Sample records for yttrium-90 microspheres results

  1. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Suresh de, E-mail: suresh.desilva@unsw.edu.au; Mackie, Simon; Aslan, Peter

    BackgroundIntra-arterial brachytherapy with yttrium-90 ({sup 90}Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of {sup 90}Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with {sup 90}Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extentmore » of tissue necrosis from {sup 90}Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with {sup 90}Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the {sup 90}Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10{sup 6}) of bland microspheres.ConclusionThis study showed that radioembolization with {sup 90}Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of {sup 90}Y resin microspheres for the localized treatment of kidney tumors.« less

  2. Patient Selection and Activity Planning Guide for Selective Internal Radiotherapy With Yttrium-90 Resin Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Wan-Yee, E-mail: josephlau@surgery.cuhk.edu.hk; Kennedy, Andrew S.; Department of Biomedical Engineering, North Carolina State University, Raleigh, NC

    Purpose: Selective internal radiotherapy (SIRT) with yttrium-90 ({sup 90}Y) resin microspheres can improve the clinical outcomes for selected patients with inoperable liver cancer. This technique involves intra-arterial delivery of {beta}-emitting microspheres into hepatocellular carcinomas or liver metastases while sparing uninvolved structures. Its unique mode of action, including both {sup 90}Y brachytherapy and embolization of neoplastic microvasculature, necessitates activity planning methods specific to SIRT. Methods and Materials: A panel of clinicians experienced in {sup 90}Y resin microsphere SIRT was convened to integrate clinical experience with the published data to propose an activity planning pathway for radioembolization. Results: Accurate planning is essentialmore » to minimize potentially fatal sequelae such as radiation-induced liver disease while delivering tumoricidal {sup 90}Y activity. Planning methods have included empiric dosing according to degree of tumor involvement, empiric dosing adjusted for the body surface area, and partition model calculations using Medical Internal Radiation Dose principles. It has been recommended that at least two of these methods be compared when calculating the microsphere activity for each patient. Conclusions: Many factors inform {sup 90}Y resin microsphere SIRT activity planning, including the therapeutic intent, tissue and vasculature imaging, tumor and uninvolved liver characteristics, previous therapies, and localization of the microsphere infusion. The influence of each of these factors has been discussed.« less

  3. Current Role of Selective Internal Irradiation With Yttrium-90 Microspheres in the Management of Hepatocellular Carcinoma: A Systematic Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Wan Yee, E-mail: josephlau@cuhk.edu.hk; Lai, Eric C.H.; Leung, Thomas W.T.

    2011-10-01

    Purpose: This article reviews the role of selective internal irradiation (SIR) with yttrium-90 ({sup 90}Y) microspheres for hepatocellular carcinoma (HCC). Methods and Materials: Studies were identified by searching Medline and PubMed databases for articles from 1990 to 2009 using the keywords 'selective internal irradiation,' 'hepatocellular carcinoma,' 'therapeutic embolization,' and 'yttrium-90.' Results: {sup 90}Y microspheres are a safe and well-tolerated therapy for unresectable HCC (median survival range, 7 -21.6 months). The evidence was limited to cohort studies and comparative studies with historical control. {sup 90}Y microspheres have been reported to downstage unresectable HCC to allow for salvage treatments with curative intent,more » act as a bridging therapy before liver transplantation, and treat HCC with curative intent for patients who are not surgical candidates because of comorbidities. Conclusions: {sup 90}Y microsphere is recommended as an option of palliative therapy for large or multifocal HCC without major portal vein invasion or extrahepatic spread. It can also be used for recurrent unresectable HCC, as a bridging therapy before liver transplantation, as a tumor downstaging treatment, and as a curative treatment for patients with associated comorbidities who are not candidates for surgery.« less

  4. Radioembolization of Symptomatic, Unresectable Neuroendocrine Hepatic Metastases Using Yttrium-90 Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paprottka, Philipp M., E-mail: philipp.paprottka@med.uni-muenchen.de; Hoffmann, Ralf-T.; Haug, Alexander

    2012-04-15

    Purpose: To evaluate safety, efficacy, and symptom-control of radioembolization in patients with unresectable liver metastases from neuroendocrine tumors (NETLMs). Materials and Methods: Forty-two patients (mean age of 62 years) with treatment-refractory NETLMs underwent radioembolization using yttrium-90 ({sup 90}Y) resin microspheres. Posttreatment tumor response was assessed by cross-sectional imaging using the Response Evaluation Criteria in Solid Tumors (RECIST) and tumor-marker levels. Laboratory and clinical toxicities and clinical symptoms were monitored. Results: The median activity delivered was 1.63 GBq (range 0.63-2.36). Imaging follow-up using RECIST at 3-month follow-up demonstrated partial response, stable disease, and progressive disease in 22.5, 75.0, and 2.5% ofmore » patients, respectively. In 97.5% of patients, the liver lesions appeared hypovascular or partially necrotic. The mean follow-up was 16.2 months with 40 patients (95.2%) remaining alive. The median decrease in tumor-marker levels at 3 months was 54.8% (chromogranin A) and 37.3% (serotonin), respectively. There were no acute or delayed toxicities greater than grade 2 according to Common Terminology Criteria for Adverse Events [CTCAE (v3.0)]. No radiation-induced liver disease was noted. Improvement of clinical symptoms 3 months after treatment was observed in 36 of 38 symptomatic patients. Conclusion: Radioembolization with {sup 90}Y-microspheres is a safe and effective treatment option in patients with otherwise treatment-refractory NETLMs. Antitumoral effect is supported by good local tumor control, decreased tumor-marker levels, and improved clinical symptoms. Further investigation is warranted to define the role of radioembolization in the treatment paradigm for NETLMs.« less

  5. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    PubMed

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  6. Model-Based Radiation Dose Correction for Yttrium-90 Microsphere Treatment of Liver Tumors With Central Necrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ching-Sheng; Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Lin, Ko-Han

    Purpose: The objectives of this study were to model and calculate the absorbed fraction {phi} of energy emitted from yttrium-90 ({sup 90}Y) microsphere treatment of necrotic liver tumors. Methods and Materials: The tumor necrosis model was proposed for the calculation of {phi} over the spherical shell region. Two approaches, the semianalytic method and the probabilistic method, were adopted. In the former method, the range--energy relationship and the sampling of electron paths were applied to calculate the energy deposition within the target region, using the straight-ahead and continuous-slowing-down approximation (CSDA) method. In the latter method, the Monte Carlo PENELOPE code wasmore » used to verify results from the first method. Results: The fraction of energy, {phi}, absorbed from {sup 90}Y by 1-cm thickness of tumor shell from microsphere distribution by CSDA with complete beta spectrum was 0.832 {+-} 0.001 and 0.833 {+-} 0.001 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors (where r is the radii of the tumor [T] and necrosis [N]). The fraction absorbed depended mainly on the thickness of the tumor necrosis configuration, rather than on tumor necrosis size. The maximal absorbed fraction {phi} that occurred in tumors without central necrosis for each size of tumor was different: 0.950 {+-} 0.000, and 0.975 {+-} 0.000 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors, respectively (p < 0.0001). Conclusions: The tumor necrosis model was developed for dose calculation of {sup 90}Y microsphere treatment of hepatic tumors with central necrosis. With this model, important information is provided regarding the absorbed fraction applicable to clinical {sup 90}Y microsphere treatment.« less

  7. Temporary balloon occlusion of the common hepatic artery for administration of yttrium-90 resin microspheres in a patient with patent hepatoenteric collaterals.

    PubMed

    Mahvash, Armeen; Zaer, Navid; Shaw, Colette; Chasen, Beth; Avritscher, Rony; Murthy, Ravi

    2012-02-01

    The most common serious complication of yttrium-90 ((90)Y) therapy is gastrointestinal ulceration caused by extrahepatic microsphere dispersion. The authors describe the use of a balloon catheter for temporary occlusion of the common hepatic artery to reverse hepatoenteric flow for lobar administration of resin microspheres when coil embolization of a retroportal artery was impossible. At 9 months after treatment, the patient had no gastrointestinal side effects and showed a partial response. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  8. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis.

    PubMed

    Al-Adra, D P; Gill, R S; Axford, S J; Shi, X; Kneteman, N; Liau, S-S

    2015-01-01

    Radioembolization with yttrium-90 microspheres offers an alternative treatment option for patients with unresectable intrahepatic cholangiocarcinoma (ICC). However, the rarity and heterogeneity of ICC makes it difficult to draw firm conclusions about treatment efficacy. Therefore, the goal of the current study is to systematically review the existing literature surrounding treatment of unresectable ICCs with yttrium-90 microspheres and provide a comprehensive review of the current experience and clinical outcome of this treatment modality. We performed a comprehensive search of electronic databases for ICC treatment and identified 12 studies with relevant data regarding radioembolization therapy with yttrium-90 microspheres. Based on pooled analysis, the overall weighted median survival was 15.5 months. Tumour response based on radiological studies demonstrated a partial response in 28% and stable disease in 54% of patients at three months. Seven patients were able to be downstaged to surgical resection. The complication profile of radioembolization is similar to that of other intra-arterial treatment modalities. Overall survival of patients with ICC after treatment with yttrium-90 microspheres is higher than historical survival rates and shows similar survival to those patients treated with systemic chemotherapy and/or trans-arterial chemoembolization therapy. Therefore, the use of yttrium-90 microspheres should be considered in the list of available treatment options for ICC. However, future randomized trials comparing systemic chemotherapy, TACE and local radiation will be required to identify the optimal treatment modality for unresectable ICC. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. Intraprocedural yttrium-90 positron emission tomography/CT for treatment optimization of yttrium-90 radioembolization.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Bradley, Yong C; Acuff, Shelley N; Pasciak, Alexander S

    2014-02-01

    Radioembolization with yttrium-90 ((90)Y) microspheres relies on delivery of appropriate treatment activity to ensure patient safety and optimize treatment efficacy. We report a case in which (90)Y positron emission tomography (PET)/computed tomography (CT) was performed to optimize treatment planning during a same-day, three-part treatment session. This treatment consisted of (i) an initial (90)Y infusion with a dosage determined using an empiric treatment planning model, (ii) quantitative (90)Y PET/CT imaging, and (iii) a secondary infusion with treatment planning based on quantitative imaging data with the goal of delivering a specific total tumor absorbed dose. © 2014 SIR Published by SIR All rights reserved.

  10. (90)Y microspheres prepared by sol-gel method, promising medical material for radioembolization of liver malignancies.

    PubMed

    Łada, Wiesława; Iller, Edward; Wawszczak, Danuta; Konior, Marcin; Dziel, Tomasz

    2016-10-01

    A new technology for the production of radiopharmaceutical (90)Y microspheres in the form of spherical yttrium oxide grains obtained by sol-gel method has been described. The authors present and discuss the results of investigations performed in the development of new production technology of yttrium microspheres and determination of their physic-chemical properties. The final product has the structure of spherical yttrium oxide grains with a diameter 25-100μm, is stable and free from contaminants. Irradiation of 20mg samples of grains with diameter of 20-50μm in the thermal neutron flux of 1.7×10(14)cm(-2)s(-1) at the core of MARIA research nuclear reactor allowed to obtain microspheres labelled with the (90)Y isotope on the way of the nuclear reaction (89)Y(n, ɤ)(90)Y. Specific activity of irradiated microspheres has been determined by application of absolute triple to double coincidence ratio method (TDCR) and has been evaluated at 190MBq/mg Y. (90)Y microspheres prepared by the proposed technique can be regarded as a promising medical material for radioembolization of liver malignancies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. EMBOLIZATION OF DOG PROSTATES WITH YTTRIUM-90 MICROSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, W.M.

    1963-10-01

    Experiments exploring means for the protection of adjacent normal tissue while delivering a destructive dose of radiation to malignant tissue were conducted. By injection of radioactive ceramic spheres or particles, too large to pass through capillaries or arteriovenous shunts, relatively high doses of radiation can be distributed homogeneously to a circumscribed area. Attempts were made to determine the uniformity of distribution and the radiation effect of varying doses of spheres injected into the arterial supply of the dog prostate. Nonradioactive and radioactive ceramic microspheres of 60 mu dia were used since this size exceeds the diameter of capillaries and arteriovenousmore » shunts. Yttrium-90 microspheres of varying radioactivity were used. Doses injected into right and left hypogastric arteries varied from 0.69 to 28.4 mc/side (92-1260 mc/ g prostate). Homogeneous distribution of radioactivity within the prostate was demonstrated by autoradiography. Distribution to some other organs (rectum, penis, and bladder) occurred because arterial supply to these structures was not isolated and occluded. The amount of radioactivity found in the lungs suggested more venous drainage in some cases than seemed apparent, and because of the infarctions of pelvic organs may have leaked radioactive spheres into the venous circuit. In 6 of the 8 dogs which died prematurely (2 to 7 days after surgery) obvious infarction of the prostate and in some other pelvic structures had occurred. That the radioactivity contributed to the infarction is suggested by the results in the dogs which received large doses of radioactivity (18.9 and 28.4 mc per side) in minimal amounts of spheres (100to 150 mg per side). The intensely concentrated radioactivity within the arteriolar lumens may have caused vasculitis and subsequent thrombosis. Although homogeneous destruction of the prostate gland occurred, the effect of a given dose ranged unpredictably through three groups: no apparent

  12. Yttrium-90 (Y-90) Resin Microsphere Therapy for Patients with Unresectable Hepatocellular Carcinoma: a Single-Center Experience.

    PubMed

    İnce, Semra; Karaman, Bülent; Alagoz, Engin; Karadurmuş, Nuri; Şan, Hüseyin; Erçin, Cemal Nuri; Arslan, Nuri

    2017-09-01

    Selective intraarterial radionuclide therapy (SIRT) with yttrium-90 (Y-90) resin microspheres presently has successful results in primary or metastatic inoperable liver tumors. This procedure, which is also known as radioembolisation, delivers high doses of radiation selectively to hepatic tumors while minimum healthy liver exposure. The aim of this study was to present our clinical experience of radiomicrosphere therapy for the treatment of patients with unresectable hepatocellular carcinoma (HCC). We performed 40 Y-90 microsphere therapies in 28 patients (5 females, 23 males; mean age ± SD 48 ± 8) with HCC during the period from April 2008 through December 2016. Pretreatment Tc-99m microaggregated albumin (MAA) scintigraphy was performed to all patients in order to detect eligibility for SIRT. All patients had pre- and post-biochemical tests (hemogram and serologic tests) and imaging methods (CT or MRI or PET/CT) at regular intervals to detect any possible complication and determine response rates. The mean shunting to the lungs on MAA scan was 6.5% and the mean ± SD administered dose of Y-90 was 1.55 ± 0.32 GBq in all patients. The estimated doses to the target tumors, normal liver parenchyma and lungs were 105.7 ± 55.3, 25.5 ± 8.2 and 5.8 ± 1.7 Gy, respectively. No significant complication was observed during or early after (first week) the treatment procedure and it was well tolerated by all the patients. Only one patient developed a treatment-related gastroduodenal ulcer 3 weeks after the treatment. In control imaging tests (MRI or FDG PET/CT) performed 2.5 months after the treatment, we observed complete response in 2 (7%) patients, partial response in 10 (36%) patients, stable disease in 5 (18%) patients and progressive disease in 11 (39%) patients. According to our clinical experience, we can conclude that Y-90 microsphere therapy is a safe and effective treatment option for the patients with unresectable HCC without any serious

  13. Hepatic radioembolization with yttrium-90 containing glass microspheres: Preliminary results and clinical follow-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.; Walker, S.C.; Ackermann, R.J.

    1994-10-01

    The treatment of hepatic tumors remains unsatisfactory. These lesions receive most of their blood supply from the hepatic artery, therefore the hepatic artery administration of beta-emitting particulate radiopharmaceuticals is an attractive approach to deliver therapeutic irradiation to the liver and differentially to tumors within the liver. A Phase 1 dose escalation study of the hepatic tolerance to radiation delivered by {sup 90}Y containing glass microspheres was carried out in 24 patients with hepatic malignancy. Doses of {sup 90}Y microspheres to achieve an estimated whole-liver nominal absorbed radiation dose of 5000 cGy (two patients), 7500cGy (six patients), 10,000 cGy (seven patients),more » 12,500 cGy (six patients), and 15,000 cGy (three patients) were administered via the hepatic artery. The administered nominal absorbed radiation dose (NARD) was estimated based on liver volume determined from CT scans and the assumption of uniform distribution of microspheres throughout the liver. No hematologic, hepatic or pulmonary toxicity was encountered in the dose range examined during a mean follow-up period of up to 53 mo. Reversible gastritis or duodenitis was encountered in four patients without imaging or biopsy evidence for extra-hepatic deposition of microspheres. Response data, based on CT scans obtained 16 wk after treatment, showed progressive disease in eight patients, stable disease in seven patients, minimal response in four patients and partial response in five patients. Subsequent follow-up revealed three long-term survivors at 204, 216 and 228 wk. These preliminary data demonstrates that in the examined dose range, radiation may be safely delivered to liver tumors by means of {sup 90}Y glass microspheres with encouraging response data. 39 refs., 3 figs., 1 tab.« less

  14. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salem, Riad; Hunter, Russell D.

    2006-10-01

    To present a critical review of yttrium-90 (TheraSphere) for the treatment of hepatocellular carcinoma (HCC). Medical literature databases (Medline, Cochrane Library, and CANCERLIT) were searched for available literature concerning the treatment of HCC with TheraSphere. These publications were reviewed for scientific and clinical validity. Studies pertaining to the use of yttrium-90 for HCC date back to the 1960s. The results from the early animal safety studies established a radiation exposure range of 50-100 Gy to be used in human studies. Phase I dose escalation studies followed, which were instrumental in delineating radiation dosimetry and safety parameters in humans. These earlymore » studies emphasized the importance of differential arteriolar density between hypervascular HCC and surrounding liver parenchyma. Current trends in research have focused on advancing techniques to safely implement this technology as an alternative to traditional methods of treating unresectable HCC, such as external beam radiotherapy, conformal beam radiotherapy, ethanol ablation, trans-arterial chemoembolization, and radiofrequency ablation. Yttrium-90 (TheraSphere) is an outpatient treatment option for HCC. Current and future research should focus on implementing multicenter phase II and III trials comparing TheraSphere with other therapies for HCC.« less

  15. Safety of Radioembolization with {sup 90}Yttrium Resin Microspheres Depending on Coiling or No-Coiling of Aberrant/High-Risk Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paprottka, P. M., E-mail: philipp.paprottka@med.lmu.de, E-mail: philipp.paprottka@med.uni-muenchen.de; Paprottka, K. J., E-mail: karolin.paprottka@med.lmu.de; Walter, A., E-mail: alexandra.Walter@campus.lmu.de

    2015-08-15

    PurposeTo evaluate the safety of radioembolization (RE) with {sup 90}Yttrium ({sup 90}Y) resin microspheres depending on coiling or no-coiling of aberrant/high-risk vessels.Materials and MethodsEarly and late toxicity after 566 RE procedures were analyzed retrospectively in accordance with the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE v3.0). For optimal safety, aberrant vessels were either coil embolized (n = 240/566, coiling group) or a more peripheral position of the catheter tip was chosen to treat right or left liver lobes (n = 326/566, no-coiling group).ResultsClinically relevant late toxicities (≥Grade 3) were observed in 1 % of our overall cohort. The no-coiling group had significantlymore » less “any” (P = 0.0001) or “clinically relevant” (P = 0.0003) early toxicity. There was no significant difference (P > 0.05) in delayed toxicity in the coiling versus the no-coiling group. No RE-induced liver disease was noted after all 566 procedures.ConclusionRE with {sup 90}Y resin microspheres is a safe and effective treatment option. Performing RE without coil embolization of aberrant vessels prior to treatment could be an alternative for experienced centers.« less

  16. MO-A-BRD-00: Current Trends in Y90-Microsphere Therapy: Delivery and Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Yttrium-90 (Y90) microsphere therapy, a form of radiation therapy, is an increasingly popular option for care of patients with liver metastases or unresectable hepatocellular carcinoma. The therapy directly delivers Y90 microspheres via the hepatic artery to disease sites. Following delivery, a vast majority of microspheres preferentially lodge in the capillary vessels due to their embolic size and targeted trans-arterial delivery – depositing up to 90% of its energy in the first 5 mm of tissue. There have been a number of advances in tomographic imaging within both interventional radiology and nuclear medicine that has advanced therapy planning techniques. Quantitative imagingmore » of Y90 microsphere distribution post-therapy has also seen innovations that have led to improvements in tumor dosimetry and characterization of tumor response. A review of current trends and recent innovation in Y90 microsphere therapies will be presented. Learning Objectives: To present the imaging requirements for Y90 microsphere therapy planning To explain the standard dosimetry models used in Y90 microsphere therapy planning To report on advances in imaging for therapy planning and posttherapy assessment of tumor dosimetry and response.« less

  17. SPIO-labeled Yttrium Microspheres for MR Imaging Quantification of Transcatheter Intrahepatic Delivery in a Rodent Model

    PubMed Central

    Li, Weiguo; Zhang, Zhuoli; Gordon, Andrew C.; Chen, Jeane; Nicolai, Jodi; Lewandowski, Robert J.; Omary, Reed A.

    2016-01-01

    Purpose To investigate the qualitative and quantitative impacts of labeling yttrium microspheres with increasing amounts of superparamagnetic iron oxide (SPIO) material for magnetic resonance (MR) imaging in phantom and rodent models. Materials and Methods Animal model studies were approved by the institutional Animal Care and Use Committee. The r2* relaxivity for each of four microsphere SPIO compositions was determined from 32 phantoms constructed with agarose gel and in eight concentrations from each of the four compositions. Intrahepatic transcatheter infusion procedures were performed in rats by using each of the four compositions before MR imaging to visualize distributions within the liver. For quantitative studies, doses of 5, 10, 15, or 20 mg 2% SPIO-labeled yttrium microspheres were infused into 24 rats (six rats per group). MR imaging R2* measurements were used to quantify the dose delivered to each liver. Pearson correlation, analysis of variance, and intraclass correlation analyses were performed to compare MR imaging measurements in phantoms and animal models. Results Increased r2* relaxivity was observed with incremental increases of SPIO microsphere content. R2* measurements of the 2% SPIO–labeled yttrium microsphere concentration were well correlated with known phantom concentrations (R2 = 1.00, P < .001) over a broader linear range than observed for the other three compositions. Microspheres were heterogeneously distributed within each liver; increasing microsphere SPIO content produced marked signal voids. R2*-based measurements of 2% SPIO–labeled yttrium microsphere delivery were well correlated with infused dose (intraclass correlation coefficient, 0.98; P < .001). Conclusion MR imaging R2* measurements of yttrium microspheres labeled with 2% SPIO can quantitatively depict in vivo intrahepatic biodistribution in a rat model. © RSNA, 2015 Online supplemental material is available for this article. PMID:26313619

  18. Therapeutic equivalence in survival for hepatic arterial chemoembolization and 90Yttrium microspheres (Y90) treatments in unresectable hepatocellular carcinoma: a 2 cohort study

    PubMed Central

    Carr, Brian I.; Kondragunta, Venkateswarlu; Buch, Shama C.; Branch, Robert A.

    2009-01-01

    BACKGROUND Intra-hepatic arterial 90Yttrium (Y90) microspheres (Theraspheres) have been proposed as a less toxic, invasive therapeutic option to trans-hepatic arterial chemoembolization (TACE) for surgically unresectable hepatocellular carcinoma (HCC). TACE has been shown to prolong survival. However, long term survival remains uncertain. METHODS A 2 cohort experience of the treatment of advanced, unresectable and biopsy-proven HCC in North American patients is presented. 691 patients received repetitive cisplatin-based chemoembolization and a following 99 patient cohort with similar treatment criteria, received a planned single dose of Y90. Over this time period, an additional 142 patients were followed without treatment (total: 932 patients). RESULTS Overall survival was slightly better in the Y90 group compared to TACE, median of 11.5 vs. 8.5 months. However, selection criteria indicated a small but significant bias towards milder disease in the Y90 group. Using stratification in a 3 tier model, with cases dichotomized by bilirubin of less than 1.5 mg/dL, patients without PVT or with low alpha-fetoprotein plasma levels of less than 25 units/dL, analysis of survival in clinical subgroups showed that the 2 treatments resulted in similar survival. Similarly, patients with PVT or a high alpha-fetoprotein also had similar survival in the 2 treatment groups. CONCLUSION Given the present evidence of therapeutic equivalence in survival, Y90 and TACE seem to be equivalent regional therapies for patients with unresectable, non-metastatic HCC. PMID:20066715

  19. Radiographic Response to Yttrium-90 Radioembolization in Anterior Versus Posterior Liver Segments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Saad M.; Lewandowski, Robert J.; Ryu, Robert K.

    2008-11-15

    The purpose of our study was to determine if preferential radiographic tumor response occurs in tumors located in posterior versus anterior liver segments following radioembolization with yttrium-90 glass microspheres. One hundred thirty-seven patients with chemorefractory liver metastases of various primaries were treated with yttrium-90 glass microspheres. Of these, a subset analysis was performed on 89 patients who underwent 101 whole-right-lobe infusions to liver segments V, VI, VII, and VIII. Pre- and posttreatment imaging included either triphasic contrast material-enhanced CT or gadolinium-enhanced MRI. Responses to treatment were compared in anterior versus posterior right lobe lesions using both RECIST and WHO criteria.more » Statistical comparative studies were conducted in 42 patients with both anterior and posterior segment lesions using the paired-sample t-test. Pearson correlation was used to determine the relationship between pretreatment tumor size and posttreatment tumor response. Median administered activity, delivered radiation dose, and treatment volume were 2.3 GBq, 118.2 Gy, and 1,072 cm{sup 3}, respectively. Differences between the pretreatment tumor size of anterior and posterior liver segments were not statistically significant (p = 0.7981). Differences in tumor response between anterior and posterior liver segments were not statistically significant using WHO criteria (p = 0.8557). A statistically significant correlation did not exist between pretreatment tumor size and posttreatment tumor response (r = 0.0554, p = 0.4434). On imaging follow-up using WHO criteria, for anterior and posterior regions of the liver, (1) response rates were 50% (PR = 50%) and 45% (CR = 9%, PR = 36%), and (2) mean changes in tumor size were -41% and -40%. In conclusion, this study did not find evidence of preferential radiographic tumor response in posterior versus anterior liver segments treated with yttrium-90 glass microspheres.« less

  20. Radiographic response to yttrium-90 radioembolization in anterior versus posterior liver segments.

    PubMed

    Ibrahim, Saad M; Lewandowski, Robert J; Ryu, Robert K; Sato, Kent T; Gates, Vanessa L; Mulcahy, Mary F; Kulik, Laura; Larson, Andrew C; Omary, Reed A; Salem, Riad

    2008-01-01

    The purpose of our study was to determine if preferential radiographic tumor response occurs in tumors located in posterior versus anterior liver segments following radioembolization with yttrium-90 glass microspheres. One hundred thirty-seven patients with chemorefractory liver metastases of various primaries were treated with yttrium-90 glass microspheres. Of these, a subset analysis was performed on 89 patients who underwent 101 whole-right-lobe infusions to liver segments V, VI, VII, and VIII. Pre- and posttreatment imaging included either triphasic contrast material-enhanced CT or gadolinium-enhanced MRI. Responses to treatment were compared in anterior versus posterior right lobe lesions using both RECIST and WHO criteria. Statistical comparative studies were conducted in 42 patients with both anterior and posterior segment lesions using the paired-sample t-test. Pearson correlation was used to determine the relationship between pretreatment tumor size and posttreatment tumor response. Median administered activity, delivered radiation dose, and treatment volume were 2.3 GBq, 118.2 Gy, and 1,072 cm(3), respectively. Differences between the pretreatment tumor size of anterior and posterior liver segments were not statistically significant (p = 0.7981). Differences in tumor response between anterior and posterior liver segments were not statistically significant using WHO criteria (p = 0.8557). A statistically significant correlation did not exist between pretreatment tumor size and posttreatment tumor response (r = 0.0554, p = 0.4434). On imaging follow-up using WHO criteria, for anterior and posterior regions of the liver, (1) response rates were 50% (PR = 50%) and 45% (CR = 9%, PR = 36%), and (2) mean changes in tumor size were -41% and -40%. In conclusion, this study did not find evidence of preferential radiographic tumor response in posterior versus anterior liver segments treated with yttrium-90 glass microspheres.

  1. Root Cause Analysis of Gastroduodenal Ulceration After Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Marnix G. E. H.; Banerjee, Subhas; Louie, John D.

    IntroductionA root cause analysis was performed on the occurrence of gastroduodenal ulceration after hepatic radioembolization (RE). We aimed to identify the risk factors in the treated population and to determine the specific mechanism of nontarget RE in individual cases. Methods: The records of 247 consecutive patients treated with yttrium-90 RE for primary (n = 90) or metastatic (n = 157) liver cancer using either resin (n = 181) or glass (n = 66) microspheres were reviewed. All patients who developed a biopsy-proven microsphere-induced gastroduodenal ulcer were identified. Univariate and multivariate analyses were performed on baseline parameters and procedural data tomore » determine possible risk factors in the total population. Individual cases were analyzed to ascertain the specific cause, including identification of the culprit vessel(s) leading to extrahepatic deposition of the microspheres. Results: Eight patients (3.2 %) developed a gastroduodenal ulcer. Stasis during injection was the strongest independent risk factor (p = 0.004), followed by distal origin of the gastroduodenal artery (p = 0.004), young age (p = 0.040), and proximal injection of the microspheres (p = 0.043). Prolonged administrations, pain during administration, whole liver treatment, and use of resin microspheres also showed interrelated trends in multivariate analysis. Retrospective review of intraprocedural and postprocedural imaging showed a probable or possible culprit vessel, each a tiny complex collateral vessel, in seven patients. Conclusion: Proximal administrations and those resulting in stasis of flow presented increased risk for gastroduodenal ulceration. Patients who had undergone bevacizumab therapy were at high risk for developing stasis.« less

  2. Factors associated with increased incidence of severe toxicities following yttrium-90 resin microspheres in the treatment of hepatic malignancies.

    PubMed

    Roberson Ii, John D; McDonald, Andrew M; Baden, Craig J; Lin, Chee Paul; Jacob, Rojymon; Burnett Iii, Omer L

    2016-03-14

    To further define variables associated with increased incidences of severe toxicities following administration of yttrium-90 ((90)Y) microspheres. Fifty-eight patients undergoing 79 treatments were retrospectively assessed for development of clinical and laboratory toxicity incidence following (90)Y administration. Severe toxicity events were defined using Common Terminology Criteria for Adverse Events version 4.03 and defined as grade ≥ 3. Univariate logistic regression analyses were used to evaluate the effect of different factors on the incidence of severe toxicity events. Multicollinearity was assessed for all factors with P < 0.1 using Pearson correlation matrices. All factors not excluded due to multicollinearity were included in a multivariate logistic regression model for each measurement of severe toxicity. Severe (grade ≥ 3) toxicities occurred following 21.5% of the 79 treatments included in our analysis. The most common severe laboratory toxicities were severe alkaline phosphatase (17.7%), albumin (12.7%), and total bilirubin (10.1%) toxicities. Decreased pre-treatment albumin (OR = 26.2, P = 0.010) and increased pre-treatment international normalized ratio (INR) (OR = 17.7, P = 0.048) were associated with development of severe hepatic toxicity. Increased pre-treatment aspartate aminotransferase (AST; OR = 7.4, P = 0.025) and decreased pre-treatment hemoglobin (OR = 12.5, P = 0.025) were associated with severe albumin toxicity. Increasing pre-treatment model for end-stage liver disease (MELD) score (OR = 1.8, P = 0.033) was associated with severe total bilirubin toxicity. Colorectal adenocarcinoma histology was associated with severe alkaline phosphatase toxicity (OR = 5.4, P = 0.043). Clinicians should carefully consider pre-treatment albumin, INR, AST, hemoglobin, MELD, and colorectal histology when choosing appropriate candidates for (90)Y microsphere therapy.

  3. Quantitative Comparison of PET and Bremsstrahlung SPECT for Imaging the In Vivo Yttrium-90 Microsphere Distribution after Liver Radioembolization

    PubMed Central

    Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.

