Sample records for yttrium selenides

  1. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  2. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  3. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  4. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  5. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  6. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  7. Formation of selenide, sulfide or mixed selenide-sulfide films on metal or metal coated substrates

    DOEpatents

    Eser, Erten; Fields, Shannon

    2012-05-01

    A process and composition for preventing cracking in composite structures comprising a metal coated substrate and a selenide, sulfide or mixed selenide sulfide film. Specifically, cracking is prevented in the coating of molybdenum coated substrates upon which a copper, indium-gallium diselenide (CIGS) film is deposited. Cracking is inhibited by adding a Se passivating amount of oxygen to the Mo and limiting the amount of Se deposited on the Mo coating.

  8. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  9. Oxidation Mechanism of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  10. Isomorphism and solid solutions among Ag- and Au-selenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Novosibirsk State University

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag{sub 2−x}Au{sub x}Se with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag{sub 2}Se – Ag{sub 1.94}Au{sub 0.06}Se, fischesserite Ag{sub 3}AuSe{sub 2} - Ag{sub 3.2}Au{sub 0.8}Se{sub 2} and gold selenide AuSe - Au{sub 0.94}Ag{sub 0.06}Se. Solid solutions and AgAuSe phases were added tomore » the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe. - Highlights: • Au-Ag selenides were synthesized. • Limited Ag-Au isomorphism in the selenides is affected by structural features. • Some new phases were introduced to the phase diagram Ag-Au-Se.« less

  11. Thermoelectric Study of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Yao, Mengliang; Liu, Weishu; Ren, Zhifeng; Opeil, Cyril

    2014-03-01

    Nanostructuring has been shown to be an effective approach in reducing lattice thermal conductivity and improving the figure of merit of thermoelectric materials. Copper selenide is a layered structure material, which has a low thermal conductivity and p-type Seebeck coefficient at low temperatures. We have evaluated several hot-pressed, nanostructured copper selenide samples with different dopants for their thermoelectric properties. The phenomenon of the charge-density wave observed in the nanocomposite, resistivity, Seebeck, thermal conductivity and carrier mobility will be discussed. Funding for this research was provided by the Solid State Solar - Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center sponsored by the DOE, Office of Basic Energy Science, Award No. DE-SC0001299/ DE-FG02-09ER46577.

  12. An interatomic pair potential for cadmium selenide

    NASA Astrophysics Data System (ADS)

    Rabani, Eran

    2002-01-01

    We have developed a set of interatomic pair potentials for cadmium selenide based on a form similar to the Born-Mayer model. We show that this simple form of the pair potential, which has been used to describe the properties of alkali halides in the sixfold-coordinate structure, provides a realistic description of the properties of cadmium selenide in all three crystal structures: wurtzite, zinc blende, and rocksalt. Using the new pair potential we have studied the pressure-induced phase transition from the fourfold-coordinate wurtzite structure to the sixfold-coordinate rocksalt structure. The pressure transformation and the equation of state are in good agreement with experimental observations. Using the dispersion term in our pair potential we have also calculated the Hamaker constant for cadmium selenide within the framework of the original microscopic approach due to Hamaker. The results indicate that for ionic materials many-body terms that are included in the Lifshitz theory are well captured by the simple pair potential.

  13. Ovonic type switching in tin selenide thin films

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.; Mclennan, W. D.

    1975-01-01

    Amorphous tin selenide thin films which possess Ovonic type switching properties are fabricated using vacuum deposition techniques. The devices are fabricated in a planar configuration and consist of amorphous tin selenide deposited over silver contacts. Results obtained indicate that Ovonic type memory switching does occur in these films with the energy density required for switching from a high impedance to a low impedance state being dependent on the spacing between the electrodes of the device. There is also a strong implication that the switching is a function of the magnitude of the applied voltage pulse.

  14. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    PubMed

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  15. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.

    PubMed

    Zhang, Chunli; Yin, Huanhuan; Han, Min; Dai, Zhihui; Pang, Huan; Zheng, Yulin; Lan, Ya-Qian; Bao, Jianchun; Zhu, Jianmin

    2014-04-22

    Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors.

  16. Isomorphism and solid solutions among Ag- and Au-selenides

    NASA Astrophysics Data System (ADS)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.

    2016-09-01

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of х=0.25 (0≤х≤2) to 1050 °С and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.

  17. Metal Selenides as Efficient Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2017-04-18

    Solar energy is the most abundant renewable energy available to the earth and can meet the energy needs of humankind, but efficient conversion of solar energy to electricity is an urgent issue of scientific research. As the third-generation photovoltaic technology, dye-sensitized solar cells (DSSCs) have gained great attention since the landmark efficiency of ∼7% reported by O'Regan and Grätzel. The most attractive features of DSSCs include low cost, simple manufacturing processes, medium-purity materials, and theoretically high power conversion efficiencies. As one of the key materials in DSSCs, the counter electrode (CE) plays a crucial role in completing the electric circuit by catalyzing the reduction of the oxidized state to the reduced state for a redox couple (e.g., I 3 - /I - ) in the electrolyte at the CE-electrolyte interface. To lower the cost caused by the typically used Pt CE, which restricts the large-scale application because of its low reserves and high price, great effort has been made to develop new CE materials alternative to Pt. A lot of Pt-free electrocatalysts, such as carbon materials, inorganic compounds, conductive polymers, and their composites with good electrocatalytic activity, have been applied as CEs in DSSCs in the past years. Metal selenides have been widely used as electrocatalysts for the oxygen reduction reaction and light-harvesting materials for solar cells. Our group first expanded their applications to the DSSC field by using in situ-grown Co 0.85 Se nanosheet and Ni 0.85 Se nanoparticle films as CEs. This finding has inspired extensive studies on developing new metal selenides in order to seek more efficient CE materials for low-cost DSSCs, and a lot of meaningful results have been achieved in the past years. In this Account, we summarize recent advances in binary and mutinary metal selenides applied as CEs in DSSCs. The synthetic methods for metal selenides with various morphologies and stoichiometric ratios and

  18. Fabrication, characterization and applications of iron selenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less

  19. Production of Zr-89 using sputtered yttrium coin targets 89Zr using sputtered yttrium coin targets.

    PubMed

    Queern, Stacy Lee; Aweda, Tolulope Aramide; Massicano, Adriana Vidal Fernandes; Clanton, Nicholas Ashby; El Sayed, Retta; Sader, Jayden Andrew; Zyuzin, Alexander; Lapi, Suzanne Elizabeth

    2017-07-01

    An increasing interest in zirconium-89 ( 89 Zr) can be attributed to the isotope's half-life which is compatible with antibody imaging using positron emission tomography (PET). The goal of this work was to develop an efficient means of production for 89 Zr that provides this isotope with high radionuclidic purity and specific activity. We investigated the irradiation of yttrium sputtered niobium coins and compared the yields and separation efficiency to solid yttrium coins. The sputtered coins were irradiated with an incident beam energy of 17.5MeV or 17.8MeV providing a degraded transmitted energy through an aluminum degrader of 12.5MeV or 12.8MeV, respectively, with various currents to determine optimal cyclotron conditions for 89 Zr production. Dissolution of the solid yttrium coin took 2h with 50mL of 2M HCl and dissolution of the sputtered coin took 15-30min with 4mL of 2M HCl. During the separation of 89 Zr from the solid yttrium coins, 77.9 ± 11.2% of the activity was eluted off in an average of 7.3mL of 1M oxalic acid whereas for the sputtered coins, 91 ± 6% was eluted off in an average of 1.2mL of 1M oxalic acid with 100% radionuclidic purity. The effective specific activity determined via DFO-SCN titration from the sputtered coins was 108±7mCi/μmol as compared to 20.3mCi/μmol for the solid yttrium coin production. ICP-MS analysis of the yttrium coin and the sputtered coins showed 99.99% yttrium removed with 178μg of yttrium in the final solution and 99.93-100% of yttrium removed with remaining range of 0-42μg of yttrium in the final solution, respectively. The specific activity calculated for the solid coin and 3 different sputtered coins using the concentration of Zr found via ICP-MS was 140±2mCi/μmol, 300±30mCi/μmol, 410±60mCi/μmol and 1719±5mCi/μmol, respectively. Labeling yields of the 89 Zr produced via sputtered targets for 89 Zr- DFO-trastuzumab were >98%. Overall, these results show the irradiation of yttrium sputtered niobium coins

  20. Solid-gas phase equilibria and thermodynamic properties of cadmium selenide.

    NASA Technical Reports Server (NTRS)

    Sigai, A. G.; Wiedemeier, H.

    1972-01-01

    Accurate vapor pressures are determined through direct weight loss measurements using the Knudsen effusion technique. The experimental data are evaluated by establishing the mode of vaporization and determining the heat capacity of cadmium selenide at elevated temperatures. Additional information is obtained through a second- and third-law evaluation of data, namely, the heat of formation and the absolute entropy of cadmium selenide. A preferential loss of selenium during the initial heating of CdSe is observed, which leads to a deviation in stoichiometry.

  1. Two-band induced superconductivity in single-layer graphene and topological insulator bismuth selenide

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.; Crump, W. P.; Tallon, J. L.

    2018-01-01

    Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.

  2. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Yuki; Suzuki, Kazuo T.

    2008-01-15

    All nutritional selenium sources are transformed into the assumed common intermediate selenide for the syntheses of selenoproteins for utilization and/or of selenosugar for excretion. Methylselenol [monomethylselenide, MMSe] is the assumed intermediate leading to other methylated metabolites, dimethylselenide (DMSe) and trimethylselenonium (TMSe) for excretion, and also to the intermediate selenide from methylselenocysteine and methylseleninic acid (MSA). Here, related methylation and demethylation reactions were studied in vitro by providing chemically reactive starting substrates ({sup 76}Se-selenide, {sup 77}Se-MMSe and {sup 82}Se-DMSe) which were prepared in situ by the reduction of the corresponding labeled proximate precursors ({sup 76}Se-selenite, {sup 77}Se-MSA and {sup 82}Se-dimethylselenoxide (DMSeO),more » respectively) with glutathione, the three substrates being incubated simultaneously in rat organ supernatants and homogenates. The resulting chemically labile reaction products were detected simultaneously by speciation analysis with HPLC-ICP-MS after converting the products and un-reacted substrates to the corresponding oxidized derivatives (selenite, MSA and DMSeO). The time-related changes in selenium isotope profiles showed that demethylation of MMSe to selenide was efficient but that of DMSe to MMSe was negligible, whereas methylation of selenide to MMSe, and MMSe to DMSe were efficient, and that of DMSe to TMSe occurred less efficiently. The present methylation and demethylation reactions on equilibrium between selenide, MMSe and DMSe without producing selenosugar and selenoproteins indicated that DMSe rather than TMSe is produced as the end product, suggesting that DMSe is to be excreted more abundantly than TMSe. Organ-dependent differences in the methylation and demethylation reactions were characterized for the liver, kidney and lung.« less

  3. Growth of zinc selenide crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto /n11/ seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  4. A facile way to control phase of tin selenide flakes by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Pang, Fei

    2018-06-01

    Although two-dimensional (2D) tin selenides are attracting intense attentions, studies on its phase transition are still relatively few. Here we report a facile way to control the phase growth of tin selenide flakes on mica and SiO2/Si by only adjusting nominal Sn:Se ratio, which refers to the amount of loaded SnO2 and Se precursors. High normal Sn:Se ratio induced SnSe flakes, conversely SnSe2 flakes formed. It could be used as a practical guide to selectively synthesize pure phase of single crystalline 2D layered chalcogenide materials similar to tin selenides.

  5. Cuprous selenide and sulfide form improved photovoltaic barriers

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Photovoltaic barriers formed by depositing a layer of polycrystalline cuprous sulfide or cuprous selenide on gallium arsenide are chemically and electrically stable. The stability of these barrier materials is significantly greater than that of cuprous iodide.

  6. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  7. Investigation of Cadmium Selenide Photoelectrochemical Cells.

    DTIC Science & Technology

    1980-01-01

    80-4 _INVESTIGATION OF C ADMIUM ,ELENIDE .PHOTOELECTROCHEMICAL CELLS by R.A. Sawchuk and D.R. Snelling Energy Systems Section AccsseionPar Energy ...cadmium selenide photo- anodes, a polysulphide redox’electrolyte and an in situ energy storage com- partment were evaluated at DREO. The...electron-hole recombination.- centers, and shorting to the nickel substrate. The concept of in situ energy storage was not successfully demonstrated. It is

  8. Phase-Engineered Type-II Multimetal-Selenide Heterostructures toward Low-Power Consumption, Flexible, Transparent, and Wide-Spectrum Photoresponse Photodetectors.

    PubMed

    Chen, Yu-Ze; Wang, Sheng-Wen; Su, Teng-Yu; Lee, Shao-Hsin; Chen, Chia-Wei; Yang, Chen-Hua; Wang, Kuangye; Kuo, Hao-Chung; Chueh, Yu-Lun

    2018-05-01

    Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs. The multimetal-selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W -1 and an on/off current ratio of up to 10 2 . Interestingly, all-transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Acute treatment with bis selenide, an organic compound containing the trace element selenium, prevents memory deficits induced by reserpine in rats.

    PubMed

    Bortolatto, Cristiani Folharini; Guerra Souza, Ana Cristina; Wilhelm, Ethel Antunes; Nogueira, Cristina Wayne

    2013-01-01

    Taking into account the promising pharmacological actions of (Z)-2,3-bis(4-chlorophenylselanyl) prop-2-en-1-ol) (bis selenide), an organic compound containing the trace element selenium, and the constant search for drugs that improve the cognitive performance, the objective of the present study was to investigate whether bis selenide treatment ameliorates memory deficits induced by reserpine in rats. For this aim, male adult rats received a single subcutaneous injection of reserpine (1 mg/kg), a biogenic amine-depleting agent used to induce memory deficit. After 24 h, bis selenide at doses of 25 and 50 mg/kg was administered to rats by intragastric route, and 1 h later, the animals were submitted to behavior tasks. The effects of acute administration of bis selenide on memory were evaluated by social recognition, step-down passive avoidance, and object recognition paradigms. Exploratory and locomotor activities of rats were determined using the open-field test. Analysis of data revealed that the social memory disruption caused by reserpine was reversed by bis selenide at both doses. In addition, bis selenide, at the highest dose, prevented the memory deficit resulting from reserpine administration to rats in step-down passive avoidance and object recognition tasks. No significant alterations in locomotor and exploratory behaviors were found in animals treated with reserpine and/or bis selenide. Results obtained from distinct memory behavioral paradigms revealed that an acute treatment with bis selenide attenuated memory deficits induced by reserpine in rats.

  10. Morphology-Tuned Synthesis of Nickel Cobalt Selenides as Highly Efficient Pt-Free Counter Electrode Catalysts for Dye-Sensitized Solar Cells.

    PubMed

    Qian, Xing; Li, Hongmei; Shao, Li; Jiang, Xiancai; Hou, Linxi

    2016-11-02

    In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni 0.33 Co 0.67 Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.

  11. Biokinetics of yttrium and comparison with its geochemical twin holmium

    DOE PAGES

    Leggett, Rich

    2017-06-01

    The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less

  12. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  13. Structural phase transitions in yttrium under ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2012-09-01

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  14. Structural phase transitions in yttrium under ultrahigh pressures.

    PubMed

    Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2012-09-12

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  15. Polarization Effects in the Luminescence of Cadmium Selenide Electrodes.

    DTIC Science & Technology

    1983-09-29

    UWIS/DC/TR-83/3 Polarization Effects in the Luminescence of Cadmium Selenide Electrodes by Holger H. Streckert, Hal Van Ryswyk, Richard N. Biagioni ...Streckert, Hal Van Ryswyk, N00014-78-C-0633 Richard N. Biagioni and Arthur B. Ellis 9PEFRIGOGNZTNNAEADADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKS

  16. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide

    DOE PAGES

    Lee, Yeseul; Lo, Shih -Han; Chen, Changqiang; ...

    2014-05-02

    Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800 K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23–27μW cm –1 K –2 at temperatures above 400 K. The addition of small amounts (~0.25 mol%) of antimony generates extensive nanoscale precipitates, whereasmore » comparable amounts of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. As a result, the corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity.« less

  17. Double-Diffusive Convection During Growth of Halides and Selenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of

  18. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Bedinger, G.; Bleiwas, D.

    2012-01-01

    In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.

  19. Bismuth selenides from St. Andreasberg, Germany: an oxidised five-element style of mineralisation and its relation to post-Variscan vein-type deposits of central Europe

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Ließmann, Wilfried; Jian, Wei; Lehmann, Bernd

    2017-10-01

    Carbonate veinlets at Roter Bär, a former underground mine in the polymetallic St. Andreasberg vein district of the Harz Mountains, Germany, host selenide minerals that are characterised as Bi-Ag-bearing clausthalite (PbSe), tiemannite (HgSe), guanajuatite (Bi2Se3) and a number of selenides of Bi, Zn, Cu, Ag and Pd. An unnamed Bi-Pb-Ag selenide species with some Hg and Cu, ideally Bi4Pb3Ag2Se10, is reported here. Specular hematite is disseminated within the clausthalite, at the marginal zones of which other selenide minerals are located. The occurrence of bohdanowiczite (AgBiSe2) and umangite (Cu3Se2) constrains the formation temperature to ≤120 °C, and the selenide-hematite assemblage (plus barite in the carbonate gangue) identifies highly oxidised conditions. Selenide assemblages of Pb, Bi, Ag, with and without Co and Ni, occur in many parts of the Variscan basement of central Europe (Harz, Erzgebirge, Schwarzwald and Bohemian Massif) and represent a high-oxidation variety of five-element (Ag-As-Bi-Co-Ni) veins.

  20. Synthesis, structure, and thermal properties of soluble hydrazinium germanium(IV) and tin(IV) selenide salts.

    PubMed

    Mitzi, David B

    2005-05-16

    The crystal structures of two hydrazinium-based germanium(IV) and tin(IV) selenide salts are determined. (N(2)H(5))(4)Ge(2)Se(6) (1) [I4(1)cd, a = 12.708(1) Angstroms, c = 21.955(2) Angstroms, Z = 8] and (N(2)H(4))(3)(N(2)H(5))(4)Sn(2)Se(6) (2) [P, a = 6.6475(6) Angstroms, b = 9.5474(9) Angstroms, c = 9.8830(10) Angstroms, alpha = 94.110(2) degrees, beta = 99.429(2) degrees, gamma = 104.141(2) degrees, Z = 1] each consist of anionic dimers of edge-sharing metal selenide tetrahedra, M(2)Se(6)(4-) (M = Ge or Sn), separated by hydrazinium cations and, for 2, additional neutral hydrazine molecules. Substantial hydrogen bonding exists among the hydrazine/hydrazinium molecules as well as between the hydrazinium cations and the selenide anions. Whereas the previously reported tin(IV) sulfide system, (N(2)H(5))(4)Sn(2)S(6), decomposes cleanly to microcrystalline SnS(2) when heated to 200 degrees C in an inert atmosphere, higher temperatures (>300 degrees C) are required to dissociate selenium from 1 and 2 for the analogous preparations of single-phase metal selenides. The metal chalcogenide salts are highly soluble in hydrazine, as well as in a variety of amines and DMSO, highlighting the potential usefulness of these compounds as precursors for the solution deposition of the corresponding metal chalcogenide films.

  1. Co-electrospun lead selenide/titania-core/sheath nanowires for photovoltaic applications.

    DOT National Transportation Integrated Search

    2012-12-01

    This study presents a novel, low-cost, all-inorganic lead selenide-titania (PbSe/TiO2) nanowire : heterostructure material synthesis for photovoltaic applications. PbSe nanorods (NRs) have been coelectrospun : within a TiO2 nanotube with high connect...

  2. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying

    2016-05-01

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  3. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  4. Basic electronic properties of iron selenide under variation of structural parameters

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2017-09-01

    Since the discovery of high-temperature superconductivity in the thin-film FeSe /SrTiO3 system, iron selenide and its derivates have been intensively scrutinized. Using ab initio density functional theory calculations we review the electronic structures that could be realized in iron selenide if the structural parameters could be tuned at liberty. We calculate the momentum dependence of the susceptibility and investigate the symmetry of electron pairing within the random phase approximation. Both the susceptibility and the symmetry of electron pairing depend on the structural parameters in a nontrivial way. These results are consistent with the known experimental behavior of binary iron chalcogenides and, at the same time, reveal two promising ways of tuning superconducting transition temperatures in these materials: on one hand by expanding the iron lattice of FeSe at constant iron-selenium distance and, on the other hand, by increasing the iron-selenium distance with unchanged iron lattice.

  5. Solid Solution, Mass Transport, and Crystal Growth Studies of Cadmium Iron Selenide.

    NASA Astrophysics Data System (ADS)

    Huang, Xuejun

    Cadmium iron selenide, a semimagnetic semiconductor, has been investigated. Solid solubilities of iron in CdSe were determined at temperatures between 650^ circC and 1100^circC, using the X-ray diffraction Debye-Scherrer powder technique. The solubility limits of Fe in CdSe increase with the temperatures to reach a maximum of about 19.5 mole % FeSe_ {1.24} at 925^circ C, and then decrease with further increasing temperature. Solidification phenomena of the Cd-Fe-Se solid solutions were observed employing optical microscopy, which reveals a typical divorced, eutectic type, nonequilibrium solidification. The combination of the X-ray diffraction and the microscopic investigations yielded a pseudo-binary, eutectic type phase diagram of the Cd-Fe-Se system. Partial pressures of the major vapor species in the Cd-Fe-Se physical and the Cd-Fe-Se-Iodine chemical vapor transport systems were calculated. The partial pressure of gaseous iron species of the PVT system may be neglected compared to those of Cd and Se_2^ecies. This suggests that cadmium iron selenide crystals cannot be grown by the PVT method. For the PVT experiments, using the as-synthesized (CdSe)_ {0.90}(FeSe_{1.24})_{0.10 } source materials, crystals with compositions of 6-8 mole % FeSe_{1.24} were grown at a source temperature of 1000^ circC and a DeltaT of 12^circC. These result are contradictory to the thermodynamic predictions, and were further investigated employing specially purified source materials. Iron contents in the crystals grown in these experiments are close to zero. The transport of iron in the initial mass transport experiments may be due to the chemical impurities (most likely the metal chlorides) in the as-synthesized source materials. Mass transport experiments of the Cd-Fe-Se-Iodine CVT system were performed as a function of source temperatures, the degrees of undercooling (DeltaT), and initial iodine pressures. Promising parameters for the growth of cadmium iron selenide single crystals

  6. Characterization of aluminum selenide bi-layer thin film

    NASA Astrophysics Data System (ADS)

    Boolchandani, Sarita; Soni, Gyanesh; Srivastava, Subodh; Vijay, Y. K.

    2018-05-01

    The Aluminum Selenide (AlSe) bi-layer thin films were grown on glass substrate using thermal evaporation method under high vacuum condition. The morphological characterization was done using SEM. Electrical measurement with temperature variation shows that thin films exhibit the semiconductor nature. The optical properties of prepared thin films have also been characterized by UV-VIS spectroscopy measurements. The band gap of composite thin films has been calculated by Tauc's relation at different temperature ranging 35°C-100°C.

  7. Formation of Yttrium Oxysulfide Phosphor at Room Temperature

    NASA Astrophysics Data System (ADS)

    Shoji, Masahiko; Sakurai, Kenji

    2005-12-01

    Europium-doped yttrium oxysulfide (Y2O2S:Eu) phosphor was successfully synthesized at room temperature from yttrium oxide, europium oxide, and sulfur. The method employs high-energy ball milling to enable a substitution reaction between oxygen and sulfur, unlike conventional methods, such as heating in a sulfurizing atmosphere. It was found that the material is fluorescent through X-ray irradiation, and the luminescence spectra exhibit four peaks in the wavelength region from 500 to 800 nm.

  8. The Advent of Indium Selenide: Synthesis, Electronic Properties, Ambient Stability and Applications

    PubMed Central

    Boukhvalov, Danil W.; Gürbulak, Bekir; Duman, Songül; Wang, Lin; Caputi, Lorenzo S.; Chiarello, Gennaro; Cupolillo, Anna

    2017-01-01

    Among the various two-dimensional semiconductors, indium selenide has recently triggered the interest of scientific community, due to its band gap matching the visible region of the electromagnetic spectrum, with subsequent potential applications in optoelectronics and especially in photodetection. In this feature article, we discuss the main issues in the synthesis, the ambient stability and the application capabilities of this novel class of two-dimensional semiconductors, by evidencing open challenges and pitfalls. In particular, we evidence how the growth of single crystals with reduced amount of Se vacancies is crucial in the road map for the exploitation of indium selenide in technology through ambient-stable nanodevices with outstanding values of both mobility of charge carriers and ON/OFF ratio. The surface chemical reactivity of the InSe surface, as well as applications in the fields of broadband photodetection, flexible electronics and solar energy conversion are also discussed. PMID:29113090

  9. Sustainable p-type copper selenide solar material with ultra-large absorption coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Erica M.; Williams, Logan; Olvera, Alan

    We report the synthesis of CTSe, a p-type titanium copper selenide semiconductor. Its band gap (1.15 eV) and its ultra-large absorption coefficient (10 5 cm −1 ) in the entire visible range make it a promising Earth-abundant solar absorber material.

  10. Sustainable p-type copper selenide solar material with ultra-large absorption coefficient

    DOE PAGES

    Chen, Erica M.; Williams, Logan; Olvera, Alan; ...

    2018-01-01

    We report the synthesis of CTSe, a p-type titanium copper selenide semiconductor. Its band gap (1.15 eV) and its ultra-large absorption coefficient (10 5 cm −1 ) in the entire visible range make it a promising Earth-abundant solar absorber material.

  11. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOEpatents

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  12. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOEpatents

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  13. Production and characterization of europium doped sol-gel yttrium oxide

    NASA Astrophysics Data System (ADS)

    Krebs, J. K.; Hobson, Christopher; Silversmith, Ann

    2004-03-01

    Sol-gel produced materials have recently gained attention for their use in producing nanoscale dielectric materials for confinement studies. Lanthanide impurities in the dielectric enable experimenters to optically probe the structure and dynamic properties of the nanoparticle hosts. We report on an alkoxide sol-gel production method used to produce trivalent europium doped yttrium oxide. Our process follows the standard hydrolysis of an alkoxide precursor with water containing the lanthanide ions. The sol is then aged and calcined at 800 ^oC to produce the powder samples. X-ray diffraction confirms the structure of the powder is that of Y_2O_3. The emission and excitation of the europium impurities is consistent with that of europium doped single crystal yttrium oxide, where it is known that the europium ions substitute for yttrium in the lattice. We therefore conclude that the sol-gel process enables the incorporation of europium ions into the yttrium oxide structure at temperatures far below the melting temperature. The results of preliminary dynamics measurements will also be discussed.

  14. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    PubMed

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  15. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  16. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; ...

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep) 4]) compounds were developed as precursors to alkali yttrium oxide (AYO 2) nanomaterials. The reaction of yttrium amide ([Y(NR 2) 3] where R=Si(CH 3) 3) with four equivalents of H-ONep followed by addition of [A(NR 2)] (A=Li, Na, K) or A o (A o=Rb, Cs) led to the formation of a complex series of A nY(ONep) 3+n species, crystallographically identified as [Y 2Li 3(μ 3-ONep)(μ 3-HONep)(μ-ONep) 5(ONep) 3(HONep) 2] (1), [YNa 2(μ 3-ONep) 4(ONep)] 2 (2), {[Y 2K 3(μ 3-ONep) 3(μ-ONep) 4(ONep) 2(ηξ-tol) 2][Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep)more » 4]•η x-tol]} (3), [Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep) 4] (3a), [Y 2Rb 3(μ 4-ONep) 3(μ-ONep) 6] (4), and [Y 2Cs 4(μ 6-O)(μ 3-ONep) 6(μ 3-HONep) 2(ONep) 2(η x-tol) 4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing were found by powder X-ray diffraction experiments to be Y 2O 3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  17. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    PubMed

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (<1 mm thick) to one surface and fired under manufacturer's recommended protocol. Scanning electron microscopy (SEM) with integrated electron dispersive X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  18. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  19. Orbital-selective pairing and superconductivity in iron selenides

    NASA Astrophysics Data System (ADS)

    Nica, Emilian M.; Yu, Rong; Si, Qimiao

    2017-12-01

    An important challenge in condensed matter physics is understanding iron-based superconductors. Among these systems, the iron selenides hold the record for highest superconducting transition temperature and pose especially striking puzzles regarding the nature of superconductivity. The pairing state of the alkaline iron selenides appears to be of d-wave type based on the observation of a resonance mode in neutron scattering, while it seems to be of s-wave type from the nodeless gaps observed everywhere on the Fermi surface. Here we propose an orbital-selective pairing state, dubbed sτ3, as a natural explanation of these disparate properties. The pairing function, containing a matrix τ3 in the basis of 3d-electron orbitals, does not commute with the kinetic part of the Hamiltonian. This dictates the existence of both intraband and interband pairing terms in the band basis. A spin resonance arises from a d-wave-type sign change in the intraband pairing component, whereas the quasiparticle excitation is fully gapped on the FS due to an s-wave-like form factor associated with the addition in quadrature of the intraband and interband pairing terms. We demonstrate that this pairing state is energetically favored when the electron correlation effects are orbitally selective. More generally, our results illustrate how the multiband nature of correlated electrons affords unusual types of superconducting states, thereby shedding new light not only on the iron-based materials but also on a broad range of other unconventional superconductors such as heavy fermion and organic systems.

  20. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Ferella, Francesco

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equalmore » to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.« less

  1. TOPO-capped silver selenide nanoparticles and their incorporation into polymer nanofibers using electrospinning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, D.S.; Moloto, M.J., E-mail: makwenam@vut.ac.za; Moloto, N.

    Highlights: • Ag{sub 2}Se nanoparticles produced spherical particles with sizes 12 nm (180 °C) and 27 nm (200 °C). • Higher temperature produced increased particle size (∼75 nm) and changed in shape. • Ag{sub 2}Se nanoparticles (0.2–0.6%) added into PVP (35–45%) to yield reduced fiber beading. • Polymer nanofibers electrospun at 11–20 kV produced fiber diameters of 425–461 nm. • Optical properties in the fibers were observed due to the Ag{sub 2}Se nanoparticles loaded. - Abstract: Electrospinning is the most common technique for fabricating polymer fibers as well as nanoparticles embedded polymer fibers. Silver selenide nanoparticles were synthesized using tri-n-octylphosphinemore » (TOP) as solvent and tri-n-octylphosphine oxide (TOPO) as capping environment. Silver selenide was prepared by reacting silver nitrate and selenium with tri-n-octylphosphine (TOP) to form TOP–Ag and TOP–Se solutions. Both absorption and emission spectra signify the formation of nanoparticles as well as the TEM which revealed spherical particles with an average particle size of 22 nm. The polymer, PVP used was prepared at concentrations ranging from (35 to 45 wt%) and the TOPO-capped silver selenide nanoparticles (0.2 and 0.6 wt%) were incorporated into them and electrospun by varying the voltage from 11 to 20 kV. The SEM images of the Ag{sub 2}Se/PVP composite fibers revealed the fibers of diameters with average values of 425 and 461 nm. The X-ray diffraction results show peaks which were identified due to α-Ag{sub 2}Se body centered cubic compound. The sharp peak observed for all the samples at 2θ = 44.5 suggest the presence of Ag in the face centered cubic which can be attributed to higher concentration of silver nitrate used with molar ratio of selenium to silver and the abundance of silver in the silver selenide crystal. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible spectroscopy were used to

  2. Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

    PubMed

    Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent

    2016-03-21

    The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

  3. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary tomore » purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.« less

  4. Boron selenide semiconductor detectors for thermal neutron counting

    NASA Astrophysics Data System (ADS)

    Kargar, Alireza; Tower, Joshua; Cirignano, Leonard; Shah, Kanai

    2013-09-01

    Thermal neutron detectors in planar configuration were fabricated from B2Se3 (Boron Selenide) crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. In this study, the resistivity of crystals is reported and the collected pulse height spectra are presented for devices irradiated with the 241AmBe neutron source. Long-term stability of the B2Se3 devices for neutron detection under continuous bias and without being under continuous bias was investigated and the results are reported. The B2Se3 devices showed response to thermal neutrons of the 241AmBe source.

  5. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Holmium: yttrium aluminum garnet laser-assisted endoscopic sinus surgery: laboratory experience.

    PubMed

    Shapshay, S M; Rebeiz, E E; Bohigian, R K; Hybels, R L; Aretz, H T; Pankratov, M M

    1991-02-01

    Endoscopic sinus surgery has gained wide acceptance since its introduction into the United States. Complex sinus anatomy and troublesome bleeding have been associated with complications, which vary in severity from synechia to blindness and leakage of cerebrospinal fluid. Endoscopic sinus surgery using a holmium: yttrium aluminum garnet pulsed solid-state laser oscillating at 2.1 microns with fiberoptic delivery was performed in the laboratory, and the results were compared with those of conventional endoscopic sinus surgery. Three beagle dogs, six human cadaver heads, and one calf head were used in the in vivo and in vitro studies to evaluate the bone ablation, tissue coagulation, and hemostatic properties of the holmium: yttrium aluminum garnet laser. Modified endoscopic telescopes for sinus surgery, a newly developed handpiece for fiberoptic delivery, and other surgical instruments were used. The results indicate that the holmium: yttrium aluminum garnet laser and new delivery instrumentation provide good hemostasis and controlled soft-tissue ablation and bone removal. The access to all sinuses in the human cadaver model was very good. The canine in vivo study showed delayed but complete healing on the laser-treated side. Clinical evaluation of the holmium: yttrium aluminum garnet laser is warranted to increase the precision and safety of endoscopic sinus surgery.

  7. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    NASA Astrophysics Data System (ADS)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.

    2017-03-01

    The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  8. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  9. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  10. Depression-like behavior and mechanical allodynia are reduced by bis selenide treatment in mice with chronic constriction injury: a comparison with fluoxetine, amitriptyline, and bupropion.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Nogueira, Cristina W

    2010-12-01

    Neuropathic pain is associated with significant co-morbidities, including depression, which impact considerably on the overall patient experience. Pain co-morbidity symptoms are rarely assessed in animal models of neuropathic pain. Neuropathic pain is characterized by hyperexcitability within nociceptive pathways and remains difficult to treat with standard analgesics. The present study determined the effect of bis selenide and conventional antidepressants (fluoxetine, amitriptyline, and bupropion) on neuropathic pain using mechanical allodynic and on depressive-like behavior. Male mice were subjected to chronic constriction injury (CCI) or sham surgery and were assessed on day 14 after operation. Mice received oral treatment with bis selenide (1-5 mg/kg), fluoxetine, amitriptyline, or bupropion (10-30 mg/kg). The response frequency to mechanical allodynia in mice was measured with von Frey hairs. Mice were evaluated in the forced swimming test (FST) test for depression-like behavior. The CCI procedure produced mechanical allodynia and increased depressive-like behavior in the FST. All of the drugs produced antiallodynic effects in CCI mice and produced antidepressant effects in control mice without altering locomotor activity. In CCI animals, however, only the amitriptyline and bis selenide treatments significantly reduced immobility in the FST. These data demonstrate an important dissociation between the antiallodynic and antidepressant effects in mice when tested in a model of neuropathic pain. Depressive behavior in CCI mice was reversed by bis selenide and amitriptyline but not by the conventional antidepressants fluoxetine and buproprion. Bis selenide was more potent than the other drugs tested for antidepressant-like and antiallodynic effects in mice.

  11. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    PubMed

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  12. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123.

    PubMed

    Mellado-Vázquez, Rebeca; García-Hernández, Margarita; López-Marure, Arturo; López-Camacho, Perla Yolanda; de Jesús Morales-Ramírez, Ángel; Beltrán-Conde, Hiram Isaac

    2014-09-19

    Yttrium oxide (Y₂O₃) nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1). Fourier transform infrared spectroscopy (FTIR) results revealed a characteristic absorption band of Y-O vibrations typical of Y₂O₃ matrix. The structural phase was analyzed by X-ray diffraction (XRD), showing the characteristic cubic phase in all systems. The diffraction peak that presented the major intensity corresponded to the sample prepared from yttrium chloride incorporating P-123 in a molar ratio of P-123:Y = 2:1 at 900 °C. Crystallites sizes were determined by Scherrer equation as between 21 nm and 32 nm. Antioxidant properties were estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assays; the results are discussed.

  13. Bis(dicyclohexylselenophosphinyl)selenide, [Cy2P(Se)]2Se: Synthesis, molecular structure and application for self-assembly of a tetrahedral Cu(I) cluster

    NASA Astrophysics Data System (ADS)

    Artem'ev, Alexander V.; Doronina, Evgeniya P.; Bagryanskaya, Irina Yu; Klyba, Lyudmila V.

    2018-05-01

    The molecular structure of the selenides of [R2P(Se)]2Se type has been systematically studied on example of bis(dicyclohexylselenophosphinyl)selenide, [Cy2P(Se)]2Se. This selenide has been synthesized in 65% yield by oxidation of Cy2PH with elemental selenium in 1:2 M ratio. Its structure has been investigated by X-ray diffractometry (XRD), NMR, FT-IR and MALDI-TOF/MS techniques. In the solid, the Se1sbnd Psbnd Se2sbnd Psbnd Se3 chain of (Cy2P = Se)2Se molecule adopts a syn-anti conformation with the Se1sbnd Psbnd Se2sbnd P and Psbnd Se2sbnd Psbnd Se3 torsion angles of -179.64 (3)° and 4.69 (4)°. The vibrational band assignments, performing at B3LYP/6-311++G (d,p) theory level, are in a good agreement with the experimental FT-IR frequencies. The synthetic utility of the prepared selenide has been exemplified by its reaction with CuCl2 resulted in the formation of [Cu4(Se2PCy2)4] cluster in 53% yield. The structure of latter is formed by a Cu4 tetrahedron, wherein each triangular face is bridged by a [Se2PCy2] ligand in a trimetallic triconnective (μ2, μ1) pattern.

  14. The Influence of Yttrium on High Temperature Oxidation of Valve Steels

    NASA Astrophysics Data System (ADS)

    Grzesik, Z.; Migdalska, M.; Mrowec, S.

    2015-04-01

    The influence of small amounts of yttrium, electrochemically deposited on the surface of four steels utilized in the production of valves in car engines, on the protective properties of the oxide scale and its adherence to the surface of the oxidized materials has been studied under isothermal and thermal cycle conditions. Oxidation measurements have been carried out at 1173 K. It has been found that yttrium addition improves considerably the scale adherence to the substrate surface, increasing thereby corrosion resistance of the studied materials.

  15. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Kopacek, Bernd

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized themore » main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.« less

  16. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123

    PubMed Central

    Mellado-Vázquez, Rebeca; García-Hernández, Margarita; López-Marure, Arturo; López-Camacho, Perla Yolanda; Morales-Ramírez, Ángel de Jesús; Beltrán-Conde, Hiram Isaac

    2014-01-01

    Yttrium oxide (Y2O3) nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1). Fourier transform infrared spectroscopy (FTIR) results revealed a characteristic absorption band of Y–O vibrations typical of Y2O3 matrix. The structural phase was analyzed by X-ray diffraction (XRD), showing the characteristic cubic phase in all systems. The diffraction peak that presented the major intensity corresponded to the sample prepared from yttrium chloride incorporating P-123 in a molar ratio of P-123:Y = 2:1 at 900 °C. Crystallites sizes were determined by Scherrer equation as between 21 nm and 32 nm. Antioxidant properties were estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assays; the results are discussed. PMID:28788211

  17. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    PubMed Central

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-01-01

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential. PMID:28788002

  18. OXIDATION-RESISTANT COATING ON ARTICLES OF YTTRIUM METAL

    DOEpatents

    Wilder, D.R.; Wirkus, C.D.

    1963-11-01

    A process for protecting yttrium metal from oxidation by applying thereto and firing thereon a liquid suspension of a fritted ground silicate or phosphate glass plus from 5 to 35% by weight of CeO/sub 2/ is presented. (AEC)

  19. Synthesis and characterization of nanostructured bismuth selenide thin films.

    PubMed

    Sun, Zhengliang; Liufu, Shengcong; Chen, Lidong

    2010-12-07

    Nanostructured bismuth selenide thin films have been successfully fabricated on a silicon substrate at low temperature by rational design of the precursor solution. Bi(2)Se(3) thin films were constructed of coalesced lamella in the thickness of 50-80 nm. The nucleation and growth process of Bi(2)Se(3) thin films, as well as the influence of solution chemistry on the film structure were investigated in detail. As one of the most promising thermoelectric materials, the thermoelectric properties of the prepared Bi(2)Se(3) thin films were also investigated. The power factor increased with increasing carrier mobility, coming from the enlarged crystallites and enhanced coalesced structure, and reached 1 μW cm(-1) K(-1).

  20. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    PubMed

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximatelymore » of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.« less

  2. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitskii, O.A., E-mail: balitskii@electronics.wups.lviv.ua; Demchenko, P.Yu.; Mijowska, E.

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuningmore » their spectral characteristics to higher energy solar photons.« less

  3. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  4. Proton trapping in yttrium-doped barium zirconate.

    PubMed

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C; Grey, Clare P; Haile, Sossina M

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol(-1), as well as the general activation energy, 16 kJ mol(-1), to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  5. Ovonic switching in tin selenide thin films. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.

    1974-01-01

    Amorphous tin selenide thin films which possess Ovonic switching properties were fabricated using vacuum deposition techniques. Results obtained indicate that memory type Ovonic switching does occur in these films the energy density required for switching from a high impedance to a low impedance state is dependent on the spacing between the electrodes of the device. The switching is also function of the magnitude of the applied voltage pulse. A completely automated computer controlled testing procedure was developed which allows precise control over the shape of the applied voltage switching pulse. A survey of previous experimental and theoretical work in the area of Ovonic switching is also presented.

  6. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  7. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    NASA Astrophysics Data System (ADS)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  8. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key

  9. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salem, Riad; Hunter, Russell D.

    2006-10-01

    To present a critical review of yttrium-90 (TheraSphere) for the treatment of hepatocellular carcinoma (HCC). Medical literature databases (Medline, Cochrane Library, and CANCERLIT) were searched for available literature concerning the treatment of HCC with TheraSphere. These publications were reviewed for scientific and clinical validity. Studies pertaining to the use of yttrium-90 for HCC date back to the 1960s. The results from the early animal safety studies established a radiation exposure range of 50-100 Gy to be used in human studies. Phase I dose escalation studies followed, which were instrumental in delineating radiation dosimetry and safety parameters in humans. These earlymore » studies emphasized the importance of differential arteriolar density between hypervascular HCC and surrounding liver parenchyma. Current trends in research have focused on advancing techniques to safely implement this technology as an alternative to traditional methods of treating unresectable HCC, such as external beam radiotherapy, conformal beam radiotherapy, ethanol ablation, trans-arterial chemoembolization, and radiofrequency ablation. Yttrium-90 (TheraSphere) is an outpatient treatment option for HCC. Current and future research should focus on implementing multicenter phase II and III trials comparing TheraSphere with other therapies for HCC.« less

  10. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis.

    PubMed

    Al-Adra, D P; Gill, R S; Axford, S J; Shi, X; Kneteman, N; Liau, S-S

    2015-01-01

    Radioembolization with yttrium-90 microspheres offers an alternative treatment option for patients with unresectable intrahepatic cholangiocarcinoma (ICC). However, the rarity and heterogeneity of ICC makes it difficult to draw firm conclusions about treatment efficacy. Therefore, the goal of the current study is to systematically review the existing literature surrounding treatment of unresectable ICCs with yttrium-90 microspheres and provide a comprehensive review of the current experience and clinical outcome of this treatment modality. We performed a comprehensive search of electronic databases for ICC treatment and identified 12 studies with relevant data regarding radioembolization therapy with yttrium-90 microspheres. Based on pooled analysis, the overall weighted median survival was 15.5 months. Tumour response based on radiological studies demonstrated a partial response in 28% and stable disease in 54% of patients at three months. Seven patients were able to be downstaged to surgical resection. The complication profile of radioembolization is similar to that of other intra-arterial treatment modalities. Overall survival of patients with ICC after treatment with yttrium-90 microspheres is higher than historical survival rates and shows similar survival to those patients treated with systemic chemotherapy and/or trans-arterial chemoembolization therapy. Therefore, the use of yttrium-90 microspheres should be considered in the list of available treatment options for ICC. However, future randomized trials comparing systemic chemotherapy, TACE and local radiation will be required to identify the optimal treatment modality for unresectable ICC. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  11. Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei

    2018-07-01

    The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe2. Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe2, causing the generation of nucleation and growth of the MoSe2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe2 IFNPs. The results show that MoSe2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.

  12. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    PubMed

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids.

    PubMed

    Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei

    2018-07-20

    The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe 2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe 2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe 2 . Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe 2 , causing the generation of nucleation and growth of the MoSe 2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe 2 IFNPs. The results show that MoSe 2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.

  14. Photonuclear production of yttrium-88 - A high energy gamma emitter for hydrocarbon extraction applications.

    PubMed

    Dale, Daniel S; Starovoitova, Valeriia N; Forest, Tony A; Oliphant, Emily

    2018-05-05

    The use of fracing has risen over the past decade and revolutionized energy production in the US. However, there is still an impetus for further optimization of the extraction of oil and natural gas from vast shale reservoirs. In this work, we discuss photonuclear production of yttrium-88 as a promising radiotracer for fracing operations. Single neutron knock-out from natural monoisotopic yttrium-89 is an inexpensive process resulting in high activity of 88 Y with minimal impurities. MCNPX simulations were performed to estimate the 88 Y yield. Irradiations of natural yttrium using a 32 MeV electron linac equipped with a tungsten bremsstrahlung converter were done to benchmark the simulations. Activities of 88 Y, 87g Y, and 87m Y were measured and found to be in good agreement with the predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    NASA Astrophysics Data System (ADS)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  16. Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen W.; Smith, Hillary L.; Lan, Tian

    2015-04-13

    Inelastic neutron scattering measurements on monoclinic zirconia (ZrO 2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhatmore » more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less

  17. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  18. Method of forming a relatively stable slip of silicon metal particles and yttrium containing particles

    DOEpatents

    Dickie, Ray A.; Mangels, John A.

    1984-01-01

    The method concerns forming a relatively stable slip of silicon metal particles and yttrium containing particles. In one embodiment, a casting slip of silicon metal particles is formed in water. Particles of a yttrium containing sintering aid are added to the casting slip. The yttrium containing sintering aid is a compound which has at least some solubility in water to form Y.sup.+3 ions which have a high potential for totally flocculating the silicon metal particles into a semiporous solid. A small amount of a fluoride salt is added to the casting slip which contains the yttrium containing sintering aid. The fluoride salt is one which will produce fluoride anions when dissolved in water. The small amount of the fluoride anions produced are effective to suppress the flocculation of the silicon metal particles by the Y.sup.+3 ions so that all particles remain in suspension in the casting slip and the casting slip has both an increased shelf life and can be used to cast articles having a relatively thick cross-section. The pH of the casting slip is maintained in a range from 7.5 to 9. Preferably, the fluoride salt used is one which is based on a monovalent cation such as sodium or ammonia. The steps of adding the yttrium containing sintering aid and the fluoride salt may be interchanged if desired, and the salt may be added to a solution containing the sintering aid prior to addition of the silicon metal particles.

