oxygenation and deoxygenation of YBCO films. An analysis

  6. Enhanced Formation of Oxidants from Bimetallic Nickel-Iron Nanoparticles in the Presence of Oxygen

    PubMed Central

    Lee, Changha; Sedlak, David L.

    2009-01-01

    Nanoparticulate zero-valent iron (nZVI) rapidly reacts with oxygen to produce strong oxidants, capable of transforming organic contaminants in water. However, the low yield of oxidants with respect to the iron added normally limits the application of this system. Bimetallic nickel-iron nanoparticles (nNi-Fe; i.e., Ni-Fe alloy and Ni-coated Fe nanoparticles) exhibited enhanced yields of oxidants compared to nZVI. nNi-Fe (Ni-Fe alloy nanoparticles with [Ni]/[Fe] = 0.28 and Ni-coated Fe nanoparticles with [Ni]/[Fe] = 0.035) produced approximately 40% and 85% higher yields of formaldehyde from the oxidation of methanol relative to nZVI at pH 4 and 7, respectively. Ni-coated Fe nanoparticles showed a higher efficiency for oxidant production relative to Ni-Fe alloy nanoparticles based on Ni content. Addition of Ni did not enhance the oxidation of 2-propanol or benzoic acid, indicating that Ni addition did not enhance hydroxyl radical formation. The enhancement in oxidant yield was observed over a pH range of 4 – 9. The enhanced production of oxidant by nNi-Fe appears to be attributable to two factors. First, the nNi-Fe surface is less reactive toward hydrogen peroxide (H2O2) than the nZVI surface, which favors the reaction of H2O2 with dissolved Fe(II) (the Fenton reaction). Second, the nNi-Fe surface promotes oxidant production from the oxidation of ferrous ion by oxygen at neutral pH values. PMID:19068843

  7. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  8. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  9. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    NASA Astrophysics Data System (ADS)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  10. Enhancement radiative cooling performance of nanoparticle crystal via oxidation

    NASA Astrophysics Data System (ADS)

    Jia, Zi-Xun; Shuai, Yong; Li, Meng; Guo, Yanmin; Tan, He-ping

    2018-03-01

    Nanoparticle-crystal is a promising candidate for large scale metamaterial fabrication. However, in radiative cooling application, the maximum blackbody radiation wavelength locates far from metal's plasmon wavelength. In this paper, it will be shown if the metallic nanoparticle crystal can be properly oxidized, the absorption performance within room temperature blackbody radiation spectrum can be improved. Magnetic polariton and surface plasmon polariton have been explained for the mechanism of absorption improvement. Three different oxidation patterns have been investigated in this paper, and the results show they share a similar enhancing mechanism.

  11. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review

    PubMed Central

    Rastogi, Anshu; Zivcak, Marek; Sytar, Oksana; Kalaji, Hazem M.; He, Xiaolan; Mbarki, Sonia; Brestic, Marian

    2017-01-01

    An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and their accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolism. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarizes the current understanding and the future possibilities of plant-nanoparticle research. PMID:29075626

  12. Impact of metal and metal oxide nanoparticles on plant: A critical review

    NASA Astrophysics Data System (ADS)

    Rastogi, Anshu; Zivcak, Marek; Sytar, Oksana; Kalaji, Hazem M.; He, Xiaolan; Mbarki, Sonia; Brestic, Marian

    2017-10-01

    An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and its accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolisms. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarises the current understanding and the future possibilities of plant-nanoparticle research.

  13. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India

    PubMed Central

    2013-01-01

    Background The biosynthesis of metal nanoparticles by marine resources is thought to be clean, nontoxic, and environmentally acceptable “green procedures”. Marine ecosystems are very important for the overall health of both marine and terrestrial environments. The use of natural sources like Marine biological resources essential for nanotechnology. Seaweeds constitute one of the commercially important marine living renewable resources. Seaweeds such as green Caulerpa peltata, red Hypnea Valencia and brown Sargassum myriocystum were used for synthesis of Zinc oxide nanoparticles. Result The preliminary screening of physico-chemical parameters such as concentration of metals, concentration of seaweed extract, temperature, pH and reaction time revealed that one seaweed S. myriocystum were able to synthesize zinc oxide nanoparticles. It was confirmed through the, initial colour change of the reaction mixture and UV visible spectrophotometer. The extracellular biosynthesized clear zinc oxide nanoparticles size 36 nm through characterization technique such as DLS, AFM, SEM –EDX, TEM, XRD and FTIR. The biosynthesized ZnO nanoparticles are effective antibacterial agents against Gram-positive than the Gram-negative bacteria. Conclusion Based on the FTIR results, fucoidan water soluble pigments present in S. myriocystum leaf extract is responsible for reduction and stabilization of zinc oxide nanoparticles. by this approach are quite stable and no visible changes were observed even after 6 months. These soluble elements could have acted as both reduction and stabilizing agents preventing the aggregation of nanoparticles in solution, extracellular biological synthesis of zinc oxide nanoparticles of size 36 nm. PMID:24298944

  14. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis.

    PubMed

    Taranath, Tarikere C; Patil, Bheemanagouda N

    2016-06-01

    The present investigation was undertaken to synthesize zinc oxide nanoparticles using Limonia acidissima L. and to test their efficacy against the growth of Mycobacterium tuberculosis. The formation of zinc oxide nanoparticles was confirmed with UV-visible spectrophotometry. Fourier transform infrared spectroscopy shows the presence of bio-molecules involved in the stabilization of zinc oxide nanoparticles. The shape and size was confirmed with atomic force microscope, X-ray diffraction, and high resolution transmission electron microscope. These nanoparticles were tested for their effect on the growth of M. tuberculosis through the microplate alamar blue assay technique. The UV-visible data reveal that an absorbance peak at 374nm confirms formation of zinc oxide nanoparticles and they are spherical in shape with sizes between 12nm and 53nm. These nanoparticles control the growth of M. tuberculosis at 12.5μg/mL. Phytosynthesis of zinc oxide nanoparticles is a green, eco-friendly technology because it is inexpensive and pollution free. In the present investigation, based on our results we conclude that the aqueous extract of leaves of L. acidissima can be used for the synthesis of zinc oxide nanoparticles. These nanoparticles control the growth of M. tuberculosis and this was confirmed with the microplate alamar blue method. The potential of biogenic zinc oxide nanoparticles may be harnessed as a novel medicine ingredient to combat tuberculosis disease. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  15. In vitro cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents

    NASA Astrophysics Data System (ADS)

    Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem

    2018-03-01

    Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.

  16. Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Iwata, Masahiro; Katsuno, Junichi

    2017-06-01

    Spherical Ge nanoparticles with diameters of 20-80 nm were fabricated by laser ablation of a Ge single crystal in water and in aqueous HCl using sub-picosecond laser pulses (1040 nm, 700 fs, 100 kHz, and a pulse energy of 10 µJ). We found that the as-synthesized nanoparticles suffered rapid oxidization followed by dissolution when laser ablation was conducted in pure water. In contrast, oxidation of Ge nanoparticles produced in dilute HCl and stored intact was minimal, and colloidal dispersions of the Ge nanoparticles remained stable up to 7 days. It was elucidated that dangling bonds on the surfaces of the Ge nanoparticles were terminated by Cl, which inhibited oxidation, and that such hydrophilic surfaces might improve the dispersibility of nanoparticles in aqueous solvent.

  17. Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications.

    PubMed

    Scarangella, Adriana; Fabbri, Filippo; Reitano, Riccardo; Rossi, Francesca; Priolo, Francesco; Miritello, Maria

    2017-12-11

    Due to the great development of light sources for several applications from displays to lighting, great efforts are devoted to find stable and efficient visible emitting materials. Moreover, the requirement of Si compatibility could enlarge the range of applications inside microelectronic chips. In this scenario, we have studied the emission properties of bismuth doped yttrium oxide thin films grown on crystalline silicon. Under optical pumping at room temperature a stable and strong visible luminescence has been observed. In particular, by the involvement of Bi ions in the two available lattice sites, the emission can be tuned from violet to green by changing the excitation wavelength. Moreover, under electron beam at low accelerating voltages (3 keV) a blue emission with high efficiency and excellent stability has been recorded. The color is generated by the involvement of Bi ions in both the lattice sites. These peculiarities make this material interesting as a luminescent medium for applications in light emitting devices and field emission displays by opening new perspectives for the realization of silicon-technology compatible light sources operating at room temperature.

  18. Interaction of fluorescent sensor with superparamagnetic iron oxide nanoparticles.

    PubMed

    Karunakaran, Chockalingam; Jayabharathi, Jayaraman; Sathishkumar, Ramalingam; Jayamoorthy, Karunamoorthy

    2013-06-01

    To sense superparamagnetic iron oxides (Fe2O3 and Fe3O4) nanocrystals a sensitive bioactive phenanthroimidazole based fluorescent molecule, 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d] imidazole has been designed and synthesized. Electronic spectral studies show that phenanthroimidazole is bound to the surface of iron oxide semiconductors. Fluorescent enhancement has been explained on the basis of photo-induced electron transfer (PET) mechanism and apparent binding constants have been deduced. Binding of phenanthroimidazole with iron oxide nanoparticles lowers the HOMO and LUMO energy levels of phenanthroimidazole molecule. Chemical affinity between the nitrogen atom of the phenanthroimidazole and Fe(2+) and Fe(3+) ions on the surface of the nano-oxide may result in strong binding of the phenanthroimidazole derivative with the nanoparticles. The electron injection from the photoexcited phenanthroimidazole to the iron oxides conduction band explains the enhanced fluorescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    PubMed Central

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827

  20. Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide).

    PubMed

    Vandorpe, J; Schacht, E; Stolnik, S; Garnett, M C; Davies, M C; Illum, L; Davis, S S

    1996-10-05

    The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.

  1. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen

    NASA Astrophysics Data System (ADS)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.

    2014-12-01

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).

  2. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad; Verma, Ankit; Ahamed, Maqusood; Ahmed, Mukhtar; Alhadlaq, Hisham A

    2013-01-01

    The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles. PMID:23493450

  3. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts.

    PubMed

    Rehana, Dilaveez; Mahendiran, D; Kumar, R Senthil; Rahiman, A Kalilur

    2017-05-01

    Copper oxide (CuO) nanoparticles were synthesized by green chemistry approach using different plant extracts obtained from the leaves of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera and Tamarindus indica. In order to compare their efficiency, the same copper oxide nanoparticles was also synthesized by chemical method. Phytochemical screening of the leaf extracts showed the presence of carbohydrates, flavonoids, glycosides, phenolic compounds, saponins, tannins, proteins and amino acids. FT IR spectra confirmed the possible biomolecules responsible for the formation of copper oxide nanoparticles. The surface plasmon resonance absorption band at 220-235nm in the UV-vis spectra also supports the formation of copper oxide nanoparticles. XRD patterns revealed the monoclinic phase of the synthesized copper oxide nanoparticles. The average size, shape and the crystalline nature of the nanoparticles were determined by SEM, TEM and SAED analysis. EDX analysis confirmed the presence of elements in the synthesized nanoparticles. The antioxidant activity was evaluated by three different free radical scavenging assays. The cytotoxicity of copper oxide nanoparticles was evaluated against four cancer cell lines such as human breast (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549), and one normal human dermal fibroblast (NHDF) cell line. The morphological changes were evaluated using Hoechst 33258 staining assay. Copper oxide nanoparticles synthesized by green method exhibited high antioxidant and cytotoxicity than that synthesized by chemical method. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Nanoparticle Inhalation Increases Microvascular Oxidative Stress and Compromises Nitric Oxide Bioavailability

    EPA Science Inventory

    We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs are unclear. The purpose of this study was to identify alterations in the production of oxidative stress an...

  5. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    DOE PAGES

    Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; ...

    2006-01-01

    Minimore » aturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide ( SnO 2 ) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less

  6. Characterization of oxide nanoparticles in Al-free and Al-containing oxide dispersion strengthened ferritic steels.

    PubMed

    Lee, Jae Hoon; Kim, Jeoung Han

    2013-09-01

    Oxide nanoparticles in oxide dispersion strengthened (ODS) ferritic steels with and without Al have been characterized by transmission electron microscopy. It is confirmed that most of the complex oxide particles consist of Y2TiO5 for 18Cr-ODS steel and YAlO3 or YAl5O12 for 18Cr5Al-ODS steel, respectivley. The addition of 5% Al in 18Cr-ODS steel leads to the formation of larger oxide particles and the reduction in their number density. For 18Cr-ODS steel, 87% of the oxide particles are coherent. The misfit strain of the coherent particles and a few semi-coherent particles is about 0.034 and 0.056, respectively. For 18Cr5Al-ODS steel, 75% of the oxide particles are semi-coherent, of which the misfit strain is 0.091 and 0.125, respectively. These results suggest that for the Al-containing ODS steel the Al addition accelerates the formation of semi-coherent oxide particles and its larger coherent and semi-coherent particles result in the larger misfit strain between the oxide particle and alloy matrix, indicating that the coherence of oxide nanoparticles in ODS steels is size-dependent.

  7. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe.

    PubMed

    Jiang, Jia; Tian, Sizhu; Wang, Kun; Wang, Yang; Zang, Shuang; Yu, Aimin; Zhang, Ziwei

    2018-02-01

    With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe 3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe 3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL -1 , and the analytical sensitivity was 1.81 μg mL -1 . When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL -1 , and the sensitivity was 0.014 and 0.13 μg mL -1 depending on the ratio of nanoparticle to antibody. Graphical abstract Schematic diagram of procedure and ESR spectra.

  8. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials.

    PubMed

    Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B

    2017-11-01

    The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  10. Evaluation of folate conjugated superparamagnetic iron oxide nanoparticles for scintigraphic/magnetic resonance imaging.

    PubMed

    Chauhan, Ram Prakash; Mathur, Rashi; Singh, Gurjaspreet; Kaul, Ankur; Bag, Narmada; Singh, Sweta; Kumar, Hemanth; Patra, Manoj; Mishra, Anil K

    2013-03-01

    The physical and chemical properties of the nanoparticles influence their pharmacokinetics and ability to accumulate in tumors. In this paper we report a facile method to conjugate folic acid molecule to iron oxide nanoparticles to increase the specific uptake of these nanoparticles by the tumor, which will be useful in targeted imaging of the tumor. The iron oxide nanoparticles were synthesized by alkaline co precipitation method and were surface modified with dextranto make them stable. The folic acid is conjugated to the dextran modified iron oxide nanoparticles by reductive amination process after the oxidation of the dextran with periodate. The synthesized folic acid conjugated nanoparticles were characterized for size, phase, morphology and magnetization by using various physicochemical characterization techniques such as transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy, vibrating sample magnetometry, dynamic light scattering and zetasizer etc. The quantification of the generated carbonyl groups and folic acid conjugated to the surface of the magnetic nanoparticles was done by colorimetric estimations using UV-Visible spectroscopy. The in vitro MR studies were carried out over a range of concentrations and showed significant shortening of the transverse relaxation rate, showing the ability of the nanoconjugate to act as an efficient probe for MR imaging. The biodistribution studies and the scintigraphy done by radiolabeling the nanoconjugate with 99mTc show the enhanced uptake at the tumor site showing its enhanced specificity.

  11. In vitro biological validation and cytocompatibility evaluation of hydrogel iron-oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Catalano, Enrico

    2017-08-01

    Superparamagnetic iron oxide nanoparticles (MNPs) have recently been investigated for their excellent biocompatibility as well as multi-purpose biomedical potential with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe3O4 magnetic nanoparticles were synthesized for possible use for induced magnetic hyperthermia, and targeted drug delivery. The coating of iron oxide nanoparticles plays a key-role to efficiently improve internalization of nanoparticles in many cell types. Targeting is also highly desirable for these applications. In this regard hydrophilic coating like chitosan was used to improve drug release. Uncoated (Fe3O4)and chitosan-coated iron oxide nanoparticles (CS-Fe3O4) were synthesized and characterized from the biological point of view. The aim of this study was to provide an in vitro evaluation of the cytocompatibility of Fe3O4 and CS-Fe3O4 MNPs by using different in vitro evaluation tests. In this context, the cytocompatibility and cytotoxic effects of uncoated and hydrogel chemically-engineered chitosan-coated iron oxide NPs were investigated according to the ISO standard 10993-5:2009. Fe3O4 and CS-Fe3O4 NPs were tested on human mammary epithelial cells (MCF-10A) by using direct and not direct contact cytotoxicity evaluation tests, by evaluating influence of the iron particles on the cytoskeleton with phalloidin/DAPI staining and in vitro cellular iron uptake with Perl's Prussian blue staining. The results indicate that uncoated and chitosan-coated iron oxide nanoparticles are cytocompatible, without negative influence on the cytoskeleton or higher accumulation of iron in the cytoplasm. Therefore, it is encouraging that our data suggest uncoated and chitosan-coated iron oxide nanoparticles have satisfactory proliferative and viability effects on MCF-10A cells. In conclusion data suggest that both MNP types may be differently aimed in biomedical application in relation

  12. From iron coordination compounds to metal oxide nanoparticles.

    PubMed

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  13. From iron coordination compounds to metal oxide nanoparticles

    PubMed Central

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555

  14. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533

  15. Effect of metal oxide nanoparticles on Godavari river water treatment

    NASA Astrophysics Data System (ADS)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  16. Harmonics distribution of iron oxide nanoparticles solutions under diamagnetic background

    NASA Astrophysics Data System (ADS)

    Saari, Mohd Mawardi; Che Lah, Nurul Akmal; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2018-04-01

    The static and dynamic magnetizations of low concentrated multi-core iron oxide nanoparticles solutions were investigated by a specially developed high-Tc Superconducting Quantum Interference Device (SQUID) magnetometer. The size distribution of iron oxide cores was determined from static magnetization curves concerning different concentrations. The simulated harmonics distribution was compared to the experimental results. Effect of the diamagnetic background from carrier liquid to harmonics distribution was investigated with respect to different intensity and position of peaks in the magnetic moment distribution using a numerical simulation. It was found that the diamagnetic background from carrier liquid of iron oxide nanoparticles affected the harmonics distribution as their concentration decreased and depending on their magnetic moment distribution. The first harmonic component was susceptible to the diamagnetic contribution of carrier liquid when the concentration was lower than 24 μg/ml. The second and third harmonics were affected when the peak position of magnetic moment distribution was smaller than m = 10-19 Am2 and the concentration was 10 ng/ml. A highly sensitive detection up to sub-nanogram of iron oxide nanoparticles in solutions can be achieved by utilizing second and third harmonic components.

  17. New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles.

    PubMed

    Magro, Massimiliano; Baratella, Davide; Bonaiuto, Emanuela; de A Roger, Jessica; Vianello, Fabio

    2018-02-12

    Iron oxide nanomaterials are considered promising tools for improved therapeutic efficacy and diagnostic applications in biomedicine. Accordingly, engineered iron oxide nanomaterials are increasingly proposed in biomedicine, and the interdisciplinary researches involving physics, chemistry, biology (nanotechnology) and medicine have led to exciting developments in the last decades. The progresses of the development of magnetic nanoparticles with tailored physico-chemical and surface properties produced a variety of clinically relevant applications, spanning from magnetic resonance imaging (MRI), drug delivery, magnetic hyperthermia, to in vitro diagnostics. Notwithstanding the wellknown conventional synthetic procedures and their wide use, along with recent advances in the synthetic methods open the door to new generations of naked iron oxide nanoparticles possessing peculiar surface chemistries, suitable for other competitive biomedical applications. New abilities to rationally manipulate iron oxides and their physical, chemical, and biological properties, allow the emersion of additional possibilities for designing novel nanomaterials for theranostic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Beik, Jaber; Abed, Ziaeddin; Shakeri-Zadeh, Ali; Nourbakhsh, Mitra; Shiran, Mohammad Bagher

    2016-07-01

    In cancer hyperthermia, ultrasound is considered as an appropriate source of energy to achieve desired therapeutic levels of heating. It is assumed that such a heating is targeted to cancer cells by using nanoparticles as sonosensitization agents. Here, we report the sonosensitizing effects of Nano-Graphene Oxide (NGO) and compare them with gold nanoparticles (AuNPs), Iron Oxide nanoparticles (IONPs). Experiments were conducted to explore the effects of nanoparticle type and concentration, as well as ultrasound power, on transient heating up of the solutions exposed by 1 MHz ultrasound. Nanoparticles concentration was selected from 0.25 to 2.5 mg/ml and the solutions were exposed by ultrasound powers from 1 to 8 W. Real time temperature monitoring was done by a thermocouple and obtained data was analyzed. Temperature profiles of various nanoparticle solutions showed the higher heating rates, in comparison to water. Heating rise was strongly depended on nanoparticles concentration and ultrasound power. AuNPs showed a superior efficiency in heat generation enhancement in comparison to IONPs and NGO. Our result supports the idea of sonosensitizing capabilities of AuNPs, IONPs, and NGO. Targeted hyperthermia may be achievable by preferential loading of tumor with nanoparticles and subsequent ultrasound irradiation.

  19. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films

    PubMed Central

    Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A.; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R.; Hu, Liangbing

    2016-01-01

    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900

  20. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between sphericalmore » and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.« less

  1. Oxidation behaviour of Fe-Ni alloy nanoparticles synthesized by thermal plasma route

    NASA Astrophysics Data System (ADS)

    Ghodke, Neha; Kamble, Shalaka; Raut, Suyog; Puranik, Shridhar; Bhoraskar, S. V.; Rayaprol, Sudhindra; Mathe, V. L.

    2018-04-01

    Here we report synthesis of Fe-Ni nanoparticles using thermal plasma route. In thermal plasma, gas phase nucleation and growth at sufficiently higher temperature is observed. The synthesized Fe-Ni nanoparticles are examined by X-ray Diffraction, Raman Spectroscopy, Vibrating Sample Magnetometer and Thermo gravimetric Analysis. Formation of 16-21 nm sized Fe-Ni nanoparticles having surface oxidation show maximum value of magnetization of ˜107 emu/g. The sample synthesized at relatively low power (4kW) show presence of carbonaceous species whereas the high power (6 kW) synthesis does not depicts carbonaceous species. The presence of carbonaceous species protects oxidation of the nanoparticles significantly as evidenced from TGA data.

  2. In situ X-ray diffraction contribution to the study of reactive element oxide coating effect on the high temperature oxidation behaviour of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Cueff, R.; Buscail, H.; Caudron, E.; Riffard, F.; Issartel, C.; Perrier, S.; El Messki, S.

    2004-11-01

    The influence of yttrium oxide coating (processed by sol-gel method) on the oxidation behaviour of a commercial FeCrAl alloy (Kanthal A1) has been investigated during isothermal exposures in air at 1373K. The scale growth kinetic of the uncoated alloy obeys a parabolic rate law during the whole oxidation test whereas the kinetic curve of the Y-coated specimen exhibits an initial transient stage during the first hours, followed by a parabolic regime. The yttrium sol-gel coating deposited on the bare alloy does not conduct to the beneficial effect usually ascribed to the reactive elements. No oxidation rate improvement of the coated alloy is observed, the parabolic rate constants values are strictly identical for the both specimens. In situ X-ray diffraction reveals a marked influence of the reactive element on the composition of the oxide scale. The oxide layer formed on the yttrium-coated specimen revealed, in addition to α-alumina which is the main oxide also identified on the bare specimen, the presence of yttrium aluminates (YAlO{3}, Y{3}Al{5}O{12}) located in the outermost part of the layer.

  3. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles.

    PubMed

    Gilbert, Benjamin; Katz, Jordan E; Huse, Nils; Zhang, Xiaoyi; Frandsen, Cathrine; Falcone, Roger W; Waychunas, Glenn A

    2013-10-28

    An emerging area in chemical science is the study of solid-phase redox reactions using ultrafast time-resolved spectroscopy. We have used molecules of the photoactive dye 2',7'-dichlorofluorescein (DCF) anchored to the surface of iron(III) oxide nanoparticles to create iron(II) surface atoms via photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(III) oxide nanoparticles has not been reported. We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(III)-dye complex. Following light absorption, excited state relaxation times of the dye of 115-310 fs were found for all samples. Comparison between TA dynamics on uncoated and dye-sensitized hematite nanoparticles revealed the dye de-excitation pathway to consist of a competition between electron and energy transfer to the nanoparticles. We analyzed the TA data for hematite nanoparticles using a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye-oxide energy transfer is energetically forbidden) even though the acceptor states are different. Comparison of the alignment of the excited states of the dye and the unoccupied states of these oxides showed that the dye injects into acceptor states of different symmetry (Ti t2gvs. Fe eg).

  4. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging.

    PubMed

    Zeng, Leyong; Ren, Wenzhi; Zheng, Jianjun; Cui, Ping; Wu, Aiguo

    2012-02-28

    Using an improved hydrolysis method of inorganic salts assisted with water-bath incubation, ultrasmall water-soluble metal-iron oxide nanoparticles (including Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles) were synthesized in aqueous solutions, which were used as T(1)-weighted contrast agents for magnetic resonance imaging (MRI). The morphology, structure, MRI relaxation properties and cytotoxicity of the as-prepared metal-iron oxide nanoparticles were characterized, respectively. The results showed that the average sizes of nanoparticles were about 4 nm, 4 nm and 5 nm for Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles, respectively. Moreover, the nanoparticles have good water dispersibility and low cytotoxicity. The MRI test showed the strong T(1)-weighted, but the weak T(2)-weighted MRI performance of metal-iron oxide nanoparticles. The high T(1)-weighted MRI performance can be attributed to the ultrasmall size of metal-iron oxide nanoparticles. Therefore, the as-prepared metal-iron oxide nanoparticles with good water dispersibility and ultrasmall size can have potential applications as T(1)-weighted contrast agent materials for MRI.

  5. Stability of Y-Ti-O nanoparticles during laser deposition of oxide dispersion strengthened steel powder

    NASA Astrophysics Data System (ADS)

    Euh, Kwangjun; Arkhurst, Barton; Kim, Il Hyun; Kim, Hyun-Gil; Kim, Jeoung Han

    2017-11-01

    This study investigated the feasibility of a direct energy deposition process for fabrication of oxide dispersion strengthened steel cladding. The effect of the laser working power and scan speed on the microstructural stability of oxide nanoparticles in the deposition layer was examined. Y-Ti-O type oxide nanoparticles with a mean diameter of 45 nm were successfully dispersed by the laser deposition process. The laser working power significantly affected nanoparticle size and number density. A high laser power with a low scan speed seriously induced particle coarsening and agglomeration. Compared with bulk oxide dispersion strengthened steel, the hardness of the laser deposition layer was much lower because of a relatively coarse particle and grain size. Formation mechanism of nanoparticles during laser deposition was discussed.

  6. Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications.

    PubMed

    Sood, Ankur; Arora, Varun; Shah, Jyoti; Kotnala, R K; Jain, Tapan K

    2017-11-01

    In this paper we report synthesis of aqueous based gold coated iron oxide nanoparticles to integrate the localized surface plasma resonance (SPR) properties of gold and magnetic properties of iron oxide in a single system. Iron oxide-gold core shell nanoparticles were stabilized by attachment of thiolated sodium alginate to the surface of nanoparticles. Transmission electron microscope (TEM) micrograph presents an average elementary particle size of 8.1±2.1nm. High resolution TEM (HR-TEM) and X-ray photon spectroscopy further confirms the presence of gold shell around iron oxide core. Gold coating is responsible for reducing saturation magnetization (M s ) value from ~41emu/g to ~24emu/g - in thiolated sodium alginate stabilized gold coated iron oxide core-shell nanoparticles. The drug (curcumin) loading efficiency for the prepared nanocomposites was estimated to be around 7.2wt% (72μgdrug/mg nanoparticles) with encapsulation efficiency of 72.8%. Gold-coated iron oxide core-shell nanoparticles could be of immense importance in the field of targeted drug delivery along with capability to be used as contrast agent for MRI & CT. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  8. Cobalt Oxide Hollow Nanoparticles Derived by Bio-Templating

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hyon; King, Glen C.; Watt, Gerald D.