    2013-01-01

    Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y

  4. Complete eradication of hepatic metastasis from colorectal cancer by Yttrium-90 SIRT

    PubMed Central

    Garrean, Sean; Muhs, Amanda; Bui, James T; Blend, Michael J; Owens, Charles; Helton, William S; Espat, N Joseph

    2007-01-01

    Yttrium-90 (Y-90) radioembolization, also known as selective internal radiation therapy (SIRT), is a regional hepatic therapy used in the treatment of unresectable colorectal cancer (CRC) liver metastases. In SIRT, Y-90 impregnated microspheres are injected into the VASCULAR SUPPLY of hepatic tumor, leading to selective irradiation and necrosis of tumor TISSUE. While several studies demonstrate improved local control and survival with SIRT, the specific indications for this therapy have yet to be defined. Typically, SIRT is given in combination with chemotherapy as multimodal treatment for unresectable hepatic CRC. However, it HAS ALSO FOUND INCREASING USE as a salvage therapy in chemo-refractory patients. Herein, the authors describe their experience with SIRT as “stand alone” therapy in a surgically-prohibitive, chemotherapy naive patient with hepatic CRC metastasis. The results suggest that Y-90 SIRT may have potential applications beyond its usual role as a palliative or salvage therapy for unresectable hepatic CRC. PMID:17589957

  5. Yttrium-90 Resin Microsphere Radioembolization Using an Antireflux Catheter: An Alternative to Traditional Coil Embolization for Nontarget Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morshedi, Maud M., E-mail: maud.morshedi@my.rfums.org; Bauman, Michael, E-mail: mbauman@ucsd.edu; Rose, Steven C., E-mail: scrose@ucsd.edu

    2015-04-15

    PurposeSerious complications can result from nontarget embolization during yttrium-90 (Y-90) transarterial radioembolization. Hepatoenteric artery coil embolization has been traditionally performed to prevent nontarget radioembolization. The U.S. Food and Drug Administration–approved Surefire Infusion System (SIS) catheter, designed to prevent reflux, is an alternative to coils. The hypothesis that quantifiable SIS procedural parameters are comparable to coil embolization was tested.MethodsFourteen patients aged 36–79 years with colorectal, neuroendocrine, hepatocellular, and other predominantly bilobar hepatic tumors who underwent resin microsphere Y-90 radioembolization using only the SIS catheter (n = 7) versus only detachable coils (n = 7) for nontarget protection were reviewed retrospectively. Procedure time, fluoroscopy time, contrast dose,more » radiation dose, and cost were evaluated.ResultsMultivariate analysis identified significant cohort differences in the procedural parameters evaluated (F(10, 3) = 10.39, p = 0.04). Between-group comparisons of the pretreatment planning procedure in the SIS catheter group compared to the coil embolization group demonstrated a significant reduction in procedure time (102.6 vs. 192.1 min, respectively, p = 0.0004), fluoroscopy time (14.3 vs. 49.7 min, respectively, p = 0.0016), and contrast material dose (mean dose of 174.3 vs. 265.0 mL, respectively, p = 0.0098). Procedural parameters were not significantly different between the two groups during subsequent dose delivery procedures. Overall cost of combined first-time radioembolization procedures was significantly less in the SIS group ($4252) compared to retrievable coil embolization ($11,123; p = 0.001).ConclusionThe SIS catheter results in a reduction in procedure time, fluoroscopy time, and contrast material dose and may be an attractive cost-effective alternative to detachable coil embolization for prevention of nontarget radioembolization.« less

  6. PET/MRI of Hepatic 90Y Microsphere Deposition Determines Individual Tumor Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kathryn J.; Maughan, Nichole M.; Laforest, Richard

    PurposeThe purpose of our study is to determine if there is a relationship between dose deposition measured by PET/MRI and individual lesion response to yttrium-90 ({sup 90}Y) microsphere radioembolization.Materials and Methods26 patients undergoing lobar treatment with {sup 90}Y microspheres underwent PET/MRI within 66 h of treatment and had follow-up imaging available. Adequate visualization of tumor was available in 24 patients, and contours were drawn on simultaneously acquired PET/MRI data. Dose volume histograms (DVHs) were extracted from dose maps, which were generated using a voxelized dose kernel. Similar contours to capture dimensional and volumetric change of tumors were drawn on follow-up imaging.more » Response was analyzed using both RECIST and volumetric RECIST (vRECIST) criteria.ResultsA total of 8 hepatocellular carcinoma (HCC), 4 neuroendocrine tumor (NET), 9 colorectal metastases (CRC) patients, and 3 patients with other metastatic disease met inclusion criteria. Average dose was useful in predicting response between responders and non-responders for all lesion types and for CRC lesions alone using both response criteria (p < 0.05). D70 (minimum dose to 70 % of volume) was also useful in predicting response when using vRECIST. No significant trend was seen in the other tumor types. For CRC lesions, an average dose of 29.8 Gy offered 76.9 % sensitivity and 75.9 % specificity for response.ConclusionsPET/MRI of {sup 90}Y microsphere distribution showed significantly higher DVH values for responders than non-responders in patients with CRC. DVH analysis of {sup 90}Y microsphere distribution following treatment may be an important predictor of response and could be used to guide future adaptive therapy trials.« less

  7. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Janice M.; Department of Radiation Oncology, Wayne State University, Detroit, MI; Wong, C. Oliver

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardizedmore » uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.« less

  8. Liver Resection for Colorectal Hepatic Metastases after Systemic Chemotherapy and Selective Internal Radiation Therapy with Yttrium-90 Microspheres: A Systematic Review.

    PubMed

    Baltatzis, Minas; Siriwardena, Ajith K

    2018-06-08

    Selective internal radiation therapy (SIRT) using yttrium-90 resin microspheres has been used together with systemic chemotherapy to treat patients with unresectable liver metastases. This study undertook the first systematic pooled assessment of the case profile, treatment and outcome in patients with initially inoperable colorectal hepatic metastases undergoing resection after systemic chemotherapy and SIRT. A systematic review of the literature was performed using Medline and Embase for publications between January 1998 and August 2017. Keywords and MESH headings "SIRT", "Yttrium-99 radio embolization" and "liver metastases" were used. Reports on patients undergoing liver resection after SIRT for colorectal liver metastases were included. Case reports, reviews and papers without original data were excluded. The study protocol was registered with PROSPERO, (registration number: CRD42017072374). The study population comprised of 120 patients undergoing liver resection after chemotherapy and SIRT. The conversion rate to hepatectomy in previously unresectable patients was 13.6% (109 of 802). All studies report a single application of SIRT. The interval from SIRT to surgery ranged from 39 days to 9 months. Overall, there were 4 (3.3%) deaths after hepatectomy in patients treated by chemotherapy and SIRT. This large pooled report of patients undergoing hepatectomy for colorectal liver metastases after chemotherapy and SIRT shows that 13.6% of patients with initially inoperable disease undergo resection with low procedure-related mortality. © 2018 S. Karger AG, Basel.

  9. Magnetically directed poly(lactic acid) [sup 90]Y-microspheres: Novel agents for targeted intracavitary radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefeli, U.O.; Sweeney, S.M.; Beresford, B.A.

    1994-08-01

    High energy [beta]-emitting radioisotopes like Yttrium-90 have a radiotoxic range of about one centimeter. For cancer treatment they must be brought near the tumor cells and kept there for as long as they are radioactive. The authors developed as carriers for the ionic form of [sup 90]Y a matrix-type polymeric drug delivery system, poly(lactic acid) (PLA) microspheres. This radiopharmaceutical could be selectively delivered to the target site after incorporating 10% Fe[sub 3]O[sub 4] which made the magnetic microspheres (MMS) responsive to an external magnetic field. Furthermore, MMS are biodegradable and slowly hydrolyze into physiologic lactic acid after the radioactivity ismore » completely decayed. Previously prepared 10--40 [mu]m MMS were radiochemically loaded to high specific activity with [sup 90]Y at a pH of 5.7. Stability studies showed that approximately 95% of added [sup 90]Y is retained within the PLA matrix after 28 days (> 10 half-lives) at 37 C in serum, and electron microscopy showed that the microspheres retained their characteristic morphologic appearance for the same time period. Cytotoxicity studies with SK-N-SH neuroblastoma cells growing in monolayer showed that the radiocytotoxicity of the microspheres could be directed magnetically to either kill or spare specific cell populations, thus making them of great interest for targeted intracavitary tumor therapy. The authors are currently optimizing this system for use in the treatment of neoplastic meningitis.« less

  10. The prognostic value of functional and anatomical parameters for the selection of patients receiving yttrium-90 microspheres for the treatment of liver cancer

    NASA Astrophysics Data System (ADS)

    Mesoloras, Geraldine

    Yttrium-90 (90Y) microsphere therapy is being utilized as a treatment option for patients with primary and metastatic liver cancer due to its ability to target tumors within the liver. The success of this treatment is dependent on many factors, including the extent and type of disease and the nature of prior treatments received. Metabolic activity, as determined by PET imaging, may correlate with the number of viable cancer cells and reflect changes in viable cancer cell volume. However, contouring of PET images by hand is labor intensive and introduces an element of irreproducibility into the determination of functional target/tumor volume (FTV). A computer-assisted method to aid in the automatic contouring of FTV has the potential to substantially improve treatment individualization and outcome assessment. Commercial software to determine FTV in FDG-avid primary and metastatic liver tumors has been evaluated and optimized. Volumes determined using the automated technique were compared to those from manually drawn contours identified using the same cutoff in the standard uptake value (SUV). The reproducibility of FTV is improved through the introduction of an optimal threshold value determined from phantom experiments. Application of the optimal threshold value from the phantom experiments to patient scans was in good agreement with hand-drawn determinations of the FTV. It is concluded that computer-assisted contouring of the FTV for primary and metastatic liver tumors improves reproducibility and increases accuracy, especially when combined with the selection of an optimal SUV threshold determined from phantom experiments. A method to link the pre-treatment assessment of functional (PET based) and anatomical (CT based) parameters to post-treatment survival and time to progression was evaluated in 22 patients with colorectal cancer liver metastases treated using 90Y microspheres and chemotherapy. The values for pre-treatment parameters that were the best

  11. SU-C-204-01: A Dosimetric Investigation Into the Effects of Yttrium-90 Radioembolization On the GI Tract: In-Vivo and Histological Analysis in An Animal Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciak, A; The University of Tennessee Graduate School of Medicine, Knoxville, TN; Nodit, L

    Purpose: In Yttrium-90 (90Y) radioembolization, non-target embolization (NTE) to the stomach or small bowel can result in ulceration, a rare but difficult to manage clinical complication. However, dosimetric thresholds for toxicity to these tissues from radioembolization have never been evaluated in a controlled setting. We performed an analysis of the effect of 90Y radioembolization in a porcine model at different absorbed-dose endpoints. Methods: Under approval of the University of Tennessee IACUC, 6 female pigs were included in this study. Animals underwent transfemoral angiography and infusion of calibrated dosages of 90Y resin microspheres into arteries supplying part of the gastric wall.more » A 99mTc-MAA simulation study was performed first to determine perfused tissue volume for treatment planning along with contrast-enhanced CT. The pigs were monitored for side effects for 9 weeks, after which time they were euthanized and their upper gastrointestinal tracts were harvested for analysis. Results: 90Y radioembolization was infused resulting in average absorbed doses of between 35.5 and 91.9 Gy to the gastric wall. No animal exhibited any signs of pain or gastrointestinal distress through the duration of the study. Excised tissue showed 1–2 small (<3.0 cm2) healed or healing superficial gastric lesions in 5 out of 6 animals. Histologic analysis demonstrated that lesion location was superficial to areas of abnormally high microsphere deposition. An analysis of microsphere deposition patterns within the gastric wall indicated a high preference for submucosal deposition. Dosimetric evaluation at the luminal mucosa performed based on microsphere deposition patterns confirmed that 90Y dosimetry techniques conventionally used in hepatic dosimetry provide a reasonable estimate of absorbed dose. Conclusion: The upper gastrointestinal tract may be less sensitive to 90Y radioembolization than previously thought. Lack of charged-particle equilibrium at the luminal

  12. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation.

    PubMed

    Sangro, Bruno; Carpanese, Livio; Cianni, Roberto; Golfieri, Rita; Gasparini, Daniele; Ezziddin, Samer; Paprottka, Philipp M; Fiore, Francesco; Van Buskirk, Mark; Bilbao, Jose Ignacio; Ettorre, Giuseppe Maria; Salvatori, Rita; Giampalma, Emanuela; Geatti, Onelio; Wilhelm, Kai; Hoffmann, Ralf Thorsten; Izzo, Francesco; Iñarrairaegui, Mercedes; Maini, Carlo Ludovico; Urigo, Carlo; Cappelli, Alberta; Vit, Alessandro; Ahmadzadehfar, Hojjat; Jakobs, Tobias Franz; Lastoria, Secondo

    2011-09-02

    A multicenter analysis was conducted to evaluate the main prognostic factors driving survival after radioembolization using yttrium-90-labeled resin microspheres in patients with hepatocellular carcinoma at eight European centers. In total, 325 patients received a median activity of 1.6 GBq between September 2003 and December 2009, predominantly as whole-liver (45.2%) or right-lobe (38.5%) infusions. Typically, patients were Child-Pugh class A (82.5%), had underlying cirrhosis (78.5%), and had good Eastern Cooperative Oncology Group (ECOG) performance status (ECOG 0-1; 87.7%), but many had multinodular disease (75.9%) invading both lobes (53.1%) and/or portal vein occlusion (13.5% branch; 9.8% main). Over half had advanced Barcelona Clinic Liver Cancer (BCLC) staging (BCLC C, 56.3%) and one-quarter had intermediate staging (BCLC B, 26.8%). The median overall survival was 12.8 months (95% confidence interval, 10.9-15.7), which varied significantly by disease stage (BCLC A, 24.4 months [95% CI, 18.6-38.1 months]; BCLC B, 16.9 months [95% CI, 12.8-22.8 months]; BCLC C, 10.0 months [95% CI, 7.7-10.9 months]). Consistent with this finding , survival varied significantly by ECOG status, hepatic function (Child-Pugh class, ascites, and baseline total bilirubin), tumor burden (number of nodules, alpha-fetoprotein), and presence of extrahepatic disease. When considered within the framework of BCLC staging, variables reflecting tumor burden and liver function provided additional prognostic information. The most significant independent prognostic factors for survival upon multivariate analysis were ECOG status, tumor burden (nodules >5), international normalized ratio >1.2, and extrahepatic disease. Common adverse events were: fatigue, nausea/vomiting, and abdominal pain. Grade 3 or higher increases in bilirubin were reported in 5.8% of patients. All-cause mortality was 0.6% and 6.8% at 30 and 90 days, respectively. This analysis provides robust evidence of the survival

  13. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring.

    PubMed

    Tazoe, Hirofumi; Obata, Hajime; Yamagata, Takeyasu; Karube, Zin'ichi; Nagai, Hisao; Yamada, Masatoshi

    2016-05-15

    It is important for public safety to monitor strontium-90 in aquatic environments in the vicinity of nuclear related facilities. Strontium-90 concentrations in seawater exceeding the background level have been observed in accidents of nuclear facilities. However, the analytical procedure for measuring strontium-90 in seawater is highly demanding. Here we show a simple and high throughput analytical technique for the determination of strontium-90 in seawater samples using a direct yttrium-90 separation. The DGA Resin is used to determine the abundance of strontium-90 by detecting yttrium-90 decay (beta-emission) in secular equilibrium. The DGA Resin can selectively collect yttrium-90 and remove naturally occurring radionuclides such as (40)K, (210)Pb, (214)Bi, (238)U, and (232)Th and anthropogenic radionuclides such as (140)Ba, and (140)La. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 95.5±2.3%. The result of IAEA-443 certified seawater analysis (107.7±3.4 mBq kg(-1)) was in good agreement with the certified value (110±5 mBq kg(-1)). By developed method, we can finish analyzing 8 samples per day after achieving secular equilibrium, which is a reasonably fast throughput in actual seawater monitoring. By processing 3 L of seawater sample and applying a counting time of 20 h, minimum detectable activity can be as low as 1.5 mBq kg(-1), which could be applied to monitoring for the contaminated marine environment. Reproducibility was found to be 3.4% according to 10 independent analyses of natural seawater samples from the vicinity of the Fukushima Daiichi Nuclear Power Plant in September 2013. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Quantitative and Qualitative Assessment of Yttrium-90 PET/CT Imaging

    PubMed Central

    Büsing, Karen-Anett; Schönberg, Stefan O.; Bailey, Dale L.; Willowson, Kathy; Glatting, Gerhard

    2014-01-01

    Yttrium-90 is known to have a low positron emission decay of 32 ppm that may allow for personalized dosimetry of liver cancer therapy with 90Y labeled microspheres. The aim of this work was to image and quantify 90Y so that accurate predictions of the absorbed dose can be made. The measurements were performed within the QUEST study (University of Sydney, and Sirtex Medical, Australia). A NEMA IEC body phantom containing 6 fillable spheres (10–37 mm ∅) was used to measure the 90Y distribution with a Biograph mCT PET/CT (Siemens, Erlangen, Germany) with time-of-flight (TOF) acquisition. A sphere to background ratio of 8∶1, with a total 90Y activity of 3 GBq was used. Measurements were performed for one week (0, 3, 5 and 7 d). he acquisition protocol consisted of 30 min-2 bed positions and 120 min-single bed position. mages were reconstructed with 3D ordered subset expectation maximization (OSEM) and point spread function (PSF) for iteration numbers of 1–12 with 21 (TOF) and 24 (non-TOF) subsets and CT based attenuation and scatter correction. Convergence of algorithms and activity recovery was assessed based on regions-of-interest (ROI) analysis of the background (100 voxels), spheres (4 voxels) and the central low density insert (25 voxels). For the largest sphere, the recovery coefficient (RC) values for the 30 min –2-bed position, 30 min-single bed and 120 min-single bed were 1.12±0.20, 1.14±0.13, 0.97±0.07 respectively. For the smaller diameter spheres, the PSF algorithm with TOF and single bed acquisition provided a comparatively better activity recovery. Quantification of Y-90 using Biograph mCT PET/CT is possible with a reasonable accuracy, the limitations being the size of the lesion and the activity concentration present. At this stage, based on our study, it seems advantageous to use different protocols depending on the size of the lesion. PMID:25369020

  15. Abscopal Effects and Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghodadra, Anish; Bhatt, Sumantha; Camacho, Juan C.

    2016-07-15

    We present the case of an 80-year-old male with squamous cell carcinoma with bilobar hepatic metastases who underwent targeted Yttrium-90 radioembolization of the right hepatic lobe lesion. Subsequently, there was complete regression of the nontargeted, left hepatic lobe lesion. This may represent the first ever reported abscopal effect in radioembolization. The abscopal effect refers to the phenomenon of tumor response in nontargeted sites after targeted radiotherapy. In this article, we briefly review the immune-mediated mechanisms responsible for the abscopal effect.

  16. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The costmore » of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.« less

  17. Preoperative Y-90 microsphere selective internal radiation treatment for tumor downsizing and future liver remnant recruitment: a novel approach to improving the safety of major hepatic resections.

    PubMed

    Gulec, Seza A; Pennington, Kenneth; Hall, Michael; Fong, Yuman

    2009-01-08

    Extended liver resections are being performed more liberally than ever. The extent of resection of liver metastases, however, is restricted by the volume of the future liver remnant (FLR). An intervention that would both accomplish tumor control and induce compensatory hypertrophy, with good patient tolerability, could improve clinical outcomes. A 53-year-old woman with a history of cervical cancer presented with a large liver mass. Subsequent biopsy indicated poorly differentiated carcinoma with necrosis suggestive of squamous cell origin. A decision was made to proceed with pre-operative chemotherapy and Y-90 microsphere SIRT with the intent to obtain systemic control over the disease, downsize the hepatic lesion, and improve the FLR. A surgical exploration was performed six months after the first SIRT (three months after the second). There was no extrahepatic disease. The tumor was found to be significantly decreased in size with central and peripheral scarring. The left lobe was satisfactorily hypertrophied. A formal right hepatic lobectomy was performed with macroscopic negative margins. Selective internal radiation treatment (SIRT) with yttrium-90 (Y-90) microspheres has emerged as an effective liver-directed therapy with a favorable therapeutic ratio. We present this case report to suggest that the portal vein radiation dose can be substantially increased with the intent of inducing portal/periportal fibrosis. Such a therapeutic manipulation in lobar Y-90 microsphere treatment could accomplish the end points of PVE with avoidance of the concern regarding tumor progression.

  18. Radiosynovectomy in haemophilic synovitis of elbows and ankles: Is the effectiveness of yttrium-90 and rhenium-186 different?

    PubMed

    Rodriguez-Merchan, E C; De La Corte-Rodriguez, H

    2016-04-01

    Radiosynovectomy (RS) reduces the number of haemarthroses and the synovial size in chronic haemophilic synovitis. The purpose of this study was to quantitatively compare the effectiveness of two types of RS (yttrium-90 vs. rhenium-186) in terms of the objective improvement of haemarthroses and synovial size. Seventy RSs were performed in 70 joints (44 elbows, 26 ankles) of 70 haemophiliacs diagnosed with chronic synovitis. Yttrium-90 was used in 21 joints and rhenium-186 was used in 49 joints. The mean patient age was 20.61 years. RS resulted in significant improvement in the three variables studied (six months before RS vs. six months after RS), namely in the number of episodes of haemarthrosis (67.8% improvement); the size of the synovium as measured by means of a clinical scale (43.8% improvement) and imaging techniques in millimetres (26.7% improvement). We did not find significant statistical differences between yttrium-90 and rhenium-186 regarding their efficacy. No correlation was found between the results and other variables: age, joint (ankle or elbow), presence or absence of radiological involvement, type of haemophilia (A or B), grade of haemophilia (mild, moderate or severe), previous haematological treatment (on demand or prophylaxis), and the presence or absence of inhibitor Yttrium-90 RS and rhenium-186 RS were equally effective in reducing the number of haemarthroses and the size of the synovium in ankles and elbows in the short-term (6 months). No correlation was found between the results and other patients' characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Optimized conditions for chelation of yttrium-90-DOTA immunoconjugates.

    PubMed

    Kukis, D L; DeNardo, S J; DeNardo, G L; O'Donnell, R T; Meares, C F

    1998-12-01

    Radioimmunotherapy (RIT) with 90Y-labeled immunoconjugates has shown promise in clinical trials. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) binds 90Y with extraordinary stability, minimizing the toxicity of 90Y-DOTA immunoconjugates arising from loss of 90Y to bone. However, reported 90Y-DOTA immunoconjugate product yields have been typically only < or =50%. Improved yields are needed for RIT with 90Y-DOTA immunoconjugates to be practical. (S) 2-[p-(bromoacetamido)benzyl]-DOTA (BAD) was conjugated to the monoclonal antibody Lym-1 via 2-iminothiolane (2IT). The immunoconjugate product, 2IT-BAD-Lym-1, was labeled in excess yttrium in various buffers over a range of concentrations and pH. Kinetic studies were performed in selected buffers to estimate radiolabeling reaction times under prospective radiopharmacy labeling conditions. The effect of temperature on reaction kinetics was examined. Optimal radiolabeling conditions were identified and used in eight radiolabeling experiments with 2IT-BAD-Lym-1 and a second immunoconjugate, DOTA-peptide-chimeric L6, with 248-492 MBq (6.7-13.3 mCi) of 90Y. Ammonium acetate buffer (0.5 M) was associated with the highest uptake of yttrium. On the basis of kinetic data, the time required to chelate 94% of 90Y (four half-times) under prospective radiopharmacy labeling conditions in 0.5 M ammonium acetate was 17-148 min at pH 6.5, but it was only 1-10 min at pH 7.5. Raising the reaction temperature from 25 degrees C to 37 degrees C markedly increased the chelation rate. Optimal radiolabeling conditions were identified as: 30-min reaction time, 0.5 M ammonium acetate buffer, pH 7-7.5 and 37 degrees C. In eight labeling experiments under optimal conditions, a mean product yield (+/- s.d.) of 91%+/-8% was achieved, comparable to iodination yields. The specific activity of final products was 74-130 MBq (2.0-3.5 mCi) of 90Y per mg of monoclonal antibody. The immunoreactivity of 90Y

  20. Hepatic Abscess After Yttrium-90 Radioembolization for Islet-Cell Tumor Hepatic Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarenhas, Neil B., E-mail: neilmascarenhas1@gmail.co; Mulcahy, Mary F.; Lewandowski, Robert J.

    2010-06-15

    Infectious complications after yttrium-90 (y-90) radioembolization of hepatic tumors are rare. Most reports describe hepatic abscesses as complications of other locoregional therapies, such as transcatheter arterial embolization or chemoembolization. These usually occur in patients with a history of biliary intervention and present several weeks after treatment. We report a case of hepatic abscess formed immediately after y-90 radioembolization of a hepatic metastasis in a patient who had no history of previous biliary instrumentation.

  1. Process for the separation and purification of yttrium-90 for medical applications

    DOEpatents

    Horwitz, P.E.; Dietz, M.L.

    1994-11-29

    An extraction chromatographic method for the preparation of [sup 90]Y of high chemical and radiochemical purity is disclosed. After an initial purification of a [sup 90]Sr stock solution and a suitable period of [sup 90]Y ingrowth, the solution is passed through a series of strontium-selective chromatographic columns, each of which lowers the [sup 90]Sr content of the mixture by a factor of about 10[sup 3]. The [sup 90]Y remaining is freed from any residual [sup 90]Sr, from its [sup 90]Zr daughter, and from any remaining impurities by passing the sample through a final column designed to selectively retain yttrium. 5 figures.

  2. Process for the separation and purification of yttrium-90 for medical applications

    DOEpatents

    Horwitz, Philip E.; Dietz, Mark L.

    1994-01-01

    An extraction chromatographic method for the preparation of .sup.90 Y of high chemical and radiochemical purity is disclosed. After an initial purification of a .sup.90 Sr stock solution and a suitable period of .sup.90 Y ingrowth, the solution is passed through a series of strontium-selective chromatographic columns, each of which lowers the .sup.90 Sr content of the mixture by a factor of about 10.sup.3. The .sup.90 Y remaining is freed from any residual .sup.90 Sr, from its .sup.90 Zr daughter, and from any remaining impurities by passing the sample through a final column designed to selectively retain yttrium.

  3. Comparative analysis of hepatopulmonary shunt obtained from pretherapy 99mTc MAA scintigraphy and post-therapy 90Y Bremsstrahlung imaging in 90Y microsphere therapy.

    PubMed

    Jha, Ashish Kumar A; Zade, Anand A; Rangarajan, Venkatesh; Purandare, Nilendu; Shah, Sneha A; Agrawal, Archi; Kulkarni, Suyash S; Shetty, Nitin

    2012-05-01

    (99m)Tc macroaggregate albumin (MAA) scintigraphy is routinely used to estimate the hepatopulmonary shunt (HPS) of (90)Y microspheres because of their comparable average particle sizes (20-30 µm). However, the MAA particle size can vary from 10 to 90 µm. Therefore, HPS computed from (99m)Tc MAA scintigraphy may not accurately represent the HPS of (90)Y microspheres. In view of this, the present study was undertaken to investigate the accuracy of (99m)Tc MAA scintigraphy in estimating the HPS of (90)Y microspheres. Nineteen sessions of transarterial radioembolization using (90)Y therasphere were carried out in 17 patients for hepatic malignancies (both primary and secondary). For each session of therapy, a pretherapeutic (99m)Tc MAA scintigraphy and post-therapeutic (90)Y Bremsstrahlung scintigraphy were performed. The HPSs obtained from these images were compared. The mean HPS fractions calculated from the pretherapeutic (99m)Tc MAA study and the post-therapeutic (90)Y Bremsstrahlung images were 4.77 ± 2.81 and 4.52 ± 2.5%, respectively. The coefficient of correlation (r) was 0.96. (99m)Tc MAA scintigraphy accurately predicts the HPS of (90)Y microspheres.

  4. Chemoembolic Hepatopulmonary Shunt Reduction to Allow Safe Yttrium-90 Radioembolization Lobectomy of Hepatocellular Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaba, Ron C., E-mail: rgaba@uic.edu; VanMiddlesworth, Kyle A.

    2012-12-15

    Yttrium-90 ({sup 90}Y) radioembolization represents an emerging transcatheter treatment option for the management of hepatocellular carcinoma (HCC). Elevation of the hepatopulmonary shunt fraction risks nontarget radiation to the lungs and may limit the use of {sup 90}Y therapy in patients with locally advanced disease with vascular invasion, who often demonstrate increased shunting. We present two cases in which patients with HCC and portal vein invasion resulting in elevated hepatopulmonary shunt fractions underwent chemoembolic shunt closure to allow safe {sup 90}Y radioembolization. Both patients demonstrated excellent tumor response and patient survival. On this basis, we propose a role for chemoembolic reductionmore » of the lung shunt fraction before {sup 90}Y radioembolization in patients with extensive tumor-related hepatopulmonary shunting.« less

  5. Process improvement for the safe delivery of multidisciplinary-executed treatments-A case in Y-90 microspheres therapy.

    PubMed

    Cai, Bin; Altman, Michael B; Garcia-Ramirez, Jose; LaBrash, Jason; Goddu, S Murty; Mutic, Sasa; Parikh, Parag J; Olsen, Jeffrey R; Saad, Nael; Zoberi, Jacqueline E

    To develop a safe and robust workflow for yttrium-90 (Y-90) radioembolization procedures in a multidisciplinary team environment. A generalized Define-Measure-Analyze-Improve-Control (DMAIC)-based approach to process improvement was applied to a Y-90 radioembolization workflow. In the first DMAIC cycle, events with the Y-90 workflow were defined and analyzed. To improve the workflow, a web-based interactive electronic white board (EWB) system was adopted as the central communication platform and information processing hub. The EWB-based Y-90 workflow then underwent a second DMAIC cycle. Out of 245 treatments, three misses that went undetected until treatment initiation were recorded over a period of 21 months, and root-cause-analysis was performed to determine causes of each incident and opportunities for improvement. The EWB-based Y-90 process was further improved via new rules to define reliable sources of information as inputs into the planning process, as well as new check points to ensure this information was communicated correctly throughout the process flow. After implementation of the revised EWB-based Y-90 workflow, after two DMAIC-like cycles, there were zero misses out of 153 patient treatments in 1 year. The DMAIC-based approach adopted here allowed the iterative development of a robust workflow to achieve an adaptable, event-minimizing planning process despite a complex setting which requires the participation of multiple teams for Y-90 microspheres therapy. Implementation of such a workflow using the EWB or similar platform with a DMAIC-based process improvement approach could be expanded to other treatment procedures, especially those requiring multidisciplinary management. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. A process for the separation and purification of yttrium-90 for medical applications

    DOEpatents

    Horwitz, P.E.; Dietz, M.L.

    1993-01-01

    An extraction chromatographic method for the preparation of {sup 90}Y of high chemical and radiochemical purity is disclosed. After an initial purification of a {sup 90}Sr stock solution and a suitable period of {sup 90}Y ingrowth, the solution is passed through a series of strontium-selective chromatographic columns, each of which lowers the {sup 90}Sr content of the mixture by a factor of about 10{sup 3}. The {sup 90}Y remaining is freed from any residual {sup 90}Sr, from its {sup 90}Zr daughter, and from any remaining impurities by passing the sample through a final column designed to selectively retain yttrium.

  7. Radiopharmaceutical development based on human blood albumin microspheres and 90Y

    NASA Astrophysics Data System (ADS)

    Petriev, V. M.; Vlasova, O. P.; Postnov, A. A.; Epstein, N. B.

    2017-01-01

    New radiopharmaceutial (RP) based on human serum albumin microspheres (MSA) and 90Y was developed for treatment of liver cancer. The optimized synthesis using chelation resulted in approximately 80% yield with high specific activity. The RP developed was tested in mice with inoculated sarcoma-37. In two weeks the tumor size reduced by 43% after the treatment with the dose of 500 μCi injected into the tumor site.

  8. Availability of yttrium-90 from strontium-90: a nuclear medicine perspective.

    PubMed

    Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A

    2012-12-01

    Yttrium-90 (T(½) 64.1 hours, E(βmax)=2.28 MeV) is a pure β⁻ particle emitting radionuclide with well-established applications in targeted therapy. There are several advantages of ⁹⁰Y as a therapeutic radionuclide. It has a suitable physical half-life (∼64 hours) and decays to a stable daughter product ⁹⁰Zr by emission of high-energy β⁻ particles. Yttrium has a relatively simple chemistry and its suitability for forming complexes with a variety of chelating agents is well established. The ⁹⁰Sr/⁹⁰Y generator is an ideal source for the long-term continuous availability of no-carrier-added ⁹⁰Y suitable for the preparation of radiopharmaceuticals for radionuclide therapy. The parent radionuclide ⁹⁰Sr, which is a long-lived fission product, is available in large quantities from spent fuel. Several useful technologies have been developed for the preparation of ⁹⁰Sr/⁹⁰Y generators. There are several well-established radiopharmaceuticals based on monoclonal antibodies, peptides, and particulates labeled with ⁹⁰Y, that are in regular use for the treatment of some forms of primary cancers and arthritis. At present, there are no generators for the elution of ⁹⁰Y that can be set up in a hospital radiopharmacy. The radionuclide is procured from manufacturers and the radiopharmaceuticals are formulated on site. This article reviews the development of ⁹⁰Sr/⁹⁰Y generator and the development of ⁹⁰Y radiopharmaceuticals.