  19. Characterization of yttrium-rich precipitates in a titanium alloy weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolli, R. Prakash, E-mail: pkolli@umd.edu

    The yttrium-rich (Y-rich) precipitates that form in the fusion zone (FZ) of a Ti–5Al–1Sn–1Zr–1V–0.8Mo (wt.%) alloy, or Ti-5111, gas-tungsten arc welds (GTAW) were characterized. The filler metal was modified by a small concentration of Y in order to refine the microstructure and thus improve the FZ ductility. A high number density of nanoscale Y-rich precipitates were characterized in the weld FZ by atom probe tomography (APT) and scanning transmission electron microscopy (STEM). - Highlights: •A high number density of nanoscale precipitates were observed in the FZ matrix. •The nanoscale precipitates are enriched in yttrium. •Oxygen and sulfur are also presentmore » in the Y-rich precipitates and their interfaces.« less

  20. Effects of yttrium, aluminum, and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1979-01-01

    A cyclic furnace study was conducted between 990 - 280 C and 1095 - 280 C to evaluate the effects of yttrium, chromium, and aluminum concentrations in nickel base alloy bond coatings and also the effect of the bond coating thickness on the performance of yttria-stabilized zirconia thermal barrier coatings. The presence and the concentration of yttrium is very critical. Without yttrium, rapid oxidation of Ni-Al, Ni-Cr, and Ni-Cr-Al bond coatings causes zirconia thermal barrier coatings to fail very rapidly. Concentrations of chrominum and aluminum in Ni-Cr-Al-Y bond coating have a very significant effect on the thermal barrier coating life. This effect, however, is not as great as that due to yttrium. Furthermore, the thickness and the thickness uniformity also have a very significant effect on the life of the thermal barrier system.

  1. Intraprocedural yttrium-90 positron emission tomography/CT for treatment optimization of yttrium-90 radioembolization.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Bradley, Yong C; Acuff, Shelley N; Pasciak, Alexander S

    2014-02-01

    Radioembolization with yttrium-90 ((90)Y) microspheres relies on delivery of appropriate treatment activity to ensure patient safety and optimize treatment efficacy. We report a case in which (90)Y positron emission tomography (PET)/computed tomography (CT) was performed to optimize treatment planning during a same-day, three-part treatment session. This treatment consisted of (i) an initial (90)Y infusion with a dosage determined using an empiric treatment planning model, (ii) quantitative (90)Y PET/CT imaging, and (iii) a secondary infusion with treatment planning based on quantitative imaging data with the goal of delivering a specific total tumor absorbed dose. © 2014 SIR Published by SIR All rights reserved.

  2. MCrAlY bond coat with enhanced Yttrium layer

    DOEpatents

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  3. Facile Route to Rare Heterobimetallic Aluminum-Copper and Aluminum-Zinc Selenide Clusters.

    PubMed

    Li, Bin; Li, Jiancheng; Liu, Rui; Zhu, Hongping; Roesky, Herbert W

    2017-03-20

    Heterobimetallic aluminum-copper and aluminum-zinc clusters were prepared from the reaction of LAl(SeH) 2 [1; L = HC(CMeNAr) 2 and Ar = 2,6-iPr 2 C 6 H 3 ] with (MesCu) 4 and ZnEt 2 , respectively. The resulting clusters with the core structures of Al 2 Se 4 Cu 4 and Al 2 Se 4 Zn 3 exhibit unique metal-organic frameworks. This is a novel pathway for the synthesis of aluminum-copper and aluminum-zinc selenides. The products have been characterized by spectroscopic methods and single-crystal X-ray structural characterization.

  4. Selenide isotope generator for the Galileo mission. Reliability program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    The reliability program plan for the Selenide Isotope Generator (SIG) program is presented. It delineates the specific tasks that will be accomplished by Teledyne Energy Systems and its suppliers during design, development, fabrication and test of deliverable Radioisotopic Thermoelectric Generators (RTG), Electrical Heated Thermoelectric Generators (ETG) and associated Ground Support Equipment (GSE). The Plan is formulated in general accordance with procedures specified in DOE Reliability Engineering Program Requirements Publication No. SNS-2, dated June 17, 1974. The Reliability Program Plan presented herein defines the total reliability effort without further reference to Government Specifications. The reliability tasks to be accomplished are delineatedmore » herein and become the basis for contract compliance to the extent specified in the SIG contract Statement of Work.« less

  5. Abscopal Effects and Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghodadra, Anish; Bhatt, Sumantha; Camacho, Juan C.

    2016-07-15

    We present the case of an 80-year-old male with squamous cell carcinoma with bilobar hepatic metastases who underwent targeted Yttrium-90 radioembolization of the right hepatic lobe lesion. Subsequently, there was complete regression of the nontargeted, left hepatic lobe lesion. This may represent the first ever reported abscopal effect in radioembolization. The abscopal effect refers to the phenomenon of tumor response in nontargeted sites after targeted radiotherapy. In this article, we briefly review the immune-mediated mechanisms responsible for the abscopal effect.

  6. Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes

    NASA Astrophysics Data System (ADS)

    Vormawah, L. J.; Vilén, M.; Beerwerth, R.; Campbell, P.; Cheal, B.; Dicker, A.; Eronen, T.; Fritzsche, S.; Geldhof, S.; Jokinen, A.; Kelly, S.; Moore, I. D.; Reponen, M.; Rinta-Antila, S.; Stock, S. O.; Voss, A.

    2018-04-01

    Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm 5 s 1/2 2S →5 p 1/2 2P line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyväskylä, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-produced short-lived isotopes using collinear laser spectroscopy and application of the technique to doubly charged ions.

  7. Carbon-Supported Nickel Selenide Hollow Nanowires as Advanced Anode Materials for Sodium-Ion Batteries.

    PubMed

    Yang, Xuming; Zhang, Jiaolong; Wang, Zhenguang; Wang, Hongkang; Zhi, Chunyi; Yu, Denis Y W; Rogach, Andrey L

    2018-02-01

    Carbon-supported nickel selenide (Ni 0.85 Se/C) hollow nanowires are prepared from carbon-coated selenium nanowires via a self-templating hydrothermal method, by first dissolving selenium in the Se/C nanowires in hydrazine, allowing it to diffuse out of the carbon layer, and then reacting with nickel ions into Ni 0.85 Se nanoplates on the outer surface of the carbon. Ni 0.85 Se/C hollow nanowires are employed as anode materials for sodium-ion batteries, and their electrochemical performance is evaluated via the cyclic voltammetry and electrochemical impedance spectroscopy combined with ex situ X-ray photoelectron spectroscopy and X-ray diffraction measurements. It is found that Ni 0.85 Se/C hollow nanowires exhibit greatly enhanced cycle stability and rate capability as compared to Ni 0.85 Se nanoparticles, with a reversible capacity around 390 mA h g -1 (the theoretical capacity is 416 mA h g -1 ) at the rate of 0.2 C and 97% capacity retention after 100 cycles. When the current rate is raised to 5 C, they still deliver capacity of 219 mA h g -1 . The synthetic methodology introduced here is general and can easily be applied to building similar structures for other metal selenides in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The influence of implanted yttrium on the cyclic oxidation behaviour of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Riffard, F.; Buscail, H.; Caudron, E.; Cueff, R.; Issartel, C.; Perrier, S.

    2006-03-01

    High-temperature alloys are frequently used in power plants, gasification systems, petrochemical industry, combustion processes and in aerospace applications. Depending on the application, materials are subjected to corrosive atmospheres and thermal cycling. In the present work, thermal cycling was carried out in order to study the influence of implanted yttrium on the oxide scale adherence on 304 steel specimens oxidised in air at 1273 K. In situ X-ray diffraction indicates that the oxides formed at 1273 K are different on blank specimens compared to implanted specimens. Glancing angle XRD allows to analyse the oxide scale composition after cooling to room temperature. Experimental results show that yttrium implantation at a nominal dose of 10 17 ions cm -2 does not improve significantly the cyclic oxidation behaviour of the austenitic AISI 304 steel. However, it appears that yttrium implantation remarkably enhance the oxidation resistance during isothermal oxidation. It reduces the transient oxidation stage and the parabolic oxidation rate constant by one order of magnitude.

  9. Evaluating the improvement of corrosion residual strength by adding 1.0 wt.% yttrium into an AZ91D magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiang; Liu Yaohui, E-mail: liuyaohui2005@yahoo.com; Fang Shijie

    2010-06-15

    The influence of yttrium on the corrosion residual strength of an AZ91D magnesium alloy was investigated detailedly. Scanning electron microscope was employed to analyze the microstructure and the fractography of the studied alloys. The microstructure of AZ91D magnesium alloy is remarkably refined due to the addition of yttrium. The electrochemical potentiodynamic polarization curve of the studied alloy was performed with a CHI 660b electrochemical station in the three-electrode system. The result reveals that yttrium significantly promotes the overall corrosion resistance of AZ91D magnesium alloy by suppressing the cathodic reaction in corrosion process. However, the nucleation and propagation of corrosion pitsmore » on the surface of the 1.0 wt.% Y modified AZ91D magnesium alloy indicate that pitting corrosion still emerges after the addition of yttrium. Furthermore, stress concentration caused by corrosion pits should be responsible for the drop of corrosion residual strength although the addition of yttrium remarkably weakens the effect of stress concentration at the tip of corrosion pits in loading process.« less

  10. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    NASA Astrophysics Data System (ADS)

    Han, Yinfeng; Fu, Lianshe; Mafra, Luís; Shi, Fa-Nian

    2012-02-01

    Three mixed europium-yttrium organic frameworks: Eu2-xYx(Mel)(H2O)6 (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu3+ lifetime becomes longer in these MOFs than those of the Eu analog.

  11. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    NASA Astrophysics Data System (ADS)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  12. In situ transmission electron microscopy of cadmium selenide nanorod sublimation

    DOE PAGES

    Hellebusch, Daniel J.; Manthiram, Karthish; Beberwyck, Brandon J.; ...

    2015-01-23

    In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorod’s long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. Furthermore, we propose a mechanism that accounts for themore » observed sublimation behavior based on the terrace–ledge–kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation.« less

  13. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Yinfeng; Department of Chemistry and Environmental Science, Taishan University, Taian 271021; Fu Lianshe

    Three mixed europium-yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. - Graphical abstract: Three mixed europium and yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid) have been synthesized and characterized.more » All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. Highlights: Black-Right-Pointing-Pointer Three (4, 8)-flu topological mixed Eu and Y MOFs were synthesized under mild conditions. Black-Right-Pointing-Pointer Metal ratios were refined by the single crystal data consistent with the EDS analysis. Black-Right-Pointing-Pointer Mixed Eu and Y MOFs show longer lifetime and higher quantum efficiency than the Eu analog. Black-Right-Pointing-Pointer Adding inert lanthanide into luminescent MOFs enlarges the field of luminescent MOFs.« less

  14. Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Scooter D., E-mail: scooter.johnson@nrl.navy.mil; Glaser, Evan R.; Cheng, Shu-Fan

    Highlights: • We deposit yttrium iron garnet films at room temperature using aerosol deposition. • Films are 96% of theoretical density for yttrium iron garnet. • We report magnetic and structural properties post-deposition and post-annealing. • Low-temperature annealing decreases the FMR linewidth. • We discuss features of the FMR spectra at each anneal temperature. - Abstract: We have employed aerosol deposition to form polycrystalline yttrium iron garnet (YIG) films on sapphire at room temperature that are 90–96% dense. We characterize the structural and dynamic magnetic properties of the dense films using scanning electron microscopy, X-ray diffraction, and ferromagnetic resonance techniques.more » We find that the as-deposited films are pure single-phase YIG formed of compact polycrystallites ∼20 nm in size. The ferromagnetic resonance mode occurs at 2829 G with a linewidth of 308 G. We perform a series of successive anneals up to 1000 °C on a film to explore heat treatment on the ferromagnetic resonance linewidth. We find the narrowest linewidth of 98 G occurs after a 750 °C anneal.« less

  15. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.

    PubMed

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-23

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  16. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  17. Tin Selenide (SnSe): Growth, Properties, and Applications

    PubMed Central

    Shi, Weiran; Gao, Minxuan; Wei, Jinping; Gao, Jianfeng; Fan, Chenwei; Ashalley, Eric; Wang, Zhiming

    2018-01-01

    Abstract The indirect bandgap semiconductor tin selenide (SnSe) has been a research hotspot in the thermoelectric fields since a ZT (figure of merit) value of 2.6 at 923 K in SnSe single crystals along the b‐axis is reported. SnSe has also been extensively studied in the photovoltaic (PV) application for its extraordinary advantages including excellent optoelectronic properties, absence of toxicity, cheap raw materials, and relative abundance. Moreover, the thermoelectric and optoelectronic properties of SnSe can be regulated by the structural transformation and appropriate doping. Here, the studies in SnSe research, from its evolution to till now, are reviewed. The growth, characterization, and recent developments in SnSe research are discussed. The most popular growth techniques that have been used to prepare SnSe materials are discussed in detail with their recent progress. Important phenomena in the growth of SnSe as well as the problems remaining for future study are discussed. The applications of SnSe in the PV fields, Li‐ion batteries, and other emerging fields are also discussed. PMID:29721411

  18. Tin Selenide (SnSe): Growth, Properties, and Applications.

    PubMed

    Shi, Weiran; Gao, Minxuan; Wei, Jinping; Gao, Jianfeng; Fan, Chenwei; Ashalley, Eric; Li, Handong; Wang, Zhiming

    2018-04-01

    The indirect bandgap semiconductor tin selenide (SnSe) has been a research hotspot in the thermoelectric fields since a ZT (figure of merit) value of 2.6 at 923 K in SnSe single crystals along the b -axis is reported. SnSe has also been extensively studied in the photovoltaic (PV) application for its extraordinary advantages including excellent optoelectronic properties, absence of toxicity, cheap raw materials, and relative abundance. Moreover, the thermoelectric and optoelectronic properties of SnSe can be regulated by the structural transformation and appropriate doping. Here, the studies in SnSe research, from its evolution to till now, are reviewed. The growth, characterization, and recent developments in SnSe research are discussed. The most popular growth techniques that have been used to prepare SnSe materials are discussed in detail with their recent progress. Important phenomena in the growth of SnSe as well as the problems remaining for future study are discussed. The applications of SnSe in the PV fields, Li-ion batteries, and other emerging fields are also discussed.

  19. SPIO-labeled Yttrium Microspheres for MR Imaging Quantification of Transcatheter Intrahepatic Delivery in a Rodent Model

    PubMed Central

    Li, Weiguo; Zhang, Zhuoli; Gordon, Andrew C.; Chen, Jeane; Nicolai, Jodi; Lewandowski, Robert J.; Omary, Reed A.

    2016-01-01

    Purpose To investigate the qualitative and quantitative impacts of labeling yttrium microspheres with increasing amounts of superparamagnetic iron oxide (SPIO) material for magnetic resonance (MR) imaging in phantom and rodent models. Materials and Methods Animal model studies were approved by the institutional Animal Care and Use Committee. The r2* relaxivity for each of four microsphere SPIO compositions was determined from 32 phantoms constructed with agarose gel and in eight concentrations from each of the four compositions. Intrahepatic transcatheter infusion procedures were performed in rats by using each of the four compositions before MR imaging to visualize distributions within the liver. For quantitative studies, doses of 5, 10, 15, or 20 mg 2% SPIO-labeled yttrium microspheres were infused into 24 rats (six rats per group). MR imaging R2* measurements were used to quantify the dose delivered to each liver. Pearson correlation, analysis of variance, and intraclass correlation analyses were performed to compare MR imaging measurements in phantoms and animal models. Results Increased r2* relaxivity was observed with incremental increases of SPIO microsphere content. R2* measurements of the 2% SPIO–labeled yttrium microsphere concentration were well correlated with known phantom concentrations (R2 = 1.00, P < .001) over a broader linear range than observed for the other three compositions. Microspheres were heterogeneously distributed within each liver; increasing microsphere SPIO content produced marked signal voids. R2*-based measurements of 2% SPIO–labeled yttrium microsphere delivery were well correlated with infused dose (intraclass correlation coefficient, 0.98; P < .001). Conclusion MR imaging R2* measurements of yttrium microspheres labeled with 2% SPIO can quantitatively depict in vivo intrahepatic biodistribution in a rat model. © RSNA, 2015 Online supplemental material is available for this article. PMID:26313619

  20. Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti-Ni-Hf high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kim, Jeoung Han; Kim, Kyong Min; Yeom, Jong Taek; Young, Sung

    2016-03-01

    The effect of yttrium (< 5.5 at%) on the martensite-austenite phase transformation temperatures, microstructural evolution, and hot workability of Ti-Ni-Hf high-temperature shape memory alloys is investigated. For these purposes, differential scanning calorimetry, hot compression, and thermo-gravimetric tests are conducted. The phase transformation temperatures are not noticeably influenced by the addition of yttrium up to 4.5 at%. Furthermore, the hot workability is not significantly affected by the yttrium addition up to 1.0 at%. However, when the amount of yttrium addition exceeds 1.0 at%, the hot workability deteriorates significantly. In contrast, remarkable improvement in the high temperature oxidation resistance due to the yttrium addition is demonstrated. The total thickness of the oxide layers is substantially thinner in the Y-added specimen. In particular, the thickness of (Ti,Hf) oxide layer is reduced from 200 µm to 120 µm by the addition of 0.3 at% Y.

  1. Liquid-like cationic sub-lattice in copper selenide clusters

    NASA Astrophysics Data System (ADS)

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.

    2017-02-01

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  2. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    NASA Astrophysics Data System (ADS)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  3. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  4. Mott insulator-to-metal transition in yttrium-doped CaIrO₃.

    PubMed

    Gunasekera, J; Chen, Y; Kremenak, J W; Miceli, P F; Singh, D K

    2015-02-11

    We report on the study of insulator-to-metal transition in post-perovskite compound CaIrO3. It is discovered that a gradual chemical substitution of calcium by yttrium leads to the onset of strong metallic behavior in this compound. This observation is in stark contrast to BaIrO3, which preserves its Mott insulating behavior despite excess of the charge carriers due to yttrium doping. Magnetic measurements reveal that both compounds tend to exhibit magnetic character irrespective of the chemical substitution of Ca or Ba. We analyze these unusual observations in light of recent researches that suggest that CaIrO3 does not necessarily possess j = 1/2 ground state due to structural distortion. The insulator-to-metal transition in CaIrO3 will spur new researches to explore more exotic ground state, including superconductivity, in post-perovskite Mott insulators.

  5. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    PubMed

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  6. Reflectance, Optical Properties, and Stability of Molybdenum/Strontium and Molybdenum/Yttrium Multilayer Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjornrattanawanich, Benjawan

    2002-09-01

    The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive indexmore » $$\\tilde{n}$$ = 1-δ + iβ of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part β was determined through transmittance measurements. The dispersive part δ was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their

  7. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  8. Tin sulfides and tin selenides at ambient and high pressure conditions

    NASA Astrophysics Data System (ADS)

    Nguyen Cong, Kien; Gonzalez, Joseph; Steele, Brad; Oleynik, Ivan

    The application of high pressure promotes unusual chemical bonding in condensed phase resulting in the synthesis of novel materials, which may be recoverable in metastable states at ambient conditions. First-principles evolutionary crystal structure search is performed to explore novel tin sulfide (SnxSy) and tin selenide (SnxSy) crystals with the goal to discover novel photovoltaic and thermoelectric materials. Variable stoichiometry searches at various pressures are performed and the phase diagrams are constructed in the range of pressures 0-100 GPa, which include both the thermodynamically stable and lowest enthalpy metastable structures. Several new structures are identified and their dynamical stability is investigated. To help experimental synthesis of these novel compounds, Raman spectra and XRD patterns are also calculated. These new materials are also investigated to identify those with promising photovoltaic and thermoelectric properties.

  9. Intra-articular radioactive yttrium and triamcinolone hexacetonide: an inconclusive trial. Arthritis and Rheumatism Council Multicentre Radiosynoviorthesis Trial Group.

    PubMed

    1984-08-01

    A restricted sequential design multicentre controlled trial of yttrium-90 against triamcinolone intra-articularly was undertaken in patients with rheumatoid arthritis with knee involvement. The trial had to be discontinued because of dwindling recruitment over time. The reasons for this and other features contributing to an inconclusive outcome are noted. This experience lends little encouragement to the idea that yttrium-90 therapy is more or less advantageous than triamcinolone hexacetonide.

  10. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se

  11. Interferences in electrochemical hydride generation of hydrogen selenide

    NASA Astrophysics Data System (ADS)

    Bolea, E.; Laborda, F.; Belarra, M. A.; Castillo, J. R.

    2001-12-01

    Interferences from Cu(II), Zn(II), Pt(IV), As(III) and nitrate on electrochemical hydride generation of hydrogen selenide were studied using a tubular flow-through generator, flow injection sample introduction and quartz tube atomic absorption spectrometry. Comparison with conventional chemical generation using tetrahydroborate was also performed. Lead and reticulated vitreous carbon (RVC), both in particulate form, were used as cathode materials. Signal supressions up to 60-75%, depending on the cathode material, were obtained in the presence of up to 200 mg l-1 of nitrate due to the competitive reduction of the anion. Interference from As(III) was similar in electrochemical and chemical generation, being related to the quartz tube atomization process. Zinc did not interfere up to Se/Zn ratios 1:100, whereas copper and platinum showed suppression levels up to 50% for Se/interferent ratios 1:100. Total signal suppression was observed in presence of Se/Cu ratios 1:100 when RVC cathodes were used. No memory effects were observed in any case. Scanning electron microscopy and squared wave voltametry studies supported the interference mechanism based on the decomposition of the hydride on the dispersed particles of the reduced metal.

  12. Kinetic characteristics of the luminescence decay for industrial yttrium-gadolinium-aluminium garnet based phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Stepanov, S. A.; Valiev, D. T.; Vishnyakova, E. A.; Abdullin, H. A.; Marhabaeva, A. A.; Tulegenova, A. T.

    2016-02-01

    The spectral and decay kinetic characteristics of pulse cathodoluminescence and photoluminescence of phosphors based on yttrium-gadolinium-aluminum garnet were investigated using pulsed optical time resolved spectroscopy.

  13. Intra-articular radioactive yttrium and triamcinolone hexacetonide: an inconclusive trial. Arthritis and Rheumatism Council Multicentre Radiosynoviorthesis Trial Group.

    PubMed Central

    1984-01-01

    A restricted sequential design multicentre controlled trial of yttrium-90 against triamcinolone intra-articularly was undertaken in patients with rheumatoid arthritis with knee involvement. The trial had to be discontinued because of dwindling recruitment over time. The reasons for this and other features contributing to an inconclusive outcome are noted. This experience lends little encouragement to the idea that yttrium-90 therapy is more or less advantageous than triamcinolone hexacetonide. PMID:6383234

  14. Cobalt and Yttrium Modified TiO2 Nanotubes Based Dye-Sensitized Solar Cells for Solar-Energy Conversion

    NASA Astrophysics Data System (ADS)

    Shabanov, N. S.; Isaev, A. B.; Orudzhev, F. F.; Murliev, E. K.

    2018-01-01

    The solar-energy conversion in eosin-sensitized solar cells based on cobalt and yttrium modified TiO2 nanotubes has been studied.It is established that the doping with metal ions shifts the absorption edge for Co and Y doped titanium dioxide samples to longer and shorter wavelengths, respectively. The efficiency of solar energy conversion depends on the wide bandgap of the semiconductor anode and reaches a maximum (4.4%) for yttrium-doped TiO2 in comparison to that (4.1%) for pure titanium dioxide.

  15. Synthesis and characterization of (Ni{sub 1−x}Co{sub x})Se{sub 2} based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.

    2016-06-15

    Ternary metal selenides of (Ni{sub 1−x}Co{sub x})Se{sub 2} with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might bemore » due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} as counter electrode in dye-sensitized solar cells.« less

  16. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  17. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  18. Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy

    PubMed Central

    Karvonen, Lasse; Säynätjoki, Antti; Mehravar, Soroush; Rodriguez, Raul D.; Hartmann, Susanne; Zahn, Dietrich R. T.; Honkanen, Seppo; Norwood, Robert A.; Peyghambarian, N.; Kieu, Khanh; Lipsanen, Harri; Riikonen, Juha

    2015-01-01

    Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe flakes were observed. Unexpectedly, even the peak at the wavelength of 390 nm, corresponding to the fourth-harmonic generation or the sum frequency generation from third-harmonic generation and pump light, was detected during the spectral measurements in thin GaSe flakes. PMID:25989113

  19. Thermoelectric properties of the yttrium-doped ceramic oxide SrTiO3

    NASA Astrophysics Data System (ADS)

    Khan, Tamal Tahsin; Ur, Soon-Chul

    2017-01-01

    The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO3 at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO3. The doping level in SrTiO3 was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO3 provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.

  20. Ion beam irradiation of lanthanum and thorium-doped yttrium titanates

    NASA Astrophysics Data System (ADS)

    Lian, J.; Zhang, F. X.; Peters, M. T.; Wang, L. M.; Ewing, R. C.

    2007-05-01

    Y2Ti2O7 pyrochlores doped with La have been sintered at 1373 K for 12 h with the designed compositions of the (LaxY1-x)2Ti2O7 system (x = 0, 0.08, 0.5, and 1), and the phase compositions were analyzed by X-ray diffraction. Limited amounts of La were incorporated into yttrium titanate pyrochlore structure for La-doped samples; while, the end member composition of La2Ti2O7 formed a layered perovskite structure. Ion beam-induced amorphization occurred for all compositions in the (LaxY1-x)2Ti2O7 binary under 1 MeV Kr2+ irradiation at room temperature, and the critical amorphization dose decreased with increasing amounts of La3+. The critical amorphization temperatures for Y2Ti2O7, (La0.162Y0.838)2Ti2O7 and La2Ti2O7 were determined to be ∼780, 890 and 920 K, respectively. Th4+ and Fe3+-doped yttrium titanate pyrochlores were synthesized at 1373 K by sintering Y2Ti2O7 with (ThO2 + Fe2O3). Pyrochlore structures and the chemical compositions were primarily identified by the X-ray diffraction and energy dispersive X-ray (EDX) measurements. The lattice parameter and the critical amorphization dose (1 MeV Kr2+ at room temperature) increase for yttrium titanate pyrochlores with the addition of Th. The increasing 'resistance' to amorphization with less La and greater Th and Fe contents for (Y1-xLax)2Ti2O7 and Y2Ti2O7-Fe2O3-ThO2 systems, respectively, are consistent with the changes in the average ionic radius ratio at the A-sites and B-sites. These results suggest that the addition of lanthanides and actinides (e.g., Th, U, or Pu) will affect the structural stability, as well as the radiation response behavior of the pyrochlore structure-type.

  1. Control of accidental releases of hydrogen selenide in vented storage cabinets

    NASA Astrophysics Data System (ADS)

    Fthenakis, V. M.; Moskowitz, P. D.; Sproull, R. D.

    1988-07-01

    Highly toxic hydrogen selenide and hydrogen sulfide gases are used in the production of copper-indium-diselenide photovoltaic cells by reactive sputtering. In the event of an accident, these gases may be released to the atmosphere and pose hazards to public and occupational safety and health. This paper outlines an approach for designing systems for the control of these releases given the uncertainty in release conditions and lack of data on the chemical systems involved. Accidental releases of these gases in storage cabinets can be controlled by either a venturi and packed-bed scrubber and carbon adsorption bed, or containment scrubbing equipment followed by carbon adsorption. These systems can effectively reduce toxic gas emissions to levels needed to protect public health. The costs of these controls (˜0.012/Wp) are samll in comparison with current (˜6/Wp) and projected (˜I/Wp) production costs.

  2. Magnetocrystalline anisotropy of Fe2 + ion in silicon- or germanium-substituted yttrium iron garnet at zero temperature

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czeslaw

    1982-01-01

    The present work reports the theoretical considerations of the magnetocrystalline anisotropy of ferrous ions induced by tetravalent dopants in yttrium iron garnet. Using the spin Hamiltonian developed earlier by us and the molecular field (h) approximation we derive the cubic anisotropy constants K1 and K2 at zero temperature. We adopt the Alben's et al. model of twelve inequivalent Fe2+ sites in silicon-substituted yttrium iron garnet. Results are given for h = 400, 300, 200 and the spin Hamiltonian parameters with the trigonal Δ = 300, 400, 500, 600, 700 and the nontrigonal crystal field parameter Γ = 200, 300 cm-1. The agreement with the experimental K1 and K2 is quite good. The discussion reveals that the properties of the far and near sites in the two-center model can now be theoretically explained. The theoretical ratios of K1(far) to K1(near) agree well with experiment. Thus our results speak in favor of the orbital singlet rather than the doublet model assumed previously for Fe2+ in silicon- or germanium-substituted yttrium iron garnets.

  3. Influence of Yttrium Ion-Implantation on the Growth Kinetics and Micro-Structure of NiO Oxide Film

    NASA Astrophysics Data System (ADS)

    Jin, Huiming; Adriana, Felix; Majorri, Aroyave

    2008-02-01

    Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000°C in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti-oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y-implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.

  4. Temperature induced phonon behaviour in germanium selenide thin films probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Taube, A.; Łapińska, A.; Judek, J.; Wochtman, N.; Zdrojek, M.

    2016-08-01

    Here we report a detailed study of temperature-dependent phonon properties of exfoliated germanium selenide thin films (several tens of nanometers thick) probed by Raman spectroscopy in the 70-350 K temperature range. The temperature-dependent behavior of the positions and widths of the Raman modes was nonlinear. We concluded that the observed effects arise from anharmonic phonon-phonon interactions and are explained by the phenomenon of optical phonon decay into acoustic phonons. At temperatures above 200 K, the position of the Raman modes tended to be linearly dependent, and the first order temperature coefficients χ were  -0.0277, -0.0197 and  -0.031 cm-1 K-1 for B 3g , A g(1) and A g(2) modes, respectively.

  5. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts.

    PubMed

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-10-21

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.

  6. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide.

    PubMed

    McDaniel, Sean A; Lancaster, Adam; Evans, Jonathan W; Kar, Ajoy K; Cook, Gary

    2016-02-22

    We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides.

  7. Organotin Selenide Clusters and Hybrid Capsules.

    PubMed

    Dehnen, Stefanie; Hanau, Katharina; Rinn, Niklas; Argentari, Mario

    2018-05-22

    Several compounds with unique structural motifs that have already been known from organotin sulfide chemistry, but remained unprecedented in organotin selenide chemistry so far, have been synthesized. The reaction of [(R1Sn)4Se6] (R1 = CMe2CH2C(O)Me) with N2H4·H2O/(SiMe3)2Se and with PhN2H3/(SiMe3)2Se led to the formation of [{(R2Sn)2SnSe4}2(µ-Se)2] (1) and [{(R3Sn)2SnSe4}2(µ-Se)2] (2) (R2 = CMe2CH2C(Me)NNH2, R3 = CMe2CH2C(Me)NNPhH), respectively. Addition of o-phthalaldehyde to [(R2Sn)4Se6] yielded a cluster with intramolecular bridging of the organic groups, [(R4Sn2)2Se6] (3, R4 = (CMe2CH2C(Me)NNCH)2C6H4). The introduction of organic ligands with longer chains finally allowed the isolation of inorganic-organic capsules of the type [(µ-R)3(Sn3Se4)2]X2, with R = (CMe2CH2C(Me)NNHC(O))2(CH2)4, X = [SnC3], Cl (4a, 4b) or R = CMe2CH2C(Me)NNH)2, X = [SnCl3] (5). The capsules enclose solvent molecules and/or anions as guests. All compounds were characterized via single-crystal X-ray diffraction, NMR spectroscopy and mass spectrometry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  9. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  10. High-spin europium and gadolinium centers in yttrium-aluminum garnet

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Asatryan, G. R.; Uspenskaya, Yu. A.; Petrosyan, A. G.; Fokin, A. V.

    2016-08-01

    Electron-spin resonance spectra of Eu2+ and Gd3+ centers substituting Y3+ ions in single-crystal yttrium-aluminum garnet have been studied and the parameters of their rhombic spin Hamiltonian have been determined. The fine-structure parameters of the above ions have been calculated in the superposition model disregarding changes in the angular coordinates of the ligand environment of the impurity defect thus demonstrating the necessity of taking these changes into account.

  11. Electrolytic Deposition and Diffusion of Lithium onto Magnesium-9 Wt Pct Yttrium Bulk Alloy in Low-Temperature Molten Salt of Lithium Chloride and Potassium Chloride

    NASA Astrophysics Data System (ADS)

    Dong, Hanwu; Wu, Yaoming; Wang, Lidong; Wang, Limin

    2009-10-01

    The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 μm is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A·cm-2. The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

  12. Radiographic Response to Yttrium-90 Radioembolization in Anterior Versus Posterior Liver Segments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Saad M.; Lewandowski, Robert J.; Ryu, Robert K.

    2008-11-15

    The purpose of our study was to determine if preferential radiographic tumor response occurs in tumors located in posterior versus anterior liver segments following radioembolization with yttrium-90 glass microspheres. One hundred thirty-seven patients with chemorefractory liver metastases of various primaries were treated with yttrium-90 glass microspheres. Of these, a subset analysis was performed on 89 patients who underwent 101 whole-right-lobe infusions to liver segments V, VI, VII, and VIII. Pre- and posttreatment imaging included either triphasic contrast material-enhanced CT or gadolinium-enhanced MRI. Responses to treatment were compared in anterior versus posterior right lobe lesions using both RECIST and WHO criteria.more » Statistical comparative studies were conducted in 42 patients with both anterior and posterior segment lesions using the paired-sample t-test. Pearson correlation was used to determine the relationship between pretreatment tumor size and posttreatment tumor response. Median administered activity, delivered radiation dose, and treatment volume were 2.3 GBq, 118.2 Gy, and 1,072 cm{sup 3}, respectively. Differences between the pretreatment tumor size of anterior and posterior liver segments were not statistically significant (p = 0.7981). Differences in tumor response between anterior and posterior liver segments were not statistically significant using WHO criteria (p = 0.8557). A statistically significant correlation did not exist between pretreatment tumor size and posttreatment tumor response (r = 0.0554, p = 0.4434). On imaging follow-up using WHO criteria, for anterior and posterior regions of the liver, (1) response rates were 50% (PR = 50%) and 45% (CR = 9%, PR = 36%), and (2) mean changes in tumor size were -41% and -40%. In conclusion, this study did not find evidence of preferential radiographic tumor response in posterior versus anterior liver segments treated with yttrium-90 glass microspheres.« less

  13. Radiographic response to yttrium-90 radioembolization in anterior versus posterior liver segments.

    PubMed

    Ibrahim, Saad M; Lewandowski, Robert J; Ryu, Robert K; Sato, Kent T; Gates, Vanessa L; Mulcahy, Mary F; Kulik, Laura; Larson, Andrew C; Omary, Reed A; Salem, Riad

    2008-01-01

    The purpose of our study was to determine if preferential radiographic tumor response occurs in tumors located in posterior versus anterior liver segments following radioembolization with yttrium-90 glass microspheres. One hundred thirty-seven patients with chemorefractory liver metastases of various primaries were treated with yttrium-90 glass microspheres. Of these, a subset analysis was performed on 89 patients who underwent 101 whole-right-lobe infusions to liver segments V, VI, VII, and VIII. Pre- and posttreatment imaging included either triphasic contrast material-enhanced CT or gadolinium-enhanced MRI. Responses to treatment were compared in anterior versus posterior right lobe lesions using both RECIST and WHO criteria. Statistical comparative studies were conducted in 42 patients with both anterior and posterior segment lesions using the paired-sample t-test. Pearson correlation was used to determine the relationship between pretreatment tumor size and posttreatment tumor response. Median administered activity, delivered radiation dose, and treatment volume were 2.3 GBq, 118.2 Gy, and 1,072 cm(3), respectively. Differences between the pretreatment tumor size of anterior and posterior liver segments were not statistically significant (p = 0.7981). Differences in tumor response between anterior and posterior liver segments were not statistically significant using WHO criteria (p = 0.8557). A statistically significant correlation did not exist between pretreatment tumor size and posttreatment tumor response (r = 0.0554, p = 0.4434). On imaging follow-up using WHO criteria, for anterior and posterior regions of the liver, (1) response rates were 50% (PR = 50%) and 45% (CR = 9%, PR = 36%), and (2) mean changes in tumor size were -41% and -40%. In conclusion, this study did not find evidence of preferential radiographic tumor response in posterior versus anterior liver segments treated with yttrium-90 glass microspheres.

  14. Scanning-SQUID investigation of spin-orbit torque acting on yttrium iron garnet devices

    NASA Astrophysics Data System (ADS)

    Rosenberg, Aaron J.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Nowack, Katja C.; Kirtley, John R.; Yang, Fengyuan; Ralph, Daniel C.; Moler, Kathryn A.

    Successful manipulation of electrically insulating magnets, such as yttrium iron garnet, by by current-driven spin-orbit torques could provide a highly efficient platform for spintronic memory. Compared to devices fabricated using magnetic metals, magnetic insulators have the advantage of the ultra-low magnetic damping and the elimination of shunting currents in the magnet that reduce the torque efficiency. Here, we apply current in the spin Hall metal β-Ta to manipulate the magnetic orientation of micron-sized, electrically-insulating yttrium iron garnet devices. We do not observe spin-torque switching even for applied currents well above the critical current expected in a macrospin switching model. This suggests either inefficient transfer of spin torque at our Ta/YIG interface or a breakdown of the macrospin approximation. This work is supported by FAME, one of six centers of STARnet sponsored by MARCO and DARPA. The SQUID microscope and sensors were developed with support from the NSF-sponsored Center NSF-NSEC 0830228, and from NSF IMR-MIP 0957616.

  15. The growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Elmer E.; Rosenberger, Franz E.; Cheng, Hai-Yuin

    1990-01-01

    Growth and characterization studies will be performed on zinc selenide single crystals. The high temperature outgassing behavior of the silica ampoule material will be studied in order to develop a cleaning and bake-out procedure that will minimize the amount of impurities introduced into the vapor from the ampoule materials and in particular during the seal-off procedure. The outgassing behavior of the ZnSe starting material will be studied during high vacuum refinement at elevated temperatures in order to develop a temperature pressure program that will optimize the removal of impurities while minimizing a shift in stoichiometry due to preferred evaporation of the higher fugacity component. The mass spectrometer system was completed, and after calibration, will be used to perform the above tasks. The system and its operation is described in detail.

  16. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    PubMed

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  17. Radiosynovectomy in haemophilic synovitis of elbows and ankles: Is the effectiveness of yttrium-90 and rhenium-186 different?

    PubMed

    Rodriguez-Merchan, E C; De La Corte-Rodriguez, H

    2016-04-01

    Radiosynovectomy (RS) reduces the number of haemarthroses and the synovial size in chronic haemophilic synovitis. The purpose of this study was to quantitatively compare the effectiveness of two types of RS (yttrium-90 vs. rhenium-186) in terms of the objective improvement of haemarthroses and synovial size. Seventy RSs were performed in 70 joints (44 elbows, 26 ankles) of 70 haemophiliacs diagnosed with chronic synovitis. Yttrium-90 was used in 21 joints and rhenium-186 was used in 49 joints. The mean patient age was 20.61 years. RS resulted in significant improvement in the three variables studied (six months before RS vs. six months after RS), namely in the number of episodes of haemarthrosis (67.8% improvement); the size of the synovium as measured by means of a clinical scale (43.8% improvement) and imaging techniques in millimetres (26.7% improvement). We did not find significant statistical differences between yttrium-90 and rhenium-186 regarding their efficacy. No correlation was found between the results and other variables: age, joint (ankle or elbow), presence or absence of radiological involvement, type of haemophilia (A or B), grade of haemophilia (mild, moderate or severe), previous haematological treatment (on demand or prophylaxis), and the presence or absence of inhibitor Yttrium-90 RS and rhenium-186 RS were equally effective in reducing the number of haemarthroses and the size of the synovium in ankles and elbows in the short-term (6 months). No correlation was found between the results and other patients' characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Neodymium:yttrium-aluminum-garnet laser fusion of endarterectomy flaps.

    PubMed

    Humphrey, P W; Slocum, M M; Loy, T S; Silver, D

    1995-07-01

    This study evaluated the efficacy of neodymium:yttrium-aluminum-garnet laser welding of flaps in canine arteries and in securing the distal flap during human carotid endarterectomy. Endarterectomy flaps were created in both common carotid and both common femoral arteries in 12 dogs. The flaps were repaired with either the neodymium:yttrium-aluminum-garnet laser or with 6-0 polypropylene sutures. The arteries were removed after duplex scanning at either 7 or 28 days. Eighteen high carotid endarterectomy flaps in 16 patients have been subsequently secured with the laser welding technique. Laser repairs (125 +/- 19 joule) of the canine arteries were completed more quickly than suture repairs (mean 25 seconds vs 135 seconds, respectively; p < 0.04). Duplex ultrasonography revealed no discernable differences between the two groups of arteries. Arteries studied at 7 days revealed three microscopic flaps (two suture, one laser), more subintimal fibroblastic proliferation in suture than laser-repaired carotid arteries (3: 1, p = 0.0530), and similar amounts of inflammation in suture- and laser-repaired arteries. Arteries studied at 28 days revealed one microscopic intimal flap (suture-repaired); equal fibroblastic and inflammatory responses in suture- and laser-repaired vessels; and no evidence of laser thermal injury. Eighteen carotid endarterectomy flaps have been successfully fused with no immediate or long-term complications in 16 patients (follow-up of 0 to 24 months). Laser fusion appears to be a safe and effective method for securing distal carotid endarterectomy flaps.

  19. Ternary lanthanum sulfide selenides {alpha}-LaS{sub 2-x}Se{sub x} (0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartsch, Christian; Doert, Thomas, E-mail: thomas.doert@chemie.tu-dresden.de

    2012-01-15

    Mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0selenides. Highlights: Black-Right-Pointing-Pointer Vegard series of mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0

  20. Solar Light Responsive Photocatalytic Activity of Reduced Graphene Oxide-Zinc Selenide Nanocomposite

    NASA Astrophysics Data System (ADS)

    Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri

    2017-10-01

    Solution processable reduced graphene oxide-zinc selenide (RGO-ZnSe) nanocomposite has been successfully synthesized by an easy one-pot single-step solvothermal reaction. The RGO-ZnSe composite was characterized structurally and morphologically by the study of XRD analysis, SEM and TEM imaging. Reduction in graphene oxide was confirmed by FTIR spectroscopy analysis. Photocatalytic efficiency of RGO-ZnSe composite was investigated toward the degradation of Rhodamine B under solar light irradiation. Our study indicates that the RGO-ZnSe composite is catalytically more active compared to the controlled-ZnSe under the solar light illumination. Here, RGO plays an important role for photoinduced charge separation and subsequently hinders the electron-hole recombination probability that consequently enhances photocatalytic degradation efficiency. We expect that this type of RGO-based optoelectronics materials opens up a new avenue in the field of photocatalytic degradation of different organic water pollutants.

  1. Phonon-driven electron scattering and magnetothermoelectric effect in two-dimensional tin selenide

    NASA Astrophysics Data System (ADS)

    Yang, Kaike; Ren, Ji-Chang; Qiu, Hongfei; Wang, Jian-Sheng

    2018-02-01

    The bulk tin selenide (SnSe) is the best thermoelectric material currently with the highest figure-of-merit due to strong phonon-phonon interactions. We investigate the effect of electron-phonon coupling (EPC) on the transport properties of a two-dimensional (2D) SnSe sheet. We demonstrate that EPC plays a key role in the scattering rate when the constant relaxation time approximation is deficient. The EPC strength is especially large in contrast to that of pristine graphene. The scattering rate depends sensitively on the system temperatures and the carrier densities when the Fermi energy approaches the band edge. We also investigate the magnetothermoelectric effect of the 2D SnSe. It is found that at low temperatures there is enormous magnetoelectrical resistivity and magnetothermal resistivity above 200%, suggesting possible potential applications in device design. Our results agree qualitatively well with the experimental data.

  2. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    PubMed

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  3. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles

    PubMed Central

    Lellouche, Jonathan; Friedman, Alexandra; Gedanken, Aharon; Banin, Ehud

    2012-01-01

    Antibiotic resistance has prompted the search for new agents that can inhibit bacterial growth. Moreover, colonization of abiotic surfaces by microorganisms and the formation of biofilms is a major cause of infections associated with medical implants, resulting in prolonged hospitalization periods and patient mortality. In this study we describe a water-based synthesis of yttrium fluoride (YF3) nanoparticles (NPs) using sonochemistry. The sonochemical irradiation of an aqueous solution of yttrium (III) acetate tetrahydrate [Y(Ac)3 · (H2O)4], containing acidic HF as the fluorine ion source, yielded nanocrystalline needle-shaped YF3 particles. The obtained NPs were characterized by scanning electron microscopy and X-ray elemental analysis. NP crystallinity was confirmed by electron and powder X-ray diffractions. YF3 NPs showed antibacterial properties against two common bacterial pathogens (Escherichia coli and Staphylococcus aureus) at a μg/mL range. We were also able to demonstrate that antimicrobial activity was dependent on NP size. In addition, catheters were surface modified with YF3 NPs using a one-step synthesis and coating process. The coating procedure yielded a homogeneous YF3 NP layer on the catheter, as analyzed by scanning electron microscopy and energy dispersive spectroscopy. These YF3 NP-modified catheters were investigated for their ability to restrict bacterial biofilm formation. The YF3 NP-coated catheters were able to significantly reduce bacterial colonization compared to the uncoated surface. Taken together, our results highlight the potential to further develop the concept of utilizing these metal fluoride NPs as novel antimicrobial and antibiofilm agents, taking advantage of their low solubility and providing extended protection. PMID:23152681

  4. Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons.

    PubMed

    Tang, Hao; Wang, Xiaomeng; Xiong, Yucheng; Zhao, Yang; Zhang, Yin; Zhang, Yan; Yang, Juekuan; Xu, Dongyan

    2015-04-21

    Bismuth selenide (Bi2Se3) nanoribbons have attracted tremendous research interest recently to study the properties of topologically protected surface states that enable new opportunities to enhance the thermoelectric performance. However, the thermoelectric characterization of individual Bi2Se3 nanoribbons is rare due to the technological challenges in the measurements. One challenge is to ensure good contacts between the nanoribbon and electrodes in order to determine the thermal and electrical properties accurately. In this work, we report the thermoelectric characterization of individual Bi2Se3 nanoribbons via a suspended microdevice method. Through careful measurements, we have demonstrated that contact thermal resistance is negligible after the electron-beam-induced deposition (EBID) of platinum/carbon (Pt/C) composites at the contacts between the nanoribbon and electrodes. It is shown that the thermal conductivity of the Bi2Se3 nanoribbons is less than 50% of the bulk value over the whole measurement temperature range, which can be attributed to enhanced phonon boundary scattering. Our results indicate that intrinsic Bi2Se3 nanoribbons prepared in this work are highly doped n-type semiconductors, and therefore the Fermi level should be in the conduction band and no topological transport behavior can be observed in the intrinsic system.