    2005-01-01

    We present here the first fabrication of hollow cobalt oxide nanoparticles produced by a protein-regulated site-specific reconstitution process in aqueous solution and describe the metal growth mechanism in the ferritin interior.

  9. Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.

    2015-05-01

    Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly

  10. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    NASA Astrophysics Data System (ADS)

    Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R.; Bergström, Lennart

    2013-04-01

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.

  11. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    PubMed Central

    Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R; Bergström, Lennart

    2013-01-01

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed. PMID:27877568

  12. Synthesis, Characterization and Cytotoxicity Evaluation of Nitric Oxide-Iron Oxide magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haddad, P. S.; Britos, T. N.; Santos, M. C.; Seabra, A. B.; Palladino, M. V.; Justo, G. Z.

    2015-05-01

    The present work is focused on the synthesis, characterization and cytotoxic evaluation of superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs have been proposed for an increasing number of biomedical applications, such as drug-delivery. To this end, toxicological studies of their potential effects in biological systems must be better evaluated. The aim of this study was to examine the in vitro cytotoxicity of thiolated (SH) and S-nitrosated (S-NO) SPIONs in cancer cell lines. SPIONs were prepared by the coprecipitation method using ferrous and ferric chlorides in aqueous solution. The nanoparticles (Fe3O4) were coated with thiol containing molecule cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of an aqueous dispersion of thiolated nanoparticles (SH- SPIONs). These particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results obtained showed that Cys-SPIONs have a mean diameter of 14 nm at solid state and present super paramagnetic behavior at room temperature. Thiol groups on the surface of the nanoparticles were nitrosated through the addition of sodium nitrite leading to the formation of S-NOCys-SPIONs (S-nitrosated-Cys-SPIONs), which act as spontaneous nitric oxide (NO) donor). The cytotoxicity of thiolated and S-nitrosated nanoparticles was evaluated in acute T cell leukemia (Jurkat cell line) and Lewis lung carcinoma (3LL) cells. The results showed that at low concentrations thiolated (Cys) and S- nitrosated (S-NOCyst) SPIONs display low cytotoxicity in both cell types. However, at higher concentrations, Cys-SPIONs exhibited cytotoxic effects, whereas S-NOCys-SPIONs protected them, and also promoted cell proliferation.

  13. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

    PubMed

    Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You

    2009-07-01

    An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in

  14. Nitric oxide-releasing porous silicon nanoparticles

    PubMed Central

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment. PMID:25114633

  15. Nitric oxide-releasing porous silicon nanoparticles.

    PubMed

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J; McInnes, Steven Jp; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  16. Nitric oxide-releasing porous silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J.; McInnes, Steven JP; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H.

    2014-07-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  17. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  18. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P, Sharmila P, E-mail: sharmilavishram@gmail.com; Tharayil, Nisha J., E-mail: nishajohntharayil@gmail.com

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of bothmore » AC and DC conductivity are studied and activation energy calculated.« less

  19. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property

    NASA Astrophysics Data System (ADS)

    Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi

    2015-01-01

    The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.

  20. Palladium nanoparticles supported on vertically oriented reduced graphene oxide for methanol electro-oxidation.

    PubMed

    Yang, Liming; Tang, Yanhong; Luo, Shenglian; Liu, Chengbin; Song, Hejie; Yan, Dafeng

    2014-10-01

    Reduced graphene oxide (rGO) is a promising support material for nanosized electrocatalysts. However, the conventional stacking arrangement of rGO sheets confines the electrocatalysts between rGO layers, which decreases the number of catalytic sites substantially. We report here a facile synthesis of vertically oriented reduced graphene oxide (VrGO) through cyclic voltammetric electrolysis of graphene oxide (GO) in the presence of Na2 PdCl4 . Experiments without Pd nanoparticles or with a low loading amount of Pd nanoparticles results in the deposition of rGO parallel to the electrodes. The vertical orientation of Pd/rGO nanoflakes causes a remarkable enhancement of the catalytic activity toward methanol electro-oxidation. The mass activity (620.1 A gPd (-1) ) of Pd/VrGO is 1.9 and 6.2 times that of Pd/flat-lying rGO (331.8 A gPd (-1) ) and commercial Pd/C (100.5 A gPd (-1) ), respectively. Furthermore, the Pd/VrGO catalyst shows excellent resistance to CO poisoning. This work provides a simple wet-chemical method for VrGO preparation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.

    PubMed

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-23

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  2. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles.

    PubMed

    Sun, Jing; Wang, Shaochuang; Zhao, Dong; Hun, Fei Han; Weng, Lei; Liu, Hui

    2011-10-01

    Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe(2)O(3)), iron(II,III) oxide (Fe(3)O(4)), magnesium oxide (MgO), aluminum oxide (Al(2)O(3)), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12-24 h and 0.001-100 μg/ml of exposure). The results indicated that Fe(2)O(3), Fe(3)O(4), and Al(2)O(3) NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time. © Springer Science+Business Media B.V. 2011

  3. Green Synthesis of Formulated Zinc Oxide Nanoparticles for Chemical Protection of Skin Care and Related Applications

    NASA Astrophysics Data System (ADS)

    Koppolu, Ramya

    Nanomaterials have diversified applications based on the unique properties. These nanoparticles and functionalized nanocomposites have been studied in the health care filed. Nanoparticles are mostly used in sunscreens which are a part of human life. These sunscreens consist of titanium dioxide and zinc oxide nanoparticles. Due to the higher band crevices, they help the skin to protect from ultraviolet rays, for instance, ultraviolet B and ultraviolet A. A series of nanostructured zinc oxide nanoparticles were prepared by cost-effective chemical and bioinspired methods and variables were optimized. Highly stable and spherical zinc oxide nanoparticles were formulated by aloe vera ( Aloe barbadensis) plant extract and avocado (Persea americana Mill) fruit extract. The state-of-the-art instrumentation was used to characterize the morphology, elemental composition, and particle size distribution. X-ray diffraction data indicated highly crystalline and ultrafine nanoparticles were obtained from the colloidal methods. The X-ray photoelectron spectroscopy results showed the chemical state of zinc, carbon, and oxygen atoms were well-indexed and are used as fingerprint identification of the elements. Transmission electron microscopy images show the shape of particles were cubic and fiber shape contingent upon the protecting operators and heat treatment conditions. The toxicity studies of zinc oxide nanoparticles were found to cause an increase in nitric oxide, which is protecting against further oxidative stress and appears to be nontoxic.

  4. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  5. Mixed oxide nanoparticles and method of making

    DOEpatents

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  6. Effects of coating spherical iron oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milosevic, Irena; Motte, Laurence; Aoun, Bachir

    2017-01-01

    We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide onmore » the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazu and Dr. Federica Migliardo.« less

  7. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-01

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  8. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes.

    PubMed

    Siddiqi, Khwaja Salahuddin; Ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-08

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  9. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    PubMed

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-05

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  10. Gas-to-particle conversion in the particle precipitation-aided chemical vapor deposition process II. Synthesis of the perovskite oxide yttrium chromite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieten, V.E.J. van; Dekker, J.P.; Hurkmans, E.J.

    1993-11-01

    In the particle precipitation-aided chemical vapor deposition process, an aerosol is formed in the gas phase at elevated temperatures. The particles are deposited on a cooled substrate. Coherent layers with a controlled porosity can be obtained by a simultaneous heterogeneous reaction, which interconnects the deposited particles. The synthesis of submicrometer powder of the perovskite oxide yttrium chromite (YCrO[sub 3]) by gas to particle conversion, which is the first step of the PP-CVD process, has been investigated, and preliminary results are shown. The powders have been synthesized using yttrium trichloride vapor (YCl[sub 3]), chromium trichloride vapor (CrCl[sub 3]), and steam andmore » oxygen as reactants. The influence of the input molar ratio of the elements on the composition and characteristics of the powders has been investigated. Phase composition has been determined by X-ray diffraction (XRD). The powders have been characterized by transmission electron microscopy (TEM) and sedimentation field flow fractionation (SF[sup 3]). At a reaction temperature of 1283 K the powders consist of the chromium sesquioxide (Cr[sub 2]O[sub 3]), or a mixture of Cr[sub 2]O[sub 3] and YCrO[sub 3]. At stoichiometeric input amounts of metal chlorides and steam the formation of YCrO[sub 3] seems to be favored. 19 refs., 6 figs., 3 tabs.« less

  11. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

    NASA Astrophysics Data System (ADS)

    Awad, M. A.; Raaif, M.

    2018-05-01

    Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

  13. Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution

    DOE PAGES

    Strickler, Alaina L.; Escudero-Escribano, Marı́a; Jaramillo, Thomas F.

    2017-09-25

    Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. In this paper, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@M xO y where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancementmore » when employing the Au-core in the 3d transition metal-oxide nanoparticles. Finally, the highest activity particles, Au@CoFeO x, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm –2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.« less

  14. Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickler, Alaina L.; Escudero-Escribano, Marı́a; Jaramillo, Thomas F.

    Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. In this paper, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@M xO y where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancementmore » when employing the Au-core in the 3d transition metal-oxide nanoparticles. Finally, the highest activity particles, Au@CoFeO x, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm –2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.« less

  15. In vitro toxicity of zinc oxide nanoparticles: a review

    NASA Astrophysics Data System (ADS)

    Pandurangan, Muthuraman; Kim, Doo Hwan

    2015-03-01

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn2+] level. The mechanism for increased intracellular [Zn2+] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca2+] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10-100 nm) on various cell lines.

  16. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-03-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  17. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    PubMed Central

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  18. Gold nanotriangles decorated with superparamagnetic iron oxide nanoparticles: a compositional and microstructural study

    DOE PAGES

    Hachtel, J. A.; Yu, S.; Lupini, A. R.; ...

    2016-03-11

    The combination of iron oxide and gold in a single nanoparticle results in both magnetic and plasmonic properties that can stimulate novel applications in bio-sensing, medical imaging, or therapeutics. Microwave assisted heating allows the fabrication of multi-component, multi-functional nanostructures by promoting selective heating at desired sites. Recently, we reported a microwave-assisted polyol route yielding gold nanotriangles decorated with iron oxide nanoparticles. Here, we present an in-depth microstructural and compositional characterization of the system by using scanning transmission electron microscopy (STEM) and electron energy loss (EELS) spectroscopy. A method to remove the iron oxide nanoparticles from the gold nanocrystals and somemore » insights on crystal nucleation and growth mechanisms are also provided.« less

  19. Surface functionalization of magnetic nanoparticles formed by self-associating hydrophobized oxidized dextrans

    NASA Astrophysics Data System (ADS)

    Farber, Shimon; Ickowicz, Diana E.; Melnik, Kristie; Yudovin-Farber, Ira; Recko, Daniel; Rampersaud, Arfaan; Domb, Abraham J.

    2014-06-01

    Magnetic iron oxide nanoparticles surface covered with oleic acid layer followed by a second layer of hydrophobized oxidized dextran aldehyde were prepared and tested for physico-chemical properties and ligand- and cell-specific binding. It was demonstrated that oleic acid-iron oxide nanoparticles coated with an additional layer of hydrophobized oxidized dextran were dispersible in buffer solutions and possess surface aldehyde active groups available for further binding of ligands or markers via imine or amine bond formation. Hydrophobized dextrans were synthesized by periodate oxidation and conjugation of various alkanamines to oxidized dextran by imination. Physico-chemical properties, as separation using magnetic field, magnetite concentration, and particle diameter, of the prepared magnetic samples are reported. The biotin-binding protein, neutravidin, was coupled to the particle surface by a simple reductive amination procedure. The particles were used for specific cell separation with high specificity.

  20. Metal oxide nanoparticles with low toxicity.

    PubMed

    Ng, Alan Man Ching; Guo, Mu Yao; Leung, Yu Hang; Chan, Charis M N; Wong, Stella W Y; Yung, Mana M N; Ma, Angel P Y; Djurišić, Aleksandra B; Leung, Frederick C C; Leung, Kenneth M Y; Chan, Wai Kin; Lee, Hung Kay

    2015-10-01

    A number of different nanomaterials produced and incorporated into various products are rising. However, their environmental hazards are frequently unknown. Here we consider three different metal oxide compounds (SnO2, In2O3, and Al2O3), which have not been extensively studied and are expected to have low toxicity. This study aimed to comprehensively characterize the physicochemical properties of these nanomaterials and investigate their toxicity on bacteria (Escherichia coli) under UV illumination and in the dark, as well as on a marine diatom (Skeletonema costatum) under ambient illumination/dark (16-8h) cycles. The material properties responsible for their low toxicity have been identified based on comprehensive experimental characterizations and comparison to a metal oxide exhibiting significant toxicity under illumination (anatase TiO2). The metal oxide materials investigated exhibited significant difference in surface properties and interaction with the living organisms. In order for a material to exhibit significant toxicity, it needs to be able to both form a stable suspension in the culture medium and to interact with the cell walls of the test organism. Our results indicated that the observed low toxicities of the three nanomaterials could be attributed to the limited interaction between the nanoparticles and cell walls of the test organisms. This could occur either due to the lack of significant attachment between nanoparticles and cell walls, or due to their tendency to aggregate in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles.

    PubMed

    Nicolau, Eduardo; Méndez, Jessica; Fonseca, José J; Griebenow, Kai; Cabrera, Carlos R

    2012-06-01

    Diamond nanoparticles are considered a biocompatible material mainly due to their non-cytotoxicity and remarkable cellular uptake. Model proteins such as cytochrome c and lysozyme have been physically adsorbed onto diamond nanoparticles, proving it to be a suitable surface for high protein loading. Herein, we explore the non-covalent immobilization of the redox enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (E.C.1.1.1.1) onto oxidized diamond nanoparticles for bioelectrochemical applications. Diamond nanoparticles were first oxidized and physically characterized by X-ray diffraction (XRD), FT-IR and TEM. Langmuir isotherms were constructed to investigate the ADH adsorption onto the diamond nanoparticles as a function of pH. It was found that a higher packing density is achieved at the isoelectric point of the enzyme. Moreover, the relative activity of the immobilized enzyme on diamond nanoparticles was addressed under optimum pH conditions able to retain up to 70% of its initial activity. Thereafter, an ethanol bioelectrochemical cell was constructed by employing the immobilized alcohol dehydrogenase onto diamond nanoparticles, this being able to provide a current increment of 72% when compared to the blank solution. The results of this investigation suggest that this technology may be useful for the construction of alcohol biosensors or biofuel cells in the near future. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Radu, T.; Iacovita, C.; Benea, D.; Turcu, R.

    2017-05-01

    We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe3O4) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe2O3 (by oxygen dissociation) which in turn was transformed into α-Fe2O3. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  3. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation.

    PubMed

    Farrell, Zachary J; Tabor, Christopher

    2018-01-09

    Eutectic gallium-indium alloy (EGaIn, a room-temperature liquid metal) nanoparticles are of interest for their unique potential uses in self-healing and flexible electronic devices. One reason for their interest is due to a passivating oxide skin that develops spontaneously on exposure to ambient atmosphere which resists deformation and rupture of the resultant liquid particles. It is then of interest to develop methods for control of this oxide growth process. It is hypothesized here that functionalization of EGaIn nanoparticles with thiolated molecules could moderate oxide growth based on insights from the Cabrera-Mott oxidation model. To test this, the oxidation dynamics of several thiolated nanoparticle systems were tracked over time with X-ray photoelectron spectroscopy. These results demonstrate the ability to suppress gallium oxide growth by up to 30%. The oxide progressively matures over a 28 day period, terminating in different final thicknesses as a function of thiol selection. These results indicate not only that thiols moderate gallium oxide growth via competition with oxygen for surface sites but also that different thiols alter the thermodynamics of oxide growth through modification of the EGaIn work function.

  4. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A.

    2017-11-01

    This work presents a study of the effects on the photocatalytic capabilities of zinc oxide nanoparticles when prepared via green synthesis using different fruit peel extracts as reducing agents. Zinc nitrate was used as a source of the zinc ions, while Lycopersicon esculentum (tomato), Citrus sinensis (orange), Citrus paradisi (grapefruit) and Citrus aurantifolia (lemon) contributed their peels for extracts. The Synthesized Samples were studied and characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and High Resolution Transmission Electron Microscopy (HRTEM). All samples presented a band at 618 cm-1, indicating the presence of the Znsbnd O bond. The different samples all presented the same hexagonal crystal growth in their structure, the Wurtzite phase. The surface morphology of the nanoparticles showed that, depending on the extract used, the samples vary in size and shape distribution due to the chemical composition of the extracts. The photocatalytic properties of the zinc oxide samples were tested through UV light aided degradation of methylene blue. Most samples exhibited degradation rates at 180 min of around 97%, a major improvement when compared to chemically synthesized commercially available zinc oxide nanoparticles.

  5. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity.

    PubMed

    Sivaraj, Rajeshwari; Rahman, Pattanathu K S M; Rajiv, P; Narendhran, S; Venckatesh, R

    2014-08-14

    Copper oxide nanoparticles were synthesized by biological method using aqueous extract of Acalypha indica leaf and characterized by UV-visible spectroscopy, XRD, FT-IR, SEM TEM and EDX analysis. The synthesised particles were highly stable, spherical and particle size was in the range of 26-30 nm. The antimicrobial activity of A.indica mediated copper oxide nanoparticles was tested against selected pathogens. Copper oxide nanoparticles showed efficient antibacterial and antifungal effect against Escherichia coli, Pseudomonas fluorescens and Candida albicans. The cytotoxicity activity of A.indica mediated copper nanoparticles was evaluated by MTT assay against MCF-7 breast cancer cell lines and confirmed that copper oxide nanoparticles have cytotoxicity activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    PubMed Central

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  7. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    NASA Astrophysics Data System (ADS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-03-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

  8. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Tsoufis, T.; Syrgiannis, Z.; Akhtar, N.; Prato, M.; Katsaros, F.; Sideratou, Z.; Kouloumpis, A.; Gournis, D.; Rudolf, P.

    2015-05-01

    We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature.We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission

  9. Controllable synthesis of iron oxide nanoparticles in porous NaCl matrix

    NASA Astrophysics Data System (ADS)

    Kurapov, Yury A.; E Litvin, Stanislav; Romanenko, Sergey M.; Didikin, Gennadii G.; Oranskaya, Elena I.

    2017-03-01

    The paper gives the results of studying the structure of porous condensates of Fe + NaCl composition, chemical and phase compositions and dimensions of nanoparticles produced from the vapor phase by EB-PVD. Iron nanoparticles at fast removal from the vacuum oxidize in air and possess significant sorption capacity relative to oxygen and moisture. At heating in air, reduction of porous condensate weight occurs right to the temperature of 650 °C, primarily, due to desorption of physically sorbed moisture. Final oxidation of Fe3O4 to Fe2O3 proceeds in the range of 380 °C-650 °C, due to the remaining fraction of physically adsorbed oxygen. At iron concentrations of up to 10-15 at%, condensate sorption capacity is markedly increased with increase of iron concentration, i.e. of the quantity of fine particles. Increase of condensation temperature is accompanied by increase of nanoparticle size, resulting in a considerable reduction of the total area of nanoparticle surface, and, hence of their sorption capacity. In addition to condensation temperature, the size and phase composition of nanoparticles can also be controlled by heat treatment of initial condensate, produced at low condensation temperatures. Magnetite nanoparticles can be transferred into stable colloid systems.

  10. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides.

    PubMed

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-06-20

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO₂ and Al₂O₃ were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO₂ leads to a satisfactory surface appearance compared to that of the TIG weld made with Al₂O₃. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO₂, the TIG welding with nanoparticle SiO₂ has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al₂O₃ does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO₂ uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al₂O₃ results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  11. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning.

    PubMed

    Burke, Luke; Mortimer, Chris J; Curtis, Daniel J; Lewis, Aled R; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G G; Wright, Chris J

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125±18nm (PEO) and 1.58±0.28μm (PVP); Free-surface electrospun: 155±31nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8±3nm to 27±5nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Different effect of hydrogelation on anti-fouling and circulation properties of dextran–iron oxide nanoparticles

    PubMed Central

    Karmali, Priya Prakash; Chao, Ying; Park, Ji-Ho (Joe); Sailor, Michael J.; Ruoslahti, Erkki; Esener, Sadik C.; Simberg, Dmitri

    2012-01-01

    Premature recognition and clearance of nanoparticulate imaging and therapeutic agents by macrophages in the tissues can dramatically reduce both the nanoparticle half-life and delivery to the diseased tissue. Grafting nanoparticles with hydrogels prevents nanoparticulate recognition by liver and spleen macrophages and greatly prolongs circulation times in vivo. Understanding the mechanisms by which hydrogels achieve this “stealth” effect has implications for the design of long-circulating nanoparticles. Thus, the role of plasma protein absorption in the hydrogel effect is not yet understood. Short-circulating dextran-coated iron oxide nanoparticles could be converted into stealth hydrogel nanoparticles by crosslinking with 1-chloro-2,3-epoxypropane. We show that hydrogelation did not affect the size, shape and zeta potential, but completely prevented the recognition and clearance by liver macrophages in vivo. Hydrogelation decreased the number of hydroxyl groups on the nanoparticle surface and reduced the binding of the anti-dextran antibody. At the same time, hydrogelation did not reduce the absorption of cationic proteins on the nanoparticle surface. Specifically, there was no effect on the binding of kininogen, histidine-rich glycoprotein, and protamine sulfate to the anionic nanoparticle surface. In addition, hydrogelation did not prevent activation of plasma kallikrein on the metal oxide surface. These data suggest that: (a) a stealth hydrogel coating does not mask charge interactions with iron oxide surface and (b) the total blockade of plasma protein absorption is not required for maintaining iron oxide nanoparticles’ long-circulating stealth properties. These data illustrate a novel, clinically promising property of long-circulating stealth nanoparticles. PMID:22243419

  13. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation.

    PubMed

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    PubMed Central

    2011-01-01

    Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS) usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial) and HK-2 (epithelial proximal) cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential. PMID:21371295

  16. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Iram, Sana; Khan, Salman; Ansary, Abu Ayoobul; Arshad, Mohd; Siddiqui, Sahabjada; Ahmad, Ejaz; Khan, Rizwan H.; Khan, Mohd Sajid

    2016-11-01

    The synthesis of inner transition metal nanoparticles via an ecofriendly route is quite difficult. This study, for the first time, reports synthesis of terbium oxide nanoparticles using fungus, Fusarium oxysporum. The biocompatible terbium oxide nanoparticles (Tb2O3 NPs) were synthesized by incubating Tb4O7 with the biomass of fungus F. oxysporum. Multiple physical characterization techniques, such as UV-visible and photoluminescence spectroscopy, TEM, SAED, and zeta-potential were used to confirm the synthesis, purity, optical and surface characteristics, crystallinity, size, shape, distribution, and stability of the nanoemulsion of Tb2O3 NPs. The Tb2O3 NPs were found to inhibit the propagation of MG-63 and Saos-2 cell-lines (IC50 value of 0.102 μg/mL) and remained non-toxic up to a concentration of 0.373 μg/mL toward primary osteoblasts. Cell viability decreased in a concentration-dependent manner upon exposure to 10 nm Tb2O3 NPs in the concentration range 0.023-0.373 μg/mL. Cell toxicity was evaluated by observing changes in cell morphology, cell viability, oxidative stress parameters, and FACS analysis. Morphological examinations of cells revealed cell shrinkage, nuclear condensation, and formation of apoptotic bodies. The level of ROS within the cells-an indicator of oxidative stress was significantly increased. The induction of apoptosis at concentrations ≤ IC50 was corroborated by 4‧,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining (DNA damage and nuclear fragmentation). Flow-cytometric studies indicated that the response was dose dependent with a threshold effect.

  17. Biokinetics of yttrium and comparison with its geochemical twin holmium

    DOE PAGES

    Leggett, Rich

    2017-06-01

    The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less

  18. A comparative ecotoxicity analysis of α- and γ-phase aluminium oxide nanoparticles towards a freshwater bacterial isolate Bacillus licheniformis.

    PubMed

    Pakrashi, Sunandan; Kumar, Deepak; Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2014-12-01

    Crystalline structure of nanoparticles may influence their physicochemical behaviour as well as their toxicological impact on biota. The differences in orientation of the atoms result in the variations in chemical stability. Thus, toxicological impacts of different crystalline phases of aluminium oxide nanoparticles are expected to vary. The present study brings out a comparative toxicity analysis of γ-phase and α-phase aluminium oxide nanoparticles of comparable hydrodynamic size range towards a freshwater bacterial isolate Bacillus licheniformis at low exposure concentrations (5, 1, 0.5 and 0.05 µg/mL). Upon 2-h exposure, the α-aluminium oxide particles showed lower toxicity than the γ-phase aluminium oxide. The lower level of oxidative stress generation and cell membrane damage in case of the α-phase aluminium oxide nanoparticles substantiated the toxicity results. The involvement of protein, lipopolysaccharides in nanoparticle-cell surface interaction, was noted in both the cases. To conclude, the crystallinity of aluminium oxide nanoparticles played an important role in the interaction and the toxicity response.

  19. Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications

    PubMed Central

    Rasmussen, John W.; Martinez, Ezequiel; Louka, Panagiota; Wingett, Denise G.

    2010-01-01

    Importance of the field Metal oxide nanoparticles, including zinc oxide, are versatile platforms for biomedical applications and therapeutic intervention. There is an urgent need to develop new classes of anticancer agents, and recent studies demonstrate that ZnO nanomaterials hold considerable promise. Areas covered in this review This review analyzes the biomedical applications of metal oxide and ZnO nanomaterials under development at the experimental, preclinical, and clinical levels. A discussion regarding the advantages, approaches, and limitations surrounding the use of metal oxide nanoparticles for cancer applications and drug delivery is presented. The scope of this article is focused on ZnO, and other metal oxide nanomaterial systems, and their proposed mechanisms of cytotoxic action, as well as current approaches to improve their targeting and cytotoxicity against cancer cells. Take home message Through a better understanding of the mechanisms of action and cellular consequences resulting from nanoparticles interactions with cells, the inherent toxicity and selectivity of ZnO nanoparticles against cancer may be further improved to make them attractive new anti-cancer agents. PMID:20716019

  20. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection.