  9. SU-E-T-402: Y-90 Microspheres (SIR Spheres) for Treatment of Liver Metastasis : Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, M

    2014-06-01

    Purpose: The purpose of this presentation is to discuss the radiation safety and dosimetric technique used for the therapeutic procedure using Y-90 microspheres through intra -arterial administration on patients with liver metastasis Methods: The radiation dosimetry, technique and safety aspects of 14 patients with primary and metastatic liver cancer, treated with Y-90 microsphere (SIR spheres) are discussed. The liver and tumor volumes were determined using the CT and MR scans . The images were imported into the treatment planning system and the liver and tumor volumes and the volume of the liver affected were outlined and the volume calculation wasmore » performed using the software. The lung shunt fraction (LSF) and tumor to liver uptake ratio (TLR) were determined using the nuclear medicine SPECT imaging with Tc-99m MAA. The absorbed dose to the target volume in liver was calculated using the following equation:Dose ? (Gy) = C x E? x 5.92 x 10-6 (Gy/s) x T(1/2)(days) x 1.44 x 8.64 x 104 (s) The distribution of activity in the tumor bed was confirmed by post Y-90 administration imaging using the Bremsstrahlung peak at 30% window. The patient and the procedure room were surveyed and radiation safety instructions were given to the patient Results: The tumor volume ranged from 77 cc to 700 cc, tumor to liver uptake ranged from 3 to 12. The lung shunt fraction varied from 1.08% to 9.0%. The activity administered ranged from 1.0GBq to 2.5 GBq, . The radiation survey in contact with the patient ranged from 1.8 mR/hr to 2.5 mR/hr and reading at 1 meter was less than 0.2 mR/hr Conclusion: The technique for radiation dosimetry and radiation safety for Y-90 microsphere therapy is established. The post treatment imaging helped to confirm the distribution of Y-90 microspheres inside the tumor bed.« less

  10. [Intracoronary brachytherapy with strontium/yttrium-90. Initial experiences in Germany].

    PubMed

    Silber, S; von Rottkay, P; Gielow, A; Schneider, A; Bauer, A; Schöfer, H

    1998-09-01

    Restenosis after PTCA is still an unresolved problem and occurs in approximately 30% of our patients despite a stent implantation rate of up to 63%. Intracoronary brachytherapy has the potential to counteract the proliferative component of restenosis as well as to prevent shrinking of the coronary artery. Two years ago, we applied for the license to use the Novoste Beta-Cath system. This is the first report of its use in Germany. Attaining the license was complicated by the facts that this device did not yet have CE-certification (MPG section 17), that brachytherapy is not yet an approved method of treatment (StrSchV section 41), the report of the BfS and the approval by an accredited ethical committee. The application becomes even more complicated by the amount demanded by the LfU for insurance: 1 Million DM for each individual patient (AtDeckV section 15). The final local inspection needs to be performed by an expert from the LfAS (StrSchV section 76). Strontium-90 decays into Yttrium-90 with a half-life time of approximately 28 years. Yttrium-90, too, is a pure beta-emitter with a shorter half-life time of approximately 64 hours and a considerably higher electron energy of maximum 2.27 MeV. Yttrium-90 is the therapeutic agent. The radiation source of the Beta-Cath system consists of 12 single, separate cylinders (pellets, seeds) with a total length of 3 cm. The activity of the total train is approximately 1.3 to 1.5 GBq (35 to 40 mCi). For verification of the dose rate provided by the manufacturer, we performed a check using the GafChromic film. The test dose (exactly 2 mm from the center of the long axis of the activity train) was 150 Gy. We obtained the following results for the optical density: reference source: 0.29 +/- 0.01, source C: 0.318 +/- 0.013 and source D: 0.317 +/- 0.028. For a dose rate of e.g. 0.083 Gy/s, the radiation times are 169 s for a dose of 14 Gy (vessel diameter 2.7 to 3.35 mm) or 217 s for 18 Gy (vessel diameter 3.36 to 4.0 mm

  11. PET optimization for improved assessment and accurate quantification of {sup 90}Y-microsphere biodistribution after radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martí-Climent, Josep M., E-mail: jmmartic@unav.es; Prieto, Elena; Elosúa, César

    2014-09-15

    Purpose: {sup 90}Y-microspheres are widely used for the radioembolization of metastatic liver cancer or hepatocellular carcinoma and there is a growing interest for imaging {sup 90}Y-microspheres with PET. The aim of this study is to evaluate the performance of a current generation PET/CT scanner for {sup 90}Y imaging and to optimize the PET protocol to improve the assessment and the quantification of {sup 90}Y-microsphere biodistribution after radioembolization. Methods: Data were acquired on a Biograph mCT-TrueV scanner with time of flight (TOF) and point spread function (PSF) modeling. Spatial resolution was measured with a{sup 90}Y point source. Sensitivity was evaluated usingmore » the NEMA 70 cm line source filled with {sup 90}Y. To evaluate the count rate performance, {sup 90}Y vials with activity ranging from 3.64 to 0.035 GBq were measured in the center of the field of view (CFOV). The energy spectrum was evaluated. Image quality with different reconstructions was studied using the Jaszczak phantom containing six hollow spheres (diameters: 31.3, 28.1, 21.8, 16.1, 13.3, and 10.5 mm), filled with a 207 kBq/ml {sup 90}Y concentration and a 5:1 sphere-to-background ratio. Acquisition time was adjusted to simulate the quality of a realistic clinical PET acquisition of a patient treated with SIR-Spheres{sup ®}. The developed methodology was applied to ten patients after SIR-Spheres{sup ®} treatment acquiring a 10 min per bed PET. Results: The energy spectrum showed the{sup 90}Y bremsstrahlung radiation. The {sup 90}Y transverse resolution, with filtered backprojection reconstruction, was 4.5 mm in the CFOV and degraded to 5.0 mm at 10 cm off-axis. {sup 90}Y absolute sensitivity was 0.40 kcps/MBq in the center of the field of view. Tendency of true and random rates as a function of the {sup 90}Y activity could be accurately described using linear and quadratic models, respectively. Phantom studies demonstrated that, due to low count statistics in {sup 90}Y

  12. [Contralateral hepatic hypertrophy following unilateral yttrium-90 radioembolization : Implications for liver surgery].

    PubMed

    Garlipp, B; Seidensticker, M; Jechorek, D; Ptok, H; Bruns, C J; Ricke, J

    2016-05-01

    Preservation of an adequate future liver remnant (FLR) is the principal limitation to liver surgery in patients with primary or secondary liver malignancies. Hence, methods to increase the volume of the FLR in preparation for liver resection are gaining in importance. In addition to the traditional methods for induction of FLR hypertrophy, such as portal vein embolization (PVE) or portal vein ligation (PVL) with or without parenchymal dissection (ALPPS, in situ split), radioembolization (RE) using yttrium-90 microspheres also leads to a volume increase of non-embolized liver parenchyma. This review outlines its potential role as an alternative procedure for induction of liver hypertrophy. Synopsis and critical discussion of the available literature on the mechanisms of induction of liver hypertrophy, the advantages and drawbacks of the traditional methods, and current research on volume changes associated with RE as well as their implications for possible clinical use in preparation for liver surgery. Both PVE and PVL can achieve a substantial contralateral volume gain of up to 70 %. The development of contralateral hypertrophy can be accelerated by dissecting the liver parenchyma along the intended plane of resection in addition to PVL (in situ split). Compared to these methods, RE achieves less contralateral liver hypertrophy; however, this effect should not be disregarded as RE provides effective treatment of ipsilateral liver tumors along with induction of hypertrophy and may be associated with a reduced risk of tumor progression compared to PVE and PVL. The available data suggest that RE can complement the armamentarium of methods for induction of FLR hypertrophy in specific situations. Further studies are needed to establish its definitive role for this indication and are in preparation.

  13. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on 99mTc-MAA Imaging and Correlation With Treatment Efficacy

    PubMed Central

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-01-01

    Abstract 90Y PET/CT can be acquired after 90Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using 90Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from 99mTc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. 99mTc-MAA was injected during planning angiography and whole body 99mTc-MAA scan and liver SPECT/CT were acquired. After SIRT using 90Y-resin microsphere, 90Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT results. Lung shunt fraction was overestimated on 99mTc-MAA scan compared with 90Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from 99mTc-MAA SPECT/CT was significantly lower than that from 90Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on 99mTc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on 90Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by 99m

  14. Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin's lymphoma.

    PubMed

    Gordon, Leo I; Witzig, Thomas E; Wiseman, Greg A; Flinn, Ian W; Spies, Stewart S; Silverman, Daniel H; Emmanuolides, Christos; Cripe, Larry; Saleh, Mansoor; Czuczman, Myron S; Olejnik, Teresa; White, Christine A; Grillo-López, Antonio J

    2002-02-01

    The treatment of malignant lymphoma has improved over the past 20 years, but the majority of patients are not cured. New modalities using targeted therapy based on new information in molecular biology and immunology hold promise for better outcomes with less toxicity. We review data on the use of radiolabeled monoclonal antibodies directed against the CD20 antigen on malignant B cells. We discuss the major radionuclides available, iodine 131 ( 131 I), tositumomab, and yttrium 90 ( 90 Y) ibritumomab tiuxetan (Zevalin; IDEC Pharmaceuticals, San Diego, CA) and present data on new approaches in labeling antibodies that have facilitated their use. Clinical trial data with the yttrium-labeled antibodies are discussed. The use of dosimetry as a means for predicting toxicity is discussed, and the questions of long-term toxicity (late effects) are addressed. These targeted approaches to the treatment of malignancy, and lymphoma in particular, hold great promise. Semin Oncol 29 (suppl 2):87-92. Copyright © 2002 by W.B. Saunders Company. Copyright © 2002 W.B. Saunders Company. All rights reserved.

  15. Fast simulation of yttrium-90 bremsstrahlung photons with GATE.

    PubMed

    Rault, Erwann; Staelens, Steven; Van Holen, Roel; De Beenhouwer, Jan; Vandenberghe, Stefaan

    2010-06-01

    Multiple investigators have recently reported the use of yttrium-90 (90Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging for the dosimetry of targeted radionuclide therapies. Because Monte Carlo (MC) simulations are useful for studying SPECT imaging, this study investigates the MC simulation of 90Y bremsstrahlung photons in SPECT. To overcome the computationally expensive simulation of electrons, the authors propose a fast way to simulate the emission of 90Y bremsstrahlung photons based on prerecorded bremsstrahlung photon probability density functions (PDFs). The accuracy of bremsstrahlung photon simulation is evaluated in two steps. First, the validity of the fast bremsstrahlung photon generator is checked. To that end, fast and analog simulations of photons emitted from a 90Y point source in a water phantom are compared. The same setup is then used to verify the accuracy of the bremsstrahlung photon simulations, comparing the results obtained with PDFs generated from both simulated and measured data to measurements. In both cases, the energy spectra and point spread functions of the photons detected in a scintillation camera are used. Results show that the fast simulation method is responsible for a 5% overestimation of the low-energy fluence (below 75 keV) of the bremsstrahlung photons detected using a scintillation camera. The spatial distribution of the detected photons is, however, accurately reproduced with the fast method and a computational acceleration of approximately 17-fold is achieved. When measured PDFs are used in the simulations, the simulated energy spectrum of photons emitted from a point source of 90Y in a water phantom and detected in a scintillation camera closely approximates the measured spectrum. The PSF of the photons imaged in the 50-300 keV energy window is also accurately estimated with a 12.4% underestimation of the full width at half maximum and 4.5% underestimation of the full width at tenth maximum

  16. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, Mootaz

    2016-08-15

    Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study. Methods: The ACR phantom was filled with an initial concentration of 8 GBq of Y-90 solution resulting in a contrast of 10:1 between the hot cylinders and the background.more » Y-90 PET motion correction through motion estimates from MR navigators was evaluated by using a custom-built motion stage that simulated realistic amplitudes of respiration-induced liver motion. Finally, the feasibility of an MR-based partial volume correction method was evaluated using a wavelet decomposition approach. Results: Motion resulted in a large (∼40%) loss of contrast recovery for the 8 mm cylinder in the phantom, but was corrected for after MR-based motion correction was applied. Partial volume correction improved contrast recovery by 13% for the 8 mm cylinder. Conclusions: MR-based data correction improves Y-90 PET imaging on simultaneous PET/MR systems. Assessment of these methods must be studied further in the clinical setting.« less

  17. Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer

    PubMed Central

    Yue, Jianting; Mauxion, Thibault; Reyes, Diane K.; Lodge, Martin A.; Hobbs, Robert F.; Rong, Xing; Dong, Yinfeng; Herman, Joseph M.; Wahl, Richard L.; Geschwind, Jean-François H.; Frey, Eric C.

    2016-01-01

    Purpose: Radioembolization with yttrium-90 microspheres may be optimized with patient-specific pretherapy treatment planning. Dose verification and validation of treatment planning methods require quantitative imaging of the post-therapy distribution of yttrium-90 (Y-90). Methods for quantitative imaging of Y-90 using both bremsstrahlung SPECT and PET have previously been described. The purpose of this study was to compare the two modalities quantitatively in humans. Methods: Calibration correction factors for both quantitative Y-90 bremsstrahlung SPECT and a non-time-of-flight PET system without compensation for prompt coincidences were developed by imaging three phantoms. The consistency of these calibration correction factors for the different phantoms was evaluated. Post-therapy images from both modalities were obtained from 15 patients with hepatocellular carcinoma who underwent hepatic radioembolization using Y-90 glass microspheres. Quantitative SPECT and PET images were rigidly registered and the total liver activities and activity distributions estimated for each modality were compared. The activity distributions were compared using profiles, voxel-by-voxel correlation and Bland–Altman analyses, and activity-volume histograms. Results: The mean ± standard deviation of difference in the total activity in the liver between the two modalities was 0% ± 9% (range −21%–18%). Voxel-by-voxel comparisons showed a good agreement in regions corresponding roughly to treated tumor and treated normal liver; the agreement was poorer in regions with low or no expected activity, where PET appeared to overestimate the activity. The correlation coefficients between intrahepatic voxel pairs for the two modalities ranged from 0.86 to 0.94. Cumulative activity volume histograms were in good agreement. Conclusions: These data indicate that, with appropriate reconstruction methods and measured calibration correction factors, either Y-90 SPECT/CT or Y-90 PET/CT can be used

  18. Feasibility assessment of yttrium-90 liver radioembolization imaging using amplitude-based gated PET/CT

    PubMed Central

    Acuff, Shelley N.; Neveu, Melissa L.; Syed, Mumtaz; Kaman, Austin D.; Fu, Yitong

    2018-01-01

    Purpose The usage of PET/computed tomography (CT) to monitor hepatocellular carcinoma patients following yttrium-90 (90Y) radioembolization has increased. Respiratory motion causes liver movement, which can be corrected using gating techniques at the expense of added noise. This work examines the use of amplitude-based gating on 90Y-PET/CT and its potential impact on diagnostic integrity. Patients and methods Patients were imaged using PET/CT following 90Y radioembolization. A respiratory band was used to collect respiratory cycle data. Patient data were processed as both standard and motion-corrected images. Regions of interest were drawn and compared using three methods. Activity concentrations were calculated and converted into dose estimates using previously determined and published scaling factors. Diagnostic assessments were performed using a binary scale created from published 90Y-PET/CT image interpretation guidelines. Results Estimates of radiation dose were increased (P<0.05) when using amplitude-gating methods with 90Y PET/CT imaging. Motion-corrected images show increased noise, but the diagnostic determination of success, using the Kao criteria, did not change between static and motion-corrected data. Conclusion Amplitude-gated PET/CT following 90Y radioembolization is feasible and may improve 90Y dose estimates while maintaining diagnostic assessment integrity. PMID:29351124

  19. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial.

    PubMed

    Vilgrain, Valérie; Pereira, Helena; Assenat, Eric; Guiu, Boris; Ilonca, Alina Diana; Pageaux, Georges-Philippe; Sibert, Annie; Bouattour, Mohamed; Lebtahi, Rachida; Allaham, Wassim; Barraud, Hélène; Laurent, Valérie; Mathias, Elodie; Bronowicki, Jean-Pierre; Tasu, Jean-Pierre; Perdrisot, Rémy; Silvain, Christine; Gerolami, René; Mundler, Olivier; Seitz, Jean-Francois; Vidal, Vincent; Aubé, Christophe; Oberti, Frédéric; Couturier, Olivier; Brenot-Rossi, Isabelle; Raoul, Jean-Luc; Sarran, Anthony; Costentin, Charlotte; Itti, Emmanuel; Luciani, Alain; Adam, René; Lewin, Maïté; Samuel, Didier; Ronot, Maxime; Dinut, Aurelia; Castera, Laurent; Chatellier, Gilles

    2017-12-01

    Sorafenib is the recommended treatment for patients with advanced hepatocellular carcinoma. We aimed to compare the efficacy and safety of sorafenib to that of selective internal radiotherapy (SIRT) with yttrium-90 ( 90 Y) resin microspheres in patients with hepatocellular carcinoma. SARAH was a multicentre, open-label, randomised, controlled, investigator-initiated, phase 3 trial done at 25 centres specialising in liver diseases in France. Patients were eligible if they were aged at least 18 years with a life expectancy greater than 3 months, had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, Child-Pugh liver function class A or B score of 7 or lower, and locally advanced hepatocellular carcinoma (Barcelona Clinic Liver Cancer [BCLC] stage C), or new hepatocellular carcinoma not eligible for surgical resection, liver transplantation, or thermal ablation after a previously cured hepatocellular carcinoma (cured by surgery or thermoablative therapy), or hepatocellular carcinoma with two unsuccessful rounds of transarterial chemoembolisation. Patients were randomly assigned (1:1) by a permutated block method with block sizes two and four to receive continuous oral sorafenib (400 mg twice daily) or SIRT with 90 Y-loaded resin microspheres 2-5 weeks after randomisation. Patients were stratified according to randomising centre, ECOG performance status, previous transarterial chemoembolisation, and presence of macroscopic vascular invasion. The primary endpoint was overall survival. Analyses were done on the intention-to-treat population; safety was assessed in all patients who received at least one dose of sorafenib or underwent at least one of the SIRT work-up exams. This study has been completed and the final results are reported here. The trial is registered with ClinicalTrials.gov, number NCT01482442. Between Dec 5, 2011, and March 12, 2015, 467 patients were randomly assigned; after eight patients withdrew consent, 237 were assigned to

  20. Use of Chelex-100 for selectively removing Y-90 from its parent Sr-90

    DOEpatents

    Huntley, Mark W.

    1996-01-01

    A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium, and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighing this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a bidente ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form.

  1. Use of Chelex-100 for selectively removing Y-90 from its parent Sr-90

    DOEpatents

    Huntley, M.W.

    1996-02-27

    A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium, and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighing this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form.

  2. Yttrium-90 -- current status, expected availability and applications of a high beta energy emitter.

    PubMed

    Montaña, R Leyva; González, I Hernández; Ramirez, A Alberti; Garaboldi, L; Chinol, M

    2012-07-01

    Yttrium-90 ((90)Y, T(1/2) 64.14 h) is a key example of a high beta energy-emitting radionuclide which is available from the strontium-90 ((90)Sr)/(90)Y radionuclide generator system. Clinical uses of (90)Y-labeled radiopharmaceutical agents have been pursued for many years and many applications have proven to be clinical effective. These most notably include the application of 90Y-labeled antibodies for a variety of applications such as for effective treatment of non-Hodgkin's lymphoma. One of the major advantages for use of (90)Y is ready availability from the very long-lived (90)Sr parent (T(1/2) 28.78 y). Because of the importance of maintaining generator performance and minimizing parent breakthrough, this paper describes development, use and quality control of both high capacity cation adsorption-type and electrochemical generator systems. In addition, the preparation and targeting to tumors in mice of DOTA-conjugated Nimotuzamab (h-R3) antibody which recognizes the external domain of the EPFR antibody radiolabeled with (90)Y obtained from the electrochemical generator is also described. As a key example for clinical applications of (90)Y, the use of (90)Y-labeled biotin for intra-operative pre-targeting for radionuclide therapy (IART®) of breast cancer is also described.

  3. Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer.

    PubMed

    Yue, Jianting; Mauxion, Thibault; Reyes, Diane K; Lodge, Martin A; Hobbs, Robert F; Rong, Xing; Dong, Yinfeng; Herman, Joseph M; Wahl, Richard L; Geschwind, Jean-François H; Frey, Eric C

    2016-10-01

    Radioembolization with yttrium-90 microspheres may be optimized with patient-specific pretherapy treatment planning. Dose verification and validation of treatment planning methods require quantitative imaging of the post-therapy distribution of yttrium-90 (Y-90). Methods for quantitative imaging of Y-90 using both bremsstrahlung SPECT and PET have previously been described. The purpose of this study was to compare the two modalities quantitatively in humans. Calibration correction factors for both quantitative Y-90 bremsstrahlung SPECT and a non-time-of-flight PET system without compensation for prompt coincidences were developed by imaging three phantoms. The consistency of these calibration correction factors for the different phantoms was evaluated. Post-therapy images from both modalities were obtained from 15 patients with hepatocellular carcinoma who underwent hepatic radioembolization using Y-90 glass microspheres. Quantitative SPECT and PET images were rigidly registered and the total liver activities and activity distributions estimated for each modality were compared. The activity distributions were compared using profiles, voxel-by-voxel correlation and Bland-Altman analyses, and activity-volume histograms. The mean ± standard deviation of difference in the total activity in the liver between the two modalities was 0% ± 9% (range -21%-18%). Voxel-by-voxel comparisons showed a good agreement in regions corresponding roughly to treated tumor and treated normal liver; the agreement was poorer in regions with low or no expected activity, where PET appeared to overestimate the activity. The correlation coefficients between intrahepatic voxel pairs for the two modalities ranged from 0.86 to 0.94. Cumulative activity volume histograms were in good agreement. These data indicate that, with appropriate reconstruction methods and measured calibration correction factors, either Y-90 SPECT/CT or Y-90 PET/CT can be used for quantitative post-therapy monitoring of Y

  4. Biocompatibility, Inflammatory Response, and Recannalization Characteristics of Nonradioactive Resin Microspheres: Histological Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilbao, Jose I., E-mail: Jibilbao@unav.e; Martino, Alba de; Luis, Esther de

    2009-07-15

    Intra-arterial radiotherapy with yttrium-90 microspheres (radioembolization) is a therapeutic procedure exclusively applied to the liver that allows the direct delivery of high-dose radiation to liver tumors, by means of endovascular catheters, selectively placed within the tumor vasculature. The aim of the study was to describe the distribution of spheres within the precapillaries, inflammatory response, and recannalization characteristics after embolization with nonradioactive resin microspheres in the kidney and liver. We performed a partial embolization of the liver and kidney vessels in nine white pigs. The left renal and left hepatic arteries were catheterized and filled with nonradioactive resin microspheres. Embolization wasmore » defined as the initiation of near-stasis of blood flow, rather than total occlusion of the vessels. The hepatic circulation was not isolated so that the effects of reflux of microspheres into stomach could be observed. Animals were sacrificed at 48 h, 4 weeks, and 8 weeks, and tissue samples from the kidney, liver, lung, and stomach evaluated. Microscopic evaluation revealed clusters of 10-30 microspheres (15-30 {mu}m in diameter) in the small vessels of the kidney (the arciform arteries, vasa recti, and glomerular afferent vessels) and liver. Aggregates were associated with focal ischemia and mild vascular wall damage. Occlusion of the small vessels was associated with a mild perivascular inflammatory reaction. After filling of the left hepatic artery with microspheres, there was some evidence of arteriovenous shunting into the lungs, and one case of cholecystitis and one case of marked gastritis and ulceration at the site of arterial occlusion due to the presence of clusters of microspheres. Beyond 48 h, microspheres were progressively integrated into the vascular wall by phagocytosis and the lumen recannalized. Eight-week evaluation found that the perivascular inflammatory reaction was mild. Liver cell damage, bile duct

  5. Method of separation of yttrium-90 from strontium-90

    DOEpatents

    Bray, Lane A.; Wester, Dennis W.

    1996-01-01

    A method for purifying Y-90 from a Sr-90/Y-90 "cow" wherein raw Sr-90/Y-90 source containing impurities is obtained from nuclear material reprocessing. Raw Sr-90/Y-90 source is purified to a fresh Sr-90/Y-90 source "cow" by removing impurities by addition of sodium hydroxide and by removing Cs-137 by further addition of sodium carbonate. The "cow" is set aside to allow ingrowth. An HDEHP organic extractant is obtained from a commercial supplier and further purified by saturation with Cu(II), precipitation with acetone, and washing with nitric acid. The "cow" is then dissolved in nitric acid and the purified HDEHP is washed with nitric acid and scrubbed with either nitric or hydrochloric acid. The dissolved "cow" and scrubbed HDEHP are combined in an organic extraction, separating Y-90 from Sr-90, resulting in a Sr-90/Y-90 concentration ratio of not more than 10(E-7), and a metal impurity concentration of not more than 10 ppm per curie of Y-90. The separated Y-90 may then be prepared for delivery.

  6. Method of separation of yttrium-90 from strontium-90

    DOEpatents

    Bray, L.A.; Wester, D.W.

    1996-04-30

    A method is described for purifying Y-90 from a Sr-90/Y-90 ``cow`` wherein raw Sr-90/Y-90 source containing impurities is obtained from nuclear material reprocessing. Raw Sr-90/Y-90 source is purified to a fresh Sr-90/Y-90 source ``cow`` by removing impurities by addition of sodium hydroxide and by removing Cs-137 by further addition of sodium carbonate. The ``cow`` is set aside to allow ingrowth. An HDEHP organic extractant is obtained from a commercial supplier and further purified by saturation with Cu(II), precipitation with acetone, and washing with nitric acid. The ``cow`` is then dissolved in nitric acid and the purified HDEHP is washed with nitric acid and scrubbed with either nitric or hydrochloric acid. The dissolved ``cow`` and scrubbed HDEHP are combined in an organic extraction, separating Y-90 from Sr-90, resulting in a Sr-90/Y-90 concentration ratio of not more than 10(E-7), and a metal impurity concentration of not more than 10 ppm per curie of Y-90. The separated Y-90 may then be prepared for delivery. 1 fig.

  7. Influence of time delay on the estimated lung shunt fraction on 99mTc-labeled MAA scintigraphy for 90Y microsphere treatment planning.

    PubMed

    De Gersem, Ruth; Maleux, Geert; Vanbilloen, Hubert; Baete, Kristof; Verslype, Chris; Haustermans, Karin; Verbruggen, Alfons; Van Cutsem, Eric; Deroose, Christophe Michel

    2013-12-01

    90Y-microspheres therapy is used to treat selected patients with primary or metastatic liver tumors in a safe and effective way. As a preparation for 90Y-microspheres treatment, a 99mTc-macroaggregated albumin (99mTc-MAA) simulation procedure is essential to evaluate particle shunting to the lung or gastrointestinal tract. We investigated the effect of interval between injection of 99mTc-MAA and time of scanning on the lung shunt fraction (LSF). In 4 patients with secondary hepatic malignancies who underwent repeated whole-body scintigraphy up to 5 hours after injection of 99mTc-MAA, a marked change in LSF was observed. It appears that tracer degradation leads to an important overestimation of LSF at later time points. An overestimation of LSF can lead to dose reduction or canceling of the planned 90Y-microspheres treatment. It is concluded that the interval between injection and scanning should be kept as short as possible.

  8. Yttrium-90 radioembolization as a bridge to liver transplantation: a single-institution experience.

    PubMed

    Tohme, Samer; Sukato, Daniel; Chen, Hui-Wei; Amesur, Nikhil; Zajko, Albert B; Humar, Abhinav; Geller, David A; Marsh, James W; Tsung, Allan

    2013-11-01

    To evaluate our experience with the use of yttrium-90 ((90)Y) radioembolization in maintaining potential candidacy and, in some instances, downstaging hepatocellular carcinoma (HCC) that does not meet Milan criteria for liver transplantation. A retrospective review of 20 consecutive patients with HCC who were listed to receive a liver transplant and were treated with (90)Y radioembolization as a sole modality for locoregional "bridge" therapy was performed. Demographics, radiographic and pathologic response, survival, and recurrences were examined. Twenty-two (90)Y treatments were performed in 20 patients before transplantation. Median time from first treatment to transplantation was 3.5 months. HCC in 14 patients met the Milan criteria at the time of the first (90)Y treatment, and HCC in six did not. All cases that originally met the Milan criteria remained within the criteria before transplantation, and two of six patients whose disease did not meet the criteria (33%) had their disease successfully downstaged to meet the criteria. Overall, nine patients (45%) had complete or partial radiologic response to (90)Y radioembolization according to modified Response Evaluation Criteria In Solid Tumors. Complete necrosis of tumor with no evidence of viable tumor on pathologic examination was observed in five patients (36%) whose disease met the Milan criteria. Particularly in regions with long wait list times, (90)Y treatment is effective in maintaining tumor size in potential liver transplantation candidates with HCC. In addition, it can also be considered as a downstaging therapy in select patients before transplantation. © SIR, 2013.

  9. Temporary Arterial Balloon Occlusion as an Adjunct to Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagspiel, Klaus D., E-mail: kdh2n@virginia.edu; Nambiar, Ashwin, E-mail: uvashwin@gmail.com; Hagspiel, Lauren M., E-mail: lmh4gg@virginia.edu

    2013-06-15

    Purpose. This study was designed to describe the technique of arterial occlusion using a temporary occlusion balloon system as an alternative to coil occlusion during Yttrium-90 radioembolization of hepatic tumors. Methods. Review of charts, angiography, and follow-up imaging studies of consecutive patients undergoing oncological embolization procedures in which a HyperForm system (ev3 Neurovascular, Irvine, CA) was used. Intraprocedural target vessel occlusion and patency of the target vessel on follow-up were recorded. Clinical data and Bremsstrahlung scans were reviewed for evidence of nontarget embolization. Results. Four radioembolization procedures were performed in three patients (all female, age 48-54 (mean 52) years). Fivemore » arteries were temporarily occluded (three gastroduodenal arteries, one right gastric artery, and one cystic artery). All radioembolization procedures were successfully completed. Follow-up imaging (either digital subtraction angiography (DSA) or computed tomography angiography (CTA)) was available for all patients between 28-454 (mean 183) days following the procedure, demonstrating all five vessels to be patent. No clinical or imaging evidence for nontarget embolization was found. Conclusions. Temporary balloon occlusion of small and medium-sized arteries during radioembolization allows safe therapy with preserved postprocedural vessel patency on early and midterm follow-up.« less

  10. Biodistribution of Yttrium-90-Labeled Anti-CD45 Antibody in a Nonhuman Primate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemecek, Eneida; Hamlin, Donald K.; Fisher, Darrell R.

    2005-01-15

    Radioimmunotherapy may improve the outcome of hematopoietic cell transplantation for hematologic malignancies by delivering targeted radiation to hematopoietic organs while relatively sparing nontarget organs. We evaluated the organ localization of yttrium-90-labeled anti-CD45 (90Y-anti-CD45) antibody in macaques, a model that had previously predicted iodine-131-labeled anti-CD-45 (131I-anti-CD45) antibody biodistribution in humans. Experimental Design: Twelve Macaca nemestrina primates received anti-CD45 antibody labeled with 1 to 2 mCi of 90Y followed by serial blood sampling and marrow and lymph node biopsies, and necropsy. The content of 90Y per gram of tissue was determined by liquid scintillation spectrometry. Time-activity curves were constructed using average isotopemore » concentrations in each tissue at measured time points to yield the fractional residence time and estimate radiation absorbed doses for each organ per unit of administered activity. The biodistribution of 90Y-anti-CD45 antibody was then compared with that previously obtained with 131I-anti-CD45 antibody in macaques. Results: The spleen received 2,120, marrow 1,060, and lymph nodes 315 cGy/mCi of 90Y injected. The liver and lungs were the nontarget organs receiving the highest radiation absorbed doses (440 and 285 cGy/mCi, respectively). Ytrrium-90-labeled anti-CD45 antibody delivered 2.5- and 3.7-fold more radiation to marrow than to liver and lungs, respectively. The ratios previously observed with 131I-antiCD45 antibody were 2.5-and 2.2-fold more radiation to marrow than to liver and lungs, respectively. Conclusions: This study shows that 90Y-anti-CD45 antibody can deliver relatively selective radiation to hematopoietic tissues, with similar ratios of radiation delivered to target versus nontarget organs, as compared with the 131I immunoconjugate in the same animal model.« less

  11. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90

    PubMed Central

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2017-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 μM. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 μCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  12. Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma.