  5. Maintaining High Strength in Mg-LPSO Alloys with Low Yttrium Content Using Severe Plastic Deformation.

    PubMed

    Garces, Gerardo; Cabeza, Sandra; Barea, Rafael; Pérez, Pablo; Adeva, Paloma

    2018-05-05

    Alternative processing routes such as powder metallurgy, the extrusion of recycled chips, or equal channel angular pressing (ECAP) have been considered for effective methods of maintaining the high mechanical strength of Mg-Y-Zn alloys containing long-period stacking ordered structures with respect to the alloy processed by the conventional extrusion of as-cast ingots with the advantage of minimizing the yttrium content. A yield stress similar to that found for extruded Mg 97 Y₂Zn₁ alloy can be attained with only half of the usual yttrium and zinc additions thanks to the grain refinement induced by ECAP processing. The properties of Mg 98.5 Y₁Zn 0.5 subjected to ECAP are maintained up to 200 °C, but superplastic behavior is found above this temperature when the alloy is processed through a powder metallurgy route.

  6. Special features of changes in the structure and mechanical properties of oxygen-free pure and yttrium-alloyed copper after vacuum induction remelting

    NASA Astrophysics Data System (ADS)

    Kamyshanchenko, N. V.; Galtsev, A. V.; Durykhin, M. I.; Neklyudov, I. M.; Borts, B. V.; Shevchenko, S. V.

    2011-03-01

    Properties of oxygen-free copper with a microadditive of yttrium and without it are studied after vacuum induction remelting. The ingots are subjected to intense hot pressing and subsequent rolling to various degrees of reduction. The effects of the annealing temperature on the structure and of the anisotropy of the structure on the strength properties of the copper are determined. The properties of copper with an additive of yttrium and without it are compared.

  7. Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits.

    PubMed

    Goto, Taichi; Onbaşlı, Mehmet C; Ross, C A

    2012-12-17

    Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.

  8. Transport properties of Cu-doped bismuth selenide single crystals at high magnetic fields up to 60 Tesla: Shubnikov-de Haas oscillations and π-Berry phase

    NASA Astrophysics Data System (ADS)

    Romanova, Taisiia A.; Knyazev, Dmitry A.; Wang, Zhaosheng; Sadakov, Andrey V.; Prudkoglyad, Valery A.

    2018-05-01

    We report Shubnikov-de Haas (SdH) and Hall oscillations in Cu-doped high quality bismuth selenide single crystals. To increase the accuracy of Berry phase determination by means of the of the SdH oscillations phase analysis we present a study of n-type samples with bulk carrier density n ∼1019 -1020cm-3 at high magnetic field up to 60 Tesla. In particular, Landau level fan diagram starting from the value of the Landau index N = 4 was plotted. Thus, from our data we found π-Berry phase that directly indicates the Dirac nature of the carriers in three-dimensional topological insulator (3D TI) based on Cu-doped bismuth selenide. We argued that in our samples the magnetotransport is determined by a general group of carriers that exhibit quasi-two-dimensional (2D) behaviour and are characterized by topological π-Berry phase. Along with the main contribution to the conductivity the presence of a small group of bulk carriers was registered. For 3D-pocket Berry phase was identified as zero, which is a characteristic of trivial metallic states.

  9. Spectroscopic investigation of the Cr to Tm energy transfer in Yttrium Aluminum Garnet (YAG) crystals

    NASA Technical Reports Server (NTRS)

    Dibartolo, B.

    1988-01-01

    New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.

  10. Yttrium oxide based three dimensional metamaterials for visible light cloaking

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2014-04-01

    Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.

  11. Preparation and morphology, magnetic properties of yttrium iron garnet nanodot arrays on Gd3Ga5O12 substrate

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwang; Zheng, Hui; Han, Mangui

    2017-07-01

    In this work, yttrium iron garnet nanodot array has been deposited on Gd3Ga5O12 substrate by pulsed laser deposition through an ultrathin alumina mask. The morphology and magnetic properties of YIG nanodot array have been investigated. Scanning electron microscopy displays the prepared nanodot array has a sharp distribution in diameter centered at 330 nm with standard deviation of 20 nm. X-ray diffraction θ-2θ and pole figure analysis show the yttrium iron garnet nanodot array has oriented growth. Moreover, typical hysteresis loops and ferromagnetic resonance spectra display larger coercivity and multi-resonance peaks which are ascribed to this unique structure.

  12. Reflection of antiferromagnetic vortices on a supersonic domain wall in yttrium orthoferrite

    NASA Astrophysics Data System (ADS)

    Chetkin, M. V.; Kurbatova, Yu. N.; Shapaeva, T. B.; Borschegovsky, O. A.

    2007-04-01

    Reflection of solitary flexural waves propagating in a supersonic domain wall of yttrium orthoferrite from the domain wall part moving with the transverse-sound velocity is observed experimentally. This observation confirms that such a reflection of a solitary flexural wave leads to a change in the sign of the topological charge of the antiferromagnetic vortex accompanied by this wave, which proves a direct relationship between these two objects.

  13. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    NASA Astrophysics Data System (ADS)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.

  14. Thermo-optical characteristics and concentration quenching effects in Nd3+doped yttrium calcium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, D. R. S.; Santos, C. N.; de Camargo, A. S. S.; Silva, W. F.; Santos, W. Q.; Vermelho, M. V. D.; Astrath, N. G. C.; Malacarne, L. C.; Li, M. S.; Hernandes, A. C.; Ibanez, A.; Jacinto, C.

    2011-03-01

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd2O3-(5-x)Y2O3-40CaO-55B2O3 (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd3+ content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd3+ concentration with a high optimum Nd3+ concentration put this system as a strong candidate for photonics applications.

  15. Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia

    NASA Astrophysics Data System (ADS)

    Yang, C.; Trachenko, K.; Hull, S.; Todorov, I. T.; Dove, M. T.

    2018-05-01

    Large-scale molecular dynamics simulations have been used to study the microstructure in Y-doped ZrO2. From simulations performed as a function of composition the dependence of microstructure on composition is quantified, showing how it is formed from two coexisting phases, and the transformation to the stabilized cubic form is observed at higher concentrations of yttrium and higher temperatures. The effect of composition and temperature on oxygen diffusion is also studied, showing strong correlations between microstructure and diffusion.

  16. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE PAGES

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh; ...

    2017-07-27

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y 2Ru 2O 7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y 2Ru 2O 7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band centermore » energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO 2, highlighting the effect of yttrium on the enhancement in stability. Finally, the Y 2Ru 2O 7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.« less

  17. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge for the production of hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance towards OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1-M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap betweenmore » Ru 4d and O 2p orbitals and therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal, thus a cost-effective candidate for practical applications.« less

  18. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y 2Ru 2O 7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y 2Ru 2O 7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band centermore » energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO 2, highlighting the effect of yttrium on the enhancement in stability. Finally, the Y 2Ru 2O 7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.« less

  19. Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin's lymphoma.

    PubMed

    Gordon, Leo I; Witzig, Thomas E; Wiseman, Greg A; Flinn, Ian W; Spies, Stewart S; Silverman, Daniel H; Emmanuolides, Christos; Cripe, Larry; Saleh, Mansoor; Czuczman, Myron S; Olejnik, Teresa; White, Christine A; Grillo-López, Antonio J

    2002-02-01

    The treatment of malignant lymphoma has improved over the past 20 years, but the majority of patients are not cured. New modalities using targeted therapy based on new information in molecular biology and immunology hold promise for better outcomes with less toxicity. We review data on the use of radiolabeled monoclonal antibodies directed against the CD20 antigen on malignant B cells. We discuss the major radionuclides available, iodine 131 ( 131 I), tositumomab, and yttrium 90 ( 90 Y) ibritumomab tiuxetan (Zevalin; IDEC Pharmaceuticals, San Diego, CA) and present data on new approaches in labeling antibodies that have facilitated their use. Clinical trial data with the yttrium-labeled antibodies are discussed. The use of dosimetry as a means for predicting toxicity is discussed, and the questions of long-term toxicity (late effects) are addressed. These targeted approaches to the treatment of malignancy, and lymphoma in particular, hold great promise. Semin Oncol 29 (suppl 2):87-92. Copyright © 2002 by W.B. Saunders Company. Copyright © 2002 W.B. Saunders Company. All rights reserved.

  20. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A ceramic composition composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to aobut 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  1. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  2. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

    PubMed

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-07

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.

  3. Solid-Solution Anion-Enhanced Electrochemical Performances of Metal Sulfides/Selenides for Sodium-Ion Capacitors: The Case of FeS2- xSe x.

    PubMed

    Long, Yaqiong; Yang, Jing; Gao, Xin; Xu, Xuena; Fan, Weiliu; Yang, Jian; Hou, Shifeng; Qian, Yitai

    2018-04-04

    Transition-metal sulfides/selenides are explored as advanced electrode materials for nonaqueous sodium-ion capacitors, using FeS 2- x Se x as an example. A solid solution of S/Se in FeS 2- x Se x allows it to combine the high capacity of FeS 2 and the good diffusion kinetics of FeSe 2 together, thereby exhibiting excellent cycle stability (∼220 mA h g -1 after 6000 cycles at 2 A g -1 ) and superior rate capability (∼210 mA h g -1 at 40 A g -1 ) within 0.8-3.0 V. These results are much better than those of FeS 2 and FeSe 2 , confirming the advantages of S/Se solid solution, as supported by EIS spectra, DFT calculations, and electronic conductivity. As FeS 2- x Se x is paired with the activated carbon (AC) as Na-ion capacitors, this device is also better than sodium-ion batteries of FeS 2- x Se x //Na 3 V 2 (PO 4 ) 3 and sodium-ion capacitors of metal oxides//AC, particularly at high rates. These results open a new door for the applications of sulfides/selenides in another device of electrochemical energy storage.

  4. Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3-SrFe12O19 Composite

    NASA Astrophysics Data System (ADS)

    Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat

    2018-03-01

    The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.

  5. Synthesis and Characterization of Aqueous Lead Selenide Quantum Dots for Solar Cell Application

    NASA Astrophysics Data System (ADS)

    Albert, Ancy; Sreekala, C. O.; Prabhakaran, Malini

    2018-02-01

    High quality, colloidal lead selenide (PbSe) nanoparticles possessing cube shaped morphology have been successfully synthesized by organometallic synthesis method, using oleic acid (OA) as capping agent. The use of non-coordinating solvent, 1-Octadecene (ODE), during the synthesis results in good quality nanocrystals. Morphology analysis by transmission electron microscopy reveals that cube-shaped nanocrystals with a size range of 10 nm have been produced during the synthesis. The absorption and PL spectra analysis showed an emission peak at 675 nm when excited to a wavelength of 610 nm, further confirmed the formation of PbSe nanocrystals. The surface modification of this colloidal quantum dots was then carried out using L- cysteine ligand, to make them water soluble, for solar cell application. The J-V characteristics study of this PbSe quantum dots solar cell (PbSe QDSC) showed a little power conversion efficiency which intern it shows significant advance toward effective utilization of PbSe nanocrystals sensitized in solar cells.

  6. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercegol, Adrien, E-mail: adrien.bercegol@polytechnique.edu; Chacko, Binoy; Klenk, Reiner

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conductionmore » band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.« less

  7. Understanding microstrain anisotropy in yttrium oxide synthesized by sol-gel route

    NASA Astrophysics Data System (ADS)

    Murugesan, S.; Thirumurugesan, R.; Parameswaran, P.

    2018-04-01

    Yttrium oxide was synthesized by wet chemical route and calcined at various temperatures. On x-ray diffraction analysis of the material using Williamson-Hall analysis followed by Rietveld analysis indicates that the powder exists in nano crystallite size with lattice strain. The spherical harmonics analysis model of microstrain indicates the presence of strain anisotropy. The change in crystal structure lattice parameter, atomic coordinates of Y, O in yttria and the bond length analysis of the calcined powder reveals the presence of oxygen vacancies in the system.

  8. Surface modification of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors.

    PubMed

    Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye

    2013-06-11

    We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.

  9. Thermodynamic Functions of Yttrium Trifluoride and Its Dimer in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Osina, E. L.; Kovtun, D. M.

    2018-05-01

    New calculations of the functions for YF3 and Y2F6 in the gas phase using quantum-chemical calculations by MP2 and CCSD(T) methods are performed in connection with the ongoing work on obtaining reliable thermodynamic data of yttrium halides. The obtained values are entered in the database of the IVTANTERMO software complex. Equations approximating the temperature dependence of the reduced Gibbs energy in the T = 298.15-6000 K range of temperatures are presented.

  10. Hepatic Abscess After Yttrium-90 Radioembolization for Islet-Cell Tumor Hepatic Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarenhas, Neil B., E-mail: neilmascarenhas1@gmail.co; Mulcahy, Mary F.; Lewandowski, Robert J.

    2010-06-15

    Infectious complications after yttrium-90 (y-90) radioembolization of hepatic tumors are rare. Most reports describe hepatic abscesses as complications of other locoregional therapies, such as transcatheter arterial embolization or chemoembolization. These usually occur in patients with a history of biliary intervention and present several weeks after treatment. We report a case of hepatic abscess formed immediately after y-90 radioembolization of a hepatic metastasis in a patient who had no history of previous biliary instrumentation.

  11. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  12. Dielectric properties and activation behavior of gadolinium doped nanocrystalline yttrium chromite

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Basu, S.; Meikap, A. K.

    2018-04-01

    Gadolinium doped Yttrium Chromite nanoparticles are synthesized following sol-gel method. The formation of the nanoparticles are confirmed by XRD and TEM measurements. Dielectric permittivity and dielectric loss are estimated within the temperature range 298K to 523K and in the frequency range 20 Hz to 1 MHz. Dielectric permittivity follows the power law ɛ'(f) ∝ Tm. It is observed that the temperature exponent m increases with the decreasing frequency. The temperature variation of resistivity shows that the samples have semiconducting behavior. The activation energy is also measured.

  13. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring.

    PubMed

    Tazoe, Hirofumi; Obata, Hajime; Yamagata, Takeyasu; Karube, Zin'ichi; Nagai, Hisao; Yamada, Masatoshi

    2016-05-15

    It is important for public safety to monitor strontium-90 in aquatic environments in the vicinity of nuclear related facilities. Strontium-90 concentrations in seawater exceeding the background level have been observed in accidents of nuclear facilities. However, the analytical procedure for measuring strontium-90 in seawater is highly demanding. Here we show a simple and high throughput analytical technique for the determination of strontium-90 in seawater samples using a direct yttrium-90 separation. The DGA Resin is used to determine the abundance of strontium-90 by detecting yttrium-90 decay (beta-emission) in secular equilibrium. The DGA Resin can selectively collect yttrium-90 and remove naturally occurring radionuclides such as (40)K, (210)Pb, (214)Bi, (238)U, and (232)Th and anthropogenic radionuclides such as (140)Ba, and (140)La. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 95.5±2.3%. The result of IAEA-443 certified seawater analysis (107.7±3.4 mBq kg(-1)) was in good agreement with the certified value (110±5 mBq kg(-1)). By developed method, we can finish analyzing 8 samples per day after achieving secular equilibrium, which is a reasonably fast throughput in actual seawater monitoring. By processing 3 L of seawater sample and applying a counting time of 20 h, minimum detectable activity can be as low as 1.5 mBq kg(-1), which could be applied to monitoring for the contaminated marine environment. Reproducibility was found to be 3.4% according to 10 independent analyses of natural seawater samples from the vicinity of the Fukushima Daiichi Nuclear Power Plant in September 2013. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of cadmium-selenide quantum dots on the conductivity and photoconductivity of nanocrystalline indium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Il’in, A. S., E-mail: as.ilin@physics.msu.ru; Fantina, N. P.; Martyshov, M. N.

    The effect of cadmium-selenide quantum dots addition on the electrical and photoelectric properties of nanocrystalline indium oxide with nanocrystal dimensions in the range from 7 to 40 nm is studied. By impedance spectroscopy, it is shown that the addition of quantum dots substantially influences the resistance of interfaces between In{sub 2}O{sub 3} crystals. A change in the character of the photoconductivity spectrum of In{sub 2}O{sub 3} upon the addition of CdSe quantum dots is detected, and it is established that this change depends on the In{sub 2}O{sub 3}-nanocrystal dimensions. An energy band diagram is proposed to explain the observed changemore » in the photoconductivity spectrum of In{sub 2}O{sub 3} upon the addition of CdSe quantum dots.« less

  15. One-step synthesis of layered yttrium hydroxides in immiscible liquid-liquid systems: Intercalation of sterically-bulky hydrophobic organic anions and doping of europium ions

    NASA Astrophysics Data System (ADS)

    Watanabe, Mebae; Fujihara, Shinobu

    2014-02-01

    Inorganic-organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid-liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu3+ ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect.

  16. Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries.

    PubMed

    Hu, Zhe; Liu, Qiannan; Chou, Shu-Lei; Dou, Shi-Xue

    2017-12-01

    Rechargeable sodium-ion batteries (SIBs), as the most promising alternative to commercial lithium-ion batteries, have received tremendous attention during the last decade. Among all the anode materials for SIBs, metal sulfides/selenides (MXs) have shown inspiring results because of their versatile material species and high theoretical capacity. They suffer from large volume expansion, however, which leads to bad cycling performance. Thus, methods such as carbon modification, nanosize design, electrolyte optimization, and cut-off voltage control are used to obtain enhanced performance. Here, recent progress on MXs is summarized in terms of arranging the crystal structure, synthesis methods, electrochemical performance, mechanisms, and kinetics. Challenges are presented and effective ways to solve the problems are proposed, and a perspective for future material design is also given. It is hoped that light is shed on the development of MXs to help finally find applications for next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals.

    PubMed

    Li, Xufan; Basile, Leonardo; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo, Juan C; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-02-23

    Characterizing and controlling the interlayer orientations and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor-phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA' and AB stacking) in as-grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga-terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Field Effect Transistors Using Atomically Thin Layers of Copper Indium Selenide (CuInSe)

    NASA Astrophysics Data System (ADS)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    We will report fabrication of field-effect transistors (FETs) using few-layers of Copper Indium Selenide (CuInSe) flakes exfoliated from crystals grown using chemical vapor transport technique. Our transport measurements indicate n-type FET with electron mobility µ ~ 3 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. Mobility can be further increased significantly when ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) is used as top gate. Similarly subthreshold swing can be further improved from 103 V/dec to 0.55 V/dec by using ionic liquid as a top gate. We also found ON/OFF ratio of ~ 102 for both top and back gate. Comparison between ionic liquid top gate and SiO2 back gate will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  19. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy.

    PubMed

    Li, Juan; Jiang, Fei; Yang, Bo; Song, Xiao-Rong; Liu, Yan; Yang, Huang-Hao; Cao, Dai-Rong; Shi, Wen-Rong; Chen, Guo-Nan

    2013-01-01

    Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy.

  20. Design, Synthesis, and X-ray of Selenides as New Class of Agents for Prevention of Diabetic Cerebrovascular Pathology.

    PubMed

    Angeli, Andrea; di Cesare Mannelli, Lorenzo; Trallori, Elena; Peat, Thomas S; Ghelardini, Carla; Carta, Fabrizio; Supuran, Claudiu T

    2018-05-10

    A series of novel selenides bearing benzenesulfonamide moieties was synthesized and investigated for their inhibition on six human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms such as the physiologically relevant hCA I, II, VA, VB, VII, and IX and the X-ray complex in adduct with hCA II for some of them investigated. These enzymes are involved in a variety of diseases including glaucoma, retinitis pigmentosa, epilepsy, arthritis, metabolic disorders, and cancer. The investigated compounds showed potent inhibitory action against hCA VA, VII, and IX, in the low nanomolar range, thus making them of interest for the development of isoform-selective inhibitors and as candidates for various biomedical applications.

  1. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  2. Availability of yttrium-90 from strontium-90: a nuclear medicine perspective.

    PubMed

    Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A

    2012-12-01

    Yttrium-90 (T(½) 64.1 hours, E(βmax)=2.28 MeV) is a pure β⁻ particle emitting radionuclide with well-established applications in targeted therapy. There are several advantages of ⁹⁰Y as a therapeutic radionuclide. It has a suitable physical half-life (∼64 hours) and decays to a stable daughter product ⁹⁰Zr by emission of high-energy β⁻ particles. Yttrium has a relatively simple chemistry and its suitability for forming complexes with a variety of chelating agents is well established. The ⁹⁰Sr/⁹⁰Y generator is an ideal source for the long-term continuous availability of no-carrier-added ⁹⁰Y suitable for the preparation of radiopharmaceuticals for radionuclide therapy. The parent radionuclide ⁹⁰Sr, which is a long-lived fission product, is available in large quantities from spent fuel. Several useful technologies have been developed for the preparation of ⁹⁰Sr/⁹⁰Y generators. There are several well-established radiopharmaceuticals based on monoclonal antibodies, peptides, and particulates labeled with ⁹⁰Y, that are in regular use for the treatment of some forms of primary cancers and arthritis. At present, there are no generators for the elution of ⁹⁰Y that can be set up in a hospital radiopharmacy. The radionuclide is procured from manufacturers and the radiopharmaceuticals are formulated on site. This article reviews the development of ⁹⁰Sr/⁹⁰Y generator and the development of ⁹⁰Y radiopharmaceuticals.

  3. Growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    The goals of this research were the optimization of growth parameters for large (20 mm diameter and length) zinc selenide single crystals with low structural defect density, and the development of a 3-D numerical model for the transport rates to be expected in physical vapor transport under a given set of thermal and geometrical boundary conditions, in order to provide guidance for an advantageous conduct of the growth experiments. In the crystal growth studies, it was decided to exclusively apply the Effusive Ampoule PVT technique (EAPVT) to the growth of ZnSe. In this technique, the accumulation of transport-limiting gaseous components at the growing crystal is suppressed by continuous effusion to vacuum of part of the vapor contents. This is achieved through calibrated leaks in one of the ground joints of the ampoule. Regarding the PVT transport rates, a 3-D spectral code was modified. After introduction of the proper boundary conditions and subroutines for the composition-dependent transport properties, the code reproduced the experimentally determined transport rates for the two cases with strongest convective flux contributions to within the experimental and numerical error.

  4. Spin waves in micro-structured yttrium iron garnet nanometer-thick films

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; ...

    2015-03-24

    Here, we investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of 40 nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spinwave amplitude of 10 μm was observed. This leads to an estimated Gilbert damping constant of α = (8.79 ± 0.73) x 10 $-$4, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. Furthermore, we compared the theoretically calculated spatial interference of waveguide modes to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.

  5. High-frequency magnetodielectric response in yttrium iron garnet at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming

    2018-05-01

    Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.

  6. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide.

    PubMed

    Zeljkovic, Ilija; Scipioni, Kane L; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-03-27

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.

  7. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  8. Photoconductivity in reactively evaporated copper indium selenide thin films

    NASA Astrophysics Data System (ADS)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-01

    Copper indium selenide thin films of composition CuInSe2 with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe2 films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 106 cm-1 at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe2 thin films indicate its suitability in photovoltaic applications.

  9. Surface characterization of low-temperature grown yttrium oxide

    NASA Astrophysics Data System (ADS)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  10. A divalent rare earth oxide semiconductor: Yttrium monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminaga, Kenichi; Sei, Ryosuke; Department of Chemistry, Tohoku University, Sendai 980-8578

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor.more » Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.« less

  11. A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film.

    PubMed

    Lin, Zhaoyang; Hollar, Courtney; Kang, Joon Sang; Yin, Anxiang; Wang, Yiliu; Shiu, Hui-Ying; Huang, Yu; Hu, Yongjie; Zhang, Yanliang; Duan, Xiangfeng

    2017-06-01

    A solid-state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low-cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu 2 Se) thin film, consisting of earth-abundant elements, is reported. The thin film is fabricated by a low-cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu 2 Se thin film exhibits a power factor of 0.62 mW/(m K 2 ) at 684 K on rigid Al 2 O 3 substrate and 0.46 mW/(m K 2 ) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu 2 Se thin films (<0.1 mW/(m K 2 )) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K 2 )). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low-cost and scalable pathway to high-performance flexible thin film thermoelectric devices from relatively earth-abundant elements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Romppanen, Sari; Häkkänen, Heikki; Kaski, Saara

    2017-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in analysis of rare earth element (REE) ores from the geological formation of Norra Kärr Alkaline Complex in southern Sweden. Yttrium has been detected in eudialyte (Na15 Ca6(Fe,Mn)3 Zr3Si(Si25O73)(O,OH,H2O)3 (OH,Cl)2) and catapleiite (Ca/Na2ZrSi3O9·2H2O). Singular value decomposition (SVD) has been employed in classification of the minerals in the rock samples and maps representing the mineralogy in the sampled area have been constructed. Based on the SVD classification the percentage of the yttrium-bearing ore minerals can be calculated even in fine-grained rock samples.

  13. Neutron scattering study of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Shamoto, Shin-ichi; Ito, Takashi U.; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato; Akatsu, Mitsuhiro; Kodama, Katsuaki; Nakao, Akiko; Moyoshi, Taketo; Munakata, Koji; Ohhara, Takashi; Nakamura, Mitsutaka; Ohira-Kawamura, Seiko; Nemoto, Yuichi; Shibata, Kaoru

    2018-02-01

    The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y3Fe5O12 have been studied using neutron scattering. The refined nuclear structure is distorted to a trigonal space group of R 3 ¯ . The highest-energy dispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16 a (octahedral) and 24 d (tetrahedral) sites, Ja a, Ja d, and Jd d, which are estimated to be 0.00 ±0.05 , -2.90 ±0.07 , and -0.35 ±0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of q -integrated dynamical spin susceptibility χ″(E ) exhibits a square-root energy dependence at low energies. The magnon density of state is estimated from χ″(E ) obtained on an absolute scale. The value is consistent with the single chirality mode for the magnon branch expected theoretically.

  14. Crystallization of lanthanum and yttrium aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Sadiki, Najim; Coutures, Jean Pierre; Fillet, Catherine; Dussossoy, Jean Luc

    2006-01-01

    The crystallization behaviour of aluminosilicate glasses of lanthanum (LAS) and yttrium (YAS) containing 2-8 mol% of Ln 2O 3 (Ln = La or Y), 12-30 mol% of Al 2O 3, and 64-80 mol% of SiO 2 has been studied by DTA, XRD and SEM-EDX analysis. X-ray diffraction results indicate the presence of the mullite phase and La 2Si 2O 7 in the monoclinic high-temperature G form (group space P2 1/c) for the LAS glasses, and mullite y-Y 2Si 2O 7 in the monoclinic structure (group space C2/m) and a small amount of β-Y 2Si 2O 7 in the orthorhombic structure (space group Pna2) for the YAS. For both cases, very little tridymite phase is observed. The results also show that the values of Tg for YAS are higher than those for LAS glasses. The crystallization of LAS glasses is more difficult than that of YAS. For all samples, we observed only one kind of mullite (Al/Si = 3.14).

  15. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  16. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide

    DOE PAGES

    Zeljkovic, Ilija; Scipioni, Kane L.; Walkup, Daniel; ...

    2015-03-27

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its highmore » energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. Finally, this opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.« less

  17. Efficient cold cathode emission in crystalline-amorphous hybrid: Study on carbon nanotube-cadmium selenide system

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Banerjee, D.; Das, N. S.; Ghorai, U. K.; Sen, D.; Chattopadhyay, K. K.

    2018-03-01

    Cadmium Selenide (CdSe) quantum dot (QD) decorated amorphous carbon nanotubes (a-CNTs) hybrids have been synthesized by simple chemical process. The samples were characterized by field emission scanning and transmission electron microscopy, Fourier transformed infrared spectroscopy, Raman and UV-Vis spectroscopy. Lattice image obtained from transmission electron microscopic study confirms the successful attachment of CdSe QDs. It is seen that hybrid samples show an enhanced cold emission properties with good stability. The results have been explained in terms of increased roughness, more numbers of emitting sites and favorable band bending induced electron transport. ANSYS software based calculation has also supported the result. Also a first principle based study has been done which shows that due to the formation of hybrid structure there is a profound upward shift in the Fermi level, i.e. a decrease of work function, which is believed to be another key reason for the observed improved field emission performance.

  18. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    PubMed

    George, Roy; Walsh, Laurence J

    2010-04-01

    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  19. MCrAlY bond coat with enhanced yttrium

    DOEpatents

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2016-08-30

    One or more embodiments relates to a method of producing an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. The method comprises depositing an MCrAlY material on a substrate, applying an Y.sub.2O.sub.3 paste, and heating the substrate in a non-oxidizing atmosphere at a temperature between 400-1300.degree. C. for a time sufficient to generate the Y--Al.sub.2O.sub.3 layer. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y.sub.2O.sub.3, YAG, and YAP phases.

  20. High-power 266 nm ultraviolet generation in yttrium aluminum borate.

    PubMed

    Liu, Qiang; Yan, Xingpeng; Gong, Mali; Liu, Hua; Zhang, Ge; Ye, Ning

    2011-07-15

    A yttrium aluminum borate [YAl(3)(BO(3))(4)] (YAB) crystal with UV cutoff wavelength of 165 nm is used as the nonlinear optical crystal for fourth harmonic generation. The fundamental frequency laser at 1064 nm from an Nd:YVO(4) master oscillator power amplifier laser was frequency doubled to 532 nm. Using the type I phase-matching YAB crystal, a 5.05 W average power 266 nm UV laser was obtained at the pulse repetition frequency of 65 kHz, corresponding to the conversion efficiency of 12.3% from 532 to 266 nm. The experimental results show great potential for the application of using YAB as a nonlinear optical crystal to get high-power fourth harmonic generation. © 2011 Optical Society of America

  1. Improving of the electrical and magnetic properties of BiFeO{sub 3} by doping with yttrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilić, Nikola I., E-mail: niksentije@gmail.com; Bobić, Jelena D.; Stojadinović, Bojan S.

    2016-05-15

    Bismuth ferrite is one of the most promising multiferroic materials, and the main barriers for exploiting all of its specific properties are difficulties in obtaining pure, high resistive material with nanosized grains. Doping of BiFeO{sub 3} with different transition metals and rare earth elements is often used way for overcoming these obstacles. Yttrium doped bismuth ferrite, Bi{sub 1−x}Y{sub x}FeO{sub 3} (x = 0; 0.01; 0.03; 0.05; 0.1), was prepared by auto-combustion method. X-ray diffraction patterns and Raman results showed that partial phase transition from rhombohedral to orthorhombic structure took place at around 10 mol% of Y. Effect of Y dopingmore » on microstructure was studied from SEM micrographies, showing the reduction of grain size in doped samples. Electrical measurements showed continuous improvement of resistivity with Y doping, whereas the values of saturation and remnant polarizations exhibit maximums at around 5 mol% of Y. Yttrium doping also enhanced magnetic properties, leading to weak ferromagnetism.« less

  2. Titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition and a process for making the same

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1991-01-01

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  3. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    PubMed

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  4. Process for separation of zirconium-88, rubidium-83 and yttrium-88

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1994-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.

  5. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of themore » phenomenon is demonstrated.« less

  6. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors.

    PubMed

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-01-19

    In this work, bismuth selenides (Bi 2 Se 3 and Bi 3 Se 4 ), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi 2 Se 3 nanoplates exhibit much better performance as an electrode material than Bi 3 Se 4 nanoparticles do, delivering a higher specific capacitance (272.9 F g -1 ) than that of Bi 3 Se 4 (193.6 F g -1 ) at 5 mV s -1 . This result may be attributed to the fact that Bi 2 Se 3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi 3 Se 4 ). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi 2 Se 3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm -3 at 20 mV s -1 (Bi 3 Se 4 : 79.1 F cm -3 ), a high energy density of 17.9 mWh cm -3 and a high power density of 18.9 W cm -3 . The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi 2 Se 3 (Bi 3 Se 4 :90.3%). Clearly, Bi 2 Se 3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  7. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-02-01

    In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  8. A Molecular Ni-complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation.

    PubMed

    Masud, Jahangir; Ioannou, Polydoros-Chrysovalantis; Levesanos, Nikolaos; Kyritsis, Panayotis; Nath, Manashi

    2016-11-23

    We report the highly efficient catalytic activity of a transition metal selenide-based coordination complex, [Ni{(SeP i Pr 2 ) 2 N} 2 ], (1) for oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solution. Very low overpotentials of 200 mV and 310 mV were required to achieve 10 mA cm -2 for OER and HER, respectively. The overpotential for OER is one of the lowest that has been reported up to now, making this one of the best OER electrocatalysts. In addition, this molecular complex exhibits an exceptionally high mass activity (111.02 A g -1 ) and a much higher TOF value (0.26 s -1 ) at a overpotential of 300 mV. This bifunctional electrocatalyst enables water electrolysis in alkaline solutions at a cell voltage of 1.54 V. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  10. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    NASA Astrophysics Data System (ADS)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  11. [Intracoronary brachytherapy with strontium/yttrium-90. Initial experiences in Germany].

    PubMed

    Silber, S; von Rottkay, P; Gielow, A; Schneider, A; Bauer, A; Schöfer, H

    1998-09-01

    Restenosis after PTCA is still an unresolved problem and occurs in approximately 30% of our patients despite a stent implantation rate of up to 63%. Intracoronary brachytherapy has the potential to counteract the proliferative component of restenosis as well as to prevent shrinking of the coronary artery. Two years ago, we applied for the license to use the Novoste Beta-Cath system. This is the first report of its use in Germany. Attaining the license was complicated by the facts that this device did not yet have CE-certification (MPG section 17), that brachytherapy is not yet an approved method of treatment (StrSchV section 41), the report of the BfS and the approval by an accredited ethical committee. The application becomes even more complicated by the amount demanded by the LfU for insurance: 1 Million DM for each individual patient (AtDeckV section 15). The final local inspection needs to be performed by an expert from the LfAS (StrSchV section 76). Strontium-90 decays into Yttrium-90 with a half-life time of approximately 28 years. Yttrium-90, too, is a pure beta-emitter with a shorter half-life time of approximately 64 hours and a considerably higher electron energy of maximum 2.27 MeV. Yttrium-90 is the therapeutic agent. The radiation source of the Beta-Cath system consists of 12 single, separate cylinders (pellets, seeds) with a total length of 3 cm. The activity of the total train is approximately 1.3 to 1.5 GBq (35 to 40 mCi). For verification of the dose rate provided by the manufacturer, we performed a check using the GafChromic film. The test dose (exactly 2 mm from the center of the long axis of the activity train) was 150 Gy. We obtained the following results for the optical density: reference source: 0.29 +/- 0.01, source C: 0.318 +/- 0.013 and source D: 0.317 +/- 0.028. For a dose rate of e.g. 0.083 Gy/s, the radiation times are 169 s for a dose of 14 Gy (vessel diameter 2.7 to 3.35 mm) or 217 s for 18 Gy (vessel diameter 3.36 to 4.0 mm

  12. Process for the separation and purification of yttrium-90 for medical applications

    DOEpatents

    Horwitz, P.E.; Dietz, M.L.

    1994-11-29

    An extraction chromatographic method for the preparation of [sup 90]Y of high chemical and radiochemical purity is disclosed. After an initial purification of a [sup 90]Sr stock solution and a suitable period of [sup 90]Y ingrowth, the solution is passed through a series of strontium-selective chromatographic columns, each of which lowers the [sup 90]Sr content of the mixture by a factor of about 10[sup 3]. The [sup 90]Y remaining is freed from any residual [sup 90]Sr, from its [sup 90]Zr daughter, and from any remaining impurities by passing the sample through a final column designed to selectively retain yttrium. 5 figures.

  13. Process for the separation and purification of yttrium-90 for medical applications

    DOEpatents

    Horwitz, Philip E.; Dietz, Mark L.

    1994-01-01

    An extraction chromatographic method for the preparation of .sup.90 Y of high chemical and radiochemical purity is disclosed. After an initial purification of a .sup.90 Sr stock solution and a suitable period of .sup.90 Y ingrowth, the solution is passed through a series of strontium-selective chromatographic columns, each of which lowers the .sup.90 Sr content of the mixture by a factor of about 10.sup.3. The .sup.90 Y remaining is freed from any residual .sup.90 Sr, from its .sup.90 Zr daughter, and from any remaining impurities by passing the sample through a final column designed to selectively retain yttrium.

  14. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  15. Reducing graphene device variability with yttrium sacrificial layers

    NASA Astrophysics Data System (ADS)

    Wang, Ning C.; Carrion, Enrique A.; Tung, Maryann C.; Pop, Eric

    2017-05-01

    Graphene technology has made great strides since the material was isolated more than a decade ago. However, despite improvements in growth quality and numerous "hero" devices, challenges of uniformity remain, restricting the large-scale development of graphene-based technologies. Here, we investigate and reduce the variability of graphene transistors by studying the effects of contact metals (with and without a Ti layer), resist, and yttrium (Y) sacrificial layers during the fabrication of hundreds of devices. We find that with optical photolithography, residual resist and process contamination are unavoidable, ultimately limiting the device performance and yield. However, using Y sacrificial layers to isolate the graphene from processing conditions improves the yield (from 73% to 97%), the average device performance (three-fold increase of mobility and 58% lower contact resistance), and the device-to-device variability (standard deviation of Dirac voltage reduced by 20%). In contrast to other sacrificial layer techniques, the removal of the Y sacrificial layer with dilute HCl does not harm surrounding materials, simplifying large-scale graphene fabrication.

  16. Experimental formation of Pb, Sn, Ge and Sb sulfides, selenides and chlorides in the presence of sal ammoniac: A contribution to the understanding of the mineral formation processes in coal wastes self-burning

    NASA Astrophysics Data System (ADS)

    Laufek, František; Veselovsky, František; Drábek, Milan; Kříbek, Bohdan; Klementová, Mariana

    2017-04-01

    The formation of sulfides, selenides and chlorides was experimentally studied at 800 or 900°C in the presence of sal ammoniac in a sealed silica glass tube. Synthetic PbS, PbSe, SnS, GeS, SnGeS2, PbSnS3, SnS and Sb2S3 or natural uraninite were used as a starting charge. Depending on the chemical composition of the sulfide/selenide charge, galena, unnamed SnGeS3 phase, herzenbergite, berndite, ottenmannite, stibnite and unnamed SnSb2S4 and Sn2Sb3S6 phases were identified in sublimates, together with cotunnite and an unnamed (NH4)2SnCl6 phase. When natural uraninite in a mixture with sal ammoniac was used as a charge, the reaction product comprised abundant cotunnite and minor challacolloite due to volatilization of radiogenic lead. When sulfur was introduced to the charge with uraninite and sal ammoniac, galena was found in reaction products. The results of our experiments revealed that if sulfide or selenide phases and NH4Cl are placed in a thermal gradient, it is possible to accelerate their mobility through a process of hydrogen chloride vapor transport. Within the transport process, new solid products are either isochemical or non-isochemical. The isochemical composition of resulting phases with charge probably represents simple sublimation of the original solid phase in form of self-vapor. The non-isochemical phases are probably formed due to combination of sublimation and condensation of various gas components including gaseous HCl. The valency change of metals (e.g. Sn2+ to Sn3+) in several reaction products indicates redox reactions in the gas mixture or during the solidification of resulting products. The role of ammoniac is not clear; however, formation of unnamed (NH4)2SnCl6 compound identified in one of our experiment, indicate possible formation of ammonium complexes. In contrast to experiments where sulfides or selenides were used as a part of charge, mobility of uraninite was not proved under experimental conditions employed. It is consistent with an

  17. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    NASA Astrophysics Data System (ADS)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  18. Surfactant mediated synthesis of bismuth selenide thin films for photoelectrochemical solar cell applications.

    PubMed

    Desai, Neha D; Khot, Kishorkumar V; Ghanwat, Vishvanath B; Kharade, Suvarta D; Bhosale, Popatrao N

    2018-03-15

    In the present report, nanostructured bismuth selenide (Bi 2 Se 3 ) thin films have been successfully deposited by using arrested precipitation technique (APT) at room temperature. The effect of three different surfactants on the optostructural, morphological, compositional and photoelectrochemical properties of Bi 2 Se 3 thin films were investigated. Optical absorption data indicates direct and allowed transition with a band gap energy varied from 1.4 eV to 1.8 eV. The X-ray diffraction pattern (XRD) revealed that Bi 2 Se 3 thin films are crystalline in nature and confirmed rhombohedral crystal structure. SEM micrographs shows morphological transition from interconnected mesh to nanospheres like and finally granular morphology. Surface topography of Bi 2 Se 3 thin films was determined by AFM. Compositional analysis of all samples was carried out by energy dispersive X-ray spectroscopy (EDS). Finally, all Bi 2 Se 3 thin films shows good PEC performance with highest photoconversion efficiency 1.47%. In order to study the stability of Bi 2 Se 3 thin films four cycles are repeated after gap of one week each. Further PEC performance of all Bi 2 Se 3 thin films are also supported by electrochemical impedance (EIS) measurement study. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing

    2012-09-15

    Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less

  20. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  1. Revising the magnetic structure and dynamics of Yttrium Iron Garnet

    NASA Astrophysics Data System (ADS)

    Princep, Andrew; Boothroyd, Andrew; Ewings, Russell; Ward, Simon; Dubs, Carsten

    Yttrium iron garnet (YIG) is the `miracle material' of microwave magnetics. Since its synthesis by Geller and Gilleo in 1957, it is widely acknowledged to have contributed more to the understanding of electronic spin-wave and magnon dynamics than any other substance. Its astonishingly narrow excitation linewidth allows magnon propagation to be observed over centimetre distances, making it both a superior model system for the experimental study of fundamental aspects of microwave magnetic dynamics and an ideal platform for the development of microwave magnetic technologies. Our experiments on a large, pristine single crystal at the ISIS facility using both diffraction and time-of-flight spectroscopy have provided new results on both the magnetic structure and the excitation spectrum, which revise nearly 60 years of scientific research and will be essential insights for the fledgling scientific field of Magnonics. EPSRC, UK.

  2. Excitation of the three principal spin waves in yttrium iron garnet using a wavelength-specific multi-element antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho

    We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 um thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 um spatially-resonant, antenna.

  3. Excitation of the three principal spin waves in yttrium iron garnet using a wavelength-specific multi-element antenna

    DOE PAGES

    Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho; ...

    2017-12-22

    We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 um thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 um spatially-resonant, antenna.

  4. Reactivity of yttrium carboxylates toward alkylaluminum hydrides.

    PubMed

    Schädle, Christoph; Fischbach, Andreas; Herdtweck, Eberhardt; Törnroos, Karl W; Anwander, Reiner

    2013-11-25

    Yttrocene-carboxylate complex [Cp*2Y(OOCAr(Me))] (Cp*=C5Me5, Ar(Me) =C6H2Me3-2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare-earth-metal carboxylates. Equimolar reactions with bis-neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium-aluminum-hydride complex [{Cp*2Y(μ-H)AlMe2(μ-H)AlMe2(μ-CH3)}2] could be isolated, which features a 12-membered-ring structure. The adduct complexes [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] display identical (1)J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar (89)Y NMR shifts of δ=-88.1 ppm (R=CH2SiMe3) and δ=-86.3 ppm (R=Me) in the (89)Y DEPT45 NMR experiments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-pressure investigations of yttrium(III) oxoarsenate(V): Crystal structure and luminescence properties of Eu3+-doped scheelite-type Y[AsO4] from xenotime-type precursors

    NASA Astrophysics Data System (ADS)

    Ledderboge, Florian; Nowak, Jan; Massonne, Hans-Joachim; Förg, Katharina; Höppe, Henning A.; Schleid, Thomas

    2018-07-01

    Colourless, water- and air-stable single crystals of yttrium(III) oxoarsenate(V) Y[AsO4] in the xenotime-type crystal structure were prepared by the reaction of yttrium sesquioxide (Y2O3) dissolved in aqueous nitric acid (13%) with a solution of arsenic(V) oxide hydrate (As2O5·3H2O) and subsequent neutralization with 1 M caustic soda. Y[AsO4] crystallizes tetragonally in the space group I41/amd with the lattice parameters a = 704.63(6) and c = 628.94(5) pm for Z = 4 and is isotypic to the minerals xenotime RE[PO4] (RE: mainly Y and Yb) and chernovite RE[AsO4] (RE: mainly Y and Ce). This xenotime-type yttrium compound was used as precursor in a high-pressure experiment (20 kbar) at 700 °C to create a new tetragonal modification of Y[AsO4]. It shows the scheelite-type structure (space group: I41/a) with the lattice parameters a = 498.23(4) and c = 1120.71(9) pm for Z = 4, named after the mineral scheelite (Ca[WO4]). Both tetragonal structures are characterized by only one crystallographically unique position for each of the Y3+, As5+ and O2- ions with distances of d(Y-O) = 232 and 241 pm (C.N. = 8) as well as d(As-O) = 169 pm (C.N. = 4) in the case of the scheelite-type structure. The xenotime-type compound shows an unexpected slight decrease in average bond lengths for the yttrium to oxygen (d(Y-O) = 230 and 241 pm, C.N. = 8) as well as for the arsenic to oxygen distances (d(As-O) = 168 pm, C.N. = 4), accompanied by a drastic density increase from Dx = 4.85 (xenotime type) to Dx = 5.44 g • cm-3 (scheelite type). Luminescence spectroscopic measurements of the Eu3+-doped Y[AsO4] samples, obtained in experiments at similar conditions as for the pure compounds, show a bright, reddish lighting for the scheelite type, which does not occur for the xenotime type of yttrium(III) oxoarsenate(V).

  6. Thermo-optical characterization of cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots embedded in biocompatible materials.

    PubMed

    Pilla, Viviane; Alves, Leandro P; Iwazaki, Adalberto N; Andrade, Acácio A; Antunes, Andrea; Munin, Egberto

    2013-09-01

    Cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) embedded in biocompatible materials were thermally and optically characterized with a thermal lens (TL) technique. Transient TL measurements were performed with a mode-mismatched, dual-beam (excitation and probe) configuration. A thermo-optical study of the CdSe/ZnS QDs was performed for different core diameters (3.5, 4.0, 5.2, and 6.6 nm) in aqueous solution and synthetic saliva, and three different core diameters (2.4, 2.9, and 4.1 nm) embedded in restorative dental resin (0.025% by mass). The thermal diffusivity results are characteristic of the biocompatible matrices. The radiative quantum efficiencies for aqueous solution and biofluid materials are dependent on the core size of the CdSe/ZnS core-shell QDs. The results obtained from the fluorescence spectral measurements for the biocompatible materials support the TL results.