    PubMed

    Gutiérrez-Hernández, José Manuel; Escalante, Alfredo; Murillo-Vázquez, Raquel Nalleli; Delgado, Ezequiel; González, Francisco Javier; Toríz, Guillermo

    2016-10-01

    The use of sunscreens is essential for preventing skin damage and the potential appearance of skin cancer in humans. Inorganic active components such as zinc oxide (ZnO) have been used commonly in sunscreens due to their ability to block UVA radiation. This ultraviolet (UV) protection might be enhanced to cover the UVB and UVC bands when combined with other components such as titanium dioxide (TiO2). In this work we evaluate the photoprotection properties of organic nanoparticles made from lignin in combination with ZnO nanoparticles as active ingredients for sunscreens. Lignin nanoparticles were synthesized from Agave tequilana lignin. Two different pulping methods were used for dissolving lignin from agave bagasse. ZnO nanoparticles were synthesized by the precipitation method. All nanoparticles were characterized by SEM, UV-Vis and FT-IR spectroscopy. Nanoparticles were mixed with a neutral vehicle in different concentrations and in-vitro sun protection factor (SPF) values were calculated. Different sizes of spherical lignin nanoparticles were obtained from the spent liquors of two different pulping methods. ZnO nanoparticles resulted with a flake shape. The mixture of all components gave SPF values in a range between 4 and 13. Lignin nanoparticles showed absorption in the UVB and UVC regions which can enhance the SPF value of sunscreens composed only of zinc oxide nanoparticles. Lignin nanoparticles have the added advantage of being of organic nature and its brown color can be used to match the skin tone of the person using it. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Gu, Dong; Jin, Zhao; Du, Pei-Pei; Si, Rui; Tao, Jing; Xu, Wen-Qian; Huang, Yu-Ying; Senanayake, Sanjaya; Song, Qi-Sheng; Jia, Chun-Jiang; Schüth, Ferdi

    2015-03-01

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H2-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  2. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE PAGES

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; ...

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeO x catalysts with very similar structural characteristics in CO oxidation.« less

  3. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  4. Enhanced conductivity of reduced graphene oxide decorated with aluminium oxide nanoparticles by oxygen annealing.

    PubMed

    Liu, Hao; Choy, Kwang-Leong; Roe, Martin

    2013-07-07

    A process involving the filtration of graphene oxide (GO) dispersion through an alumina membrane, followed by oxygen annealing to synthesize alumina nanoparticles exclusively at the edges of holes or vacancies in the reduced graphene oxide (rGO) plane, is used to prepare paper-like composites with a 21% enhanced electrical conductivity. Moreover, the rGO/alumina nanocomposites have a smaller band gap and hydrophilic properties.

  5. Conquering the Dark Side: Colloidal Iron Oxide Nanoparticles

    PubMed Central

    Senpan, Angana; Caruthers, Shelton D.; Rhee, Ilsu; Mauro, Nicholas A.; Pan, Dipanjan; Hu, Grace; Scott, Michael J.; Fuhrhop, Ralph W.; Gaffney, Patrick J.; Wickline, Samuel A.; Lanza, Gregory M.

    2009-01-01

    Nanomedicine approaches to atherosclerotic disease will have significant impact on the practice and outcomes of cardiovascular medicine. Iron oxide nanoparticles have been extensively used for nontargeted and targeted imaging applications based upon highly sensitive T2* imaging properties, which typically result in negative contrast effects that can only be imaged 24 or more hours after systemic administration due to persistent blood pool interference. Although recent advances involving MR pulse sequences have converted these dark contrast voxels into bright ones, the marked delays in imaging from persistent magnetic background interference and prominent dipole blooming effects of the magnetic susceptibility remain barriers to overcome. We report a T1-weighted (T1w) theranostic colloidal iron oxide nanoparticle platform, CION, which is achieved by entrapping oleate-coated magnetite particles within a cross-linked phospholipid nanoemulsion. Contrary to expectations, this formulation decreased T2 effects thus allowing positive T1w contrast detection down to low nanomolar concentrations. CION, a vascular constrained nanoplatform administered in vivo permitted T1w molecular imaging 1 hour after treatment without blood pool interference, although some T2 shortening effects on blood, induced by the superparamagnetic particles persisted. Moreover, CION was shown to encapsulate antiangiogenic drugs, like fumagillin, and retained them under prolonged dissolution, suggesting significant theranostic functionality. Overall, CION is a platform technology, developed with generally recognized as safe components, that overcomes the temporal and spatial imaging challenges associated with current iron oxide nanoparticle T2 imaging agents, and which has theranostic potential in vascular diseases for detecting unstable ruptured plaque or treating atherosclerotic angiogenesis. PMID:19908850

  6. Virucidal properties of metal oxide nanoparticles and their halogen adducts.

    PubMed

    Häggström, Johanna; Balyozova, Denitza; Klabunde, Kenneth J; Marchin, George

    2010-04-01

    Selected metal oxide nanoparticles are capable of strongly adsorbing large amounts of halogens (Cl(2), Br, I(2)) and mixed halogens. These solid adducts are relatively stable thermally, and they can be stored for long periods. However, in the open environment, they are potent biocides. Herein are described studies with a number of bacteriophage MS2, phiX174, and PRD-1 (virus examples). PRD-1 is generally more resistant to chemical disinfection, but in this paper it is shown to be very susceptible to selected interhalogen and iodine adducts of CeO(2), Al(2)O(3), and TiO(2) nanoparticles. Overall, the halogen adducts of TiO(2) and Al(2)O(3) were most effective. The mechanism of disinfection by these nanoparticles is not completely clear, but could include abrasive properties, as well as oxidative powers. A hypothesis that nanoparticles damage virons or stick to them and prevent binding to the host cell is a consideration that needs to be explored. Herein are reported comparative biocidal activities of a series of adducts and electron microscope images of before and after treatment.

  7. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    PubMed Central

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  8. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension.

    PubMed

    Scheckel, Kirk G; Luxton, Todd P; El Badawy, Amro M; Impellitteri, Christopher A; Tolaymat, Thabet M

    2010-02-15

    Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.

  9. Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium.

    PubMed

    Farias, Manuel J S; Busó-Rogero, Carlos; Vidal-Iglesias, Francisco J; Solla-Gullón, José; Camara, Giuseppe A; Feliu, Juan M

    2017-01-31

    The knowledge about how CO occupies and detaches from specific surface sites on well-structured Pt surfaces provides outstanding information on both dynamics/mobility of CO ads and oxidation of this molecule under electrochemical conditions. This work reports how the potentiostatic growth of different coverage CO adlayers evolves with time on both cubic and octahedral Pt nanoparticles in acidic medium. Data suggest that during the growth of the CO adlayer, CO ads molecules slightly shift toward low coordination sites only on octahedral Pt nanoparticles, so that these undercoordinated sites are the first filled on octahedral Pt nanoparticles. Conversely, on cubic Pt nanoparticles, adsorbed CO behaves as an immobile species, and low coordinated sites as well as (100) terraces are apparently filled uniformly and simultaneously. However, once the adlayer is complete, irrespectively of whether the CO is oxidized in a single step or in a sequence of different potential steps, results suggest that CO ads behaves as an immobile species during its oxidation on both octahedral and cubic Pt nanoparticles.

  10. Chemical synthesis and characterization of hollow dopamine coated, pentagonal and flower shaped magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Riasat, Rabia; Kaynat, Sumbal

    2018-04-01

    Iron oxide nanoparticles have gained attention recently in the field of nanoscience and technology due to their unique physicochemical properties. We hereby chemically synthesized novel pentagonal flower shaped iron oxide nanoparticles by thermal decomposition of iron penta-carbonyl in a two way annealing process. Controlled oxidation by acid etching was performed for these nanoparticles. At first 13 nm core shell nanoparticles of iron oxide (Fe/Fe3O4) were synthesized at 120°C annealing temperature that act as template material. The core shell nanoparticles then converted into porous hollow core shell nanoparticles (PH Fe/ Fe3O4) in a two way annealing process of heating, first at 100°C then at 250°C and heating rate of 5°C was kept constant throughout the reaction time. X-Ray diffraction (XRD) was done for the phase confirmation of as synthesized nanoparticles. Transmission electron microscopy (TEM) and higher resolution transmission electron microscopy (HRTEM) clearly shows the flower like nanoparticles that are approx. 16 nm-18 nm in size having the 4-5 nm core of Fe and 1-2 nm of the pores in the shell while the cavity between the shell and core is about 2 nm and the shell is 4-5 nm in diameter according to the TEM micrographs. The as prepared nanoparticles were then surface functionalized by dopamine polymer to make them water dispersible. Fourier transform Infrared spectroscopy confirmed the dopamine coating on the nanoparticles and the magnetic saturation of 38 emu/g of nanoparticles was analyzed by vibrating sample magnetometer (VSM). Magnetic saturation persists in the dopamine coated nanoparticles. These nanoparticles were surface functionalized with dopamine and show dispersity in the aqueous media and can further be exploited in many nano-biotechnological applications including target specific therapeutic applications for several diseases.

  11. Gold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery

    PubMed Central

    Sathish Kumar, Kannaiyan; Jaikumar, Vasudevan

    2011-01-01

    The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. The drug-entrapped nanocapsules were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) studies indicated the absence of chemical interactions between the drug, polymer and metal nanoparticles. The drug loaded nanoparticles are spherical in shape and had average diameter in the range of 100-300 nm. Drug release study showed that the acidic media provided a faster release than the phosphate buffer media. These findings were also compared statistically through calculating mean, standard deviation and coefficient of variation for various polymer nanocapsules. However, the drug release for gold nanoparticles/anticancer drug (Au-cis) incorporated ethylcellulose nanocapsules was controlled and slow compared to iron oxide nanoparticles-cisplatin incorporated ethylcellulose nanocapsules. Hence, gold nanoparticles act as good trapping agents which slow down the rate of drug release from nanocapsules. PMID:24250373

  12. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; ...

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO 2 shell.« less

  13. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.

  14. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    PubMed Central

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-01-01

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides. PMID:28788704

  15. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  16. Structural phase transitions in yttrium under ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2012-09-01

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  17. Structural phase transitions in yttrium under ultrahigh pressures.

    PubMed

    Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2012-09-12

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  18. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have strong antibacterial activities against several important foodborne pathogens. Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. Th...

  19. In vivo assessment of impact of titanium oxide nanoparticle on zebrafish embryo

    NASA Astrophysics Data System (ADS)

    Verma, Suresh K.; Mishra, Anurag K.; Suar, M.; Parashar, S. K. S.

    2017-05-01

    Technologies and innovations have attended a new height with recent development in nanotechnology in last few decades. With these developments there has a great raise in demand of metal oxides like TiO2, ZnO having versatile physical, chemical and biological application. However the great rise has raised concern over the effect of these nanoparticles in biological system. In this study, we have assessed the impact of titanium oxide nanoparticles synthesized by high energy ball milling (HEBM) by milling bulk TiO2 particles for 15h. The synthesized particles were characterized with XRD, UV-Visible spectroscopy and DLS for their physiochemical properties. Biological impact of these nanoparticles was then studied on zebrafish embryo as invivo model. Mortality and hatching rate were calculated for 48hpf and 96hpf treatment. To determine the mechanism of mortality effect, Reactive oxygen species (ROS) was determined with the help of flow cytometry. 15h nanoparticles were found to have a LC50 of ( ) for zebrafish embryo. However TiO2 nanoparticles were found to be a ROS scavenger for the treated Zebrafish cells.

  20. Evaluation of the thermodynamic properties of hydrated metal oxide nanoparticles by INS techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.

    2013-01-01

    In this contribution we will present a detailed methodology for the elucidation of the following aspects of the thermodynamic properties of hydrated metal oxide nanoparticles from high-resolution, low-temperature inelastic neutron scattering (INS) data: (i) the isochoric heat capacity and entropy of the hydration layers both chemi- and physisorbed to the particle surface; (ii) the magnetic contribution to the heat capacity of the nanoparticles. This will include the calculation of the vibrational density of states (VDOS) from the raw INS spectra, and the subsequent extraction of the thermodynamic data from the VDOS. This technique will be described in terms of amore » worked example namely, cobalt oxide (Co3O4 and CoO). To complement this evaluation of the physical properties of metal oxide nanoparticle systems, we will emphasise the importance of high-resolution, high-energy INS for the determination of the structure and dynamics of the water species, namely molecular (H2O) and dissociated water (OH, hydroxyl), confined to the oxide surfaces. For this component of the chapter we will focus on INS investigations of hydrated isostructural rutile (a-TiO2) and cassiterite (SnO2) nanoparticles. We will complete this discussion of nanoparticle analysis by including an appraisal of the INS instrumentation employed in such studies with particular focus on TOSCA [ISIS, Rutherford Appleton Laboratory (RAL), U.K.] and the newly developed spectrometer SEQUOIA [SNS, Oak Ridge National Laboratory (ORNL), U.S.A].« less

  1. Amorphous iron–chromium oxide nanoparticles with long-term stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacob, Mihail; Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova; Cazacu, Maria, E-mail: mcazacu@icmpp.ro

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of themore » NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.« less

  2. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    PubMed

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    NASA Astrophysics Data System (ADS)

    Baldassarre, Francesca; Cacciola, Matteo; Ciccarella, Giuseppe

    2015-09-01

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.

  4. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.

    PubMed

    Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel

    2010-09-28

    Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.

  5. The responses of immune cells to iron oxide nanoparticles.

    PubMed

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

    NASA Astrophysics Data System (ADS)

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-09-01

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg-1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

  7. Diatom frustules decorated with zinc oxide nanoparticles for enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Lamastra, F. R.; Grilli, M. L.; Leahu, G.; Belardini, A.; Li Voti, R.; Sibilia, C.; Salvatori, D.; Cacciotti, I.; Nanni, F.

    2017-09-01

    Zinc oxide (ZnO) nanoparticles were synthesized on diatomite (DE) surface by a low temperature sol gel technique, starting from zinc acetate dihydrate (Zn(CH3COO)2 · 2H2O) solution in water/ethyl alcohol, in presence of triethanolamine (TEA) with functions of Zn2+ chelating agent, catalyst and mediator of nanoparticle growth on DE surface. Microstructural features were investigated by field emission scanning electron microscopy and x-ray diffraction. ZnO crystalline nanoparticles, well distributed both on the surface and into the porous architecture of diatomite, were obtained just after the synthesis carried out at 80 °C without the need of calcination treatments. The optical properties of ZnO/DE hybrid powders were measured for the first time by means of photoacoustic spectroscopy (PAS). A new method to retrieve both the optical absorption and scattering coefficients from PAS is here discussed for powder aggregates. The fingerprint of the zinc oxide nanoparticles has been highlighted in the Mie scattering resonance in the UV-Vis range, and in the enhancement of the optical absorption with respect to diatomite.

  8. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.

    PubMed

    Xie, Yanping; He, Yiping; Irwin, Peter L; Jin, Tony; Shi, Xianming

    2011-04-01

    The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.

  9. In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2013-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people and the Plasmodium falciparum develops resistant to well-established antimalarial drugs. The newest antiplasmodial drug from metal oxide nanoparticles helps in addressing this problem. Commercial nanoparticles such as Fe3O4, MgO, ZrO2, Al2O3 and CeO2 coated with PDDS and all the coated and non-coated nanoparticles were screened for antiplasmodial activity against P. falciparum. The Al2O3 nanoparticles (71.42 ± 0.49 μg ml-1) showed minimum level of IC50 value and followed by MgO (72.33 ± 0.37 μg ml-1) and Fe3O4 nanoparticles (77.23 ± 0.42 μg ml-1). The PDDS-Fe3O4 showed minimum level of IC50 value (48.66 ± 0.45 μg ml-1), followed by PDDS-MgO (60.28 ± 0.42 μg ml-1) and PDDS-CeO2 (67.06 ± 0.61 μg ml-1). The PDDS-coated metal oxide nanoparticles showed superior antiplasmodial activity than the non-PDDS-coated metal oxide nanoparticles. Statistical analysis reveals that, significant in vitro antiplasmodial activity ( P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the nanoparticles after 48 h of incubation. It is concluded from the present study that, the PDDS-Fe3O4 showed good antiplasmodial activity and it might be used for the development of antiplasmodial drugs.

  10. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    PubMed

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with themore » proposed models.« less

  12. Toxicity, toxicokinetics and biodistribution of dextran stabilized Iron oxide Nanoparticles for biomedical applications.

    PubMed

    Remya, N S; Syama, S; Sabareeswaran, A; Mohanan, P V

    2016-09-10

    Advancement in the field of nanoscience and technology has alarmingly raised the call for comprehending the potential health effects caused by deliberate or unintentional exposure to nanoparticles. Iron oxide magnetic nanoparticles have an increasing number of biomedical applications and hence a complete toxicological profile of the nanomaterial is therefore a mandatory requirement prior to its intended usage to ensure safety and to minimize potential health hazards upon its exposure. The present study elucidates the toxicity of in house synthesized Dextran stabilized iron oxide nanoparticles (DINP) in a regulatory perspective through various routes of exposure, its associated molecular, immune, genotoxic, carcinogenic effects and bio distribution profile. Synthesized ferrite nanomaterials were successfully coated with dextran (<25nm) and were physicochemically characterized and subjected to in vitro and in vivo toxicity evaluations. The results suggest that surface coating of ferrite nanoparticles with dextran helps in improvising particle stability in biological environments. The nanoparticles do not seem to induce oxidative stress mediated toxicological effects, nor altered physiological process or behavior changes or visible pathological lesions. Furthermore no anticipated health hazards are likely to be associated with the use of DINP and could be concluded that the synthesized DINP is nontoxic/safe to be used for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Functionalization of textiles with silver and zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pulit-Prociak, Jolanta; Chwastowski, Jarosław; Kucharski, Arkadiusz; Banach, Marcin

    2016-11-01

    The paper presents a method for functionalization of textile materials using fabric dyes modified with silver or zinc oxide nanoparticles. Embedding of these nanoparticles into the structure of other materials makes that the final product is characterized by antimicrobial properties. Indigo and commercially available dye were involved in studies. It is worth to note that silver nanoparticles were obtained in-situ in the reaction of preparing indigo dye and in the process of preparing commercial dye baths. Such a method allows reducing technological steps. The modified dyes were used for dyeing of cotton fibers. The antimicrobial properties of final textile materials were studied. Saccharomyces cerevisiae strain was used in microbiological test. The results confirmed biocidal activity of prepared materials.

  14. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  15. Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide Releasing Silica Nanoparticles

    PubMed Central

    Carpenter, Alexis W.; Slomberg, Danielle L.; Rao, Kavitha S.; Schoenfisch, Mark H.

    2011-01-01

    A reverse microemulsion synthesis was used to prepare amine functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with identical amine concentrations. The resulting hybrid nanoparticles, consisting of N-(6 aminohexyl) aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of nitric oxide (NO) released constant for each particle size. The bactericidal efficacy of the NO releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO releasing particles exhibited toxicity towards L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size. PMID:21842899

  16. Fabrication of Al2O3 coated 2D TiO2 nanoparticle photonic crystal layers by reverse nano-imprint lithography and plasma enhanced atomic layer deposition.

    PubMed

    Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho

    2013-10-01

    This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.

  17. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora

    NASA Astrophysics Data System (ADS)

    Groiss, Silvia; Selvaraj, Raja; Varadavenkatesan, Thivaharan; Vinayagam, Ramesh

    2017-01-01

    In the present investigation, the leaf extract of Cynometra ramiflora was used to synthesize iron oxide nanoparticles. Within minutes of adding iron sulphate to the leaf extract, iron oxide nanoparticles were formed and thus, the method is very simple and fast. UV-VIS spectra showed the strong absorption band in the visible region. SEM images showed discrete spherical shaped particles and EDS spectra confirmed the iron and oxygen presence. The XRD results depicted the crystalline structure of iron oxide nanoparticles. FT-IR spectra portrayed the existence of functional groups of phytochemicals which are probably involved in the formation and stabilization of nanoparticles. The iron oxide nanoparticles exhibited effective inhibition against E. coli and S. epidermidis which may find its applications in the antibacterial drug development. Furthermore, the catalytic activity of the nanoparticles as Fenton-like catalyst was successfully investigated for the degradation of Rhodamine-B dye. This outcome could play a prominent role in the wastewater treatment.

  18. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract ( Bifurcaria bifurcata)

    NASA Astrophysics Data System (ADS)

    Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B.

    2014-06-01

    Recently, biosynthesis of nanoparticles has attracted scientists' attention because of the necessity to develop new clean, cost-effective and efficient synthesis techniques. In particular, metal oxide nanoparticles are receiving increasing attention in a large variety of applications. However, up to now, the reports on the biopreparation and characterization of nanocrystalline copper oxide are relatively few compared to some other metal oxides. In this paper, we report for the first time the use of brown alga ( Bifurcaria bifurcata) in the biosynthesis of copper oxide nanoparticles of dimensions 5-45 nm. The synthesized nanomaterial is characterized by UV-visible absorption spectroscopy and Fourier transform infrared spectrum analysis. X-ray diffraction confirms the formation and the crystalline nature of copper oxide nanomaterial. Further, these nanoparticles were found to exhibit high antibacterial activity against two different strains of bacteria Enterobacter aerogenes (Gram negative) and Staphylococcus aureus (Gram positive).

  19. Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electro-oxidation reaction.

    PubMed

    Abdel Hameed, R M; Medany, Shymaa S

    2018-03-01

    Nickel oxide nanoparticles were deposited on different carbon supports including activated Vulcan XC-72R carbon black (NiO/AC), multi-walled carbon nanotubes (NiO/MWCNTs), graphene (NiO/Gr) and graphite (NiO/Gt) through precipitation step followed by calcination at 400 °C. To determine the crystalline structure and morphology of prepared electrocatalysts, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed. The electrocatalytic activity of NiO/carbon support electrocatalysts was investigated towards urea electro-oxidation reaction in NaOH solution using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Urea oxidation peak current density was increased in the following order: NiO/AC < NiO/MWCNTs < NiO/Gr < NiO/Gt. Chronoamperometry test also showed an increased steady state oxidation current density for NiO/Gt in comparison to other electrocatalysts. The increased activity and stability of NiO/Gt electrocatalyst encourage the application of graphite as an efficient and cost-saving support to carry metal nanoparticles for urea electro-oxidation reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters

    DOE PAGES

    Fernando, Amendra; Weerawardene, K. L. Dimuthu M.; Karimova, Natalia V.; ...

    2015-04-21

    Here, metal, metal oxide, and metal chalcogenide materials have a wide variety of applications. For example, many metal clusters and nanoparticles are used as catalysts for reactions varying from the oxidation of carbon monoxide to the reduction of protons to hydrogen gas. Noble metal nanoparticles have unique optical properties such as a surface plasmon resonance for large nanoparticles that yield applications in sensing and photonics. In addition, a number of transition metal clusters are magnetic. Metal oxide clusters and surfaces are commonly used as catalysts for reactions such as water splitting. Both metal oxide and metal chalcogenide materials can bemore » semiconducting, which leads to applications in sensors, electronics, and solar cells. Many researchers have been interested in studying nanoparticles and/or small clusters of these materials. Some of the system sizes under investigation have been experimentally synthesized, which enables direct theory–experiment comparison. Other clusters that have been examined theoretically are of interest as models of larger systems or surfaces. Often, the size-dependence of their properties such as their HOMO–LUMO gap, magnetic properties, optical properties, etc., is of interest.« less

  1. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    NASA Astrophysics Data System (ADS)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  2. Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Saquib, Mohammad; Halder, Aditi

    2018-02-01

    Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.

  3. Oxidative dissolution of silver nanoparticles: A new theoretical approach.

    PubMed

    Adamczyk, Zbigniew; Oćwieja, Magdalena; Mrowiec, Halina; Walas, Stanisław; Lupa, Dawid

    2016-05-01

    A general model of an oxidative dissolution of silver particle suspensions was developed that rigorously considers the bulk and surface solute transport. A two-step surface reaction scheme was proposed that comprises the formation of the silver oxide phase by direct oxidation and the acidic dissolution of this phase leading to silver ion release. By considering this, a complete set of equations is formulated describing oxygen and silver ion transport to and from particles' surfaces. These equations are solved in some limiting cases of nanoparticle dissolution in dilute suspensions. The obtained kinetic equations were used for the interpretation of experimental data pertinent to the dissolution kinetics of citrate-stabilized silver nanoparticles. In these kinetic measurements the role of pH and bulk suspension concentration was quantitatively evaluated by using the atomic absorption spectrometry (AAS). It was shown that the theoretical model adequately reflects the main features of the experimental results, especially the significant increase in the dissolution rate for lower pH. Also the presence of two kinetic regimes was quantitatively explained in terms of the decrease in the coverage of the fast dissolving oxide layer. The overall silver dissolution rate constants characterizing these two regimes were determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix.

    PubMed

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-09-15

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am(2) kg(-1) is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

  5. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

    PubMed Central

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-01-01

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg–1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications. PMID:27628898

  6. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

    PubMed Central

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734

  8. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation.

    PubMed

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I; Nel, Andre E

    2012-05-22

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.

  9. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties

    NASA Astrophysics Data System (ADS)

    Gunalan, Sangeetha; Sivaraj, Rajeshwari; Venckatesh, Rajendran

    2012-11-01

    In this paper, we report on the synthesis of nanostructured copper oxide particles by both chemical and biological method. A facile and efficient synthesis of copper oxide nanoparticles was carried out with controlled surface properties via green chemistry approach. The CuO nanoparticles synthesized are monodisperse and versatile and were characterized with the help of UV-Vis, PL, FT-IR, XRD, SEM, and TEM techniques. The particles are crystalline in nature and average sizes were between 15 and 30 nm. The morphology of the nanoparticles can be controlled by tuning the amount of Aloe vera extract. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production and health related applications of CuO nanoparticles.

  10. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  11. Experimental Evaluation of Oxide Nanoparticles as Friction and Wear Improvement Additives in Motor Oil

    DOE PAGES

    Demas, Nicholaos G.; Erck, Robert A.; Lorenzo-Martin, Cinta; ...

    2017-01-30

    The effect of two nanoparticle oxides on friction and wear was studied under laboratory test conditions using a reciprocating test machine and two test configurations. The addition of these nanoparticles in base stock oil under certain conditions reduced the coefficient of friction and improved wear, but that depended on the test configuration. Examination of the rubbed surfaces showed the pronounced formation of a tribofilm in some cases, while polishing on the surface was also observed in other cases. Contact configuration is important when oxide nanoparticles are being evaluated and the conclusions about their efficacy can be vastly different.

  12. Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarangella, Adriana; Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania; Reitano, Riccardo

    2015-07-27

    The process of energy transfer (ET) between optically active ions has been widely studied to improve the optical efficiency of a system for different applications, from lighting and photovoltaics to silicon microphotonics. In this work, we report the influence of Bi on the Er optical emission in erbium-yttrium oxide thin films synthesized by magnetron co-sputtering. We demonstrate that this host permits to well dissolve Er and Bi ions, avoiding their clustering, and thus to stabilize the optically active Er{sup 3+} and Bi{sup 3+} valence states. In addition, we establish the ET occurrence from Bi{sup 3+} to Er{sup 3+} by themore » observed Bi{sup 3+} PL emission decrease and the simultaneous Er{sup 3+} photoluminescence (PL) emission increase. This was further confirmed by the coincidence of the Er{sup 3+} and Bi{sup 3+} excitation bands, analyzed by PL excitation spectroscopy. By increasing the Bi content of two orders of magnitude inside the host, though the occurrence of Bi-Bi interactions becomes deleterious for Bi{sup 3+} optical efficiency, the ET process between Bi{sup 3+} and Er{sup 3+} is still prevalent. We estimate ET efficiency of 70% for the optimized Bi:Er ratio equal to 1:3. Moreover, we have demonstrated to enhance the Er{sup 3+} effective excitation cross section by more than three orders of magnitude with respect to the direct one, estimating a value of 5.3 × 10{sup −18} cm{sup 2}, similar to the expected Bi{sup 3+} excitation cross section. This value is one of the highest obtained for Er in Si compatible hosts. These results make this material very promising as an efficient emitter for Si-compatible photonics devices.« less

  13. Investigation of photoluminescence and dielectric properties of pure and Fe doped nickel oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gupta, Jhalak; Ahmad, Arham S.