    PubMed

    Chew, Valerie; Lee, Yun Hua; Pan, Lu; Nasir, Nurul J M; Lim, Chun Jye; Chua, Camillus; Lai, Liyun; Hazirah, Sharifah Nur; Lim, Tony Kiat Hon; Goh, Brian K P; Chung, Alexander; Lo, Richard H G; Ng, David; Filarca, Rene L F; Albani, Salvatore; Chow, Pierce K H

    2018-02-13

    Yttrium-90 (Y90)-radioembolisation (RE) significantly regresses locally advanced hepatocellular carcinoma and delays disease progression. The current study is designed to deeply interrogate the immunological impact of Y90-RE, which elicits a sustained therapeutic response. Time-of-flight mass cytometry and next-generation sequencing (NGS) were used to analyse the immune landscapes of tumour-infiltrating leucocytes (TILs), tumour tissues and peripheral blood mononuclear cells (PBMCs) at different time points before and after Y90-RE. TILs isolated after Y90-RE exhibited signs of local immune activation: higher expression of granzyme B (GB) and infiltration of CD8 + T cells, CD56 + NK cells and CD8 + CD56 + NKT cells. NGS confirmed the upregulation of genes involved in innate and adaptive immune activation in Y90-RE-treated tumours. Chemotactic pathways involving CCL5 and CXCL16 correlated with the recruitment of activated GB + CD8 + T cells to the Y90-RE-treated tumours. When comparing PBMCs before and after Y90-RE, we observed an increase in tumour necrosis factor-α on both the CD8 + and CD4 + T cells as well as an increase in percentage of antigen-presenting cells after Y90-RE, implying a systemic immune activation. Interestingly, a high percentage of PD-1 + /Tim-3 + CD8 + T cells coexpressing the homing receptors CCR5 and CXCR6 denoted Y90-RE responders. A prediction model was also built to identify sustained responders to Y90-RE based on the immune profiles from pretreatment PBMCs. High-dimensional analysis of tumour and systemic immune landscapes identified local and systemic immune activation that corresponded to the sustained response to Y90-RE. Potential biomarkers associated with a positive clinical response were identified and a prediction model was built to identify sustained responders prior to treatment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  13. Three-year clinical follow-up after strontium-90/yttrium-90 beta-irradiation for the treatment of in-stent coronary restenosis.

    PubMed

    Baierl, Verena; Baumgartner, Simone; Pöllinger, Barbara; Leibig, Marcus; Rieber, Johannes; König, Andreas; Krötz, Florian; Sohn, Hae-Young; Siebert, Uwe; Haimerl, Wolfgang; Dühmke, Eckhart; Theisen, Karl; Klauss, Volker; Schiele, Thomas M

    2005-11-15

    Because late vessel failure has been speculated as a possible limitation of vascular brachytherapy, we conducted a prospective clinical evaluation at 6, 12, 24, and 36 months of follow-up after irradiation with strontium-90/yttrium-90 for in-stent restenosis, regardless of the patient's symptomatic status. We report complete 3-year follow-up data for 106 consecutive patients. The cumulative rate of death at 6, 12, 24, and 36 months was 0.9%, 0.9%, 0.9%, and 1.9% respectively. The corresponding rates for acute ST-elevation myocardial infarction were 2.8%, 4.7%, 4.7%, and 4.7%, respectively. The cumulative rate of late thrombotic occlusion at 6, 12, 24, and 36 months was 3.8%, 4.7%, 4.7%, and 4.7%, respectively. The corresponding rates of target lesion revascularization and target vessel revascularization were 8.5% and 12.3% (p = 0.046), 14.2% (p = 0.157) and 18.0% (p = 0.046), 12.3% and 18.9% (p = 0.008), and 21.7% (p = 0.083) and 29.2% (p = 0.005), respectively. The cumulative rate of all major adverse cardiovascular events at 6, 12, 24, and 36 months was 16.1%, 24.5% (p = 0.003), 27.4% (p = 0.083), and 35.8% (p = 0.003), respectively. In conclusion, these results indicate a delayed and, even in the third year after the index procedure, continued restenotic process after beta irradiation of in-stent restenotic lesions.

  14. Treating and Downstaging Hepatocellular Carcinoma in the Caudate Lobe with Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Saad M.; Kulik, Laura; Baker, Talia

    2012-10-15

    Purpose: This study was designed to determine the technical feasibility, safety, efficacy, and potential to downstage patients to within transplantation criteria when treating patients with hepatocellular carcinoma (HCC) of the caudate lobe using Y90 radioembolization. Methods: During a 4-year period, 8 of 291 patients treated with radioembolization for unresectable HCC had disease involving the caudate lobe. All patients were followed for treatment-related clinical/biochemical toxicities, serum tumor marker response, and treatment response. Imaging response was assessed with the World Health Organization (WHO) and European Association for the Study of the Liver (EASL) classification schemes. Pathologic response was reported as percent necrosismore » at explantation. Results: Caudate lobe radioembolization was successfully performed in all eight patients. All patients presented with both cirrhosis and portal hypertension. Half were United Network for Organ Sharing (UNOS) stage T3 (n = 4, 50%). Fatigue was reported in half of the patients (n = 4, 50%). One (13%) grade 3/4 bilirubin toxicity was reported. One patient (13%) showed complete tumor response by WHO criteria, and three patients (38%) showed complete response using EASL guidelines. Serum AFP decreased by more than 50% in most patients (n = 6, 75%). Four patients (50%) were UNOS downstaged from T3 to T2, three of who underwent transplantation. One specimen showed histopathologic evidence of 100% complete necrosis, and two specimens demonstrated greater than 50% necrosis. Conclusions: Radioembolization with yttrium-90 appears to be a feasible, safe, and effective treatment option for patients with unresectable caudate lobe HCC. It has the potential to downstage patients to transplantation.« less

  15. [(90)Yttrium-DOTA]-TOC response is associated with survival benefit in iodine-refractory thyroid cancer: long-term results of a phase 2 clinical trial.

    PubMed

    Iten, Fabienne; Muller, Beat; Schindler, Christian; Rasch, Helmut; Rochlitz, Christoph; Oertli, Daniel; Maecke, Helmut R; Muller-Brand, Jan; Walter, Martin A

    2009-05-15

    The authors aimed to explore the efficacy of (90)Yttrium-1,4,7,10-tetra-azacyclododecane N,N',N'',N'''-tetraacetic acid [(90)Y-DOTA]-Tyr(3)-octreotide (TOC) in advanced iodine-refractory thyroid cancer. In a phase 2 trial, the authors investigated biochemical response (assessed by serum thyroglobulin levels), survival, and the long-term safety profile of systemic [(90)Y-DOTA]-TOC treatment in metastasized iodine-refractory thyroid cancer. Adverse events were assessed according to the National Cancer Institute criteria. Survival analyses were performed by using multiple regression models. A total of 24 patients were enrolled. A median cumulative activity of 13.0 GBq (range, 1.7-30.3 GBq) was administered. Response was found in 7 (29.2%) patients. Eight (33.3%) patients developed hematologic toxicity grade 1-3, and 4 (16.7%) patients developed renal toxicity grade 1-4. The median survival was 33.4 months (range, 3.6-126.8 months) from time of diagnosis and 16.8 months (range, 1.8-99.1 months) from time of first [(90)Y-DOTA]-TOC treatment. Response to treatment was associated with longer survival from time of diagnosis (hazard ratio [HR], 0.17; 95% confidence interval [CI], 0.03-0.92; P = .04) and from time of first [(90)Y-DOTA]-TOC therapy (HR, 0.20; 95% CI, 0.04-0.94; P = .04). The visual grade of scintigraphic tumor uptake was not associated with treatment response (odds ratio [OR], 0.98; 95% CI, 0.26-3.14; P = 1.00). Response to [(90)Y-DOTA]-TOC in metastasized iodine-refractory thyroid cancer was associated with longer survival. Upcoming trials should aim to increase the number of treatment cycles.

  16. Monte Carlo simulation of liver cancer treatment with 166Ho-loaded glass microspheres

    NASA Astrophysics Data System (ADS)

    da Costa Guimarães, Carla; Moralles, Maurício; Roberto Martinelli, José

    2014-02-01

    Microspheres loaded with pure beta-emitter radioisotopes are used in the treatment of some types of liver cancer. The Instituto de Pesquisas Energéticas e Nucleares (IPEN) is developing 166Ho-loaded glass microspheres as an alternative to the commercially available 90Y microspheres. This work describes the implementation of a Monte Carlo code to simulate both the irradiation effects and the imaging of 166Ho and 90Y sources localized in different parts of the liver. Results obtained with the code and perspectives for the future are discussed.

  17. Effectiveness of radiation synovectomy with Yttrium-90 and Samarium-153 particulate hydroxyapatite in rheumatoid arthritis patients with knee synovitis: a controlled, randomized, double-blinded trial.

    PubMed

    Dos Santos, Marla Francisca; Furtado, Rita Nely Vilar; Konai, Monique Sayuri; Castiglioni, Mario Luiz Vieira; Marchetti, Renata Rosa; Silva, Constancia Pagano Gonçalves; Natour, Jamil

    2011-01-01

    The aim of the present study was to investigate the long-term effectiveness of and tolerance to Yttrium-90 and Samarium-153-particulate hydroxyapatite radiation synovectomy in patients with rheumatoid arthritis (RA) and chronic knee synovitis. Eight-four patients (90 knees) with chronic knee synovitis and RA (according to the American College of Rheumatology criteria) participated in a controlled, double-blinded trial. Patients were randomized to receive an intra-articular injection with either 5 mCi Yttrium-90 plus 40 mg of triamcinolone hexacetonide (Y/TH Group), 15 mCi Samarium-153 hydroxyapatite plus 40 mg of triamcinolone hexacetonide (Sm/TH Group), or 40 mg triamcinolone hexacetonide alone (Control Group). Blinded examination at baseline, 1, 4, 12, 32, and 48 weeks post-intervention included a visual analog scale for joint pain and swelling, morning stiffness, range of motion, knee circumference, Likert scale, percentage of improvement, Stanford Health Assessment Questionnaire, Lequesne index, use of non-steroidal anti-inflammatory drugs and corticosteroids, events and adverse effects, calls to the physician, and hospital visits. There were three withdrawals prior to the injections. Regarding the pain, there was a significantly better response in the Y/TH Group versus the Sm/TH Group at T1 (p = 0.025) and versus TH alone at T48 (p = 0.026). The Sm/TH group had more adverse effects (p = 0.042), but these were mild and transitory. For the pain parameter alone, Yttrium-90 radiosynovectomy associated to TH proved superior to Samarium-153 hydroxyapatite radiosynovectomy associated to TH at T1 and to synovectomy with TH at T48. No other statistically significant inter-group differences were detected.

  18. Personnel dose reduction in 90Y microspheres liver-directed radioembolization: from interventional radiology suite to patient ward

    PubMed Central

    Wong, K K; Tso, W K; Lee, Victor; Luk, M Y; Tong, C C; Chu, Ferdinand

    2017-01-01

    Objective: To describe a method to reduce the external radiation exposure emitted from the patient after liver-directed radioembolization using 90Y glass microspheres, to quantitatively estimate the occupational dose of medical personnel providing patient care to the patient radioembolized with the use of the method and to discuss radiation exposure to patients who are adjacent if the patient radioembolized needs hospitalization. Methods: A lead-lined blanket of lead equivalence of 0.5 mm was used to cover the patient abdomen immediately after the 90Y radioembolization procedure, in order to reduce the radiation emitted from the patient. The interventional radiologist used a rod-type puncture site compressor for haemostasis to avoid direct contact with possible residual radioactivity at the puncture site. Dose rates were measured at the interventional radiologist chest and hand positions during puncture site pressing for haemostasis with and without the use of the blanket. The measurement results were applied to estimate the occupational dose of colleagues performing patient care to the patient radioembolized. The exposure to patients adjacent in the ward was estimated if the patient radioembolized was hospitalized. Results: The radiation exposures measured at the radiologist chest and hand positions have been significantly reduced with the lead-lined blanket in place. The radiologist, performing puncture site pressing at the end of radioembolization procedure, would receive an average hand dose of 1.95 μSv and body dose under his own lead apron of 0.30 μSv for an average 90Y microsphere radioactivity of 2.54 GBq. Other medical personnel, nurses and porters, would receive occupational doses corresponding to an hour of background radiation. If the patient radioembolized using 90Y needs hospitalization in a common ward, using the lead-lined blanket to cover the abdomen of the patient and keeping a distance of 2 m from the patient who is adjacent would

  19. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.

  20. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary tomore » purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.« less

  1. MO-A-BRD-02: Physics Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kappadath, S.

    2015-06-15

    Yttrium-90 (Y90) microsphere therapy, a form of radiation therapy, is an increasingly popular option for care of patients with liver metastases or unresectable hepatocellular carcinoma. The therapy directly delivers Y90 microspheres via the hepatic artery to disease sites. Following delivery, a vast majority of microspheres preferentially lodge in the capillary vessels due to their embolic size and targeted trans-arterial delivery – depositing up to 90% of its energy in the first 5 mm of tissue. There have been a number of advances in tomographic imaging within both interventional radiology and nuclear medicine that has advanced therapy planning techniques. Quantitative imagingmore » of Y90 microsphere distribution post-therapy has also seen innovations that have led to improvements in tumor dosimetry and characterization of tumor response. A review of current trends and recent innovation in Y90 microsphere therapies will be presented. Learning Objectives: To present the imaging requirements for Y90 microsphere therapy planning To explain the standard dosimetry models used in Y90 microsphere therapy planning To report on advances in imaging for therapy planning and posttherapy assessment of tumor dosimetry and response.« less

  2. MO-A-BRD-01: Clinical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahvash, A.

    2015-06-15

    Yttrium-90 (Y90) microsphere therapy, a form of radiation therapy, is an increasingly popular option for care of patients with liver metastases or unresectable hepatocellular carcinoma. The therapy directly delivers Y90 microspheres via the hepatic artery to disease sites. Following delivery, a vast majority of microspheres preferentially lodge in the capillary vessels due to their embolic size and targeted trans-arterial delivery – depositing up to 90% of its energy in the first 5 mm of tissue. There have been a number of advances in tomographic imaging within both interventional radiology and nuclear medicine that has advanced therapy planning techniques. Quantitative imagingmore » of Y90 microsphere distribution post-therapy has also seen innovations that have led to improvements in tumor dosimetry and characterization of tumor response. A review of current trends and recent innovation in Y90 microsphere therapies will be presented. Learning Objectives: To present the imaging requirements for Y90 microsphere therapy planning To explain the standard dosimetry models used in Y90 microsphere therapy planning To report on advances in imaging for therapy planning and posttherapy assessment of tumor dosimetry and response.« less

  3. Survival After Accidental Extrahepatic Distribution of Y90 Microspheres to the Mesentery During a Radioembolization Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabet, Amir; Ahmadzadehfar, Hojjat; Schaefer, Nico

    2012-08-15

    We present the acute management and outcome of a patient after an accidental mesenteric distribution of Y90 microspheres during radioembolization (RE). This report describes and highlights: (1) the incidence of a significant reflux during a RE session while injecting into a replaced right hepatic artery from the superior mesenteric artery, (2) the appearance of diffuse mesenteric Y90 distribution in bremsstrahlung-imaging, (3) the management protocol with the radiation protection agent amifostine, (4) the development of typical adverse effects in the expected time window, and (5) survival of the patient without long-term sequelae. This report should sensitize physicians to this particular problemmore » and may help to avoid as well as manage similar radioembolization incidences.« less

  4. Experiments in Radiochemistry: Paper Electrophorectic Separation of Superscript 90 Sr and Superscript 90 Y.

    ERIC Educational Resources Information Center

    Miekely, N.; Roldao, L. A.

    1982-01-01

    Using different supporting electrolytes, the influence of complex-forming equilibria on migration velocities of strontium-90 and yttrium-90 can be demonstrated in this experiment. Includes procedures and materials needed. (SK)

  5. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer.

    PubMed

    Hamami, Monia E; Poeppel, Thorsten D; Müller, Stephan; Heusner, Till; Bockisch, Andreas; Hilgard, Philipp; Antoch, Gerald

    2009-05-01

    Radioembolization with (90)Y microspheres is a novel treatment for hepatic tumors. Generally, hepatic arteriography and (99m)Tc-macroaggregated albumin (MAA) scanning are performed before selective internal radiation therapy to detect extrahepatic shunting to the lung or the gastrointestinal tract. Whereas previous studies have used only planar or SPECT scans, the present study used (99m)Tc-MAA SPECT/CT scintigraphy (SPECT with integrated low-dose CT) to evaluate whether SPECT/CT and additional diagnostic contrast-enhanced CT before radioembolization with (90)Y microspheres are superior to SPECT or planar imaging alone for detection of gastrointestinal shunting. In a prospective study, we enrolled 58 patients (mean age, 66 y; SD, 12 y; 10 women and 48 men) with hepatocellular carcinoma who underwent hepatic arteriography and scintigraphy with (99m)Tc-MAA using planar imaging, SPECT, and SPECT with integrated low-dose CT of the upper abdomen (acquired with a hybrid SPECT/CT camera). The ability of the different imaging modalities to detect extrahepatic MAA shunting was compared. Patient follow-up of a mean of 180 d served as the standard of reference. Gastrointestinal shunting was revealed by planar imaging in 4, by SPECT in 9, and by SPECT/CT in 16 of the 68 examinations. For planar imaging, the sensitivity for detection of gastrointestinal shunting was 25%, the specificity 87%, and the accuracy 72%. For SPECT without CT, the sensitivity was 56%, the specificity 87%, and the accuracy 79%. SPECT with CT fusion had a sensitivity of 100%, a specificity of 94%, and an accuracy of 96%. In 3 patients, MAA deposits in the portal vein could accurately be attributed to tumor thrombus only with additional information from contrast-enhanced CT. The follow-up did not show any gastrointestinal complications. SPECT with integrated low-dose CT using (99m)Tc-MAA is beneficial in radioembolization with (90)Y microspheres because it increases the sensitivity and specificity of (99m

  6. Treatment Parameters and Outcome in 680 Treatments of Internal Radiation With Resin {sup 90}Y-Microspheres for Unresectable Hepatic Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Andrew S.; McNeillie, Patrick M.S.; Dezarn, William A.

    Purpose: Radioembolization (RE) using {sup 90}Y-microspheres is an effective and safe treatment for patients with unresectable liver malignancies. Radiation-induced liver disease (RILD) is rare after RE; however, greater understanding of radiation-related factors leading to serious liver toxicity is needed. Methods and Materials: Retrospective review of radiation parameters was performed. All data pertaining to demographics, tumor, radiation, and outcomes were analyzed for significance and dependencies to develop a predictive model for RILD. Toxicity was scored using the National Cancer Institute Common Toxicity Criteria Adverse Events Version 3.0 scale. Results: A total of 515 patients (287 men; 228 women) from 14 USmore » and 2 EU centers underwent 680 separate RE treatments with resin {sup 90}Y-microspheres in 2003-2006. Multifactorial analyses identified factors related to toxicity, including activity (GBq) Selective Internal Radiation Therapy delivered (p < 0.0001), prescribed (GBq) activity (p < 0.0001), percentage of empiric activity (GBq) delivered (p < 0.0001), number of prior liver treatments (p < 0.0008), and medical center (p < 0.0001). The RILD was diagnosed in 28 of 680 treatments (4%), with 21 of 28 cases (75%) from one center, which used the empiric method. Conclusions: There was an association between the empiric method, percentage of calculated activity delivered to the patient, and the most severe toxicity, RILD. A predictive model for RILD is not yet possible given the large variance in these data.« less

  7. Results and adverse events of personalized peptide receptor radionuclide therapy with 90Yttrium and 177Lutetium in 1048 patients with neuroendocrine neoplasms

    PubMed Central

    Baum, Richard P.; Kulkarni, Harshad R.; Singh, Aviral; Kaemmerer, Daniel; Mueller, Dirk; Prasad, Vikas; Hommann, Merten; Robiller, Franz C.; Niepsch, Karin; Franz, Holger; Jochems, Arthur; Lambin, Philippe; Hörsch, Dieter

    2018-01-01

    Introduction Peptide receptor radionuclide therapy (PRRT) of patients with somatostatin receptor expressing neuroendocrine neoplasms has shown promising results in clinical trials and a recently published phase III study. Methods In our center, 2294 patients were screened between 2004 and 2014 by 68Ga somatostatin receptor (SSTR) PET/CT. Intention to treat analysis included 1048 patients, who received at least one cycle of 90Yttrium or 177Lutetium-based PRRT. Progression free survival was determined by 68Ga SSTR-PET/CT and EORTC response criteria. Adverse events were determined by CTCAE criteria. Results Overall survival (95% confidence interval) of all patients was 51 months (47.0-54.9) and differed significantly according to radionuclide, grading, previous therapies, primary site and functionality. Progression free survival (based on PET/CT) of all patients was 19 months (16.9-21), which was significantly influenced by radionuclide, grading, and origin of neuroendocrine neoplasm. Progression free survival after initial progression and first and second resumption of PRRT after therapy-free intervals of more than 6 months were 11 months (9.4-12.5) and 8 months (6.4-9.5), respectively. Myelodysplastic syndrome or leukemia developed in 22 patients (2.1%) and 5 patients required hemodialysis after treatment, other adverse events were rare. Conclusion PRRT is effective and overall survival is favorable in patients with neuroendocrine neoplasms depending on the radionuclide used for therapy, grading and origin of the neuroendocrine neoplasm which is not exactly mirrored in progression free survival as determined by highly sensitive 68Ga somatostatin receptor PET/CT using EORTC criteria for determining response to therapy. PMID:29682195

  8. Clinical impact of (99m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres.

    PubMed

    Garin, Etienne; Rolland, Yan; Laffont, Sophie; Edeline, Julien

    2016-03-01

    Radioembolization with (90)Y-loaded microspheres is increasingly used in the treatment of primary and secondary liver cancer. Technetium-99 m macroaggregated albumin (MAA) scintigraphy is used as a surrogate of microsphere distribution to assess lung or digestive shunting prior to therapy, based on tumoral targeting and dosimetry. To date, this has been the sole pre-therapeutic tool available for such evaluation. Several dosimetric approaches have been described using both glass and resin microspheres in hepatocellular carcinoma (HCC) and liver metastasis. Given that each product offers different specific activities and numbers of spheres injected, their radiobiological properties are believed to lightly differ. This paper summarizes and discusses the available studies focused on MAA-based dosimetry, particularly concentrating on potential confounding factors like clinical context, tumor size, cirrhosis, previous or concomitant therapy, and product used. In terms of the impact of tumoral dose in HCC, the results were concordant and a response relationship and tumoral threshold dose was clearly identified, especially in studies using glass microspheres. Tumoral dose has also been found to influence survival. The concept of treatment intensification has recently been introduced, yet despite several studies publishing interesting findings on the tumor dose-metastasis relationship, no consensus has been reached, and further clarification is thus required. Nor has the maximal tolerated dose to the liver been well documented, requiring more accurate evaluation. Lung dose was well described, despite recently identified factors influencing its evaluation, requiring further assessment. Conclusion: MAA SPECT/CT dosimetry is accurate in HCC and can now be used in order to achieve a fully customized approach, including treatment intensification. Yet further studies are warranted for the metastasis setting and evaluating the maximal tolerated liver dose.

  9. Results and adverse events of personalized peptide receptor radionuclide therapy with 90Yttrium and 177Lutetium in 1048 patients with neuroendocrine neoplasms.

    PubMed

    Baum, Richard P; Kulkarni, Harshad R; Singh, Aviral; Kaemmerer, Daniel; Mueller, Dirk; Prasad, Vikas; Hommann, Merten; Robiller, Franz C; Niepsch, Karin; Franz, Holger; Jochems, Arthur; Lambin, Philippe; Hörsch, Dieter

    2018-03-30

    Peptide receptor radionuclide therapy (PRRT) of patients with somatostatin receptor expressing neuroendocrine neoplasms has shown promising results in clinical trials and a recently published phase III study. In our center, 2294 patients were screened between 2004 and 2014 by 68 Ga somatostatin receptor (SSTR) PET/CT. Intention to treat analysis included 1048 patients, who received at least one cycle of 90 Yttrium or 177 Lutetium-based PRRT. Progression free survival was determined by 68 Ga SSTR-PET/CT and EORTC response criteria. Adverse events were determined by CTCAE criteria. Overall survival (95% confidence interval) of all patients was 51 months (47.0-54.9) and differed significantly according to radionuclide, grading, previous therapies, primary site and functionality. Progression free survival (based on PET/CT) of all patients was 19 months (16.9-21), which was significantly influenced by radionuclide, grading, and origin of neuroendocrine neoplasm. Progression free survival after initial progression and first and second resumption of PRRT after therapy-free intervals of more than 6 months were 11 months (9.4-12.5) and 8 months (6.4-9.5), respectively. Myelodysplastic syndrome or leukemia developed in 22 patients (2.1%) and 5 patients required hemodialysis after treatment, other adverse events were rare. PRRT is effective and overall survival is favorable in patients with neuroendocrine neoplasms depending on the radionuclide used for therapy, grading and origin of the neuroendocrine neoplasm which is not exactly mirrored in progression free survival as determined by highly sensitive 68 Ga somatostatin receptor PET/CT using EORTC criteria for determining response to therapy.

  10. Determination of strontium-90 in milk samples using a controlled precipitation clean-up step prior to ion-chromatography.

    PubMed

    Cobb, J; Warwick, P; Carpenter, R C; Morrison, R T

    1995-12-01

    Strontium-90 may be determined by beta-counting its yttrium-90 daughter following separation by ion-chromatography, using a three column system comprising a chelating concentrator column, a cation-exchange column and an anion-exchange separator column. The column system has previously been applied to the determination of strontium-90 in water and urine samples. The applicability of the system to the analysis of milk is hampered by the large concentrations of calcium present, which significantly reduces the extraction of yttrium-90 by the concentrator column. A maximum of approximately 200 mg of calcium can be present for the successful extraction of yttrium-90, which greatly limits the quantity of milk that can be analysed. The quantity of milk analysed can be increased by the inclusion of a controlled precipitation step prior to the ion-chromatographic separation. The precipitation is carried out on acid digested milk samples by the addition of ammonia solution until the addition of one drop causes a reduction in pH resulting in the precipitation of calcium hydrogenphosphate. Under these conditions, approximately 20% of the calcium present in the original milk sample is precipitated, yttrium-90 is precipitated whereas strontium-90 is not precipitated. Dissolution of the precipitate, followed by separation of yttrium-90 using the ion-chromatography system facilitates the analysis of a litre of milk with recoveries of greater than 80%.

  11. Embolisation of the Gastroduodenal Artery is Not Necessary in the Presence of Reversed Flow Before Yttrium-90 Radioembolisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daghir, Ahmed A., E-mail: ahmeddaghir@doctors.net.uk; Gungor, Hatice; Haydar, Ali A.

    2012-08-15

    Introduction: The gastroduodenal artery (GDA) is usually embolised to avoid nontarget dispersal before yttrium-90 (Y{sup 90}) radioembolisation to treat liver metastases. In a minority of patients, there is retrograde flow in the GDA. The purpose of this study was to determine if there is any increased risk from maintaining a patent GDA in patients with reversed flow. Materials and Methods: A retrospective review was performed of all patients undergoing Y{sup 90} radioembolisation at our institution. The incidence of toxicities arising from nontarget radioembolisation by way of the GDA (gastric/duodenal ulceration, gastric/duodenal bleeding, and pancreatitis) and death occurring within 2 monthsmore » of treatment were compared between the reversed and the antegrade GDA groups. Results: Ninety-two patients underwent preliminary angiography. Reversed GDA flow was found on angiography in 14.1% of cases; the GDA was not embolised in these patients. The GDA was coiled in 55.7% of patients with antegrade GDA flow to prevent inadvertent dispersal of radioembolic material. There was no increased toxicity related to nontarget dispersal by way of the GDA, or increased early mortality, in patients with reversed GDA flow (P > 0.05). Conclusion: In patients with reversed GDA flow, maintenance of a patent GDA before administration of Y{sup 90} radioembolisation does not increase the risk of toxicity from nontarget dispersal. Therapeutic injection, with careful monitoring to identify early vascular stasis, may be safely performed beyond the origin of the patent GDA. A patent GDA with reversed flow provides forward drive for infused particles and may allow alternative access to the hepatic circulation.« less

  12. Preparation and drug controlled release of porous octyl-dextran microspheres.

    PubMed

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  13. Yttrium-90 DOTA peptide chimeric L6 toxicity and therapeutic potential in nude mice with human breast tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeNardo, S.J.; Zhong, G.R.; Miers, L.A.

    1994-05-01

    Chimeric L6 MoAb (ChL6) as I-131 ChL6 has shown therapeutic promise for radioimmunotherapy in breast cancer patients. In order to enhance this therapeutic potential, we have developed an yttrium-90 (Y-90) ChL6 radiopharmaceutical by conjugating Y-90 DOTA peptide to ChL6 using DOTA-Gly-3L(p-isothiocyanato)-Phe-NH2. This DOTA peptide forms neutral complexes with trivalent metals allowing excess chelating agents and divalent metal complexes to be removed by ion exchange chromatography prior to conjugation, thus yielding a high Y-90/DOTA ratio on the final immune conjugate. Groups of 9-10 nude mice bearing subcutaneous 40-200 mg HBT 3477 xenographs were given 150,250,350,400,450 or 500 {mu}Ci of Y-90 DOTAmore » peptide ChL6 (specific activity 1.1-3.5 {mu}Ci/{mu}g). Live cell immunoreactivity was 73-80% and 100% Y-90 moved with ChL6 on SEC3000 HPLC and TLC. Peripheral blood counts, weight, tumor size, blood and body clearance of Y-90 were monitored for 10 weeks. Whole body autoradiography was performed at 1,3 and 5 days post injection at the 250 and 450 {mu}Ci dose levels. No mouse that received less than 450 {mu}Ci of Y-90 died. The LD50/30 was 479 {mu}Ci. The nadirs of RBC, WBC and platelets were 10-20 days post 479 {mu}Ci. The nadirs of RBC, WBC and platelets were 10-20 days post injection. The depth of the nadir was dose dependent but occured in all groups. In the lowest dose group having substantial tumor response (350{mu}Ci) mean tumor volume decreased by >50% and 5 of 19 tumors completely regressed over the 10 week follow-up. This is the greatest LD50/30 for Y-90 immunoconjugate reported in nude mice to date. These results confirm the significance of the biodistribution and autoradiographic studies demonstrating tumor uptake of 18 {plus_minus} 8% ID/gm with 3/1 tumor to liver and 8/1 tumor to bone ratios 1, 3, and 5 days post injection.« less

  14. MO-G-17A-06: Kernel Based Dosimetry for 90Y Microsphere Liver Therapy Using 90Y Bremsstrahlung SPECT/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikell, J; Siman, W; Kappadath, S

    2014-06-15

    Purpose: 90Y microsphere therapy in liver presents a situation where beta transport is dominant and the tissue is relatively homogenous. We compare voxel-based absorbed doses from a 90Y kernel to Monte Carlo (MC) using quantitative 90Y bremsstrahlung SPECT/CT as source distribution. Methods: Liver, normal liver, and tumors were delineated by an interventional radiologist using contrast-enhanced CT registered with 90Y SPECT/CT scans for 14 therapies. Right lung was segmented via region growing. The kernel was generated with 1.04 g/cc soft tissue for 4.8 mm voxel matching the SPECT. MC simulation materials included air, lung, soft tissue, and bone with varying densities.more » We report percent difference between kernel and MC (%Δ(K,MC)) for mean absorbed dose, D70, and V20Gy in total liver, normal liver, tumors, and right lung. We also report %Δ(K,MC) for heterogeneity metrics: coefficient of variation (COV) and D10/D90. The impact of spatial resolution (0, 10, 20 mm FWHM) and lung shunt fraction (LSF) (1,5,10,20%) on the accuracy of MC and kernel doses near the liver-lung interface was modeled in 1D. We report the distance from the interface where errors become <10% of unblurred MC as d10(side of interface, dose calculation, FWHM blurring, LSF). Results: The %Δ(K,MC) for mean, D70, and V20Gy in tumor and liver was <7% while right lung differences varied from 60–90%. The %Δ(K,MC) for COV was <4.8% for tumor and liver and <54% for the right lung. The %Δ(K,MC) for D10/D90 was <5% for 22/23 tumors. d10(liver,MC,10,1–20) awere <9mm and d10(liver,MC,20,1–20) awere <15mm; both agreed within 3mm to the kernel. d10(lung,MC,10,20), d10(lung,MC,10,1), d10(lung,MC,20,20), and d10(lung,MC,20,1) awere 6, 25, 15, and 34mm, respectively. Kernel calculations on blurred distributions in lung had errors > 10%. Conclusions: Liver and tumor voxel doses with 90Y kernel and MC agree within 7%. Large differences exist between the two methods in right lung. Research reported

  15. Y-90-DOTA-hLL2: An Agent for Radioimmunotherapy of Non-Hodgkin's Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Gary L.; Govindan, Serengulam V.; Sharkey, Robert M.