  7. Optimized conditions for chelation of yttrium-90-DOTA immunoconjugates.

    PubMed

    Kukis, D L; DeNardo, S J; DeNardo, G L; O'Donnell, R T; Meares, C F

    1998-12-01

    Radioimmunotherapy (RIT) with 90Y-labeled immunoconjugates has shown promise in clinical trials. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) binds 90Y with extraordinary stability, minimizing the toxicity of 90Y-DOTA immunoconjugates arising from loss of 90Y to bone. However, reported 90Y-DOTA immunoconjugate product yields have been typically only < or =50%. Improved yields are needed for RIT with 90Y-DOTA immunoconjugates to be practical. (S) 2-[p-(bromoacetamido)benzyl]-DOTA (BAD) was conjugated to the monoclonal antibody Lym-1 via 2-iminothiolane (2IT). The immunoconjugate product, 2IT-BAD-Lym-1, was labeled in excess yttrium in various buffers over a range of concentrations and pH. Kinetic studies were performed in selected buffers to estimate radiolabeling reaction times under prospective radiopharmacy labeling conditions. The effect of temperature on reaction kinetics was examined. Optimal radiolabeling conditions were identified and used in eight radiolabeling experiments with 2IT-BAD-Lym-1 and a second immunoconjugate, DOTA-peptide-chimeric L6, with 248-492 MBq (6.7-13.3 mCi) of 90Y. Ammonium acetate buffer (0.5 M) was associated with the highest uptake of yttrium. On the basis of kinetic data, the time required to chelate 94% of 90Y (four half-times) under prospective radiopharmacy labeling conditions in 0.5 M ammonium acetate was 17-148 min at pH 6.5, but it was only 1-10 min at pH 7.5. Raising the reaction temperature from 25 degrees C to 37 degrees C markedly increased the chelation rate. Optimal radiolabeling conditions were identified as: 30-min reaction time, 0.5 M ammonium acetate buffer, pH 7-7.5 and 37 degrees C. In eight labeling experiments under optimal conditions, a mean product yield (+/- s.d.) of 91%+/-8% was achieved, comparable to iodination yields. The specific activity of final products was 74-130 MBq (2.0-3.5 mCi) of 90Y per mg of monoclonal antibody. The immunoreactivity of 90Y

  8. Alkylation of pyridines at their 4-positions with styrenes plus yttrium reagent or benzyl Grignard reagents.

    PubMed

    Mizumori, Tomoya; Hata, Takeshi; Urabe, Hirokazu

    2015-01-02

    A new regioselective alkylation of pyridines at their 4-position was achieved with styrenes in the presence of yttrium trichloride, BuLi, and diisobutylaluminium hydride (DIBAL-H) in THF. Alternatively, similar products were more simply prepared from pyridines and benzyl Grignard reagents. These reactions are not only a useful preparation of 4-substituted pyridines but are also complementary to other relevant reactions usually giving 2-substituted pyridines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A process for the separation and purification of yttrium-90 for medical applications

    DOEpatents

    Horwitz, P.E.; Dietz, M.L.

    1993-01-01

    An extraction chromatographic method for the preparation of {sup 90}Y of high chemical and radiochemical purity is disclosed. After an initial purification of a {sup 90}Sr stock solution and a suitable period of {sup 90}Y ingrowth, the solution is passed through a series of strontium-selective chromatographic columns, each of which lowers the {sup 90}Sr content of the mixture by a factor of about 10{sup 3}. The {sup 90}Y remaining is freed from any residual {sup 90}Sr, from its {sup 90}Zr daughter, and from any remaining impurities by passing the sample through a final column designed to selectively retain yttrium.

  10. Pseudopotential plane-wave calculation of the structural properties of yttrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Chou, M.Y.

    1991-11-01

    The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less

  11. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A.

    2016-05-06

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Ymore » doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.« less

  12. Excitation of the three principal spin waves in yttrium iron garnet using a wavelength-specific multi-element antenna

    NASA Astrophysics Data System (ADS)

    Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Hoffmann, Axel; Ketterson, John B.

    2018-05-01

    We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 μm thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 μm spatially-resonant, antenna.

  13. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    DOE PAGES

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; ...

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less

  14. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  15. Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film

    PubMed Central

    Li, Fuxiang; Saslow, Wayne M.; Pokrovsky, Valery L.

    2013-01-01

    Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H, and a new type of collective oscillation. PMID:23455849

  16. Synthesis, crystal structures and luminescence properties of the Eu 3+-doped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13

    NASA Astrophysics Data System (ADS)

    Höss, Patrick; Osvet, Andres; Meister, Frank; Batentschuk, Miroslaw; Winnacker, Albrecht; Schleid, Thomas

    2008-10-01

    Y 2Te 4O 11:Eu 3+ and Y 2Te 5O 13:Eu 3+ single crystals in sub-millimeter scale were synthesized from the binary oxides (Y 2O 3, Eu 2O 3 and TeO 2) using CsCl as fluxing agent. Crystallographic structures of the undoped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13 have been determined and refined from single-crystal X-ray diffraction data. In Y 2Te 4O 11, a layered structure is present where the reticulated sheets consisting of edge-sharing [YO 8] 13- polyhedra are interconnected by the oxotellurate(IV) units, whereas in Y 2Te 5O 13 only double chains of condensed yttrium-oxygen polyhedra with coordination numbers of 7 and 8 are left, now linked in two crystallographic directions by the oxotellurate(IV) entities. The Eu 3+ luminescence spectra and the decay time from different energy levels of the doped compounds were investigated and all detected emission levels were identified. Luminescence properties of the Eu 3+ cations have been interpreted in consideration of the now accessible detailed crystallographic data of the yttrium compounds, providing the possibility to examine the influence of the local symmetry of the oxygen coordination spheres.

  17. Magnetophotonic crystals based on yttrium-iron-garnet infiltrated opals: Magnetization-induced second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Murzina, T. V.; Kim, E. M.; Kapra, R. V.; Moshnina, I. V.; Aktsipetrov, O. A.; Kurdyukov, D. A.; Kaplan, S. F.; Golubev, V. G.; Bader, M. A.; Marowsky, G.

    2006-01-01

    Three-dimensional magnetophotonic crystals (MPCs) based on artificial opals infiltrated by yttrium iron garnet (YIG) are fabricated and their structural, optical, and nonlinear optical properties are studied. The formation of the crystalline YIG inside the opal matrix is checked by x-ray analysis. Two templates are used for the infiltration by YIG: bare opals and those covered by a thin platinum film. Optical second-harmonic generation (SHG) technique is used to study the magnetization-induced nonlinear-optical properties of the composed MPCs. A high nonlinear magneto-optical Kerr effect in the SHG intensity is observed at the edge of the photonic band gap of the MPCs.

  18. Synthesis and characterization of amorphous yttrium oxide layers by metal organic chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Martynova, I.; Tsymbarenko, D.; Kamenev, A.; Kuzmina, N.; Kaul, A.

    2014-02-01

    The Solution Deposition Planarization method was successfully used for smoothing Ni-alloy tapes with initial surface roughness of 26.7 nm (on 40×40 μm2 area) and 12.6 nm (on 5×5 μm2 area). New precursor solutions were prepared from yttrium acetate and diethylenetriamine or ethylenediamine in MeOH and i-PrOH-alcohols with different viscosities. Using those solutions yttria films with the residual roughness Sa=0.4 nm (on 5×5 μm2 area) and Sa=7.6 nm (on 40×40 μm2 area) were deposited on the Ni-alloy tapes.

  19. Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Zaki, Aliaa M.; Blythe, Harry J.; Heald, Steve M.; Fox, A. Mark; Gehring, Gillian A.

    2018-05-01

    Thin films with properties comparable to bulk single crystals were grown by pulsed laser deposition using a substrate temperature of only 500 °C. This was achieved by a careful choice of both the oxygen pressure in the deposition chamber and the temperature of the air anneal. The best films were grown on gadolinium gallium garnet substrates but we also report data for films grown on the diamagnetic substrate yttrium aluminium garnet. The films were analysed using X-ray diffraction, near edge X-ray absorption and magnetometry. Our best films had a magnetisation of 143 emu/cm3 and a coercive field of ∼1 Oe.

  20. Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy.

    PubMed

    Zhang, Yaohong; Wu, Guohua; Ding, Chao; Liu, Feng; Yao, Yingfang; Zhou, Yong; Wu, Congping; Nakazawa, Naoki; Huang, Qingxun; Toyoda, Taro; Wang, Ruixiang; Hayase, Shuzi; Zou, Zhigang; Shen, Qing

    2018-06-18

    Lead selenide (PbSe) colloidal quantum dots (CQDs) are considered to be a strong candidate for high-efficiency colloidal quantum dot solar cells (CQDSCs) due to its efficient multiple exciton generation. However, currently, even the best PbSe CQDSCs can only display open-circuit voltage ( V oc ) about 0.530 V. Here, we introduce a solution-phase ligand exchange method to prepare PbI 2 -capped PbSe (PbSe-PbI 2 ) CQD inks, and for the first time, the absorber layer of PbSe CQDSCs was deposited in one step by using this PbSe-PbI 2 CQD inks. One-step-deposited PbSe CQDs absorber layer exhibits fast charge transfer rate, reduced energy funneling, and low trap assisted recombination. The champion large-area (active area is 0.35 cm 2 ) PbSe CQDSCs fabricated with one-step PbSe CQDs achieve a power conversion efficiency (PCE) of 6.0% and a V oc of 0.616 V, which is the highest V oc among PbSe CQDSCs reported to date.

  1. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    PubMed

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  2. High-resolution electronic spectra of yttrium oxide (YO): The D2Σ+-X2Σ+ transition.

    PubMed

    Zhang, Deping; Zhang, Qiang; Zhu, Boxing; Gu, Jingwang; Suo, Bingbing; Chen, Yang; Zhao, Dongfeng

    2017-03-21

    The D 2 Σ + -X 2 Σ + electronic absorption spectrum of the astrophysically relevant yttrium oxide (YO) molecule has been recorded for the first time in the 400-440 nm region using laser induced fluorescence. YO molecules are produced by corona discharge of oxygen between the tips of two yttrium needles in a supersonic jet expansion. An unambiguous spectroscopic identification of the D 2 Σ + -X 2 Σ + transition becomes possible from a combined analysis of the moderate-resolution laser excitation spectrum and dispersed fluorescence spectrum. We have also performed multi-state complete active space second order perturbation theory calculations on the first six doublets of YO, and the results support our assignment of the D 2 Σ + state. Accurate spectroscopic constants for D 2 Σ + ν' = 0 and 1 levels have been determined from a rotational analysis of the high resolution spectra that are recorded with a resolution of ∼0.018 cm -1 . Severe perturbations are observed in the experimental spectra and are considered to originate from interactions with at least one nearby 2/4 Π electronic state, e.g., the undetected C 2 Π state. We have also measured the radiative lifetimes of B 2 Σ + ν' = 0, and D 2 Σ + ν' = 0 and 1 states, based on which the B 2 Σ + -X 2 Σ + (0, 0) and D 2 Σ + -X 2 Σ + (0/1, 0) band oscillator strengths have been determined.

  3. High-resolution electronic spectra of yttrium oxide (YO): The D2Σ+-X2Σ+ transition

    NASA Astrophysics Data System (ADS)

    Zhang, Deping; Zhang, Qiang; Zhu, Boxing; Gu, Jingwang; Suo, Bingbing; Chen, Yang; Zhao, Dongfeng

    2017-03-01

    The D2Σ+ -X2Σ+ electronic absorption spectrum of the astrophysically relevant yttrium oxide (YO) molecule has been recorded for the first time in the 400-440 nm region using laser induced fluorescence. YO molecules are produced by corona discharge of oxygen between the tips of two yttrium needles in a supersonic jet expansion. An unambiguous spectroscopic identification of the D2Σ+ -X2Σ+ transition becomes possible from a combined analysis of the moderate-resolution laser excitation spectrum and dispersed fluorescence spectrum. We have also performed multi-state complete active space second order perturbation theory calculations on the first six doublets of YO, and the results support our assignment of the D2Σ+ state. Accurate spectroscopic constants for D2Σ+ ν ' = 0 and 1 levels have been determined from a rotational analysis of the high resolution spectra that are recorded with a resolution of ˜0.018 cm-1. Severe perturbations are observed in the experimental spectra and are considered to originate from interactions with at least one nearby 2/4Π electronic state, e.g., the undetected C2Π state. We have also measured the radiative lifetimes of B2 Σ+ ν ' = 0, and D2 Σ+ ν ' = 0 and 1 states, based on which the B2Σ+ -X2Σ+ (0, 0) and D2Σ+ -X2Σ+ (0/1, 0) band oscillator strengths have been determined.

  4. Investigation of Electronic and Opto-Electronic Properties of Two-Dimensional (2D) Layers of Copper Indium Selenide Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Patil, Prasanna Dnyaneshwar

    Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility microFE ≈ 36 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of 104 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility microFE can be increased from

  5. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  6. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  7. Reduction of elemental selenium to selenide: Experiments with anoxic sediments and bacteria that respire Se-oxyanions

    USGS Publications Warehouse

    Herbel, M.J.; Blum, J.S.; Oremland, R.S.; Borglin, S.E.

    2003-01-01

    A selenite-respiring bacterium, Bacillus selenitireducens, produced significant levels of Se(-II) (as aqueous HSe-) when supplied with Se(O). B. selenitireducens was also able to reduce selenite [Se(IV)] through Se(O) to Se(-II). Reduction of Se(O) by B.selenitireducens was more rapid in cells grown on colloidal sulfur [S(O)] or Se(IV) as their electron acceptor than for cell lines grown on fumarate. In contrast, three cultures of selenate-respiring bacteria, Sulfurospirillum barnesii, B. arsenicoselenatis, and Selenihalanaerobacter shriftii either were unable to reduce Se(O) to Se(-II) or had only a very limited capacity to achieve this reduction. Biological reduction of Se(O) to Se(-II) was observed during incubation of estuarine sediment slurries, while no such activity was noted in formalin-killed controls. The majority of the Se(-II) produced was found in the sediments as a solid precipitate of FeSe, rather than in solution as HSe-. These results demonstrate that certain anaerobic bacteria have the capacity to reduce Se(O) to Se(-II), providing a possible biological explanation for the occurrence of the selenide species in some sedimentary rocks.

  8. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  9. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    PubMed

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C.

  10. Development of bismuth tellurium selenide nanoparticles for thermoelectric applications via a chemical synthetic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Cham; Department of Chemical Engineering, Pohang University of Science and Technology; Kim, Dong Hwan

    2011-03-15

    Research highlights: {yields} We synthesized a Bi{sub 2}Te{sub y}Se{sub 3-y} nano-compound via a chemical synthetic process. {yields} The compound was sintered to achieve an average grain size of about 300 nm. {yields} The resulting sintered body showed very low thermal conductivity. It is likely caused by the vigorous phonon scattering of the nano-sized grains. -- Abstract: Bismuth tellurium selenide (Bi{sub 2}Te{sub y}Se{sub 3-y}) nanoparticles for thermoelectric applications are successfully prepared via a water-based chemical reaction under atmospheric conditions. The nanostructured compound is prepared using a complexing agent (ethylenediaminetetraacetic acid) and a reducing agent (ascorbic acid) to stabilize the bismuth precursormore » (Bi(NO{sub 3}){sub 3}) in water and to favor the reaction with reduced sources of tellurium and selenium. The resulting powder is smaller than ca. 100 nm and has a crystalline structure corresponding to the rhombohedral Bi{sub 2}Te{sub 2.7}Se{sub 0.3}. The nanocrystalline powder is sintered via a spark plasma sintering process to obtain a sintered body composed of nano-sized grains. Important transport properties of the sintered body are measured to calculate its most important characteristic, the thermoelectric performance. The results demonstrate a relationship between the nanostructure of the sintered body and its thermal conductivity.« less

  11. Coexistence of multiphase superconductivity and ferromagnetism in lithiated iron selenide hydroxide [(L i1 -xF ex) OH ]FeSe

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Valmianski, Ilya; Pachmayr, Ursula; Basaran, Ali C.; Johrendt, Dirk; Schuller, Ivan K.

    2018-01-01

    We present experimental evidence for (a) multiphase superconductivity and (b) coexistence of magnetism and superconductivity in a single structural phase of lithiated iron selenide hydroxide [(L i1 -xF ex )OH]FeSe. Magnetic field modulated microwave spectroscopy data confirms superconductivity with at least two distinct transition temperatures attributed to well-defined superconducting phases at TSC 1=40 ±2 K and TSC 2=35 ±2 K. Magnetometry data for the upper critical fields reveal a change in the magnetic order (TM=12 K) below TSC 1 and TSC 2 that is consistent with ferromagnetism. This occurs because the superconducting coherence length is much smaller than the structural coherence length, allowing for several different electronic and magnetic states on a single crystallite. The results give insight into the physics of complex multinary materials, where several phenomena governed by different characteristic length scales coexist.

  12. Influence of Post-Heat Treatment of ZnO:Al Transparent Electrode for Copper Indium Gallium Selenide Thin Film Solar Cell.

    PubMed

    Eom, Taewoo; Park, Jeong Eun; Park, Sang Yong; Park, Jeong Hoon; Bweupe, Jackson; Lim, Donggun

    2018-09-01

    Copper indium gallium selenide (CIGS) thin film solar cells have been regarded as a candidate for energy conversion devices owing to their high absorption coefficient, high temperature stability, and low cost. ZnO:Al thin film is commonly used in CIGS solar cells as a window layer. In this study, ZnO:Al films were deposited on glass under various post-heat temperature using RF sputtering to observe the characteristics of ZnO:Al films such as Hall mobility, carrier concentration, and resistivity; subsequently, the ZnO:Al films were applied to a CIGS solar cell as a window. CIGS solar cells fabricated with various ZnO:Al films were analyzed in order to investigate their influence. The test results showed that the improvement of ZnO:Al characteristics affects Jsc and Voc in the solar cell through reduced recombination and increase of optical property.

  13. Current Role of Selective Internal Irradiation With Yttrium-90 Microspheres in the Management of Hepatocellular Carcinoma: A Systematic Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Wan Yee, E-mail: josephlau@cuhk.edu.hk; Lai, Eric C.H.; Leung, Thomas W.T.

    2011-10-01

    Purpose: This article reviews the role of selective internal irradiation (SIR) with yttrium-90 ({sup 90}Y) microspheres for hepatocellular carcinoma (HCC). Methods and Materials: Studies were identified by searching Medline and PubMed databases for articles from 1990 to 2009 using the keywords 'selective internal irradiation,' 'hepatocellular carcinoma,' 'therapeutic embolization,' and 'yttrium-90.' Results: {sup 90}Y microspheres are a safe and well-tolerated therapy for unresectable HCC (median survival range, 7 -21.6 months). The evidence was limited to cohort studies and comparative studies with historical control. {sup 90}Y microspheres have been reported to downstage unresectable HCC to allow for salvage treatments with curative intent,more » act as a bridging therapy before liver transplantation, and treat HCC with curative intent for patients who are not surgical candidates because of comorbidities. Conclusions: {sup 90}Y microsphere is recommended as an option of palliative therapy for large or multifocal HCC without major portal vein invasion or extrahepatic spread. It can also be used for recurrent unresectable HCC, as a bridging therapy before liver transplantation, as a tumor downstaging treatment, and as a curative treatment for patients with associated comorbidities who are not candidates for surgery.« less

  14. Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations

    NASA Astrophysics Data System (ADS)

    Vetoshko, P. M.; Gusev, N. A.; Chepurnova, D. A.; Samoilova, E. V.; Syvorotka, I. I.; Syvorotka, I. M.; Zvezdin, A. K.; Korotaeva, A. A.; Belotelov, V. I.

    2016-08-01

    A new type of f lux-gate vector magnetometer based on epitaxial yttrium iron garnet films has been developed and constructed for magnetocardiography (MCG) investigations. The magnetic field sensor can operate at room temperature and measure MCG signals at a distance of about 1 mm from the thoracic cage. The high sensitivity of the sensor, better than 100 fT/Hz1/2, is demonstrated by the results of MCG measurements on rats. The main MCG pattern details and R-peak on a level of 10 pT are observed without temporal averaging, which allows heart rate anomalies to be studied. The proposed magnetic sensors can be effectively used in MCG investigations.

  15. Spin wave propagation in perpendicularly magnetized nm-thick yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Chen, Jilei; Heimbach, Florian; Liu, Tao; Yu, Haiming; Liu, Chuanpu; Chang, Houchen; Stückler, Tobias; Hu, Junfeng; Zeng, Lang; Zhang, Youguang; Liao, Zhimin; Yu, Dapeng; Zhao, Weisheng; Wu, Mingzhong

    2018-03-01

    Magnonics offers a new way for information transport that uses spin waves (SWs) and is free of charge currents. Unlike Damon-Eshbach SWs, the magneto-static forward volume SWs offer the reciprocity configuration suitable for SW logic devices with low power consumption. Here, we study forward volume SW propagation in yttrium iron garnet (YIG) thin films with an ultra-low damping constant α = 8 ×10-5 . We design different integrated microwave antenna with different k-vector excitation distributions on YIG thin films. Using a vector network analyzer, we measured SW transmission with the films magnetized in perpendicular orientation. Based on the experimental results, we extract the group velocity as well as the dispersion relation of SWs and directly compare the power efficiency of SW propagation in YIG using coplanar waveguide and micro stripline for SW excitation and detection.

  16. Morphology and magnetic characterisation of aluminium substituted yttrium-iron garnet nanoparticles prepared using sol gel technique.

    PubMed

    Yahya, Noorhana; Al Habashi, Ramadan Masoud; Koziol, Krzysztof; Borkowski, Rafal Dunin; Akhtar, Majid Niaz; Kashif, Muhammad; Hashim, Mansor

    2011-03-01

    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.

  17. Effect of Molecular Interactions on Electron-Transfer and Antioxidant Activity of Bis(alkanol)selenides: A Radiation Chemical Study.

    PubMed

    Kumar, Pavitra V; Singh, Beena G; Phadnis, Prasad P; Jain, Vimal K; Priyadarsini, K Indira

    2016-08-16

    Understanding electron-transfer processes is crucial for developing organoselenium compounds as antioxidants and anti-inflammatory agents. To find new redox-active selenium antioxidants, we have investigated one-electron-transfer reactions between hydroxyl ((.) OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. (.) OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)(+) and α-{bis(hydroxyl alkyl)}-selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)(+) , produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spectrum and energy levels of six-times ionized yttrium (Y VII)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph

    2018-03-01

    The spectrum of six-times ionized yttrium, Y VII, was photographed with a sliding-spark discharge on 10.7 m normal- and grazing-incidence spectrographs. The region of observation was 157-824 Å. The observations extend the known configurations 4s24p3, 4s4p4, 4p5, 4s24p25s, 4s24p26s to the nearly complete 4s24p24d configuration. Our results for 4s24p24d significantly revise results of Rahimullah et al (1978 Phys. Scr. 18 96); Ateqad et al (1984 J. Phys. B: At. Mol. Phys. 17 4617). A total of 168 lines and 56 energy levels are now known for this ion. The observed configurations were interpreted with Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. Transition probabilities for all classified lines were calculated with the fitted parameters.

  19. Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser.

    PubMed

    Yu, Haohai; Wang, Shuxian; Han, Shuo; Wu, Kui; Su, Liangbi; Zhang, Huaijin; Wang, Zhengping; Xu, Jun; Wang, Jiyang

    2014-03-15

    We report a laser-diode pumped continuous-wave (cw) and passively Q-switched eye-safe laser at about 1.42 μm with the neodymium-doped yttrium gallium garnet (Nd:YGG) crystal for the first time to our knowledge. The composite Nd:YGG crystal was developed originally. A systematic comparison of laser performance between the homogeneously doped and composite Nd:YGG crystal was made, which showed that the composite Nd:YGG manifested less thermally induced effects. Cw output power of 2.06 W was obtained with the slope efficiency of 20.7%. With a V:YAG as a saturable absorber, the passive Q-switching at 1.42 μm was gotten with the pulse width, pulse energy, and peak power of 34 ns, 46.7 μJ, and 1.4 kW, respectively. The present work should provide a potential candidate for the generation of eye-safe lasers.

  20. Finite temperature magnon spectra in yttrium iron garnet from a mean field approach in a tight-binding model

    NASA Astrophysics Data System (ADS)

    Shen, Ka

    2018-04-01

    We study magnon spectra at finite temperature in yttrium iron garnet using a tight-binding model with nearest-neighbor exchange interaction. The spin reduction due to thermal magnon excitation is taken into account via the mean field approximation to the local spin and is found to be different at two sets of iron atoms. The resulting temperature dependence of the spin wave gap shows good agreement with experiment. We find that only two magnon modes are relevant to the ferromagnetic resonance.

  1. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit

    NASA Astrophysics Data System (ADS)

    O'Hara, Dante J.; Zhu, Tiancong; Trout, Amanda H.; Ahmed, Adam S.; Luo, Yunqiu Kelly; Lee, Choong Hee; Brenner, Mark R.; Rajan, Siddharth; Gupta, Jay A.; McComb, David W.; Kawakami, Roland K.

    2018-05-01

    Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe$_x$) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe$_2$) monolayer, while for thicker films it could originate from a combination of vdW MnSe$_2$ and/or interfacial magnetism of $\\alpha$-MnSe(111). Magnetization measurements of monolayer MnSe$_x$ films on GaSe and SnSe$_2$ epilayers show ferromagnetic ordering with large saturation magnetization of ~ 4 Bohr magnetons per Mn, which is consistent with density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe$_2$. Growing MnSe$_x$ films on GaSe up to high thickness (~ 40 nm) produces $\\alpha$-MnSe(111), and an enhanced magnetic moment (~ 2x) compared to the monolayer MnSe$_x$ samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveal an abrupt and clean interface between GaSe(0001) and $\\alpha$-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe$_2$ monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.

  2. Wetting of single crystal mullite by borosilicate and yttrium-aluminosilicate glasses and wetting phenomena of steels containing aluminum and titanium

    NASA Astrophysics Data System (ADS)

    Eldred, Benjamin Todd

    This dissertation consists of two major sections. The first section concerns the wetting of single crystal mullite by borosilicate and yttrium-aluminosilicate glasses. The borosilicate glass showed poor wetting and interacted only moderately with the substrate. The yttrium-aluminosilicate glass interacted strongly with mullite and showed very good wetting. Balanced chemical equations between each glass and mullite were derived from EDS data. Wetting was found to be dependent on the crystallographic orientation of the substrate, in agreement with previous studies of the surface energy of mullite. The second section concerns the wetting phenomena of steels containing aluminum and titanium. A modified sessile drop technique was used to investigate the wetting of steels containing aluminum and/or titanium as a function of furnace atmosphere. It was found that the steel chemistry and furnace atmosphere had little effect on wetting except in the case of a particular ultra-low carbon steel containing both aluminum and titanium. This steel was found to show significantly lower contact angles than any other steel tested when it was in an atmosphere of pure hydrogen. As nitrogen was added to the atmosphere, the contact angle increased monotonically and irreversibly. The interaction between aluminum, titanium, and nitrogen is explained in terms of first-order interaction coefficients available in thermodynamic literature.

  3. Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2

    PubMed Central

    Katase, Takayoshi; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2014-01-01

    A1–xFe2–ySe2 (A = K, Cs, Rb, Tl) are recently discovered iron-based superconductors with critical temperatures (Tc) ranging up to 32 K. Their parent phases have unique properties compared with other iron-based superconductors; e.g., their crystal structures include ordered Fe vacancies, their normal states are antiferromagnetic (AFM) insulating phases, and they have extremely high Néel transition temperatures. However, control of carrier doping into the parent AFM insulators has been difficult due to their intrinsic phase separation. Here, we fabricated an Fe-vacancy-ordered TlFe1.6Se2 insulating epitaxial film with an atomically flat surface and examined its electrostatic carrier doping using an electric double-layer transistor (EDLT) structure with an ionic liquid gate. The positive gate voltage gave a conductance modulation of three orders of magnitude at 25 K, and further induced and manipulated a phase transition; i.e., delocalized carrier generation by electrostatic doping is the origin of the phase transition. This is the first demonstration, to the authors' knowledge, of an EDLT using a Mott insulator iron selenide channel and opens a way to explore high Tc superconductivity in iron-based layered materials, where carrier doping by conventional chemical means is difficult. PMID:24591598

  4. Chemoembolic Hepatopulmonary Shunt Reduction to Allow Safe Yttrium-90 Radioembolization Lobectomy of Hepatocellular Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaba, Ron C., E-mail: rgaba@uic.edu; VanMiddlesworth, Kyle A.

    2012-12-15

    Yttrium-90 ({sup 90}Y) radioembolization represents an emerging transcatheter treatment option for the management of hepatocellular carcinoma (HCC). Elevation of the hepatopulmonary shunt fraction risks nontarget radiation to the lungs and may limit the use of {sup 90}Y therapy in patients with locally advanced disease with vascular invasion, who often demonstrate increased shunting. We present two cases in which patients with HCC and portal vein invasion resulting in elevated hepatopulmonary shunt fractions underwent chemoembolic shunt closure to allow safe {sup 90}Y radioembolization. Both patients demonstrated excellent tumor response and patient survival. On this basis, we propose a role for chemoembolic reductionmore » of the lung shunt fraction before {sup 90}Y radioembolization in patients with extensive tumor-related hepatopulmonary shunting.« less

  5. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the "external gelation" sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  6. Yttrium enrichment and improved magnetic properties in partially melted Y-Ba-Cu-O materials

    NASA Technical Reports Server (NTRS)

    Alterescu, Sidney; Hojaji, Hamid; Barkatt, Aaron; Michael, Karen A.; Hu, Shouxiang

    1990-01-01

    The yttrium-rich compositions in the Y-Ba-Cu-O system were mapped out in a systematic manner to quantify their magnetic properties and to correlate them with the microstructure and phase composition as determined by scanning electron microscopy and X-ray diffraction analysis. It is found that the microstructure of Y-Ba-Cu-O compositions is a sensitive function of both their composition and processing conditions. Measurements of magnetic susceptibility and maximum (low-field) and remanent magnetization for the system Y:Ba:Cu = x:2:3 show highest values for x = 2. The corresponding structures involve numerous small crystals of Y2BaCuO5 (211) embedded in highly ordered assemblages of continous YBa2Cu3O(7-y) (123) layers.

  7. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    NASA Astrophysics Data System (ADS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  8. Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal.

    PubMed

    Brito, Pedro; Prego, Ricardo; Mil-Homens, Mário; Caçador, Isabel; Caetano, Miguel

    2018-04-15

    The distribution and sources of yttrium and rare-earth elements (YREE) in surface sediments were studied on 78 samples collected in the Tagus estuary (SW Portugal, SW Europe). Yttrium and total REE contents ranged from 2.4 to 32mg·kg -1 and 18 to 210mg·kg -1 , respectively, and exhibited significant correlations with sediment grain-size, Al, Fe, Mg and Mn, suggesting a preferential association to fine-grained material (e.g. aluminosilicates but also Al hydroxides and Fe oxyhydroxides). The PAAS (Post-Archean Australian Shale) normalized patterns display three distinct YREE fractionation pattern groups along the Tagus estuary: a first group, characterized by medium to coarse-grained material, a depleted and almost flat PAAS-normalized pattern, with a positive anomaly of Eu, representing one of the lithogenic components; a second group, characterized mainly by fine-grained sediment, with higher shale-normalized ratios and an enrichment of LREE relative to HREE, associated with waste water treatment plant (WWTP) outfalls, located in the northern margin; and, a third group, of fine-grained material, marked by a significant enrichment of Y, a depletion of Ce and an enrichment of HREE over LREE, located near an inactive chemical-industrial complex (e.g. pyrite roast plant, chemical and phosphorous fertilizer industries), in the southern margin. The data allow the quantification of the YREE contents and its spatial distribution in the surface sediments of the Tagus estuary, identifying the main potential sources and confirming the use of rare earth elements as tracers of anthropogenic activities in highly hydrodynamic estuaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High-Pressure Synthesis and Characterization of the Ammonium Yttrium Borate (NH4)YB8O14.

    PubMed

    Schmitt, Martin K; Podewitz, Maren; Liedl, Klaus R; Huppertz, Hubert

    2017-11-20

    The first high-pressure yttrium borate (NH 4 )YB 8 O 14 was synthesized at 12.8 GPa/1300 °C using a Walker-type multianvil module. The compound crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a = 17.6375(9), b = 10.7160(5), and c = 4.2191(2) Å. (NH 4 )YB 8 O 14 constitutes a novel structure type but exhibits similarities to the crystal structure of β-BaB 4 O 7 . X-ray single-crystal and powder diffraction, EDX, vibrational spectroscopy as well as quantum chemical calculations were used to characterize (NH 4 )YB 8 O 14 .

  10. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Naletov, V. V.; Vila, L.; Marty, A.; Brenac, A.; Jacquot, J.-F.; de Loubens, G.; Viret, M.; Anane, A.; Cros, V.; Ben Youssef, J.; Beaulieu, N.; Demidov, V. E.; Divinskiy, B.; Demokritov, S. O.; Klein, O.

    2018-02-01

    We report a study on the electrical properties of 19-nm-thick yttrium iron garnet (YIG) films grown by liquid phase epitaxy on gadolinium gallium garnet single crystal. The electrical conductivity and Hall coefficient are measured in the high-temperature range [300,400] K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band gap of Eg≈2 eV. It drops to values about 5 ×103Ω cm at T =400 K, thus indicating that epitaxial YIG ultrathin films behave as large gap semiconductors. We also infer the Hall mobility, which is found to be positive (p type) at 5 cm2V-1sec-1 and almost independent of temperature. We discuss the consequence for nonlocal spin transport experiments performed on YIG at room temperature and demonstrate the existence of electrical offset voltages to be disentangled from pure spin effects.

  11. Complete eradication of hepatic metastasis from colorectal cancer by Yttrium-90 SIRT

    PubMed Central

    Garrean, Sean; Muhs, Amanda; Bui, James T; Blend, Michael J; Owens, Charles; Helton, William S; Espat, N Joseph

    2007-01-01

    Yttrium-90 (Y-90) radioembolization, also known as selective internal radiation therapy (SIRT), is a regional hepatic therapy used in the treatment of unresectable colorectal cancer (CRC) liver metastases. In SIRT, Y-90 impregnated microspheres are injected into the VASCULAR SUPPLY of hepatic tumor, leading to selective irradiation and necrosis of tumor TISSUE. While several studies demonstrate improved local control and survival with SIRT, the specific indications for this therapy have yet to be defined. Typically, SIRT is given in combination with chemotherapy as multimodal treatment for unresectable hepatic CRC. However, it HAS ALSO FOUND INCREASING USE as a salvage therapy in chemo-refractory patients. Herein, the authors describe their experience with SIRT as “stand alone” therapy in a surgically-prohibitive, chemotherapy naive patient with hepatic CRC metastasis. The results suggest that Y-90 SIRT may have potential applications beyond its usual role as a palliative or salvage therapy for unresectable hepatic CRC. PMID:17589957

  12. Raman and Infrared Spectroscopy of Yttrium Aluminum Borate Glasses and Glass-ceramics

    NASA Technical Reports Server (NTRS)

    Bradley, J.; Brooks, M.; Crenshaw, T.; Morris, A.; Chattopadhyay, K.; Morgan, S.

    1998-01-01

    Raman spectra of glasses and glass-ceramics in the Y2O3-Al2O3-B2O3 system are reported. Glasses with B2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400 C for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 800 C were performed in order to induce nucleation and crystallization. It was found that Na2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl3(BO3)4.

  13. Four two-dimensional ternary selenides based on group 13 and 14 metals: Syntheses, crystal structures, and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Jingrui; Li, Peng; Cai, Ting; Yang, Dan-Dan; Xiong, Wei-Wei

    2018-07-01

    A series of two-dimensional ternary selenides, [NH4]2[Ga2Sn2Se8] (1), [NH4]2[In2Ge2Se8] (2), [NH4]2[In2Sn2Se8] (3), [NH4]2[Ga2Ge2Se8] (4), have been solvothermally synthesized and characterized by single crystal X-ray diffraction, energy dispersive X-ray (EDX) spectroscopy, solid-state UV-Vis diffuse reflectance spectroscopy, and thermogravimetric analyses. The solid-state optical absorption spectra indicated that these compounds were semiconductors with band gaps of 1.71 eV for 1, 1.95 eV for 2, 1.85 eV for 3, and 1.83 eV for 4. In addition, compound 2 was employed as an anode material for lithium ion battery application, which exhibited a high specific capacity of 479 mA h g-1 over 200 cycles at a current density of 200 mA g-1, and an excellent rate capability of 425.2 mA h g-1 at a current density of 1000 mA g-1. Our results suggest that crystalline chalcogenides could be an alternative anode material for high performance LIBs application.

  14. Lithotripsy of gallstones by means of a quality-switched giant-pulse neodymium:yttrium-aluminum-garnet laser. Basic in vitro studies using a highly flexible fiber system.

    PubMed

    Hochberger, J; Gruber, E; Wirtz, P; Dürr, U; Kolb, A; Zanger, U; Hahn, E G; Ell, C

    1991-11-01

    The quality-switched neodymium:yttrium-aluminum-garnet laser represents a new instrument for athermal fragmentation of gallstones by transformation of optical energy into mechanical energy in the form of shock waves via local plasma formation. A highly flexible 300-micron fiber transmission system was used in basic investigations to determine the influence of varying pulse repetition rates (5-30 Hz) and pulse energies (15 and 20 mJ) on shock wave intensity and stone fragmentation in vitro for 105 biliary calculi of known size and chemical composition. After performance of 1200 shock wave pressure measurements using polyvinylidenefluoride hydrophones, stone fragmentation was analyzed by determination of fragment removal rates (volume of fragments removed per fragmentation time), ablation rates (mean volume removed per laser pulse), and median fragment sizes for each laser setting. With the quality-switched neodymium:yttrium-aluminum-garnet laser system, all concrements could be reliably disintegrated into small fragments (median diameter, 0.7-1.7 mm). Compared with pure cholesterol stones, a significantly higher fragment removal rate was achieved in cholesterol stones containing 30% calcium phosphate (P = 0.039), in cholesterol stones containing 20% pigment (P = 0.015), and in pure pigment stones (P = 0.007). Fragment removal rates, local shock wave pressures, and median grain sizes were significantly higher at a pulse energy of 20 mJ than with 15 mJ. Shock wave pressures showed a distinct dependence on pulse repetition rates at 20 mJ, yet not at 15 mJ. Because there is no evident hazard of thermal damage to tissue using the quality-switched neodymium:yttrium-aluminum-garnet laser, it appears to be a promising device for nonsurgical biliary stone therapy.

  15. Correlation between evolution of inclusions and pitting corrosion in 304 stainless steel with yttrium addition.

    PubMed

    Shi, Weining; Yang, Shufeng; Li, Jingshe

    2018-03-19

    Effects of the evolution of inclusions on the pitting corrosion resistance of 304 stainless steel with different contents of the rare-earth element yttrium (Y) were studied using thermodynamic calculations, accelerated immersion tests, and electrochemical measurements. The experimental results showed that regular Y 2 O 3 inclusions demonstrated the best pitting resistance, followed in sequence by (Al,Mn)O inclusions, the composite inclusions, and irregular Y 2 O 3 inclusions. The pitting resistance first decreased, then increased, and then decreased again with increasing Y content, because sulfide inclusions were easily generated when the Y content was low and YN inclusions were easily generated at higher Y contents. The best pitting corrosion resistance was obtained for 304 stainless steel with addition of 0.019% Y.

  16. Study on the growth mechanism and optical properties of sputtered lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Sun, Xigui; Gao, Kewei; Pang, Xiaolu; Yang, Huisheng; Volinsky, Alex A.

    2015-11-01

    Lead selenide thin films with different microstructure were deposited on Si (1 0 0) substrates using magnetron sputtering at 50 °C, 150 °C and 250 °C, respectively. The crystal structure of the sputtered PbSe thin films varies from amorphous crystalline to columnar grain, and then to double-layer (nano-crystalline layer and columnar grain layer) structure as the deposition temperature increases, which is due to the dominating growth mode of the thin films changes from Frank-van der Merwe (or layer-by-layer) growth mode at 50 °C to Volmer-Weber (or 3D island) growth mode at 150 °C, and then to Stranski-Krastanow (or 3D island-on-wetting-layer) growth mode at 250 °C. The growth mechanism of the sputtered PbSe thin films is mainly dominated by the surface and strain energy contributions. Moreover, the strain energy contribution is more prominent when the deposition temperature is less than 180 °C, while, the surface energy contribution is more prominent when the deposition temperature is higher than 180 °C. The absorption spectra of the sputtered PbSe thin films are in 3.1-5 μm range. Besides, the sputtered PbSe thin film prepared at 250 °C has two different optical band gaps due to its unique double-layer structure. According to the theoretical calculation results, the variation of the band gap with the deposition temperature is determined by the shift of the valence band maximum with the lattice constant.

  17. Effectiveness of radiation synovectomy with Yttrium-90 and Samarium-153 particulate hydroxyapatite in rheumatoid arthritis patients with knee synovitis: a controlled, randomized, double-blinded trial.

    PubMed

    Dos Santos, Marla Francisca; Furtado, Rita Nely Vilar; Konai, Monique Sayuri; Castiglioni, Mario Luiz Vieira; Marchetti, Renata Rosa; Silva, Constancia Pagano Gonçalves; Natour, Jamil

    2011-01-01

    The aim of the present study was to investigate the long-term effectiveness of and tolerance to Yttrium-90 and Samarium-153-particulate hydroxyapatite radiation synovectomy in patients with rheumatoid arthritis (RA) and chronic knee synovitis. Eight-four patients (90 knees) with chronic knee synovitis and RA (according to the American College of Rheumatology criteria) participated in a controlled, double-blinded trial. Patients were randomized to receive an intra-articular injection with either 5 mCi Yttrium-90 plus 40 mg of triamcinolone hexacetonide (Y/TH Group), 15 mCi Samarium-153 hydroxyapatite plus 40 mg of triamcinolone hexacetonide (Sm/TH Group), or 40 mg triamcinolone hexacetonide alone (Control Group). Blinded examination at baseline, 1, 4, 12, 32, and 48 weeks post-intervention included a visual analog scale for joint pain and swelling, morning stiffness, range of motion, knee circumference, Likert scale, percentage of improvement, Stanford Health Assessment Questionnaire, Lequesne index, use of non-steroidal anti-inflammatory drugs and corticosteroids, events and adverse effects, calls to the physician, and hospital visits. There were three withdrawals prior to the injections. Regarding the pain, there was a significantly better response in the Y/TH Group versus the Sm/TH Group at T1 (p = 0.025) and versus TH alone at T48 (p = 0.026). The Sm/TH group had more adverse effects (p = 0.042), but these were mild and transitory. For the pain parameter alone, Yttrium-90 radiosynovectomy associated to TH proved superior to Samarium-153 hydroxyapatite radiosynovectomy associated to TH at T1 and to synovectomy with TH at T48. No other statistically significant inter-group differences were detected.

  18. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutaoka, Takanori, E-mail: tsutaok@hiroshima-u.ac.jp; Fukuyama, Koki; Kinoshita, Hideaki

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.

  19. Layer Structured Bismuth Selenides of Bi2Se3 and Bi3Se4 for High Energy and Flexible All-Solid-State Micro-Supercapacitors.

    PubMed

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2017-12-20

    Bismuth selenides (Bi2Se3 and Bi3Se4), both of which have the layered rhombohedral crystal structure, and found to be useful as electrode materials for supercapacitor application in this work. Bi2Se3 nanoplates as electrode material exhibit much better performance than that of Bi3Se4 nanoparticles in liquid electrolyte system (6 M KOH), which delivers a higher specific capacitance (272.9 F/g) than that of Bi3Se4 (193.6 F/g) at 5 mV/s. This result would may be attributed to that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to its planar quintuple stacked layers (septuple layers for Bi3Se4). For the demand of electronic skin, we used a novel flexible annular interdigital structure electrode applying for all-solid-state micro-supercapacitors (AMSCs). Bi2Se3 AMSCs device delivers a much more excellent supercapacitor performance, exhibits a large stack capacitance 89.5 F/cm3 (Bi3Se4: 79.1 F/cm3) at 20 mV/s, a high energy density 17.9 mWh/cm3 and high power density 18.9 W/cm3. The bismuth selenides also exhibit good cycle stability, retention 95.5% (90.3%) after 1000 c for Bi2Se3 (Bi3Se4). Obviously, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital all-solid-sate supercapacitor. © 2017 IOP Publishing Ltd.

  20. Electrical and optical characteristics of heterojunction devices composed of silicon nanowires and mercury selenide nanoparticle films on flexible plastics.

    PubMed

    Yeo, Minje; Yun, Junggwon; Kim, Sangsig

    2013-09-01

    A pn heterojunction device based on p-type silicon (Si) nanowires (NWs) prepared by top-down method and n-type mercury selenide (HgSe) nanoparticles (NPs) synthesized by the colloidal method have been fabricated on a flexible plastic substrate. The synthesized HgSe NPs were analyzed through the effective mass approximation. The characteristics of the heterojunction device were examined and studied with the energy band diagram. The device showed typical diode characteristics with a turn-on voltage of 1.5 V and exhibited a high rectification ratio of 10(3) under relatively low forward bias. Under illumination of 633-nm-wavelength light, the device presented photocurrent efficiency of 117.5 and 20.1 nA/W under forward bias and reverse bias conditions, respectively. Moreover, the photocurrent characteristics of the device have been determined by bending of the plastic substrate upward and downward with strain of 0.8%. Even though the photocurrent efficiency has fluctuations during the bending cycles, the values are roughly maintained for 10(4) bending cycles. This result indicates that the fabricated heterojunction device has the potential to be applied as fundamental elements of flexible nanoelectronics.

  1. Liver Resection for Colorectal Hepatic Metastases after Systemic Chemotherapy and Selective Internal Radiation Therapy with Yttrium-90 Microspheres: A Systematic Review.

    PubMed

    Baltatzis, Minas; Siriwardena, Ajith K

    2018-06-08

    Selective internal radiation therapy (SIRT) using yttrium-90 resin microspheres has been used together with systemic chemotherapy to treat patients with unresectable liver metastases. This study undertook the first systematic pooled assessment of the case profile, treatment and outcome in patients with initially inoperable colorectal hepatic metastases undergoing resection after systemic chemotherapy and SIRT. A systematic review of the literature was performed using Medline and Embase for publications between January 1998 and August 2017. Keywords and MESH headings "SIRT", "Yttrium-99 radio embolization" and "liver metastases" were used. Reports on patients undergoing liver resection after SIRT for colorectal liver metastases were included. Case reports, reviews and papers without original data were excluded. The study protocol was registered with PROSPERO, (registration number: CRD42017072374). The study population comprised of 120 patients undergoing liver resection after chemotherapy and SIRT. The conversion rate to hepatectomy in previously unresectable patients was 13.6% (109 of 802). All studies report a single application of SIRT. The interval from SIRT to surgery ranged from 39 days to 9 months. Overall, there were 4 (3.3%) deaths after hepatectomy in patients treated by chemotherapy and SIRT. This large pooled report of patients undergoing hepatectomy for colorectal liver metastases after chemotherapy and SIRT shows that 13.6% of patients with initially inoperable disease undergo resection with low procedure-related mortality. © 2018 S. Karger AG, Basel.