    2018-05-01

    The nanocrystallites of pure and Fe doped Nickel Oxide (NiO) were synthesized by the cost effective co-precipitation method using nickel nitrate as the initial precursor. The synthesized nickel oxide nanoparticles were characterized by X-Ray Diffraction (XRD), Photoluminiscence Spectroscopy (PL), LCR meter. The crystallite size of synthesized pure Nickel Oxide nanoparticles obtained by XRD using Debye Scherer's formula was found to be 21.8nm and the size decreases on increasing the dopant concentration. The optical properties were analyzed by PL and dielectric ones by using LCR meter.

  14. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    PubMed Central

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  15. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    NASA Astrophysics Data System (ADS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  16. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    PubMed

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.

    PubMed

    Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S

    2016-12-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  18. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles

    PubMed Central

    Baek, Miri; Chung, Hae-Eun; Yu, Jin; Lee, Jung-A; Kim, Tae-Hyun; Oh, Jae-Min; Lee, Won-Jae; Paek, Seung-Min; Lee, Jong Kwon; Jeong, Jayoung; Choy, Jin-Ho; Choi, Soo-Jin

    2012-01-01

    Background This study explored the pharmacokinetics, tissue distribution, and excretion profile of zinc oxide (ZnO) nanoparticles with respect to their particle size in rats. Methods Two ZnO nanoparticles of different size (20 nm and 70 nm) were orally administered to male and female rats, respectively. The area under the plasma concentration-time curve, tissue distribution, excretion, and the fate of the nanoparticles in organs were analyzed. Results The plasma zinc concentration of both sizes of ZnO nanoparticles increased during the 24 hours after administration in a dose-dependent manner. They were mainly distributed to organs such as the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender. Elimination kinetics showed that a small amount of ZnO nanoparticles was excreted via the urine, while most of nanoparticles were excreted via the feces. Transmission electron microscopy and x-ray absorption spectroscopy studies in the tissues showed no noticeable ZnO nanoparticles, while new Zn-S bonds were observed in tissues. Conclusion ZnO nanoparticles of different size were not easily absorbed into the bloodstream via the gastrointestinal tract after a single oral dose. The liver, lung, and kidney could be possible target organs for accumulation and toxicity of ZnO nanoparticles was independent of particle size or gender. ZnO nanoparticles appear to be absorbed in the organs in an ionic form rather than in a particulate form due to newly formed Zn-S bonds. The nanoparticles were mainly excreted via the feces, and smaller particles were cleared more rapidly than the larger ones. ZnO nanoparticles at a concentration below 300 mg/kg were distributed in tissues and excreted within 24 hours. These findings provide crucial information on possible acute and chronic toxicity of ZnO nanoparticles in potential target organs. PMID:22811602

  19. Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Krajewski, Marcin; Brzozka, Katarzyna; Tokarczyk, Mateusz; Kowalski, Grzegorz; Lewinska, Sabina; Slawska-Waniewska, Anna; Lin, Wei Syuan; Lin, Hong Ming

    2018-07-01

    The main objective of this work is to study the influence of thermal oxidation on the chemical composition and magnetic properties of iron nanoparticles which were manufactured in a simple chemical reduction of Fe3+ ions coming from iron salt with sodium borohydride. The annealing processing was performed in an argon atmosphere containing the traces of oxygen to avoid spontaneous oxidation of iron at temperatures ranging from 200 °C to 800 °C. The chemical composition and magnetic properties of as-prepared and thermally-treated nanoparticles were determined by means of X-ray diffractometry, Raman spectroscopy, Mössbauer spectroscopy and vibrating sample magnetometry. Due to the magnetic interactions, the investigated iron nanoparticles tended to create the dense aggregates which were difficult to split even at low temperatures. This caused that there was no empty space between them, which led to their partial sintering at elevated temperatures. These features hindered their precise morphological observations using the electron microscopy techniques. The obtained results show that the annealing process up to 800 °C resulted in a progressive change in the chemical composition of as-prepared iron nanoparticles which was associated with their oxidation. As a consequence, their magnetic properties also depended on the annealing temperature. For instance, considering the values of saturation magnetization, its highest value was recorded for the as-prepared nanoparticles at 1 T and it equals 149 emu/g, while the saturation point for nanoparticles treated at 600 °C and higher temperatures was not reached even at the magnetic field of about 5 T. Moreover, a significant enhancement of coercivity was observed for the iron nanoparticles annealed over 600 °C.

  20. Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents

    NASA Astrophysics Data System (ADS)

    Engates, Karen Elizabeth

    Safe drinking water is paramount to human survival. Current treatments do not adequately remove all metals from solution, are expensive, and use many resources. Metal oxide nanoparticles are ideal sorbents for metals due to their smaller size and increased surface area in comparison to bulk media. With increasing demand for fresh drinking water and recent environmental catastrophes to show how fragile water supplies are, new approaches to water conservation incorporating new technologies like metal oxide nanoparticles should be considered as an alternative method for metal contaminant adsorbents from typical treatment methods. This research evaluated the potential of manufactured iron, anatase, and aluminum nanoparticles (Al2O3, TiO2, Fe2O3) to remove metal contaminants (Pb, Cd, Cu, Ni, Zn) in lab-controlled and natural waters in comparison to their bulk counterparts by focusing on pH, contaminant and adsorbent concentrations, particle size, and exhaustive capabilities. Microscopy techniques (SEM, BET, EDX) were used to characterize the adsorbents. Adsorption experiments were performed using 0.01, 0.1, or 0.5 g/L nanoparticles in pH 8 solution. When results were normalized by mass, nanoparticles adsorbed more than bulk particles but when surface area normalized the opposite was observed. Adsorption was pH-dependent and increased with time and solid concentration. Aluminum oxide was found to be the least acceptable adsorbent for the metals tested, while titanium dioxide anatase (TiO2) and hematite (alpha-Fe2O3) showed great ability to remove individual and multiple metals from pH 8 and natural waters. Intraparticle diffusion was likely part of the complex kinetic process for all metals using Fe2O3 but not TiO 2 nanoparticles within the first hour of adsorption. Adsorption kinetics for all metals tested were described by a modified first order rate equation used to consider the diminishing equilibrium metal concentrations with increasing metal oxides, showing faster

  1. Synthesis of gold nanoparticles with graphene oxide.

    PubMed

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  2. Engineering of Metal Oxide Nanoparticles for Application in Electrochemical Devices

    NASA Astrophysics Data System (ADS)

    Santos, Lidia Sofia Leitao

    The growing demand for materials and devices with new functionalities led to the increased interest in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by solvothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the performance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The deposition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The

  3. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  4. Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study.

    PubMed

    Della Gaspera, Enrico; Karg, Matthias; Baldauf, Julia; Jasieniak, Jacek; Maggioni, Gianluigi; Martucci, Alessandro

    2011-11-15

    In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.

  5. Preliminary study of injury from heating systemically delivered, nontargeted dextran–superparamagnetic iron oxide nanoparticles in mice

    PubMed Central

    Kut, Carmen; Zhang, Yonggang; Hedayati, Mohammad; Zhou, Haoming; Cornejo, Christine; Bordelon, David; Mihalic, Jana; Wabler, Michele; Burghardt, Elizabeth; Gruettner, Cordula; Geyh, Alison; Brayton, Cory; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Aim To assess the potential for injury to normal tissues in mice due to heating systemically delivered magnetic nanoparticles in an alternating magnetic field (AMF). Materials & methods Twenty three male nude mice received intravenous injections of dextran–superparamagnetic iron oxide nanoparticles on days 1–3. On day 6, they were exposed to AMF. On day 7, blood, liver and spleen were harvested and analyzed. Results Iron deposits were detected in the liver and spleen. Mice that had received a high-particle dose and a high AMF experienced increased mortality, elevated liver enzymes and significant liver and spleen necrosis. Mice treated with low-dose superparamagnetic iron oxide nanoparticles and a low AMF survived, but had elevated enzyme levels and local necrosis in the spleen. Conclusion Magnetic nanoparticles producing only modest heat output can cause damage, and even death, when sequestered in sufficient concentrations. Dextran–superparamagnetic iron oxide nanoparticles are deposited in the liver and spleen, making these the sites of potential toxicity. PMID:22830502

  6. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  7. A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ashokraja, C.; Sakar, M.; Balakumar, S.

    2017-10-01

    We report the hemolysis properties of silver and silver oxide nanoparticles (NPs) prepared by chemical and green-synthesis methods. The prepared silver and silver oxide NPs were analyzed using UV-vis spectroscopy to confirm their formation by characterizing their surface plasmon resonance (SPR) and absorption band peaks respectively. The Fourier transmission infrared (FTIR) spectra of the materials showed the characteristic functional groups corresponding to the molecules present in leaf extracts, which is proposed to be acted as reducing and capping agents that are also found on the surface of silver and silver oxide nanoparticles that synthesized via green-synthesis method. Zeta potential analysis revealed the surface charge and stability of the prepared NPs. HRTEM images showed almost spherical shape nanoparticles with an average size of 15.2 and 31.5 nm for wet chemical synthesized silver and silver oxide nanoparticles respectively. In the case of green synthesized silver and silver oxide nanoparticles, it was observed to be 19.4 and 30.4 nm respectively. The order of hemolysis efficacy of the materials is found to be as follows: chemically synthesized Ag2O>  chemically synthesized Ag NPs followed by green-synthesized Ag2O and green-synthesized Ag NPs which showed almost similar hemolysis with respect to concentration. The relatively stable nature of the silver NPs could be attributed to their lower hemolysis efficacy, while the increased lysis properties of silver oxide could be attributed due to reductive/oxidative processes that give rise to the hemolysis through interfacial charge interactions with RBCs.

  8. Investigation for surface resistance of yttrium-barium-copper-oxide thin films on various substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Yao, Hongjun

    High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.

  9. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles.

    PubMed

    Alzahrani, Khalid E; Niazy, Abdurahman A; Alswieleh, Abdullah M; Wahab, Rizwan; El-Toni, Ahmed M; Alghamdi, Hamdan S

    2018-01-01

    The increasing resistance of pathogenic bacteria to antibiotics is a challenging worldwide health problem that has led to the search for new and more efficient antibacterial agents. Nanotechnology has proven to be an effective tool for the fight against bacteria. In this paper, we present the synthesis and traits of trimetal (CuZnFe) oxide nanoparticles (NPs) using X-ray diffraction, high-resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. We evaluated the antibacterial activity of these NPs against gram-negative Escherichia coli and gram-positive Enterococcus faecalis and then compared it to that of their pure single-metal oxide components CuO and ZnO. Our study showed that the antibacterial activity of the trimetal oxide NPs was greater against E . coli than against E . faecalis . Overall, the antimicrobial effect of trimetal NPs is between those of pure ZnO and CuO nanoparticles, which may mean that their cytotoxicity is also between that of pure ZnO and CuO NPs, making them potential antibiotics. However, the cytotoxicity of trimetal NPs to mammalian cells needs to be verified. The combination of three metal oxide NPs (ZnO, CuO, and Fe 2 O 3 ) in one multimetal (CuZnFe) oxide NPs will enhance the therapeutic strategy against a wide range of microbial infections. Bacteria are unlikely to develop resistance against this new NP because bacteria must go through a series of mutations to become resistant to the trimetal oxide NP. Therefore, this NP can combat existing and emerging bacterial infections.

  10. Toxicological Assessment of CoO and La2O3 Metal Oxide Nanoparticles in Human Small Airway Epithelial Cells

    PubMed Central

    Pirela, Sandra V.; Shaffer, Justine; Mihalchik, Amy L.; Chisholm, William P.; Andrew, Michael E.; Schwegler-Berry, Diane; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2016-01-01

    Cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles are 2 metal oxide nanoparticles with different redox potentials according to their semiconductor properties. By utilizing these two nanoparticles, this study sought to determine how metal oxide nanoparticle’s mode of toxicological action is related to their physio-chemical properties in human small airway epithelial cells (SAEC). We investigated cellular toxicity, production of superoxide radicals and alterations in gene expression related to oxidative stress, and cellular death at 6 and 24 h following exposure to CoO and La2O3 (administered doses: 0, 5, 25, and 50 µg/ml) nanoparticles. CoO nanoparticles induced gene expression related to oxidative stress at 6 h. After characterizing the nanoparticles, transmission electron microscope analysis showed SAEC engulfed CoO and La2O3 nanoparticles. CoO nanoparticles were toxic after 6 and 24 h of exposure to 25.0 and 50.0 µg/ml administered doses, whereas, La2O3 nanoparticles were toxic only after 24 h using the same administered doses. Based upon the Volumetric Centrifugation Method in vivo Sedimentation, Diffusion, and Dosimetry, the dose of CoO and La2O3 nanoparticles delivered at 6 and 24 h were determined to be: CoO: 1.25, 6.25, and 12.5 µg/ml; La2O3: 5, 25, and 50 µg/ml and CoO: 4, 20, and 40 µg/ml; and La2O3: 5, 25, 50 µg/ml, respectively. CoO nanoparticles produced more superoxide radicals and caused greater stimulation of total tyrosine and threonine phosphorylation at both 6 and 24 h when compared with La2O3 nanoparticles. Taken together, these data provide evidence that different toxicological modes of action were involved in CoO and La2O3 metal oxide nanoparticle-induced cellular toxicity. PMID:26769336

  11. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    PubMed Central

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K.; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-01-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells. PMID:26056725

  12. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantifiedmore » the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.« less

  13. Indium-oxide nanoparticles for RRAM devices compatible with CMOS back-end-off-line

    NASA Astrophysics Data System (ADS)

    León Pérez, Edgar A. A.; Guenery, Pierre-Vincent; Abouzaid, Oumaïma; Ayadi, Khaled; Brottet, Solène; Moeyaert, Jérémy; Labau, Sébastien; Baron, Thierry; Blanchard, Nicholas; Baboux, Nicolas; Militaru, Liviu; Souifi, Abdelkader

    2018-05-01

    We report on the fabrication and characterization of Resistive Random Access Memory (RRAM) devices based on nanoparticles in MIM structures. Our approach is based on the use of indium oxide (In2O3) nanoparticles embedded in a dielectric matrix using CMOS-full-compatible fabrication processes in view of back-end-off-line integration for non-volatile memory (NVM) applications. A bipolar switching behavior has been observed using current-voltage measurements (I-V) for all devices. Very high ION/IOFF ratios have been obtained up to 108. Our results provide insights for further integration of In2O3 nanoparticles-based devices for NVM applications. He is currently a Postdoctoral Researcher in the Institute of Nanotechnologies of Lyon (INL), INSA de Lyon, France, in the Electronics Department. His current research include indium oxide nanoparticles for non-volatile memory applications, and the integrations of these devices in CMOS BEOL.

  14. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro

    PubMed Central

    Kievit, Forrest M.; Wang, Freddy Y.; Fang, Chen; Mok, Hyejung; Wang, Kui; Silber, John R.; Ellenbogen, Richard G.; Zhang, Miqin

    2011-01-01

    Multidrug resistance (MDR) is characterized by the overexpression of ATP-binding cassette (ABC) transporters that actively pump a broad class of hydrophobic chemotherapeutic drugs out of cancer cells. MDR is a major mechanism of treatment resistance in a variety of human tumors, and clinically applicable strategies to circumvent MDR remain to be characterized. Here we describe the fabrication and characterization of a drug-loaded iron oxide nanoparticle designed to circumvent MDR. Doxorubicin (DOX), an anthracycline antibiotic commonly used in cancer chemotherapy and substrate for ABC-mediated drug efflux, was covalently bound to polyethylenimine via a pH sensitive hydrazone linkage and conjugated to an iron oxide nanoparticle coated with amine terminated polyethylene glycol. Drug loading, physiochemical properties and pH lability of the DOX-hydrazone linkage were evaluated in vitro. Nanoparticle uptake, retention, and dose-dependent effects on viability were compared in wild-type and DOX-resistant ABC transporter over-expressing rat glioma C6 cells. We found that DOX release from nanoparticles was greatest at acidic pH, indicative of cleavage of the hydrazone linkage. DOX-conjugated nanoparticles were readily taken up by wild-type and drug-resistant cells. In contrast to free drug, DOX-conjugated nanoparticles persisted in drug-resistant cells, indicating that they were not subject to drug efflux. Greater retention of DOX-conjugated nanoparticles was accompanied by reduction of viability relative to cells treated with free drug. Our results suggest that DOX-conjugated nanoparticles could improve the efficacy of chemotherapy by circumventing MDR. PMID:21277920

  15. Generation and oxidation of aerosol deposited PdAg nanoparticles

    NASA Astrophysics Data System (ADS)

    Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Deppert, K.; Liu, Z.; Chang, R.; Fernandes, V. R.; Borg, A.; Grönbeck, H.; Lundgren, E.

    2013-10-01

    PdAg nanoparticles with a diameter of 10 nm have been generated by an aerosol particle method, and supported on a silica substrate. By using a combination of X-ray Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy it is shown that the size distribution of the particles is narrow and that the two metals form an alloy with a mixture of 75% Pd and 25% Ag. Under oxidizing conditions, Pd is found to segregate to the surface and a thin PdO like oxide is formed similar to the surface oxide previously reported on extended PdAg and pure Pd surfaces.

  16. Cytotoxic and genotoxic characterization of aluminum and silicon oxide nanoparticles in macrophages.

    PubMed

    Hashimoto, Masanori; Imazato, Satoshi

    2015-05-01

    Although aluminum oxide and silicon oxide nanoparticles are currently available as dental materials, there is a lack of basic information concerning their biocompatibility. This study evaluates the biological responses of cultured macrophages (RAW264) to aluminum oxide (Al2O3NPs) and silicon oxide nanoparticles (SiO2NPs) by analyzing cytotoxicity and genotoxicity. The nanoparticles are amorphous and spherical, with diameters of 13 nm for the Al2O3NPs and 12 nm for the SiO2NPs. The cultured RAW264 are exposed to the nanoparticles (NPs) and examined for cytotoxicity using the WST-8 cell viability and Hoechst/PI apoptosis assay, for genotoxicity by micronucleus analysis, for changes in nuclear shape (deformed nuclei) and for comet assay using confocal microscopy, and micromorphological analysis is done using scanning and transmission electron microscopes. Nuclei and DNA damage because of exposure to both types of NPs is observed by inmunostaining genotoxicity testing. The cytotoxicity and genotoxicity are well correlated in this study. Numerous NPs are observed as large aggregates in vesicles, but less or nonexistent NP internalization is seen in the nucleus or cytoplasm. These morphological results suggest that a primary cause of cell disruption is the chemical changes of the NPs in the low pH of vesicles (i.e., ionization of Al2O3 or SiO2) for both types of oxide NPs. Although further research on the elution of NP concentrations on cell or tissue activity under simulated clinical conditions is required, NP concentrations over 200 μg/mL are large enough to induce cytotoxic and genotoxic effects to cells. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    NASA Astrophysics Data System (ADS)

    Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular

  18. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles.

    PubMed

    Colon, Jimmie; Herrera, Luis; Smith, Joshua; Patil, Swanand; Komanski, Chris; Kupelian, Patrick; Seal, Sudipta; Jenkins, D Wayne; Baker, Cheryl H

    2009-06-01

    In an effort to combat the harmful effects of radiation exposure, we propose that rare-earth cerium oxide (CeO(2)) nanoparticles (free-radical scavengers) protect normal tissue from radiation-induced damage. Preliminary studies suggest that these nanoparticles may be a therapeutic regenerative nanomedicine that will scavenge reactive oxygen species, which are responsible for radiation-induced cell damage. The effectiveness of CeO(2) nanoparticles in radiation protection in murine models during high-dose radiation exposure is investigated, with the ultimate goal of offering a new approach to radiation protection, using nanotechnology. We show that CeO(2) nanoparticles are well tolerated by live animals, and they prevent the onset of radiation-induced pneumonitis when delivered to live animals exposed to high doses of radiation. In the end, these studies provide a tremendous potential for radioprotection and can lead to significant benefits for the preservation of human health and the quality of life for humans receiving radiation therapy.

  19. Toxicity of Engineered Nickel Oxide and Cobalt Oxide Nanoparticles to Artemia salina in seawater

    PubMed Central

    Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Camas, Mustafa; Celik, Fatih

    2016-01-01

    In this study, the effects of exposure to engineered nickel oxide (NiO 40–60 nm) and cobalt oxide (CoO <100 nm) nanoparticles (NP) were investigated on Artemia salina. Aggregation and stability of the aqueous NP suspensions were characterized by DLS and TEM. Acute exposure was conducted on nauplii (larvae) in seawater in a concentration range from 0.2 to 50 mg/L NPs for 24 h (short term) and 96 h (long term). The hydrodynamic diameters of NiO and CoO NPs in exposure medium were larger than those estimated by TEM. Accumulation rate of NiO NPs were found to be four times higher than that of CoO NPs under the same experimental conditions. Examinations under phase contrast microscope showed that the nanoparticles accumulated in the intestine of artemia, which increased with increasing exposure concentration. Differences were observed in the extent of dissolution of the NPs in the seawater. The CoO NPs dissolved significantly while NiO NPs were relatively more stable. Oxidative stress induced by the NP suspensions was measured by malondialdehyde assay. Suspensions of NiO NPs caused higher oxidative stress on nauplii than those of CoO NPs. The results imply that CoO and NiO NPs exhibit toxicity on artemia (e.g., zooplankton) that are an important source of food in aquatic food chain. PMID:27152058

  20. Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment

    PubMed Central

    2013-01-01

    A microstructure deformation of indium oxide (In2O3) nanoparticles by an in situ thermal radiation treatment in nitrous oxide plasma was investigated. The In2O3 nanoparticles were completely transformed into nanostructured In2O3 films upon 10 min of treatment time. The treated In2O3 nanoparticle sample showed improvement in crystallinity while maintaining a large surface area of nanostructure morphology. The direct transition optical absorption at higher photon energy and the electrical conductivity of the In2O3 nanoparticles were significantly enhanced by the treatment. PMID:24134646

  1. Synthesis and Oxidation of Silver Nano-particles

    DTIC Science & Technology

    2011-01-01

    solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt

  2. Gold nanoparticles supported on magnesium oxide for CO oxidation

    NASA Astrophysics Data System (ADS)

    Carabineiro, Sónia Ac; Bogdanchikova, Nina; Pestryakov, Alexey; Tavares, Pedro B.; Fernandes, Lisete Sg; Figueiredo, José L.

    2011-06-01

    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  3. Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation.

    PubMed

    Abid, Aamir D; Anderson, Donald S; Das, Gautom K; Van Winkle, Laura S; Kennedy, Ian M

    2013-01-10

    The deposition, clearance and translocation of europium-doped gadolinium oxide nanoparticles in a mouse lung were investigated experimentally. Nanoparticles were synthesized by spray flame pyrolysis. The particle size, crystallinity and surface properties were characterized. Following instillation, the concentrations of particles in organs were determined with inductively coupled plasma mass spectrometry. The protein corona coating the nanoparticles was found to be similar to the coating on more environmentally relevant nanoparticles such as iron oxide. Measurements of the solubility of the nanoparticles in surrogates of biological fluids indicated very little propensity for dissolution, and the elemental ratio of particle constituents did not change, adding further support to the contention that intact nanoparticles were measured. The particles were intratracheally instilled into the mouse lung. After 24 hours, the target organs were harvested, acid digested and the nanoparticle mass in each organ was measured by inductively coupled plasma mass spectrometry (ICP-MS). The nanoparticles were detected in all the studied organs at low ppb levels; 59% of the particles remained in the lung. A significant amount of particles was also detected in the feces, suggesting fast clearance mechanisms. The nanoparticle system used in this work is highly suitable for quantitatively determining deposition, transport and clearance of nanoparticles from the lung, providing a quantified measure of delivered dose.

  4. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    PubMed

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. SPIO-labeled Yttrium Microspheres for MR Imaging Quantification of Transcatheter Intrahepatic Delivery in a Rodent Model

    PubMed Central

    Li, Weiguo; Zhang, Zhuoli; Gordon, Andrew C.; Chen, Jeane; Nicolai, Jodi; Lewandowski, Robert J.; Omary, Reed A.

    2016-01-01

    Purpose To investigate the qualitative and quantitative impacts of labeling yttrium microspheres with increasing amounts of superparamagnetic iron oxide (SPIO) material for magnetic resonance (MR) imaging in phantom and rodent models. Materials and Methods Animal model studies were approved by the institutional Animal Care and Use Committee. The r2* relaxivity for each of four microsphere SPIO compositions was determined from 32 phantoms constructed with agarose gel and in eight concentrations from each of the four compositions. Intrahepatic transcatheter infusion procedures were performed in rats by using each of the four compositions before MR imaging to visualize distributions within the liver. For quantitative studies, doses of 5, 10, 15, or 20 mg 2% SPIO-labeled yttrium microspheres were infused into 24 rats (six rats per group). MR imaging R2* measurements were used to quantify the dose delivered to each liver. Pearson correlation, analysis of variance, and intraclass correlation analyses were performed to compare MR imaging measurements in phantoms and animal models. Results Increased r2* relaxivity was observed with incremental increases of SPIO microsphere content. R2* measurements of the 2% SPIO–labeled yttrium microsphere concentration were well correlated with known phantom concentrations (R2 = 1.00, P < .001) over a broader linear range than observed for the other three compositions. Microspheres were heterogeneously distributed within each liver; increasing microsphere SPIO content produced marked signal voids. R2*-based measurements of 2% SPIO–labeled yttrium microsphere delivery were well correlated with infused dose (intraclass correlation coefficient, 0.98; P < .001). Conclusion MR imaging R2* measurements of yttrium microspheres labeled with 2% SPIO can quantitatively depict in vivo intrahepatic biodistribution in a rat model. © RSNA, 2015 Online supplemental material is available for this article. PMID:26313619

  6. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    PubMed Central

    Choi, Soo-Jin; Choy, Jin-Ho

    2014-01-01

    Biokinetic studies of zinc oxide (ZnO) nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. PMID:25565844

  7. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Bedinger, G.; Bleiwas, D.

    2012-01-01

    In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.

  8. 3D Graphene Oxide-encapsulated Gold Nanoparticles to Detect Neural Stem Cell Differentiation

    PubMed Central

    Kim, Tae-Hyung; Lee, Ki-Bum; Choi, Jeong-Woo

    2013-01-01

    Monitoring of stem cell differentiation and pluripotency is an important step for the practical use of stem cells in the field of regenerative medicine. Hence, a new non-destructive detection tool capable of in situ monitoring of stem cell differentiation is highly needed. In this study, we report a 3D graphene oxide-encapsulated gold nanoparticle that is very effective for the detection of the differentiation potential of neural stem cells (NSCs) based on surface-enhanced Raman spectroscopy (SERS). A new material, 3D GO-encapsulated gold nanoparticle, is developed to induce the double enhancement effect of graphene oxide and gold nanoparticle on SERS signals which is only effective for undifferentiated NSCs. The Raman peaks achieved from undifferentiated NSCs on the graphene oxide (GO)-encapsulated gold nanoparticles were 3.5 times higher than peaks obtained from normal metal structures and were clearly distinguishable from those of differentiated cells. The number of C=C bonds and the raman instensity at 1656cm−1 was found to show a positive correlation, which matches the differentiation state of the NSCs. Moreover, the substrate composed of 3D GO-encapsulated gold nanoparticles was also effective at distinguishing the differentiation state of single NSC by using electrochemical and electrical techniques. Hence, the proposed technique can be used as a powerful non-destructive in situ monitoring tool for the identification of the differentiation potential of various kinds of stem cells (mesenchymal, hematopoietic, and neural stem cells). PMID:23937915

  9. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.