    2003-01-01

    The goal of this work was to determine an optimal radioimmunotherapy agent for non-Hodgkin's lymphoma. We established the stability profile of yttrium-90-labeled humanized LL2 (hLL2) monoclonal antibody prepared with different chelating agents, and from these data estimated the improvement using the most stable yttrium-90 chelate-hLL2 complex. Methods: The complementary-determining region- (cdr)-grafted (humanized) anti-CD22 mAb, hLL2 (epratuzumab), was conjugated to derivatives of DTPA and 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA). The conjugates were labeled with Y-90 and tested against a 10,000-fold molar excess of free DTPA and against human serum. The conjugates were also labeled with Y-88 and compared for biodistribution in normal andmore » lymphoma xenograft-bearing athymic mice. In vivo data were analyzed for uptake of yttrium in bone and washed bone when either the DOTA or the Mx-DTPA chelates were used, and dosimetry calculations were made for each. Results: Y-90-DOTA -mAb were stable to either DTPA or serum challenge. DTPA complexes of hLL2 lost 3-4% of Y-90 (days 1-4) and 10-15% thereafter. In vivo, stability differences showed lower Y-90 uptake in bone using DOTA. Absorbed doses per 37 MBq (1 mCi) Y-90-mAb were 3555 and 5405 cGy for bone, and 2664 and 4524 cGy for washed-bone for 90Y-DOTA-hLL2 and 90Y-MxDTPA-hLL2, respectively, amounting to 52% and 69.8% increases in absorbed radiation doses for bone and washed-bone when switching from a DOTA to a Mx-DTPA chelate. Conclusion: Y-90-hLL2 prepared with the DOTA chelate represents a preferred agent for RAIT of non-Hodgkin's lymphoma, with an in vivo model demonstrating a large reduction in bone-deposited yttrium, as compared to yttrium-90-hLL2 agents prepared with open-chain DTPA-type chelating agents. Dosimetry suggests that this will result in a substantial toxicological advantage for a DOTA-based hLL2 conjugate.« less

  16. Intra-articular radioactive yttrium and triamcinolone hexacetonide: an inconclusive trial. Arthritis and Rheumatism Council Multicentre Radiosynoviorthesis Trial Group.

    PubMed

    1984-08-01

    A restricted sequential design multicentre controlled trial of yttrium-90 against triamcinolone intra-articularly was undertaken in patients with rheumatoid arthritis with knee involvement. The trial had to be discontinued because of dwindling recruitment over time. The reasons for this and other features contributing to an inconclusive outcome are noted. This experience lends little encouragement to the idea that yttrium-90 therapy is more or less advantageous than triamcinolone hexacetonide.

  17. Oxaliplatin loaded PLAGA microspheres: design of specific release profiles.

    PubMed

    Lagarce, F; Cruaud, O; Deuschel, C; Bayssas, M; Griffon-Etienne, G; Benoit, J

    2002-08-21

    Oxaliplatin loaded PLAGA microspheres have been prepared by solvent extraction process. Parameters affecting the release kinetics in vitro have been studied in order to design specific release profiles suitable for direct intra-tumoral injection. By varying the nature and the relative proportions of different polymers we managed to prepare microspheres with good encapsulation efficiency (75-90%) and four different release profiles: zero order kinetics (type II) and the classical sigmoïd release profile with three different sizes of plateau and burst. These results, if correlated with in vivo activity, are promising to enhance effectiveness of local tumor treatment.

  18. A Comparative Study of Production of Glass Microspheres by using Thermal Process

    NASA Astrophysics Data System (ADS)

    Lee, May Yan; Tan, Jully; Heng, Jerry YY; Cheeseman, Christopher

    2017-06-01

    Microspheres are spherical particles that can be distinguished into two categories; solid or hollow. Microspheres typical ranges from 1 to 200 μm in diameter. Microsphere are made from glass, ceramic, carbon or plastic depending on applications. Solid glass microsphere is manufactured by direct burning of glass powders while hollow glass microspheres is produced by adding blowing agent to glass powder. This paper presented the production of glass microspheres by using the vertical thermal flame (VTF) process. Pre-treated soda lime glass powder with particle sized range from 90 to 125μm was used in this work. The results showed that glass microspheres produced by two passes through the flame have a more spherical shape as compared with the single pass. Under the Scanning Electron Microscope (SEM), it is observed that there is a morphology changed from uneven surface of glass powders to smooth spherical surface particles. Qualitative analysis for density of the pre-burned and burned particles was performed. Burned particles floats in water while pre-burned particles sank indicated the change of density of the particles. Further improvements of the VTF process in terms of the VTF set-up are required to increase the transformation of glass powders to glass microspheres.

  19. Properties of rigid polyurethane foams filled with glass microspheres

    NASA Astrophysics Data System (ADS)

    Yakushin, V.; Bel'kova, L.; Sevastyanova, I.

    2012-11-01

    The effect of hollow glass microspheres with a density of 125 kg/m3 on the properties of low-density (54-90 kg/m3) rigid polyurethane foams is investigated. The thermal expansion coefficient of the foams and their properties in tension and compression in relation to the content of the microspheres (0.5-5 wt.%) are determined. An increase in the characteristics of the material in compression in the foam rise direction with increasing content of filler is revealed. The limiting content of the microspheres above which the mechanical characteristics of the filled foams begin to decrease is found. The distribution of the microspheres in elements of the cellular structure of the polyurethane foams is examined.

  20. Semi-Quantitative Analysis of Post-Transarterial Radioembolization (90)Y Microsphere Positron Emission Tomography Combined with Computed Tomography (PET/CT) Images in Advanced Liver Malignancy: Comparison With (99m)Tc Macroaggregated Albumin (MAA) Single Photon Emission Computed Tomography (SPECT).

    PubMed

    Rhee, Seunghong; Kim, Sungeun; Cho, Jaehyuk; Park, Jukyung; Eo, Jae Seon; Park, Soyeon; Lee, Eunsub; Kim, Yun Hwan; Choe, Jae-Gol

    2016-03-01

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ((99m)Tc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ((90)Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent (90)Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone (99m)Tc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of (90)Y microspheres, the patients underwent posttreatment (90)Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in (90)Y PET/CT (TNR-yp) and (99m)Tc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The (99m)Tc MAA SPECT showed a good correlation with (90)Y PET/CT in TNR values, suggesting that (99m)Tc MAA can be used as an adequate pretreatment evaluation method. However, the (99m)Tc MAA SPECT image consistently shows lower TNR values compared to (90)Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using (99m)Tc MAA SPECT. Considering that (99m)Tc MAA is the only clinically available surrogate

  1. [Preparation of citrulline microspheres by spray drying technique for colonic targeting].

    PubMed

    Bahri, S; Zerrouk, N; Lassoued, M-A; Tsapis, N; Chaumeil, J-C; Sfar, S

    2014-03-01

    Citrulline is an amino acid that becomes essential in situations of intestinal insufficiency such as short bowel syndrome. It is therefore interesting to provide the patients with dosage forms for routing citrulline to the colon. The aim of this work is to formulate microspheres of citrulline for colonic targeting by the technique of spray drying. Eudragit(®) FS 30D was selected as polymer to encapsulate citrulline using the spray drying technique. Citrulline and Eudragit(®) FS 30D were dissolved in water and ethanol, respectively. The aqueous and the ethanolic solutions were then mixed in 1:2 (v/v) ratio. Microspheres were obtained by nebulizing the citrulline-Eudragit(®) FS 30D solution using a Mini spray dryer equipped with a 0.7mm nozzle. The microspheres have been formulated using citrulline and Eudragit(®) FS 30D. The size distribution of microspheres was determined by light diffraction. The morphology of the microspheres was studied by electron microscopy. Manufacturing yields, encapsulation rate and dissolution profiles were also studied. The microspheres obtained had a spherical shape with a smooth surface and a homogeneous size except for the microspheres containing the highest concentration of polymer (90 %). The formulation showed that the size and morphology of the microspheres are influenced by the polymer concentration. Manufacturing yields were about 51 % but encapsulation rate were always very high (above 90 %). The in vitro dissolution study showed that the use of the Eudragit(®) FS 30D under these conditions is not appropriate to change the dissolution profile of the citrulline. This technique has led to the formulation of microspheres with good physical properties in terms of morphology and size. The compression of the microspheres should help to control citrulline release for colonic targeting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Comparison of TOF-PET and Bremsstrahlung SPECT Images of Yttrium-90: A Monte Carlo Simulation Study.

    PubMed

    Takahashi, Akihiko; Himuro, Kazuhiko; Baba, Shingo; Yamashita, Yasuo; Sasaki, Masayuki

    2018-01-01

    Yttrium-90 ( 90 Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90 Y using Monte Carlo simulation codes under the same conditions and to compare them. In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90 Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90 Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.

  3. Intra-articular radioactive yttrium and triamcinolone hexacetonide: an inconclusive trial. Arthritis and Rheumatism Council Multicentre Radiosynoviorthesis Trial Group.

    PubMed Central

    1984-01-01

    A restricted sequential design multicentre controlled trial of yttrium-90 against triamcinolone intra-articularly was undertaken in patients with rheumatoid arthritis with knee involvement. The trial had to be discontinued because of dwindling recruitment over time. The reasons for this and other features contributing to an inconclusive outcome are noted. This experience lends little encouragement to the idea that yttrium-90 therapy is more or less advantageous than triamcinolone hexacetonide. PMID:6383234

  4. The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres

    PubMed Central

    Liu, Jianming; Lv, Xin

    2014-01-01

    The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency. PMID:25268618

  5. Evaluation of Liver Biomarkers as Prognostic Factors for Outcomes to Yttrium-90 Radioembolization of Primary and Secondary Liver Malignancies.

    PubMed

    Henrie, Adam M; Wittstrom, Kristina; Delu, Adam; Deming, Paulina

    2015-09-01

    The objective of this study was to examine indicators of liver function and inflammation for prognostic value in predicting outcomes to yttrium-90 radioembolization (RE). In a retrospective analysis, markers of liver function and inflammation, biomarkers required to stage liver function and inflammation, and data regarding survival, tumor response, and progression after RE were recorded. Univariate regression models were used to investigate the prognostic value of liver biomarkers in predicting outcome to RE as measured by survival, tumor progression, and radiographic and biochemical tumor response. Markers from all malignancy types were analyzed together. A subgroup analysis was performed on markers from patients with metastatic colorectal cancer. A total of 31 patients received RE from 2004 to 2014. Median survival after RE for all malignancies combined was 13.6 months (95% CI: 6.7-17.6 months). Results from an exploratory analysis of patient data suggest that liver biomarkers, including albumin concentrations, international normalized ratio, bilirubin concentrations, and the model for end-stage liver disease score, possess prognostic value in predicting outcomes to RE.

  6. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  7. Activation of photodynamic therapy in vitro with Cerenkov luminescence generated from Yttrium-90 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2016-03-01

    Translation of photodynamic therapy to the clinical setting has primarily been limited to easily accessible and/or superficial diseases where traditional light delivery can be performed noninvasively. Cerenkov luminescence, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively in order to overcome this depth limitation. We report on the use of Cerenkov luminescence generated from Yttrium-90 as a means to active the photodynamic therapy process in monolayer tumor cell cultures. The current study investigates the utility of Cerenkov luminescence for activating both the clinically relevant aminolevulinic acid at 1.0 mM and also the more efficient photosensitizer TPPS2a at 1.2 µM. Cells were incubated with aminolevulinic acid for 6 hours prior to radionuclide addition, as well as additional daily treatments for three days. TPPS2a was delivered as a single treatment with an 18 hour incubation time before radionuclide addition. Experiments were completed for both C6 glioma cells and MDA-MB-231 breast tumor cells. Although aminolevulinic acid proved ineffective for generating a therapeutic effect at any activity for either cell line, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 cell line. Current results demonstrate that it may be possible to generate a therapeutic effect in vivo using Cerenkov luminescence to activate the photodynamic therapy process with clinically relevant photosensitizers.

  8. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation.

    PubMed

    Dhaliwal, Sumeet; Jain, Subheet; Singh, Hardevinder P; Tiwary, A K

    2008-06-01

    The aim of the present investigation was to evaluate the potential use of mucoadhesive microspheres for gastroretentive delivery of acyclovir. Chitosan, thiolated chitosan, Carbopol 71G and Methocel K15M were used as mucoadhesive polymers. Microsphere formulations were prepared using emulsion-chemical crosslinking technique and evaluated in vitro, ex-vivo and in-vivo. Gelatin capsules containing drug powder showed complete dissolution (90.5 +/- 3.6%) in 1 h. The release of drug was prolonged to 12 h (78.8 +/- 3.9) when incorporated into mucoadhesive microspheres. The poor bioavailability of acyclovir is attributed to short retention of its dosage form at the absorption sites (in upper gastrointestinal tract to duodenum and jejunum). The results of mucoadhesion study showed better retention of thiolated chitosan microspheres (8.0 +/- 0.8 h) in duodenal and jejunum regions of intestine. The results of qualitative and quantitative GI distribution study also showed significant higher retention of mucoadhesive microspheres in upper GI tract. Pharmacokinetic study revealed that administration of mucoadhesive microspheres could maintain measurable plasma concentration of acyclovir through 24 h, as compared to 5 h after its administration in solution form. Thiolated chitosan microsphere showed superiority over the other formulations as observed with nearly 4.0-fold higher AUC(0-24) value (1,090 +/- 51 ng h/ml) in comparison to drug solution (281 +/- 28 ng h/ml). Overall, the result indicated prolonged delivery with significant improvement in oral bioavailability of acyclovir from mucoadhesive microspheres due to enhanced retention in the upper GI tract.

  9. Risk of Liver Abscess Formation in Patients with Prior Biliary Intervention Following Yttrium-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholapranee, Aurada; Houten, Diana van; Deitrick, Ginna

    PurposePatients without a competent sphincter of Oddi due to prior surgical or endoscopic therapy are at high risk for liver abscess following chemoembolization despite aggressive antimicrobial prophylaxis. We examined a cohort of such patients undergoing Y-90 resin radioembolization and compared them to a cohort of chemoembolized patients.MethodsReview of our quality-assurance database identified 24 radioembolizations performed in 16 patients with prior biliary intervention. An aggressive prophylactic regimen of oral levofloxacin and metronidazole 2 days pre-procedure continuing for 14 days after, oral neomycin/erythromycin bowel prep the day before, and IV levofloxacin/metronidazole the day of treatment was prescribed. Patients underwent resin microsphere radioembolization dosed accordingmore » to the BSA method. Patients had clinical, imaging, and laboratory assessment 1 month after each treatment, and then every 3 months. The chemoembolization cohort consisted of 13 patients with prior biliary intervention who had undergone 24 chemoembolization procedures.ResultsNo radioembolization patient developed an abscess. In the cohort of chemoembolized patients who received the same prophylaxis, liver abscess occurred following 3 of 24 (12.5 %) procedures in 3 of 13 (23 %) patients, one fatal.ConclusionsThis preliminary experience suggests that the risk of liver abscess among patients with prior biliary intervention may be lower following radioembolization than chemoembolization, which could potentially expand treatment options in this high-risk population.« less

  10. Prospective study to determine early hypertrophy of the contra-lateral liver lobe after unilobar, Yttrium-90, selective internal radiation therapy in patients with hepatocellular carcinoma.

    PubMed

    Teo, Jin Yao; Allen, John Carson; Ng, David Chee Eng; Abdul Latiff, Julianah Bee; Choo, Su Pin; Tai, David Wai-Meng; Low, Albert Su Chong; Cheah, Foong Koon; Chang, Jason Pik Eu; Kam, Juinn Huar; Lee, Victor T W; Chung, Alexander Yaw Fui; Chan, Chung Yip; Chow, Pierce Kah Hoe; Goh, Brian K P

    2018-05-01

    Liver resection is a major curative option in patients presenting with hepatocellular carcinoma. An inadequate functional liver remnant is a major limiting factor precluding liver resection. In recent years, hypertrophy of the functional liver remnant after selective internal radiation therapy hypertrophy has been observed, but the degree of hypertrophy in the early postselective internal radiation therapy period has not been well studied. We conducted a prospective study on patients undergoing unilobar, Yttrium-90 selective internal radiation therapy for hepatocellular carcinoma to evaluate early hypertrophy at 4-6 weeks and 8-12 weeks after selective internal radiation therapy. In the study, 24 eligible patients were recruited and had serial volumetric measurements performed. The median age was 66 years (38-75 years). All patients were either Child-Pugh Class A or B, and 6/24 patients had documented, clinically relevant portal hypertension; 15 of the 24 patients were hepatitis B positive. At 4-6 weeks, modest hypertrophy was seen (median 3%; range -12 to 42%) and this increased at 8-12 weeks (median 9%; range -12 to 179%). No preprocedural factors predictive of hypertrophy were identified. Hypertrophy of the functional liver remnant after selective internal radiation therapy with Yttrium-90 occurred in a subset of patients but was modest and unpredictable in the early stages. Selective internal radiation therapy cannot be recommended as a standard treatment modality to induce early hypertrophy for patients with hepatocellular carcinoma. (Surgery 2017;160:XXX-XXX.). Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Production of Zr-89 using sputtered yttrium coin targets 89Zr using sputtered yttrium coin targets.

    PubMed

    Queern, Stacy Lee; Aweda, Tolulope Aramide; Massicano, Adriana Vidal Fernandes; Clanton, Nicholas Ashby; El Sayed, Retta; Sader, Jayden Andrew; Zyuzin, Alexander; Lapi, Suzanne Elizabeth

    2017-07-01

    An increasing interest in zirconium-89 ( 89 Zr) can be attributed to the isotope's half-life which is compatible with antibody imaging using positron emission tomography (PET). The goal of this work was to develop an efficient means of production for 89 Zr that provides this isotope with high radionuclidic purity and specific activity. We investigated the irradiation of yttrium sputtered niobium coins and compared the yields and separation efficiency to solid yttrium coins. The sputtered coins were irradiated with an incident beam energy of 17.5MeV or 17.8MeV providing a degraded transmitted energy through an aluminum degrader of 12.5MeV or 12.8MeV, respectively, with various currents to determine optimal cyclotron conditions for 89 Zr production. Dissolution of the solid yttrium coin took 2h with 50mL of 2M HCl and dissolution of the sputtered coin took 15-30min with 4mL of 2M HCl. During the separation of 89 Zr from the solid yttrium coins, 77.9 ± 11.2% of the activity was eluted off in an average of 7.3mL of 1M oxalic acid whereas for the sputtered coins, 91 ± 6% was eluted off in an average of 1.2mL of 1M oxalic acid with 100% radionuclidic purity. The effective specific activity determined via DFO-SCN titration from the sputtered coins was 108±7mCi/μmol as compared to 20.3mCi/μmol for the solid yttrium coin production. ICP-MS analysis of the yttrium coin and the sputtered coins showed 99.99% yttrium removed with 178μg of yttrium in the final solution and 99.93-100% of yttrium removed with remaining range of 0-42μg of yttrium in the final solution, respectively. The specific activity calculated for the solid coin and 3 different sputtered coins using the concentration of Zr found via ICP-MS was 140±2mCi/μmol, 300±30mCi/μmol, 410±60mCi/μmol and 1719±5mCi/μmol, respectively. Labeling yields of the 89 Zr produced via sputtered targets for 89 Zr- DFO-trastuzumab were >98%. Overall, these results show the irradiation of yttrium sputtered niobium coins

  12. 99mTc-MAA/ 90Y-Bremsstrahlung SPECT/CT after simultaneous Tc-MAA/90Y-microsphere injection for immediate treatment monitoring and further therapy planning for radioembolization.

    PubMed

    Ahmadzadehfar, Hojjat; Sabet, Amir; Muckle, Marianne; Wilhelm, Kai; Reichmann, Karl; Biersack, Hans-Jürgen; Ezziddin, Samer

    2011-07-01

    An angiographic evaluation combined with (99m)Tc-macroaggregated albumin (Tc-MAA) scanning should precede the treatment of any selected candidates for radioembolization (RE) of the liver. If the tumours in one liver lobe have not been targeted in the test angiogram, it should be repeated. However, in a few cases treatment of one liver lobe or at least some segments is safe and feasible and performing a repeated test angiogram with Tc-MAA (Re-MAA) in a separate session leads to more radiation exposure and could be time consuming. Our aim was to evaluate the feasibility of concurrent RE of a part of the liver and therapy planning for another region by simultaneous injection of the Tc-MAA and (90)Y-microspheres in two different locations in the therapy session. Tc-MAA and bremsstrahlung (BS) single photon emission computed tomography (SPECT)/CT were performed separately in an effort to distinguish between the distributions of these two different radiopharmaceuticals. RE was combined with a simultaneous second test angiogram of another lobe or segments in the same session in six patients [44-70 years; five women (83%)]. Five patients suffered from colorectal carcinoma (CRC) and one from ovarian cancer. Tc-MAA and BS SPECT/CT were performed for all cases. Post-therapeutic Tc-MAA SPECT/CT showed in all patients only the distribution of Tc-MAA without any detectable BS. Evaluation of (90)Y-microsphere distribution was not always possible in the post-therapeutic BS scan performed 24 h later due to remaining Tc-MAA radiation. However, scans performed at 48 h post-intervention no longer showed any Tc-MAA "contamination". Combining RE and Re-MAA is feasible in appropriately selected patients.

  13. Lung Shunt Fraction prior to Yttrium-90 Radioembolization Predicts Survival in Patients with Neuroendocrine Liver Metastases: Single-Center Prospective Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, Johannes M.; Ambinder, Emily McIntosh; Ghodadra, Anish

    ObjectiveTo investigate survival outcomes following radioembolization with Yttrium-90 (Y90) for neuroendocrine tumor liver metastases (NETLMs). This study was designed to assess the efficacy of Y90 radioembolization and to evaluate lung shunt fraction (LSF) as a predictor for survival.MethodsA single-center, prospective study of 44 consecutive patients (median age: 58.5 years, 29.5 % male) diagnosed with pancreatic (52.3 %) or carcinoid (47.7 %) NETLMs from 2006 to 2012 who underwent Y90 radioembolization was performed. Patients’ baseline characteristics, including LSF and median overall survival (OS) from first Y90 radioembolization, were recorded and compared between patients with high (≥10 %) and low (<10 %) LSF. Baseline comparisons were performed usingmore » Fisher’s exact tests for categorical and Mann–Whitney U test for continuous variables. Survival was calculated using the Kaplan–Meier method. Univariate (Wilcoxon rank-sum test) and multivariate analyses (Cox Proportional Hazard Model) for risk factor analysis were performed.ResultsThere was no statistically significant difference in age, gender, race, tumor properties, or previous treatments between patients with high (n = 15) and low (n = 29) LSF. The median OS was 27.4 months (95 %CI 12.73–55.23), with 4.77 months (95 %CI 2.87–26.73) for high and 42.77 months (95 %CI 18.47–59.73) for low LSF (p = 0.003). Multivariate analysis identified high LSF (p = 0.001), total serum bilirubin >1.2 mg (p = 0.016), and lack of pretreatment with octreotide (p = 0.01) as independent prognostic factors for poorer survival. Tumor type and total radiation dose did not predict survival.ConclusionsLSF ≥10 %, elevated bilirubin levels, and lack of pretreatment with octreotide were found to be independent prognostic factors for poorer survival in patients with NETLMs.« less

  14. Outcomes of Radioembolization in the Treatment of Hepatocellular Carcinoma with Portal Vein Invasion: Resin versus Glass Microspheres.

    PubMed

    Biederman, Derek M; Titano, Joseph J; Tabori, Nora E; Pierobon, Elisa S; Alshebeeb, Kutaiba; Schwartz, Myron; Facciuto, Marcelo E; Gunasekaran, Ganesh; Florman, Sander; Fischman, Aaron M; Patel, Rahul S; Nowakowski, Francis S; Kim, Edward

    2016-06-01

    To compare outcomes of yttrium-90 radioembolization performed with resin-based ((90)Y-resin) and glass-based ((90)Y-glass) microspheres in the treatment of hepatocellular carcinoma (HCC) with associated portal vein invasion. A single-center retrospective review (January 2005-September 2014) identified 90 patients ((90)Y-resin, 21; (90)Y-glass, 69) with HCC and ipsilateral portal vein thrombosis (PVT). Patients were stratified according to age, sex, ethnicity, Child-Pugh class, Eastern Cooperative Oncology Group status, α-fetoprotein > 400 ng/mL, extent of PVT, tumor burden, and sorafenib therapy. Outcome variables included clinical and laboratory toxicities (Common Terminology Criteria Adverse Events, Version 4.03), imaging response (modified Response Evaluation Criteria in Solid Tumors), time to progression (TTP), and overall survival (OS). Grade 3/4 bilirubin and aspartate aminotransferase toxicities developed at a 2.8-fold (95% confidence interval [CI], 1.3-6.1) and 2.6-fold (95% CI, 1.1-6.1) greater rate in the (90)Y-resin group. The disease control rate was 37.5% in the (90)Y-resin group and 54.5% in the (90)Y-glass group (P = .39). The median (95% CI) TTP was 2.8 (1.9-4.3) months in the (90)Y-resin group and 5.9 (4.2-9.1) months in the (90)Y-glass group (P = .48). Median (95% CI) survival was 3.7 (2.3-6.0) months in the (90)Y-resin group and 9.4 (7.6-15.0) months in the (90)Y-glass group (hazard ratio, 2.6; 95% CI, 1.5-4.3, P < .001). Additional multivariate predictors of improved OS included age < 65 years, Eastern Cooperative Oncology Group status < 1, α-fetoprotein ≤ 400 ng/mL, and unilobar tumor distribution. Imaging response of (90)Y treatment in patients with HCC and PVT was not significantly different between (90)Y-glass and (90)Y-resin groups. Lower toxicity and improved OS were observed in the (90)Y-glass group. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  15. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, S J.; Goris, M L.; Tempero, M

    A Phase II study of yttrium-90-tetra-azacyclododecanetetra-acetic acid-biotin (Y-90-DOTA-biotin) pretargeted by NR-LU-10 antibody/streptavidin (SA) was performed. The primary objectives of the study were to evaluate the efficacy and safety of this therapy in patients with metastatic colon cancer. Twenty-five patients were treated with a single dose of 110 mCi/m{sup 2} (mean administered dose, 106.5-10.3 mCi/m{sup 2}) of Y-90-DOTA-biotin. There were three components of the therapy. Patients first received NR-LU-10/SA on day 1. A clearing agent (biotin-galactose-human serum albumin) was administered 48 h after the NR-LU-10/SA to remove residual circulating unbound NR-LU-10/SA. Lastly, 24 h after administration of clearing agent, patients receivedmore » biotin-DOTA-labeled with 110 mCi/m{sup 2} Y-90. All three components of the therapy were administered i.v. Both hematological and nonhematological toxicities were observed. Diarrhea was the most frequent grade 4 nonhematological toxicity (16%; with 16% grade 3 diarrhea). Hematological toxicity was less severe with 8% grade 3 and 8% grade 4 neutropenia and 8% grade 3 and 16% grade 4 thrombocytopenia. The overall response rate was 8%. Two partial responders had freedom from progression of 16 weeks. Four patients (16%) had stable disease with freedom from progression of 10-20 weeks. Despite the relatively disappointing results of this study in terms of therapeutic efficacy and toxicity, proof of principle was obtained for the pretargeting approach. In addition, valuable new information was obtained about normal tissue tolerance to low-dose-rate irradiation that will help to provide useful guidelines for future study designs.« less

  16. Rapid determination of strontium-90 by solid phase extraction using DGA Resin® for seawater monitoring

    NASA Astrophysics Data System (ADS)

    Tazoe, H.; Obata, H.; Yamagata, T.; Karube, Z.; Yamada, M.

    2015-12-01

    Strontium-90 concentrations in seawater exceeding the background level have been observed at the accidents of nuclear facilities, such as Chernobyl and Fukushima. However, analytical procedure for strontium-90 in seawater is still quite complicated and challenging. Here we show a simple and rapid analytical technique for the determination of strontium-90 in seawater samples without time-consuming separation of strontium from calcium. The separation with DGA Resin® is used to determine the abundance of strontium-90, which selectively collects yttrium-90, progeny of strontium-90. Naturally occurring radioactive nuclides (such as potassium, lead, bismuth, uranium, and thorium) and anthropogenic radionuclides (such as cesium, barium, lanthanum, and cerium) were separated from yttrium. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 93.9 % for seawater. The result of IAEA 443 certified seawater analysis was in good agreement with the certified value. At 20 hrs counting a lower detection limit of 1.5 mBq L-1 was obtained from 3 L of seawater. The proposed method can finish analyzing 8 samples per day, which is a reasonably fast throughput in actual seawater monitoring. Reproducibility was found to be 3.4 % according to 10 separate analyses of natural seawater samples from the vicinity of Fukushima Daiichi Nuclear Power Plant in September 2013.

  17. PREPARATION OF FLOWER-LIKE Co3O4/Fe3O4 MAGNETIC MICROSPHERES FOR PHOTODEGRADATION OF RhB UNDER UV LIGHT

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliang; Zhang, Hepeng; Zhou, Lunwei; Ali, Nisar; Geng, Wangchang; Zhang, Qiuyu

    2013-07-01

    Flower-like Co3O4/Fe3O4 magnetic microspheres were prepared by coprecipitation of Fe2+ and Fe3+ in presence of flower-like Co3O4 microspheres as template. The preparation process included three steps: preparation of flower-like Co3O4 microspheres by hydrothermal method; immersion of Fe2+ and Fe3+ ions; coprecipitation in the presence of OH-. Rhodamine B (RhB) was chosen as model pollutants to investigate the photodegradation capacities of Co3O4/Fe3O4 magnetic microspheres. The results showed that the microspheres exhibited excellent degradation property and can be recycled to use again. After four times use the degradation efficiency was still above 90%.

  18. Computed tomography hepatic arteriography has a hepatic falciform artery detection rate that is much higher than that of digital subtraction angiography and 99mTc-MAA SPECT/CT: implications for planning 90Y radioembolization?

    PubMed

    Burgmans, M C; Too, C W; Kao, Y H; Goh, A S W; Chow, P K H; Tan, B S; Tay, K H; Lo, R H G

    2012-12-01

    To compare the hepatic falciform artery (HFA) detection rates of digital subtraction angiography (DSA), computed tomography hepatic arteriography (CTHA) and 99mTc-macroaggregated albumin (99mTc-MAA) single photon emission computed tomography with integrated CT (SPECT/CT) and to correlate HFA patency with complication rates of yttrium-90 (90Y) radioembolization. From August 2008 to November 2010, 79 patients (range 23-83 years, mean 62.3 years; 67 male) underwent pre-treatment DSA, CTHA and 99mTc-MAA scintigraphy (planar/SPECT/CT) to assess suitability for radioembolization with 90Y resin microspheres. Thirty-seven patients were excluded from the study, because CTHA was performed with a catheter position that did not result in opacification of the liver parenchyma adjacent to the falciform ligament. DSA, CTHA and 99mTc-MAA SPECT/CT images and medical records were retrospectively reviewed. A patent HFA was detected in 22 of 42 patients (52.3%). The HFA detection rates of DSA, CTHA and 99mTc-MAA SPECT/CT were 11.9%, 52.3% and 13.3%, respectively (p<0.0001). An origin from the segment 4 artery was seen in 51.7% of HFAs. Prophylactic HFA coil-embolization prior to 90Y microspheres infusion was performed in 2 patients. Of the patients who underwent radioembolization with a patent HFA, none developed supra-umbilical radiation dermatitis. One patient experienced epigastric pain attributed to post-embolization syndrome and was managed conservatively. The HFA detection rate of CTHA is superior to that of DSA and 99mTc-MAA SPECT/CT. Complications related to non-target radiation of the HFA vascular territory rarely occur, even in patients undergoing radioembolization with a patent HFA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  20. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  1. Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder.