  2. Gas-to-particle conversion in the particle precipitation-aided chemical vapor deposition process II. Synthesis of the perovskite oxide yttrium chromite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieten, V.E.J. van; Dekker, J.P.; Hurkmans, E.J.

    1993-11-01

    In the particle precipitation-aided chemical vapor deposition process, an aerosol is formed in the gas phase at elevated temperatures. The particles are deposited on a cooled substrate. Coherent layers with a controlled porosity can be obtained by a simultaneous heterogeneous reaction, which interconnects the deposited particles. The synthesis of submicrometer powder of the perovskite oxide yttrium chromite (YCrO[sub 3]) by gas to particle conversion, which is the first step of the PP-CVD process, has been investigated, and preliminary results are shown. The powders have been synthesized using yttrium trichloride vapor (YCl[sub 3]), chromium trichloride vapor (CrCl[sub 3]), and steam andmore » oxygen as reactants. The influence of the input molar ratio of the elements on the composition and characteristics of the powders has been investigated. Phase composition has been determined by X-ray diffraction (XRD). The powders have been characterized by transmission electron microscopy (TEM) and sedimentation field flow fractionation (SF[sup 3]). At a reaction temperature of 1283 K the powders consist of the chromium sesquioxide (Cr[sub 2]O[sub 3]), or a mixture of Cr[sub 2]O[sub 3] and YCrO[sub 3]. At stoichiometeric input amounts of metal chlorides and steam the formation of YCrO[sub 3] seems to be favored. 19 refs., 6 figs., 3 tabs.« less

  3. Ultrafast exciton dynamics in cadmium selenide nanocrystals determined by femtosecond fluorescence upconversion spectroscopy

    NASA Astrophysics Data System (ADS)

    Underwood, David Frederick

    Femtosecond fluorescence upconversion spectroscopy is a technique that allows the unambiguous determination of the excited state dynamics of an analyte. Combining this method with the use of tunable laser excitation, the exciton dynamics in semiconducting nanocrystals (NC's) of cadmium selenide (CdSe) have been determined, devoid of the complications arising from more common spectroscopic methods such as pump-probe. The results of this investigation were used to construct a model to fully describe the three-level system comprising of the valence and conduction bands and surface states, which have been calculated by others to lie mid-gap in energy. Smaller NC's showed faster decay components due to increased interaction between the exciton and surface states. The deep trap emission, which has never before been measured by ultrafast fluorescence techniques, shows a rapid rise time (˜2 ps), which is attributed to surface selenium dangling bonds relaxing to the valence band and radiatively combining with the photo-generated hole. The band edge fluorescence decays as the deep trap emission grows in, inherently coupling the two processes. An experiment which measured the dependence of the excitation energy showed that increased energy imparted to the NC's resulted in increased rise times, yielding the timescales for exciton relaxation through the valence and conduction band states to the lowest emitting state. Surface-oxidized and normally-passivated NC's display the same decay dynamics in time but differ in relative amplitude; the latter point agrees with steady-state measurements. The rotational anisotrophy of the NC's was measured and agrees with previous pump-probe data. Upconversion on the red and blue sides of the static fluorescence spectrum showed no discernable differences, which is either and inherent limitation of the experimental apparatus, or the possibility that lower-lying triplet states are populated on a timescale below the instrument resolution.

  4. Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Draveny, A.; Naletov, V. V.; Vila, L.; Attané, J. P.; Beigné, C.; de Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Slavin, A. N.; Tiberkevich, V. S.; Anane, A.; Bortolotti, P.; Cros, V.; Klein, O.

    2018-02-01

    We report high power spin transfer studies in open magnetic geometries by measuring the spin conductance between two nearby Pt wires deposited on top of an epitaxial yttrium iron garnet thin film. Spin transport is provided by propagating spin waves that are generated and detected by direct and inverse spin Hall effects. We observe a crossover in spin conductance from a linear transport dominated by exchange magnons (low current regime) to a nonlinear transport dominated by magnetostatic magnons (high current regime). The latter are low-damping magnetic excitations, located near the spectral bottom of the magnon manifold, with a sensitivity to the applied magnetic field. This picture is supported by microfocus Brillouin light-scattering spectroscopy. Our findings could be used for the development of controllable spin conductors by variation of relatively weak magnetic fields.

  5. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guojian; Lou, Chaogang; Kang, Jian

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluatemore » roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.« less

  6. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  7. Hinged Capsulotomy--Does it Decrease Floaters After Yttrium Aluminum Garnet Laser Capsulotomy?

    PubMed

    Alipour, Fatemeh; Jabbarvand, Mahmoud; Hashemian, Hesam; Hosseini, Simindokht; Khodaparast, Mehdi

    2015-01-01

    The objective was to compare conventional circular yttrium aluminum garnet (YAG) laser capsulotomy with hinged capsulotomy to manage posterior capsular opacification (PCO). This prospective, randomized clinical trial enrolled pseudophakic patients with visually significant posterior capsule opacification. Patients were randomized to undergo posterior YAG laser capsulotomy with either conventional circular technique or a new technique with an inferior hinge. At 1-month postoperatively, patients were asked if they had any annoying floaters and the responses were compared between groups. P < 0.05 was considered statistically significant. A total of 83 patients were enrolled. Forty-three patients underwent hinged posterior YAG capsulotomy and 40 patients underwent routine circular capsulotomy. At 1-month postoperatively, there was a statistically significant decrease in annoying floaters in the group that underwent circular capsulotomy (P = 0.02). There was no statistically significant association in the total energy delivered (P = 0.4) or the number of spots (P = 0.2) and patient perception of annoying floaters. Hinged YAG capsulotomy was effective at decreasing the rate of floaters in patients with PCO.

  8. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide

  9. Thermal Conductivity of a Nanoscale Yttrium Iron Garnet Thin-Film Prepared by the Sol-Gel Process

    PubMed Central

    2017-01-01

    The thermal conductivity of a nanoscale yttrium iron garnet (Y3Fe5O12, YIG) thin-film prepared by a sol-gel method was evaluated using the ultrafast pump-probe technique in the present study. The thermoreflectance change on the surface of a 250 nm thick YIG film, induced by the irradiation of femtosecond laser pulses, was measured, and curve fitting of a numerical solution for the transient heat conduction equation to the experimental data was performed using the finite difference method in order to extract the thermal property. Results show that the film’s thermal conductivity is 22–83% higher than the properties of bulk YIG materials prepared by different fabrication techniques, reflecting the microstructural characteristics and quality of the film. PMID:28858249

  10. Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for hypertrophic port-wine stains on the lips.

    PubMed

    Kono, Taro; Frederick Groff, William; Chan, Henry H; Sakurai, Hiroyuki; Yamaki, Takashi

    2009-03-01

    Pulsed dye laser (PDL) treatment of hypertrophic port-wine stains (PWSs) on the lips has demonstrated poor efficacy and a potential risk of dyspigmentation. PDL-resistant hypertrophic PWS may require treatment with deeper penetrating lasers such as a 1064-nm neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. The objective of this clinical study was to evaluate the efficacy and safety of a Nd:YAG laser for the treatment of hypertrophic PWSs on the lips. Ten patients (four were male and six were female) with hypertrophic PWSs on the lips were recruited in this study. Eight patients showed good to excellent improvement without complications. In conclusion, the Nd:YAG laser is safe and effective for treating hypertrophic PWSs on the lips.

  11. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  12. Growth and characterization of a novel nonlinear optical borate crystal - Yttrium calcium borate (YCB)

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Arivanandhan, M.; Dhanasekaran, R.; Hayakawa, Y.

    2013-06-01

    A new nonlinear optical single crystal yttrium calcium borate Y2CaB10O19 (YCB) was grown for the first time from its melt. The starting materials were prepared by the solid-state reaction method. The melting point of the synthesized material was identified to be 967 °C. YCB crystal exhibits monoclinic crystal structure with the space group C2. The crystalline perfection of the grown YCB crystal was found to be good. From the UV-VIS-NIR studies, the lower cutoff wavelength of the crystal occurs below 200 nm. The functional groups of the grown crystal were assigned using the FTIR data. The second harmonic generation (SHG) of the YCB crystal was observed using a Nd:YAG laser with a fundamental wavelength of 1064 nm. The laser damage threshold value of the YCB crystal was found to be very high - 10.5 GW/cm2.

  13. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Lichuan; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716; Zhang, Dainan

    2014-09-29

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. Themore » origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.« less

  14. The contact neodymium-yttrium aluminum garnet laser. A new approach to arthroscopic laser surgery.

    PubMed

    O'Brien, S J; Miller, D V

    1990-03-01

    Arthroscopic treatment of meniscal lesions has been modified as technological advances have occurred. However, alternatives to conventional arthroscopic cutting tools, including electrocautery and CO2 lasers, have thus far met with limited success. The recent development of a sapphire tip has enabled the use of the neodymium-yttrium aluminum garnet (Nd-YAG) laser in a contact mode in a saline medium. This study compares the biology of the Nd-YAG laser to that of electrocautery and scalpel techniques with respect to its effects on articular cartilage and the meniscus. The contact Nd-YAG laser has advantages over both scalpel and electrocautery with regard to its effects on articular cartilage. It also has significant biologic advantages over electrocautery for meniscal lesions. Although in its infancy in the clinical setting, the contact Nd-YAG laser represents the possible beginning of a new era for application of laser energy in arthroscopy.

  15. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  16. Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu

    1998-01-01

    Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.

  17. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design.

    PubMed

    Estevam, Ethiene Castellucci; Witek, Karolina; Faulstich, Lisa; Nasim, Muhammad Jawad; Latacz, Gniewomir; Domínguez-Álvarez, Enrique; Kieć-Kononowicz, Katarzyna; Demasi, Marilene; Handzlik, Jadwiga; Jacob, Claus

    2015-07-31

    Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.

  18. Temporary balloon occlusion of the common hepatic artery for administration of yttrium-90 resin microspheres in a patient with patent hepatoenteric collaterals.

    PubMed

    Mahvash, Armeen; Zaer, Navid; Shaw, Colette; Chasen, Beth; Avritscher, Rony; Murthy, Ravi

    2012-02-01

    The most common serious complication of yttrium-90 ((90)Y) therapy is gastrointestinal ulceration caused by extrahepatic microsphere dispersion. The authors describe the use of a balloon catheter for temporary occlusion of the common hepatic artery to reverse hepatoenteric flow for lobar administration of resin microspheres when coil embolization of a retroportal artery was impossible. At 9 months after treatment, the patient had no gastrointestinal side effects and showed a partial response. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  19. Evaluation of magnesium-yttrium alloy as an extraluminal tracheal stent.

    PubMed

    Luffy, Sarah A; Chou, Da-Tren; Waterman, Jenora; Wearden, Peter D; Kumta, Prashant N; Gilbert, Thomas W

    2014-03-01

    Tracheomalacia is a relatively rare problem, but can be challenging to treat, particularly in pediatric patients. Due to the presence of mechanically deficient cartilage, the trachea is unable to resist collapse under physiologic pressures of respiration, which can lead to acute death if left untreated. However, if treated, the outcome for patients with congenital tracheomalacia is quite good because the cartilage tends to spontaneously mature over a period of 12 to 18 months. The present study investigated the potential for the use of degradable magnesium-3% yttrium alloy (W3) to serve as an extraluminal tracheal stent in a canine model. The host response to the scaffold included the formation of a thin, vascularized capsule consisting of collagenous tissue and primarily mononuclear cells. The adjacent cartilage structure was not adversely affected as observed by bronchoscopic, gross, histologic, and mechanical analysis. The W3 stents showed reproducible spatial and temporal fracture patterns, but otherwise tended to corrode quite slowly, with a mix of Ca and P rich corrosion product formed on the surface and observed focal regions of pitting. The study showed that the approach to use degradable magnesium alloys as an extraluminal tracheal stent is promising, although further development of the alloys is required to improve the resistance to stress corrosion cracking and improve the ductility. Copyright © 2013 Wiley Periodicals, Inc.

  20. Synthesis and characterization of Cadmium selenide nanoparticles loaded on activated carbon and its efficient application for removal of Muroxide from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Amirabad, S. Zamani; Marahel, F.; Nasiri Kokhdan, S.; Sahraei, R.; Nosrati, M.; Daneshfar, A.

    2011-12-01

    In the first, Cadmium selenide Nanoparticle loaded on activated carbon (CdSe-NP-AC) has been synthesized and characterized by different techniques including XRD and SEM. Then, this new adsorbent successfully has been applied for the removal of muroxide (MO) from aqueous solution in batch studies, while the effect of various experimental parameters like initial pH (pH 0), contact time, amount of (CdSe-NP-AC) and initial MO concentration ( C0) on its removal percentage was examined by one at a time optimization method. It was found following optimization of variable, the adsorption of MO onto (CdSe-NP-AC) followed pseudo-second-order kinetics and show Tempkin and Langmuir models for interpretation of experimental data. It was observed that by increasing the temperature the removal percentage was improved and the positive change in entropy (Δ S°) and heat of adsorption (Δ H°) show the endothermic nature of process, while the high negative value in Gibbs free energy change (Δ G°) indicates the feasible nature of adsorption process.

  1. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    PubMed Central

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-01-01

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. PMID:26932316

  2. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers.

    PubMed

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-03-02

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin-orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law T(n) with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.

  3. Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite

    DOE PAGES

    Bansal, Dipanshu; Niedziela, Jennifer L.; Sinclair, Ryan; ...

    2018-01-02

    Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments andmore » theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.« less

  4. Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness

    PubMed Central

    Liu, Long; Yuan, Fulai; Zhao, Mingchun; Gao, Chengde; Feng, Pei; Yang, Youwen; Yang, Sheng; Shuai, Cijun

    2017-01-01

    The overly-fast degradation rates of magnesium-based alloys in the biological environment have limited their applications as biodegradable bone implants. In this study, rare earth element yttrium (Y) was introduced into AZ61 magnesium alloy (Mg-6Al-1Zn wt %) to control the degradation rate by laser rapid melting. The results showed that the degradation rate of AZ61 magnesium alloy was slowed down by adding Y. This was attributed to the reduction of Mg17Al12 phase and the formation of Al2Y phase that has a more active potential, which decreased galvanic corrosion resulting from its coupling with the anodic matrix phase. Meanwhile, the hardness increased as Y contents increased due to the uniform distribution of the Al2Y and Mg17Al12 phases. However, as the Y contents increased further, the formation of excessive Al2Y phase resulted in the increasing of degradation rate and the decreasing of hardness due to its agglomeration. PMID:28772837

  5. Effects of an erbium, chromium: yttrium, scandium, gallium, garnet laser on mucocutanous soft tissues.

    PubMed

    Rizoiu, I M; Eversole, L R; Kimmel, A I

    1996-10-01

    Lasers are effective tools for soft tissue surgery. The erbium, chromium: yttrium, scandium, gallium, garnet laser is a new system that incorporates an air-water spray. This study evaluates the cutting margins of this laser and compares healing with laser and conventional scalpel and punch biopsy-induced wounds. New Zealand white rabbits were divided into serial sacrifice groups; the tissues were grossly and microscopically analyzed after laser and convential steel surgical wounding. Wound margins were found to show minimal edge coagulation artifact and were 20 to 40 mm in width. Laser wounds showed minimal to no hemorrhage and re-epithelialization and collagenization were found to occur by day 7 in both laser and conventional groups. The new laser system is an effective soft tissue surgical device; wound healing is comparable to that associated with surgical steel wounds. The minimal edge artifact observed with this laser system should allow for the procurement of diagnostic biopsy specimens.

  6. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    DOE PAGES

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; ...

    2016-03-02

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law T n with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less

  7. Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Dipanshu; Niedziela, Jennifer L.; Sinclair, Ryan

    Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments andmore » theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.« less

  8. Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite.

    PubMed

    Bansal, Dipanshu; Niedziela, Jennifer L; Sinclair, Ryan; Garlea, V Ovidiu; Abernathy, Douglas L; Chi, Songxue; Ren, Yang; Zhou, Haidong; Delaire, Olivier

    2018-01-02

    Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments and theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.

  9. Temporary Arterial Balloon Occlusion as an Adjunct to Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagspiel, Klaus D., E-mail: kdh2n@virginia.edu; Nambiar, Ashwin, E-mail: uvashwin@gmail.com; Hagspiel, Lauren M., E-mail: lmh4gg@virginia.edu

    2013-06-15

    Purpose. This study was designed to describe the technique of arterial occlusion using a temporary occlusion balloon system as an alternative to coil occlusion during Yttrium-90 radioembolization of hepatic tumors. Methods. Review of charts, angiography, and follow-up imaging studies of consecutive patients undergoing oncological embolization procedures in which a HyperForm system (ev3 Neurovascular, Irvine, CA) was used. Intraprocedural target vessel occlusion and patency of the target vessel on follow-up were recorded. Clinical data and Bremsstrahlung scans were reviewed for evidence of nontarget embolization. Results. Four radioembolization procedures were performed in three patients (all female, age 48-54 (mean 52) years). Fivemore » arteries were temporarily occluded (three gastroduodenal arteries, one right gastric artery, and one cystic artery). All radioembolization procedures were successfully completed. Follow-up imaging (either digital subtraction angiography (DSA) or computed tomography angiography (CTA)) was available for all patients between 28-454 (mean 183) days following the procedure, demonstrating all five vessels to be patent. No clinical or imaging evidence for nontarget embolization was found. Conclusions. Temporary balloon occlusion of small and medium-sized arteries during radioembolization allows safe therapy with preserved postprocedural vessel patency on early and midterm follow-up.« less

  10. Hinged Capsulotomy – Does it Decrease Floaters After Yttrium Aluminum Garnet Laser Capsulotomy?

    PubMed Central

    Alipour, Fatemeh; Jabbarvand, Mahmoud; Hashemian, Hesam; Hosseini, Simindokht; Khodaparast, Mehdi

    2015-01-01

    Objectives: The objective was to compare conventional circular yttrium aluminum garnet (YAG) laser capsulotomy with hinged capsulotomy to manage posterior capsular opacification (PCO). Materials and Methods: This prospective, randomized clinical trial enrolled pseudophakic patients with visually significant posterior capsule opacification. Patients were randomized to undergo posterior YAG laser capsulotomy with either conventional circular technique or a new technique with an inferior hinge. At 1-month postoperatively, patients were asked if they had any annoying floaters and the responses were compared between groups. P < 0.05 was considered statistically significant. Results: A total of 83 patients were enrolled. Forty-three patients underwent hinged posterior YAG capsulotomy and 40 patients underwent routine circular capsulotomy. At 1-month postoperatively, there was a statistically significant decrease in annoying floaters in the group that underwent circular capsulotomy (P = 0.02). There was no statistically significant association in the total energy delivered (P = 0.4) or the number of spots (P = 0.2) and patient perception of annoying floaters. Conclusion: Hinged YAG capsulotomy was effective at decreasing the rate of floaters in patients with PCO. PMID:26180476

  11. Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues.

    PubMed

    Colucci, Vivian; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2009-09-01

    Since lasers were introduced in dentistry, there has been considerable advancement in technology. Several wavelengths have been investigated as substitutes for high-speed air turbine. Owing to its high absorbability in water and hydroxyapatite, the erbium:yttrium-aluminum-garnet (Er:YAG) laser has been of great interest among dental practitioners and scientists. In spite of its great potential for hard tissue ablation, Er:YAG laser effectiveness and safety is directly related to an adequate setting of the working patterns. It is assumed that the ablation rate is influenced by certain conditions, such as water content of the target tissue, and laser parameters. It has been shown that Er:YAG irradiation with water coolant attenuates temperature rise and, hence, minimizes the risk of thermally induced pulp injury. It also increases ablation efficiency and enhances adhesion to the lased dental tissue. The aim of this review was to obtain insights into the ablation process and to discuss the effects of water flow on dental tissue ablation using Er:YAG laser.

  12. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure

    NASA Astrophysics Data System (ADS)

    Khyzhun, O. Y.; Parasyuk, O. V.; Tsisar, O. V.; Piskach, L. V.; Myronchuk, G. L.; Levytskyy, V. O.; Babizhetskyy, V. S.

    2017-10-01

    Crystal structure of a novel quaternary thallium indium germanium selenide TlInGe2Se6 was investigated by means of powder X-ray diffraction method. It was determined that the compound crystallizes in the trigonal space group R3 with the unit cell parameters a = 10.1798(2) Å, c = 9.2872(3) Å. The relationship with similar structures was discussed. The as-synthesized TlInGe2Se6 ingot was tested with X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, the XPS valence-band and core-level spectra were recorded for initial and Ar+ ion-bombarded surfaces of the sample under consideration. The XPS data allow for statement that the TlInGe2Se6 surface is rigid with respect to Ar+ ion-bombardment. Particularly, Ar+ ion-bombardment (3.0 keV, 5 min duration, ion current density fixed at 14 μA/cm2) did not cause substantial modifications of stoichiometry in topmost surface layers. Furthermore, comparison on a common energy scale of the XES Se Kβ2 and Ge Kβ2 bands and the XPS valence-band spectrum reveals that the principal contributions of the Se 4p and Ge 4p states occur in the upper and central portions of the valence band of TlInGe2Se6, respectively, with also their substantial contributions in other portions of the band. The bandgap energy of TlInGe2Se6 at the level of αg=103 cm-1 is equal to 2.38 eV at room temperature.

  13. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode.

    PubMed

    Shi, Rongguang; Liang, Jing; Zhao, Zongshan; Liu, Yi; Liu, Aifeng

    2018-05-22

    Due to the endocrine disturbing effects of bisphenol A (BPA) on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE) modified with molybdenum selenide/reduced graphene oxide (MoSe₂/rGO) was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe₂. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4%) and reproducibility (RSD = 2.2%) of the electrode. Under the optimized condition (pH = 6.5), the linear range of BPA was from 0.1 μM⁻100 μM and the detection limit was 0.015 μM (S/ N = 3). When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98⁻107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  14. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  15. Investigation for surface resistance of yttrium-barium-copper-oxide thin films on various substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Yao, Hongjun

    High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.

  16. Enhancement of thermal stability and water resistance in yttrium-doped GeO{sub 2}/Ge gate stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Hyun Lee, Choong; Zhang, Wenfeng

    2014-03-03

    We have systematically investigated the material and electrical properties of yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) on Germanium (Ge). A significant improvement of both thermal stability and water resistance were demonstrated by Y-GeO{sub 2}/Ge stack, compared to that of pure GeO{sub 2}/Ge stack. The excellent electrical properties of Y-GeO{sub 2}/Ge stacks with low D{sub it} were presented as well as enhancement of dielectric constant in Y-GeO{sub 2} layer, which is beneficial for further equivalent oxide thickness scaling of Ge gate stack. The improvement of thermal stability and water resistance are discussed both in terms of the Gibbs free energy lowering andmore » network modification of Y-GeO{sub 2}.« less

  17. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de; Bessonov, V.

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by themore » nonlinear scattering of the coherent spin waves from current-induced excitations.« less

  18. PEO-b-P4VP/Yttrium Hydroxide Hybrid Nanotubes as Supporter for Catalyst Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Chen, Dao-yong

    2012-06-01

    The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-1min-1), and good reusability of GNTs/CHNTs.

  19. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque

    PubMed Central

    Collet, M.; de Milly, X.; d'Allivy Kelly, O.; Naletov, V. V.; Bernard, R.; Bortolotti, P.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Cros, V.; Anane, A.; de Loubens, G.; Klein, O.

    2016-01-01

    In recent years, spin–orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin–orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin–orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current. PMID:26815737

  20. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    PubMed

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Improved Yttrium and Zirconium Abundances in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Violante, Renata; Biemont, E.; Cowan, J. J.; Sneden, C.

    2012-01-01

    Abstract We present new abundances of the lighter n-capture elements, Yttrium (Z=39) and Zirconium (Z=40) in the very metal poor, r-process rich stars BD+17 3248 and HD 221170. Very accurate abundances were obtained by use of the new transition probabilities for Y II published by Biémont et al. 2011, and Zr II by Malcheva et al. 2006, and by expanding the number of transitions employed for each element. For example, in BD+17 3248, we find log ɛπσιλον=-0.03 +/- 0.03 (σιγμα=0.15, from 23 lines) for Y II. As for Zr II, log ɛπσιλον = 0.65 +/- 0.03 (σɛγμα = 0.1, from 13 lines). The resulting abundance ratio is log ɛπσιλον [Y/Zr] = -0.68 +/- 0.05. The results for HD 221170 are in accord with those of BD+17 3248. The quantity of lines used to form the abundance means has increased significantly since the original studies of these stars, resulting in more trustworthy abundances. These observed abundance ratios are in agreement with an r-process-only value predicted from stellar models, but is under-abundant compared to an empirical model derived from direct analyses of meteoritic material. This ambiguity should stimulate further nucleosynthetic analysis to explain this abundance ratio. We would like to extend our gratitude to NSF grant AST-0908978 and the University of Texas Astronomy Department Rex G. Baker, Jr. Endowment for their financial support in this project.

  2. Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications.

    PubMed

    Scarangella, Adriana; Fabbri, Filippo; Reitano, Riccardo; Rossi, Francesca; Priolo, Francesco; Miritello, Maria

    2017-12-11

    Due to the great development of light sources for several applications from displays to lighting, great efforts are devoted to find stable and efficient visible emitting materials. Moreover, the requirement of Si compatibility could enlarge the range of applications inside microelectronic chips. In this scenario, we have studied the emission properties of bismuth doped yttrium oxide thin films grown on crystalline silicon. Under optical pumping at room temperature a stable and strong visible luminescence has been observed. In particular, by the involvement of Bi ions in the two available lattice sites, the emission can be tuned from violet to green by changing the excitation wavelength. Moreover, under electron beam at low accelerating voltages (3 keV) a blue emission with high efficiency and excellent stability has been recorded. The color is generated by the involvement of Bi ions in both the lattice sites. These peculiarities make this material interesting as a luminescent medium for applications in light emitting devices and field emission displays by opening new perspectives for the realization of silicon-technology compatible light sources operating at room temperature.

  3. A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Cheng, Tonglei; Liao, Meisong; Xue, Xiaojie; Li, Jiang; Gao, Weiqing; Li, Xia; Chen, Danping; Zheng, Shupei; Pan, Yubai; Suzuki, Takenobu; Ohishi, Yasutake

    2016-03-01

    We design and fabricate a silica optical fiber doped with yttrium aluminosilicate (YAS, Y2O3-Al2O3-SiO2) nanoparticles in the core. The optical fiber is drawn directly from a silica tube with YAG (Y3Al5O12) ceramics and silica powders (the molar ratio 1:18) in the core at the temperature of ∼1950 °C. The YAS nanoparticles are formed during the optical fiber drawing process. Supercontinuum (SC) generation in the optical fiber is investigated at different pump wavelength. At the pump wavelength of ∼1750 nm which is in the deep anomalous dispersion region, SC spectrum evolution is mainly due to multiple solitons and dispersive waves (DWs), and three pairs of multiple optical solitons and DWs are observed. When the pump wavelength shifts to ∼1500 nm which is close to the zero-dispersion wavelength (ZDW), flattened SC spectrum with ±7 dB uniformity is obtained at the wavelength region of ∼990-1980 nm, and only one obvious soliton and DW are observed. At the pump wavelength of ∼1100 nm, a narrow SC spectrum from ∼1020 to 1180 nm is obtained in the normal dispersion region due to self-phase modulation (SPM) effect.

  4. Comparison of the marginal fit of milled yttrium stabilized zirconium dioxide crowns obtained by scanning silicone impressions and by scanning stone replicas.

    PubMed

    Aranda Yus, Estefanía; Cantarell, Josep Maria Anglada; Miñarro Alonso, Antonio

    2018-06-01

    To determine the discrepancy in monolithic zirconium dioxide crowns made with computer-aided design and computer-aided manufacturing (CAD/CAM) systems by comparing scans of silicone impressions and of master casts. From a Cr-Co master die of a first upper left molar, 30 silicone impressions were taken. The 30 silicone impressions were scanned with the laboratory scanner, thus obtaining 30 milled monolithic yttrium stabilized zirconium dioxide (YSZD) crowns (the silicone group). They were poured and the working models were scanned, obtaining 30 milled monolithic yttrium stabilized zirconium dioxide (YSZD) crowns (the plaster group). Three predetermined points were analyzed in each side of the crown (Mesial, Distal ,Vestibular and Palatal), and the marginal fit was evaluated with SEM (×600). The response variable is the discrepancy from the master model. A repeated measures ANOVA with two within subject factors was performed to study significance of main factors and interaction. Mean marginal discrepancy was 22.42±35.65 µm in the silicone group and 8.94±14.69 µm in the plaster group. The statistical analysis showed significant differences between the two groups and also among the four aspects. Interaction was also significant ( P =.02). The mean marginal fit values of the two groups were within the clinically acceptable values. Significant differences were found between the groups according to the aspects studied. Various factors influenced the accuracy of digitizing, such as the design, the geometry, and the preparation guidance, as well as the texture, roughness and the color of the scanned material.

  5. High-temperature corrosion of iron-aluminum and iron-aluminum-yttrium alloys

    NASA Astrophysics Data System (ADS)

    Insoo, Kim

    The high-temperature corrosion behavior of Fe3Al alloy has been investigated by conducting two studies: (1) corrosion of Fe 3Al and Fe3Al-Y alloys in oxidizing atmosphere and (2) corrosion of Fe3Al in mixed chlorine/oxygen environments. In the first study, oxidation of the two alloys, Fe-14.3 wt% Al and Fe-14.1 wt% Al-0.3 wt% Y, was carried out in the temperature range of 800 to 1100°C to investigate the general oxidation behavior of Fe3Al and the effect of yttrium on the oxidation of Fe3Al in terms of oxidation kinetics, oxide scale adhesion and microstructure. At lower temperatures (<1000°C), the oxidation rate of the two alloys was nearly identical, and the parabolic rate constant obtained as a function of temperature was Kp = 5128 exp[--39500 (cal/mol)/RT] mg2/cm4 h. At higher temperatures, however, yttrium-added Fe3Al alloy exhibited lower oxidation rate and much more improved oxide adhesion. The lower oxidation rate observed in Fe3Al-Y alloy seems to be due to the followings: (1) a decrease in aluminum diffusion through alumina scale and (2) modification of the scale growth mechanism from simultaneous countercurrent diffusion of aluminum and oxygen to predominant inward diffusion of oxygen, which generates less growth stress and thus prevents the formation of fast diffusion paths such as microcracks. The adhesion improvement of alumina scale formed on the Fe3Al-Y was attributed to the modification of alumina growth mechanism by the addition of Y to the Fe3Al alloy. The change of growth mechanism leads to the formation of pegs, decrease of the oxide growth stress, and decrease of voids formation, which enhances the adhesion of alumina scale to the Fe3Al alloy. The second study has focused on the corrosion of Fe3Al in the temperature range of 600--800°C in Cl2-Ar gas mixtures containing traces of oxygen as an impurity. Weight gain was observed during the corrosion of Fe3Al at 600°C in 0.25% Cl2-Ar, which is due to the formation of Fe2O3, while continuous

  6. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onbasli, M. C., E-mail: onbasli@mit.edu; Kim, D. H.; Ross, C. A.

    2014-10-01

    Yttrium iron garnet (YIG, Y {sub 3}Fe{sub 5}O{sub 12}) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd{sub 3}Ga{sub 5}O{sub 12}) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm{sup −3}), in-plane easy axis, and damping parameters as low as 2.2 × 10{sup −4}. These high quality YIG thin films are useful in the investigation ofmore » the origins of novel magnetic phenomena and magnetization dynamics.« less

  7. Root Cause Analysis of Gastroduodenal Ulceration After Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Marnix G. E. H.; Banerjee, Subhas; Louie, John D.

    IntroductionA root cause analysis was performed on the occurrence of gastroduodenal ulceration after hepatic radioembolization (RE). We aimed to identify the risk factors in the treated population and to determine the specific mechanism of nontarget RE in individual cases. Methods: The records of 247 consecutive patients treated with yttrium-90 RE for primary (n = 90) or metastatic (n = 157) liver cancer using either resin (n = 181) or glass (n = 66) microspheres were reviewed. All patients who developed a biopsy-proven microsphere-induced gastroduodenal ulcer were identified. Univariate and multivariate analyses were performed on baseline parameters and procedural data tomore » determine possible risk factors in the total population. Individual cases were analyzed to ascertain the specific cause, including identification of the culprit vessel(s) leading to extrahepatic deposition of the microspheres. Results: Eight patients (3.2 %) developed a gastroduodenal ulcer. Stasis during injection was the strongest independent risk factor (p = 0.004), followed by distal origin of the gastroduodenal artery (p = 0.004), young age (p = 0.040), and proximal injection of the microspheres (p = 0.043). Prolonged administrations, pain during administration, whole liver treatment, and use of resin microspheres also showed interrelated trends in multivariate analysis. Retrospective review of intraprocedural and postprocedural imaging showed a probable or possible culprit vessel, each a tiny complex collateral vessel, in seven patients. Conclusion: Proximal administrations and those resulting in stasis of flow presented increased risk for gastroduodenal ulceration. Patients who had undergone bevacizumab therapy were at high risk for developing stasis.« less

  8. Thermoelectric materials and methods for synthesis thereof

    DOEpatents

    Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang

    2015-08-04

    Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.

  9. Spectroscopic study of trivalent praseodymium in barium yttrium fluoride

    NASA Astrophysics Data System (ADS)

    Bowlby, Brian Edward

    1998-09-01

    This work investigates the spectroscopic properties of trivalent praseodymium (Pr3+) in barium yttrium fluoride (BaY2F8). Two doping concentrations were studied: BaY2F8:Pr3+ (.3%) and BaY2F8:Pr3+ (1%). Absorption spectra were taken at 77K and 300K and these were then used to calculate the Judd-Ofelt coefficients for both samples. These coefficients were then used to calculate the theoretical lifetimes and radiative branching ratios for all manifolds. Continuous luminescence spectra and lifetime measurements were also performed, and from these, experimentally determined values for the branching ratio and lifetimes were determined. These were then compared to their theoretical counterparts. It was found that while the theory gave values that were qualitatively correct, the quantitative correlation between theory and experiment shows the complexity of the physical reality and the difficulty of synthesizing an encompassing theoretical model. Absorption spectra and continuous luminescence spectra were also used to determine the energy levels of all manifolds in both samples. A total of 59 energy levels in 11 manifolds were identified in the BaY2F8:Pr3+ (1%) sample, while 51 levels in 11 manifolds were identified in the BaY2F8:Pr3+ (.3%) sample. Finally, the effects of temperature on the line width and line position for several radiative transitions was studied. It was found that while most transitions exhibited the expected broadening and shifting towards longer wavelengths at higher temperatures (a 'red shift'), the transition from the 3P0 level to the 3H4 ground state showed a shift towards shorter wavelengths at higher temperature (a 'blue shift'). Again this highlights the complexity of the ion- host interaction.

  10. Microtensile bond strength of composite resin to human enamel prepared using erbium: Yttrium aluminum garnet laser.

    PubMed

    Delfino, Carina Sinclér; Souza-Zaroni, Wanessa Christine; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka

    2007-02-01

    The Erbium: Yttrium Aluminum Garnet (YAG) laser used for preparation of cavity can alter the substrate and it could influence the bond strength of enamel. The aim of this in vitro study was to evaluate the influence of Er:YAG laser's energy using microtensile bond test. Three groups were obtained (cavity preparation) and each group was divided into two subgroups (adhesive system). After that the adhesive protocol was performed, sections with a cross-sectional area of 0.8 mm2 (+/-0.2 mm2) were obtained. The specimens were mounted in a universal testing machine (0.5 mm/min). Statistical analysis showed a decrease in bond strength for lased groups (p < 0.01) and when the total-etching adhesive system was used the laser 300 mJ subgroup showed higher bond strength compared to the laser 250 mJ (p < 0.01). It was concluded that the cavities prepared using laser appear less receptive to adhesive procedures than conventional bur-cut cavities. Copyright 2006 Wiley Periodicals, Inc.

  11. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    NASA Astrophysics Data System (ADS)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi

    2018-01-01

    In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  12. Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses

    NASA Astrophysics Data System (ADS)

    Dubs, Carsten; Surzhenko, Oleksii; Linke, Ralf; Danilewsky, Andreas; Brückner, Uwe; Dellith, Jan

    2017-05-01

    Using a liquid phase epitaxy (LPE) technique (1 1 1) yttrium iron garnet (YIG) films with thicknesses of  ≈100 nm and surface roughnesses as low as 0.3 nm have been grown on (1 1 1) gadolinium gallium garnet (GGG) substrates as a basic material for spin-wave propagation experiments in microstructured waveguides. The continuously strained films exhibit nearly perfect crystallinity without significant mosaicity and with effective lattice misfits of Δ {{a}\\bot}/{{a}s}≈ {{10}-4} and below. The film/substrate interface is extremely sharp without broad interdiffusion layer formation. All LPE films exhibit a nearly bulk-like saturation magnetization of (1800+/- 20 ) Gs and an ‘easy cone’ anisotropy type with extremely small in-plane coercive fields  <0.2 Oe. There is a rather weak in-plane magnetic anisotropy with a pronounced six-fold symmetry observed for the saturation field  <1.5 Oe. No significant out-of-plane anisotropy is observed, but a weak dependence of the effective magnetization on the lattice misfit is detected. The narrowest ferromagnetic resonance linewidth is determined to be 1.4 Oe @ 6.5 GHz which is the lowest value reported so far for YIG films of 100 nm thicknesses and below. The Gilbert damping coefficient for investigated LPE films is estimated to be close to 1× {{10}-4} .

  13. [Structure and properties of colored dental tetragonal zirconia stabilized by yttrium ceramics].

    PubMed

    Yi, Yuan-fu; Wang, Chen; Wen, Ning; Lin, Yong-zhao; Tian, Jie-mo

    2009-10-01

    To investigate the structure, mechanical and low temperature aging properties of colored dental zirconia ceramics. 5 graded colored dental zirconia ceramics were made by adding colorants and their combinations into a 3Y-TZP (tetragonal zirconia stabilized by 3mol% yttrium) powder, the green body were compacted at 200 MPa, pre-sinter at 1,050 degrees C and maintained for 2 h, then densely sintered at 1,500 degrees C for 2 h. Specimens were cut from each of the 5 graded colored blocks. Physical, mechanical properties as well as chemical stability were tested, microstructure were observed, crystalline phase were identified by X-ray diffraction (XRD), aging properties were assessed by measurement of the relative content of monoclinic phase and bending strength testing. The overall density of colored zirconia ceramics was over 99.7%, linear shrinkage was about 20%, while thermal expansion coefficient was about 11 x 10(-6) x degrees C(-1), the crystalline phase was tetragonal, bending strength was over 900 MPa which was slightly lowered than that of the uncolored zirconia, fracture toughness was slightly higher. Good chemical stability in acetic acid was observed. After aging treatment, tetragonal-to-monoclinic phase transformation was detected up to 40%, while bending strength was not significantly degraded. The results showed that colored 3Y-TZP ceramics presented good mechanical properties even after aging treatments, and was suitable for dental clinical use.

  14. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90

    PubMed Central

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2017-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 μM. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 μCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  15. Uranium, yttrium, and rare earth elements accumulation during the Cretaceous anoxic events in carbonaceous rocks in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Savelyeva, Olga; Philosofova, Tatyana; Bergal-Kuvikas, Olga; Savelyeva, Svetlana

    2017-04-01

    We have studied the carbonate-siliceous section of paleooceanic Albian-Cenomanian deposits on the Kamchatsky Mys peninsula (Eastern Kamchatka, Russia) [1].The section is represented by a rhythmic alternation of planktonic limestones and jaspers, accumulated in the open ocean environment. The rhythmicity can be attributed to climate variations that reflect a fluctuation of astronomical parameters (Milankovitch cycles) [2, 3].The section contains two beds enriched in organic carbon, corresponding to the two oceanic anoxic events - MCE and OAE2 [3]. The maximum content of organic matter in those beds reaches 68%. Our geochemical studies revealed an enrichment of the carbonaceous rocks in some major and trace elements including PGE, in comparison with the surrounding limestone and jasper [4].The accumulation of the ore elements in carbonaceous beds is caused by euxinic conditions during sedimentation.The content of uranium, yttrium, and rare earth elements in carbonaceous rocks is up to 60, 142 and 312 ppm respectively. Phosphate grains (bone detritus) with microinclusions of yttrium and uranium minerals were revealed in the carbonaceous rocks using the scanning electron microscope. These data prove the hypothesis of the sorbtion of U and Y by phosphate detritus from seawater. Microprobe analysis also showed an increased content of Cu, Zn, V in some pyrite framboids, which indicates that these elements are fixed in rocks by Fe-sulphide phase or organic matter under euxinic conditions. Our research may bring us closer to understanding the mechanism of syngenetic accumulation of metals in the black shales. This work was supported by the RFBR (No. 16-05-00546). [1] Palechek, T.N., Savelyev, D.P., Savelyeva, O.L. (2010) Stratigraphy and Geological Correlation 18, (1) 63-82. [2] Savelyeva, O.L. (2010). Vestnik Kraunts. Nauki o zemle 1 (15), 45-55 (in Russian). [3] Savelyev, D.P., Savelyeva, O.L., Palechek, T.N., Pokrovsky, B.G. (2012) Geophysical Research Abstracts, 14, EGU

  16. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system

    NASA Astrophysics Data System (ADS)

    Sarma, Runjun; Das, Queen; Hussain, Anowar; Ramteke, Anand; Choudhury, Amarjyoti; Mohanta, Dambarudhar

    2014-07-01

    Combining fluorescence and magnetic features in a non-iron based, select type of quantum dots (QDs) can have immense value in cellular imaging, tagging and other nano-bio interface applications, including targeted drug delivery. Herein, we report on the colloidal synthesis and physical and biophysical assessment of wurtzite-type manganese selenide (MnSe) QDs in cell culture media. Aiming to provide a suitable colloidal system of biological relevance, different concentrations of reactants and ligands (e.g., thioglycolic acid, TGA) have been considered. The average size of the QDs is ˜7 nm, which exhibited a quantum yield of ˜75% as compared to rhodamine 6 G dye®. As revealed from time-resolved photoluminescence (TR-PL) response, the near band edge emission followed a bi-exponential decay feature with characteristic times of ˜0.64 ns and 3.04 ns. At room temperature, the QDs were found to exhibit paramagnetic features with coercivity and remanence impelled by TGA concentrations. With BSA as a dispersing agent, the QDs showed an improved optical stability in Dulbecco’s Modified Eagle Media® (DMEM) and Minimum Essential Media® (MEM), as compared to the Roswell Park Memorial Institute® (RPMI-1640) media. Finally, the cell viability of lymphocytes was found to be strongly influenced by the concentration of MnSe QDs, and had a safe limit upto 0.5 μM. With BSA inclusion in cell media, the cellular uptake of MnSe QDs was observed to be more prominent, as revealed from fluorescence imaging. The fabrication of water soluble, nontoxic MnSe QDs would open up an alternative strategy in nanobiotechnology, while preserving their luminescent and magnetic properties intact.

  17. Lead-Sulfide-Selenide Quantum Dots and Gold-Copper Alloy Nanoparticles Augment the Light-Harvesting Ability of Solar Cells.

    PubMed

    Das, Aparajita; Deepa, Melepurath; Ghosal, Partha

    2017-04-05

    Lead-sulfide-selenide (PbSSe) quantum dots (QDs) and gold-copper (AuCu) alloy nanoparticles (NPs) were incorporated into a cadmium sulfide (CdS)/titanium oxide (TiO 2 ) photoanode for the first time to achieve enhanced conversion of solar energy into electricity. PbSSe QDs with a band gap of 1.02 eV extend the light-harvesting range of the photoanode from the visible region to the near-infrared region. The conduction band (CB) edge of the PbSSe QDs is wedged between the CBs of TiO 2 and CdS; this additional level coupled with the good electrical conductivity of the dots facilitate charge transport and collection, and a high power conversion efficiency (PCE) of 4.44 % is achieved for the champion cell with the TiO 2 /PbSSe/CdS electrode. Upon including AuCu alloy NPs in the QD-sensitized electrodes, light absorption is enhance by plasmonic and light-scattering effects and also by the injection of hot electrons to the CBs of the QDs. Comparison of the incident photon-to-current conversion efficiency enhancement factors in addition to fluorescence decay and impedance studies reveal that the PbSSe QDs and AuCu alloy NPs promote charge injection to the current collector and increase the photogenerated charges produced, which thus enables the TiO 2 /PbSSe/CdS/AuCu cell to deliver the highest PCE of 5.26 % among all the various photoanode compositions used. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Prospective study to determine early hypertrophy of the contra-lateral liver lobe after unilobar, Yttrium-90, selective internal radiation therapy in patients with hepatocellular carcinoma.

    PubMed

    Teo, Jin Yao; Allen, John Carson; Ng, David Chee Eng; Abdul Latiff, Julianah Bee; Choo, Su Pin; Tai, David Wai-Meng; Low, Albert Su Chong; Cheah, Foong Koon; Chang, Jason Pik Eu; Kam, Juinn Huar; Lee, Victor T W; Chung, Alexander Yaw Fui; Chan, Chung Yip; Chow, Pierce Kah Hoe; Goh, Brian K P

    2018-05-01

    Liver resection is a major curative option in patients presenting with hepatocellular carcinoma. An inadequate functional liver remnant is a major limiting factor precluding liver resection. In recent years, hypertrophy of the functional liver remnant after selective internal radiation therapy hypertrophy has been observed, but the degree of hypertrophy in the early postselective internal radiation therapy period has not been well studied. We conducted a prospective study on patients undergoing unilobar, Yttrium-90 selective internal radiation therapy for hepatocellular carcinoma to evaluate early hypertrophy at 4-6 weeks and 8-12 weeks after selective internal radiation therapy. In the study, 24 eligible patients were recruited and had serial volumetric measurements performed. The median age was 66 years (38-75 years). All patients were either Child-Pugh Class A or B, and 6/24 patients had documented, clinically relevant portal hypertension; 15 of the 24 patients were hepatitis B positive. At 4-6 weeks, modest hypertrophy was seen (median 3%; range -12 to 42%) and this increased at 8-12 weeks (median 9%; range -12 to 179%). No preprocedural factors predictive of hypertrophy were identified. Hypertrophy of the functional liver remnant after selective internal radiation therapy with Yttrium-90 occurred in a subset of patients but was modest and unpredictable in the early stages. Selective internal radiation therapy cannot be recommended as a standard treatment modality to induce early hypertrophy for patients with hepatocellular carcinoma. (Surgery 2017;160:XXX-XXX.). Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    PubMed Central

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  20. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  1. Polarization selection rules and optical transitions in terbium activated yttrium tantalate phosphor under x-ray, vacuum-ultraviolet, and ultraviolet excitations.