    PubMed

    Unni, Mythreyi; Uhl, Amanda M; Savliwala, Shehaab; Savitzky, Benjamin H; Dhavalikar, Rohan; Garraud, Nicolas; Arnold, David P; Kourkoutis, Lena F; Andrew, Jennifer S; Rinaldi, Carlos

    2017-02-28

    Decades of research focused on size and shape control of iron oxide nanoparticles have led to methods of synthesis that afford excellent control over physical size and shape but comparatively poor control over magnetic properties. Popular synthesis methods based on thermal decomposition of organometallic precursors in the absence of oxygen have yielded particles with mixed iron oxide phases, crystal defects, and poorer than expected magnetic properties, including the existence of a thick "magnetically dead layer" experimentally evidenced by a magnetic diameter significantly smaller than the physical diameter. Here, we show how single-crystalline iron oxide nanoparticles with few defects and similar physical and magetic diameter distributions can be obtained by introducing molecular oxygen as one of the reactive species in the thermal decomposition synthesis. This is achieved without the need for any postsynthesis oxidation or thermal annealing. These results address a significant challenge in the synthesis of nanoparticles with predictable magnetic properties and could lead to advances in applications of magnetic nanoparticles.

  10. Electrocatalytic N-Doped Graphitic Nanofiber - Metal/Metal Oxide Nanoparticle Composites.

    PubMed

    Tang, Hongjie; Chen, Wei; Wang, Jiangyan; Dugger, Thomas; Cruz, Luz; Kisailus, David

    2018-03-01

    Carbon-based nanocomposites have shown promising results in replacing commercial Pt/C as high-performance, low cost, nonprecious metal-based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal-air batteries. Herein, a general approach for the production of 1D porous nitrogen-doped graphitic carbon fibers embedded with active ORR components, (M/MO x , i.e., metal or metal oxide nanoparticles) using a facile two-step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite-metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N-doped graphitic carbon fibers, especially Co 3 O 4 , exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co 3 O 4 and robust 1D porous structures composed of interconnected N-doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation of ruby red glasses from gold nanoparticles: Influence of stannic oxide

    NASA Astrophysics Data System (ADS)

    Ruangtaweep, Y.; A-nupan, P.; Kaewkhao, J.

    2014-03-01

    In this work, effects of stannic oxide concentration to red glass prepared from gold nanoparticle (AuNPs) have been investigated. The glasses were fabricated by conventional melt quench method using SiO2, CaO, K2CO3, Na2CO3, SeO2, AuNPs and vary stannic oxide concentration by 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 % by weight. The result found that, the red colors of glasses were obtained from gold nanoparticles at 0.1, 0.2 and 0.5 % of stannic oxide. At 0.0, 0.3 and 0.4 % are show purple-blue colors. The results reflecting that the particle size of gold particle in glass matrices at 0.1, 0.2 and 0.5 % of stannic oxide are smaller than 0.3 and 0.4 %. The color of glasses were confirmed by uv-visible spectrophotometer and color coordinate in CIEL*a*b*.

  12. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms.

    PubMed

    Dhas, Sindhu Priya; Shiny, Punalur John; Khan, Sudheer; Mukherjee, Amitava; Chandrasekaran, Natrajan

    2014-09-01

    Silver and zinc oxide nanoparticles (Ag and ZnO NPs) are widely used as antimicrobial agents. However, their potential toxicological impact on environmental microorganisms is largely unexplored. The aim of this work was to investigate the sensitivity and adaptability of five bacterial species isolated from sewage towards Ag and ZnO NPs. The bacterial species were exposed to increasing concentration of nanoparticles and the growth inhibitory effect, exopolysaccharides (EPSs) and extracellular proteins (ECPs) productions were determined. The involvement of surface charge in nanoparticles toxicity was also determined. The bacterial species were constantly exposed to nanoparticles to determine the adaptation behavior toward nanoparticles. The nanoparticles exhibited remarkable growth inhibitory effect on tested bacterial species. The toxicity of nanoparticles was found to be strongly dependent on surface charge effects. Though, these organisms are highly sensitive to Ag and ZnO NPs, the continuous exposure to these nanoparticles leads to moderate adaptation of bacterial species and the adapted bacterial species convert the highly toxic nano form to less toxic microform. Finally we predict that the continuing applications of nanoparticles in consumer products may lead to the development of nanoparticles resistant bacterial strains in future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy

    PubMed Central

    Tseng, Shih-Heng; Chou, Min-Yuan; Chu, I-Ming

    2015-01-01

    We have developed a theranostic nanoparticle, ie, cet-PEG-dexSPIONs, by conjugation of the anti-epidermal growth factor receptor (EGFR) monoclonal antibody, cetuximab, to dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) via periodate oxidation. Approximately 31 antibody molecules were conjugated to each nanoparticle. Cet-PEG-dexSPIONs specifically bind to EGFR-expressing tumor cells and enhance image contrast on magnetic resonance imaging. Cet-PEG-dexSPION-treated A431 cells showed significant inhibition of epidermal growth factor-induced EGFR phosphorylation and enhancement of EGFR internalization and degradation. In addition, a significant increase in apoptosis was detected in EGFR-overexpressing cell lines, A431 and 32D/EGFR, after 24 hours of incubation at 37°C with cet-PEG-dexSPIONs compared with cetuximab alone. The antibody-dependent cell-mediated cytotoxicity of cetuximab was observed in cet-PEG-dexSPIONs. The results demonstrated that cet-PEG-dexSPIONs retained the therapeutic effect of cetuximab in addition to having the ability to target and image EGFR-expressing tumors. Cet-PEG-dexSPIONs represent a promising targeted magnetic probe for early detection and treatment of EGFR-expressing tumor cells. PMID:26056447

  14. Characteristics of environmental correlations between iron (oxyhydr)oxide nanoparticles and microbial activity

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Kyono, A.; Muratani, M.

    2014-12-01

    Nanoparticulate iron oxides and oxyhydroxides with large surface area and high chemical reactivity cause the immobilization of heavy metals and the provision of essential nutrients to organisms. Environmental correlations between microbial activity and nanomorphology of iron (oxyhydr)oxides are significantly important for earth surface processes. In this study, we characterize iron (oxyhydr)oxide nanoparticles and microorganisms in natural lake sediments and describe their association observed between particle nanostructures and microbial species. About 40 cm depth of boring core sample was collected from Lake Kasumigaura, Lake Ushiku, Kokai River and Lake Tega, Japan. To distinguish both iron nanoparticles and growing bacterial colonies with depths, boring core samples were divided into three to five pieces. Particle morphologies, size, aggregation states, mineral species, and microorganisms were observed by transmission electron microscopy (TEM), X-ray diffraction (XRD), and rRNA gene sequences. Redox potential and pH of the lake sediments were also measured. The core sample from top is mainly composed of quartz of coarse-grained materials, while that from bottom is of ferrihydrite of fine grained materials. The authors will show the results of experiments and discuss the interrelation between iron nanoparticles and microorganisms.

  15. Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko

    2009-06-01

    We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.

  16. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    PubMed

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  17. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation.

    PubMed

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok

    2016-09-01

    Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Silver nanoparticles anchored reduced graphene oxide for enhanced electrocatalytic activity towards methanol oxidation

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Mahajan, Mani; Singh, Rajinder; Mahajan, Aman

    2018-02-01

    In this report, silver nanoparticles (Ag NPs) anchored reduced graphene oxide (rGO) sheets (rGO/Ag) nanohybrid has been explored as anode material in direct methanol fuel cells (DMFCs). The synthesized rGO/Ag nanohybrid is characterized by XRD, XPS, FTIR spectroscopy and HRTEM techniques. Cyclic voltammograms demonstrate that the rGO/Ag nanohybrid exhibits higher electrocatalytic activity in comparison to rGO sheets for methanol oxidation reaction (MOR). This enhancement is attributed to the synergetic effect produced by the presence of more active sites provided by Ag NPs anchored on a conducting network of large surface area rGO sheets.

  19. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  20. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method

    NASA Astrophysics Data System (ADS)

    Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.

  1. Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents.

    PubMed

    Kucheryavy, Pavel; He, Jibao; John, Vijay T; Maharjan, Pawan; Spinu, Leonard; Goloverda, Galina Z; Kolesnichenko, Vladimir L

    2013-01-15

    Magnetite nanoparticles in the size range of 3.2-7.5 nm were synthesized in high yields under variable reaction conditions using high-temperature hydrolysis of the precursor iron(II) and iron(III) alkoxides in diethylene glycol solution. The average sizes of the particles were adjusted by changing the reaction temperature and time and by using a sequential growth technique. To obtain γ-iron(III) oxide particles in the same range of sizes, magnetite particles were oxidized with dry oxygen in diethylene glycol at room temperature. The products were characterized by DLS, TEM, X-ray powder diffractometry, TGA, chemical analysis, and magnetic measurements. NMR r(1) and r(2) relaxivity measurements in water and diethylene glycol (for OH and CH(2) protons) have shown a decrease in the r(2)/r(1) ratio with the particle size reduction, which correlates with the results of magnetic measurements on magnetite nanoparticles. Saturation magnetization of the oxidized particles was found to be 20% lower than that for Fe(3)O(4) with the same particle size, but their r(1) relaxivities are similar. Because the oxidation of magnetite is spontaneous under ambient conditions, it was important to learn that the oxidation product has no disadvantages as compared to its precursor and therefore may be a better prospective imaging agent because of its chemical stability.

  2. Nanocarbon synthesis by high-temperature oxidation of nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Ken-ichi; Kalia, Rajiv K.; Li, Ying

    High-temperature oxidation of silicon-carbide nanoparticles (nSiC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection of space vehicles to self-healing ceramic nanocomposites. Here, multimillion-atom reactive molecular dynamics simulations validated by ab initio quantum molecular dynamics simulations predict unexpected condensation of large graphene flakes during high-temperature oxidation of nSiC. Initial oxidation produces a molten silica shell that acts as an autocatalytic ‘nanoreactor’ by actively transporting oxygen reactants while protecting the nanocarbon product from harsh oxidizing environment. Percolation transition produces porous nanocarbon with fractal geometry, which consists of mostly sp 2 carbons with pentagonalmore » and heptagonal defects. Furthermore, this work suggests a simple synthetic pathway to high surface-area, low-density nanocarbon with numerous energy, biomedical and mechanical-metamaterial applications, including the reinforcement of self-healing composites.« less

  3. Nanocarbon synthesis by high-temperature oxidation of nanoparticles

    DOE PAGES

    Nomura, Ken-ichi; Kalia, Rajiv K.; Li, Ying; ...

    2016-04-20

    High-temperature oxidation of silicon-carbide nanoparticles (nSiC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection of space vehicles to self-healing ceramic nanocomposites. Here, multimillion-atom reactive molecular dynamics simulations validated by ab initio quantum molecular dynamics simulations predict unexpected condensation of large graphene flakes during high-temperature oxidation of nSiC. Initial oxidation produces a molten silica shell that acts as an autocatalytic ‘nanoreactor’ by actively transporting oxygen reactants while protecting the nanocarbon product from harsh oxidizing environment. Percolation transition produces porous nanocarbon with fractal geometry, which consists of mostly sp 2 carbons with pentagonalmore » and heptagonal defects. Furthermore, this work suggests a simple synthetic pathway to high surface-area, low-density nanocarbon with numerous energy, biomedical and mechanical-metamaterial applications, including the reinforcement of self-healing composites.« less

  4. Nanocarbon synthesis by high-temperature oxidation of nanoparticles

    PubMed Central

    Nomura, Ken-ichi; Kalia, Rajiv K.; Li, Ying; Nakano, Aiichiro; Rajak, Pankaj; Sheng, Chunyang; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-01-01

    High-temperature oxidation of silicon-carbide nanoparticles (nSiC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection of space vehicles to self-healing ceramic nanocomposites. Here, multimillion-atom reactive molecular dynamics simulations validated by ab initio quantum molecular dynamics simulations predict unexpected condensation of large graphene flakes during high-temperature oxidation of nSiC. Initial oxidation produces a molten silica shell that acts as an autocatalytic ‘nanoreactor’ by actively transporting oxygen reactants while protecting the nanocarbon product from harsh oxidizing environment. Percolation transition produces porous nanocarbon with fractal geometry, which consists of mostly sp2 carbons with pentagonal and heptagonal defects. This work suggests a simple synthetic pathway to high surface-area, low-density nanocarbon with numerous energy, biomedical and mechanical-metamaterial applications, including the reinforcement of self-healing composites. PMID:27095061

  5. Antimicrobial properties and mechanism of magnesium oxide nanoparticles on Campylobacter, E. coli O157:H7, and Salmonella

    USDA-ARS?s Scientific Manuscript database

    Background: Metal oxide nanoparticles have considerable potential as antimicrobial agents in food safety applications due to their structure, surface properties, and stability. In this study, the antibacterial effects and mechanisms of Magnesium Oxide Nanoparticles (MgO NPs, with an average size o...

  6. UV-visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles.

    PubMed

    Sangami, G; Dharmaraj, N

    2012-11-01

    Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles.

    PubMed

    Baskar, G; Chandhuru, J; Sheraz Fahad, K; Praveen, A S; Chamundeeswari, M; Muthukumar, T

    2015-01-01

    Demand for developing novel delivery system for cancer treatment has increased due to the side effects present in intravenous injection of L-asparaginase. Nanoparticles are used for delivering the drugs to its destination in cancer cure. Nanobiocomposite of zinc oxide nanoparticles conjugated with L-asparaginase was produced by Aspergillus terreus and was confirmed using maximum UV-Vis absorption at 340 nm in the present work. The presence of functional groups like OH, C-H, -C=N and C=O on the surface of nanobiocomposite was found from Fourier transform infrared spectrum analysis. Size of the produced nanocomposite was found in the range of 28-63 nm using scanning electron microscope. The crystalline nature of the synthesized nanobiocomposites was confirmed by X-ray diffraction analysis. The presence of zinc oxide on synthesized nanobiocomposite was confirmed by energy dispersive spectrum analysis. The anti-cancerous nature of the synthesized zinc oxide conjugated L-asparaginase nanobiocomposite on MCF-7 cell line was studied using MTT assay. The viability of the MCF-7 cells was decreased to 35.02 % when it was treated with L-asparaginase conjugated zinc oxide nanobiocomposite. Hence it is proved that the synthesized nanobiocomposites of zinc oxide conjugated L-asparaginase has good anti-cancerous activity.

  8. Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves

    NASA Astrophysics Data System (ADS)

    Kavitha, S.; Dhamodaran, M.; Prasad, Rajendra; Ganesan, M.

    2017-04-01

    Zinc oxide (ZnO) nanoparticles have been widely employed for various pharmacological applications. Several approaches were tried to synthesize ZnO nanoparticles. In this study, ZnO nanoparticles were biosynthesized using terpenoid (TAP) fractions isolated from Andrographis paniculata leaves. Subsequently, the ZnNO3 (0.1 N) is treated with the isolated TAP fractions to biosynthesize zinc oxide nanoparticles (Zn-TAP NPs). This nanoparticle preparation has been confirmed by the colour change from green to cloudy-white and the peak at 300 nm by UV-Visible spectra. FTIR analysis of Zn-TAP NPs showed the presence of functional group (i.e.) C=O which has further been confirmed by H1-NMR studies. From SEM and XRD analysis, it has been found that the hexagonal nanorod particle is 20.23 nm in size and +17.6 mV of zeta potential. Hence, it can be easily absorbed by negatively charged cellular membrane to contribute for efficient intracellular distribution. Therefore, it is suggested that the synthesised Zn-TAP NPs are more suitable in drug delivery processes.

  9. Zinc oxide nanoparticles induce rat retinal ganglion cell damage through bcl-2, caspase-9 and caspase-12 pathways.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wu, Qiuxin; Wang, Daoguang; Cui, Yan

    2013-06-01

    Nanomaterials, including zinc oxide (ZnO) nanoparticles, are being developed for a variety of commercial products. Recent reports showed that cells exposed to ZnO nanoparticles produced severe cytotoxicity accompanied by oxidative stress and genotoxicity. To understand the possible mechanism underlying oxidative stress of ZnO nanoparticles, the present investigation focused on the direct bioactivity of ZnO nanoparticles using a rat retinal ganglion cell (RGC-5) culture. At concentrations relevant to those used in vitro exposure of RGC-5 cells to ZnO nanoparticles, it was found that ZnO nanoparticles could inhibit cell proliferation in time- and concentration-dependent manners. Meanwhile, cell cycle arrest of S and G2/M phases occurred in RGC-5 cells induced by ZnO nanoparticles. Moreover, our results also demonstrated that the overproduction of reactive oxygen species (ROS) and elevated level of caspase-12 as well as decreased levels of bcl-2 and caspase-9 occurred after treatment with different concentrations of ZnO nanoparticles when compared to those in untreated cells. In summary, our findings suggest that ZnO nanoparticles could lead to the over generations of ROS and caspase-12 as well as decreased levels of bcl-2 and caspase-9. These results indicate that bcl-2, caspase-9 and caspase-12 may play significant roles in ZnO nanoparticle-induced RGC-5 cell damage.

  10. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity

    NASA Astrophysics Data System (ADS)

    Zare, Elham; Pourseyedi, Shahram; Khatami, Mehrdad; Darezereshki, Esmaeel

    2017-10-01

    Nanoparticles with antimicrobial activity, especially as a new class of biomedical materials for use in increasing the level of public health in daily life have emerged. In this study, green synthesis of zinc oxide) ZnO(nanoparticles was studied by Cuminum cyminum (cumin) as novel natural source and zinc nitrate [Zn(NO3)2] as Zn2+ source. The results showed that parameters such as concentration, time, temperature and pH have a direct impact on the synthesis of zinc nanoparticles and change in any of the factors causing the change in the process of synthesis. The properties of synthesized nanoparticles were examined by UV-visible Spectrophotometer, X-ray diffraction spectroscopy and transmission electron microscopy (TEM). The UV-visible spectroscopy presented the absorption peak in the range of 370 nm. Transmission electron microscopy images of synthesized nanoparticles are mainly spherical or oval with an average size of about 7 nm. The effect of antimicrobial nanoparticles calculated using disk diffusion method and broth MIC and MBC in different strains of bacteria, which showed that gram positive and negative were sensitive to zinc oxide nanoparticles. The sensitivity of gram-negative bacteria was more.

  11. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk

    2009-04-19

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRImore » technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.« less

  12. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    PubMed

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.

  13. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer

    PubMed Central

    Laurent, Sophie; Mahmoudi, Morteza

    2011-01-01

    During the last decade, significant scientific research efforts have led to a significant growth in understanding of cancer at the genetic, molecular, and cellular levels providing great opportunities for diagnosis and treatment of cancer diseases. The hopes for fast cancer diagnosis and treatment were significantly increased by the entrance of nanoparticles to the medical sciences. Nanoparticles are attractive due to their unique opportunities together with negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, surface-engineered superparamagnetic iron oxide nanoparticles (SPIONs) have been attracted a great attention for cancer therapy applications. This review covers the recent advances in the development of SPIONs together with their opportunities and challenges, as theranosis agents, in cancer treatment. PMID:22199999

  14. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos.

    PubMed

    Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria

    2018-06-14

    Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Metal nanoparticle-graphene oxide composites: Photophysical properties and sensing applications

    NASA Astrophysics Data System (ADS)

    Murphy, Sean J.

    Composite nanomaterials allow for attractive properties of multiple functional components to be combined. Fundamental understanding of the interaction between different nanomaterials, their surroundings, and nearby molecular species is pertinent for implementation into devices. Metal nanoparticles have been used for their optical properties in many applications including stained glass, cancer therapy, solar steam generation, surface enhanced Raman spectroscopy (SERS), and catalysis. Carbon-based nanomaterials such as graphene and carbon nanotubes show potential for a wide variety of applications including solar energy harvesting, chemical sensors, and electronics. Combining useful and in some cases new properties of composite nanomaterials offers exciting opportunities in fundamental science and device development. In this dissertation, I aim to address understanding photoinduced interaction between porphyrin and silver nanoparticles, inter-sheet interaction between stacked graphene oxide (GO) sheets in thin films, complexation of reduced GO with Raman active target molecule in SERS applications, and efficacy of graphene-metal nanoparticle composites for sensing applications. Molecule-metal nanoparticle composite material made up of photoactive porphyrin and silver nanoparticles was studied using various spectroscopic tools. UV-visible absorption and surface enhanced Raman spectroscopic results suggest formation of a charge-transfer complex for porphyrin-silver nanoparticle composite. Ultrafast transient absorption and fluorescence upconversion spectroscopies further corroborate electronic interaction by providing evidence for excited state electron transfer between porphyrin and silver nanoparticles. Understanding electronic interaction between adsorbed photoactive molecules and metal nanoparticles may be of use for applications in photocatalysis or light-energy harvesting. Graphene oxide (GO) thin films have been prepared and studied using transient absorption

  16. Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Sanjay; Woehl, Taylor J; Liu, Xunpei

    2014-09-23

    Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic–inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using inmore » situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.« less

  17. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata

    2014-12-01

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  18. Structural, morphological and optical properties of chromium oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babukutty, Blessy; Parakkal, Fasalurahman; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    2015-06-24

    Chromium oxide nanoparticles are synthesized by reduction route from chloride precursors with surfactant, trioctylphosphine oxide (TOPO). Structural and morphological characterization are analyzed using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Transmission Electron micrographs show that the average grain size lies in the range 5nm to 10nm. Optical characterization has been done by UV-VIS spectrophotometer. Distinct optical absorptions of Cr{sup 3+} ions show hinting towards the presence of Cr{sub 2}O{sub 3}. Presence of oxygen is also confirmed from Electron Energy Loss Spectroscopy (EELS) studies.

  19. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula; Sharma, Vimal, E-mail: manjula.physics@gmail.com

    2016-05-23

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, Raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  20. Solvent free tin oxide nanoparticle for gas sensing application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Pranay, E-mail: pranjan@iitp.ac.in; Thakur, Ajay D.; Centre for Energy and Environment, Indian Institute of Technology Patna, Patliputra, Patna 800013 India

    2016-05-06

    A new modified technique of synthesizing tin oxide nanoparticles with crystallite size of 2 nm to 6 nm has been developed. Surface area of the nanoparticle has been increased as we approached towards the Debye length. Such a techniques for approaching the Debye length is expected to bring remarkable changes in the properties of resistive based gas sensors. The technique used here is less toxic, economical and has high yield. Phase purity, size, shape and composition has been investigated using x-ray diffraction, micro Raman, scanning electron microscopy and energy dispersive x ray spectroscopy. While surface area has been calculated through Brunaur-Emmett-Teller (BET).

  1. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  2. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    NASA Astrophysics Data System (ADS)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  3. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment.

    PubMed

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan

    2017-12-04

    Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia.

  4. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment

    PubMed Central

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan

    2017-01-01

    Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia. PMID:29207552

  5. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.

    2015-05-01

    Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi), and the disease remains a major health problem in many Latin American countries. Several papers report that the killing of the parasite is dependent on the production of nitric oxide (NO). The endogenous free radical NO is an important cellular signalling molecule that plays a key role in the defense against pathogens, including T. cruzi. As T. cruzi is able to compromise host macrophages decreasing endogenous NO production, the administration of exogenous NO donors represents an interesting strategy to combat Chagas disease. Thus, the aims of this study were to prepare and evaluate the antimicrobial activity of NO-releasing polymeric nanoparticles against T. cruzi. Biocompatible polymeric nanoparticles composed of chitosan/sodium tripolyphosphate(TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of free thiols (SH) groups of MSA were performed by the addition of equimolar amount of sodium nitrite (NaNO2), leading to the formation of S-nitroso-MSA-containing nanoparticles. These polymeric nanoparticles act as spontaneous NO donors, with free NO release. The results show the formation of nanoparticles with average hydrodynamic diameter ranging from 270 to 500 nm, average of polydispersity index of 0.35, and encapsulation efficiency in the range of 99%. The NO release kinetics from the S-nitroso-MSA-containing nanoparticles showed sustained and controlled NO release over several hours. The microbicidal activity of S-nitroso-MSA-containing nanoparticles was evaluated by incubating NO-releasing nanoparticles (200 - 600 μg/mL) with replicative and non-infective epimastigote, and non-replicative and infective trypomastigote forms of T. cruzi. In addition, a significant decrease in the percentage of macrophage-infected (with amastigotes) and

  6. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Macková, Hana; Horák, Daniel; Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2015-04-01

    Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin.

  7. Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis

    PubMed Central

    2008-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  8. TiO2 Nanoparticle-Induced Oxidation of the Plasma Membrane: Importance of the Protein Corona.

    PubMed

    Runa, Sabiha; Lakadamyali, Melike; Kemp, Melissa L; Payne, Christine K

    2017-09-21

    Titanium dioxide (TiO 2 ) nanoparticles, used as pigments and photocatalysts, are widely present in modern society. Inhalation or ingestion of these nanoparticles can lead to cellular-level interactions. We examined the very first step in this cellular interaction, the effect of TiO 2 nanoparticles on the lipids of the plasma membrane. Within 12 h of TiO 2 nanoparticle exposure, the lipids of the plasma membrane were oxidized, determined with a malondialdehyde assay. Lipid peroxidation was inhibited by surface passivation of the TiO 2 nanoparticles, incubation with an antioxidant (Trolox), and the presence of serum proteins in solution. Subsequent experiments determined that serum proteins adsorbed on the surface of the TiO 2 nanoparticles, forming a protein corona, inhibit lipid peroxidation. Super-resolution fluorescence microscopy showed that these serum proteins were clustered on the nanoparticle surface. These protein clusters slow lipid peroxidation, but by 24 h, the level of lipid peroxidation is similar, independent of the protein corona or free serum proteins. Additionally, over 24 h, this corona of proteins was displaced from the nanoparticle surface by free proteins in solution. Overall, these experiments provide the first mechanistic investigation of plasma membrane oxidation by TiO 2 nanoparticles, in the absence of UV light and as a function of the protein corona, approximating a physiological environment.

  9. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells.

    PubMed

    Passagne, Isabelle; Morille, Marie; Rousset, Marine; Pujalté, Igor; L'azou, Béatrice

    2012-09-28

    Silica nanoparticles (nano-SiO(2)) are one of the most popular nanomaterials used in industrial manufacturing, synthesis, engineering and medicine. While inhalation of nanoparticles causes pulmonary damage, nano-SiO(2) can be transported into the blood and deposit in target organs where they exert potential toxic effects. Kidney is considered as such a secondary target organ. However, toxicological information of their effect on renal cells and the mechanisms involved remain sparse. In the present study, the cytotoxicity of nano-SiO(2) of different sizes was investigated on two renal proximal tubular cell lines (human HK-2 and porcine LLC-PK(1)). The molecular pathways involved were studied with a focus on the involvement of oxidative stress. Nanoparticle characterization was performed (primary nanoparticle size, surface area, dispersion) in order to investigate a potential relationship between their physical properties and their toxic effects. Firstly, evidence of particle internalization was obtained by transmission electron microscopy and conventional flux cytometry techniques. The use of specific inhibitors of endocytosis pathways showed an internalization process by macropinocytosis and clathrin-mediated endocytosis for 100 nm nano-SiO(2) nanoparticles. These nanoparticles were localized in vesicles. Toxicity was size- and time-dependent (24h, 48 h, 72 h). Indeed, it increased as nanoparticles became smaller. Secondly, analysis of oxidative stress based on the assessment of ROS (reactive oxygen species) production (DHE, dihydroethidium) or lipid peroxidation (MDA, malondialdehyde) clearly demonstrated the involvement of oxidative stress in the toxicity of 20 nm nano-SiO(2). The induction of antioxidant enzymes (catalase, GSTpi, thioredoxin reductase) could explain their lesser toxicity with 100 nm nano-SiO(2). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion-oxidation processes.