    PubMed

    Tian, Ji-Yuan; Sun, Xiu-Qin; Chen, Xi-Guang

    2008-05-01

    Oral delivery of plasmid DNA (pDNA) is a desirable approach for fish immunization in intensive culture. However, its effectiveness is limited because of possible degradation of pDNA in the fish's digestive system. In this report, alginate microspheres loaded with pDNA coding for fish lymphocystis disease virus (LCDV) and green fluorescent protein were prepared with a modified oil containing water (W/O) emulsification method. Yield, loading percent and encapsulation efficiency of alginate microspheres were 90.5%, 1.8% and 92.7%, respectively. The alginate microspheres had diameters of less than 10 microm, and their shape was spherical. As compared to sodium alginate, a remarkable increase of DNA-phosphodiester and DNA-phosphomonoester bonds was observed for alginate microspheres loaded with pDNA by Fourier transform infrared (FTIR) spectroscopic analysis. Agarose gel electrophoresis showed a little supercoiled pDNA was transformed to open circular and linear pDNA during encapsulation. The cumulative release of pDNA in alginate microspheres was 9.0 alkaline media in 12h. RT-PCR and immunofluorescence imaging indicated that pDNA expressed RNA and green fluorescent protein in tissues of fish 10-90 days after oral administration. An indirect enzyme-linked immunosorbent assay (ELISA) showed that sera were positive (OD >or=0.3) for anti-LCDV antibody from week 3 to week 16 for fish orally vaccinated with alginate microspheres loaded with pDNA, in comparison with fish orally vaccinated with naked pDNA. Our results display that alginate microspheres obtained by W/O emulsification are promising carriers for oral delivery of pDNA. This encapsulation technique has the potential for DNA vaccine delivery applications due to its ease of operation, low cost and significant immune effect.

  2. pH-Sensitive Self-Assembled Microspheres Composed of Poly(Ethyleneimine) and Cinnamic Acid.

    PubMed

    Park, Danbi; Lee, Seung-Jun; Kim, Jin-Chul

    2018-01-01

    Microspheres which were sensitive to pH change were developed by utilizing cinnamic acid (CA) as a physical cross-linker for poly(ethyleneimine) (PEI). At pH 7.0, the microspheres were efficiently formed at the PEI/CA ratio of 1:3.4, 1:5.1, and 1:7.1 (w/w), which corresponded to the protonated amino group/deprotonated carboxyl group ratio of 5:5, 4:6, and 3:7. The mean diameter of wet microspheres was 3.2 ± 0.3 to 8.8 ± 0.5 μm and that of dry ones was 1.7 ± 0.2 to 2.7 ± 0.2 μm. The microspheres were disappeared upon the alkalification, possibly because the electrostatic interaction between PEI and CA was slackened down and the hydrophobic interaction among CA molecules was weakened. At pH 5.0 and 7.0, the microsphere released its content in a sustained manner and the release degree in 24 h was less than 40%. Whereas, at pH 8.0 and 9.0, the microsphere exhibited a burst release and the release degree in 24 h was greater than 80%. In the alkali condition, not only the electrostatic interaction between PEI and CA but also the hydrophobic interaction among CA molecules became weaker, leading to the disintegration of the microsphere and resulting in a burst and intensive release.

  3. THE TREATMENT OF CHILDRENS' HEMANGIOMA AND NEVUS FLAMMEUS WITH Sr$sup 90$ AND Y$sup 9$$sup 0$ (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lossl, H.; Jakob, A.

    The authors report the excellent results obtained in the radiotherapy of the hemangioma of the child and of the nevus flammeus by means of strontium-90 and yttrium-90. The method is preferred to others as it reduces the charge of rays on the growing skeleton of the child ami on the gonads. In case of smaller lesions the application of strontium-90 (total dose 3000 to 5000 rep) and surface irradiation by means of yttrium-90 foils (total dose 3000 to 4000 rep) produce good results. The single dose should be around 1OOO rep. The dosage has to be fixed according to themore » erythema which appears with medium intensity. To judge from the gathered experiences the results of this therapy are equivalent to those of radium treatment or Chaoul's close irradiation. (auth)« less

  4. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  5. Enteric-coated epichlorohydrin crosslinked dextran microspheres for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2015-01-01

    Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25 µm. About 90% of drug was released from uncoated dextran microspheres within 8 h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.

  6. Application of the CIEMAT-NIST method to plastic scintillation microspheres.

    PubMed

    Tarancón, A; Barrera, J; Santiago, L M; Bagán, H; García, J F

    2015-04-01

    An adaptation of the MICELLE2 code was used to apply the CIEMAT-NIST tracing method to the activity calculation for radioactive solutions of pure beta emitters of different energies using plastic scintillation microspheres (PSm) and (3)H as a tracing radionuclide. Particle quenching, very important in measurements with PSm, was computed with PENELOPE using geometries formed by a heterogeneous mixture of polystyrene microspheres and water. The results obtained with PENELOPE were adapted to be included in MICELLE2, which is capable of including the energy losses due to particle quenching in the computation of the detection efficiency. The activity calculation of (63)Ni, (14)C, (36)Cl and (90)Sr/(90)Y solutions was performed with deviations of 8.8%, 1.9%, 1.4% and 2.1%, respectively. Of the different parameters evaluated, those with the greatest impact on the activity calculation are, in order of importance, the energy of the radionuclide, the degree of quenching of the sample and the packing fraction of the geometry used in the computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S; Green, G; Sehgal, V

    Purpose: The purpose of this study is to assess the dose response of radioembolization using yttrium-90 (Y-90) microspheres in patients treated for unresectable cholangiocarcinoma. This study utilized partition dosimetry model for the dose calculation. The results show survival benefit with dose escalation. Methods: Between February 2009 and March 2013, ten patients with pathology proven unresectable cholangiocarcinoma were radioembolized with Y-90 microspheres. Patients underwent initial pre-treatment angiographic assessment for blood flow and 99mTc- MAA for lung shunt evaluation. Activity of Y-90 administration was calculated using the Body Surface Area (BSA) and target volumes which were determined by contouring the pre-treatment MRI/CTmore » images using a radiation therapy treatment planning system. Medical Internal Radiation Dose (MIRD) method was used to assess the dosimetric results of Y90. Partition model based on the tumor to-liver activity uptake estimated from pretreatment 99mTc- MAA study was used to calculate the dose delivered to the target. The variables assessed included: administered dose, toxicity based on clinical changes, imaging based tumor response, and survival. Results: Ten patients were radioembolized with Y-90 microspheres to either one hepatic lobe or both left and right lobes. Patients were stratified by dose. Four patients who received dose greater than 140Gy (p < 0.05) all survived. The corresponding activity they received was greater than 35 mCi. Six out of ten patients died of disease with median survival of 18 weeks (range 12–81wks). Conclusion: Given the growing body of data for Y-90 microspheres in the context of cholangiocarcinoma, radioembolization may become an important treatment modality for an appropriately selected group of patients. Our study further substantiates past studies and shows additional evidence of a survival benefit with dose escalation.« less

  8. Combined radiochemical procedure for determination of plutonium, americium and strontium-90 in the soil samples from SNTS

    NASA Astrophysics Data System (ADS)

    Kazachevskii, I. V.; Lukashenko, S. N.; Chumikov, G. N.; Chakrova, E. T.; Smirin, L. N.; Solodukhin, V. P.; Khayekber, S.; Berdinova, N. M.; Ryazanova, L. A.; Bannyh, V. I.; Muratova, V. M.

    1999-01-01

    The results of combined radiochemical procedure for the determination of plutonium, americium and90Sr (via measurement of90Y) in the soil samples from SNTS are presented. The processes of co-precipitation of these nuclides with calcium fluoride in the strong acid solutions have been investigated. The conditions for simultaneous separation of americium and yttrium using extraction chromatography have been studied. It follows from analyses of real soil samples that the procedure developed provides the chemical recovery of plutonium and yttrium in the range of 50-95% and 60-95%, respectively. The execution of the procedure requires 3.5 working days including a sample decomposition study.

  9. Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Tian, Jiyuan; Yu, Juan; Sun, Xiuqin

    2008-12-15

    Oral DNA-based immunotherapy is a new treatment option for fish immunisation in intensive culture. However, because of the existence of the nucleases and severe gastrointestinal conditions, DNA-based vaccines can be hydrolyzed or denatured. In our laboratory, a plasmid DNA (pDNA) containing major capsid protein (MCP) gene of lymphocystis disease virus (LCDV) was prepared, and then pDNA was encapsulated in chitosan microspheres through an emulsion-based methodology. The yield, loading percent and encapsulation efficiency of microspheres were 93.6%, 0.3% and 94.5%, respectively. Scanning electron microscopy (SEM) showed that pDNA-loaded microspheres yielded a spherical shape with smooth surfaces. The disproportion of super-coiled to open circle and linear pDNA suggested that high transfection efficiencies of pDNA in microspheres were retained. The cumulative release of pDNA showed that chitosan microspheres were resistant to degradation in simulated gastrointestinal tract environment. The release profile at PBS buffer (pH 7.4) displayed that pDNA-loaded chitosan microspheres had a release up to 42 days after intestinal imbibition. RT-PCR showed that RNA containing information of MCP gene existed in various tissues 10-90 days post-vaccination. SDS-PAGE and immunofluorescent images indicated that pDNA expressed MCP in tissues of fish 10-90 days after oral administration. In addition, indirect ELISA displayed that the immune responses of sera were positive (O.D.> or =0.3) from week 1 to week 16 for fish vaccinated with microspheres, in comparison with fish vaccinated with naked pDNA. Data obtained suggested that chitosan microspheres were promising carriers for oral pDNA vaccine. Because this encapsulation technique was easy to operate and immunisation efficacy of microspheres loaded with pDNA was significant, it had potential to be used in drug delivery applications.

  10. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying

    2016-05-01

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  11. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    PubMed

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  12. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of

  13. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    PubMed

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the

  14. Chitosan-HPMC-blended microspheres as a vaccine carrier for the delivery of tetanus toxoid.

    PubMed

    Arthanari, Saravanakumar; Mani, Ganesh; Peng, Mei Mei; Jang, Hyun Tae

    2016-01-01

    The purpose of this research was to develop a suitable and alternate adjuvant for the tetanus toxoid (TT) vaccine that induces long term immunity after a single-dose immunization. In our study, the preformulation studies were carried out by using different ratios (7/3, 8/2, and 9/1) of chitosan-hydroxypropyl methylcellulose (HPMC)-blended empty microspheres. Moreover, TT was stabilized with heparin (at heparin concentrations of 1%, 2%, 3%, and 4% w/v) and encapsulated in ideal chitosan - HPMC (CHBMS) microspheres, by the water-in-oil-in-water (W/O/W) multiple emulsion method. The vaccine entrapment and the in vitro release efficiency of the CHBMS was evaluated for a period of 90 days. The release of antigens from the microspheres was determined by ELISA. Antigen integrity was investigated by SDS-PAGE. From the optimization studies, it was found that a chitosan/HPMC ratio of 8/2 produced a good yield, with microspheres that were spherical, regular and uniformly-sized. In the CHBMS, a heparin concentration of 3% w/v resulted in well-sustained antigen delivery for a period of 90 days. It was found that the characteristics of initial release could be observed in 2 days, followed by a constant release, and an almost 100% complete release in 90 days. From the in vitro release characteristics, the ideal batch of CHBMS (3% w/v heparin) was evaluated for in vivo studies by the antibody induction method. The antibody levels were measured for different combinations for the period of 9 months, and finally, with a second booster dose after 1 year. In conclusion, it was observed that CHBMS (combination-1) resulted in the antibody level of 4.5 IU/mL of guinea pig serum, and the level was 3.5 IU/mL for the Central Research Institute's alum-adsorbed tetanus toxoid (CRITT) (combination 2), after 1 year, with a second booster dose. This novel approach of using CHBMS may have potential advantages for single-step immunization with vaccines.

  15. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  16. Complex upper arm reconstruction using an antero-lateral thigh free flap after an extravasation of Yttrium-90-ibritumomab Tiuxetan: A case report and literature review.

    PubMed

    Baus, A; Keilani, C; Bich, C-S; Entine, F; Brachet, M; Duhamel, P; Amabile, J-C; Malfuson, J V; Bey, E

    2018-04-01

    Yttrium-90-Ibritumomab Tiuxetan (Zevalin ® ) is used in the treatment of non- Hodgkin's lymphoma. Extravasation is an iatrogenic complication that is fortunately rare. However, the treatment of this complication is often complex due to the risk of extensive skin necrosis and unpredictable evolution of localized irradiation. This vesicant drug requires emergency management when extravasation occured. Radiations burns have specificities. Therefore, wound coverage involves specific plastic surgical techniques. Here, we report the case of a man presenting a chronic and extensive skin necrosis of upper arm treated with an antero-lateral thigh free flap. Moreover, we compare our experience of Zevalin ® extravasation management to other past publications and propose recommendations to prevent this unacceptable complication. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  18. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  19. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  20. Surface rejuvenation for multilayer metal deposition on polymer microspheres via self-seeded electroless plating

    NASA Astrophysics Data System (ADS)

    Karagoz, Bunyamin; Sirkecioglu, Okan; Bicak, Niyazi

    2013-11-01

    A surface rejuvenation process was developed for generation variable thickness of metal deposits on polymer microspheres via electroless plating. Thus, Ni(II), Cu(II) and Ag(I) complexes formed on triethylenetetramine (TETA) functional crosslinked poly(glycidyl methacrylate) (PGMA) microspheres were reduced to zero-valent metals. The resulting metals (1.1-1.5 mmol g-1) were employed as seed points for electroless metal plating (self-seeding) without using Pd or tin pre-activating species. Treatment of the metalized surfaces with hydrazine or hydrazinium formate was demonstrated to reactivate (rejuvenate) the surface and allows further metal deposition from electroless plating solutions. Followed repeating of the surface rejuvenation-metalization steps resulted in step wise increasing of the metal deposits (90-290 mg per g in each cycle), as inferred from metal analyses, ESEM and XPS analysis. Experiments showed that, after 6 times of cycling the metal deposits exceed 1 g per g of the microspheres on average. The process seemed to be promising for tuning up of the metal thickness by stepwise electroless plating.

  1. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation With Treatment Efficacy.

    PubMed

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-06-01

    ⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20

  2. Preparation and evaluation of microspheres of xyloglucan and its thiolated xyloglucan derivative.

    PubMed

    Sonawane, Savita; Bhalekar, Mangesh; Shimpi, Shamkant

    2014-08-01

    Xyloglucan is a natural polymer reported to possess mucoadhesive properties. To enhance the mucoadhesion potential, xyloglucan was thiolated with cysteine. The microspheres of xyloglucan were prepared using a biocompatible crosslinker sodium trimetaphosphate and it was optimized for formulation variables, namely polymer concentration, internal:external phase ratio and stirring speed using a Box-Behnken experimental design. The formulation was also optimized for performance parameters like entrapment, t80 and % mucoadhesion. The microspheres were characterized by Fourier transform infrared spectroscopy, DSC and SEM for the optimum formula and then were reproduced by replacing the xyloglucan with thiomer. The microspheres formed showed entrapment efficiency of about 80%, t80 of about 400min and % mucoadhesion of 60% while same for thiomer were 90%, 500min and 80% respectively. In oral glucose tolerance test protocol the thiomer microspheres showed significant reduction in blood glucose levels. Thus thiolated xyloglucan offers a better polymer for multiparticulate drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High-density, microsphere-based fiber optic DNA microarrays.

    PubMed

    Epstein, Jason R; Leung, Amy P K; Lee, Kyong Hoon; Walt, David R

    2003-05-01

    A high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well. The microwell array is capable of housing complementary-sized microspheres, each containing thousands of copies of a unique oligonucleotide probe sequence. The array fabrication process results in random microsphere placement. Determining the position of microspheres in the random array requires an optical encoding scheme. This array platform provides many advantages over other array formats. The microsphere-stock suspension concentration added to the etched fiber can be controlled to provide inherent sensor redundancy. Examining identical microspheres has a beneficial effect on the signal-to-noise ratio. As other sequences of interest are discovered, new microsphere sensing elements can be added to existing microsphere pools and new arrays can be fabricated incorporating the new sequences without altering the existing detection capabilities. These microarrays contain the smallest feature sizes (3 microm) of any DNA array, allowing interrogation of extremely small sample volumes. Reducing the feature size results in higher local target molecule concentrations, creating rapid and highly sensitive assays. The microsphere array platform is also flexible in its applications; research has included DNA-protein interaction profiles, microbial strain differentiation, and non-labeled target interrogation with molecular beacons. Fiber optic microsphere-based DNA microarrays have a simple fabrication protocol enabling their expansion into other applications, such as single cell-based assays.

  4. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  5. Effects of radiolysis on yttrium-90-labeled Lym-1 antibody preparations.

    PubMed

    Salako, Q A; O'Donnell, R T; DeNardo, S J

    1998-04-01

    Ci/mg. Human serum albumin proved to be an effective radioprotectant as the initial 100% immunoreactivity of the product at 2 mCi/mg was retained for 72 hr. The results underscore the need for appropriate formulations and dilutions of clinical doses of 90Y immunopharmaceuticals immediately after manufacture.

  6. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    PubMed

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  7. Experience with indium-111 and yttrium-90-labeled somatostatin analogs.

    PubMed

    Virgolini, I; Traub, T; Novotny, C; Leimer, M; Füger, B; Li, S R; Patri, P; Pangerl, T; Angelberger, P; Raderer, M; Burggasser, G; Andreae, F; Kurtaran, A; Dudczak, R

    2002-01-01

    The high level expression of somatostatin receptors (SSTR) on various tumor cells has provided the molecular basis for successful use of radiolabeled octreotide / lanreotide analogs as tumor tracers in nuclear medicine. Other (nontumoral) potential indications for SSTR scintigraphy are based on an increased lymphocyte binding at sites of inflammatory or immunologic diseases such as thyroid-associated ophthalmology. The vast majority of human tumors seem to over-express the one or the other of five distinct hSSTR subtype receptors. Whereas neuroendocrine tumors frequently overexpress hSSTR2, intestinal adenocarcinomas seem to overexpress more often hSSTR3 or hSSTR4, or both of these hSSTR. In contrast to In-DTPA-DPhe(1)-octreotide (OctreoScan(R)) which binds to hSSTR2 and 5 with high affinity (Kd 0.1-5 nM), to hSSTR3 with moderate affinity (K(d) 10-100 nM) and does not bind to hSSTR1 and hSSTR4, (111)In / (90)Y-DOTA-lanreotide was found to bind to hSSTR2, 3, 4, and 5 with high affinity, and to hSSTR1 with lower affinity (K(d) 200 nM). Based on its unique hSSTR binding profile, (111)In-DOTA-lanreotide was suggested to be a potential radioligand for tumor diagnosis, and (90)Y-DOTA-lanreotide suitable for receptor-mediated radionuclide therapy. As opposed to (111)In-DTPA-DPhe(1)-octreotide and (111)In-DOTA-DPhe(1)-Tyr(3)-octreotide, discrepancies in the scintigraphic results were seen in about one third of (neuroendocrine) tumor patients concerning both the tumor uptake as well as detection of tumor lesions. On a molecular level, these discrepancies seem to be based on a "higherrdquuo; high-affinity binding of (111)In-DOTA-DPhe(1)-Tyr(3)-octreotide to hSSTR2 (K(d) 0.1-1 nM). Other somatostatin analogs with divergent affinity to the five known hSSTR subtype receptors have also found their way into the clinics, such as (99m)Tc-depreotide (NeoSpect(R); NeoTect(R)). Most of the imaging results are reported for neuroendocrine tumors (octreotide analogs) or nonsmall cell

  8. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Cao, Pei-Pei; Zhao, Jie; Wang, Zhi-Ying; Li, Jun-Bo; Zhang, Fa-Liang

    2014-12-01

    Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 μm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/ V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCl and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.

  9. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    PubMed Central

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  10. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  11. Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification.

    PubMed

    Wei, Qiang; Wei, Wei; Tian, Rui; Wang, Lian-Yan; Su, Zhi-Guo; Ma, Guang-Hui

    2008-07-15

    Relatively uniform-sized poly(lactide-co-ethylene glycol) (PELA) microspheres with high encapsulation efficiency were prepared rapidly by a novel method combining emulsion-solvent extraction and premix membrane emulsification. Briefly, preparation of coarse double emulsions was followed by additional premix membrane emulsification, and antigen-loaded microspheres were obtained by further solidification. Under the optimum condition, the particle size was about 1 mum and the coefficient of variation (CV) value was 18.9%. Confocal laser scanning microscope and flow cytometer analysis showed that the inner droplets were small and evenly dispersed and the antigen was loaded uniformly in each microsphere when sonication technique was occupied to prepare primary emulsion. Distribution pattern of PEG segment played important role on the properties of microspheres. Compared with triblock copolymer PLA-PEG-PLA, the diblock copolymer PLA-mPEG yielded a more stable interfacial layer at the interface of oil and water phase, and thus was more suitable to stabilize primary emulsion and protect coalescence of inner droplets and external water phase, resulting in high encapsulation efficiency (90.4%). On the other hand, solidification rate determined the time for coalescence during microspheres fabrication, and thus affected encapsulation efficiency. Taken together, improving the polymer properties and solidification rate are considered as two effective strategies to yield high encapsulation.

  12. Preparation and Characterization of Silica Aerogel Microspheres

    PubMed Central

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-01-01

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4–20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112–0.287 g/cm3 and 207.5–660.6 m2/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery. PMID:28772795

  13. Preparation and Characterization of Silica Aerogel Microspheres.

    PubMed

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-04-20

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4-20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112-0.287 g/cm³ and 207.5-660.6 m²/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery.

  14. Acrolein Microspheres Are Bonded To Large-Area Substrates

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Yen, Richard C. K.

    1988-01-01

    Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.

  15. Gastric injury from (90)Y to left hepatic lobe tumors adjacent to the stomach: fact or fiction?

    PubMed

    Gates, Vanessa L; Hickey, Ryan; Marshall, Karen; Williams, Melissa; Salzig, Krystina; Lewandowski, Robert J; Salem, Riad

    2015-12-01

    Radioembolization with (90)Y microspheres is a locoregional radiation therapy for unresectable hepatic neoplasm. Non-target delivery of (90)Y microspheres resulting in gastrointestinal (GI) symptoms is a recognized complication; there is minimal knowledge regarding the radiation effect to the gastric wall from left hepatic lobe (90)Y treatments. Our aim was to study the incidence of GI complications when the target tissue (hepatic parenchyma ± tumor) is in close proximity to the gastric wall. We hypothesized that liver (tumor) to stomach proximity does not correlate with increased toxicity. Between November 2011 and September 2013, we studied all patients who underwent left lobe radioembolization with (90)Y glass microspheres. With Institutional Review Board (IRB) approval, we retrospectively reviewed MRI/CT images of these patients, identifying a subset of patients with the left hepatic lobe <1 cm from the gastric wall. Patients were seen in clinic 1 month posttreatment and subsequently at 3-month intervals. Short- and long-term gastric adverse events were tabulated. Ninety-seven patients successfully underwent left hepatic lobe (90)Y microsphere radioembolization in which the average distance from the liver to the stomach wall was 1.0 ± 2.8 mm. The average dose for patients who received radioembolization to the left hepatic lobe was 109 ± 57 Gy. Fifty patients had tumor within 1 cm of the gastric wall. The average dose for patients who received radioembolization to the left hepatic lobe with tumor within 1 cm of the gastric wall was 121 ± 41 Gy. There were no reportable or recordable medical events. Of the patients, 34% reported abdominal pain that was grade 1-2; 65% of the patients reported no abdominal pain. None of the 97 patients developed a clinically evident GI ulcer. Patients with left lobe tumors adjacent to or abutting the stomach do not exhibit acute or chronic radiation effects following radioembolization with glass microspheres.

  16. Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity

    PubMed Central

    Eichler-Volf, Anna; Xue, Longjian; Kovalev, Alexander; Gorb, Elena V.; Gorb, Stanislav N.; Steinhart, Martin

    2016-01-01

    Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In contrast to the influence of topography, the influence of relative humidity (RH) on adhesion has been widely neglected. Some previous works deal with the influence of RH on the adhesive performance of fibrillar adhesive pads. Commonly, humidity-induced softening of the fibrils enhances adhesion. However, little is known on the influence of RH on solid anti-adhesive surfaces. We prepared polymeric nanoporous monolithic microsphere arrays (NMMAs) with microsphere diameters of a few 10 µm to test their anti-adhesive properties at RHs of 2% and 90%. Despite the presence of continuous nanopore systems through which the inner nanopore walls were accessible to humid air, the topography-induced anti-adhesive properties of NMMAs on tacky counterpart surfaces were retained even at RH = 90%. This RH-independent robustness of the anti-adhesive properties of NMMAs significantly contrasts the adhesion enhancement by humidity-induced softening on nanoporous fibrillar adhesive pads made of the same material. PMID:28773497

  17. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.

    PubMed

    Yang, Yi-Yan; Shi, Meng; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-03-07

    The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.

  18. Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Scooter D., E-mail: scooter.johnson@nrl.navy.mil; Glaser, Evan R.; Cheng, Shu-Fan

    Highlights: • We deposit yttrium iron garnet films at room temperature using aerosol deposition. • Films are 96% of theoretical density for yttrium iron garnet. • We report magnetic and structural properties post-deposition and post-annealing. • Low-temperature annealing decreases the FMR linewidth. • We discuss features of the FMR spectra at each anneal temperature. - Abstract: We have employed aerosol deposition to form polycrystalline yttrium iron garnet (YIG) films on sapphire at room temperature that are 90–96% dense. We characterize the structural and dynamic magnetic properties of the dense films using scanning electron microscopy, X-ray diffraction, and ferromagnetic resonance techniques.more » We find that the as-deposited films are pure single-phase YIG formed of compact polycrystallites ∼20 nm in size. The ferromagnetic resonance mode occurs at 2829 G with a linewidth of 308 G. We perform a series of successive anneals up to 1000 °C on a film to explore heat treatment on the ferromagnetic resonance linewidth. We find the narrowest linewidth of 98 G occurs after a 750 °C anneal.« less

  19. Estimation of antigenic tetanus toxoid extracted from biodegradable microspheres.

    PubMed

    Xing, D K; McLellan, K; Corbel, M J; Sesardic, D

    1996-03-01

    Microspheres made from poly (lactic/glycolic acid) polymers have been considered as a new delivery system for single-dose tetanus toxoid (TT) vaccines. One of the most critical properties of the proposed vaccines is the loading and distribution of TT as this will have a profound effect on immunogenicity. As the concentration of TT in microspheres is very low sensitive assay methods are required. An assay incorporating monoclonal antibody (MAb) recognizing a neutralizing epitope and cross-reacting with TT was developed (MAp capture ELISA) which provided a sensitivity of 0.001 Lf/ml. An extraction procedure was devised which did not destroy the antigenicity and gave a recovery of 90.6 +/- 3.39% when applied to different preparations. The extracted TT was then quantified by MAb capture ELISA which was estimated to be 250-fold more sensitive than single-site ELISA for toxoid. The loading of 20 microspheres preparations (12 filled and 8 placebo) was determined by both protein micro-BCA assay and the developed assay for TT. The TT content obtained for the 12 filled microspheres preparations from different sources varied up to 400-fold (range 0.01-4.0 Lf/mg microspheres). The utility of the MAb capture ELISA for detection of total antigenic content in microspheres was confirmed by the observation that the determine TT loading correlated with the theoretical loading predicted from the protein content for the best preparations. Preparations with high loading gave the greatest peak response. There was no relationship between dose and the in vivo immunogenic response, suggesting that encapsulated vaccines with differential loading, release properties and presence of excipients will have different response curves in vivo. Hence, the present assay, when combined with information on toxoid release rate and presence and effect of excipients may be of value in predicting in vivo response.

  20. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  1. SPHRINT - Printing Drug Delivery Microspheres from Polymeric Melts.

    PubMed

    Shpigel, Tal; Uziel, Almog; Lewitus, Dan Y

    2018-06-01

    This paper describes a simple, straightforward, and rapid method for producing microspheres from molten polymers by merely printing them in an inkjet-like manner onto a superoleophobic surface (microsphere printing, hence SPHRINT). Similar to 3D printing, a polymer melt is deposited onto a surface; however, in contrast to 2D or 3D printing, the surface is not wetted (i.e. exhibiting high contact angles with liquids, above 150°, due to its low surface energy), resulting in the formation of discrete spherical microspheres. In this study, microspheres were printed using polycaprolactone and poly(lactic-co-glycolic acid) loaded with a model active pharmaceutical ingredient-ibuprofen (IBU). The formation of microspheres was captured by high-speed imaging and was found to involve several physical phenomena characterized by non-dimensional numbers, including the thinning and breakup of highly viscous, weakly elastic filaments, which are first to be described in pure polymer melts. The resulting IBU-loaded microspheres had higher sphericity, reproducible sizes and shapes, and superior drug encapsulation efficiencies with a distinctly high process yield (>95%) as compared to the conservative solvent-based methods used presently. Furthermore, the microspheres showed sustained release profiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  3. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  4. Intra-arterial radioembolization of breast cancer liver metastases: a structured review.

    PubMed

    Smits, Maarten L J; Prince, Jip F; Rosenbaum, Charlotte E N M; van den Hoven, Andor F; Nijsen, J Frank W; Zonnenberg, Bernard A; Seinstra, Beatrijs A; Lam, Marnix G E H; van den Bosch, Maurice A A J

    2013-06-05

    Radioembolization using yttrium-90 microspheres (⁹⁰Y-RE) is an emerging treatment option for breast cancer liver metastases (BCLM) patients if other locoregional and systemic treatment options fail. The purpose of this study was to provide a systematic overview of the current literature concerning ⁹⁰Y-RE for BCLM patients. A systematic search for relevant articles was performed in MEDLINE, EMBASE, and The Cochrane Library (January 2012) by combining an extensive list of synonyms for the determinants 'radioembolization', 'yttrium-90' and 'microsphere' with synonyms for the domain 'liver'. Data on tumor response, survival and toxicity were extracted and collected from all relevant articles. The search yielded 4078 studies, of which six were finally included for analysis, concerning a total of 198 patients. Tumor response was scored in five studies using either RECIST (n=3) or WHO criteria (n=2). Overall disease control rates (complete response, partial response and stable disease) at 2-4 months post treatment ranged from 78% to 96%. Median survival, available in four studies, ranged from 10.8 to 20.9 months. In total, gastric ulceration was reported in ten patients (5%) and treatment related mortality in three patients (2%). The results from the analyzed studies consistently show that ⁹⁰Y-RE is a safe and effective treatment option for BCLM patients. Comparative studies, especially combining ⁹⁰Y-RE with systemic therapy are strongly encouraged. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  6. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  7. Radioembolization with 90Y glass microspheres for hepatocellular carcinoma: significance of pretreatment 11C-acetate and 18F-FDG PET/CT and posttreatment 90Y PET/CT in individualized dose prescription.

    PubMed

    Ho, Chi Lai; Chen, Sirong; Cheung, Shing Kee; Leung, Yim Lung; Cheng, Kam Chau; Wong, Ka Nin; Wong, Yuet Hung; Leung, Thomas Wai Tong

    2018-06-11

    The aim of this study was to establish an algorithm for the prescription of 90 Y glass microsphere radioembolization ( 90 Y-GMRE) of HCC in individual patients based on the relationship between tumour dose (TD) and response validated by 90 Y PET/CT dosimetry and dual-tracer PET/CT metabolic parameters. The study group comprised 62 HCC patients prospectively recruited for 90 Y-GMRE who underwent pretreatment dual-tracer ( 11 C-acetate and 18 F-FDG) PET/CT as surrogate markers of HCC cellular differentiation. Pretreatment tumour-to-nontumour ratio on 99m Tc-MAA SPECT/CT (T/NT MAA ) was correlated with posttreatment 90 Y PET/CT T/NT 90Y after quantification validation. The TD-response relationship for HCC of different tracer groups was assessed on follow-up PET/CT 2 months after treatment. 90 Y PET/CT was accurate in the measurement of recovery of injected 90 Y activity (81.9-99.9%, median 94.8%). Pretreatment SPECT/CT T/NT MAA was strongly correlated with posttreatment 90 Y PET/CT T/NT 90Y (5.6 ± 3.2 versus 5.9 ± 3.5, T/NT 90Y 1.01 × T/NT MAA  + 0.161, r = 0.918, P < 0.05). The response rates were 72.4% (21/29), 70.6% (12/17) and 25% (4/16) for well, moderately and poorly differentiated HCC, respectively. The cut-off TD for a good response was significantly different between poorly differentiated and well/moderately differentiated HCC (262 Gy versus 152/174 Gy) with 89.2% sensitivity and 88% specificity. At a limiting tolerated liver dose of 70 Gy, the T/NT MAA thresholds for predicting a good response in poorly differentiated and well/moderately differentiated HCC were 3.5 and 2.0/2.3. Disregarding HCC cellular differentiation, the cut-off TD became 170 Gy, with lower sensitivity (70.3%) and specificity (76%). 90 Y PET/CT can provide accurate dosimetry for 90 Y-GMRE. Pretreatment T/NT MAA predicts posttreatment T/NT 90Y . The TD thresholds for a good response are tracer-dependent, with a strong correlation between HCC radiosensitivity

  8. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  9. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    PubMed

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (<1 mm thick) to one surface and fired under manufacturer's recommended protocol. Scanning electron microscopy (SEM) with integrated electron dispersive X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  10. Pluronic F127/chitosan blend microspheres for mucoadhesive drug delivery

    NASA Astrophysics Data System (ADS)

    Gu, W. Z.; Hu, X. F.