    PubMed

    Nazarov, Mihail; Tsukerblat, Boris; Byeon, Clare Chisu; Arellano, Ivan; Popovici, Elisabeth-Jeanne; Noh, Do Young

    2009-01-01

    The terbium-activated yttrium tantalite (YTaO(4):Tb(3+)) phosphor is of great interest due to the interesting spectroscopic properties of rare earth ions in crystals and also practical use in x-ray imaging. Using the group-theoretical approach, we analyze the selection rules for the transition between Stark components of Tb(3+) in symmetry of the actual crystal field and the polarization for the allowed transitions. The luminescence upon UV, vacuum-ultraviolet (VUV), and x-ray excitation is presented and discussed. The YTaO(4):Tb(3+) phosphors are found to be efficient VUV-excited luminescent materials that could be used not only in x-ray intensifying screens, but also in mercury-free fluorescent lamps or plasma display panels.

  2. A randomized controlled trial of peeling and aspiration of Elschnig pearls and neodymium: yttrium-aluminium-garnet laser capsulotomy.

    PubMed

    Bhargava, Rahul; Kumar, Prachi; Sharma, Shiv Kumar; Kaur, Avinash

    2015-01-01

    To compare surgical peeling and aspiration and neodymium yttrium garnet laser capsulotomy for pearl form of posterior capsule opacification (PCO). A prospective, randomized, double blind, study was done at Rotary Eye Hospital, Maranda, Palampur, India, Santosh Medical College Hospital, Ghaziabad, India and Laser Eye Clinic, Noida India. Consecutive patients with pearl form of PCO following surgery, phacoemulsification, manual small incision cataract surgery and conventional extracapsular cataract extraction (ECCE) for age related cataract, were randomized to have peeling and aspiration or neodymium yttrium garnet laser capsulotomy. Corrected distance visual acuity (CDVA), intra-operative and post-operative complications were compared. A total of 634 patients participated in the study, and 314 (49.5%) patients were randomized to surgical peeling and aspiration group and 320 (50.5%) to the Nd:YAG laser group. The mean pre-procedural logMAR CDVA in peeling and neodymium: yttrium-aluminium-garnet (Nd:YAG) laser group was 0.80±0.25 and 0.86±0.22, respectively. The mean final CDVA in peeling group (0.22±0.23) was comparable to Nd:YAG group (0.24±0.28; t test, P=0.240). There was a significant improvement in vision after both the procedures (P<0.001). A slightly higher percentage of patients in Nd:YAG laser group (283/88.3%) than in peeling group (262/83.4%) had a CDVA of 0.5 (20/63) or better at 9mo (P<0.001). On the contrary, patients having CDVA worse than 1.00 (20/200) was also significantly higher in Nd:YAG laser group as compared to peeling group (25/7.7% vs 15/4.7%, respectively). On application of ANCOVA, there was less than 0.001% risk that PCO thickness and total laser energy had no effect on rate of complications in Nd:YAG laser group and less than 0.001 % risk that PCO thickness had no effect on complications in peeling group respectively. Sum of square analysis suggests that in the Nd:YAG laser group, thick PCO had a stronger impact on complications

  3. A randomized controlled trial of peeling and aspiration of Elschnig pearls and neodymium: yttrium-aluminium-garnet laser capsulotomy

    PubMed Central

    Bhargava, Rahul; Kumar, Prachi; Sharma, Shiv Kumar; Kaur, Avinash

    2015-01-01

    AIM To compare surgical peeling and aspiration and neodymium yttrium garnet laser capsulotomy for pearl form of posterior capsule opacification (PCO). METHODS A prospective, randomized, double blind, study was done at Rotary Eye Hospital, Maranda, Palampur, India, Santosh Medical College Hospital, Ghaziabad, India and Laser Eye Clinic, Noida India. Consecutive patients with pearl form of PCO following surgery, phacoemulsification, manual small incision cataract surgery and conventional extracapsular cataract extraction (ECCE) for age related cataract, were randomized to have peeling and aspiration or neodymium yttrium garnet laser capsulotomy. Corrected distance visual acuity (CDVA), intra-operative and post-operative complications were compared. RESULTS A total of 634 patients participated in the study, and 314 (49.5%) patients were randomized to surgical peeling and aspiration group and 320 (50.5%) to the Nd:YAG laser group. The mean pre-procedural logMAR CDVA in peeling and neodymium: yttrium-aluminium-garnet (Nd:YAG) laser group was 0.80±0.25 and 0.86±0.22, respectively. The mean final CDVA in peeling group (0.22±0.23) was comparable to Nd:YAG group (0.24±0.28; t test, P=0.240). There was a significant improvement in vision after both the procedures (P<0.001). A slightly higher percentage of patients in Nd:YAG laser group (283/88.3%) than in peeling group (262/83.4%) had a CDVA of 0.5 (20/63) or better at 9mo (P<0.001). On the contrary, patients having CDVA worse than 1.00 (20/200) was also significantly higher in Nd:YAG laser group as compared to peeling group (25/7.7% vs 15/4.7%, respectively). On application of ANCOVA, there was less than 0.001% risk that PCO thickness and total laser energy had no effect on rate of complications in Nd:YAG laser group and less than 0.001 % risk that PCO thickness had no effect on complications in peeling group respectively. Sum of square analysis suggests that in the Nd:YAG laser group, thick PCO had a stronger impact on

  4. Microbial Transformations of Selenium

    PubMed Central

    Doran, J. W.; Alexander, M.

    1977-01-01

    Resting cell suspensions of a strain of Corynebacterium isolated from soil formed dimethyl selenide from selenate, selenite, elemental selenium, selenomethionine, selenocystine, and methaneseleninate. Extracts of the bacterium catalyzed the production of dimethyl selenide from selenite, elemental selenium, and methaneseleninate, and methylation of the inorganic Se compounds was enhanced by S-adenosylmethionine. Neither trimethylselenonium nor methaneselenonate was metabolized by the Corynebacterium. Resting cell suspensions of a methionine-utilizing pseudomonad converted selenomethionine to dimethyl diselenide. Six of 10 microorganisms able to grow on cystine used selenocystine as a sole source of carbon and formed elemental selenium, and one of the isolates, a pseudomonad, was found also to produce selenide. Soil enrichments converted trimethylselenonium to dimethyl selenide. Bacteria capable of utilizing trimethylselenonium, dimethyl selenide, and dimethyl diselenide as carbon sources were isolated from soil. PMID:16345188

  5. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  6. EMBOLIZATION OF DOG PROSTATES WITH YTTRIUM-90 MICROSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, W.M.

    1963-10-01

    Experiments exploring means for the protection of adjacent normal tissue while delivering a destructive dose of radiation to malignant tissue were conducted. By injection of radioactive ceramic spheres or particles, too large to pass through capillaries or arteriovenous shunts, relatively high doses of radiation can be distributed homogeneously to a circumscribed area. Attempts were made to determine the uniformity of distribution and the radiation effect of varying doses of spheres injected into the arterial supply of the dog prostate. Nonradioactive and radioactive ceramic microspheres of 60 mu dia were used since this size exceeds the diameter of capillaries and arteriovenousmore » shunts. Yttrium-90 microspheres of varying radioactivity were used. Doses injected into right and left hypogastric arteries varied from 0.69 to 28.4 mc/side (92-1260 mc/ g prostate). Homogeneous distribution of radioactivity within the prostate was demonstrated by autoradiography. Distribution to some other organs (rectum, penis, and bladder) occurred because arterial supply to these structures was not isolated and occluded. The amount of radioactivity found in the lungs suggested more venous drainage in some cases than seemed apparent, and because of the infarctions of pelvic organs may have leaked radioactive spheres into the venous circuit. In 6 of the 8 dogs which died prematurely (2 to 7 days after surgery) obvious infarction of the prostate and in some other pelvic structures had occurred. That the radioactivity contributed to the infarction is suggested by the results in the dogs which received large doses of radioactivity (18.9 and 28.4 mc per side) in minimal amounts of spheres (100to 150 mg per side). The intensely concentrated radioactivity within the arteriolar lumens may have caused vasculitis and subsequent thrombosis. Although homogeneous destruction of the prostate gland occurred, the effect of a given dose ranged unpredictably through three groups: no apparent

  7. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Cataracts induced by neodymium-yttrium-aluminium-garnet laser lysis of vitreous floaters.

    PubMed

    Koo, Ellen H; Haddock, Luis J; Bhardwaj, Namita; Fortun, Jorge A

    2017-06-01

    Neodymium-yttrium-aluminium-garnet (Nd:YAG) laser vitreolysis has been proposed as a treatment modality for symptomatic vitreous floaters. The purpose of this paper is to report two cases of cataracts associated with posterior capsular compromise, induced by Nd:YAG laser vitreolysis for symptomatic vitreous floaters. Case series. Two patients who underwent ND:YAG laser vitreolysis for symptomatic floaters, presented with decline in visual acuity in the treated eye after the laser procedure. At the slit-lamp biomicroscope, each patient was found to have a posterior subcapsular cataract in the treated eye, with obvious loss of integrity of the posterior capsule. These two patients underwent cataract extraction by the same surgeon via phacoemulsification. Both eyes were found to have a defect in the posterior capsule intraoperatively. In both cases, a three-piece acrylic intraocular lens implant was placed in the sulcus, achieving optic capture. The best-corrected visual acuity (BCVA) was 20/20 in both patients, at 1 month following the surgery. At 2 months, one patient had a BCVA of 20/15. The second patient maintained a BCVA of 20/20 at 3 months. Secondary cataract formation accompanied by loss of integrity of the posterior capsule is a potential complication of Nd:YAG laser vitreolysis for symptomatic floaters. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Marine phosphorites as potential resources for heavy rare earth elements and yttrium

    USGS Publications Warehouse

    Hein, James; Koschinsky, Andrea; Mikesell, Mariah; Mizell, Kira; Glenn, Craig R.; Wood, Ray

    2016-01-01

    Marine phosphorites are known to concentrate rare earth elements and yttrium (REY) during early diagenetic formation. Much of the REY data available are decades old and incomplete, and there has not been a systematic study of REY distributions in marine phosphorite deposits that formed over a range of oceanic environments. Consequently, we initiated this study to determine if marine phosphorite deposits found in the global ocean host REY concentrations of high enough grade to be of economic interest. This paper addresses continental-margin (CM) and open-ocean seamount phosphorites. All 75 samples analyzed are composed predominantly of carbonate fluorapatite and minor detrital and authigenic minerals. CM phosphorites have low total REY contents (mean 161 ppm) and high heavy REY (HREY) complements (mean 49%), while seamount phosphorites have 4–6 times higher individual REY contents (except for Ce, which is subequal; mean ΣREY 727 ppm), and very high HREY complements (mean 60%). The predominant causes of higher concentrations and larger HREY complements in seamount phosphorites compared to CM phosphorites are age, changes in seawater REY concentrations over time, water depth of formation, changes in pH and complexing ligands, and differences in organic carbon content in the depositional environments. Potential ore deposits with high HREY complements, like the marine phosphorites analyzed here, could help supply the HREY needed for high-tech and green-tech applications without creating an oversupply of the LREY.

  10. Theoretical investigation of electronic states and spectroscopic properties of tellurium selenide molecule employing relativistic effective core potentials.

    PubMed

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2014-04-24

    Ab initio based relativistic configuration interaction calculations have been performed to study the electronic states and spectroscopic properties of tellurium selenide (TeSe) - the heaviest heteronuclear diatomic group 16-16 molecule. Potential energy curves of several spin-excluded (Λ-S) electronic states of TeSe have been constructed and spectroscopic constants of low-lying bound Λ-S states within 3.85 eV are reported in the first stage of calculations. The X(3)Σ(-), a(1)Δ and b(1)Σ(+) are found as the ground, first excited and second excited state, respectively, at the Λ-S level and all these three states are mainly dominated by …π(4)π(*2) configuration. The computed ground state dissociation energy is in very good agreement with the experimental results. In the next stage of calculations, effects of spin-orbit coupling on the potential energy curves and spectroscopic properties of the species are investigated in details and compared with the existing experimental results. After inclusion of spin-orbit coupling the X(3)(1)Σ(-)(0(+)) is found as the ground-state spin component of TeSe. The computed spin-orbit splitting between two components of X(3)Σ(-) state is 1285 cm(-1). Also, significant amount of spin-orbit splitting are found between spin-orbit components (Ω-components) of several other excited states. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from configuration interaction wave functions. The spin-allowed transition B(3)Σ(-)-X(3)Σ(-) and spin-forbidden transition b(1)Σ(+)(0(+))-X(3)(1)Σ(-)(0(+)) are found to be the strongest in their respective categories. Electric dipole moments of all the bound Λ-S states along with those of the two Ω-components of X(3)Σ(-) are also calculated in the present study. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Separation and preconcentration of the rare-earth elements and yttrium from geological materials by ion-exchange and sequential acid elution

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.; Riddle, G.O.; Beech, C.L.

    1986-01-01

    The abundance of rare-earth elements (REE) and yttrium in geological materials is generally low, and most samples contain elements that interfere in the determination of the REE and Y, so a separation and/or preconcentration step is often necessary. This is often achieved by ion-exchange chromatography with either nitric or hydrochloric acid. It is advantageous, however, to use both acids sequentially. The final solution thus obtained contains only the REE and Y, with minor amounts of Al, Ba, Ca, Sc, Sr and Ti. Elements that potentially interfere, such as Be, Co, Cr, Fe, Mn, Th, U, V and Zr, are virtually eliminated. Inductively-coupled argon plasma atomic-emission spectroscopy can then be used for a final precise and accurate measurement. The method can also be used with other instrumental methods of analysis. ?? 1986.

  12. Commentary: Is There Clinical Benefit From Using a Diode or Neodymium:Yttrium-Aluminum-Garnet Laser in the Treatment of Periodontitis?

    PubMed

    Cobb, Charles M

    2016-10-01

    Despite a quarter of a century of laser research, there is a persistent debate regarding the efficacy of dental lasers in the treatment of periodontitis or periodontal maintenance therapy. There are many claims and much hyperbole surrounding the use of lasers, either as a monotherapy or adjunctive to scaling and root planing, to treat periodontitis. There is little evidence that using a diode or neodymium:yttrium-aluminum-garnet laser adds clinical value over and above conventional non-surgical or surgical periodontal treatment. There is a significant need for better designed human clinical trials. Data from such trials should be analyzed according to initial probing depth and characteristics of the treated sites, such as non-molar, molar flat surfaces, and molar furcations, and evaluated for long-term post-treatment results.

  13. Study of yttrium 4-nitrocinnamate to promote surface interactions with AS1020 steel

    NASA Astrophysics Data System (ADS)

    Hien, P. V.; Vu, N. S. H.; Thu, V. T. H.; Somers, A.; Nam, N. D.

    2017-08-01

    Yttrium 4-nitrocinnamate (Y(4-NO2Cin)3) was added to an aqueous chloride solution and studied as a possible corrosion inhibition system. Electrochemical techniques and surface analysis have been powerful tools to better understand the corrosion and inhibition processes of mild steel in 0.01 M NaCl solution. A combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Potentiodynamic polarization (PD), electrochemical impedance spectroscopy (EIS) and wire beam electrode (WBE) techniques was found to be useful in the characterization of this system. The result indicated that Y(4-NO2Cin)3 is able to effectively inhibit corrosion at a low concentration of 0.45 mM. Surface analysis clearly shows that the surface of steel coupons exposed to Y(4-NO2Cin)3 solution remained uniform and smooth, whereas the surface of steel coupons exposed to solution without inhibitor addition was severely corroded. The results suggest that Y(4-NO2Cin)3 behaves as a mixed inhibitor and mitigates corrosion by promoting random distribution of minor anodes. These are attributed to the formation of metal species bonding to the 4-nitrocinnamate component and hydrolysis of the Y(4-NO2Cin)3 to form oxide/hydroxides as a protective film layer.

  14. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, Mootaz

    2016-08-15

    Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study. Methods: The ACR phantom was filled with an initial concentration of 8 GBq of Y-90 solution resulting in a contrast of 10:1 between the hot cylinders and the background.more » Y-90 PET motion correction through motion estimates from MR navigators was evaluated by using a custom-built motion stage that simulated realistic amplitudes of respiration-induced liver motion. Finally, the feasibility of an MR-based partial volume correction method was evaluated using a wavelet decomposition approach. Results: Motion resulted in a large (∼40%) loss of contrast recovery for the 8 mm cylinder in the phantom, but was corrected for after MR-based motion correction was applied. Partial volume correction improved contrast recovery by 13% for the 8 mm cylinder. Conclusions: MR-based data correction improves Y-90 PET imaging on simultaneous PET/MR systems. Assessment of these methods must be studied further in the clinical setting.« less

  15. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    NASA Astrophysics Data System (ADS)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  16. Feasibility assessment of yttrium-90 liver radioembolization imaging using amplitude-based gated PET/CT

    PubMed Central

    Acuff, Shelley N.; Neveu, Melissa L.; Syed, Mumtaz; Kaman, Austin D.; Fu, Yitong

    2018-01-01

    Purpose The usage of PET/computed tomography (CT) to monitor hepatocellular carcinoma patients following yttrium-90 (90Y) radioembolization has increased. Respiratory motion causes liver movement, which can be corrected using gating techniques at the expense of added noise. This work examines the use of amplitude-based gating on 90Y-PET/CT and its potential impact on diagnostic integrity. Patients and methods Patients were imaged using PET/CT following 90Y radioembolization. A respiratory band was used to collect respiratory cycle data. Patient data were processed as both standard and motion-corrected images. Regions of interest were drawn and compared using three methods. Activity concentrations were calculated and converted into dose estimates using previously determined and published scaling factors. Diagnostic assessments were performed using a binary scale created from published 90Y-PET/CT image interpretation guidelines. Results Estimates of radiation dose were increased (P<0.05) when using amplitude-gating methods with 90Y PET/CT imaging. Motion-corrected images show increased noise, but the diagnostic determination of success, using the Kao criteria, did not change between static and motion-corrected data. Conclusion Amplitude-gated PET/CT following 90Y radioembolization is feasible and may improve 90Y dose estimates while maintaining diagnostic assessment integrity. PMID:29351124

  17. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet ismore » mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.« less

  18. High-pressure synthesis of predicted oxynitride perovskite: Yttrium Silicon Oxynitride (YSiO2N)

    NASA Astrophysics Data System (ADS)

    Ahart, Muhtar; Somayazulu, M.; Vadapoo, Rajasekarakumar; Cohen, R. E.

    We synthesized the previously predicted polar oxynitride perovskite in a diamond anvil cell with laser heating. YSiO2N was predicted to have the polar P4mm structure with an effective spontaneous polarization of 130 μC/cm2. A mixture of Yttrium nitride (YN) and amorphous Silicon dioxide (SiO2) were loaded into a diamond anvil cell and laser heated at or above 1200 C at 12 GPa. The run products were investigated by x-ray diffraction, Raman spectroscopy, and second harmonic generation, for their phase and structural properties. The x-ray diffraction pattern (a = 3.235 Å, c = 4.485 Å) shows the phase formation of YSiO2N and matches with the diffraction pattern derived from the first-principle predicted lattice parameters. However, minor unknown peaks are on the diffraction pattern indicating of the co-existence of other unknown phases. Further study of Raman spectroscopy observes the theoretically predicted modes, and second harmonic generation shows strong non-linear optical signal, which confirms the polar properties of YSiO2N. This work is supported by ONR Grants N00014-12-1-1038 and N00014-14-1-0561, by the ERC Advanced Grant ToMCaT.

  19. Yttrium-90 -- current status, expected availability and applications of a high beta energy emitter.

    PubMed

    Montaña, R Leyva; González, I Hernández; Ramirez, A Alberti; Garaboldi, L; Chinol, M

    2012-07-01

    Yttrium-90 ((90)Y, T(1/2) 64.14 h) is a key example of a high beta energy-emitting radionuclide which is available from the strontium-90 ((90)Sr)/(90)Y radionuclide generator system. Clinical uses of (90)Y-labeled radiopharmaceutical agents have been pursued for many years and many applications have proven to be clinical effective. These most notably include the application of 90Y-labeled antibodies for a variety of applications such as for effective treatment of non-Hodgkin's lymphoma. One of the major advantages for use of (90)Y is ready availability from the very long-lived (90)Sr parent (T(1/2) 28.78 y). Because of the importance of maintaining generator performance and minimizing parent breakthrough, this paper describes development, use and quality control of both high capacity cation adsorption-type and electrochemical generator systems. In addition, the preparation and targeting to tumors in mice of DOTA-conjugated Nimotuzamab (h-R3) antibody which recognizes the external domain of the EPFR antibody radiolabeled with (90)Y obtained from the electrochemical generator is also described. As a key example for clinical applications of (90)Y, the use of (90)Y-labeled biotin for intra-operative pre-targeting for radionuclide therapy (IART®) of breast cancer is also described.

  20. Radioembolization of Symptomatic, Unresectable Neuroendocrine Hepatic Metastases Using Yttrium-90 Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paprottka, Philipp M., E-mail: philipp.paprottka@med.uni-muenchen.de; Hoffmann, Ralf-T.; Haug, Alexander

    2012-04-15

    Purpose: To evaluate safety, efficacy, and symptom-control of radioembolization in patients with unresectable liver metastases from neuroendocrine tumors (NETLMs). Materials and Methods: Forty-two patients (mean age of 62 years) with treatment-refractory NETLMs underwent radioembolization using yttrium-90 ({sup 90}Y) resin microspheres. Posttreatment tumor response was assessed by cross-sectional imaging using the Response Evaluation Criteria in Solid Tumors (RECIST) and tumor-marker levels. Laboratory and clinical toxicities and clinical symptoms were monitored. Results: The median activity delivered was 1.63 GBq (range 0.63-2.36). Imaging follow-up using RECIST at 3-month follow-up demonstrated partial response, stable disease, and progressive disease in 22.5, 75.0, and 2.5% ofmore » patients, respectively. In 97.5% of patients, the liver lesions appeared hypovascular or partially necrotic. The mean follow-up was 16.2 months with 40 patients (95.2%) remaining alive. The median decrease in tumor-marker levels at 3 months was 54.8% (chromogranin A) and 37.3% (serotonin), respectively. There were no acute or delayed toxicities greater than grade 2 according to Common Terminology Criteria for Adverse Events [CTCAE (v3.0)]. No radiation-induced liver disease was noted. Improvement of clinical symptoms 3 months after treatment was observed in 36 of 38 symptomatic patients. Conclusion: Radioembolization with {sup 90}Y-microspheres is a safe and effective treatment option in patients with otherwise treatment-refractory NETLMs. Antitumoral effect is supported by good local tumor control, decreased tumor-marker levels, and improved clinical symptoms. Further investigation is warranted to define the role of radioembolization in the treatment paradigm for NETLMs.« less

  1. Investigation of the unidirectional spin heat conveyer effect in a 200 nm thin Yttrium Iron Garnet film

    NASA Astrophysics Data System (ADS)

    Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg

    2016-06-01

    We have investigated the unidirectional spin wave heat conveyer effect in sub-micron thick yttrium iron garnet (YIG) films using lock-in thermography (LIT). Although the effect is small in thin layers this technique allows us to observe asymmetric heat transport by magnons which leads to asymmetric temperature profiles differing by several mK on both sides of the exciting antenna, respectively. Comparison of Damon-Eshbach and backward volume modes shows that the unidirectional heat flow is indeed due to non-reciprocal spin-waves. Because of the finite linewidth, small asymmetries can still be observed when only the uniform mode of ferromagnetic resonance is excited. The latter is of extreme importance for example when measuring the inverse spin-Hall effect because the temperature differences can result in thermovoltages at the contacts. Because of the non-reciprocity these thermovoltages reverse their sign with a reversal of the magnetic field which is typically deemed the signature of the inverse spin-Hall voltage.

  2. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.

  3. Composite-Nanoparticles Thermal History Sensors

    DTIC Science & Technology

    2014-05-01

    al. Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions Fig. 5. SEM image of PbTe solid nano- and micro-cubes...Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro...R C H A R TIC LE Poudel et al. Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of

  4. Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt

    NASA Astrophysics Data System (ADS)

    Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2016-09-01

    Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards.

  5. Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lim, Jinho; Bang, Wonbae; Trossman, Jonathan; Amanov, Dovran; Ketterson, John B.

    2018-05-01

    We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field.

  6. Potassium titanyl arsenate based cascaded optical parametric oscillator emit at 2.5 µm derived by neodymium-doped yttrium lithium fluoride laser

    NASA Astrophysics Data System (ADS)

    Duan, Yanmin; Zhang, Jing; Guo, Junhong; Zhu, Haiyong; Zhang, Yongchang; Xu, Changwen; Wang, Hongyan; Zhang, Yaoju

    2018-04-01

    We reported a potassium titanyl arsenate (KTA) based cascaded optical parametric oscillator (OPO). The secondary OPO signal light at 2.5 µm was obtained with two OPO processes in one non-critical phase matching cut KTA crystal. This cascaded OPO was driven by a Q-switched neodymium-doped yttrium lithium fluoride (Nd:YLF) laser at 1047 nm. Making full use of the negative thermal lens effect and long upper level fluorescence lifetime of Nd:YLF, signal power of 605 mW at 2503 nm was achieved with a pulse repetition frequency of 15 kHz and an incident diode pump power of 9.7 W. Therefore, the cascaded OPO derived by Q-switched Nd:YLF laser could provide high peak power pulsed laser emission in mid-infrared band.

  7. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    PubMed

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  8. Propagation of magnetostatic spin waves in an yttrium iron garnet film for out-of-plane magnetic fields

    NASA Astrophysics Data System (ADS)

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Ketterson, John B.

    2018-06-01

    We have observed the propagation of spin waves across a thin yttrium iron garnet film on (1 1 1) gadolinium gallium garnet for magnetic fields inclined with respect to the film plane. Two principle planes were studied: that for H in the plane defined by the wave vector k and the plane normal, n, with limiting forms corresponding to the Backward Volume and Forward Volume modes, and that for H in the plane perpendicular to k, with limiting forms corresponding to the Damon-Eshbach and Forward Volume modes. By exciting the wave at one edge of the film and observing the field dependence of the phase of the received signal at the opposing edge we determined the frequency vs. wavevector relation, ω = ω (k), of various propagating modes in the film. Avoided crossings are observed in the Damon-Eshbach and Forward Volume regimes when the propagating mode intersects the higher, exchange split, volume modes, leading to an extinction of the propagating mode; analysis of the resulting behavior allows a determination of the exchange parameter. The experimental results are compared with theoretical simulations.

  9. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  10. Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarangella, Adriana; Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania; Reitano, Riccardo

    2015-07-27

    The process of energy transfer (ET) between optically active ions has been widely studied to improve the optical efficiency of a system for different applications, from lighting and photovoltaics to silicon microphotonics. In this work, we report the influence of Bi on the Er optical emission in erbium-yttrium oxide thin films synthesized by magnetron co-sputtering. We demonstrate that this host permits to well dissolve Er and Bi ions, avoiding their clustering, and thus to stabilize the optically active Er{sup 3+} and Bi{sup 3+} valence states. In addition, we establish the ET occurrence from Bi{sup 3+} to Er{sup 3+} by themore » observed Bi{sup 3+} PL emission decrease and the simultaneous Er{sup 3+} photoluminescence (PL) emission increase. This was further confirmed by the coincidence of the Er{sup 3+} and Bi{sup 3+} excitation bands, analyzed by PL excitation spectroscopy. By increasing the Bi content of two orders of magnitude inside the host, though the occurrence of Bi-Bi interactions becomes deleterious for Bi{sup 3+} optical efficiency, the ET process between Bi{sup 3+} and Er{sup 3+} is still prevalent. We estimate ET efficiency of 70% for the optimized Bi:Er ratio equal to 1:3. Moreover, we have demonstrated to enhance the Er{sup 3+} effective excitation cross section by more than three orders of magnitude with respect to the direct one, estimating a value of 5.3 × 10{sup −18} cm{sup 2}, similar to the expected Bi{sup 3+} excitation cross section. This value is one of the highest obtained for Er in Si compatible hosts. These results make this material very promising as an efficient emitter for Si-compatible photonics devices.« less

  11. Fast simulation of yttrium-90 bremsstrahlung photons with GATE.

    PubMed

    Rault, Erwann; Staelens, Steven; Van Holen, Roel; De Beenhouwer, Jan; Vandenberghe, Stefaan

    2010-06-01

    Multiple investigators have recently reported the use of yttrium-90 (90Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging for the dosimetry of targeted radionuclide therapies. Because Monte Carlo (MC) simulations are useful for studying SPECT imaging, this study investigates the MC simulation of 90Y bremsstrahlung photons in SPECT. To overcome the computationally expensive simulation of electrons, the authors propose a fast way to simulate the emission of 90Y bremsstrahlung photons based on prerecorded bremsstrahlung photon probability density functions (PDFs). The accuracy of bremsstrahlung photon simulation is evaluated in two steps. First, the validity of the fast bremsstrahlung photon generator is checked. To that end, fast and analog simulations of photons emitted from a 90Y point source in a water phantom are compared. The same setup is then used to verify the accuracy of the bremsstrahlung photon simulations, comparing the results obtained with PDFs generated from both simulated and measured data to measurements. In both cases, the energy spectra and point spread functions of the photons detected in a scintillation camera are used. Results show that the fast simulation method is responsible for a 5% overestimation of the low-energy fluence (below 75 keV) of the bremsstrahlung photons detected using a scintillation camera. The spatial distribution of the detected photons is, however, accurately reproduced with the fast method and a computational acceleration of approximately 17-fold is achieved. When measured PDFs are used in the simulations, the simulated energy spectrum of photons emitted from a point source of 90Y in a water phantom and detected in a scintillation camera closely approximates the measured spectrum. The PSF of the photons imaged in the 50-300 keV energy window is also accurately estimated with a 12.4% underestimation of the full width at half maximum and 4.5% underestimation of the full width at tenth maximum

  12. Refractory open-angle glaucoma after neodymium-yttrium-aluminum-garnet laser lysis of vitreous floaters.

    PubMed

    Cowan, Lisa A; Khine, Kay T; Chopra, Vikas; Fazio, Doreen T; Francis, Brian A

    2015-01-01

    To illustrate 3 cases of chronic open-angle glaucoma secondary to the neodymium-yttrium-aluminum-garnet (Nd:YAG) laser vitreolysis procedure for symptomatic vitreous floaters. Observational case series. Location of the study was the Doheny Eye Institute. Three eyes of 2 patients who developed chronic open-angle glaucoma after Nd:YAG vitreolysis for symptomatic floaters presenting with very high intraocular pressure (IOP >40 mm Hg) were selected. The time from the laser treatment to the onset of elevated pressure ranges from 1 week to 8 months. There was no associated inflammation, steroid use, or other identifiable cause of chronic IOP elevation. All eyes were treated initially with glaucoma medication, followed by selective laser trabeculoplasty (SLT) and eventually glaucoma surgery (Trabectome) in 2 eyes for disease management. In all eyes, intraocular pressures were eventually stabilized within a normal pressure range from 18 to 38 months following Nd:YAG vitreolysis. At the latest follow-up post surgery, all eyes had intraocular pressures of 22 mm Hg or less with or without medications. Secondary open-angle glaucoma is a complication of Nd:YAG vitreolysis for symptomatic floaters that may present with an increase in intraocular pressure immediately, or many months after the surgery. Furthermore this complication may be permanent and require chronic medical therapy or glaucoma surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Far-infrared spectra of yttrium-doped gold clusters Au(n)Y (n=1-9).

    PubMed

    Lin, Ling; Claes, Pieterjan; Gruene, Philipp; Meijer, Gerard; Fielicke, André; Nguyen, Minh Tho; Lievens, Peter

    2010-06-21

    The geometric, spectroscopic, and electronic properties of neutral yttrium-doped gold clusters Au(n)Y (n=1-9) are studied by far-infrared multiple photon dissociation (FIR-MPD) spectroscopy and quantum chemical calculations. Comparison of the observed and calculated vibrational spectra allows the structures of the isomers present in the molecular beam to be determined. Most of the isomers for which the IR spectra agree best with experiment are calculated to be the energetically most stable ones. Attachment of xenon to the Au(n)Y cluster can cause changes in the IR spectra, which involve band shifts and band splittings. In some cases symmetry changes, as a result of the attachment of xenon atoms, were also observed. All the Au(n)Y clusters considered prefer a low spin state. In contrast to pure gold clusters, which exhibit exclusively planar lowest-energy structures for small sizes, several of the studied species are three-dimensional. This is particularly the case for Au(4)Y and Au(9)Y, while for some other sizes (n=5, 8) the 3D structures have an energy similar to that of their 2D counterparts. Several of the lowest-energy structures are quasi-2D, that is, slightly distorted from planar shapes. For all the studied species the Y atom prefers high coordination, which is different from other metal dopants in gold clusters.

  14. Structure-substitution limit correlation study on Cr{sup 3+} substituted polycrystalline yttrium iron garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, K. B.; Saija, K. G.; Sharma, P. U.

    2016-05-06

    Polycrystalline samples of Cr{sup 3+} - substituted yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) system with general chemical formula, Y{sub 3}Fe{sub 5-x}Cr{sub x}O{sub 12}, x = 0.0, 0.2, 0.4 and 0.6 were synthesized by double sintering ceramic technique and characterized by X-ray powder diffractometry. The Rietveld fitted X-ray diffraction patterns analysis revealed mono phase formation for x = 0.0 - 0.4 compositions while x = 0.6 composition possesses mixed phase character. The observed substitution limit has been discussed in the light of ionic size of substituent, electrostatic energy, electronic configuration and synthesis parameters. These observations strongly suggest that the electronicmore » configuration of Cr{sup 3+}, which is favorable to the formation of d2sp3 (octahedral) type bonds, must be important. In the case of Cr{sup 3+}, the substitution does not appear to proceed well for x much greater than 0.5, this limitation probably is a consequence of the strong preference of a smaller ion Cr{sup 3+}, for a larger octahedral site which quickly leads to a condition not comparable with the requirement of the structure. The distribution of cations, mean ionic radii and theoretical lattice constant values have been determined.« less

  15. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material

    PubMed Central

    Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G.; Schmidt, Georg

    2016-01-01

    We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10−5 is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10−5 is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials. PMID:26860816

  16. Dynamic photopatterning of cells in situ by Q-switched neodymium-doped yttrium ortho-vanadate laser.

    PubMed

    Deka, Gitanjal; Okano, Kazunori; Kao, Fu-Jen

    2014-01-01

    Cellular micropattering has been increasingly adopted in quantitative biological experiments. A Q-switched pulsed neodymium-doped yttrium ortho-vanadate (Nd∶YVO4) laser directed in-situ microfabrication technique for cell patterning is presented. A platform is designed uniquely to achieve laser ablation. The platform is comprised of thin gold coating over a glass surface that functions as a thermal transducer and is over-layered by a cell repellant polymer layer. Micropatterns are engraved on the platform, subsequently exposing specific cell adhesive micro-domains by ablating the gold-polymer coating photothermally. Experimental results indicate that the proposed approach is applicable under culture conditions, viable toward cells, and has a higher engraving speed. Possible uses in arraying isolated single cells on the platform are also shown. Additionally, based on those micro-patterns, dynamic cellular morphological changes and migrational speed in response to geometrical barriers are studied to demonstrate the potential applications of the proposed approach. Our results further demonstrate that cells in narrower geometry had elongated shapes and higher migrational speed than those in wider geometry. Importantly, the proposed approach will provide a valuable reference for efforts to study single cell dynamics and cellular migration related processes for areas such as cell division, wound healing, and cancer invasion.

  17. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-04-01

    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  18. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.

  19. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The costmore » of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.« less

  20. Quantitative and Qualitative Assessment of Yttrium-90 PET/CT Imaging

    PubMed Central

    Büsing, Karen-Anett; Schönberg, Stefan O.; Bailey, Dale L.; Willowson, Kathy; Glatting, Gerhard

    2014-01-01

    Yttrium-90 is known to have a low positron emission decay of 32 ppm that may allow for personalized dosimetry of liver cancer therapy with 90Y labeled microspheres. The aim of this work was to image and quantify 90Y so that accurate predictions of the absorbed dose can be made. The measurements were performed within the QUEST study (University of Sydney, and Sirtex Medical, Australia). A NEMA IEC body phantom containing 6 fillable spheres (10–37 mm ∅) was used to measure the 90Y distribution with a Biograph mCT PET/CT (Siemens, Erlangen, Germany) with time-of-flight (TOF) acquisition. A sphere to background ratio of 8∶1, with a total 90Y activity of 3 GBq was used. Measurements were performed for one week (0, 3, 5 and 7 d). he acquisition protocol consisted of 30 min-2 bed positions and 120 min-single bed position. mages were reconstructed with 3D ordered subset expectation maximization (OSEM) and point spread function (PSF) for iteration numbers of 1–12 with 21 (TOF) and 24 (non-TOF) subsets and CT based attenuation and scatter correction. Convergence of algorithms and activity recovery was assessed based on regions-of-interest (ROI) analysis of the background (100 voxels), spheres (4 voxels) and the central low density insert (25 voxels). For the largest sphere, the recovery coefficient (RC) values for the 30 min –2-bed position, 30 min-single bed and 120 min-single bed were 1.12±0.20, 1.14±0.13, 0.97±0.07 respectively. For the smaller diameter spheres, the PSF algorithm with TOF and single bed acquisition provided a comparatively better activity recovery. Quantification of Y-90 using Biograph mCT PET/CT is possible with a reasonable accuracy, the limitations being the size of the lesion and the activity concentration present. At this stage, based on our study, it seems advantageous to use different protocols depending on the size of the lesion. PMID:25369020

  1. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  2. Multi-directional emission and detection of spin waves propagating in yttrium iron garnet with wavelengths down to about 100 nm

    NASA Astrophysics Data System (ADS)

    Maendl, Stefan; Grundler, Dirk

    2018-05-01

    We performed broadband spin-wave spectroscopy on 200 nm thick yttrium iron garnet containing arrays of partially embedded magnetic nanodisks. Using integrated coplanar waveguides (CPWs), we studied the excitation and transmission of spin waves depending on the presence of nanomagnet arrays of different lateral extensions. By means of the grating coupler effect, we excited spin waves propagating in multiple lateral directions with wavelengths down to 111 nm. They exhibited group velocities of up to 1 km/s. Detection of such short-wavelength spin waves was possible only in symmetrically designed emitter/detector configurations, not with a bare CPW. We report spin waves propagating between grating couplers under oblique angles exhibiting a wave vector component parallel to the CPW. The effective propagation distance amounted to about 80 μm. Such transmission signals were not addressed before and substantiate the versatility of the grating coupler effect for implementing nanomagnonic circuits.

  3. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  4. New Antimony Selenide/Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum-Dot Co-Sensitized Solar Cells.

    PubMed

    Kolay, Ankita; Kokal, Ramesh K; Kalluri, Ankarao; Macwan, Isaac; Patra, Prabir K; Ghosal, Partha; Deepa, Melepurath

    2017-10-11

    A novel assembly of a photocathode and a photoanode is investigated to explore their complementary effects in enhancing the photovoltaic performance of a quantum-dot solar cell (QDSC). While p-type nickel oxide (NiO) has been used previously, antimony selenide (Sb 2 Se 3 ) has not been used in a QDSC, especially as a component of a counter electrode (CE) architecture that doubles as the photocathode. Here, near-infrared (NIR) light-absorbing Sb 2 Se 3 nanoparticles (NPs) coated over electrodeposited NiO nanofibers on a carbon (C) fabric substrate was employed as the highly efficient photocathode. Quasi-spherical Sb 2 Se 3 NPs, with a band gap of 1.13 eV, upon illumination, release photoexcited electrons in addition to other charge carriers at the CE to further enhance the reduction of the oxidized polysulfide. The p-type conducting behavior of Sb 2 Se 3 , coupled with a work function at 4.63 eV, also facilitates electron injection to polysulfide. The effect of graphene quantum dots (GQDs) as co-sensitizers as well as electron conduits is also investigated in which a TiO 2 /CdS/GQDs photoanode structure in combination with a C-fabric CE delivered a power-conversion efficiency (PCE) of 5.28%, which is a vast improvement over the 4.23% that is obtained by using a TiO 2 /CdS photoanode (without GQDs) with the same CE. GQDs, due to a superior conductance, impact efficiency more than Sb 2 Se 3 NPs do. The best PCE of a TiO 2 /CdS/GQDs-nS 2- /S n 2- -Sb 2 Se 3 /NiO/C-fabric cell is 5.96% (0.11 cm 2 area), which, when replicated on a smaller area of 0.06 cm 2 , is seen to increase dramatically to 7.19%. The cell is also tested for 6 h of continuous irradiance. The rationalization for the channelized photogenerated electron movement, which augments the cell performance, is furnished in detail in these studies.

  5. [Contralateral hepatic hypertrophy following unilateral yttrium-90 radioembolization : Implications for liver surgery].

    PubMed

    Garlipp, B; Seidensticker, M; Jechorek, D; Ptok, H; Bruns, C J; Ricke, J

    2016-05-01

    Preservation of an adequate future liver remnant (FLR) is the principal limitation to liver surgery in patients with primary or secondary liver malignancies. Hence, methods to increase the volume of the FLR in preparation for liver resection are gaining in importance. In addition to the traditional methods for induction of FLR hypertrophy, such as portal vein embolization (PVE) or portal vein ligation (PVL) with or without parenchymal dissection (ALPPS, in situ split), radioembolization (RE) using yttrium-90 microspheres also leads to a volume increase of non-embolized liver parenchyma. This review outlines its potential role as an alternative procedure for induction of liver hypertrophy. Synopsis and critical discussion of the available literature on the mechanisms of induction of liver hypertrophy, the advantages and drawbacks of the traditional methods, and current research on volume changes associated with RE as well as their implications for possible clinical use in preparation for liver surgery. Both PVE and PVL can achieve a substantial contralateral volume gain of up to 70 %. The development of contralateral hypertrophy can be accelerated by dissecting the liver parenchyma along the intended plane of resection in addition to PVL (in situ split). Compared to these methods, RE achieves less contralateral liver hypertrophy; however, this effect should not be disregarded as RE provides effective treatment of ipsilateral liver tumors along with induction of hypertrophy and may be associated with a reduced risk of tumor progression compared to PVE and PVL. The available data suggest that RE can complement the armamentarium of methods for induction of FLR hypertrophy in specific situations. Further studies are needed to establish its definitive role for this indication and are in preparation.

  6. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater

    USGS Publications Warehouse

    Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R.

    1996-01-01

    In order to evaluate details of the partitioning behaviours of Y, rare earth elements (REEs), and Ti between inorganic metal oxide surfaces and seawater, we studied the distribution of these elements in hydrogenetic marine ferromanganese (Fe-Mn) crusts from the Central Pacific Ocean. Nonphosphatized Fe-Mn crusts display shale-normalized rare earths and yttrium (REYSN) patterns (Y inserted between Dy and Ho) that are depleted in light REEs (LREEs) and which show negative anomalies for YSN, and positive anomalies for LaSN, EuSN, GdSN, and in most cases, CeSN. They show considerably smaller Y/ Ho ratios than seawater or common igneous and clastic rocks, indicating that Y and Ho are fractionated in the marine environment. Compared to P-poor crusts, REYSN patterns of phosphatized Fe-Mn crusts are similar, but yield pronounced positive YSN anomalies, stronger positive LaSN anomalies, and enrichment of the HREEs relative to the MREEs. The data suggest modification of REY during phosphatization and indicate that studies requiring primary REY distributions or isotopic ratios should be restricted to nonphosphatized (layers of) Fe-Mn crusts. Apparent bulk coefficients, KMD, describing trace metal partitioning between nonphosphatized hydrogenetic Fe-Mn crusts and seawater, are similar for Pr to Eu and decrease for Eu to Yb. Exceptionally high values of KCeD, which are similar to those of Ti, result from oxidative scavenging of Ce and support previous suggestions that Ce(IV) is a hydroxide-dominated element in seawater. Yttrium and Gd show lower KD values than their respective neighbours in the REY series. Results of modelling the exchange equilibrium between REY dissolved in seawater and REY sorbed on hydrous Fe-Mn oxides corroborate previous studies that suggested the surface complexation of REY can be approximated by their first hydroxide binding constant. Negative "anomalies" occur for stabilities of bulk surface complexes of Gd, La, and particularly Y. The differences in

  7. Spectral characterization and white light generation by yttrium silicate nanopowders undoped and doped with Ytterbium(III) at different concentrations when excited by a laser diode at 975 nm

    NASA Astrophysics Data System (ADS)

    Cinkaya, Hatun; Eryurek, Gonul; Bilir, Gokhan; Collins, John; Di Bartolo, Baldassare

    2017-01-01

    We have studied nanophosphors of yttrium silicate (YSO) undoped and doped with different concentration of ytterbium (Yb3+) synthesized by using the sol-gel method. Structural and luminescence properties of the nanophosphors were studied experimentally by using different analytical techniques. For the structural analysis, we performed X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectrometry (EDS) measurements. Upconversion (UC) and the white light (WL) emission properties were investigated by using the near infrared cw laser excitation of 975 nm. The spectral properties have been found to depend on several physical parameters.

  8. University of Maryland MRSEC - News: Featured

    Science.gov Websites

    state at surface of bismuth selenide Completed device MRSEC research, published in NanoLetters ASAP in and M. S. Fuhrer, "Insulating behavior in ultrathin bismuth selenide field effect transistors

  9. Yttrium-90 radioembolization as a bridge to liver transplantation: a single-institution experience.

    PubMed

    Tohme, Samer; Sukato, Daniel; Chen, Hui-Wei; Amesur, Nikhil; Zajko, Albert B; Humar, Abhinav; Geller, David A; Marsh, James W; Tsung, Allan

    2013-11-01

    To evaluate our experience with the use of yttrium-90 ((90)Y) radioembolization in maintaining potential candidacy and, in some instances, downstaging hepatocellular carcinoma (HCC) that does not meet Milan criteria for liver transplantation. A retrospective review of 20 consecutive patients with HCC who were listed to receive a liver transplant and were treated with (90)Y radioembolization as a sole modality for locoregional "bridge" therapy was performed. Demographics, radiographic and pathologic response, survival, and recurrences were examined. Twenty-two (90)Y treatments were performed in 20 patients before transplantation. Median time from first treatment to transplantation was 3.5 months. HCC in 14 patients met the Milan criteria at the time of the first (90)Y treatment, and HCC in six did not. All cases that originally met the Milan criteria remained within the criteria before transplantation, and two of six patients whose disease did not meet the criteria (33%) had their disease successfully downstaged to meet the criteria. Overall, nine patients (45%) had complete or partial radiologic response to (90)Y radioembolization according to modified Response Evaluation Criteria In Solid Tumors. Complete necrosis of tumor with no evidence of viable tumor on pathologic examination was observed in five patients (36%) whose disease met the Milan criteria. Particularly in regions with long wait list times, (90)Y treatment is effective in maintaining tumor size in potential liver transplantation candidates with HCC. In addition, it can also be considered as a downstaging therapy in select patients before transplantation. © SIR, 2013.