    PubMed

    Huang, Chih-Chia; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng

    2006-05-03

    We have demonstrated a simple fabrication of hollow nanoparticles by halide-induced corrosion oxidation with the aid of surfactants. Cuprous oxide Cu2O nanoshells can be generated by simply mixing Cu nanoparticles with alkyltrimethylammonium halides at 55 degrees C for 16 min. The hollowing mechanism proposed is that absorption of surfactants onto the Cu surface facilitates the formation of the void interior through an oxidative etching process. Upon extending the reaction up to 4 h, fragmentation, oxidation, and self-assembly were observed and the CuO ellipsoidal structures were formed. The headgroup lengths of the surfactants influenced the degree of CuO ellipsoidal formation, whereby longer surfactants favored the generation of ellipsoids. Optical absorption measured by UV-visible spectroscopy was used to monitor both oxidation courses of Cu-->Cu2O and Cu2O-->CuO and to determine the band-gap energies as 2.4 eV for Cu2O nanoshells and 1.89 eV for CuO ellipsoids. For the contact-angle measurements, the wettability changed from hydrophilicity (18 degrees) to hydrophobicity (140 degrees) as the Cu2O nanoshells shifted to CuO ellipsoids.

  11. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat

  12. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile

    PubMed Central

    Coricovac, Dorina-Elena; Moacă, Elena-Alina; Pinzaru, Iulia; Cîtu, Cosmin; Soica, Codruta; Mihali, Ciprian-Valentin; Păcurariu, Cornelia; Tutelyan, Victor A.; Tsatsakis, Aristidis; Dehelean, Cristina-Adriana

    2017-01-01

    The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function. PMID:28400730

  13. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    NASA Astrophysics Data System (ADS)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity

  14. Modified Eu-doped Y2 O3 nanoparticles as turn-off luminescent probes for the sensitive detection of pyridoxine.

    PubMed

    Zobeiri, Eshagh; Bayandori Moghaddam, Abdolmajid; Gudarzy, Forugh; Mohammadi, Hadi; Mozaffari, Shahla; Ganjkhanlou, Yadolah

    2015-05-01

    Europium-doped yttrium oxide nanoparticles (Y2 O3 :Eu NPs) modified by captopril were prepared in aqueous solution. In this study, we report the effect of pyridoxine hydrochloride on the photoluminescence intensity of Y2 O3 :Eu NPs in pH 7.2 buffer solution. By increasing the pyridoxine concentration, the luminescence intensity of Y2 O3 :Eu NPs is quenched. The results show that this method demonstrates high sensitivity for pyridoxine determination. A linear relationship is observed between 0.0 and 62.0 μM with a correlation coefficient of 0.995 and a detection limit of 0.023 μM. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Carbon Nanoparticles decorated with cupric oxide Nanoparticles prepared by laser ablation in liquid as an antibacterial therapeutic agent

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Jabir, Majid S.; Abdulameer, Farah A.

    2018-03-01

    Carbon nanoparticles (CNPs) decorated with cupric oxide nanoparticles (CuO NPs) were prepared by laser ablation in water, and their antibacterial activity was examined. X-ray diffraction measurements demonstrated the presence of carbon phases and different CuO phases, and results were confirmed by Fourier transform infrared analysis. Energy- Dispersive spectra showed the presence of C, O, and Cu in the final product. Transmission electron micrographs revealed that the CNPs were 10-80 nm in size and spherical; after being decorated with CuO NPs, particles became 5-50 nm in size and uniform in shape. The absorption spectrum of decorated Nanoparticles indicated the appearance of a new peak at 254-264 nm in addition to the fundamental peak at 228 nm. We then examined the antibacterial activity of the decorated CNPs for both gram-negative and -positive bacteria using the agar-well-diffusion method. The mode of action was determined using acridine orange-ethidium bromide staining to detect reactive oxygen species, and bacterial morphological change was studied by scanning electron microscopy. Results showed that CNPs decorated with 43% CuO NPs had the highest antibacterial activity for gram-positive bacteria. The CNPs acted on the cytoplasmic membrane and nucleic acid of bacteria, which led to a loss of cell-wall integrity, increased cell-wall permeability, and nucleic acid damage. The results offer a novel way to synthesis Carbon nanoparticles decorated with cupric oxide nanoparticles and could use them as novel antibacterial agent in future for pharmaceutical and biomedical applications.

  16. Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Kumar, Pankaj; Malik, Praveen

    2018-05-01

    In this work, phase transition and dielectric behavior of nematic liquid crystal (NLC), E7 and zinc oxide (ZnO) nanoparticles (NPs) doped nematic liquid crystals are investigated. Effect of nano-particles dispersion is analyzed and compared with the dielectric behavior of E7 and E7-ZnO. Frequency dependent dielectric permittivity at various temperatures in nematic phase for E7 and E7-ZnO sample is also studied.

  17. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz; Innovation

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly relatedmore » to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.« less

  18. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    PubMed

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  19. Mn-Ce-Co complex oxide nanoparticles: hydrothermal synthesis and their catalytic subcritical oxidation of 4,4'-Dibromobiphenyl.

    PubMed

    Chen, Jinyang; Xu, Tianjiao; Ding, Junying; Ji, Yimei; Ni, Pei; Li, Zhilian

    2012-10-15

    In situ transformation of 4,4'-Dibromobiphenyl (4,4'-DBB) in water was observed with hydrothermal diamond anvil cell (HDAC) up to 633 K. It shows that 4,4'-DBB dissolves in water to form a homogenous phase at the temperature of 588 K and thus subcritical water oxidation of 4,4'-DBB higher than the temperature can be a homogenous phase. To accelerate the oxidative degradation, some Mn-Ce-Co complex oxide nanoparticles of about 100 nm were prepared by co-precipitation hydrothermal method. The nanoparticles show enough stability and catalytic activity for oxidative degradation of 4,4'-DBB in subcritical water. The catalytic activation increases with some Co doping and as for the complex oxides of Mn(1)Ce(1), Mn(0.9)Ce(1)Co(0.1), Mn(0.5)Ce(1)Co(0.5), Mn(0.1)Ce(1)Co(0.9), and Co(1)Ce(1), the Mn(0.9)Ce(1)Co(0.1) presents the best activation. The main intermediate products of degradation are benzoic acid and phenol. The apparent activation energy (E(a)) is 35.92 with 5% Mn(0.9)Ce(1)Co(0.1) as catalyst and 46.69 kJ/mol with no catalyst about the chemical oxygen demand (COD). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors

    PubMed Central

    Owusu, Kwadwo Asare; Qu, Longbing; Li, Jiantao; Wang, Zhaoyang; Zhao, Kangning; Yang, Chao; Hercule, Kalele Mulonda; Lin, Chao; Shi, Changwei; Wei, Qiulong; Zhou, Liang; Mai, Liqiang

    2017-01-01

    Carbon materials are generally preferred as anodes in supercapacitors; however, their low capacitance limits the attained energy density of supercapacitor devices with aqueous electrolytes. Here, we report a low-crystalline iron oxide hydroxide nanoparticle anode with comprehensive electrochemical performance at a wide potential window. The iron oxide hydroxide nanoparticles present capacitances of 1,066 and 716 F g−1 at mass loadings of 1.6 and 9.1 mg cm−2, respectively, a rate capability with 74.6% of capacitance retention at 30 A g−1, and cycling stability retaining 91% of capacitance after 10,000 cycles. The performance is attributed to a dominant capacitive charge-storage mechanism. An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg−1 at a power density of 1.27 kW kg−1. A packaged device delivers gravimetric and volumetric energy densities of 33.14 Wh kg−1 and 17.24 Wh l−1, respectively. PMID:28262797

  1. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-02-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  2. Evaluation of the effects of nitric oxide-releasing nanoparticles on plants

    NASA Astrophysics Data System (ADS)

    Pereira, A. E. S.; Narciso, A. M.; Seabra, A. B.; Fraceto, L. F.

    2015-05-01

    Nowadays, there are several commercially available products containing nanostructured materials. Meanwhile, despite the many benefits that can be obtained from nanotechnology, it is still necessary to understand the mechanisms in which nanomaterials interact with the environment, and to obtain information concerning their possible toxic effects. In agriculture, nanotechnology has been used in different applications, such as nanosensors to detect pathogens, nanoparticles as controlled release systems for pesticides, and biofilms to deliver nutrients to plants and to protect food products against degradation. Moreover, plants can be used as models to study the toxicity of nanoparticles. Indeed, phytotoxicity assays are required to identify possible negative effects of nanostructured systems, prior to their implementation in agriculture. Nitric oxide (NO) plays a key role in plant growth and defense, and recently, several papers described the beneficial effects due to application of exogenous NO donors in plants. The tripeptide glutathione (GSH) is an important anti-oxidant molecule and is the precursor of the NO donor, S-nitrosoglutathione (GSNO). In this context, the present work investigates the effects of different concentrations of alginate/chitosan nanoparticles, containing either GSH or GSNO, on the development of two test species (Zea mays and Glycine sp.). The results showed that the alginate/chitosan nanoparticles present a size average range from 300 to 550 nm with a polydispersity index of 0.35, and encapsulation efficiency of GSH between 45 - 56%. The NO release kinetics from the alginate/chitosan nanoparticles containing GSNO showed sustained and controlled NO release over several hours. Plant assays showed that at the concentrations tested (1, 5 and 10 mM of GSH or GSNO), polymeric nanoparticles showed no significant inhibitory effects on the development of the species Zea mays and Glycine sp., considering the variables shoot height, root length, and

  3. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells†

    PubMed Central

    Jayaram, Dhanya T.; Runa, Sabiha; Kemp, Melissa L.

    2017-01-01

    Titanium dioxide nanoparticles (TiO2 NPs), used as pigments and photocatalysts, are ubiquitous in our daily lives. Previous work has observed cellular oxidative stress in response to the UV-excitation of photocatalytic TiO2 NPs. In comparison, most human exposure to TiO2 NPs takes place in the dark, in the lung following inhalation or in the gut following consumption of TiO2 NP food pigment. Our spectroscopic characterization shows that both photocatalytic and food grade TiO2 NPs, in the dark, generate low levels of reactive oxygen species (ROS), specifically hydroxyl radicals and superoxides. These ROS oxidize serum proteins that form a corona of proteins on the NP surface. This protein layer is the interface between the NP and the cell. An oxidized protein corona triggers an oxidative stress response, detected with PCR and western blotting. Surface modification of TiO2 NPs to increase or decrease surface defects correlates with ROS generation and oxidative stress, suggesting that NP surface defects, likely oxygen vacancies, are the underlying cause of TiO2 NP-induced oxidative stress. PMID:28537609

  4. Ceriodaphnia dubia as a Potential Bio-Indicator for Assessing Acute Aluminum Oxide Nanoparticle Toxicity in Fresh Water Environment

    PubMed Central

    Pakrashi, Sunandan; Dalai, Swayamprava; Humayun, Ahmed; Chakravarty, Sujay; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2013-01-01

    Growing nanomaterials based consumer applications have raised concerns about their potential release into the aquatic ecosystems and the consequent toxicological impacts. So environmental monitoring of the nanomaterials in aqueous systems becomes imperative. The current study reveals the potential of Ceriodaphnia dubia (C. dubia) as a bio-indicator for aluminum oxide nanoparticles in a fresh water aquatic ecosystem where it occupies an important ecological niche as a primary consumer. This study aims to investigate the aluminium oxide nanoparticle induced acute toxicity on Ceriodaphnia dubia in a freshwater system. The bioavailability of the aluminum oxide nanoparticles has been studied with respect to their aggregation behavior in the system and correlated with the toxicity endpoints. The oxidative stress generated by the particles contributed greatly toward their toxicity. The crucial role of leached aluminium ion mediated toxicity in the later phases (48 h and 72 h) in conjunction with the effects from the nano-sized particles in the initial phases (24 h) puts forth the dynamics of nanotoxicity in the test system. The internalization of nanoparticles (both gross and systemic uptake) as substantiated through the transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectral (ICP-OES) analysis was another major contributor toward acute toxicity. Concluding the present study, Ceriodaphnia dubia can be a promising candidate for bio-monitoring the aluminium oxide nanoparticles in a fresh water system. PMID:24040143

  5. Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment.

    PubMed

    Pakrashi, Sunandan; Dalai, Swayamprava; Humayun, Ahmed; Chakravarty, Sujay; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2013-01-01

    Growing nanomaterials based consumer applications have raised concerns about their potential release into the aquatic ecosystems and the consequent toxicological impacts. So environmental monitoring of the nanomaterials in aqueous systems becomes imperative. The current study reveals the potential of Ceriodaphnia dubia (C. dubia) as a bio-indicator for aluminum oxide nanoparticles in a fresh water aquatic ecosystem where it occupies an important ecological niche as a primary consumer. This study aims to investigate the aluminium oxide nanoparticle induced acute toxicity on Ceriodaphnia dubia in a freshwater system. The bioavailability of the aluminum oxide nanoparticles has been studied with respect to their aggregation behavior in the system and correlated with the toxicity endpoints. The oxidative stress generated by the particles contributed greatly toward their toxicity. The crucial role of leached aluminium ion mediated toxicity in the later phases (48 h and 72 h) in conjunction with the effects from the nano-sized particles in the initial phases (24 h) puts forth the dynamics of nanotoxicity in the test system. The internalization of nanoparticles (both gross and systemic uptake) as substantiated through the transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectral (ICP-OES) analysis was another major contributor toward acute toxicity. Concluding the present study, Ceriodaphnia dubia can be a promising candidate for bio-monitoring the aluminium oxide nanoparticles in a fresh water system.

  6. S-nitrosocaptopril nanoparticles as nitric oxide-liberating and transnitrosylating anti-infective technology.

    PubMed

    Mordorski, Breanne; Pelgrift, Robert; Adler, Brandon; Krausz, Aimee; da Costa Neto, Alexandre Batista; Liang, Hongying; Gunther, Leslie; Clendaniel, Alicea; Harper, Stacey; Friedman, Joel M; Nosanchuk, Joshua D; Nacharaju, Parimala; Friedman, Adam J

    2015-02-01

    Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Synthesis, characterization and photocatalytic activity of neodymium carbonate and neodymium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Karimi, Meisam Sadeghpour; Norouzi, Parviz

    2017-12-01

    This work focuses on the application of an orthogonal array design to the optimization of the facile direct carbonization reaction for the synthesis of neodymium carbonate nanoparticles, were the product particles are prepared based on the direct precipitation of their ingredients. To optimize the method the influences of the major operating conditions on the dimensions of the neodymium carbonate particles were quantitatively evaluated through the analysis of variance (ANOVA). It was observed that the crystalls of the carbonate salt can be synthesized by controlling neodymium concentration and flow rate, as well as reactor temperature. Based on the results of ANOVA, 0.03 M, 2.5 mL min-1 and 30 °C are the optimum values for the above-mentioend parameters and controlling the parameters at these values yields nanoparticles with the sizes of about of 31 ± 2 nm. The product of this former stage was next used as the feed for a thermal decomposition procedure which yielding neodymium oxide nanoparticles. The products were studied through X-ray diffraction (XRD), SEM, TEM, FT-IR and thermal analysis techniques. In addition, the photocatalytic activity of dyspersium carbonate and dyspersium oxide nanoparticles were investigated using degradation of methyl orange (MO) under ultraviolet light.

  8. Encapsulation of Au Nanoparticles on a Silicon Wafer During Thermal Oxidation

    PubMed Central

    2013-01-01

    We report the behavior of Au nanoparticles anchored onto a Si(111) substrate and the evolution of the combined structure with annealing and oxidation. Au nanoparticles, formed by annealing a Au film, appear to “float” upon a growing layer of SiO2 during oxidation at high temperature, yet they also tend to become partially encapsulated by the growing silica layers. It is proposed that this occurs largely because of the differential growth rates of the silica layer on the silicon substrate between the particles and below the particles due to limited access of oxygen to the latter. This in turn is due to a combination of blockage of oxygen adsorption by the Au and limited oxygen diffusion under the gold. We think that such behavior is likely to be seen for other metal–semiconductor systems. PMID:24163715

  9. Synthesis of Magnetite Nanoparticles and Its Application As Electrode Material for the Electrochemical Oxidation of Methanol

    NASA Astrophysics Data System (ADS)

    Shah, Muhammad Tariq; Balouch, Aamna; Panah, Pirah; Rajar, Kausar; Mahar, Ali Muhammad; Khan, Abdullah; Jagirani, Muhammad Saqaf; Khan, Humaira

    2018-06-01

    In this study, magnetite (Fe3O4) nanoparticles were synthesized by a simple and facile chemical co-precipitation method at ambient laboratory conditions. The synthesized Fe3O4 nanostructures were characterized for their morphology, size, crystalline structure and component analysis using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and electron dispersive x-ray spectroscopy. The Fe3O4 nanoparticles showed semi-spherical geometry with an average particle diameter up to 14 nm. The catalytic properties of Fe3O4 nanoparticles were evaluated for electrochemical oxidation of methanol. For this purpose, the magnetite NPs were coated on the surface of an indium tin oxide (ITO) electrode and used as a working electrode in the electrochemical oxidation of methanol. The effect of potential scan rate, the concentration of methanol, the volume of electrolyte and catalyst (Fe3O4 NPs) deposition volume was studied to get high peak current densities for methanol oxidation. The stability and selectivity of the fabricated electrode (Fe3O4/ITO) were also assessed during the electrochemical process. This study revealed that the Fe3O4/ITO electrode was highly stable and selective towards methanol electrochemical oxidation in basic (KOH) media. Bare ITO and Fe3O4 NPs modified glassy (Fe3O4/GCE) electrodes were also tested in the electro-oxidation study of methanol, but their peak current density responses were very low as compared to the Fe3O4/ITO electrode, which showed high electrocatalytic activity towards methanol oxidation under similar conditions. We hope that Fe3O4 nanoparticles (NPs) will be an alternative for methanol oxidation as compared to the expensive noble metals (Pt, Au, and Pd) for energy generation processes.

  10. Effect of ionization on the oxidation kinetics of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Yao-Ting; He, Min; Cheng, Guang-xu; Zhang, Zaoxiao; Xuan, Fu-Zhen; Wang, Zhengdong

    2018-03-01

    Molecular dynamics simulation (MD) of the observed stepwise oxidation of core-shell structured Al/Al2O3 nanoparticles is presented. Different from the metal ion hopping process in the Cabrera-Mott model, which is assumed to occur only at a certain distance from the oxide layer, the MD simulation shows that Al atoms jump over various interfacial gaps directly under the thermal driving force. The energy barrier for Al ionization is found to be increased along with the enlargement of interfacial gap. A mechanism of competition between thermal driving force and ionization potential barrier is proposed in the interpretation of stepwise oxidation behavior.

  11. Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle

    PubMed Central

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; Wang, Junling; Asta, Mark; Zheng, Haimei

    2015-01-01

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. Our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration. PMID:26438864

  12. NIST gold nanoparticle reference materials do not induce oxidative DNA damage.

    PubMed

    Nelson, Bryant C; Petersen, Elijah J; Marquis, Bryce J; Atha, Donald H; Elliott, John T; Cleveland, Danielle; Watson, Stephanie S; Tseng, I-Hsiang; Dillon, Andrew; Theodore, Mellisa; Jackman, Joany

    2013-02-01

    One primary challenge in nanotoxicology studies is the lack of well-characterised nanoparticle reference materials which could be used as positive or negative nanoparticle controls. The National Institute of Standards and Technology (NIST) has developed three gold nanoparticle (AuNP) reference materials (10, 30 and 60 nm). The genotoxicity of these nanoparticles was tested using HepG2 cells and calf-thymus DNA. DNA damage was assessed based on the specific and sensitive measurement of four oxidatively-modified DNA lesions (8-hydroxy-2´-deoxyguanosine, 8-hydroxy-2´-deoxyadenosine, (5´S)-8,5´-cyclo-2´-deoxyadenosine and (5´R)-8,5´-cyclo-2´-deoxyadenosine) using liquid chromatography/tandem mass spectrometry. Significantly elevated, dose-dependent DNA damage was not detected at concentrations up to 0.2 μg/ml, and free radicals were not detected using electron paramagnetic resonance spectroscopy. These data suggest that the NIST AuNPs could potentially serve as suitable negative-control nanoparticle reference materials for in vitro and in vivo genotoxicity studies. NIST AuNPs thus hold substantial promise for improving the reproducibility and reliability of nanoparticle genotoxicity studies.

  13. Study of Perfluorophosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles.

    PubMed

    Quiñones, Rosalynn; Shoup, Deben; Behnke, Grayce; Peck, Cynthia; Agarwal, Sushant; Gupta, Rakesh K; Fagan, Jonathan W; Mueller, Karl T; Iuliucci, Robbie J; Wang, Qiang

    2017-11-28

    In this study, perfluorinated phosphonic acid modifications were utilized to modify zinc oxide (ZnO) nanoparticles because they create a more stable surface due to the electronegativity of the perfluoro head group. Specifically, 12-pentafluorophenoxydodecylphosphonic acid, 2,3,4,5,6-pentafluorobenzylphosphonic acid, and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid have been used to form thin films on the nanoparticle surfaces. The modified nanoparticles were then characterized using infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy were utilized to determine the particle size of the nanoparticles before and after modification, and to analyze the film coverage on the ZnO surfaces, respectively. Zeta potential measurements were obtained to determine the stability of the ZnO nanoparticles. It was shown that the surface charge increased as the alkyl chain length increases. This study shows that modifying the ZnO nanoparticles with perfluorinated groups increases the stability of the phosphonic acids adsorbed on the surfaces. Thermogravimetric analysis was used to distinguish between chemically and physically bound films on the modified nanoparticles. The higher weight loss for 12-pentafluorophenoxydodecylphosphonic acid and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid modifications corresponds to a higher surface concentration of the modifications, and, ideally, higher surface coverage. While previous studies have shown how phosphonic acids interact with the surfaces of ZnO, the aim of this study was to understand how the perfluorinated groups can tune the surface properties of the nanoparticles.

  14. A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: Current understanding and future directions

    NASA Astrophysics Data System (ADS)

    Wharry, Janelle P.; Swenson, Matthew J.; Yano, Kayla H.

    2017-04-01

    Thus far, a number of studies have investigated the irradiation evolution of oxide nanoparticles in b.c.c. Fe-Cr based oxide dispersion strengthened (ODS) alloys. But given the inconsistent experimental conditions, results have been widely variable and inconclusive. Crystal structure and chemistry changes differ from experiment to experiment, and the total nanoparticle volume fraction has been observed to both increase and decrease. Furthermore, there has not yet been a comprehensive review of the archival literature. In this paper, we summarize the existing studies on nanoparticle irradiation evolution. We note significant observations with respect to oxide nanoparticle crystallinity, composition, size, and number density. We discuss four possible contributing mechanisms for nanoparticle evolution: ballistic dissolution, Ostwald ripening, irradiation-enhanced diffusion, and homogeneous nucleation. Finally, we propose future directions to achieve a more comprehensive understanding of irradiation effects on oxide nanoparticles in ODS alloys.

  15. Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aaron, Jesse S.; Oh, Junghwan; Larson, Timothy A.; Kumar, Sonia; Milner, Thomas E.; Sokolov, Konstantin V.

    2006-12-01

    We describe a new approach for optical imaging that combines the advantages of molecularly targeted plasmonic nanoparticles and magnetic actuation. This combination is achieved through hybrid nanoparticles with an iron oxide core surrounded by a gold layer. The nanoparticles are targeted in-vitro to epidermal growth factor receptor, a common cancer biomarker. The gold portion resonantly scatters visible light giving a strong optical signal and the superparamagnetic core provides a means to externally modulate the optical signal. The combination of bright plasmon resonance scattering and magnetic actuation produces a dramatic increase in contrast in optical imaging of cells labeled with hybrid gold/iron oxide nanoparticles.

  16. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells

    PubMed Central

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S.; Guo, Bing; Barakat, Abdul I.; Kennedy, Ian M.

    2010-01-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001–50 μg/ml) of CeO2 nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y2O3 and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition. PMID:19558244

  17. New developments in breast cancer therapy: role of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Thoidingjam, Shivani; Bhan Tiku, Ashu

    2017-06-01

    Breast cancer is one of the leading causes of deaths in females worldwide. The high metastatic rate and drug resistance makes it one of the difficult cancers to treat. Early diagnosis and treatment are keys to better survival of breast cancer patients. Conventional treatment approaches like chemotherapy, radiotherapy and surgery suffer from major drawbacks. Novel approaches to improve cancer therapy with minimal damage to normal tissues and better quality of life for cancer patients need to be developed. Among various approaches used for treatment and diagnosis of breast cancer, use of nanoparticles (NPs) is coming up as a new and promising treatment regime. It can help overcome various limitations of conventional therapies like non-targeted effects, resistance to treatment, late diagnosis, etc. Among various nanoparticles studied for their biomedical applications, especially for breast cancer therapy, iron oxide nanoparticles (IONPs) are perhaps the most exciting due to their biocompatibility, biodegradability, size and properties like superparamagnetism. Besides, IONPs are also the only metal oxide nanoparticles approved for clinical use in magnetic resonance imaging (MRI) which is an added advantage for early detection. Therefore in this mini review, we are discussing the developments made in the use of IONPs for breast cancer therapy over the short span of the last five years i.e. 2010-2015. Since late diagnosis and therapy resistance are important drawbacks in breast cancer therapy, the potential of IONPs to overcome these limitations are also evaluated.

  18. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI.

    PubMed

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-11-11

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T 2 -weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.

  19. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-11-01

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.

  20. [Efficacy of using zinc oxide nanoparticles in nutrition. Experiments on the laboratory animal].

    PubMed

    Raspopov, R V; Trushina, E N; Mustafina, O K; Tananova, O N; Gmoshinskiĭ, I V; Khotimchenko, S A

    2011-01-01

    In experiments on rats there was researched bioavailability of zinc oxide (ZnO) nanoparticles. There were determined the content of Zn in blood serum and tibia, intestinal uptake of macromolecules of egg albumin, some hematological, biochemical and immune indices, liver cells apoptosis. The results obtained show that the uptake of nanoparticles of ZnO enables restoration of this microelement status damaged by zinc deficit diet.

  1. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats.

    PubMed

    Nazarizadeh, Ali; Asri-Rezaie, Siamak

    2016-08-01

    In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.

  2. Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties

    NASA Astrophysics Data System (ADS)

    Raut, Suyog A.; Mutadak, Pallavi R.; Kumar, Shiv; Kanhe, Nilesh S.; Huprikar, Sameer; Pol, Harshawardhan V.; Phase, Deodatta M.; Bhoraskar, Sudha V.; Mathe, Vikas L.