    2017-01-01

    Pluronic F127/chitosan blend microspheres were prepared via emulsification and cross-linking process using glutaraldehyde as a cross-linker. Compared with chitosan microspheres fabricated under the same experimental conditions, blend microspheres exhibited better physical stability and higher swelling capacity. Puerarin, a traditional Chinese medicine, was incorporated into microparticlesas the model drug. The in vitro release of puerarin from blend microspheres was reduced because of the improved compatibility of the drug with the matrices. According to the results from in vitro adhesion experiments, mucoadhesive behavior of blend microspheres on a mucosa-like surface was similar to that of chitosan microspheres, despite their good ability of anti-protein absorption in solution.

  11. Hierarchical Mn₂O₃ Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances.

    PubMed

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-11-23

    Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn₂O₃ nanorods consisting of microspheres. The C@Mn₂O₃ microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn₂O₃ microspheres prepared at 500 °C show high specific capacitances of 383.87 F g -1 at current density of 0.5 A g -1 , and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn₂O₃ microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg -1 at power density of 500.00 W kg -1 , and a maximum power density of 20.14 kW kg -1 at energy density of 46.8 Wh kg -1 . We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon.

  12. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging.

    PubMed

    Rong, Xing; Du, Yong; Frey, Eric C

    2012-06-21

    Quantitative Yttrium-90 ((90)Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of (90)Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for (90)Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as (90)Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In (90)Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative (90)Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were

  13. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  14. Radiochemistry, pre-clinical studies and first clinical investigation of 90Y-labeled hydroxyapatite (HA) particles prepared utilizing 90Y produced by (n,γ) route.

    PubMed

    Vimalnath, K V; Chakraborty, Sudipta; Rajeswari, A; Sarma, H D; Nuwad, Jitendra; Pandey, Usha; Kamaleshwaran, K; Shinto, Ajit; Dash, Ashutosh

    2015-05-01

    The scope of using no carrier added (NCA) (90)Y [T(1/2) = 64.1 h, Eβ(max) = 2.28 MeV] obtained from (90)Sr/(90)Y generator in radiation synovectomy (RSV) is widely accepted. In the present study, the prospect of using (90)Y produced by (n,γ) route in a medium flux research reactor for use in RSV was explored. Yttrium-90 was produced by thermal neutron irradiation of Y(2)O(3) target at a neutron flux of ~1×10(14) n/cm(2).s for 14 d. The influence of various experimental parameters were systematically investigated and optimized to arrive at the most favorable conditions for the formulation of (90)Y labeled hydroxyapatite (HA) using HA particles of 1-10 μm size range. An optimized kit formulation strategy was developed for convenient one-step compounding of (90)Y-HA, which is easily adaptable at hospital radiopharmacy. The pre-clinical biological evaluation of (90)Y-HA particles was studied by carrying out biodistribution and bioluminiscence imaging studies in Wistar rats. The first clinical investigation using the radiolabeled preparation was performed on a patient suffering from chronic arthritis in knee joint by administering 185 MBq (90)Y-HA formulated at the hospital radiopharmacy deploying the proposed strategy. Yttrium-90 was produced with a specific activity of 851 ± 111 MBq/mg and radionuclidic purity of 99.95 ± 0.02%. (90)Y-labeled HA particles (185 ± 10 MBq doses) were formulated in high radiochemical purity (>99%) and excellent in vitro stability. The preparation showed promising results in pre-clinical studies carried out in Wistar rats. The preliminary results of the first clinical investigation of (90)Y-HA preparation in a patient with rheumatoid arthritis in knee joints demonstrated the effectiveness of the formulation prepared using (90)Y produced via (n,γ) route in the management of the disease. The studies revealed that effective utilization of (90)Y produced via (n,γ) route in a medium flux research reactor coupled with the developed

  15. Biokinetics of yttrium and comparison with its geochemical twin holmium

    DOE PAGES

    Leggett, Rich

    2017-06-01

    The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less

  16. Production and characterization of europium doped sol-gel yttrium oxide

    NASA Astrophysics Data System (ADS)

    Krebs, J. K.; Hobson, Christopher; Silversmith, Ann

    2004-03-01

    Sol-gel produced materials have recently gained attention for their use in producing nanoscale dielectric materials for confinement studies. Lanthanide impurities in the dielectric enable experimenters to optically probe the structure and dynamic properties of the nanoparticle hosts. We report on an alkoxide sol-gel production method used to produce trivalent europium doped yttrium oxide. Our process follows the standard hydrolysis of an alkoxide precursor with water containing the lanthanide ions. The sol is then aged and calcined at 800 ^oC to produce the powder samples. X-ray diffraction confirms the structure of the powder is that of Y_2O_3. The emission and excitation of the europium impurities is consistent with that of europium doped single crystal yttrium oxide, where it is known that the europium ions substitute for yttrium in the lattice. We therefore conclude that the sol-gel process enables the incorporation of europium ions into the yttrium oxide structure at temperatures far below the melting temperature. The results of preliminary dynamics measurements will also be discussed.

  17. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  18. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  19. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  1. Structural phase transitions in yttrium under ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2012-09-01

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  2. Structural phase transitions in yttrium under ultrahigh pressures.

    PubMed

    Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2012-09-12

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  3. Microwave-assisted rapid preparation of monodisperse superhydrophilic resin microspheres as adsorbent for triazines in fruit juices.

    PubMed

    Zhou, Tianyu; Ding, Jie; Wang, Qiang; Xu, Yuan; Wang, Bo; Zhao, Li; Ding, Hong; Chen, Yanhua; Ding, Lan

    2018-03-01

    Monodisperse superhydrophilic melamine formaldehyde resorcinol resin (MFR) microspheres were prepared in 90min at 85°C via a microwave-assisted method with a yield of 60.6%. The obtained MFR microspheres exhibited narrow size distribution with the average particle size of about 2.5µm. The MFR microspheres were used as absorbents to detect triazines in juices followed by high performance liquid chromatography tandem mass spectrometry. Various factors affecting the extraction efficiency were investigated. Under the optimized conditions, the built method exhibited excellent linearity in the range of 1-250μgL -1 (R 2 ≥ 0.9994) and lower detection limits (0.3-0.65μgL -1 ). The relative standard deviations of intra- and inter-day analyses ranged from 3% to 7% and from 2% to 7%, respectively. The method was applied to determine six triazines in three juice samples. At the spiked level of 3μgL -1 , the recoveries were in the range of 90-99% with the relative standard deviations ≤ 8%. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Predictive Value of 99mTc-MAA SPECT for 90Y-Labeled Resin Microsphere Distribution in Radioembolization of Primary and Secondary Hepatic Tumors.

    PubMed

    Ilhan, Harun; Goritschan, Anna; Paprottka, Philipp; Jakobs, Tobias F; Fendler, Wolfgang P; Todica, Andrei; Bartenstein, Peter; Hacker, Marcus; Haug, Alexander R

    2015-11-01

    This study analyzed the predictive value of (99m)Tc-labeled macroaggregated albumin ((99m)Tc-MAA) SPECT for (90)Y-labeled resin microsphere therapy (radioembolization) by comparing uptake on pretherapeutic (99m)Tc-MAA SPECT with uptake on posttherapeutic (90)Y-bremsstrahlung SPECT. We included 502 patients (55% male; mean age ± SD, 62 ± 11 y) who underwent radioembolization between 2005 and 2013 because of primary or secondary liver malignancies (colorectal cancer [n = 195, 38.8%], neuroendocrine tumors [n = 77, 15.3%], breast cancer [n = 68, 13.5%], hepatocellular carcinoma [n = 59, 11.8%], cholangiocellular carcinoma [n = 40, 8.0%], or urologic tumors [n = 14, 2.8%]). Manually drawn regions of interest around tumors and adjacent healthy liver tissue for up to 3 lesions per patient on (99m)Tc-MAA and (90)Y-bremsstrahlung scans were used to quantify mean counts per pixel and evaluate the mean tumor-to-background ratio (TBR). Data were given as mean ± SD. Additionally, uptake in lesions on (99m)Tc-MAA and (90)Y-bremsstrahlung scans was graded visually as homogeneously higher than (grade 1), heterogeneously higher than (grade 2), equal to (grade 3), or lower than (grade 4) uptake in normal liver tissue. The Mann-Whitney U test and Spearman correlation were used to evaluate statistically significant differences between (99m)Tc-MAA and (90)Y-bremsstrahlung SPECT. In total, 1,008 lesions were analyzed. Of the 23% (230/1,008) of lesions that had grade 1 uptake on (99m)Tc-MAA SPECT, 81% (186/230) remained grade 1 after radioembolization whereas 16% (37/230) were grade 2. Of the lesions with grade 2 uptake on (99m)Tc-MAA SPECT, 16% had grade 1 uptake and 82% grade 2 uptake after radioembolization. Of the lesions with grade 3 uptake, however, 27% had grade 1 uptake and 47% grade 2 uptake after radioembolization. Even among the lesions with grade 4 uptake on (99m)Tc-MAA SPECT, 21% had grade 1 uptake and 46% grade 2 uptake after radioembolization. The mean TBR on (99m

  5. Synthesis of novel quaternary silica hybrid bioactive microspheres.

    PubMed

    Angelopoulou, A; Efthimiadou, E Κ; Kordas, G

    2018-01-01

    To survey the preparation of novel hybrid microspheres of quaternary silicate glassy composition (SiO 2 P 2 O 5 CaONa 2 O) and the prospect of using them as an osteogenic system with enhanced bioactive properties for the development of hydroxyapatite. In line with our previous synthetic procedure a two-step process was followed, wherein polystyrene (PS) microspheres were prepared by the emulsifier free-emulsion polymerization method and constituted the core for the sol-gel coating of the silicate inorganic shell. The development of the hybrid microspheres was based on silane and phosphate precursors and was assesses at different ratio of ethanol/water (of 9/1, 4/1, and 2/1, in mL) and at varied ammonia concentration of 4.8-1.0 mL. The hybrid microspheres had an average size ranged between 350 and 550 nm according to SEM, depending on the ethanol/water solution rate and ammonia content. The final microspheres probably exhibited a porous-like structure through the formation of diffused voids along with the low carbon content of the EDX analysis, which could be regulated by the catalyst content. The hybrid microspheres exhibited effective in vitro bioactivity assessed in simulated body fluids (SBF). Quaternary hybrid silica microspheres were effectively synthesized. The bioassay evaluation of the final microspheres revealed the rapid in vitro formation of a bone-like apatite layer. The results verify the bioactivity of the microspheres and promote further research of their suitability on regenerative treatment of bone abnormalities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 112-120, 2018. © 2016 Wiley Periodicals, Inc.

  6. Preparation and Characterization of Fluorescent SiO2 Microspheres

    NASA Astrophysics Data System (ADS)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  7. In situ fabrication of hollow hydroxyapatite microspheres by phosphate solution immersion

    NASA Astrophysics Data System (ADS)

    Wang, Yingchun; Yao, Aihua; Huang, Wenhai; Wang, Deping; zhou, Jun

    2011-07-01

    Hollow hydroxyapatite (HAP) microspheres with pores on their surfaces were prepared by converting Li 2O-CaO-B 2O 3 (LCB) glass microspheres in phosphate solution. The structure, phase composition, surface morphology, and porosity of the hollow HAP microspheres were characterized by SEM, SEM-EDS, XRD, FTIR, ICP-AES, and N 2 adsorption-desorption techniques. The formation and conversion mechanism of the hollow HAP microspheres during immersion process were discussed. The as-prepared microspheres consisted of calcium deficient carbonated hydroxyapatite, which is biomimetic. FTIR spectra indicated that the resulting apatite were B-type CO 3HAP, in which carbonate ions occupied the phosphate sites. After 600 °C heating treatment, hollow microspheres were completely composed of calcium deficient hydroxyapatite crystals including CO32-. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2-40 nm with the pore volume 0.5614 cm 3/g, and the mean pore size 10.5 nm, respectively. The results confirmed that LCB glass were transformed to hydroxyapatite without changing the external shape and dimension of the original glass object and the resulting microspheres possessed good hollow structures. Once immersed in phosphate solution, Ca-P-OH hydrates were in situ formed on the surface of the glass and precipitated in the position occupied by Ca 2+, while the pores were formed in the position occupied by Li + and B 3+. These hollow HAP microspheres with such structures may be used as promising drug delivery devices.

  8. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments

    USGS Publications Warehouse

    Harvey, R.W.; George, L.H.; Smith, R.L.; LeBlanc, D.R.

    1989-01-01

    Transport of indigenous bacteria through sandy aquifer sediments was investigated in forced- and natural-gradient tracer teste. A diverse population of bacteria was collected and concentrated from groundwater at the site, stained with a DNA-specific fluorochrome, and injected back into the aquifer. Included with the injectate were a conservative tracer (Br- or Cl-) and bacteria-sized (0.2-1.3-??m) microspheres having carboxylated, carbonyl, or neutral surfaces. Transport of stained bacteria and all types and size classes of microspheres was evident. In the natural-gradient test, both surface characteristics and size of microspheres affected attenuation. Surface characteristics had the greatest effect upon retardation. Peak break-through of DAPI-stained bacteria (forced-gradient experiment) occurred well in advance of bromide at the more distal sampler. Transport behavior of bacteria was substantially different from that of carboxylated microspheres of comparable size. ?? 1988 American Chemical Society.

  9. The simple preparation of birnessite-type manganese oxide with flower-like microsphere morphology and its remarkable capacity retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Gang; Deng, Lingjuan; Wang, Jianfang

    Graphical abstract: Flower-like birnessite-type manganese oxide microspheres with large specific surface area and excellent electrochemical properties have been prepared by a facile hydrothermal method. Highlights: ► Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area. ► A facile low-temperature hydrothermal method. ► Novel flower-like microsphere consists of the thin nano-platelets. ► Birnessite-type manganese oxide exhibits an ideal capacitive behavior and excellent cycling stability. -- Abstract: Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} at 90 °Cmore » for 24 h. The obtained material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption–desorption. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of 280 m{sup 2} g{sup −1}, and the flower-like microsphere consists of the thin nano-platelets. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with a capacitance value of 278 F g{sup −1} in 1 mol L{sup −1} Na{sub 2}SO{sub 4} aqueous solution at a scan rate of 5 mV s{sup −1}. Moreover, the prepared manganese oxide electrode shows excellent cycle stability, and the specific capacitance can maintain 98.6% of the initial one after 5000 cycles.« less

  10. Microspheres and nanoparticles from ultrasound

    NASA Astrophysics Data System (ADS)

    Suh, Won Hyuk

    Improved preparations of various examples of monodispersed, porous, hollow, and core-shell metal and semiconductor nanoparticles or nanowires have been developed. Now titania microspheres and nanoparticles and silica microspheres can be synthesized using an inexpensive high frequency (1.7 MHz) ultrasonic generator (household humidifier; ultrasonic spray pyrolysis; USP). Morphology and pore size of titania microspheres were controlled by the silica to Ti(IV) ratio and silica particle size. Fine tuning the precursor ratio affords sub-50 nm titania nanoparticles as well. In terms of silica microspheres, morphology was controlled by the silica to organic monomer ratio. In liquids irradiated with high intensity ultrasound (20 kHz; HIUS), acoustic cavitation produces high energy chemistry through intense local heating inside the gas phase of collapsing bubbles in the liquid. HIUS and USP confine the chemical reactions to isolated sub-micron reaction zones, but sonochemistry does so in a heated gas phase within a liquid, while USP uses a hot liquid droplet carried by a gas flow. Thus, USP can be viewed as a method of phase-separated synthesis using submicron-sized droplets as isolated chemical reactors for nanomaterial synthesis. While USP has been used to create both titania and silica spheres separately, there are no prior reports of titania-silica composites. Such nanocomposites of metal oxides have been produced, and by further manipulation, various porous structures with fascinating morphologies were generated. Briefly, a precursor solution was nebulized using a commercially available household ultrasonic humidifier (1.7 MHz ultrasound generator), and the resulting mist was carried in a gas stream of air through a quartz glass tube in a hot furnace. After exiting the hot zone, these microspheres are porous or hollow and in certain cases magnetically responsive. In the case of titania microspheres, they are rapidly taken up into the cytoplasm of mammalian cells and

  11. Optimization of sustained release aceclofenac microspheres using response surface methodology.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Holmium: yttrium aluminum garnet laser-assisted endoscopic sinus surgery: laboratory experience.

    PubMed

    Shapshay, S M; Rebeiz, E E; Bohigian, R K; Hybels, R L; Aretz, H T; Pankratov, M M

    1991-02-01

    Endoscopic sinus surgery has gained wide acceptance since its introduction into the United States. Complex sinus anatomy and troublesome bleeding have been associated with complications, which vary in severity from synechia to blindness and leakage of cerebrospinal fluid. Endoscopic sinus surgery using a holmium: yttrium aluminum garnet pulsed solid-state laser oscillating at 2.1 microns with fiberoptic delivery was performed in the laboratory, and the results were compared with those of conventional endoscopic sinus surgery. Three beagle dogs, six human cadaver heads, and one calf head were used in the in vivo and in vitro studies to evaluate the bone ablation, tissue coagulation, and hemostatic properties of the holmium: yttrium aluminum garnet laser. Modified endoscopic telescopes for sinus surgery, a newly developed handpiece for fiberoptic delivery, and other surgical instruments were used. The results indicate that the holmium: yttrium aluminum garnet laser and new delivery instrumentation provide good hemostasis and controlled soft-tissue ablation and bone removal. The access to all sinuses in the human cadaver model was very good. The canine in vivo study showed delayed but complete healing on the laser-treated side. Clinical evaluation of the holmium: yttrium aluminum garnet laser is warranted to increase the precision and safety of endoscopic sinus surgery.

  13. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE PAGES

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; ...

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm –2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  14. Differential Regulation of Angiogenesis using Degradable VEGF-Binding Microspheres

    PubMed Central

    Belair, David G.; Miller, Michael J.; Wang, Shoujian; Darjatmokon, Soesiawati R.; Binder, Bernard Y.K.; Sheibani, Nader; Murphy, William L.

    2016-01-01

    Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications. PMID:27061268

  15. Mobilization of microspheres from a fractured soil during intermittent infiltration events

    USGS Publications Warehouse

    Mohanty, Sanjay; Bulicek, Mark; Metge, David W.; Harvey, Ronald W.; Ryan, Joseph N.; Boehm, Alexandria B.

    2015-01-01

    Pathogens or biocolloids mobilized in the vadose zone may consequently contaminate groundwater. We found that microspheres were mobilized from a fractured soil during intermittent rainfall and the mobilization was greater when the microsphere size was larger and when the soil had greater water permeability.The vadose zone filters pathogenic microbes from infiltrating water and consequently protects the groundwater from possible contamination. In some cases, however, the deposited microbes may be mobilized during rainfall and migrate into the groundwater. We examined the mobilization of microspheres, surrogates for microbes, in an intact core of a fractured soil by intermittent simulated rainfall. Fluorescent polystyrene microspheres of two sizes (0.5 and 1.8 mm) and Br− were first applied to the core to deposit the microspheres, and then the core was subjected to three intermittent infiltration events to mobilize the deposited microspheres. Collecting effluent samples through a 19-port sampler at the base of the core, we found that water flowed through only five ports, and the flow rates varied among the ports by a factor of 12. These results suggest that flow paths leading to the ports had different permeabilities, partly due to macropores. Although 40 to 69% of injected microspheres were retained in the core during their application, 12 to 30% of the retained microspheres were mobilized during three intermittent infiltration events. The extent of microsphere mobilization was greater in flow paths with greater permeability, which indicates that macropores could enhance colloid mobilization during intermittent infiltration events. In all ports, the 1.8-mm microspheres were mobilized to a greater extent than the 0.5-mm microspheres, suggesting that larger colloids are more likely to mobilize. These results are useful in assessing the potential of pathogen mobilization and colloid-facilitated transport of contaminants in the subsurface under natural infiltration

  16. Microspheres and their methods of preparation

    DOEpatents

    Bose, Anima B; Yang, Junbing

    2015-03-24

    Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.

  17. Dosimetry and prescription in liver radioembolization with 90Y microspheres: 3D calculation of tumor-to-liver ratio from global 99mTc-MAA SPECT information

    NASA Astrophysics Data System (ADS)

    Mañeru, Fernando; Abós, Dolores; Bragado, Laura; Fuentemilla, Naiara; Caudepón, Fernando; Pellejero, Santiago; Miquelez, Santiago; Rubio, Anastasio; Goñi, Elena; Hernández-Vitoria, Araceli

    2017-12-01

    Dosimetry in liver radioembolization with 90Y microspheres is a fundamental tool, both for the optimization of each treatment and for improving knowledge of the treatment effects in the tissues. Different options are available for estimating the administered activity and the tumor/organ dose, among them the so-called partition method. The key factor in the partition method is the tumor/normal tissue activity uptake ratio (T/N), which is obtained by a single-photon emission computed tomography (SPECT) scan during a pre-treatment simulation. The less clear the distinction between healthy and tumor parenchyma within the liver, the more difficult it becomes to estimate the T/N ratio; therefore the use of the method is limited. This study presents a methodology to calculate the T/N ratio using global information from the SPECT. The T/N ratio is estimated by establishing uptake thresholds consistent with previously performed volumetry. This dose calculation method was validated against 3D voxel dosimetry, and was also compared with the standard partition method based on freehand regions of interest (ROI) outlining on SPECT slices. Both comparisons were done on a sample of 20 actual cases of hepatocellular carcinoma treated with resin microspheres. The proposed method and the voxel dosimetry method yield similar results, while the ROI-based method tends to over-estimate the dose to normal tissues. In addition, the variability associated with the ROI-based method is more extreme than the other methods. The proposed method is simpler than either the ROI or voxel dosimetry approaches and avoids the subjectivity associated with the manual selection of regions.

  18. Nano-functionalization of protein microspheres

    NASA Astrophysics Data System (ADS)

    Yoon, Sungkwon; Nichols, William T.

    2014-08-01

    Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.

  19. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123.

    PubMed

    Mellado-Vázquez, Rebeca; García-Hernández, Margarita; López-Marure, Arturo; López-Camacho, Perla Yolanda; de Jesús Morales-Ramírez, Ángel; Beltrán-Conde, Hiram Isaac

    2014-09-19

    Yttrium oxide (Y₂O₃) nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1). Fourier transform infrared spectroscopy (FTIR) results revealed a characteristic absorption band of Y-O vibrations typical of Y₂O₃ matrix. The structural phase was analyzed by X-ray diffraction (XRD), showing the characteristic cubic phase in all systems. The diffraction peak that presented the major intensity corresponded to the sample prepared from yttrium chloride incorporating P-123 in a molar ratio of P-123:Y = 2:1 at 900 °C. Crystallites sizes were determined by Scherrer equation as between 21 nm and 32 nm. Antioxidant properties were estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assays; the results are discussed.

  20. 5-Fluorouracil:carnauba wax microspheres for chemoembolization: an in vitro evaluation.

    PubMed

    Benita, S; Zouai, O; Benoit, J P

    1986-09-01

    5-Fluorouracil:carnauba wax microspheres were prepared using a meltable dispersion process with the aid of a surfactant as a wetting agent. It was noted that only hydrophilic surfactants were able to wet the 5-fluorouracil and substantially increased its content in the microspheres. No marked effect was observed in the particle size distribution of the solid microspheres as a function of the nature of the surfactant. Increasing the stirring rate in the preparation process decreased, first, the mean droplet size of the emulsified melted dispersion in the vehicle during the heating process, and, consequently, the mean particle size of the solidified microspheres during the cooling process. 5-Fluorouracil cumulative release from the microspheres followed first-order kinetics, as shown by nonlinear regression analysis. Although the kinetic results were not indicative of the true release mechanism from a single microsphere, it was believed that 5-fluorouracil release from the microspheres was probably governed by a dissolution process, rather than by a leaching process through the carnauba wax microspheres.

  1. Controlling Release Kinetics of PLG Microspheres Using a Manufacturing Technique

    NASA Astrophysics Data System (ADS)

    Berchane, Nader

    2005-11-01

    Controlled drug delivery offers numerous advantages compared with conventional free dosage forms, in particular: improved efficacy and patient compliance. Emulsification is a widely used technique to entrap drugs in biodegradable microspheres for controlled drug delivery. The size of the formed microspheres has a significant influence on drug release kinetics. Despite the advantages of controlled drug delivery, previous attempts to achieve predetermined release rates have seen limited success. This study develops a tool to tailor desired release kinetics by combining microsphere batches of specified mean diameter and size distribution. A fluid mechanics based correlation that predicts the average size of Poly(Lactide-co-Glycolide) [PLG] microspheres from the manufacturing technique, is constructed and validated by comparison with experimental results. The microspheres produced are accurately represented by the Rosin-Rammler mathematical distribution function. A mathematical model is formulated that incorporates the microsphere distribution function to predict the release kinetics from mono-dispersed and poly-dispersed populations. Through this mathematical model, different release kinetics can be achieved by combining different sized populations in different ratios. The resulting design tool should prove useful for the pharmaceutical industry to achieve designer release kinetics.

  2. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  3. Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres.

    PubMed

    Romano, Edwin F; Holdsworth, Clovia I; Quirino, Joselito P; So, Regina C

    2018-01-01

    Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine-imprinted microspheres were synthesized at 30°C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP-80 (N= 16.0 μmol/g) compared to PCP-90 (N= 10.1 μmol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP-80 microspheres are more selective toward histamine than conventional thermal polymers (CTP-80) prepared at 60°C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross-rebinding and competitive conditions. These results demonstrated that histamine-selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical-based histamine sensing. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    PubMed Central

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-01-01

    Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon. PMID:29168756

  5. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Astratov, Vasily N., E-mail: astratov@uncc.edu; Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433

    2016-06-13

    We observed up to 100 times enhancement of sensitivity of mid-wave infrared photodetectors in the 2–5 μm range by using photonic jets produced by sapphire, polystyrene, and soda-lime glass microspheres with diameters in the 90–300 μm range. By finite-difference time-domain (FDTD) method for modeling, we gain insight into the role of the microspheres refractive index, size, and alignment with respect to the detector mesa. A combination of enhanced sensitivity with angle-of-view (AOV) up to 20° is demonstrated for individual photodetectors. It is proposed that integration with microspheres can be scaled up for large focal plane arrays, which should provide maximal light collectionmore » efficiencies with wide AOVs, a combination of properties highly attractive for imaging applications.« less

  6. Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell.

    PubMed

    Zhang, Yu; Yue, Qin; Yu, Lei; Yang, Xuanyu; Hou, Xiu-Feng; Zhao, Dongyuan; Cheng, Xiaowei; Deng, Yonghui

    2018-05-11

    Core-shell magnetic porous microspheres have wide applications in drug delivery, catalysis and bioseparation, and so on. However, it is great challenge to controllably synthesize magnetic porous microspheres with uniform well-aligned accessible large mesopores (>10 nm) which are highly desired for applications involving immobilization or adsorption of large guest molecules or nanoobjects. In this study, a facile and general amphiphilic block copolymer directed interfacial coassembly strategy is developed to synthesize core-shell magnetic mesoporous microspheres with a monolayer of mesoporous shell of different composition, such as core-shell magnetic mesoporous aluminosilicate (CS-MMAS), silica (CS-MMS), and zirconia-silica (CS-MMZS), open and large pores by employing polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP) as an interface structure directing agent and aluminum acetylacetonate (Al(acac) 3 ), zirconium acetylacetonate, and tetraethyl orthosilicate as shell precursors. The obtained CS-MMAS microspheres possess magnetic core, perpendicular mesopores (20-32 nm) in the shell, high surface area (244.7 m 2 g -1 ), and abundant acid sites (0.44 mmol g -1 ), and as a result, they exhibit superior performance in removal of organophosphorus pesticides (fenthion) with a fast adsorption dynamics and high adsorption capacity. CS-MMAS microspheres loaded with Au nanoparticles (≈3.5 nm) behavior as a highly active heterogeneous nanocatalyst for N-alkylation reaction for producing N-phenylbenzylamine with a selectivity and yields of over 90% and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo.

    PubMed

    Foster, N; Clark, M A; Jepson, M A; Hirst, B H

    1998-03-01

    The interaction of latex microspheres with mouse Peyer's patch membranous M-cells was studied in a mouse gut loop model after the microspheres were coated with a variety of agents. Carboxylated microspheres (diameter 0.5 micron) were covalently coated with lectins Ulex europaeus 1, Concanavalin A, Euonymus europaeus and Bandeiraea simplicifolia 1 isolectin-B4, human immunoglobulin A or bovine serum albumin. Of the treatments examined, only Ulex europaeus (UEA1) resulted in significant selective binding of microspheres to M-cells. UEA1-coated microspheres bound to M-cells at a level 100-fold greater than BSA-coated microspheres, but binding to enterocytes was unaffected. Incubation of UEA1-coated microspheres with alpha-L-fucose reduced M-cell binding to a level comparable with BSA-coated microspheres. This indicated that targeting by UEA1 was via a carbohydrate receptor on the M-cell surface. Adherence of UEA1-coated microspheres to M-cells occurred within 10 min of inoculation into mouse gut loops and UEA1-coated microspheres were transported to 10 microns below the apical surface of M-cells within 60 min of inoculation. UEA1-coated microspheres also targeted mouse Peyer's patch M-cells after intragastric administration. These results demonstrated that altering the surface chemistry of carboxylated polystyrene microspheres increased M-cell targeting, suggesting a strategy to enhance delivery of vaccine antigens to the mucosal immune system.

  8. Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Rongrong; Wu, Yixiong; Kong, Xiang Yang

    2014-07-01

    A microwave-assisted hydrothermal approach combined with carbothermal reduction has been developed to synthesize monodisperse porous LiFePO4/C microspheres, which possess the diameter range of 1.0-1.5 μm, high tap density of ∼1.3 g cm-3, and mesoporous characteristic with Brunauer-Emmett-Teller (BET) surface area of 30.6 m2 g-1. The obtained microspheres show meatball-like morphology aggregated by the carbon-coated LiFePO4 nanoparticles. The electrochemical impedance spectra (EIS) results indicate that carbon coating can effectively enhance both of the electronic and ionic conductivities for LiFePO4/C microspheres. The Li-ion diffusion coefficient of the LiFePO4/C microspheres calculated from the cyclic voltammetry (CV) curves is ∼6.25 × 10-9 cm2 s-1. The electrochemical performance can achieve about 100 and 90 mAh g-1 at 5C and 10C charge/discharge rates, respectively. As cathode material, the as-prepared LiFePO4/C microspheres show excellent rate capability and cycle stability, promising for high power lithium-ion batteries.

  9. Thermal response of chalcogenide microsphere resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Aryanfar, I; Lim, K S

    2012-05-31

    A chalcogenide microsphere resonator (CMR) used for temperature sensing is proposed and demonstrated. The CMR is fabricated using a simple technique of heating chalcogenide glass and allowing the molten glass to form a microsphere on the waist of a tapered silica fibre. The thermal responses of the CMR is investigated and compared to that of a single-mode-fibre (SMF) based microsphere resonator. It is observed that the CMR sensitivity to ambient temperature changes is 8 times higher than that of the SMF-based microsphere resonator. Heating the chalcogenide microsphere with a laser beam periodically turned on and off shows periodic shifts inmore » the transmission spectrum of the resonator. By injecting an intensity-modulated cw signal through the resonator a thermal relaxation time of 55 ms is estimated.« less

  10. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Bedinger, G.; Bleiwas, D.

    2012-01-01

    In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.

  11. Treatment of conjunctival lymphomas by beta-ray brachytherapy using a strontium-90-yttrium-90 applicator.

    PubMed

    Regueiro, C A; Valcárcel, F J; Romero, J; de la Torre, A

    2002-12-01

    We reviewed the outcome of the 10 patients (13 eyes) with localized, biopsy-proven, low-grade lymphoma of the conjunctiva treated at our Department between 1988 and 1997. All patients were treated by beta-ray brachytherapy using a bidirectional 90Sr-90Y ophthalmic applicator (Applicator SIA 2, Amersham plc). Total doses, prescribed at the surface of the applicator, varied between 40 Gy and 80 Gy. With a median follow-up of 78 months (range: 14 to 146 months), seven patients remained with no evidence of relapse (67.5% 10 year disease free survival). Local control was achieved in 10 out of 13 eyes (76.9%). Two of the three local relapses were marginal. One of these three patients also developed a metachronous lymphoma in the contralateral conjunctiva. These three patients underwent a second course of brachytherapy with 90Sr/90Y and remained free of second relapse 109, 68 and 33 months after salvage therapy. No cases of systemic relapse were observed. Late (LENT-SOMA) complications were of grade 2 in five eyes, of grade 3 in one eye and of grade 4 in one eye. Late complications of grade 2 or higher were observed in one out of five patients (20%) treated with doses lower or equal to 50 Gy and in six out of eight patients (75%) treated with doses higher than 50 Gy (P=0.086). Our data indicates that beta-ray brachytherapy was ultimately able to control most conjunctival lymphomas but carried a risk of late complications and marginal relapses that was possibly higher than the rates reported for other radiotherapy techniques.