  10. Treating and Downstaging Hepatocellular Carcinoma in the Caudate Lobe with Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Saad M.; Kulik, Laura; Baker, Talia

    2012-10-15

    Purpose: This study was designed to determine the technical feasibility, safety, efficacy, and potential to downstage patients to within transplantation criteria when treating patients with hepatocellular carcinoma (HCC) of the caudate lobe using Y90 radioembolization. Methods: During a 4-year period, 8 of 291 patients treated with radioembolization for unresectable HCC had disease involving the caudate lobe. All patients were followed for treatment-related clinical/biochemical toxicities, serum tumor marker response, and treatment response. Imaging response was assessed with the World Health Organization (WHO) and European Association for the Study of the Liver (EASL) classification schemes. Pathologic response was reported as percent necrosismore » at explantation. Results: Caudate lobe radioembolization was successfully performed in all eight patients. All patients presented with both cirrhosis and portal hypertension. Half were United Network for Organ Sharing (UNOS) stage T3 (n = 4, 50%). Fatigue was reported in half of the patients (n = 4, 50%). One (13%) grade 3/4 bilirubin toxicity was reported. One patient (13%) showed complete tumor response by WHO criteria, and three patients (38%) showed complete response using EASL guidelines. Serum AFP decreased by more than 50% in most patients (n = 6, 75%). Four patients (50%) were UNOS downstaged from T3 to T2, three of who underwent transplantation. One specimen showed histopathologic evidence of 100% complete necrosis, and two specimens demonstrated greater than 50% necrosis. Conclusions: Radioembolization with yttrium-90 appears to be a feasible, safe, and effective treatment option for patients with unresectable caudate lobe HCC. It has the potential to downstage patients to transplantation.« less

  11. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.

  12. Preparation and Characterization of Chromium(III)-Activated Yttrium Aluminum Borate: A New Thermographic Phosphor for Optical Sensing and Imaging at Ambient Temperatures

    PubMed Central

    2010-01-01

    A new thermographic phosphor based on chromium(III)-doped yttrium aluminum borate (YAB) is obtained as single crystals by high temperature flux growth and as a microcrystalline powder via solution combustion synthesis. The phosphor is excitable both in the blue (λmax 422 nm) and in the red part of the spectrum (λmax 600 nm) and shows bright NIR emission. The brightness of the phosphor is comparable to that of a well-known lamp phosphor Mn(IV)-doped magnesium fluorogermanate. At ambient temperatures, the Cr(III)-doped YAB shows high temperature dependence of the luminescence decay time, which approaches 1% per deg. The material shows no decrease in luminescence intensity at higher temperatures. The new phosphor is particularly promising for applications in temperature-compensated optical chemosensors (including those based on NIR-emitting indicators) and in pressure-sensitive paints. PMID:20473368

  13. Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging

    DOE PAGES

    Chen, Yunyun; Sanchez, Carlos; Yue, Yuan; ...

    2016-03-25

    Background: The potential transfer of engineered nanoparticles (ENPs) from plants into the food chain has raised widespread concerns. In order to investigate the effects of ENPs on plants, young cabbage plants (Brassica oleracea) were exposed to a hydroponic system containing yttrium oxide (yttria) ENPs. The objective of this study was to reveal the impacts of NPs on plants by using K-edge subtraction imaging technique. Results: Using synchrotron dual-e nergy X-ray micro-tomography with K-edge subtraction technique, we studied the uptake, accumulation, distribution and concentration mapping of yttria ENPs in cabbage plants. It was found that yttria ENPs were uptaken by themore » cabbage roots but did not effectively transferred and mobilized through the cabbage stem and leaves. This could be due to the accumulation of yttria ENPs blocked at primary-lateral-root junction. Instead, non-yttria minerals were found in the xylem vessels of roots and stem. Conclusions: Synchrotron dual-energy X-ray micro-tomography is an effective method to observe yttria NPs inside the cabbage plants in both whole body and microscale level. Furthermore, the blockage of a plant's roots by nanoparticles is likely the first and potentially fatal environmental effect of such type of nanoparticles.« less

  14. Nonlocal magnon spin transport in yttrium iron garnet with tantalum and platinum spin injection/detection electrodes

    NASA Astrophysics Data System (ADS)

    Liu, J.; Cornelissen, L. J.; Shan, J.; van Wees, B. J.; Kuschel, T.

    2018-06-01

    We study the magnon spin transport in the magnetic insulator yttrium iron garnet (YIG) in a nonlocal experiment and compare the magnon spin excitation and detection for the heavy metal paramagnetic electrodes platinum (Pt|YIG|Pt) and tantalum (Ta|YIG|Ta). The electrical injection and detection processes rely on the (inverse) spin Hall effect in the heavy metals and the conversion between the electron spin and magnon spin at the heavy metal|YIG interface. Pt and Ta possess opposite signs of the spin Hall angle. Furthermore, their heterostructures with YIG have different interface properties, i.e. spin mixing conductances. By varying the distance between injector and detector, the magnon spin transport is studied. Using a circuit model based on the diffusion-relaxation transport theory, a similar magnon relaxation length of  ∼10 μm was extracted from both Pt and Ta devices. By changing the injector and detector material from Pt to Ta, the influence of interface properties on the magnon spin transport has been observed. For Ta devices on YIG the spin mixing conductance is reduced compared with Pt devices, which is quantitatively consistent when comparing the dependence of the nonlocal signal on the injector-detector distance with the prediction from the circuit model.

  15. Ce and La single- and double-substitutional defects in yttrium aluminum garnet: first-principles study.

    PubMed

    Muñoz-García, Ana Belén; Seijo, Luis

    2011-02-10

    The atomistic structure, energetics, and electronic structure of single-substitutional Ce and La defects and double-substitutional Ce-La defects in Ce,La-codoped yttrium aluminum garnet (YAG) Y(3)Al(5)O(12) have been studied by means of first-principles periodic boundary conditions density functional theory calculations. Single substitution of Y by Ce or by La produces atomistic expansions around the impurities, which are significantly smaller than the ionic radii mismatches and the overall lattice distortions are found to be confined within their second coordination spheres. In double-substitutional defects, the impurities tend to be as close as possible. La-codoping Ce:YAG provokes an anisotropic expansion around Ce defects. The Ce impurity introduces 4f occupied states in the 5.0 eV computed gap of YAG, peaking 0.25 eV above the top of the valence band, and empty 4f, 5d, and 6s states starting at 3.8 eV in the gap and spreading over the conduction band. La-codoping produces very small effects on the electronic structure of Ce:YAG, the most visible one being the decrease in covalent bonding with one of the oxygen atoms, which shifts 0.05 Å away from Ce and gets 0.04 Å closer to La in the most stable Ce-La double-substitutional defect.

  16. Patient Selection and Activity Planning Guide for Selective Internal Radiotherapy With Yttrium-90 Resin Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Wan-Yee, E-mail: josephlau@surgery.cuhk.edu.hk; Kennedy, Andrew S.; Department of Biomedical Engineering, North Carolina State University, Raleigh, NC

    Purpose: Selective internal radiotherapy (SIRT) with yttrium-90 ({sup 90}Y) resin microspheres can improve the clinical outcomes for selected patients with inoperable liver cancer. This technique involves intra-arterial delivery of {beta}-emitting microspheres into hepatocellular carcinomas or liver metastases while sparing uninvolved structures. Its unique mode of action, including both {sup 90}Y brachytherapy and embolization of neoplastic microvasculature, necessitates activity planning methods specific to SIRT. Methods and Materials: A panel of clinicians experienced in {sup 90}Y resin microsphere SIRT was convened to integrate clinical experience with the published data to propose an activity planning pathway for radioembolization. Results: Accurate planning is essentialmore » to minimize potentially fatal sequelae such as radiation-induced liver disease while delivering tumoricidal {sup 90}Y activity. Planning methods have included empiric dosing according to degree of tumor involvement, empiric dosing adjusted for the body surface area, and partition model calculations using Medical Internal Radiation Dose principles. It has been recommended that at least two of these methods be compared when calculating the microsphere activity for each patient. Conclusions: Many factors inform {sup 90}Y resin microsphere SIRT activity planning, including the therapeutic intent, tissue and vasculature imaging, tumor and uninvolved liver characteristics, previous therapies, and localization of the microsphere infusion. The influence of each of these factors has been discussed.« less

  17. Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Mihalceanu, Laura; Vasyuchka, Vitaliy I.; Bozhko, Dmytro A.; Langner, Thomas; Nechiporuk, Alexey Yu.; Romanyuk, Vladyslav F.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    Low-energy consumption enabled by charge-free information transport, which is free from Joule heating, and the ability to process phase-encoded data through the use of nanometer-sized interference devices operating at GHz and THz frequencies are just a few benefits of spin-wave-based technologies. Moreover, when approaching cryogenic temperatures, quantum phenomena in spin-wave systems pave the path towards quantum information processing. In view of these applications, the lifetime of magnons—spin-wave quanta—is of high relevance for the fields of magnonics, magnon spintronics, and quantum computing. Here, the relaxation behavior of parametrically excited magnons having wave numbers from zero up to 6 ×105rad cm-1 was experimentally investigated in the temperature range from 20 to 340 K in single-crystal yttrium iron garnet (YIG) films of different thickness epitaxially grown on gallium gadolinium garnet (GGG) substrates as well as in a bulk YIG crystal—the magnonic materials featuring the lowest magnetic damping thus far known. Due to magnon-magnon interactions, the relaxation rate of the parametric magnons increases with an increase of their wave numbers. In the thinner samples, this increase is less pronounced, which can be associated with a stronger quantization of their magnon spectra. For the YIG films, we have found a significant increase in the magnon relaxation rate below 150 K—up to eight times the reference value at 340 K—in the entire range of probed wave numbers, which is in direct opposition to that in ultrapure YIG crystals. This increase is related to rare-earth impurities contaminating the YIG samples with a slight contribution caused by the coupling of spin waves to the spin system of the paramagnetic GGG substrate at the lowest temperatures.

  18. Thin-film semiconductor rectifier has improved properties

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Cadmium selenide-zinc selenide film is used as a thin film semiconductor rectifier. The film is vapor-deposited in a controlled concentration gradient into a glass substrate to form the required junctions between vapor-deposited gold electrodes.

  19. Measurements of long-wavelength spin waves for the magnetic field in the Damon-Eshbach, backward-volume and forward-volume geometries of an yttrium iron garnet film

    DOE PAGES

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; ...

    2018-03-23

    In this paper, we report systematic measurements of the dispersion of long wavelength spin waves for a wide range of wave vectors for the magnetic field along the three principal directions defining the forward volume, backward volume and Damon-Eshbach modes of a 9.72 μm thick film of an yttrium iron garnet obtained using lithographically patterned, multi-element, spatially resonant, antennas. Overall good agreement is found between the experimental data for the backward volume and Damon-Eshbach modes and the magnetostatic theory of Damon and Eshbach. Also, good agreement is found between the experimental data for the forward volume mode and the theorymore » of Damon and van de Vaart.« less

  20. Measurements of long-wavelength spin waves for the magnetic field in the Damon-Eshbach, backward-volume and forward-volume geometries of an yttrium iron garnet film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan

    In this paper, we report systematic measurements of the dispersion of long wavelength spin waves for a wide range of wave vectors for the magnetic field along the three principal directions defining the forward volume, backward volume and Damon-Eshbach modes of a 9.72 μm thick film of an yttrium iron garnet obtained using lithographically patterned, multi-element, spatially resonant, antennas. Overall good agreement is found between the experimental data for the backward volume and Damon-Eshbach modes and the magnetostatic theory of Damon and Eshbach. Also, good agreement is found between the experimental data for the forward volume mode and the theorymore » of Damon and van de Vaart.« less

  1. Evaluation of Liver Biomarkers as Prognostic Factors for Outcomes to Yttrium-90 Radioembolization of Primary and Secondary Liver Malignancies.

    PubMed

    Henrie, Adam M; Wittstrom, Kristina; Delu, Adam; Deming, Paulina

    2015-09-01

    The objective of this study was to examine indicators of liver function and inflammation for prognostic value in predicting outcomes to yttrium-90 radioembolization (RE). In a retrospective analysis, markers of liver function and inflammation, biomarkers required to stage liver function and inflammation, and data regarding survival, tumor response, and progression after RE were recorded. Univariate regression models were used to investigate the prognostic value of liver biomarkers in predicting outcome to RE as measured by survival, tumor progression, and radiographic and biochemical tumor response. Markers from all malignancy types were analyzed together. A subgroup analysis was performed on markers from patients with metastatic colorectal cancer. A total of 31 patients received RE from 2004 to 2014. Median survival after RE for all malignancies combined was 13.6 months (95% CI: 6.7-17.6 months). Results from an exploratory analysis of patient data suggest that liver biomarkers, including albumin concentrations, international normalized ratio, bilirubin concentrations, and the model for end-stage liver disease score, possess prognostic value in predicting outcomes to RE.

  2. Complex upper arm reconstruction using an antero-lateral thigh free flap after an extravasation of Yttrium-90-ibritumomab Tiuxetan: A case report and literature review.

    PubMed

    Baus, A; Keilani, C; Bich, C-S; Entine, F; Brachet, M; Duhamel, P; Amabile, J-C; Malfuson, J V; Bey, E

    2018-04-01

    Yttrium-90-Ibritumomab Tiuxetan (Zevalin ® ) is used in the treatment of non- Hodgkin's lymphoma. Extravasation is an iatrogenic complication that is fortunately rare. However, the treatment of this complication is often complex due to the risk of extensive skin necrosis and unpredictable evolution of localized irradiation. This vesicant drug requires emergency management when extravasation occured. Radiations burns have specificities. Therefore, wound coverage involves specific plastic surgical techniques. Here, we report the case of a man presenting a chronic and extensive skin necrosis of upper arm treated with an antero-lateral thigh free flap. Moreover, we compare our experience of Zevalin ® extravasation management to other past publications and propose recommendations to prevent this unacceptable complication. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Revised calibration of the Sm:SrB{sub 4}O{sub 7} pressure sensor using the Sm-doped yttrium-aluminum garnet primary pressure scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashchenko, Sergey V., E-mail: rashchenko@igm.nsc.ru; Litasov, Konstantin D.; Novosibirsk State University, 630090 Novosibirsk

    2015-04-14

    The pressure-induced shift of Sm:SrB{sub 4}O{sub 7} fluorescence was calibrated in a quasi-hydrostatic helium medium up to 60 GPa using the recent Sm-doped yttrium-aluminum garnet primary pressure scale as a reference. The resulting calibration can be written as P = −2836/14.3 [(1 + Δλ/685.51){sup −14.3 }− 1]. Previous calibrations based on the internally inconsistent primary scales are revised, and, after appropriate correction, found to agree with the proposed one. The calibration extended to 120 GPa was also performed using corrected previous data and can be written as P = 4.20 Δλ (1 + 0.020 Δλ)/(1 + 0.036 Δλ)

  4. Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment.

    PubMed

    Zhu, Zuhao; Zheng, Airong

    2018-02-23

    A method for daily monitoring of yttrium and rare earth elements (YREEs) in seawater using a cheap flow injection system online coupled to inductively coupled plasma-mass spectrometry is reported. Toyopearl AF Chelate 650M ® resin permits separation and concentration of YREEs using a simple external calibration. A running cycle consumed 6 mL sample and took 5.3 min, providing a throughput of 11 samples per hour. Linear ranges were up to 200 ng kg -1 except Tm (100 ng kg -1 ). The precision of the method was <6% (RSDs, n = 5), and recoveries ranged from 93% to 106%. Limits of detection (LODs) were in the range 0.002 ng kg -1 (Tm) to 0.078 ng kg -1 (Ce). Good agreement between YREEs concentrations in CASS-4 and SLEW-3 obtained in this work and results from other studies was observed. The proposed method was applied to the determination of YREEs in seawater from the Jiulong River Estuary and the Taiwan Strait.

  5. Clinical and Histopathologic Assessment of Facial Melasma After Low-Fluence Q-Switched Neodymium-Doped Yttrium Aluminium Garnet Laser.

    PubMed

    Hofbauer Parra, Camila Anna; Careta, Mariana Figueroa; Valente, Neusa Yuriko Sakai; de Sanches Osório, Nuno Eduardo Guimaraes; Torezan, Luis Antonio Ribeiro

    2016-04-01

    Melasma is a frequent and difficult to treat skin disorder. Results of laser therapy are inconsistent. To determine the safety and efficacy of low-fluence Q-switched neodymium-doped yttrium aluminum garnet (QS Nd:YAG) laser for melasma treatment and assess recurrence rates and histopathologic findings before and after treatment. Twenty patients were treated with 10 weekly sessions of low-fluence 1064-nm QS Nd:YAG laser at 1-week intervals. The modified Melasma Area and Severity Index (mMASI) score was evaluated at baseline; 1 week; and 1, 3, and 6 months after treatment. Epidermal melanin quantification was performed on 10 biopsy samples and compared before and after treatment. All patients showed improvement by mMASI scores, range (21%-75%) compared with that at baseline. No permanent side effects occurred. The recurrence rate was 81%. By histopathology, a slight, nonsignificant (p = .305) decrease in melanin deposition was seen in all layers of the epidermis 1 week after the laser treatments ended. The results confirm the safety and effectiveness of low-fluence QS Nd:YAG laser for treating melasma; however, the high recurrence suggests poor long-term results when the laser is used as a monotherapy.

  6. Light desorption from an yttrium neutralizer for Rb and Fr magneto-optical trap loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppolaro, V.; Papi, N.; Khanbekyan, A.

    2014-10-07

    We present here the first evidence of photodesorption induced by low-intensity non-resonant light from an yttrium thin foil, which works as a neutralizer for Rb and Fr ions beam. Neutral atoms are suddenly ejected from the metal surface in a pulsed regime upon illumination with a broadband flash light and then released in the free volume of a pyrex cells. Here atoms are captured by a Magneto-Optical Trap (MOT), which is effectively loaded by the photodesorption. Loading times of the order of the flash rise time are measured. Desorption is also obtained in the continuous regime, by exploiting CW visiblemore » illumination of the metallic neutralizer surface. We demonstrate that at lower CW light intensities vacuum conditions are not perturbed by the photodesorption and hence the MOT dynamics remains unaffected, while the trap population increases thanks to the incoming desorbed atoms flux. Even with the Y foil at room temperature and hence with no trapped atoms, upon visible illumination, the number of trapped atoms reaches 10{sup 5}. The experimental data are then analyzed by means of an analytical rate equation model, which allows the analysis of this phenomenon and its dynamics and allows the determination of critical experimental parameters and the test of the procedure in the framework of radioactive Francium trapping. In this view, together with an extensive investigation of the phenomenon with {sup 85}Rb, the first demonstration of the photodesorption-aided loading of a {sup 210}Fr MOT is shown.« less

  7. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage.

    PubMed

    Ayora, Carlos; Macías, Francisco; Torres, Ester; Lozano, Alba; Carrero, Sergio; Nieto, José-Miguel; Pérez-López, Rafael; Fernández-Martínez, Alejandro; Castillo-Michel, Hiram

    2016-08-02

    Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited.

  8. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  9. Activation of photodynamic therapy in vitro with Cerenkov luminescence generated from Yttrium-90 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2016-03-01

    Translation of photodynamic therapy to the clinical setting has primarily been limited to easily accessible and/or superficial diseases where traditional light delivery can be performed noninvasively. Cerenkov luminescence, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively in order to overcome this depth limitation. We report on the use of Cerenkov luminescence generated from Yttrium-90 as a means to active the photodynamic therapy process in monolayer tumor cell cultures. The current study investigates the utility of Cerenkov luminescence for activating both the clinically relevant aminolevulinic acid at 1.0 mM and also the more efficient photosensitizer TPPS2a at 1.2 µM. Cells were incubated with aminolevulinic acid for 6 hours prior to radionuclide addition, as well as additional daily treatments for three days. TPPS2a was delivered as a single treatment with an 18 hour incubation time before radionuclide addition. Experiments were completed for both C6 glioma cells and MDA-MB-231 breast tumor cells. Although aminolevulinic acid proved ineffective for generating a therapeutic effect at any activity for either cell line, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 cell line. Current results demonstrate that it may be possible to generate a therapeutic effect in vivo using Cerenkov luminescence to activate the photodynamic therapy process with clinically relevant photosensitizers.

  10. Crystal structure and phase transformations of calcium yttrium orthophosphate, Ca 3Y(PO 4) 3

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichiro; Iwata, Tomoyuki; Niwa, Takahiro

    2006-11-01

    Crystal structure and phase transformations of calcium yttrium orthophosphate Ca 3Y(PO 4) 3 were investigated by X-ray powder diffraction, selected-area electron diffraction, transmission electron microscopy and optical microscopy. The high-temperature phase is isostructural with eulytite, cubic (space group I4¯3d) with a=0.983320(5) nm, V=0.950790(8) nm 3, Z=4 and D x=3.45 Mg m -3. The crystal structure was refined with a split-atom model, in which the oxygen atoms are distributed over two partially occupied sites. Below the stable temperature range of eulytite, the crystal underwent a martensitic transformation, which is accompanied by the formation of platelike surface reliefs. The inverted crystal is triclinic (space group P1) with a=1.5726(1) nm, b=0.84267(9) nm, c=0.81244(8) nm, α=109.739(4)°, β=90.119(5)°, γ=89.908(7)°, V=1.0134(1) nm 3, Z=4 and D x=3.24 Mg m -3. The crystal grains were composed of pseudo-merohedral twins. The adjacent twin domains were related by the pseudo-symmetry mirror planes parallel to {101¯} with the composition surface {101¯}. When the eulytite was cooled relatively slowly from the stable temperature range, the decomposition reaction of Ca 3Y(PO 4) 3→ β-Ca 3(PO 4) 2+YPO 4 occurred.

  11. Design of Multifunctional Materials: Chalcogenides and Chalcopyrites

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching Hua; Arnold, Brad; Choa, Fow-Sen

    2017-01-01

    There is a strong need for developing multifunctional materials to reduce the cost of applied material without compromising the performance of the detectors, devices and sensors. The materials design, processing, growth and fabrication of bulk and nanocrystals and fabrication into devices and sensors involve huge cost and resources including a multidisciplinary team of experts. Because of this reason, prediction of multifunctionality of materials before design and development should be evaluated. Chalcogenides and chalcopyrites are a very exciting class of materials for developing multifunctionality. Materials such as Gallium selenide GaSe and zinc selenide ZnSe have been proven to be excellent examples. GaSe is a layered material and very difficult to grow in large crystal. However, it's ternary and quaternary analogs such as thallium gallium selenide TlGaSe2, thallium gallium selenide sulfide TlGaSe2-xSs, thallium arsenic selenide Tl3AsSe3, silver gallium selenide AgGaGe3Se8, AgGaGe5Se12 and several others have shown great promise for multifunctionality. Several of these materials have shown good efficiency for frequency conversion (nonlinear optical NLO), electro-optic modulation, and acousto-optic tunable filters and imagers suitable for the visible, near-infrared wavelength, mid wave infrared (MWIR), long wave infrared (LWIR) and even up to Tera hertz wavelength (THW) regions. In addition, this class of materials have demonstrated low absorption coefficients and power handling capability in the systems. Also, these crystals do not require post growth annealing, show very large transparency range and fabricability.

  12. Treatment of café-au-lait macules with a high-fluenced 1064-nm Q-switched neodymium:yttrium aluminum garnet laser.

    PubMed

    Kim, Jiehoon; Hur, Hoon; Kim, Yu Ri; Cho, Sung Bin

    2018-02-01

    Café-au-lait macules (CALMs) are light to dark brown macules or patches of increased melanin concentration found along the dermoepidermal junction. Although many attempts to treat CALMs using various kinds of laser/light-based devices have been reported, CALMs remain refractory thereto with high recurrence rates. In this case series, we describe four patients with idiopathic CALMs that were effectively and safely treated with a non-ablative, high-fluenced, Q-switched (QS), 1064-nm neodymium:yttrium aluminum garnet (Nd:YAG) laser. The typical laser parameters for treating CALMs, including a spot size of 7-7.5 mm, a fluence of 2.4-2.5 J/cm 2 , and one to two passes until the appearance of mild erythema, but not petechiae, were utilized in this study over 12-24 treatment sessions at 2-week intervals. We suggest that high-fluenced QS 1064-nm Nd:YAG laser treatment can be used as an effective and alternative treatment modality for CALMs with minimal risk of side effects.

  13. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  14. Stress development in thin yttrium films on hard substrates during hydrogen loading

    NASA Astrophysics Data System (ADS)

    Dornheim, M.; Pundt, A.; Kirchheim, R.; Molen, S. J. v. d.; Kooij, E. S.; Kerssemakers, J.; Griessen, R.; Harms, H.; Geyer, U.

    2003-06-01

    Polycrystalline (0002)-textured yttrium (Y) films of 50-500 nm thickness on sapphire substrates were loaded electrolytically with hydrogen (H). The stresses which build up in these films were measured in situ using curvature measurements. The results are compared to the behavior of bulk Y-H. A linear elastic model is used to predict the behavior of clamped thin films. Basic properties of the bulk Y-H phase diagram and elastic constants resemble the measured values of the thin films. Compressive stress builds up during H-loading in the α-Y phase and in the (α-Y+β-YH2) two-phase field, showing an initial stress increase of -1.3 GPa per hydrogen concentration XH (compressive stress). While bulk Y-H samples are known to show a contraction in the β-YH2 phase during H loading, thin films show no evidence for such a contraction during the first loading cycle of the film. The stress remains constant in the bulk β-phase concentration range (ΔXH=0.1 H/Y). This is attributed to the narrow β-phase field (ΔXH=0.02 H/Y) of the thin film during the first loading. Only samples which have been kept at a hydrogen concentration of about 1.5 H/Y for weeks show tensile stress in the concentration range of the bulk β phase. Amazingly a stress increase of about +0.5 GPa/XH (tensile stress) is measured in the β+γ two-phase field. This is attributed to the smaller in-plane nearest-neighbor distance in the γ phase compared to the β phase. In the γ-phase field compressive stress is built up again, compensating the tensile stress. It increases by -1.3 GPa/XH. In total, the net stress in Y-H films remains comparably small. This could be a reason for the good mechanical stability of such Y-H switchable mirrors during H cycling.

  15. Strong excitation of surface and bulk spin waves in yttrium iron garnet placed in a split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-02-01

    This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.

  16. Microstructure and Texture Evolution in a Yttrium-Containing ZM31 Alloy: Effect of Pre- and Post-deformation Annealing

    NASA Astrophysics Data System (ADS)

    Tahreen, N.; Zhang, D. F.; Pan, F. S.; Jiang, X. Q.; Li, D. Y.; Chen, D. L.

    2016-12-01

    Microstructure and texture evolution of as-extruded ZM31 magnesium alloys with different amounts of yttrium (Y) during pre- and post-deformation annealing were examined with special attention given to the effect of Y on recrystallization. It was observed that the extruded ZM31 alloys exhibited a basal texture with the basal planes parallel to the extrusion direction (ED). The compression of the extruded alloys in the ED to a strain amount of 10 pct resulted in c-axes of hcp unit cells rotating toward the anti-compression direction due to the occurrence of extension twinning. Annealing of the extruded alloys altered the microstructure and texture, and the subsequent compression after annealing showed a relatively weak texture and a lower degree of twinning. A reverse procedure of pre-compression and subsequent annealing was found to further weaken the texture with a more scattered distribution of orientations and to lead to the vanishing of the original basal texture. With increasing Y content, both the extent of extension twinning during compression and the fraction of recrystallization during annealing decreased due to the role of Y present in the substitutional solid solution and in the second-phase particles, leading to a significant increase in the compressive yield strength.

  17. Cyclometalation and coupling of a rigid 4,5-bis(imino)acridanide pincer ligand on yttrium.

    PubMed

    Wong, Edwin W Y; Emslie, David J H

    2015-07-07

    An extremely rigid NNN-donor proligand, 4,5-bis{(diphenylmethylene)amino}-2,7,9,9-tetramethylacridan, H[AIm2] was prepared in five steps starting from 5-methyl-2-aminobenzoic acid and 4-bromotoluene. Reaction of intensely orange H[AIm2] with LiCH2SiMe3 formed deep blue Li(x)[AIm2]x (x = 2 in the solid state), while reaction with [Y(CH2SiMe3)3(THF)2] (0.5 equiv.) afforded deep blue [Y(AIm2)(AIm)] (1; AIm = an AIm2 ligand cyclometalated at the ortho-position of one of the phenyl rings). Compound 1 slowly isomerizes to form green-brown 2, which contains a single trianionic, hexadentate ligand that features one amine, two imine, and three amido donors. The acridanide backbone and one imine group in each of the original AIm2 ligands is intact, but the two acridanide backbones are now linked by an isoindoline heterocycle. Yttrium in 2 is coordinated to six nitrogen donors and the ortho carbon of an isoindoline phenyl substituent. The intense colours of H[AIm2], Li(x)[AIm2]x and 1 were shown by TD-DFT calculations to arise from charge transfer transitions from the HOMO, which is localized on the acridanide ligand backbone, to the LUMO and LUMO+1, which are localized on the imine substituents. The conversion of 1 to 2 was studied by UV-Visible absorption spectroscopy and is first-order with a half-life of 7.8 hours at room temperature.

  18. Study of the effects of adding Yttrium oxide particles in some physical, thermal, and mechanical properties of heat-curing acrylic resin

    NASA Astrophysics Data System (ADS)

    Khalil, Bassam I.; Gharkan, Mohammed R.; Ali, Ahmed H.

    2018-05-01

    Extensively use of hot-curing acrylic in prosthetic dentistry field, increase the needed to modifying its mechanical, thermal, and physical properties. In this work Yttrium oxide had added with different weight fractions, (5%, 10%, 15% and 20%), as reinforcement phase on purpose of developing these properties. Tensile strength, hardness, density, water adsorption, and thermal conductivity had been investigated for prepared composite specimens. The results show that the maximum tensile strength was at (10) % wt. of Y2O3 addition, (19) %more than that of plain acrylic, maximum hardness was at (15) % wt. of Y2O3 addition, (8.5) % more than that of plain acrylic, maximum density was at (20) % wt. of Y2O3 addition, (18.2) % more than that of plain acrylic, maximum decrease in water absorption was at (10) % wt. of Y2O3 addition, (29) % less than that of plain acrylic. Finally the maximum thermal conductivity was at (20) % wt. of Y2O3 addition, (16) % more than that of plain acrylic.

  19. Effect of ultrasound treatment on the morpho-structural and luminescent characteristics of cerium doped yttrium silicate phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muresan, L.E., E-mail: laura_muresan2003@yahoo.com; Cadis, A.I.; Perhaita, I.

    Highlights: • Y{sub 2}SiO{sub 5}:Ce is prepared by gel combustion in ultrasound conditions (US). • Morpho-structural characteristics are revealed based on FTIR, SEM, XRD, BET. • Incorporation of Ce{sup 3+} in X1/X2 type centers depends on preparative conditions. • US treatment increases the luminescent performances up to 151%. - Abstract: Cerium activated yttrium silicate (Y{sub 2}SiO{sub 5}:Ce) phosphors were prepared by gel-combustion, using yttrium–cerium nitrate as oxidizer, aspartic acid as fuel and TEOS as source of silicon. Two modalities for samples preparation were approached namely: the classical gel-combustion and sonication gel-combustion. The ultrasound treatment during the gelling stage has amore » positive effect on the structural and luminescent characteristics of the final product. Therefore, a well crystallized single X2–Y{sub 2}SiO{sub 5} phase phosphor was obtained at 1200 °C. Based on FT-IR and XRD investigations, conversion of X1 to X2–Y{sub 2}SiO{sub 5} phases is observed as the firing temperature is varied (1100 °C, 1200 °C, 1300 °C 1400 °C). The ultrasound treatment leads to smaller particle size and enhances the luminescent performances up to 151% in comparison with samples prepared by classical way.« less

  20. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification.

    PubMed

    Huang, Ke-Jing; Shuai, Hong-Lei; Zhang, Ji-Zong

    2016-03-15

    A highly sensitive and ultrasensitive electrochemical aptasensor for platelet-derived growth factor BB (PDGF-BB) detection is fabricated based on layered molybdenum selenide-graphene (MoSe2-Gr) composites and Exonuclease III (Exo III)-aided signal amplification. MoSe2-Gr is prepared by a simple hydrothermal method and used as a promising sensing platform. Exo III has a specifical exo-deoxyribonuclease activity for duplex DNAs in the direction from 3' to 5' terminus, however its activity is limited on the duplex DNAs with more than 4 mismatched terminal bases at 3' ends. Herein, aptamer and complementary DNA (cDNA) sequences are designed with four thymine bases on 3' ends. In the presence of target protein, the aptamer associates with it and facilitates the formation of duplex DNA between cDNA and signal DNA. The duplex DNA then is digested by Exo III and releases cDNA, which hybridizes with signal DNA to perform a new cleavage process. Nevertheless, in the absence of target protein, the aptamer hybridizes with cDNA will inhibit the Exo III-assisted nucleotides cleavage. The signal DNA then hybridizes with capture DNA on the electrode. Subsequently, horse radish peroxidase is fixed on electrode by avidin-biotin reaction and then catalyzes hydrogen peroxide and hydroquinone to produce electrochemical response. Therefore, a bridge can be established between the concentration of target protein and the degree of the attenuation of the obtained signal, providing a quantitative measure of target protein with a broad detection range of 0.0001-1 nM and a detection limit of 20 fM. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Picosecond 532-nm neodymium-doped yttrium aluminium garnet laser-a novel and promising modality for the treatment of café-au-lait macules.

    PubMed

    Artzi, Ofir; Mehrabi, Joseph N; Koren, Amir; Niv, Roni; Lapidoth, Moshe; Levi, Assi

    2018-05-01

    Café-au-lait macules (CALMs) present as benign hyperpigmented, well-circumscribed spots on the skin for which many patients seek treatment for aesthetic reasons. The objective of this study is to report our experience in treating CALMs using a picosecond 532-nm neodymium-doped yttrium aluminium garnet (PS 532 nm) laser. This is a retrospective case series of 16 patients with CALMs who were treated by a PS 532-nm laser (1-4 treatments, 4-8 weeks apart). Response as seen on clinical photographs was assessed by two independent dermatologists and graded on a scale of 0 (exacerbation) to 5 (95-100% improvement). Patient satisfaction and tolerance were documented at final visit. The results of 15 patients demonstrated significant improvement (average 3.43), and their satisfaction and tolerance levels were high. One patient had no response whatsoever to treatment. The PS 532-nm laser is a promising novel modality for the treatment of CALMs.

  2. Highly transparent and lower resistivity of yttrium doped ZnO thin films grown on quartz glass by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kaur, Narinder; Sharma, Sanjeev K.; Kim, Deuk Young; Singh, Narinder

    2016-11-01

    We prepared highly transparent yttrium-doped ZnO (YZO) thin films on quartz glass by a sol-gel method, and then annealed them at 600 °C in vacuum. All samples showed hexagonal wurtzite structure with a preferential orientation along the (002) direction. We observed the average grain size of Y: 2 at% thin film to be in the range of 15-20 nm. We observed blue shift in the optical bandgap (3.29 eV→3.32 eV) by increasing the Y concentration (0-2 at%), due to increasing the number of electrons, and replacing the di-valent (Zn2+) with tri-valent (Y3+) dopants. Replacing the higher ionic radii (Y3+) with smaller ionic radii (Zn2+) expanded the local volume of the lattice, which reduced the lattice defects, and increased the intensity ratio of NBE/DLE emission (INBE/IDLE). We also observed the lowest (172 meV) Urbach energy of Y: 2 at% thin film, and confirmed the high structural quality. Incorporation of the appropriate Y concentration (2 at%) improved the crystallinity of YZO thin films, which led to less carrier scattering and lower resistivity.

  3. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  4. Long-Pulsed 532-Nm Neodymium-Doped Yttrium Aluminium Garnet Laser for Treatment of Facial Plane Warts in 160 Yemeni Patients.

    PubMed

    Alshami, Mohammad Ali; Mohana, Mona Jameel; Alshami, Ahlam Mohammad

    2016-11-01

    Warts in general and plane warts in particular pose a therapeutic challenge for dermatologists. Many treatment modalities exist, with variable success rates, side effect profiles, and precautions. The long-pulsed 532-nm neodymium-doped yttrium aluminium garnet (LP Nd:YAG) laser has not been previously used for this indication. This study was conducted to assess the efficacy and safety of the LP Nd:YAG laser for treating facial plane warts. A total of 160 Yemeni patients (62 women, 98 men; age range, 5-55 years) were exposed to 1 laser treatment session with the following parameters: wavelength, 532 nm; pulse duration, 20 millisecond; spot size, 2 to 3 mm; and fluence, 25 J/cm. The end point was graying or whitening of the lesion. Color photographs were taken before and immediately after treatment and at follow-up visits 1, 4, and 16 weeks after the laser session. An overall clearance rate of 92% after only one session was achieved, with minimal and transient side effects. The LP Nd:YAG laser is safe and effective for treating facial plane warts, with a success rate of 92% after only one session.

  5. Inhibitors of the serotonin transporter protein (SERT): the design and synthesis of biotinylated derivatives of 3-(1,2,3,6-tetrahydro-pyridin-4-yl)-1H-indoles. High-affinity serotonergic ligands for conjugation with quantum dots.

    PubMed

    Tomlinson, Ian D; Mason, John N; Blakely, Randy D; Rosenthal, Sandra J

    2005-12-01

    There is a growing demand for compounds with specificity for the serotonin transporter protein (SERT) that can be conjugated to cadmium selenide/zinc sulfide core shell nanocrystals. This letter describes the design and synthesis of two different biotinylated SERT antagonists that can be attached to streptavidin-coated cadmium selenide/zinc sulfide core shell nanocrystals.

  6. [Determination of trace lead and iron in nickel chloride and manganese sulfate by flame atomic absorption spectrometry after coprecipitation with yttrium phosphate].

    PubMed

    Su, Yao-Dong; Zhu, Wen-Ying; Ma, Hong-Mei; Chen, Long-Wu

    2006-09-01

    Using yttrium phosphate as the coprecipitation collector for the separation and preconcentration of trace lead and iron in nickel chloride and manganese sulfate, flame atomic absorption spectrometric (FAAS) determination was described in the present paper. Coprecipitation parameters including the pH of the solution, and the amounts of YCl3 and H3 PO4 were discussed. It was found that lead and iron in nickel chloride could be coprecipitated quantitatively in the range of pH 3.0-4.0, and so could be lead in manganese sulfate. The detection limits (3sigma) of lead and iron in 20 mL solution were 1.63 x 10(-2) mg x L(-1) and 4.58 x 10(-2) mg x L(-1) respectively. In NiCl2 solution the standard addition recoveries for lead and iron were 100.91% and 99.73% respectively, and in MnSO4 solution the standard addition recoveries were 99.45% and 98.98% respectively. The method has eliminated the interference of matrix, and the result is satisfied.

  7. Characterization of Materials by Raman Scattering

    NASA Astrophysics Data System (ADS)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  8. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Fractional versus ablative erbium:yttrium-aluminum-garnet laser resurfacing for facial rejuvenation: an objective evaluation.

    PubMed

    El-Domyati, Moetaz; Abd-El-Raheem, Talal; Abdel-Wahab, Hossam; Medhat, Walid; Hosam, Wael; El-Fakahany, Hasan; Al Anwer, Mustafa

    2013-01-01

    Laser is one of the main tools for skin resurfacing. Erbium:yttrium-aluminum-garnet (Er:YAG) was the second ablative laser, after carbon dioxide, emitting wavelength of 2940 nm. Fractional laser resurfacing has been developed to overcome the drawbacks of ablative lasers. We aimed to objectively evaluate the histopathological and immunohistochemical effects of Er:YAG 2940-nm laser for facial rejuvenation (multiple sessions of fractional vs single session of ablative Er:YAG laser). Facial resurfacing with single-session ablative Er:YAG laser was performed on 6 volunteers. Another 6 were resurfaced using fractional Er:YAG laser (4 sessions). Histopathological (hematoxylin-eosin, orcein, Masson trichrome, and picrosirius red stains) and immunohistochemical assessment for skin biopsy specimens were done before laser resurfacing and after 1 and 6 months. Histometry for epidermal thickness and quantitative assessment for neocollagen formation; collagen I, III, and VII; elastin; and tropoelastin were done for all skin biopsy specimens. Both lasers resulted in increased epidermal thickness. Dermal collagen showed increased neocollagen formation with increased concentration of collagen types I, III, and VII. Dermal elastic tissue studies revealed decreased elastin whereas tropoelastin concentration increased after laser resurfacing. Neither laser showed significant difference between their effects clinically and on dermal collagen. Changes in epidermal thickness, elastin, and tropoelastin were significantly more marked after ablative laser. The small number of patients is a limitation, yet the results show significant improvement. Multiple sessions of fractional laser have comparable effects to a single session of ablative Er:YAG laser on dermal collagen but ablative laser has more effect on elastic tissue and epidermis. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  10. Effect of neodymium:yttrium-aluminum-garnet laser and fluoride on the acid demineralization of enamel.

    PubMed

    Braga, Sheila Regina Maia; de Oliveira, Elisabeth; Sobral, Maria Angela Pita

    2017-02-01

    The aim of the present study was to evaluate the protective effect of the neodymium:yttrium-aluminum-garnet (Nd:YAG) laser and acidic phosphate fluoride (APF) on enamel erosion caused by hydrochloric acid. Fifty human enamel specimens were distributed according to the following treatments (n = 10): untreated (control), APF (1.23%) 4 min, Nd:YAG laser (100 mJ, 1 W, 10 Hz, 141.5 J/cm 2 ), APF + Nd:YAG laser, and Nd:YAG laser + APF. For 14 days the specimens were submitted to erosive challenge: 5 min in 3 mL hydrochloric acid (0.01 M, pH 2.2), rinsed with distilled water, and stored in artificial saliva for 3 h. This cycle was repeated four times per day. The calcium (Ca) loss was determined in demineralizing solution by atomic emission spectroscopy, and superficial roughness (Ra) was measured before and after the erosive challenge. The mean Ca loss was (mg/L, ± standard deviation): control 12.74 ± 3.33, APF 1.71 ± 0.11, laser 1.64 ± 0.08, APF + laser 1.38 ± 0.08, and laser + APF 1.48 ± 0.07. Kruskal-Wallis test showed a significant difference between the control and other groups. APF + laser showed minor loss of Ca. After the erosive challenge, the APF + laser group showed Ra alteration. A significant reduction in tooth dissolution was observed after fluoride application combined with Nd:YAG irradiation. © 2015 Wiley Publishing Asia Pty Ltd.

  11. Yttrium orthoaluminate nanoperovskite doped with Tm3+ ions as upconversion optical temperature sensor in the near-infrared region.

    PubMed

    Hernández-Rodriguez, M A; Lozano-Gorrín, A D; Lavín, V; Rodríguez-Mendoza, U R; Martín, I R

    2017-10-30

    The thermal sensing capability of the Tm 3+ -doped yttrium orthoaluminate nanoperovskite in the infrared range, synthetized by a sol-gel method, was studied. The temperature dependence of the infrared upconverted emission bands located at around 705 nm ( 3 F 2,3 → 3 H 6 ) and 800 nm ( 3 H 4 → 3 H 6 ) of YAP: Tm 3+ nanoperovskite under excitation at 1210 nm was analyzed from RT up to 425 K. Calibration of the optical sensor has been made using the fluorescence intensity ratio technique, showing a high sensitivity in the near-infrared compared to other trivalent rare-earth based optical sensors working in the same range. In addition, a second calibration procedure of the YAP: Tm 3+ optical sensor was performed by using the FIR technique on the emission band associated to the 3 H 4 → 3 H 6 transition in the physiological temperature range (293-333 K), showing a very high relative sensitivity compared with other rare-earth based optical temperature sensors working in the physiological range. Moreover, the main advantage compared with other optical sensors is that the excitation source and the upconverted emissions do not overlap, since they lie in different biological windows, thus allowing its potential use as an optical temperature probe in the near-infrared range for biological applications.