    2018-03-01

    In this paper we report single step large scale synthesis of highly crystalline iron oxide nanoparticles viz. magnetite (Fe3O4) and maghemite (γ-Fe2O3) via gas phase condensation process, where micron sized iron metal powder was used as a precursor. Selective phases of iron oxide were obtained by variation of gas flow rate of oxygen and hence partial pressure of oxygen inside the plasma reactor. Most of the particles were found to possesses average crystallite size of about 20-30 nm. The DC magnetization curves recorded indicate almost super-paramagnetic nature of the iron oxide magnetic nanoparticles. Further, iron oxide nanoparticles were analyzed using Raman spectroscopy, X-ray photoelectron spectroscopy and Mossbauer spectroscopy. In order to explore the feasibility of these nanoparticles for magnetic damper application, rheological studies have been carried out and compared with commercially available Carbonyl Iron (CI) particles. The nanoparticles obtained by thermal plasma route show improved dispersion which is useful for rheological applications.

  3. Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging

    PubMed Central

    Cabrera-García, Alejandro; Vidal-Moya, Alejandro; Bernabeu, Ángela; Pacheco-Torres, Jesús; Checa-Chavarria, Elisa; Fernández, Eduardo; Botella, Pablo

    2016-01-01

    We describe the synthesis, characterization and application as contrast agents in magnetic resonance imaging of a novel type of magnetic nanoparticle based on Gd-Si oxide, which presents high Gd3+ atom density. For this purpose, we have used a Prussian Blue analogue as the sacrificial template by reacting with soluble silicate, obtaining particles with nanorod morphology and of small size (75 nm). These nanoparticles present good biocompatibility and higher longitudinal and transversal relaxivity values than commercial Gd3+ solutions, which significantly improves the sensitivity of in vivo magnetic resonance images. PMID:28335240

  4. Iron oxide nanoparticles in modern microbiology and biotechnology.

    PubMed

    Dinali, Ranmadugala; Ebrahiminezhad, Alireza; Manley-Harris, Merilyn; Ghasemi, Younes; Berenjian, Aydin

    2017-08-01

    Iron oxide nanoparticles (IONs) are one of the most developed and used nanomaterials in biotechnology and microbiology. These particles have unique physicochemical properties, which make them unique among nanomaterials. Therefore, many experiments have been conducted to develop facile synthesis methods for these particles and to make them biocompatible. Various effects of IONs on microorganisms have been reported. Depending on the microbial strain and nanoparticle (NP) concentration, IONs can stimulate or inhibit microbial growth. Due to the superparamagnetic properties of IONs, these NPs have used as nano sources of heat for hyperthermia in infected tissues. Antibiotic-loaded IONs are used for targeted delivery of chemical therapy direct to the infected organ and IONs have been used as a dirigible carrier for more potent antimicrobial nanomaterials such as silver nanoparticles. Magnetic NPs have been used for specific separation of pathogen and non-pathogen bacterial strains. Very recently, IONs were used as a novel tool for magnetic immobilization of microbial cells and process intensification in a biotechnological process. This review provides an overview of application of IONs in different microbial processes. Recommendations are also given for areas of future research.

  5. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shi, Donglu; Sadat, M. E.; Dunn, Andrew W.; Mast, David B.

    2015-04-01

    Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon

  6. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.

    PubMed

    Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V

    2011-01-04

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.

  7. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    PubMed

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  8. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu

    2014-12-01

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi

  9. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOEpatents

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  10. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOEpatents

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  11. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    NASA Astrophysics Data System (ADS)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  12. Preparation and characterization of magnetic core-shell iron oxide@glycyrrhizic acid nanoparticles in ethanol-water mixed solvent

    NASA Astrophysics Data System (ADS)

    Saeedi, Mostafa; Vahidi, Omid

    2018-06-01

    In this research, we used the co-precipitation method to synthesize glycyrrhizic acid coated iron oxide magnetic nanoparticles. The aim of this study is to investigate how different amounts of glycyrrhizic acid affect the structural, biological, magnetic, and hyperthermic characteristics of the synthesized magnetic nanoparticles. The synthesis was conducted under different glycyrrhizic acid concentrations in water with the presence of ethanol to generate coated nanoparticles with different amounts of coating agent. The characteristics of the synthesized nanoparticles were examined by several devices including X-ray diffractometer, transmission electron microscope, field-emission scanning electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra, and thermal gravimetric analyzer. The cytotoxicity of synthesized nanoparticles was examined by MTT assay using L929 fibroblast cell line. The results indicated the enhanced biocompatibility of the coated iron oxide nanoparticles due to the presence of glycyrrhizic acid. The comparison of the coated samples shows that the samples with higher amounts of coating agent were more biocompatible. The possibility of using the synthesized magnetic nanoparticles for medical hyperthermia was examined by performing hyperthermia process on a nanofluid made up of the nanoparticles dispersed in water using a high-frequency alternating magnetic field generator and the results confirm the effectiveness of the synthesized nanoparticles in the elevation of the solutions temperature.

  13. Cytotoxic consequences of Halloysite nanotube/iron oxide nanocomposite and iron oxide nanoparticles upon interaction with bacterial, non-cancerous and cancerous cells.

    PubMed

    Abhinayaa, R; Jeevitha, G; Mangalaraj, D; Ponpandian, N; Vidhya, Kalieswaran; Angayarkanni, Jayaraman

    2018-05-19

    Cytotoxic effects of iron oxide (Fe 3 O 4 ) nanoparticles and Halloysite nanotube/iron oxide (HNT/Fe 3 O 4 ) nanocomposite are compared based on their interaction with Gram-negative bacteria Escherichia coli and Gram-positive bacteria Bacillus subtilis. Similarly, the action of these two nanomaterials on non-cancerous Vero cell lines and human lung cancerous (A-549) cell lines are compared. The cytotoxicity studies on Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite showed difference in the rate of killing of bacterial cells. This is reflected in differential cell growth, cell membrane integrity loss, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. These factors are measured over a range of concentrations of Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite and at specified time intervals, to test if there is any statistically significant difference between the toxicity of the two nanomaterials. Between the two nanomaterials, HNT/Fe 3 O 4 nanocomposite is found to be less toxic to bacterial cells than Fe 3 O 4 nanoparticles. HNT, when attached to the Fe 3 O 4 nanoparticles, changes their surface characteristics and suppresses their inherent toxicity on bacteria. In the study on the effect on cell lines, Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite are both seen to be biocompatible with Vero cell lines. However, HNT/Fe 3 O 4 nanocomposite showed more cytotoxicity than Fe 3 O 4 nanoparticles on A-549 cell lines. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk

    2009-04-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  15. Bubble nucleation and migration in a lead-iron hydr(oxide) core-shell nanoparticle

    DOE PAGES

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; ...

    2015-10-05

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O 2 gas and H 2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometricmore » phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. In conclusion, our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration.« less

  16. Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media

    NASA Astrophysics Data System (ADS)

    Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.

    2015-03-01

    In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).

  17. Co-immobilization of gold nanoparticles with glucose oxidase to improve bioelectrocatalytic glucose oxidation

    NASA Astrophysics Data System (ADS)

    Aquino Neto, Sidney; Milton, Ross D.; Crepaldi, Laís B.; Hickey, David P.; de Andrade, Adalgisa R.; Minteer, Shelley D.

    2015-07-01

    Recently, there has been much effort in developing metal nanoparticle catalysts for fuel oxidation, as well as the development of enzymatic bioelectrocatalysts for fuel oxidation. However, there has been little study of the synergy of hybrid electrocatalytic systems. We report the preparation of hybrid bioanodes based on Au nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) co-immobilized with glucose oxidase (GOx). Mediated electron transfer was achieved by two strategies: ferrocene entrapped within polypyrrole and a ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymer. Electrochemical characterization of the Au nanoparticles supported on MWCNTs indicate that this catalyst exhibits an electrocatalytic response for glucose even in acidic conditions. Using the redox polymer Fc-LPEI as the mediator, voltammetric and amperometric data demonstrated that these bioanodes can efficiently achieve mediated electron transfer and also indicated higher catalytic currents with the hybrid bioelectrode. From the amperometry, the maximum current density (Jmax) achieved with the hybrid bioelectrode was 615 ± 39 μA cm-2, whereas the bioanode employing GOx only achieved a Jmax of 409 ± 26 μA cm-2. Biofuel cell tests are consistent with the electrochemical characterization, thus confirming that the addition of the metallic species into the bioanode structure can improve fuel oxidation and consequently, improve the power generated by the system.

  18. The Stability and Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation

    DTIC Science & Technology

    2005-01-01

    imaging, drug delivery, and hyperthermia treatment for cancer . Ideal magnetic nanoparticle fluids have well-separated, biocompatible nanoparticles with a...Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation DISTRIBUTION: Approved for public release, distribution unlimited This paper...Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation Nguyen H. Hail, Raymond Lemoine’, Shaina

  19. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    PubMed Central

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  20. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David

    2013-07-01

    Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled

  1. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    PubMed Central

    Lee, Dongjin; Ondrake, Janet; Cui, Tianhong

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696

  2. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode

  3. Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Małolepszy, A.; Błonski, S.; Chrzanowska-Giżyńska, J.; Wojasiński, M.; Płocinski, T.; Stobinski, L.; Szymanski, Z.

    2018-04-01

    The results of synthesis of the fluorescent carbon dots (CDots) from graphite target and reduced graphene oxide (rGO) nanoparticles performed by the nanosecond laser ablation in polyethylene glycol 200 (PEG200) are shown. Two-step laser irradiation (first graphite target, next achieved suspension) revealed a very effective production of CDots. However, the ablation in PEG appeared to be effective with 1064 nm laser pulse in contrast to the ablation with 355 nm laser pulse. In the case of rGO nanoparticles similar laser irradiation procedure was less efficient. In both cases, received nanoparticles exhibited strong, broadband photoluminescence with a maximum dependent on the excitation wavelength. The size distribution for obtained CDots was evaluated using the DLS technique and HRTEM images. The results from both methods show quite good agreement in nanoparticle size estimation although the DLS method slightly overestimates nanoparticle's diameter.

  4. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    PubMed

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  5. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  6. Effectiveness of hand washing on the removal of iron oxide nanoparticles from human skin ex vivo.

    PubMed

    Lewinski, Nastassja A; Berthet, Aurélie; Maurizi, Lionel; Eisenbeis, Antoine; Hopf, Nancy B

    2017-08-01

    In this study, the effectiveness of washing with soap and water in removing nanoparticles from exposed skin was investigated. Dry, nanoscale hematite (α-Fe 2 O 3 ) or maghemite (γ-Fe 2 O 3 ) powder, with primary particle diameters between 20-30 nm, were applied to two samples each of fresh and frozen ex vivo human skin in two independent experiments. The permeation of nanoparticles through skin, and the removal of nanoparticles after washing with soap and water were investigated. Bare iron oxide nanoparticles remained primarily on the surface of the skin, without penetrating beyond the stratum corneum. Skin exposed to iron oxide nanoparticles for 1 and 20 hr resulted in removal of 85% and 90%, respectively, of the original dose after washing. In the event of dermal exposure to chemicals, removal is essential to avoid potential local irritation or permeation across skin. Although manufactured at an industrial scale and used extensively in laboratory experiments, limited data are available on the removal of engineered nanoparticles after skin contact. Our finding raises questions about the potential consequences of nanoparticles remaining on the skin and whether alternative washing methods should be proposed. Further studies on skin decontamination beyond use of soap and water are needed to improve the understanding of the potential health consequences of dermal exposure to nanoparticles.

  7. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes.

    PubMed

    Simon-Deckers, A; Gouget, B; Mayne-L'hermite, M; Herlin-Boime, N; Reynaud, C; Carrière, M

    2008-11-20

    If released in the environment, nanomaterials might be inhaled by populations and cause damage to the deepest regions of the respiratory tract, i.e., the alveolar compartment. To model this situation, we studied the response of A549 human pneumocytes after exposure to aluminium oxide or titanium oxide nanoparticles, and to multi-walled carbon nanotubes. The influence of size, crystalline structure and chemical composition was investigated. After a detailed identification of nanomaterial physico-chemical characteristics, cells were exposed in vitro and viability and intracellular accumulation were assessed. In our conditions, carbon nanotubes were more toxic than metal oxide nanoparticles. Our results confirmed that both nanotubes and nanoparticles are able to rapidly enter into cells, and distribute in the cytoplasm and intracellular vesicles. Among nanoparticles, we demonstrate significant difference in biological response as a function of size, crystalline phase and chemical composition. Their toxicity was globally lower than nanotubes toxicity. Among nanotubes, the length did not influence cytotoxicity, neither the presence of metal catalyst impurities.

  8. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  9. X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo

    2017-12-01

    Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.

  10. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.

    PubMed

    Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi

    2015-01-01

    Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide-silver (rGO-Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO-Ag were evaluated in ovarian cancer cells. The synthesized rGO-Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO-Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO-Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. T. amurensis plant extract-mediated rGO-Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO-Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be

  11. Solar photochemical oxidation of alcohols using catalytic hydroquinone and copper nanoparticles under oxygen: oxidative cleavage of lignin models.

    PubMed

    Mitchell, Lorna J; Moody, Christopher J

    2014-11-21

    Alcohols are converted into to their corresponding carbonyl compounds using catalytic amounts of 1,4-hydroquinone with a copper nanoparticle electron transfer mediator with oxygen as the terminal oxidant in acetone as solvent under visible light irradiation. These conditions employing biorenewable hydroquinone as reagent were developed from initial experiments using stoichiometric amounts of 1,4-benzoquinone as oxidant. A range of benzylic and aliphatic primary and secondary alcohols are oxidized, affording the corresponding aldehydes or ketones in moderate to excellent yields. The methodology is also applicable to the oxidative degradation of lignin model compounds that undergo C-C bond cleavage to give simple aromatic compounds.

  12. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    PubMed

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fluorine and oxygen plasma influence on nanoparticle formation and aggregation in metal oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2017-03-01

    Despite recent advances in metal oxide thin-film transistor technology, there are no foundry processes available yet for large-scale deployment of metal oxide electronics and photonics, in a similar way as found for silicon based electronics and photonics. One of the biggest challenges of the metal oxide platform is the stability of the fabricated devices. Also, there is wide dispersion on the measured specifications of fabricated TFT, from lot-to-lot and from different research groups. This can be partially explained by the importance of the deposition method and its parameters, which determine thin film microstructure and thus its electrical properties. Furthermore, substrate pretreatment is an important factor, as it may act as a template for material growth. Not so often mentioned, plasma processes can also affect the morphology of deposited films on further deposition steps, such as inducing nanoparticle formation, which strongly impact the conduction mechanism in the channel layer of the TFT. In this study, molybdenum doped indium oxide is sputtered onto ALD deposited HfO2 with or without pattering, and etched by RIE chlorine based processing. Nanoparticle formation is observed when photoresist is removed by oxygen plasma ashing. HfO2 etching in CF4/Ar plasma prior to resist stripping in oxygen plasma promotes the aggregation of nanoparticles into nanosized branched structures. Such nanostructuring is absent when oxygen plasma steps are replaced by chemical wet processing with acetone. Finally, in order to understand the electronic transport effect of the nanoparticles on metal oxide thin film transistors, TFT have been fabricated and electrically characterized.

  14. Structural, optical and dielectric properties of pure and chromium (Cr) doped nickel oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gupta, Jhalak; Ahmed, Arham S.

    2018-05-01

    The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.

  15. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-05

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture

    NASA Astrophysics Data System (ADS)

    Javed, Yasir; Akhtar, Kanwal; Anwar, Hafeez; Jamil, Yasir

    2017-11-01

    Iron oxide nanoparticles (IONPs) extensively employed beyond regenerative medicines to imaging disciplines because of their great constituents for magneto-responsive nano-systems. The unique superparamagnetic behavior makes IONPs very suitable for hyperthermia and imaging applications. From the last decade, versatile functionalization with surface capabilities, efficient contrast properties and biocompatibilities make IONPs an essential imaging contrast agent for magnetic resonance imaging (MRI). IONPs have shown signals for both longitudinal relaxation and transverse relaxation; therefore, negative contrast as well as dual contrast can be used for imaging in MRI. In the current review, we have focused on different oxidation state of iron oxides, i.e., magnetite, maghemite and hematite for their T1 and T2 contrast enhancement properties. We have also discussed different factors (synthesis protocols, biocompatibility, toxicity, architecture, etc.) that can affect the contrast properties of the IONPs. [Figure not available: see fulltext.

  17. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    PubMed

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (<1 mm thick) to one surface and fired under manufacturer's recommended protocol. Scanning electron microscopy (SEM) with integrated electron dispersive X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  18. The influence of iron oxide nanoparticles upon the adsorption of organic matter on magnetic powdered activated carbon.

    PubMed

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2017-10-15

    Combining powdered activated carbon (PAC) with magnetic iron oxides has been proposed in the past to produce adsorbents for natural organic matter (NOM) removal that can be easily separated using a magnetic field. However, the trade-off between the iron oxides' benefits and the reduced carbon content, porosity, and surface area has not yet been investigated systematically. We produced 3 magnetic powdered activated carbons (MPAC) with mass fractions of 10%, 38% and 54% maghemite nanoparticles and compared them to bare PAC and pure nanoparticles with respect to NOM adsorption kinetics and isotherms. While adsorption kinetics were not influenced by the presence of the iron oxide nanoparticles (IONP), as shown by calculated diffusion coefficients from the homogeneous surface diffusion model, nanoparticles reduced the adsorption capacity of NOM due to their lower adsorption capacity. Although the nanoparticles added mesoporosity to the composite materials they blocked intrinsic PAC mesopores at mass fractions >38% as measured by N 2 -adsorption isotherms. Below this mass fraction, the adsorption capacity was mainly dependent on the carbon content in MPAC and mesopore blocking was negligible. If NOM adsorption with MPAC is desired, a highly mesoporous PAC and a low IONP mass fraction should be chosen during MPAC synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Role of Metal and Metal Oxide Nanoparticles as Diagnostic and Therapeutic Tools for Highly Prevalent Viral Infections

    PubMed Central

    Yadavalli, Tejabhiram; Shukla, Deepak

    2016-01-01

    Nanotechnology is increasingly playing important roles in various fields including virology. The emerging use of metal or metal oxide nanoparticles in virus targeting formulations shows the promise of improved diagnostic or therapeutic ability of the agents while uniquely enhancing the prospects of targeted drug delivery. Although a number of nanoparticles varying in composition, size, shape, and surface properties have been approved for human use, the candidates being tested or approved for clinical diagnosis and treatment of viral infections are relatively less in number. Challenges remain in this domain due to a lack of essential knowledge regarding the in vivo comportment of nanoparticles during viral infections. This review provides a broad overview of recent advances in diagnostic, prophylactic and therapeutic applications of metal and metal oxide nanoparticles in Human Immunodeficiency Virus, Hepatitis virus, influenza virus and Herpes virus infections. Types of nanoparticles commonly used and their broad applications have been explained in this review. PMID:27575283

  20. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress.

    PubMed

    Chen, Shizhu; Hou, Yingjian; Cheng, Gong; Zhang, Cuimiao; Wang, Shuxiang; Zhang, Jinchao

    2013-07-01

    Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future.

  1. Effects of rare earth oxide nanoparticles on root elongation of plants.

    PubMed

    Ma, Yuhui; Kuang, Linglin; He, Xiao; Bai, Wei; Ding, Yayun; Zhang, Zhiyong; Zhao, Yuliang; Chai, Zhifang

    2010-01-01

    The phytotoxicity of four rare earth oxide nanoparticles, nano-CeO(2), nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) on seven higher plant species (radish, rape, tomato, lettuce, wheat, cabbage, and cucumber) were investigated in the present study by means of root elongation experiments. Their effects on root growth varied greatly between different nanoparticles and plant species. A suspension of 2000 mg L(-1) nano-CeO(2) had no effect on the root elongation of six plants, except lettuce. On the contrary, 2000 mg L(-1) suspensions of nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) severely inhibited the root elongation of all the seven species. Inhibitory effects of nano-La(2)O(3), nano-Gd(2)O(3), and nano-Yb(2)O(3) also differed in the different growth process of plants. For wheat, the inhibition mainly took place during the seed incubation process, while lettuce and rape were inhibited on both seed soaking and incubation process. The fifty percent inhibitory concentrations (IC(50)) for rape were about 40 mg L(-1) of nano-La(2)O(3), 20mg L(-1) of nano-Gd(2)O(3), and 70 mg L(-1) of nano-Yb(2)O(3), respectively. In the concentration ranges used in this study, the RE(3+) ion released from the nanoparticles had negligible effects on the root elongation. These results are helpful in understanding phytotoxicity of rare earth oxide nanoparticles. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. An image processing approach for investigation on transport of iron oxide nanoparticles (FE3O4) stabilized with poly acrylic acid in two-dimensional porous media

    NASA Astrophysics Data System (ADS)

    Golzar, M.; Azhdary Moghaddam, M.; Saghravani, S. F.; Dahrazma, B.

    2018-04-01

    Iron oxide nanoparticles were stabilized using poly acrylic acid (PAA) to yield stabilized slurry of Iron oxide nanoparticles. A two-dimensional physical model filled by glass beads was used to study the fate and transport of the iron oxide nanoparticles stabilized with PAA in porous media under saturated, steady-state flow conditions. Transport data for a nonreactive tracer, slurry of iron oxide nanoparticles stabilized with PAA were collected under similar flow conditions. The results show that low concentration slurry of iron oxide nanoparticles stabilized with PAA can be transported like a tracer without significant retardation. The image processing technique was employed to measure the tracer/nanoparticle concentration inside the 2-D model filled with glass beads. The groundwater flow model, Visual MODFLOW, was used to model the observed transport patterns through MT3DMS module. Finally, it was demonstrated that the numerical model MODFLOW can be used to predict the fate and transport characteristics of nanoparticles stabilized with PAA in groundwater aquifers.

  3. Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles

    DOE PAGES

    Escorihuela, Laura; Fernández, Alberto; Rallo, Robert; ...

    2017-07-20

    The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. This work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. We used models of small ZnO clusters to describe the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O 2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg L -1 and equivalents of 50 μg L -1 for the free Zn 2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less

  4. Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escorihuela, Laura; Fernández, Alberto; Rallo, Robert

    The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. Current work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. Models of small ZnO clusters are used for describing the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg·L-1 and equivalents of 50 g·L-1 for the free Zn2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less

  5. Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escorihuela, Laura; Fernández, Alberto; Rallo, Robert

    The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. This work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. We used models of small ZnO clusters to describe the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O 2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg L -1 and equivalents of 50 μg L -1 for the free Zn 2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less

  6. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation.

    PubMed

    Arya, Aditya; Sethy, Niroj Kumar; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2013-01-01

    Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Spherical nanoceria of 7-10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria

  7. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

    PubMed Central

    Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685

  8. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.

    PubMed

    Raghupathi, Krishna R; Koodali, Ranjit T; Manna, Adhar C

    2011-04-05

    The antibacterial properties of zinc oxide nanoparticles were investigated using both gram-positive and gram-negative microorganisms. These studies demonstrate that ZnO nanoparticles have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. The antibacterial activity of the ZnO nanoparticles was inversely proportional to the size of the nanoparticles in S. aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Northern analyses of various reactive oxygen species (ROS) specific genes and confocal microscopy suggest that the antibacterial activity of ZnO nanoparticles might involve both the production of reactive oxygen species and the accumulation of nanoparticles in the cytoplasm or on the outer membranes. Overall, the experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections.

  9. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties.

    PubMed

    Costo, Rocio; Bello, Valentina; Robic, Caroline; Port, Marc; Marco, Jose F; Puerto Morales, M; Veintemillas-Verdaguer, Sabino

    2012-01-10

    A considerable increase in the saturation magnetization, M(s) (40%), and initial susceptibility of ultrasmall (<5 nm) iron oxide nanoparticles prepared by laser pyrolysis was obtained through an optimized acid treatment. Moreover, a significant enhancement in the colloidal properties, such as smaller aggregate sizes in aqueous media and increased surface charge densities, was found after this chemical protocol. The results are consistent with a reduction in nanoparticle surface disorder induced by a dissolution-recrystallization mechanism.

  10. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  11. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines.

    PubMed

    Karlsson, Hanna L; Gliga, Anda R; Calléja, Fabienne M G R; Gonçalves, Cátia S A G; Wallinder, Inger Odnevall; Vrieling, Harry; Fadeel, Bengt; Hendriks, Giel

    2014-09-02

    The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide- and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). The metal oxide- and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, γ-H2AX and RAD51 foci formation). We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly

  12. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment.

  13. Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers

    NASA Astrophysics Data System (ADS)

    Djoković, V.; Božanic, D. K.; Vodnik, V. V.; Krsmanović, R. M.; Trandafilovic, L. V.; Dimitrijević-Branković, S.

    2011-10-01

    We present the results on the structure and the optical properties of noble metal (Ag, Au) and oxide (ZnO) nanoparticles synthesized by various methods in different polysaccharide matrices such as chitosan, glycogen, alginate and starch. The structure of the obtained nanoparticles was studied in detail with microscopic techniques (TEM, SEM), while the XPS spectroscopy was used to investigate the effects at the nanoparticle-biomolecule interfaces. The antimicrobial activity of the nanocomposite films with Ag nanoparticles was tested against the Staphylococcus aureus, Escherichia coli and Candida albicans pathogens. In addition, we will present the results on the structure and optical properties of the tryptophan amino acid functionalized silver nanoparticles dispersed in water soluble polymer matrices.

  14. Oxidation behavior of nickel-chromium-aluminum-yttrium - Magnesium oxide and nickel-chromium-aluminum-yttrium - zirconate type of cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1976-01-01

    The 1100 and 1200 C cyclic oxidation resistance of dense Ni-Cr-Al-Y - MgO, Ni-Cr-Al-Y - CaZrO3, Ni-Cr-Al-Y - SrZrO3, Ni-Cr-Al-Y - MgZro3 cermets and a 70 percent dense Ni-Cr-Al-Y developmental material was determined. The cermets contained 60 and 50 volume percent of Ni-Cr-Al-Y which formed a matrix with the oxide particles imbedded in it. The cermets containing MgO were superior to cermets based on zirconates and to the porous Ni-Cr-Al-Y material.

  15. Characteristics of indium-tin-oxide (ITO) nanoparticle ink-coated layers recycled from ITO scraps

    NASA Astrophysics Data System (ADS)

    Cha, Seung-Jae; Hong, Sung-Jei; Lee, Jae Yong

    2015-09-01

    This study investigates the characteristics of an indium-tin-oxide (ITO) ink layer that includes nanoparticles synthesized from ITO target scraps. The particle size of the ITO nanoparticle was less than 15 nm, and the crystal structure was cubic with a (222) preferred orientation. Also, the composition ratio of In to Sn was 92.7 to 7.3 in weight. The ITO nanoparticles were well dispersed in the ink solvent to formulate a 20-wt% ITO nanoparticle ink. Furthermore, the ITO nanoparticle ink was coated onto a glass substrate, followed by heat-treatment at 600 °C. The layer showed good sheet resistances below 400 Ω/□ and optical transmittances higher than 88% at 550 nm. Thus, we can conclude that the characteristics of the layer make it highly applicable to a transparent conductive electrode.

  16. Morphological changes of the red blood cells treated with metal oxide nanoparticles.

    PubMed

    Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu

    2016-12-01

    The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  18. Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by self-propagating method.