  12. In-situ diagnostics for metalorganic chemical vapor deposition of yttrium barium copper oxide

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashok Burton

    A new stagnation flow MOCVD research reactor is described that is designed to serve as a testbed to develop tools for "intelligent" thin film deposition, such as in-situ sensors and diagnostics, control algorithms, and thin film growth models. The reactor is designed in particular for the deposition of epitaxial YBa2Cu3O 7-delta on MgO, although with minor modifications it would be suitable for deposition of any metal-oxide thin films. The reactor is specifically designed to permit closed-loop thermal and stoichiometric control of the film growth process. Closed-loop control of precursor flow rates is accomplished by using ultraviolet absorption spectroscopy on each precursor line. Also integrated into the design is a Fourier Transform Infrared (FTIR) spectroscopy system which collects real-time, in-situ infrared polarized reflectance spectra of the film as it grows. Numerical simulation was used extensively to optimize the fluid dynamics and heat transfer to provide uniform fluxes to the substrate. As a result, thickness uniformity across the substrate is typically within 3% from the center to the edge of the substrate. Experimental studies of thin films grown in the Y/Ba/Cu/O system have been carried out. The films have been characterized by Rutherford Backscattering Spectrometry and X-ray Diffraction. Results indicate c-axis oriented grains with pure 1:2:3 phase YBCO, good spatial uniformity, and a low degree of c-axis wobble. Experimental growth data is used in a gas phase and surface chemistry model to calculate sticking coefficients for yttrium oxide, barium oxide, and copper oxide on YBCO. In-situ FTIR and Coherent Gradient Sensing (CGS) analysis of growing films has been performed, yielding accurate substrate temperature, film thickness monitoring, and full-field, real-time curvature maps of the films. In addition, we have implemented CGS to obtain full-field in-situ images of local curvature during oxygenation and deoxygenation of YBCO films. An analysis

  13. Infrared spectroscopy and upconversion luminescence behaviour of erbium doped yttrium (III) oxide phosphor

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Tiwari, Ratnesh; Tamrakar, Raunak Kumar; Rathore, Gajendra Singh; Sharma, Chitrakant; Tiwari, Neha

    2014-11-01

    The paper reports upconversion luminescence behaviour and infra-red spectroscopic pattern of erbium doped yttrium (III) oxide phosphor. Sample was synthesized by solid state reaction method with variable concentration or erbium (0.5-2.5 mol%). The conventional solid state method is suitable for large scale production and eco-friendly method. The prepared sample was characterized by X-ray diffraction (XRD) technique. From structural analysis by XRD technique shows cubic structure of prepared sample with variable concentration of erbium and no impurity phase were found when increase the concentration of Er3+. Particle size was calculated by Scherer's formula and it varies from 67 nm to 120 nm. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM) technique. The surface morphology of the sample shows good connectivity with grains as well as some agglomerates formation occurs in sample. The functional group analysis was done by Fourier transform infra-red technique (FTIR) analysis which confirm the formation of Y2O3:Er3+ phosphor was prepared. The results indicated that the Y2O3:Er3+ phosphors might have high upconversion efficiency because of their low vibrational energy. Under 980 nm laser excitation sample shows intense green emission at 555 nm and orange emission at 590 nm wavelength. For green emission transition occurs 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 for upconversion emissions. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The near infrared luminescence spectra was recorded. The upconversion luminescence intensity increase with increasing the concentration or erbium up to 2 mol% after that luminescence intensity decreases due to concentration quenching occurs. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage (CIE) technique. From CIE technique the dominant peak of from PL spectra shows

  14. Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery of hydroquinone in the treatment of melasma

    PubMed Central

    Badawi, Ashraf M; Osman, Mai Abdelraouf

    2018-01-01

    Background Melasma is a difficult-to-treat hyperpigmentary disorder. Ablative fractional laser (AFL)-assisted delivery of topically applied drugs to varied targets in the skin has been an area of ongoing study and research. Objective The objective of this study was to evaluate the efficacy and safety of fractional erbium-doped yttrium aluminum garnet (Er:YAG) laser as an assisted drug delivery for enhancing topical hydroquinone (HQ) permeation into the skin of melasma patients. Patients and methods Thirty female patients with bilateral melasma were randomly treated in a split-face controlled manner with a fractional Er:YAG laser followed by 4% HQ cream on one side and 4% HQ cream alone on the other side. All patients received six laser sessions with a 2-week interval. The efficacy of treatments was determined through photographs, dermoscopic photomicrographs and Melasma Area Severity Index (MASI) score, all performed at baseline and at 12 weeks of starting therapy. The patient’s level of satisfaction was also recorded. Results Er:YAG laser + HQ showed significantly better results (p<0.005) with regard to decrease in the degree of pigmentation as assessed on the 4-point scale than HQ alone. There was a significant decrease in MASI scores on Er:YAG laser + HQ side vs HQ side. Minor reversible side effects were observed on both sides. Conclusion AFL-assisted delivery of HQ is a safe and effective method for the treatment of melasma. PMID:29379308

  15. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2015-04-01

    The purpose of the study was to review the existing literature on holmium:yttrium-aluminum-garnet laser lithotripsy regarding lithotripter settings and laser fibers. An online search of current and past peer-reviewed literature on holmium laser lithotripsy was performed on several databases, including PubMed, SciElo, and Google Scholar. Relevant studies and original articles about lithotripter settings and laser fibers were examined, and the most important information is summarized and presented here. We examine how the choice of lithotripter settings and laser fibers influences the performance of holmium laser lithotripsy. Traditional laser lithotripter settings are analyzed, including pulse energy, pulse frequency, and power levels, as well as newly developed long-pulse modes. The impact of these settings on ablation volume, fragment size, and retropulsion is also examined. Advantages of small- and large-diameter laser fibers are discussed, and controversies are highlighted. Additionally, the influence of the laser fiber is examined, specifically the fiber tip preparation and the lithotripter settings' influence on tip degradation. Many technical factors influence the performance of holmium laser lithotripsy. Knowing and understanding these controllable parameters allows the urologist to perform a laser lithotripsy procedure safely, efficiently, and with few complications.

  16. Development of advanced thermoelectric materials, phase A

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work performed on the chemical system characterized by chrome sulfide, chrome selenide, lanthanum selenide, and lanthanum sulfide is described. Most materials within the chemical systems possess the requisites for attractive thermoelectric materials. The preparation of the alloys is discussed. Graphs show the Seebeck coefficient, electrical resistivity, and thermal conductivity of various materials within the chemical systems. The results of selected doping are included.

  17. Internal photopumping of Nd3+ (2H9/2, 4F5/2) states in yttrium aluminum garnet by excitation transfer from oxygen deficiency centers and Fe3+ continuum emission

    NASA Astrophysics Data System (ADS)

    Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.

    2011-07-01

    Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.

  18. The Effect of Neodymium: Yttrium Aluminum Garnet and Fractional Carbon Dioxide Lasers on Alopecia Areata: A Prospective Controlled Clinical Trial.

    PubMed

    Yalici-Armagan, Basak; Elcin, Gonca

    2016-04-01

    Effective treatment options for alopecia areata (AA) are missing. Whether lasers might be effective is a topic of debate. We aimed to evaluate whether neodymium: yttrium aluminum garnet (Nd:YAG) or fractional carbon dioxide lasers might stimulate the development of new hair. Thirty-two patients who had long-standing and treatment refractory diseases were recruited for the study. Three different patches on the scalp were selected, 1 of which served as control. The mean outcome measure was the hair count, which was calculated with the digital phototrichogram. Response was defined as at least 25% increase in the mean hair count at the treated patch compared with the control patch. At the end of the study, there was no statistically significant difference in the mean hair count for the 3 patches. In 7 of 32 patients (22%), an increase in the mean hair count was observed on the whole scalp including the control patch, which resulted in an improved Severity of Alopecia Tool (SALT) score. We have observed that Nd:YAG or fractional carbon dioxide lasers did not increase the mean hair count on the treated AA patches when compared with the control patch. However, an SALT score improvement in 22% of the patients suggested spontaneous remission.

  19. Safety of Radioembolization with {sup 90}Yttrium Resin Microspheres Depending on Coiling or No-Coiling of Aberrant/High-Risk Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paprottka, P. M., E-mail: philipp.paprottka@med.lmu.de, E-mail: philipp.paprottka@med.uni-muenchen.de; Paprottka, K. J., E-mail: karolin.paprottka@med.lmu.de; Walter, A., E-mail: alexandra.Walter@campus.lmu.de

    2015-08-15

    PurposeTo evaluate the safety of radioembolization (RE) with {sup 90}Yttrium ({sup 90}Y) resin microspheres depending on coiling or no-coiling of aberrant/high-risk vessels.Materials and MethodsEarly and late toxicity after 566 RE procedures were analyzed retrospectively in accordance with the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE v3.0). For optimal safety, aberrant vessels were either coil embolized (n = 240/566, coiling group) or a more peripheral position of the catheter tip was chosen to treat right or left liver lobes (n = 326/566, no-coiling group).ResultsClinically relevant late toxicities (≥Grade 3) were observed in 1 % of our overall cohort. The no-coiling group had significantlymore » less “any” (P = 0.0001) or “clinically relevant” (P = 0.0003) early toxicity. There was no significant difference (P > 0.05) in delayed toxicity in the coiling versus the no-coiling group. No RE-induced liver disease was noted after all 566 procedures.ConclusionRE with {sup 90}Y resin microspheres is a safe and effective treatment option. Performing RE without coil embolization of aberrant vessels prior to treatment could be an alternative for experienced centers.« less

  20. Modeling and Simulation of a Dual-Junction CIGS Solar Cell Using Silvaco ATLAS

    DTIC Science & Technology

    2012-12-01

    junction Copper Indium Gallium Selenide (CIGS) photovoltaic cell is investigated in this thesis. Research into implementing a dual-junction solar cell...Silvaco ATLASTM model of a single CIGS cell was created by utilizing actual solar cell parameters (such as layer thicknesses, gallium ratio, doping...THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT The potential of designing a dual-junction Copper Indium Gallium Selenide (CIGS) photovoltaic

  1. Optical Jitter Effects on Target Detection and Tracking of Overhead Persistent Infrared Systems

    DTIC Science & Technology

    2015-12-01

    infrared CdSe cadmium selenide DSP Defense Support Program FIR far-infrared FPA focal plane array Ge germanium GEO geostationary earth orbit...HBCRT High Energy Laser Beam Control Research Testbed HEL high energy laser HgCdTe mercury cadmium telluride IR infrared InSb indium antimonide...MOD model MTF modulation transfer function MWIR mid-wave infrared NIR near infrared OPIR overhead persistent infrared PbSe lead selenide

  2. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    NASA Astrophysics Data System (ADS)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  3. Synthesis and magnetic structure of the layered manganese oxide selenide Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blandy, Jack N.; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE; Boskovic, Jelena C.

    The synthesis of a high-purity sample of the layered oxide selenide Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} is reported. At ambient temperature it crystallises in the space group I4/mmm with two formula units in the unit cell and lattice parameters a=4.08771(1) Å, c=19.13087(8) Å. The compound displays mixed-valent manganese in a formal oxidation state close to +2.5 and powder neutron diffraction measurements reveal that below the Néel temperature of 63(1) K this results in an antiferromagnetic structure which may be described as A-type, modelled in the magnetic space group P{sub I}4/mnc (128.410 in the Belov, Neronova and Smirnova (BNS) scheme) inmore » which localised Mn moments of 3.99(2) μ{sub B} are arranged in ferromagnetic layers which are coupled antiferromagnetically. In contrast to the isostructural compound Sr{sub 2}MnO{sub 2}Cu{sub 1.5}S{sub 2}, Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} does not display long range ordering of coinage metal ions and vacancies, nor may significant amounts of the coinage metal readily be deintercalated using soft chemical methods. - Graphical abstract: Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} containing mixed valent Mn ions undergoes magnetic ordering with ferromagnetic coupling within MnO{sub 2} sheets and antiferromagnetic coupling between MnO{sub 2} sheets. - Highlights: • High purity sample of Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} obtained. • Magnetic structure determined. • Compared with related mixed-valent manganite oxide chalcogenides.« less

  4. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1-xGaxSe₂ Growth: Indium-Gallium Selenide Co-Evaporation.

    PubMed

    Pradhan, Puja; Aryal, Puruswottam; Attygalle, Dinesh; Ibdah, Abdel-Rahman; Koirala, Prakash; Li, Jian; Bhandari, Khagendra P; Liyanage, Geethika K; Ellingson, Randy J; Heben, Michael J; Marsillac, Sylvain; Collins, Robert W; Podraza, Nikolas J

    2018-01-16

    Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In 1- x Ga x )₂Se₃ (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε₁ - iε₂, spectra. Here, RTSE has been used to obtain the (ε₁, ε₂) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents ( x ) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε₁, ε₂) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x . From the resulting database of polynomial coefficients, the (ε₁, ε₂) spectra can be generated for any composition of IGS from the single parameter, x . The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε₁, ε₂) spectra have been interpreted as well in relation to observations from scanning

  5. Does ErbiumiYttrium-Aluminum-Garnet Laser to Enamel improve the Performance of Etch-and-rinse and Universal Adhesives?

    PubMed

    De Jesus Tavarez, Rudys R; Rodrigues, Lorrany Lc; Diniz, Ana C; Lage, Lucas M; Torres, Carlos Rg; Bandeca, Matheus C; Firoozmand, Leily M

    2018-03-01

    This study aims to evaluate the effect of erbium: Yttrium-aluminum-garnet (Er:YAG) laser irradiation on the enamel microshear bond strength (μSBS), followed by the utilization of etch-and-rinse and universal adhesive systems. A total of 32 molars were sectioned in the mesiodistal direction producing 64 samples that were randomized into two groups (n = 32): single bond 2 (SB2) (etch-and-rinse system; 3M), SB universal (SBU) (universal etching system; The SB2 and SBU groups were then divided into two subgroups (n = 16): (i) enamel was irradiated with an Er:YAG laser (λ = 2.94 μm, 60 mJ, 10 Hz), and (ii) enamel served as a control. The samples were restored with TPH3 (Dentsply), stored in artificial saliva for 24 hours, and subjected to a micro-shear test. Kruskal-Wallis (p < 0.05) and Mann-Whitney U tests indicated no significant differences in uSBS between the groups, and the fractures were predominately at the resin-enamel interface. The previous irradiation of enamel with Er:YAG laser does not interfere with the performance of simplified two-step etch-and-rinse and universal adhesive systems. The increasing use of Er:YAG laser is important to evaluate the influence of this irradiation on the adhesion of restorative materials. Thus, to obtain the longevity of the restorative procedures, it is necessary to know the result of the association of the present adhesive systems to the irradiated substrate.

  6. Efficacy and safety of erbium-doped yttrium aluminium garnet fractional resurfacing laser for treatment of facial acne scars.

    PubMed

    Nirmal, Balakrishnan; Pai, Sathish B; Sripathi, Handattu; Rao, Raghavendra; Prabhu, Smitha; Kudur, Mohan H; Nayak, Sudhir U K

    2013-01-01

    Treatment of acne scars with ablative fractional laser resurfacing has given good improvement. But, data on Indian skin are limited. A study comparing qualitative, quantitative, and subjective assessments is also lacking. Our aim was to assess the improvement of facial acne scars with Erbium-doped Yttrium Aluminium Garnet (Er:YAG) 2940 nm fractional laser resurfacing and its adverse effects in 25 patients at a tertiary care teaching hospital. All 25 patients received four treatment sessions with Er:YAG fractional laser at 1-month interval. The laser parameters were kept constant for each of the four sittings in all patients. Qualitative and quantitative assessments were done using Goodman and Barron grading. Subjective assessment in percentage of improvement was also documented 1 month after each session. Photographs were taken before each treatment session and 1 month after the final session. Two unbiased dermatologists performed independent clinical assessments by comparing the photographs. The kappa statistics was used to monitor the agreement between the dermatologists and patients. Most patients (96%) showed atleast fair improvement. Rolling and superficial box scars showed higher significant improvement when compared with ice pick and deep box scars. Patient's satisfaction of improvement was higher when compared to physician's observations. No serious adverse effects were noted with exacerbation of acne lesions forming the majority. Ablative fractional photothermolysis is both effective and safe treatment for atrophic acne scars in Indian skin.Precise evaluation of acne scar treatment can be done by taking consistent digital photographs.

  7. Long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet laser treatment for refractory warts on hands and feet.

    PubMed

    Kimura, Utako; Takeuchi, Kaori; Kinoshita, Ayako; Takamori, Kenji; Suga, Yasushi

    2014-03-01

    Common warts (verruca vulgaris) are the most commonly seen benign cutaneous tumors. However, warts in the hands and feet regions often respond poorly to treatment, some are resistant to more than 6 months of treatment with currently available modalities, including cryotherapy, being defined as refractory warts. We investigated the usefulness of long-pulsed neodymium:yttrium-aluminum-garnet (LP-Nd:YAG) treatment for refractory warts. The clinical trial was conducted on 20 subjects (11 male, nine female) with a total of 34 lesions (periungual/subungual areas, plantar areas, fingers and/or toes). All the subjects suffered from refractory warts despite conventional treatments for more than 6 months. The patients were administrated up to six sessions of treatment, at intervals of 4 weeks between sessions, with an LP-Nd:YAG at a spot size of 5 mm, pulse duration of 15 msec and fluence of 150-185 J/cm(2) . Evaluation of the treatment results at 24 weeks after the initial treatment showed complete clearance of the refractory warts in 56% of the patients. Histological evaluation showed separation of the dermis and epidermis at the basement membrane with coagulated necrosis of the wart tissue in the lower epidermis, as well as coagulation and destruction of the blood vessels in the papillary dermis following the laser irradiation. No scarring, post-hyperpigmentary changes or serious adverse events were documented. Our preliminary results show that LP-Nd:YAG treatments are safe and effective for refractory warts of hands and feet, causing minimal discomfort, and is a viable treatment alternative. © 2014 Japanese Dermatological Association.

  8. The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.; Wildeman, T.R.

    1984-01-01

    Demand is increasing for the determination of the rare-earth elements (REE) and yttrium in geologic materials. Due to their low natural abundance in many materials and the interferences that occur in many methods of determination, a separation procedure utilizing gradient strong-acid cation-exchange chromatography is often used to preconcentrate and isolate these elements from the host-rock matrix. Two separate gradient strong-acid cation-exchange procedures were characterized and the major elements as well as those elements thought to provide the greatest interference for the determination of the REE in geologic materials were tested for separation from the REE. Simultaneous inductively coupled argon plasma-atomic emission spectroscopy (ICAP-AES) measurements were used to construct the chromatograms for the elution studies, allowing the elution patterns of all the elements of interest to be determined in a single fraction of eluent. As a rock matrix, U.S. Geological Survey standard reference BCR-1 basalt was digested using both an acid decomposition procedure and a lithium metaborate fusion. Hydrochloric and nitric acids were tested as eluents and chromatograms were plotted using the ICAP-AES data; and we observed substantial differences in the elution patterns of the REE and as well as in the solution patterns of Ba, Ca, Fe and Sr. The nitric acid elution required substantially less eluent to elute the REE and Y as a group when compared to the hydrochloric acid elution, and provided a clearer separation of the REE from interfering and matrix elements. ?? 1984.

  9. A Comparative Histological Study of Bone Healing in Rat Calvarial Defect Using the Erbium-Doped Yttrium Aluminum Garnet Laser and Rotary Instruments

    NASA Astrophysics Data System (ADS)

    Jung, Mi-Kyung; Kim, Su-Gwan; Oh, Ji-Su; Jin, Seung-Chan; Lee, Sook-Young; Jang, Eun-Sook; Piao, Zheng-Gang; Lim, Sung-Chul; Jeong, Mi-Ae

    2012-01-01

    Erbium-doped yttrium aluminum garnet (Er:YAG) lasers have been used in dentistry for cutting bone and removal of caries. The purpose of this study was to evaluate the bone healing in a skull defect prepared in rats using various instruments including Er:YAG laser. The 7 mm calvarial defects were created in 45 rats and 45 rats were divided into three groups (n = 15): a high-speed rotation engine with carbide round bur (2-mm diameter), a low-speed rotation engine with carbide round bur (2-mm diameter), and an Er:YAG laser. Specimens obtained after 3 days or 4 or 8 weeks were submitted for histological analysis. Three days after surgery, no bone formation had occurred in any of the groups. Four weeks after surgery, 90 ±8.16% new bone formation was observed in the high-speed group, and 8 weeks after surgery, 100 ±0% new bone formation was observed in the low- and high-speed groups. There were significant differences among the periods after surgery, but no significant differences were observed among final results with in different device groups.

  10. Optimization of Sm3+ fluorescence in Sm-doped yttrium aluminum garnet: Application to pressure calibration in diamond-anvil cell at high temperature

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, Carmen; Daniel, Isabelle; Reynard, Bruno; Abraham, Robert; Goutaudier, Christelle

    2002-10-01

    Sm3+ concentration in Sm-doped yttrium aluminum garnet (Sm3+):YAG has been optimized for fluorescence yield and synthesis procedure for the production of strain-free small grain-size powder established. Concentration of 0.5 wt % Sm3+ displays an optimal fluorescence signal, three to five times stronger than the generally proposed concentration (4 wt %). The fluorescence of the samples has been studied as a function of temperature (300-873 K) and pressure (0-15 GPa). A comparison with standard pressure scales shows that the pressure evolution of Sm3+:YAG fluorescence is insensitive to the doping rate, and that temperature has only a limited effect on the pressure scale established at 300 K. The present results indicate that pressure can be determined from the Y1 line of 0.5 wt % Sm-doped YAG, with temperature correction for pi at room pressure and constant pressure shift, within the 300-873 K and 10-4-15 GPa pressure-temperature range, through the linear relation: P (GPa)=0.127 x([pi0-0.018 xDelta]T)-[pi] where pi0 corresponds to the Y1 frequency value at ambient conditions (16 185 cm-1).

  11. Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy.

    PubMed

    Molina, Wilson R; Marchini, Giovanni S; Pompeo, Alexandre; Sehrt, David; Kim, Fernando J; Monga, Manoj

    2014-04-01

    To evaluate the association of preoperative noncontrast computed tomography stone characteristics, laser settings, and stone composition with cumulative holmium:yttrium-aluminum-garnet (Ho:YAG) laser time/energy. We retrospectively reviewed patients who underwent semirigid/flexible ureteroscopy and Ho:YAG laser lithotripsy (200 or 365 μm laser fiber; 0.8-1.0 J energy; and 8-10 Hz rate) at 2 tertiary care centers (April 2010-May 2012). Studied parameters were as follows: patient's characteristics; stone characteristics (location, burden, hardness, and composition); total laser time and energy; and surgical outcomes. One hundred patients met our inclusion criteria. Mean stone size was 1.01 ± 0.42 cm and volume 0.33 ± 0.04 cm(3). Mean stone radiodensity was 990 ± 296 HU, and Hounsfield units density 13.8 ± 6.0 HU/mm. All patients were considered stone free. Stone size and volume had a significant positive correlation with laser energy (R = 0.516, P <.001; R = 0.621, P <.001) and laser time (R = 0.477, P <.001; R = 0.567, P <.001). When controlling for stone size, only the correlation between HU and laser time was significant (R = 0.262, P = .011). In the multivariate analysis, with exception of stone composition (P = .103), all parameters significantly increased laser energy (R(2) = 0.524). Multivariate analysis revealed a positive significant association of laser time with stone volume (P <.001) and Hounsfield units density (P <.001; R(2) = 0.512). In multivariate analysis for laser energy, only calcium phosphate stones required less energy to fragment compared with uric acid stones. No significant differences were found in the multivariate laser time model. Ho:YAG laser cumulative energy and total time are significantly affected by stone dimensions, hardness location, fiber size, and power. Kidney location, laser fiber size, and laser power have more influence on the final laser energy than on the total laser time. Calcium phosphate stones require less laser

  12. Biodistribution of Yttrium-90-Labeled Anti-CD45 Antibody in a Nonhuman Primate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemecek, Eneida; Hamlin, Donald K.; Fisher, Darrell R.

    2005-01-15

    Radioimmunotherapy may improve the outcome of hematopoietic cell transplantation for hematologic malignancies by delivering targeted radiation to hematopoietic organs while relatively sparing nontarget organs. We evaluated the organ localization of yttrium-90-labeled anti-CD45 (90Y-anti-CD45) antibody in macaques, a model that had previously predicted iodine-131-labeled anti-CD-45 (131I-anti-CD45) antibody biodistribution in humans. Experimental Design: Twelve Macaca nemestrina primates received anti-CD45 antibody labeled with 1 to 2 mCi of 90Y followed by serial blood sampling and marrow and lymph node biopsies, and necropsy. The content of 90Y per gram of tissue was determined by liquid scintillation spectrometry. Time-activity curves were constructed using average isotopemore » concentrations in each tissue at measured time points to yield the fractional residence time and estimate radiation absorbed doses for each organ per unit of administered activity. The biodistribution of 90Y-anti-CD45 antibody was then compared with that previously obtained with 131I-anti-CD45 antibody in macaques. Results: The spleen received 2,120, marrow 1,060, and lymph nodes 315 cGy/mCi of 90Y injected. The liver and lungs were the nontarget organs receiving the highest radiation absorbed doses (440 and 285 cGy/mCi, respectively). Ytrrium-90-labeled anti-CD45 antibody delivered 2.5- and 3.7-fold more radiation to marrow than to liver and lungs, respectively. The ratios previously observed with 131I-antiCD45 antibody were 2.5-and 2.2-fold more radiation to marrow than to liver and lungs, respectively. Conclusions: This study shows that 90Y-anti-CD45 antibody can deliver relatively selective radiation to hematopoietic tissues, with similar ratios of radiation delivered to target versus nontarget organs, as compared with the 131I immunoconjugate in the same animal model.« less

  13. Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma.

    PubMed

    Chew, Valerie; Lee, Yun Hua; Pan, Lu; Nasir, Nurul J M; Lim, Chun Jye; Chua, Camillus; Lai, Liyun; Hazirah, Sharifah Nur; Lim, Tony Kiat Hon; Goh, Brian K P; Chung, Alexander; Lo, Richard H G; Ng, David; Filarca, Rene L F; Albani, Salvatore; Chow, Pierce K H

    2018-02-13

    Yttrium-90 (Y90)-radioembolisation (RE) significantly regresses locally advanced hepatocellular carcinoma and delays disease progression. The current study is designed to deeply interrogate the immunological impact of Y90-RE, which elicits a sustained therapeutic response. Time-of-flight mass cytometry and next-generation sequencing (NGS) were used to analyse the immune landscapes of tumour-infiltrating leucocytes (TILs), tumour tissues and peripheral blood mononuclear cells (PBMCs) at different time points before and after Y90-RE. TILs isolated after Y90-RE exhibited signs of local immune activation: higher expression of granzyme B (GB) and infiltration of CD8 + T cells, CD56 + NK cells and CD8 + CD56 + NKT cells. NGS confirmed the upregulation of genes involved in innate and adaptive immune activation in Y90-RE-treated tumours. Chemotactic pathways involving CCL5 and CXCL16 correlated with the recruitment of activated GB + CD8 + T cells to the Y90-RE-treated tumours. When comparing PBMCs before and after Y90-RE, we observed an increase in tumour necrosis factor-α on both the CD8 + and CD4 + T cells as well as an increase in percentage of antigen-presenting cells after Y90-RE, implying a systemic immune activation. Interestingly, a high percentage of PD-1 + /Tim-3 + CD8 + T cells coexpressing the homing receptors CCR5 and CXCR6 denoted Y90-RE responders. A prediction model was also built to identify sustained responders to Y90-RE based on the immune profiles from pretreatment PBMCs. High-dimensional analysis of tumour and systemic immune landscapes identified local and systemic immune activation that corresponded to the sustained response to Y90-RE. Potential biomarkers associated with a positive clinical response were identified and a prediction model was built to identify sustained responders prior to treatment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  14. From selenium- to tellurium-based glass optical fibers for infrared spectroscopies.

    PubMed

    Cui, Shuo; Chahal, Radwan; Boussard-Plédel, Catherine; Nazabal, Virginie; Doualan, Jean-Louis; Troles, Johann; Lucas, Jacques; Bureau, Bruno

    2013-05-10

    Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS). FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA). The development of telluride glass fiber enables a successful observation of CO₂ absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  15. Cyclopalladation of dimesityl selenide: synthesis, reactivity, structural characterization, isolation of an intermediate complex with C-H···Pd intra-molecular interaction and computational studies.

    PubMed

    Kolay, Siddhartha; Wadawale, Amey; Das, Dasarathi; Kisan, Hemanta K; Sunoj, Raghavan B; Jain, Vimal K

    2013-08-14

    The reaction of dimesityl selenide (Mes2Se) with either PdCl2(PhCN)2 in toluene or PdCl2 in toluene-acetonitrile yields a chloro-bridged binuclear palladium complex, [Pd2Cl2(μ-Cl)2(Mes2Se)2] (1), whereas with Na2PdCl4 in refluxing ethanol, a cyclometallated palladium complex, [Pd2(μ-Cl)2{MesSeC6H2(Me2)CH2}2] (2) is afforded. 2 can also be obtained when 1 is refluxed in ethanol. On treatment with Pb(Epy)2 in dichloromethane, 2 afforded the Epy-bridged binuclear complexes, [Pd2(μ-Epy)2{MesSeC6H2(Me2)CH2}2] (3; E = S (3a) or Se (3b)). Treatment of 2 with PPh3 yields a bridge-cleaved monomeric complex, [PdCl{MesSeC6H2(Me2)CH2}(PPh3)]. The molecular structures of 1-3 were established by X-ray diffraction analyses. All the complexes are dimeric, with the palladium atoms acquiring a distorted square planar configuration. There are intra-molecular C-H···Pd interactions (d(M-H): 2.75 Å and

  16. Mysteries of TOPSe revealed: insights into quantum dot nucleation.

    PubMed

    Evans, Christopher M; Evans, Meagan E; Krauss, Todd D

    2010-08-18

    We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g., trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways, and transition states and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods.

  17. Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation

    PubMed Central

    Evans, Christopher M.; Evans, Meagan E.

    2010-01-01

    We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g. trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways and transition states, and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods. PMID:20698646

  18. In situ probing of temperature in radio frequency thermal plasma using Yttrium ion emission lines during synthesis of yttria nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhamale, G. D.; Tiwari, N.; Mathe, V. L.; Bhoraskar, S. V.; Ghorui, S.

    2017-07-01

    Particle feeding is used in the most important applications of radio frequency (r.f.) thermal plasmas like synthesis of nanoparticles and particle spheroidization. The study reports an in-situ investigation of radial distribution of temperature in such devices using yttrium ion emission lines under different rates of particle loading during synthesis of yttria nanoparticles. A number of interesting facts about the response of r.f. plasma to the rate of particle loading, hitherto unknown, are revealed. Observed phenomena are supported with experimental data from fast photographic experiments and actual synthesis results. The use of the Abel inversion technique together with simultaneous multi-track acquisition of emission spectra from different spatial locations using a CCD based spectrometer allowed us to extract accurate distribution of temperature inside the plasma in the presence of inherent instabilities. The temperature profiles of this type of plasma have been measured possibly for the first time while particles are being fed into the plasma. Observed changes in the temperature profiles as the particle feed rate increases are very significant. Reaction forces resulting from particle evaporation, and increased skin depth owing to the decrease in electrical conductivity in the edge region are proposed as the two different mechanisms to account for the observed changes in the temperature profile as the powder feed rate is increased. Quantitative analyses supporting the proposed mechanisms are presented.

  19. Model-Based Radiation Dose Correction for Yttrium-90 Microsphere Treatment of Liver Tumors With Central Necrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ching-Sheng; Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Lin, Ko-Han

    Purpose: The objectives of this study were to model and calculate the absorbed fraction {phi} of energy emitted from yttrium-90 ({sup 90}Y) microsphere treatment of necrotic liver tumors. Methods and Materials: The tumor necrosis model was proposed for the calculation of {phi} over the spherical shell region. Two approaches, the semianalytic method and the probabilistic method, were adopted. In the former method, the range--energy relationship and the sampling of electron paths were applied to calculate the energy deposition within the target region, using the straight-ahead and continuous-slowing-down approximation (CSDA) method. In the latter method, the Monte Carlo PENELOPE code wasmore » used to verify results from the first method. Results: The fraction of energy, {phi}, absorbed from {sup 90}Y by 1-cm thickness of tumor shell from microsphere distribution by CSDA with complete beta spectrum was 0.832 {+-} 0.001 and 0.833 {+-} 0.001 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors (where r is the radii of the tumor [T] and necrosis [N]). The fraction absorbed depended mainly on the thickness of the tumor necrosis configuration, rather than on tumor necrosis size. The maximal absorbed fraction {phi} that occurred in tumors without central necrosis for each size of tumor was different: 0.950 {+-} 0.000, and 0.975 {+-} 0.000 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors, respectively (p < 0.0001). Conclusions: The tumor necrosis model was developed for dose calculation of {sup 90}Y microsphere treatment of hepatic tumors with central necrosis. With this model, important information is provided regarding the absorbed fraction applicable to clinical {sup 90}Y microsphere treatment.« less

  20. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.

    2014-12-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  1. Synthesis, crystal structure, and magnetic properties of quaternary iron selenides: Ba{sub 2}FePnSe{sub 5} (Pn=Sb, Bi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Greenfield, Joshua T.; Kovnir, Kirill

    Two new barium iron pnictide–selenides, Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5}, were synthesized by a high-temperature solid-state route and their crystal structures were determined using single crystal X-ray diffraction. Both compounds are isomorphic to the high pressure phase Ba{sub 3}FeS{sub 5} and crystallize in the orthorhombic space group Pnma (No. 62) with cell parameters of a=12.603(2)/12.619(2) Å, b=9.106(1)/9.183(1) Å, c=9.145(1)/9.123(1) Å and Z=4 for Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5}, respectively. According to differential scanning calorimetry, Ba{sub 2}FePnSe{sub 5} compounds exhibit high thermal stability and melt congruently at 1055(5) K (Pn=Sb) and 1105(5) K (Pn=Bi). Magnetic characterizations revealmore » strong antiferromagnetic nearest-neighbor interactions in both compounds resulting in an antiferromagnetic ordering at 58(1) K for Ba{sub 2}FeSbSe{sub 5} and 79(2) K for Ba{sub 2}FeBiSe{sub 5}. The magnetic interactions between Fe{sup 3+} centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions. - Graphical abstract: In Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} the magnetic interactions between Fe{sup 3+} centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions. - Highlights: • New compounds Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} have been synthesized. • The crystal structure was determined by single crystal X-ray diffraction. • Both compounds melt congruently at temperatures above 1000 K. • Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} exhibit AFM ordering at 58 K (Sb) and 70 K (Bi). • Magnetic exchange between Fe{sup 3+} is mediated by either Se–Sb(Bi)–Se or Se–Ba–Se bridges.« less

  2. Visible optical isolator using ZnSe

    NASA Technical Reports Server (NTRS)

    Wunderlich, J. A.; Deshazer, L. G.

    1977-01-01

    A compact Faraday effect optical isolator was constructed for visible wavelengths and tested at 5145 A. The nonreciprocal element of the isolator was polycrystalline zinc selenide placed in the magnetic field of a permanent magnet. For 5145 A the isolator had a 2.06-dB insertion loss and a 25.5-dB isolation. Indices of refraction and Verdet constants were measured for zinc selenide in the wavelength region from 4700 to 6300 A.

  3. Application of reflectance confocal microscopy to evaluate skin damage after irradiation with an yttrium-scandium-gallium-garnet (YSGG) laser.

    PubMed

    Yue, Xueping; Wang, Hongwei; Li, Qing; Li, Linfeng

    2017-02-01

    The objective of this study was to observe the characteristics of the skin after irradiation with a 2790-nm yttrium-scandium-gallium-garnet (YSGG) laser using reflectance confocal microscopy (RCM). A 2790-nm YSGG laser was used to irradiate fresh foreskin (four doses, at spot density 3) in vitro. The characteristics of microscopic ablative columns (MAC), thermal coagulation zone (TCZ), and microscopic treatment zones (MTZ) were observed immediately after irradiation using digital microscope and RCM. The characteristics of MAC, TCZ, and MTZ with variations in pulse energy were comparatively analyzed. After irradiation, MAC, TCZ, and MTZ characteristics and undamaged skin between MTZs can be observed by RCM. The depth and width of MTZ obviously increased with the increase in pulse energy. At 80, 120, and 160 mJ/microbeam (MB), the MTZ actual area and proportion were about two times that of the theoretical value and three times at 200 mJ/MB. With increases in depth, the single MAC gradually decreased in a fingertip-shaped model, with TCZ slowly increasing, and MTZ slightly decreasing in a columnar shape. RCM was able to determine the characteristics of thermal injury on the skin after the 2790-nm YSGG laser irradiation with different pulse energies. Pulse energy higher than 200 mJ/MB may have much larger thermal injury and side effect. RCM could be used in the clinic in future.

  4. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.

    PubMed

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2014-05-01

    Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Research support for cadmium telluride crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto (n 11) seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  6. Diode-Pumped, 2-Micron, Q-Switched Thulium: Y3Al5O12 (Tm:Yag) Microchip Laser

    DTIC Science & Technology

    2011-05-01

    switch with a chromium -doped zinc selenide crystal acting as a saturable absorber passive Q-switch. Finally, we will propose possible future...literature by Heine and Huber [4] and others, while passive Q-switching of 2 μm lasers by a chromium -doped zinc selenide has been demonstrated by Tsai and...these objectives for each component of the laser system. In Chapter 4 a design is presented for replacing our acousto-optic Q-switch with a chromium

  7. When one becomes two: Ba12In4Se20, not quite isostructural to Ba12In4S19

    NASA Astrophysics Data System (ADS)

    Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Yao, Jiyong; Mar, Arthur

    2017-09-01

    The ternary selenide Ba12In4Se20 was synthesized by reaction of BaSe, In2Se3, and Se at 1023 K. Single-crystal X-ray diffraction revealed a trigonal structure (space group R 3 bar, Z = 6, a = 10.0360(6) Å, c = 78.286(4) Å at room temperature) consisting of one-dimensional stacks of InSe4 tetrahedra, In2Se7 double tetrahedra, selenide Se2- anions, and diselenide Se22- anions, with Ba2+ cations in the intervening spaces. The selenide Ba12In4Se20 can be derived from the corresponding sulfide Ba12In4S19 by replacing one monoatomic Ch2- anion with a diatomic Ch22- anion. An optical band gap of 1.70(2) eV, consistent with the dark red colour of the crystals, was deduced from the UV-vis-NIR diffuse reflectance spectrum.

  8. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    PubMed

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating

  9. Use of Chelex-100 for selectively removing Y-90 from its parent Sr-90

    DOEpatents

    Huntley, Mark W.

    1996-01-01

    A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium, and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighing this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a bidente ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form.

  10. Use of Chelex-100 for selectively removing Y-90 from its parent Sr-90

    DOEpatents

    Huntley, M.W.

    1996-02-27

    A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium, and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighing this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form.

  11. Three-year clinical follow-up after strontium-90/yttrium-90 beta-irradiation for the treatment of in-stent coronary restenosis.

    PubMed

    Baierl, Verena; Baumgartner, Simone; Pöllinger, Barbara; Leibig, Marcus; Rieber, Johannes; König, Andreas; Krötz, Florian; Sohn, Hae-Young; Siebert, Uwe; Haimerl, Wolfgang; Dühmke, Eckhart; Theisen, Karl; Klauss, Volker; Schiele, Thomas M

    2005-11-15

    Because late vessel failure has been speculated as a possible limitation of vascular brachytherapy, we conducted a prospective clinical evaluation at 6, 12, 24, and 36 months of follow-up after irradiation with strontium-90/yttrium-90 for in-stent restenosis, regardless of the patient's symptomatic status. We report complete 3-year follow-up data for 106 consecutive patients. The cumulative rate of death at 6, 12, 24, and 36 months was 0.9%, 0.9%, 0.9%, and 1.9% respectively. The corresponding rates for acute ST-elevation myocardial infarction were 2.8%, 4.7%, 4.7%, and 4.7%, respectively. The cumulative rate of late thrombotic occlusion at 6, 12, 24, and 36 months was 3.8%, 4.7%, 4.7%, and 4.7%, respectively. The corresponding rates of target lesion revascularization and target vessel revascularization were 8.5% and 12.3% (p = 0.046), 14.2% (p = 0.157) and 18.0% (p = 0.046), 12.3% and 18.9% (p = 0.008), and 21.7% (p = 0.083) and 29.2% (p = 0.005), respectively. The cumulative rate of all major adverse cardiovascular events at 6, 12, 24, and 36 months was 16.1%, 24.5% (p = 0.003), 27.4% (p = 0.083), and 35.8% (p = 0.003), respectively. In conclusion, these results indicate a delayed and, even in the third year after the index procedure, continued restenotic process after beta irradiation of in-stent restenotic lesions.

  12. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Suresh de, E-mail: suresh.desilva@unsw.edu.au; Mackie, Simon; Aslan, Peter

    BackgroundIntra-arterial brachytherapy with yttrium-90 ({sup 90}Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of {sup 90}Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with {sup 90}Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extentmore » of tissue necrosis from {sup 90}Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with {sup 90}Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the {sup 90}Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10{sup 6}) of bland microspheres.ConclusionThis study showed that radioembolization with {sup 90}Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of {sup 90}Y resin microspheres for the localized treatment of kidney tumors.« less

  13. Evaluation of critical distances for energy transfer between Pr3+ and Ce3+ in yttrium aluminium garnet

    NASA Astrophysics Data System (ADS)

    Zeng, Peng; Wei, Xiantao; Zhou, Shaoshuai; Yin, Min; Chen, Yonghu

    2016-09-01

    A series of Pr3+/Ce3+ doped yttrium aluminium garnet (Y3Al5O12 or simply YAG) phosphors were synthesized to investigate the energy transfer between Pr3+ and Ce3+ for their potential application in a white light-emitting diode and quantum information storage and processing. The excitation and emission spectra of YAG:Pr3+/Ce3+ were measured and analyzed, and it revealed that the reabsorption between Pr3+ and Ce3+ was so weak that it can be ignored, and the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) did occur. By analyzing the excitation and the emission spectra, the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) was examined in detail with an original strategy deduced from fluorescence dynamics and the Dexter energy transfer theory, and the critical distances of energy transfer were derived to be 7.9 Å and 4.0 Å for Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2), respectively. The energy transfer rates of the two processes of various concentrations were discussed and evaluated. Furthermore, for the purpose of sensing a single Pr3+ state with a Ce3+ ion, the optimal distance of Ce3+ from Pr3+ was evaluated as 5.60 Å, where the probability of success reaches its maximum value of 78.66%, and meanwhile the probabilities were evaluated for a series of Y3+ sites in a YAG lattice. These results will be of valuable reference for achievement of the optimal energy transfer efficiency in Pr3+/Ce3+ doped YAG and other similar systems.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Rich

    The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less

  15. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen.

    PubMed

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-09-01

    An electrochemical sensor was prepared by modifying a glassy carbon electrode (GCE) with a composite of yttrium (III) oxide nanoparticles (Y2O3NPs) and carbon nanotubes (CNTs) for the determination of acetaminophen (ACT). Compared with a bare GCE and CNTs/GCE, the Y2O3NPs/CNTs/GCE exhibited a well-defined redox couple for ACT and highly enhanced the current response. The separations in the anodic and cathodic peak potentials (ΔEp) for ACT were 552mV, 24mV and 10mV at ba4re GCE, CNTs/GCE and Y2O3NPs/CNTs/GCE, respectively. The observation of only 10mV of ΔEp for ACT at Y2O3NPs/CNTs/GCE was a clear indication of a great acceleration of the electrode process compared to bare GCE and GCE modified with CNTs. Also, l-ascorbic acid (l-AA) and l-tyrosine (l-TRY) did not interfere with the selective determination of ACT. Square wave voltammetry (SWV) was performed for the quantification of ACT. A linear plot was obtained for current responses versus the concentrations of ACT over the range from 1.0×10(-10) to 1.8×10(-8)M with a detection limit of 3.0×10(-11)M (based on 3Sb/m). The proposed composite material provided high electrocatalytic activity, improved voltammetric behavior, good selectivity and good reproducibility. The accurate quantification of ACT makes the proposed electrode of great interest for the public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Embolisation of the Gastroduodenal Artery is Not Necessary in the Presence of Reversed Flow Before Yttrium-90 Radioembolisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daghir, Ahmed A., E-mail: ahmeddaghir@doctors.net.uk; Gungor, Hatice; Haydar, Ali A.

    2012-08-15

    Introduction: The gastroduodenal artery (GDA) is usually embolised to avoid nontarget dispersal before yttrium-90 (Y{sup 90}) radioembolisation to treat liver metastases. In a minority of patients, there is retrograde flow in the GDA. The purpose of this study was to determine if there is any increased risk from maintaining a patent GDA in patients with reversed flow. Materials and Methods: A retrospective review was performed of all patients undergoing Y{sup 90} radioembolisation at our institution. The incidence of toxicities arising from nontarget radioembolisation by way of the GDA (gastric/duodenal ulceration, gastric/duodenal bleeding, and pancreatitis) and death occurring within 2 monthsmore » of treatment were compared between the reversed and the antegrade GDA groups. Results: Ninety-two patients underwent preliminary angiography. Reversed GDA flow was found on angiography in 14.1% of cases; the GDA was not embolised in these patients. The GDA was coiled in 55.7% of patients with antegrade GDA flow to prevent inadvertent dispersal of radioembolic material. There was no increased toxicity related to nontarget dispersal by way of the GDA, or increased early mortality, in patients with reversed GDA flow (P > 0.05). Conclusion: In patients with reversed GDA flow, maintenance of a patent GDA before administration of Y{sup 90} radioembolisation does not increase the risk of toxicity from nontarget dispersal. Therapeutic injection, with careful monitoring to identify early vascular stasis, may be safely performed beyond the origin of the patent GDA. A patent GDA with reversed flow provides forward drive for infused particles and may allow alternative access to the hepatic circulation.« less

  17. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency ofmore » CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.« less

  18. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  19. Nanometer-Thick Yttrium Iron Garnet Film Development and Spintronics-Related Study

    NASA Astrophysics Data System (ADS)

    Chang, Houchen

    In the last decade, there has been a considerable interest in using yttrium iron garnet (Y3Fe5O12, YIG) materials for magnetic insulator-based spintronics studies. This interest derives from the fact that YIG materials have very low intrinsic damping. The development of YIG-based spintronics demands YIG films that have a thickness in the nanometer (nm) range and at the same time exhibit low damping similar to single-crystal YIG bulk materials. This dissertation reports comprehensive experimental studies on nm-thick YIG films by magnetron sputtering techniques. Optimization of sputtering control parameters and post-deposition annealing processes are discussed in detail. The feasibility of low-damping YIG nm-thick film growth via sputtering is demonstrated. A 22.3-nm-thick YIG film, for example, shows a Gilbert damping constant of less than 1.0 x 10-4. The demonstration is of great technological significance because sputtering is a thin film growth technique most widely used in industry. The spin Seebeck effect (SSE) refers to the generation of spin voltage in a ferromagnet (FM) due to a temperature gradient. The spin voltage can produce a pure spin current into a normal metal (NM) that is in contact with the FM. Various theoretical models have been proposed to interpret the SSE, although a complete understanding of the effect has not been realized yet. In this dissertation the study of the role of damping on the SSE in YIG thin films is conducted for the first time. With the thin film development method mentioned in the last paragraph, a series of YIG thin films showing very similar structural and static magnetic properties but rather different Gilbert damping values were prepared. A Pt capping layer was grown on each YIG film to probe the strength of the SSE. The experimental data show that the YIG films with a smaller intrinsic Gilbert damping shows a stronger SSE. The majority of the previous studies on YIG spintronics utilized YIG films that were grown on single

  20. A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet laser for the treatment of café-au-lait macules.

    PubMed

    Kim, Hyeong-Rae; Ha, Jeong-Min; Park, Min-Soo; Lee, Young; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon; Im, Myung

    2015-09-01

    Café-au-lait macules (CALMs) are a common pigmentary disorder. Although a variety of laser modalities have been used to treat CALMs, their efficacies vary and dyspigmentation may develop. We evaluated the clinical efficacy and safety of a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet (Nd:YAG) laser for the treatment of CALMs. In a preliminary investigation, 6 patients underwent a split-lesion comparative study with 532- and 1064-nm Q-switched Nd:YAG laser treatment. In total, 32 patients with 39 CALMs were enrolled in a subsequent prospective trial to evaluate the treatment with a low-fluence 1064-nm Q-switched Nd:YAG laser. In the preliminary study, the 1064-nm treatment group had a more favorable response and a shorter recovery time. In a subsequent prospective trial of a 1064-nm laser, 74.4% of the lesions showed a clinical response with clearance of ≥50.0%. The treatment regimen was well tolerated; 15.4% of patients experienced adverse events. The study participants were followed for 6 months, and there were no relevant treatment controls in the prospective trial group. Low-fluence 1064-nm Q-switched Nd:YAG laser therapy afforded good clinical improvement for treating CALMs. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.