    PubMed

    Wang, Yu; Zhu, Jianxin

    2012-05-15

    This paper presents a novel process of extracting lead oxide nanoparticles from cathode-ray tube (CRT) funnel glass using self-propagating high-temperature synthesis (SHS) method. The impacts of added amount of funnel glass on the extraction ratio of lead, the lead extraction velocity and the micromorphology, as well as particle size of extracted nanoparticles were investigated. We found that self-propagating reaction in the presence of Mg and Fe(2)O(3) could separate lead preferentially and superfine lead oxide nanoparticles were obtained from a collecting chamber. The separation ratio was related closely to the amount of funnel glass added in the original mixture. At funnel glass addition of no more than 40wt.%, over 90wt.% of lead was recovered from funnel glass. High extraction yield reveals that the network structure of funnel glass was fractured due to the dramatic energy generated during the SHS melting process. The PbO nanoparticles collected show good dispersion and morphology with a mean grain size of 40-50nm. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities

    NASA Astrophysics Data System (ADS)

    Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig

    2018-03-01

    In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.

  20. Enzyme and Cancer Cell Selectivity of Nanoparticles: Inhibition of 3D Metastatic Phenotype and Experimental Melanoma by Zinc Oxide.

    PubMed

    DeLong, Robert K; Mitchell, Jennifer A; Morris, R Tyler; Comer, Jeffrey; Hurst, Miranda N; Ghosh, Kartik; Wanekaya, Adam; Mudge, Miranda; Schaeffer, Ashley; Washington, Laurie L; Risor-Marhanka, Azure; Thomas, Spencer; Marroquin, Shanna; Lekey, Amber; Smith, Joshua J; Garrad, Richard; Aryal, Santosh; Abdelhakiem, Mohamed; Glaspell, Garry P

    2017-02-01

    Biomedical applications for metal and metal oxide nanoparticles are rapidly increasing. Here their functional impact on two well-characterized model enzymes, Luciferase (Luc) or β-galactosidase (β-Gal) was quantitatively compared. Nickel oxide nanoparticle (NiO-NP) activated β-Gal (>400% control) and boron carbide nanoparticle (B4C-NP) inhibited Luc(<10% control), whereas zinc oxide (ZnO-NP) and cobalt oxide (Co3O4-NP) activated β-Gal to a lesser extent and magnesium oxide (MgO) moderately inhibited both enzymes. Melanoma specific killing was in the order; ZnO > B4C ≥ Cu > MgO > Co3O4 > Fe2O3 > NiO, ZnO-NP inhibiting B16F10 and A375 cells as well as ERK enzyme (>90%) and several other cancer-associated kinases (AKT, CREB, p70S6K). ZnO-NP or nanobelt (NB) serve as photoluminescence (PL) cell labels and inhibit 3-D multi-cellular tumor spheroid (MCTS) growth and were tested in a mouse melanoma model. These results demonstrate nanoparticle and enzyme specific biochemical activity and suggest their utility as new tools to explore the important model metastatic foci 3-D environment and their chemotherapeutic potential.

  1. pH-Dependent Antimicrobial Properties of Copper Oxide Nanoparticles in Staphylococcus aureus

    PubMed Central

    Hsueh, Yi-Huang; Tsai, Ping-Han; Lin, Kuen-Song

    2017-01-01

    The antimicrobial properties of CuO nanoparticles have been investigated, but the underlying mechanisms of toxicity remain the subject of debate. Here, we show that CuO nanoparticles exhibit significant toxicity at pH 5 against four different Staphylococcus aureus (S. aureus) strains, including Newman, SA113, USA300, and ATCC6538. At this pH, but not at pH 6 and 7, 5 mM CuO nanoparticles effectively caused reduction of SA113 and Newman cells and caused at least 2 log reduction, whereas 20 mM killed most strains but not USA300. At 5 mM, the nanoparticles were also found to dramatically decrease reductase activity in SA113, Newman, and ATCC6538 cells, but not USA300 cells. In addition, analysis of X-ray absorption near-edge structure and extended X-ray absorption fine structure confirmed that S. aureus cells exposed to CuO nanoparticles contain CuO, indicating that Cu2+ ions released from nanoparticles penetrate bacterial cells and are subsequently oxidized intracellularly to CuO at mildly acidic pH. The CuO nanoparticles were more soluble at pH 5 than at pH 6 and 7. Taken together, the data conclusively show that the toxicity of CuO nanoparticles in mildly acidic pH is caused by Cu2+ release, and that USA300 is more resistant to CuO nanoparticles (NPs) than the other three strains. PMID:28397766

  2. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    PubMed

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles

    NASA Astrophysics Data System (ADS)

    Belomoin, Gennadiy; Therrien, Joel; Nayfeh, Munir

    2000-08-01

    We dispersed electrochemical etched silicon into a colloid of ultrasmall ultrabright Si nanoparticles. Direct imaging using transmission electron microscopy shows particles of ˜1 nm in diameter, and infrared and electron photospectroscopy show that they are passivated with hydrogen. Under 350 nm excitation, the luminescence is dominated by an extremely strong blue band at 390 nm. We replace hydrogen by a high-quality ultrathin surface oxide cap by self-limiting oxidation in H2O2. Upon capping, the excitation efficiency drops, but only by a factor of 2, to an efficiency still two-fold larger than that of fluorescein. Although of slightly lower brightness, capped Si particles have superior biocompatability, an important property for biosensing applications.

  4. Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus

    NASA Astrophysics Data System (ADS)

    Hosseini, Farshad; Rasuli, Reza; Jafarian, Vahab

    2018-04-01

    We present the antibacterial and photo-catalytic activity of immobilized WO3 nanoparticles on graphene oxide sheets. WO3 nanoparticles were immobilized on graphene oxide using the arc discharge method in arc currents of 5, 20, 40 and 60 A. Tauc plots of the UV-visible spectra show that the band gap of the prepared samples decreases (to ~2.7 eV) with respect to the WO3 nanoparticles. Photo-catalytic activity was examined by the degradation of rhodamine B under ultra-violet irradiation and the results show that the photo-catalytic activity of WO3 nanoparticles is increased by immobilizing them on graphene oxide sheets. In addition, the photo-degradation yield of the samples prepared by the 5 A arc current is 84% in 120 min, which is more than that of the other samples. The antibacterial activity of the prepared samples was studied against Bacillus pumilus (B. pumilus) bacteria, showing high resistance to ultra-violet exposure. Our results show that the bare and immobilized WO3 nanoparticles become more active under UV irradiation and their antibacterial properties are comparable with Ag nanoparticles. Besides this, the results show that although the photo-catalytic activity of the post-annealed samples at 500 °C is less than the as-prepared samples, it is, however, more active against B. pumilus bacteria under UV irradiation.

  5. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  6. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    PubMed Central

    Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-01-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension. PMID:27876886

  7. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates.

    PubMed

    Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-23

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  8. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Phuong, Nguyenthi; Andisetiawan, Anugrah; van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  9. Effect of CTAB concentration on synthesis of nickel doped manganese oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Shobana, R.; Saravanakumar, B.; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    In this work the effect of concentration of cetyltrimethylammonium bromide (CTAB) in the synthesis of Nickel doped Manganese oxide (Ni-MnO2) nanoparticles have been carried out by adopting the sol-gel process. The synthesized products were characterized by XRD, Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Ni-MnO2 nanoparticles illustrate peak at 31.4° with lattice plane (-231). The IR spectra correspond to the peak at 592 and 846 cm-1 attributed to the characteristics peak for Ni-MnO2 nanoparticles. The SEM images for all three Ni-MnO2 nanoparticles for different concentration of CTAB allows us to assess the formation route of nano tentacles from 10 mM, 30 mM and 50 mM. The configured nano tentacles of Ni-MnO2 nanoparticles presumably leads to more significantly change its properties, particularly in its electrochemical properties show the ways to be suitable candidates for supercapacitor, battery, photo catalytic and fuel cell applications.

  10. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

    PubMed

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H

    2012-02-10

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.

  11. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  12. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE PAGES

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; ...

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm -2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  13. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  14. Synthesis and characterization of amorphous yttrium oxide layers by metal organic chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Martynova, I.; Tsymbarenko, D.; Kamenev, A.; Kuzmina, N.; Kaul, A.

    2014-02-01

    The Solution Deposition Planarization method was successfully used for smoothing Ni-alloy tapes with initial surface roughness of 26.7 nm (on 40×40 μm2 area) and 12.6 nm (on 5×5 μm2 area). New precursor solutions were prepared from yttrium acetate and diethylenetriamine or ethylenediamine in MeOH and i-PrOH-alcohols with different viscosities. Using those solutions yttria films with the residual roughness Sa=0.4 nm (on 5×5 μm2 area) and Sa=7.6 nm (on 40×40 μm2 area) were deposited on the Ni-alloy tapes.

  15. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  16. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni.

    PubMed

    Javed, Rabia; Usman, Muhammad; Yücesan, Buhara; Zia, Muhammad; Gürel, Ekrem

    2017-01-01

    This study aims to address the effects of different concentrations (0, 0.1, 1.0, 10, 100 or 1000 mg L -1 ) of engineered zinc oxide (ZnO) nanoparticles (34 nm in size) on growth parameters, steviol glycosides (rebaudioside A and stevioside) production and antioxidant activities in the tissue culture grown shoots of Stevia rebaudiana Bertoni. The highest percentage of shoot formation (89.6%) at 1 mg L -1 of ZnO nanoparticles concentration suggests a positive influence of ZnO nanoparticles on S. rebaudiana growth as compared to other treatments with or without ZnO nanoparticles. Additionally, HPLC results illustrate a significant enhancement of steviol glycosides (almost doubled as compared to the control) in micropropagated shoots grown under an oxidative stress of 1 mg L -1 of ZnO nanoparticles. This finding is further affirmed by an increased 2,2-diphenyl-1-picryl hydrazyl (DPPH) scavenging activity, total anti-oxidant capacity, total reducing power, total flavonoid content and total phenolic content, with an ascending oxidative pressure and generation of reactive oxygen species (ROS). However, the antioxidant activities, formation of secondary metabolites and the physiological parameters showed a sudden decline after crossing a threshold of 1 mg L -1 concentration of ZnO nanoparticles and falls to a minimum at 1000 mg L -1 , elucidating maximum phytotoxic effect of ZnO nanoparticles at this concentration. This is the first study evaluating both the favorable and adverse effects of ZnO nanoparticles employed to a highly valuable medicinal plant, S. rebaudiana. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.

    PubMed

    Mishra, Sushanta Kumar; Kumar, B S Hemanth; Khushu, Subash; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2016-09-01

    Synthesis of a contrast agent for biomedical imaging is of great interest where magnetic nanoparticles are concerned, because of the strong influence of particle size on transverse relaxivity. In the present study, biocompatible magnetic iron oxide nanoparticles were synthesized by co-precipitation of Fe 2+ and Fe 3+ salts, followed by surface adsorption with reduced dextran. The synthesized nanoparticles were spherical in shape, and 12 ± 2 nm in size as measured using transmission electron microscopy; this was corroborated with results from X-ray diffraction and dynamic light scattering studies. The nanoparticles exhibited superparamagnetic behavior, superior T 2 relaxation rate and high relaxivities (r 1  = 18.4 ± 0.3, r 2  = 90.5 ± 0.8 s -1 mM -1 , at 7 T). MR image analysis of animals before and after magnetic nanoparticle administration revealed that the signal intensity of tumor imaging, specific organ imaging and whole body imaging can be clearly distinguished, due to the strong relaxation properties of these nanoparticles. Very low concentrations (3.0 mg Fe/kg body weight) of iron oxides are sufficient for early detection of tumors, and also have a clear distinction in pre- and post-enhancement of contrast in organs and body imaging. Many investigators have demonstrated high relaxivities of magnetic nanoparticles at superparamagnetic iron oxide level above 50 nm, but this investigation presents a satisfactory, ultrasmall, superparamagnetic and high transverse relaxivity negative contrast agent for diagnosis in pre-clinical studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. [Catalytic degradation of PCB77 by microwave-induced nano-particle metal oxides in diatomite].

    PubMed

    Huang, Guan-yi; Zhao, Ling; Dong, Yuan-hua

    2009-08-15

    The degradation of PCB77 in diatomite by microwave-induced catalytic oxidation was studied in a sealed vial, including four effects such as microwave (MV) radiating time, addition of different nano-particle metal oxides, concentration and type of acids and dosage of MnO2. The results indicated that PCB77 could be removed significantly by microwave-induced catalytic oxidation. Compared to control reactor (without MV radiation), the removal rate of PCB77 increased by twice after 1 min. In addition, the removal rate of PCB77 under MV radiation was gradually increased with time of radiation and then reached equilibrium after 10 min. The removal rates are about 50% and 20% by addition of H2SO4 and ultrapure water respectively. No significant removal was observed by addition of NaOH and without aqueous media. Moreover, catalytic degradation of PCB77 by microwave-induced nano-particle MnO2 had best removal rate was up to 90% after 1 min, in contrast with addition of nano-particle Fe2O3, CuO and Al2O3. The removal rate raised from 37.0% to 98.5% rapidly with the concentration of H2SO4 ranged from 1 mol/L to 8 mol/L, and H2SO4 mainly played a role of acidification but not oxidation. The addition of 0.01, 0.03 and 0.05 g MnO2 showed the similar result.

  19. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    PubMed

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  20. Use of carbon paste electrodes for the voltammetric detection of silver leached from the oxidative dissolution of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mullaugh, Katherine M.; Pearce, Olivia M.

    2017-04-01

    The widespread use of silver nanoparticles (Ag NPs) in consumer goods has raised concerns about the release of silver in environmental waters. Of particular concern is the oxidative dissolution of Ag NPs to release Ag+ ions, which are highly toxic to many aquatic organisms. Here, we have investigated the application of differential pulse stripping voltammetry (DPSV) with carbon paste electrodes (CPEs) in monitoring the oxidation of Ag NPs. Using a commercially available, unmodified carbon paste and 60-s deposition times, a detection limit of 3 nM Ag+ could be achieved. We demonstrate its selectivity for free Ag+ ions over Ag nanoparticles, allowing for analysis of the oxidation of Ag NPs without the need for separation of ions and nanoparticles prior to analysis. We applied this approach to investigate the effect of pH in the oxidative dissolution of Ag NPs, demonstrating the usefulness of CPEs in studies of this type.

  1. Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles.

    PubMed

    Suematsu, Koichi; Watanabe, Kosuke; Tou, Akihiro; Sun, Yongjiao; Shimanoe, Kengo

    2018-02-06

    Selectivity is an important parameter of resistive-type gas sensors that use metal oxides. In this study, a highly selective toluene sensor is prepared using highly dispersed gold-nanoparticle-loaded zinc oxide nanoparticles (Au-ZnO NPs). Au-ZnO NPs are synthesized by coprecipitation and calcination at 400 °C with Au loadings of 0.15, 0.5, and 1.5 mol %. The Au NPs on ZnO are about 2-4 nm in size, and exist in a metallic state. Porous gas-sensing layers are fabricated by screen printing. The responses of the sensor to 200 ppm hydrogen, 200 ppm carbon monoxide, 100 ppm ethanol, 100 ppm acetaldehyde, 100 ppm acetone, and 100 ppm toluene are evaluated at 377 °C in a dry atmosphere. The sensor response of 0.15 mol % Au-ZnO NPs to toluene is about 92, whereas its sensor responses to other combustible gases are less than 7. Such selective toluene detection is probably caused by the utilization efficiency of the gas-sensing layer. Gas diffusivity into the sensing layer of Au-ZnO NPs is lowered by the catalytic oxidation of combustible gases during their diffusion through the layer. The present approach is an effective way to improve the selectivity of resistive-type gas sensors.

  2. Towards a zero-waste oxidative coupling of nonactivated aromatics by supported gold nanoparticles.

    PubMed

    Serna, Pedro; Corma, Avelino

    2014-08-01

    We show that gold nanoparticles are able to perform the direct oxidative coupling of nonactivated aromatics with O2 as the only co-reagent. In this reaction, the aromatic acts both as reactant and solvent. Biphenyl, for example, can be obtained from benzene with high selectivity and a turnover number (TON) of 230 per pass. Similarly, several substituted biaryls can be prepared. Pd performs only one TON and even when a second catalytic functionality is introduced, together with strong acidic conditions, TON is always lower than 100. Other catalysts require iodine for performing the reaction, leading to 2 kg of waste for 1 kg of biphenyl formed, whereas no waste is created by the oxidative coupling with gold nanoparticles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High-temperature corrosion of iron-aluminum and iron-aluminum-yttrium alloys

    NASA Astrophysics Data System (ADS)

    Insoo, Kim

    The high-temperature corrosion behavior of Fe3Al alloy has been investigated by conducting two studies: (1) corrosion of Fe 3Al and Fe3Al-Y alloys in oxidizing atmosphere and (2) corrosion of Fe3Al in mixed chlorine/oxygen environments. In the first study, oxidation of the two alloys, Fe-14.3 wt% Al and Fe-14.1 wt% Al-0.3 wt% Y, was carried out in the temperature range of 800 to 1100°C to investigate the general oxidation behavior of Fe3Al and the effect of yttrium on the oxidation of Fe3Al in terms of oxidation kinetics, oxide scale adhesion and microstructure. At lower temperatures (<1000°C), the oxidation rate of the two alloys was nearly identical, and the parabolic rate constant obtained as a function of temperature was Kp = 5128 exp[--39500 (cal/mol)/RT] mg2/cm4 h. At higher temperatures, however, yttrium-added Fe3Al alloy exhibited lower oxidation rate and much more improved oxide adhesion. The lower oxidation rate observed in Fe3Al-Y alloy seems to be due to the followings: (1) a decrease in aluminum diffusion through alumina scale and (2) modification of the scale growth mechanism from simultaneous countercurrent diffusion of aluminum and oxygen to predominant inward diffusion of oxygen, which generates less growth stress and thus prevents the formation of fast diffusion paths such as microcracks. The adhesion improvement of alumina scale formed on the Fe3Al-Y was attributed to the modification of alumina growth mechanism by the addition of Y to the Fe3Al alloy. The change of growth mechanism leads to the formation of pegs, decrease of the oxide growth stress, and decrease of voids formation, which enhances the adhesion of alumina scale to the Fe3Al alloy. The second study has focused on the corrosion of Fe3Al in the temperature range of 600--800°C in Cl2-Ar gas mixtures containing traces of oxygen as an impurity. Weight gain was observed during the corrosion of Fe3Al at 600°C in 0.25% Cl2-Ar, which is due to the formation of Fe2O3, while continuous

  4. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy

    PubMed Central

    Zhu, Lei; Zhou, Zhiyang; Mao, Hui; Yang, Lily

    2017-01-01

    Recent advances in the development of magnetic nanoparticles (MNPs) have shown promise in the development of new personalized therapeutic approaches for clinical management of cancer patients. The unique physicochemical properties of MNPs endow them with novel multifunctional capabilities for imaging, drug delivery and therapy, which are referred to as theranostics. To facilitate the translation of those theranostic MNPs into clinical applications, extensive efforts have been made on designing and improving biocompatibility, stability, safety, drug-loading ability, targeted delivery, imaging signal and thermal- or photodynamic response. In this review, we provide an overview of the physicochemical properties, toxicity and theranostic applications of MNPs with a focus on magnetic iron oxide nanoparticles. PMID:27876448

  5. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs.

    PubMed

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-06-03

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.

  6. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    PubMed Central

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-01-01

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level. PMID:27271611

  7. Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis

    NASA Astrophysics Data System (ADS)

    Madhavi, V.; Kondaiah, P.; Mohan Rao, G.

    2018-04-01

    Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.

  8. Study of the effects of adding Yttrium oxide particles in some physical, thermal, and mechanical properties of heat-curing acrylic resin

    NASA Astrophysics Data System (ADS)

    Khalil, Bassam I.; Gharkan, Mohammed R.; Ali, Ahmed H.

    2018-05-01

    Extensively use of hot-curing acrylic in prosthetic dentistry field, increase the needed to modifying its mechanical, thermal, and physical properties. In this work Yttrium oxide had added with different weight fractions, (5%, 10%, 15% and 20%), as reinforcement phase on purpose of developing these properties. Tensile strength, hardness, density, water adsorption, and thermal conductivity had been investigated for prepared composite specimens. The results show that the maximum tensile strength was at (10) % wt. of Y2O3 addition, (19) %more than that of plain acrylic, maximum hardness was at (15) % wt. of Y2O3 addition, (8.5) % more than that of plain acrylic, maximum density was at (20) % wt. of Y2O3 addition, (18.2) % more than that of plain acrylic, maximum decrease in water absorption was at (10) % wt. of Y2O3 addition, (29) % less than that of plain acrylic. Finally the maximum thermal conductivity was at (20) % wt. of Y2O3 addition, (16) % more than that of plain acrylic.

  9. Prediction of Surface and pH-Specific Binding of Peptides to Metal and Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Lin, Tzu-Jen; Emami, Fateme Sadat; Ramezani-Dakhel, Hadi; Naik, Rajesh; Knecht, Marc; Perry, Carole C.; Huang, Yu

    2015-03-01

    The mechanism of specific peptide adsorption onto metallic and oxidic nanostructures has been elucidated in atomic resolution using novel force fields and surface models in comparison to measurements. As an example, variations in peptide adsorption on Pd and Pt nanoparticles depending on shape, size, and location of peptides on specific bounding facets are explained. Accurate computational predictions of reaction rates in C-C coupling reactions using particle models derived from HE-XRD and PDF data illustrate the utility of computational methods for the rational design of new catalysts. On oxidic nanoparticles such as silica and apatites, it is revealed how changes in pH lead to similarity scores of attracted peptides lower than 20%, supported by appropriate model surfaces and data from adsorption isotherms. The results demonstrate how new computational methods can support the design of nanoparticle carriers for drug release and the understanding of calcification mechanisms in the human body.

  10. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.

    PubMed

    Venkatasubbu, G Devanand; Baskar, R; Anusuya, T; Seshan, C Arun; Chelliah, Ramachandran

    2016-12-01

    Food preservation is an important field of research. It extends the shelf life of major food products. Our current study is based on food preservation through TiO 2 and ZnO nanoparticles. TiO 2 and ZnO are biocompatible nanomaterial. The biocompatibility of the materials were established through toxicity studies on cell lines. Titanium dioxide and Zinc Oxide nanoparticle were synthesized by wet chemical process. They are characterized by X-Ray diffraction and TEM. The antibacterial activities of both the materials were analysed to ensure their effectiveness as food preservative against Salmonella typhi, Klebsiella pneumoniae and Shigella flexneri. The results indicates that TiO 2 and ZnO nanoparticle inhibits Salmonella, Klebsiella and Shigella. The mode of action is by the generation of ROS in cases of Salmonella, Klebsiella. Mode of action in Shigella is still unclear. It was also proved that TiO 2 and ZnO nanoparticle are biocompatible materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    PubMed Central

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-01-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment. PMID:26183266

  12. Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment

    NASA Astrophysics Data System (ADS)

    Aivazoglou, E.; Metaxa, E.; Hristoforou, E.

    2018-04-01

    The development of magnetite and maghemite particles in uniform nanometer size has triggered the interest of the research community due to their many interesting properties leading to a wide range of applications, such as catalysis, nanomedicine-nanobiology and other engineering applications. In this study, a simple, time-saving and low energy-consuming, microwave-assisted synthesis of iron oxide nanoparticles, is presented. The nanoparticles were prepared by microwave-assisted synthesis using polyethylene glycol (PEG) or PEG and β-cyclodextrin (β-CD)/water solutions of chloride salts of iron in the presence of ammonia solution. The prepared nano-powders were characterized using X-Ray Diffraction (XRD), Transition Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Vibrating Sample Magnetometer (VSM), X-Ray Photoelectron Spectroscopy (XPS) and Thermal analysis (TG/DSC). The produced nanoparticles are crystallized mostly in the magnetite and maghemite lattice exhibiting very similar shape and size, with indications of partial PEG coating. Heating time, microwave power and presence of PEG, are the key factors shaping the size properties of nanoparticles. The average size of particles ranges from 10.3 to 19.2 nm. The nanoparticles exhibit a faceted morphology, with zero contamination levels. The magnetic measurements indicate that the powders are soft magnetic materials with negligible coercivity and remanence, illustrating super-paramagnetic behavior.

  13. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.

    PubMed

    Dahle, Jessica T; Arai, Yuji

    2015-01-23

    Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  14. Ferroxidase-Mediated Iron Oxide Biomineralization: Novel Pathways to Multifunctional Nanoparticles.

    PubMed

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-02-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-11-01

    Combining ab initio modeling and 57Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal-oxygen-carbon bonding and not a metal-carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  16. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  17. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    PubMed

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electron microscopy study of gold nanoparticles deposited on transition metal oxides.

    PubMed

    Akita, Tomoki; Kohyama, Masanori; Haruta, Masatake

    2013-08-20

    Many researchers have investigated the catalytic performance of gold nanoparticles (GNPs) supported on metal oxides for various catalytic reactions of industrial importance. These studies have consistently shown that the catalytic activity and selectivity depend on the size of GNPs, the kind of metal oxide supports, and the gold/metal oxide interface structure. Although researchers have proposed several structural models for the catalytically active sites and have identified the specific electronic structures of GNPs induced by the quantum effect, recent experimental and theoretical studies indicate that the perimeter around GNPs in contact with the metal oxide supports acts as an active site in many reactions. Thus, it is of immense importance to investigate the detailed structures of the perimeters and the contact interfaces of gold/metal oxide systems by using electron microscopy at an atomic scale. This Account describes our investigation, at the atomic scale using electron microscopy, of GNPs deposited on metal oxides. In particular, high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are valuable tools to observe local atomic structures, as has been successfully demonstrated for various nanoparticles, surfaces, and material interfaces. TEM can be applied to real powder catalysts as received without making special specimens, in contrast to what is typically necessary to observe bulk materials. For precise structure analyses at an atomic scale, model catalysts prepared by using well-defined single-crystalline substrates are also adopted for TEM observations. Moreover, aberration-corrected TEM, which has high spatial resolution under 0.1 nm, is a promising tool to observe the interface structure between GNPs and metal oxide supports including oxygen atoms at the interfaces. The oxygen atoms in particular play an important role in the behavior of gold/metal oxide

  19. Controlled Synthesis and Utilization of Metal and Oxide Hybrid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Crane, Cameron

    This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that can be used for catalysis. This microemulsion sol-gel method was modified to synthesize an aqueous suspension of oxidation-resistant Cu-SiO2 core-shell nanoparticles that can be used for sensing and catalysis. A thermal decomposition approach was developed, wherein zero-valence metal precursor complexes in the presence of seed nanoparticles produced metal-metal oxide core-shell structures with well-controlled shell thickness. This method was demonstrated on AuCu 3-Fe3O4, AuCu3-NiO, and AuCu3 -MnO core-shell systems. Switching the core from AuCu3 alloy to pure Cu, this method could extend to Cu-Fe3O4 and Cu-MnO systems. Further etching the Cu core in these core-shell structures led to the formation of the hollow metal oxides which provides a versatile route to hollow nanostructures of metal oxides. This work develops the synthetic library of tools for the production of hybrid nanostructures with multiple functionalities.

  20. Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics†

    PubMed Central

    Babu, Suresh; Cho, Jung-Hyun; Dowding, Janet M.; Heckert, Eric; Komanski, Chris; Das, Soumen; Colon, Jimmie; Baker, Cheryl H.; Bass, Michael; Self, William T.; Seal, Sudipta

    2011-01-01

    Cytocompatible, co-doped cerium oxide nanoparticles exhibited strong upconversion properties that were found to kill lung cancer cells by inducing apoptosis thereby demonstrating the potential to be used as clinical contrast agents for imaging and as therapeutic agents for treatment of cancer. PMID:20683524