  12. Measurement of thermal diffusivity of depleted uranium metal microspheres

    NASA Astrophysics Data System (ADS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  13. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E.

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  14. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  15. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Ferella, Francesco

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equalmore » to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.« less

  16. Biocompatibility and characteristics of chitosan/cellulose acetate microspheres for drug delivery

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Zhou, Dong-Ju; Zhang, Wei-Fen; Jiang, Ling-Juan; Li, Jun-Bo; Chen, Xi-Guang

    2011-12-01

    In this work, chitosan/cellulose acetate microspheres (CCAM) were prepared by the method of W/O/W emulsion with no toxic reagents. The microspheres were spherical, free flowing, and non-aggregated, which had a narrow size distribution. More than 90% of the microspheres had the diameter ranging from 200 to 280 μm. The hemolytic analysis indicated that CCAM was safe and had no hemolytic effect. The implanted CCAM did not produce any significant changes in the hematology of Sprague-Dawley (SD) rats, such as white blood cell, red blood cell, platelet, and the volume of hemoglobin. In addition, the levels of serum alanine aminotransferase, blood urea nitrogen, and creatinine had no obvious changes in SD rats implanted with CCAM, surger thread, or normal SD rats without any implantation. Thus, the CCAM had good blood compatibility and had no hepatotoxicity or renal toxicity to SD rats. Furthermore, CCAM with or without the model drug had good tissue compatibility with respect to the inflammatory reaction in SD rats and showed no significant difference from that of SD rats implanted with surgery thread. CCAM shows promise as a long-acting delivery system, which had good biocompatibility and biodegradability.

  17. Magnetic susceptibility characterisation of superparamagnetic microspheres

    NASA Astrophysics Data System (ADS)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  18. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion

    NASA Astrophysics Data System (ADS)

    Wang, Fengge; Yang, Songlin; Ma, Huifeng; Shen, Ping; Wei, Nan; Wang, Meng; Xia, Yang; Deng, Yun; Ye, Yong-Hong

    2018-01-01

    Microsphere-assisted imaging is an extraordinary simple technology that can obtain optical super-resolution under white-light illumination. Here, we introduce a method to improve the resolution of a microsphere lens by increasing its numerical aperture. In our proposed structure, BaTiO3 glass (BTG) microsphere lenses are semi-immersed in a S1805 layer with a refractive index of 1.65, and then, the semi-immersed microspheres are fully embedded in an elastomer with an index of 1.4. We experimentally demonstrate that this structure, in combination with a conventional optical microscope, can clearly resolve a two-dimensional 200-nm-diameter hexagonally close-packed (hcp) silica microsphere array. On the contrary, the widely used structure where BTG microsphere lenses are fully immersed in a liquid or elastomer cannot even resolve a 250-nm-diameter hcp silica microsphere array. The improvement in resolution through the proposed structure is due to an increase in the effective numerical aperture by semi-immersing BTG microsphere lenses in a high-refractive-index S1805 layer. Our results will inform on the design of microsphere-based high-resolution imaging systems.

  19. Polarization Dependent Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  20. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123

    PubMed Central

    Mellado-Vázquez, Rebeca; García-Hernández, Margarita; López-Marure, Arturo; López-Camacho, Perla Yolanda; Morales-Ramírez, Ángel de Jesús; Beltrán-Conde, Hiram Isaac

    2014-01-01

    Yttrium oxide (Y2O3) nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1). Fourier transform infrared spectroscopy (FTIR) results revealed a characteristic absorption band of Y–O vibrations typical of Y2O3 matrix. The structural phase was analyzed by X-ray diffraction (XRD), showing the characteristic cubic phase in all systems. The diffraction peak that presented the major intensity corresponded to the sample prepared from yttrium chloride incorporating P-123 in a molar ratio of P-123:Y = 2:1 at 900 °C. Crystallites sizes were determined by Scherrer equation as between 21 nm and 32 nm. Antioxidant properties were estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assays; the results are discussed. PMID:28788211

  1. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  2. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    PubMed

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    NASA Technical Reports Server (NTRS)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  4. Fabrication and characterization of novel microsphere-embedded optical devices for enhancing microscopy resolution

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash

    2018-02-01

    Microsphere-assisted imaging can be incorporated onto conventional light microscopes allowing wide-field and flourescence imaging with enhanced resolution. We demonstrated that imaging of specimens containing subdiffraction-limited features is achievable through high-index microspheres embedded in a transparent thin film placed over the specimen. We fabricated novel microsphere-embedded microscope slides composed of barium titanate glass microspheres (with diameter 10-100 μm and refractive index 1.9-2.2) embedded in a transparent polydimethylsiloxane (PDMS) elastomer layer with controllable thickness. We characterized the imaging performance of such microsphere-embedded devices in white-light microscopies, by measuring the imaging resolution, field-of-view, and magnification as a function of microsphere size. Our results inform on the design of novel optical devices, such as microsphere-embedded microscope slides for imaging applications.

  5. Facile synthesis of hierarchical porous γ-Al2O3 hollow microspheres for water treatment.

    PubMed

    Li, Mingyang; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Kang, Feiyu

    2014-03-01

    Hierarchical porous γ-Al2O3 hollow microspheres were synthesized by a modified spray drying method. Ageing the precipitated precursor and spray-drying assisted by NH4Cl salts are considered as two key steps for the synthesis of γ-Al2O3 hollow microspheres. The mechanism of the formation of hierarchical porous γ-Al2O3 hollow microsphere was proposed involving phase transformation from aluminum hydroxide to laminar boehmite during ageing and a following self-assembling process with NH4Cl as the template during spray drying. The meso-/macro-pores in γ-Al2O3 mainly arise from the stacking of the laminar boehmites which are obtained by ageing the precipitated precursors at 90°C. NH4Cl, which was the byproduct from the reaction between AlCl3·6H2O and NH3·H2O, was demonstrated to be an excellent template to act as the core and the barrier for separation of laminar boehmites. No extra NH4Cl was added. The as-synthesized hierarchical porous γ-Al2O3 hollow microsphere presented remarkably higher adsorption capacity, which is thirty times higher adsorption rate for Congo Red than the solid microsphere containing only small mesopores. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. SU-D-201-05: Phantom Study to Determine Optimal PET Reconstruction Parameters for PET/MR Imaging of Y-90 Microspheres Following Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maughan, N; Conti, M; Parikh, P

    2015-06-15

    Purpose: Imaging Y-90 microspheres with PET/MRI following hepatic radioembolization has the potential for predicting treatment outcome and, in turn, improving patient care. The positron decay branching ratio, however, is very small (32 ppm), yielding images with poor statistics even when therapy doses are used. Our purpose is to find PET reconstruction parameters that maximize the PET recovery coefficients and minimize noise. Methods: An initial 7.5 GBq of Y-90 chloride solution was used to fill an ACR phantom for measurements with a PET/MRI scanner (Siemens Biograph mMR). Four hot cylinders and a warm background activity volume of the phantom were filledmore » with a 10:1 ratio. Phantom attenuation maps were derived from scaled CT images of the phantom and included the MR phased array coil. The phantom was imaged at six time points between 7.5–1.0 GBq total activity over a period of eight days. PET images were reconstructed via OP-OSEM with 21 subsets and varying iteration number (1–5), post-reconstruction filter size (5–10 mm), and either absolute or relative scatter correction. Recovery coefficients, SNR, and noise were measured as well as total activity in the phantom. Results: For the 120 different reconstructions, recovery coefficients ranged from 0.1–0.6 and improved with increasing iteration number and reduced post-reconstruction filter size. SNR, however, improved substantially with lower iteration numbers and larger post-reconstruction filters. From the phantom data, we found that performing 2 iterations, 21 subsets, and applying a 5 mm Gaussian post-reconstruction filter provided optimal recovery coefficients at a moderate noise level for a wide range of activity levels. Conclusion: The choice of reconstruction parameters for Y-90 PET images greatly influences both the accuracy of measurements and image quality. We have found reconstruction parameters that provide optimal recovery coefficients with minimized noise. Future work will include the

  7. A systematic review of contralateral liver lobe hypertrophy after unilobar selective internal radiation therapy with Y90.

    PubMed

    Teo, Jin-Yao; Allen, John C; Ng, David C; Choo, Su-Pin; Tai, David W M; Chang, Jason P E; Cheah, Foong-Khoon; Chow, Pierce K H; Goh, Brian K P

    2016-01-01

    Curative liver resection is the treatment of choice for both primary and secondary liver malignancies. However, an inadequate future liver remnant (FLR) frequently precludes successful surgery. Portal vein embolization is the gold-standard modality for inducing hypertrophy of the FLR. In recent times, unilobar Yttrium-90 selective internal radiation therapy (SIRT) has been reported to induce hypertrophy of the contralateral, untreated liver lobe. The aim of this study is to review the current literature reporting on contralateral liver hypertrophy induced by unilobar SIRT. A systematic review of the English-language literature between 2000 and 2014 was performed using the search terms "Yttrium 90" OR "selective internal radiation therapy" OR "radioembolization" AND "hypertrophy". Seven studies, reporting on 312 patients, were included. Two hundred and eighty four patients (91.0%) received treatment to the right lobe. Two hundred and fifteen patients had hepatocellular carcinoma (HCC), 12 had intrahepatic cholangiocarcinoma, and 85 had liver metastases from mixed primaries. Y90 SIRT resulted in contralateral liver hypertrophy which ranged from 26 to 47% at 44 days-9 months. All studies were retrospective in nature, and heterogeneous, with substantial variations relative to pathology treated, underlying liver disease, dosage and delivery of Y90, number of treatment sessions and time to measurement of hypertrophy. Unilobar Y90 SIRT results in significant hypertrophy of the contralateral liver lobe. The rate of hypertrophy seems to be slower than that achieved by other methods. Copyright © 2015 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  8. Coupling system to a microsphere cavity

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir (Inventor); Maleki, Lute (Inventor); Yao, Steve (Inventor); Wu, Chi (Inventor)

    2002-01-01

    A system of coupling optical energy in a waveguide mode, into a resonator that operates in a whispering gallery mode. A first part of the operation uses a fiber in its waveguide mode to couple information into a resonator e.g. a microsphere. The fiber is cleaved at an angle .PHI. which causes total internal reflection within the fiber. The energy in the fiber then forms an evanescent field and a microsphere is placed in the area of the evanescent field. If the microsphere resonance is resonant with energy in the fiber, then the information in the fiber is effectively transferred to the microsphere.

  9. Ecological Dose Modeling of Aquatic and Riparian Receptors to Strontium-90 with an Emphasis on Radiosensitive Organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Traub, Richard J.; Antonio, Ernest J.

    2011-07-20

    The 100-NR-2 site is the location of elevated releases of strontium-90 to the Columbia River via contaminated groundwater. The resulting dose to aquatic and riparian receptors was evaluated in 2005 (DOE 2009) and compared to U.S. Department of Energy (DOE) dose guidance values. We have conducted additional dose assessments for a broader spectrum of aquatic and riparian organisms using RESRAD Biota and specific exposure scenarios. Because strontium-90 accumulates in bone, we have also modeled the dose to the anterior kidney, a blood-forming and immune system organ that lies close to the spinal column of fish. The resulting dose is primarilymore » attributable to the yttrium-90 progeny of strontium-90 and very little of the dose is associated with the beta emission from strontium-90. All dose modeling results were calculated with an assumption of secular equilibrium between strontium-90 and yttrum-90.« less

  10. Fluorine- and iron-modified hierarchical anatase microsphere photocatalyst for water cleaning: facile wet chemical synthesis and wavelength-sensitive photocatalytic reactivity.

    PubMed

    Liu, Shaohong; Sun, Xudong; Li, Ji-Guang; Li, Xiaodong; Xiu, Zhimeng; Yang, He; Xue, Xiangxin

    2010-03-16

    High photocatalytic efficiency, easy recovery, and no biological toxicity are three key properties related to the practical application of anatase photocatalyst in water cleaning, but seem to be incompatible. Nanoparticles-constructed hierarchical anatase microspheres with high crystallinity and good dispersion prepared in this study via one-step solution processing at 90 degrees C under atmospheric pressure by using ammonium fluotitanate as the titanium source and urea as the precipitant can reconcile these three requirements. The hierarchical microspheres were found to grow via an aggregative mechanism, and contact recrystallization occurred at high additions of the FeCl(3) electrolyte into the reaction system. Simultaneous incorporation of fluorine and iron into the TiO(2) matrix was confirmed by combined analysis of X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV-vis absorption spectroscopy. Surface structure and morphology changes of the microspheres induced by high-temperature annealing were clearly observed by field-emission scanning electron microscopy, especially for the phase-transformed particles. The original nanoparticles-constructed rough surfaces partially became smooth, resulting in a sharp drop in photocatalytic efficiency. Interestingly, iron loading has detrimental effects on the visible-light photocatalytic activity of both the as-prepared and the postannealed anatase microspheres but greatly enhances the photocatalytic activity of the as-prepared anatase microspheres under UV irradiation. No matter under UV or visible-light irradiation, the fluorine-loaded anatase microspheres and especially the postannealed ones show excellent photocatalytic performance. The underlying mechanism of fluorine and iron loading on the photocatalytic efficacy of the anatase microspheres was discussed in detail. Beyond photocatalytic applications, this kind of material is of great importance to the assembling of

  11. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    NASA Astrophysics Data System (ADS)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.

    2017-03-01

    The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  12. Pectin/zein microspheres as a sustained drug delivery system

    USDA-ARS?s Scientific Manuscript database

    A series of microspheres were prepared from pectins and corn proteins from various sources in the presence of the divalent ions calcium or zinc. The results showed that the yield of microsphere and the efficiency of drug incorporation were dependent on the type and ratio of biopolymers, the size of ...

  13. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  14. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) Self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres

    PubMed Central

    El-Sherbiny, I. M.; Smyth, H. D. C.

    2012-01-01

    Design of appropriate inhaled carriers with adequate aerodynamic properties, drug release, biodegradation and evasion of macrophage uptake is a major challenge for controlled release pulmonary drug delivery. In this study, PEG graft copolymerized onto N-phthaloyl chitosan (NPHCs) was synthesized then characterized using FTIR, EA, DSC and 2D-XRD. The resulting PEG-g-NPHCs copolymers were self-assembled into drug loaded nanoparticles and encapsulated in respirable/swellable sodium alginate semi-IPN hydrogel microspheres as novel biodegradable carriers for controlled release pulmonary drug delivery. The developed nano-/microspheres carrier systems were formed via spray drying followed by ionotropic crosslinking in mild aqueous medium. The size of the developed self-assembled nanoparticles and the microspheres was measured using dynamic light scattering and laser diffraction, respectively. Morphology, moisture content, in-vitro biodegradation and dynamic swelling studies were also investigated for the developed carriers. A model protein was entrapped and the in-vitro release profiles were determined in PBS, pH 7.4 at 37°C. A dry powder aerosolization study was conducted using a Next Generation Impactor (NGI). The developed microspheres had suitable aerodynamic diameters (1.02–2.63 μm) and an excellent fine particle fraction, FPF of 31.52%. The microspheres showed also a very fast initial swelling within the first 2 min and started to enzymatically degrade within the first two hours. Moreover, the microspheres entrapped up 90% of the model drug and showed promising in-vitro sustained release profiles as compared to the control formulation. PMID:20580794

  15. Integrated Cryogenic Experiment (ICE) microsphere investigation

    NASA Technical Reports Server (NTRS)

    Spradley, I.; Read, D.

    1989-01-01

    The main objective is to determine the performance of microsphere insulation in a 0-g environment and compare its performance to reference insulations such as multilayer insulation. The Lockheed Helium Extended-Life Dewar (HELD) is used to provide superfluid-helium cold sink for the experiment. The use of HELD allows the low-g dynamic properties of Passive Orbital Disconnect Struts (PODS) to be characterized and provides a flight demonstration of the PODS system. The thermal performance of microspheres in 1 and 0 g was predicted, a flight experiment was designed to determine microsphere thermal performance, and the interface was also designed between the experimental package and the shuttle through HELD and the Hitchhiker-M carrier. A single test cell was designed and fabricated. The cell was filled with uncoated glass microspheres and tested with a liquid-nitrogen cold sink. The data were found to agree with predictions of microsphere performance in 1 g.

  16. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory.

    PubMed

    Berchane, N S; Carson, K H; Rice-Ficht, A C; Andrews, M J

    2007-06-07

    The need to tailor release rate profiles from polymeric microspheres is a significant problem. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In this work the effects of microspheres mean diameter, polydispersity, and polymer degradation on drug release rate from poly(lactide-co-glycolide) (PLG) microspheres are described. Piroxicam containing PLG microspheres were fabricated at 20% loading, and at three different impeller speeds. A portion of the microspheres was then sieved giving five different size distributions. In vitro release kinetics were determined for each preparation. Based on these experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. For highly polydisperse populations (polydispersity parameter b<3), incorporating the microsphere size distribution into the mathematical model gave a better fit to the experimental results than using the representative mean diameter. The validated mathematical model can be used to predict small-molecule drug release from PLG microsphere populations.

  17. Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption.

    PubMed

    Gao, Baojiao; Hu, Hongyan; Guo, Jianfeng; Li, Yanbin

    2010-06-01

    The crosslinked copolymeric microspheres (HEMA/NVP) of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) were prepared using inverse suspension polymerization method. Subsequently, the reaction of methacryloyl chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, leading to the introduction of polymerisable double bonds onto the surfaces of microspheres HEMA/NVP. Afterward, methacrylic acid was allowed to be graft-polymerized on microspheres HEMA/NVP in the manner of "grafting from", resulting in the grafted microspheres PMAA-HEMA/NVP. The grafted microspheres PMAA-HEMA/NVP were fully characterized with several means. The graft-polymerization of MAA on microspheres HEMA/NVP was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption property of the grafted microspheres PMAA-HEMA/NVP for lysozyme as a basic protein model was preliminarily examined to explore the feasibility of removing deleterious basic protein such as density lipoprotein from blood. The experimental results indicate that the PMAA grafting degree on microspheres HEMA/NVP is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of HEMA/NVP microspheres will be formed during the graft-polymerization, and block the graft-polymerization. In order to enhance PMAA grafting degree, reaction temperature, monomer concentration and the used amount of initiator should be effectively controlled. The experimental results also reveal that the grafted microspheres PMAA-HEMA/NVP possess very strong adsorption ability for lysozyme by right of strong electrostatic interaction. Copyright 2010 Elsevier B.V. All rights reserved.

  18. In vitro model alveoli from photodegradable microsphere templates†

    PubMed Central

    Lewis, Katherine J. R.; Tibbitt, Mark W.; Zhao, Yi; Branchfield, Kelsey; Sun, Xin; Balasubramaniam, Vivek; Anseth, Kristi S.

    2016-01-01

    Recreating the 3D cyst-like architecture of the alveolar epithelium in vitro has been challenging to achieve in a controlled fashion with primary lung epithelial cells. Here, we demonstrate model alveoli formed within a tunable synthetic biomaterial platform using photodegradable microspheres as templates to create physiologically relevant, cyst structures. Poly(ethylene glycol) (PEG)-based hydrogels were polymerized in suspension to form microspheres on the order of 120 μm in diameter. The gel chemistry was designed to allow erosion of the microspheres with cytocompatible light doses (≤15 min exposure to 10 mW cm−2 of 365 nm light) via cleavage of a photolabile nitrobenzyl ether crosslinker. Epithelial cells were incubated with intact microspheres, modified with adhesive peptide sequences to facilitate cellular attachment to and proliferation on the surface. A tumor-derived alveolar epithelial cell line, A549, completely covered the microspheres after only 24 hours, whereas primary mouse alveolar epithelial type II (ATII) cells took ~3 days. The cell-laden microsphere structures were embedded within a second hydrogel formulation at user defined densities; the microsphere templates were subsequently removed with light to render hollow epithelial cysts that were cultured for an additional 6 days. The resulting primary cysts stained positive for cell–cell junction proteins (β-catenin and ZO-1), indicating the formation of a functional epithelial layer. Typically, primary ATII cells differentiated in culture to the alveolar epithelial type I (ATI) phenotype; however, each cyst contained ~1–5 cells that stained positive for an ATII marker (surfactant protein C), which is consistent with ATII cell numbers in native mouse alveoli. This biomaterial-templated alveoli culture system should be useful for future experiments to study lung development and disease progression, and is ideally suited for co-culture experiments where pulmonary fibroblasts or endothelial

  19. Prolonged cytotoxic effect of colchicine released from biodegradable microspheres.

    PubMed

    Muvaffak, Asli; Gurhan, Ismet; Hasirci, Nesrin

    2004-11-15

    One the main problems of cancer chemotherapy is the unwanted damage to normal cells caused by the high toxicities of anticancer drugs. Any system of controlled drug delivery that would reduce the total amount of drug required, and thus reduce the side effects, would potentially help to improve chemotherapy. In this respect, biodegradable gelatin microspheres were prepared by water/oil emulsion polymerization and by crosslinking with glutaraldehyde (GTA) as the drug-carrier system. Microspheres were loaded with colchicine, a model antimitotic drug, which was frequently used as an antimitotic agent in cancer research involving cell cultures. Microsphere sizes, swelling and degradation properties, drug-release kinetics, and cytotoxities were studied. Swelling characteristics of microspheres changed upon changing GTA concentration. A decrease in swelling values was recorded as GTA crosslink density was increased. In vitro drug release in PBS (0.01M, pH 7.4) showed rapid colchicine release up to approximately 83% (at t = 92 h) for microspheres with low GTA (0.05% v/v), whereas a slower release profile (only approximately 39%) was obtained for microspheres with high GTA (0.50% v/v) content, for the same period. Cytotoxicity tests with MCF-7, HeLa and H-82 cancer cell lines showed that free colchicine was very toxic, showing an approximately 100% lethal effect in both HeLa and H-82 cell lines and more than 50% decrease in viability in MCF-7 cells in 4 days. Indeed, entrapped colchicine indicated similar initial high toxic effect on cell viability in MCF-7 cell line and this effect became more dominant as colchicine continued to be released from microspheres in the same period. In conclusion, the control of the release rate of colchicine from gelatin microspheres was achieved under in vitro conditions by gelatin through the alteration of crosslinking conditions. Indeed, the results suggested the potential application of gelatin microspheres crosslinked with GTA as a

  20. Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.

    PubMed

    Jiang, Jingui; Chen, Hao; Wang, Zhao; Bao, Luke; Qiang, Yiwei; Guan, Shiyou; Chen, Jianding

    2015-08-15

    A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.17 to 0.69 cm(3) g(-1). Prepared with the KOH/non-porous carbon microsphere weight ratio at 1.0, the porous carbon microsphere with moderate specific surface area of 568 m(2) g(-1), exhibits intriguing electrochemical behavior in 1 M H2SO4 aqueous electrolyte, with superior specific capacitance (278 F g(-1) at 0.1 A g(-1)), good rate capability (147 F g(-1) remained at 10 A g(-1)) and robust cycling durability (No capacitance loss after 5000 cycles). The promising electrochemical performance could be ascribed to the synergy of nitrogen heteroatom functionalities and the porous morphology. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hollow silica microspheres for buoyancy-assisted separation of infectious pathogens from stool.

    PubMed

    Weigum, Shannon E; Xiang, Lichen; Osta, Erica; Li, Linying; López, Gabriel P

    2016-09-30

    Separation of cells and microorganisms from complex biological mixtures is a critical first step in many analytical applications ranging from clinical diagnostics to environmental monitoring for food and waterborne contaminants. Yet, existing techniques for cell separation are plagued by high reagent and/or instrumentation costs that limit their use in many remote or resource-poor settings, such as field clinics or developing countries. We developed an innovative approach to isolate infectious pathogens from biological fluids using buoyant hollow silica microspheres that function as "molecular buoys" for affinity-based target capture and separation by floatation. In this process, antibody functionalized glass microspheres are mixed with a complex biological sample, such as stool. When mixing is stopped, the target-bound, low-density microspheres float to the air/liquid surface, which simultaneously isolates and concentrates the target analytes from the sample matrix. The microspheres are highly tunable in terms of size, density, and surface functionality for targeting diverse analytes with separation times of ≤2min in viscous solutions. We have applied the molecular buoy technique for isolation of a protozoan parasite that causes diarrheal illness, Cryptosporidium, directly from stool with separation efficiencies over 90% and low non-specific binding. This low-cost method for phenotypic cell/pathogen separation from complex mixtures is expected to have widespread use in clinical diagnostics as well as basic research. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Self-assembled dye-doped polymer microspheres as whispering gallery mode lasers

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Sun, Hongyi; Yang, Hongqin; Wu, Xiang; Xie, Shusen

    2016-10-01

    Microlasers based on high-Q whispering-gallery-mode (WGM) resonances are promising low-threshold laser sources for bio-sensing and imaging applications. In this talk, we demonstrate a cost effective approach to obtain size-controllable polymer microspheres, which can be served as good WGM microcavities. By injecting SU-8 solution into low-refractiveindex UV polymer, self-assembled spherical droplet with smooth surface can be created inside the elastic medium and then solidified by UV exposure. The size of the microspheres can be tuned from several to hundreds of microns. WGM Lasing has been achieved by optically pumping the dye-doped microspheres with ns lasers. Experimental results show that the microsphere lasers have high quality factors and low lasing thresholds. The self-assembled dye-doped polymer microspheres would provide an excellent platform for the micro-laser sources in on-chip biosensing and imaging systems.

  3. Metronidazole loaded pectin microspheres for colon targeting.

    PubMed

    Vaidya, Ankur; Jain, Aviral; Khare, Piush; Agrawal, Ram K; Jain, Sanjay K

    2009-11-01

    A multiparticulate system having pH-sensitive property and specific enzyme biodegradability for colon-targeted delivery of metronidazole was developed. Pectin microspheres were prepared using emulsion-dehydration technique. These microspheres were coated with Eudragit(R) S-100 using oil-in-oil solvent evaporation method. The SEM was used to characterize the surface of these microspheres and a distinct coating over microspheres could be seen. The in vitro drug release studies exhibited no drug release at gastric pH, however continuous release of drug was observed from the formulation at colonic pH. Further, the release of drug from formulation was found to be higher in the presence of rat caecal contents, indicating the effect of colonic enzymes on the pectin microspheres. The in vivo studies were also performed by assessing the drug concentration in various parts of the GIT at different time intervals which exhibited the potentiality of formulation for colon targeting. Hence, it can be concluded that Eudragit coated pectin microspheres can be used for the colon specific delivery of drug. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  4. Effect of a controlled release device containing minocycline microspheres on the treatment of chronic periodontitis: A comparative study

    PubMed Central

    Gopinath, V.; Ramakrishnan, T.; Emmadi, Pamela; Ambalavanan, N.; Mammen, Biju; Vijayalakshmi

    2009-01-01

    Introduction: Adjunctive therapy with locally delivered antimicrobials has resulted in improved clinical outcomes. The aim of this study was to evaluate the efficacy and safety of locally administered minocycline microspheres (Arestin™) in the treatment of chronic periodontitis. Materials and Methods: A total of 60 sites from 15 patients in the age group of 35-50 years, who had periodontal pockets measuring 5-8 mm and had been diagnosed with chronic periodontitis, were selected for the study. The selected groups were randomly assigned to either the control group (group A) or the treatment/test group (group B). Only scaling and root planing were done at the base line visit for the control sites followed by local application of Arestin™ (1 mg). Clinical parameters such as plaque index, gingival index, and gingival bleeding index were recorded at baseline, day 30, day 90, and day 180 in the selected sites of both the groups. Probing pocket depth also was recorded at baseline, day 90, and day 180 for both the groups. Results: A statistically significant reduction was observed in both groups. Group B showed better results than Group A and these differences were statistically significant. Conclusion: The results of this study clearly indicate that treatment with scaling and root planing plus minocycline microspheres (Arestin™) is more effective and safer than scaling and root planing alone in reducing the signs of chronic periodontitis. PMID:20407655

  5. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats

    PubMed Central

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC0-∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities. PMID:25643802

  6. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats.

    PubMed

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao; Zeng, Zhenling

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC00∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities.

  7. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  8. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-12-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns.

  9. Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate.

    PubMed

    Gogna, Deepak; Jain, Sunil K; Yadav, Awesh K; Agrawal, G P

    2007-04-01

    Polymethylmethacrylate (PMMA) microspheres of ethylhexyl methoxycinnamate (EHM) were prepared by emulsion solvent evaporation method to improve its photostability and effectiveness as sunscreening agent. Process parameters like stirring speed and aqueous polyvinyl alcohol (PVA) concentration were analyzed in order to optimize the formulations. Shape and surface morphology of the microspheres were examined using scanning electron microscopy. Particle size of the microspheres was determined using laser diffraction particle size analyzer. The PMMA microspheres of EHM were incorporated in water-removable cream base. The in vitro drug release of EHM in pH 7.4 was performed using dialysis membrane. Thin layer chromatography was performed to determine photostability of EHM inside the microspheres. The formulations were evaluated for sun protection factor (SPF) and minimum erythema dose (MED) in albino rats. Cream base formulation containing microspheres prepared using EHM:PMMA in ratio of 1:3 (C(3)) showed slowest drug (EHM) release and those prepared with EHM: PMMA in ratio of 1:1 showed fastest release. The cream base formulations containing EHM loaded microspheres had shown better SPF (more than 16.0) as compared to formulation C(d) that contained 3% free EHM as sunscreen agent and showed SPF 4.66. These studies revealed that the incorporation of EHM loaded PMMA microspheres into cream base had greatly increased the efficacy of sunscreen formulation approximately four times. Further, photostability was also shown to be improved in PMMA microspheres.

  10. Insulin delivery through nasal route using thiolated microspheres.

    PubMed

    Nema, Tarang; Jain, Ashish; Jain, Aviral; Shilpi, Satish; Gulbake, Arvind; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93 µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62 ± 2.4% and 78.85 ± 3.1% in 6 h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23 ± 2.12% and 75.25 ± 0.93% blood glucose of initial BGL were observed at 6 h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.

  11. Characterization of a Polyamine Microsphere and Its Adsorption for Protein

    PubMed Central

    Wang, Feng; Liu, Pei; Nie, Tingting; Wei, Huixian; Cui, Zhenggang

    2013-01-01

    A novel polyamine microsphere, prepared from the water-in-oil emulsion of polyethylenimine, was characterized. The investigation of scanning electron microscopy showed that the polyamine microsphere is a regular ball with a smooth surface. The diameter distribution of the microsphere is 0.37–4.29 μm. The isoelectric point of the microsphere is 10.6. The microsphere can adsorb proteins through the co-effect of electrostatic and hydrophobic interactions. Among the proteins tested, the highest value of adsorption of microsphere, 127.8 mg·g−1 microsphere, was obtained with lipase. In comparison with other proteins, the hydrophobic force is more important in promoting the adsorption of lipase. The microsphere can preferentially adsorb lipase from an even mixture of proteins. The optimum temperature and pH for the selective adsorption of lipase by the microsphere was 35 °C and pH 7.0. PMID:23344018

  12. Demonstration of sub-femtomole sensitivity for small molecules with microsphere ring resonator sensors

    NASA Astrophysics Data System (ADS)

    White, Ian M.; Oveys, Hesam; Fan, Xudong

    2006-02-01

    Optical microsphere resonators can function as highly sensitive bio/chemical sensors due to the large Q-factor, which leads to high light-matter interaction. The whispering gallery modes (WGM) arise at the surface of the microsphere, creating a highly enhanced optical field that interacts with matter on or near the microsphere surface. As a result, the spectral position of the WGM is extremely sensitive to refractive index changes near the surface, such as when bio/chemical molecules bind to the sphere. We show the potential feasibility of a microsphere ring resonator as a sensor for small molecules by demonstrating detection of sub-femtomole changes in SiO II molecules at the surface of the microsphere. In this experiment, the silica molecules act as an excellent model for small molecule analytes because of their 60 Dalton molecular weight, and because we know nearly the exact quantity of molecules at the surface, which enables a sensitivity characterization. We measure the spectral shifts in the WGMs when low concentrations of hydrofluoric acid (HF) are added to a solution that is being probed by the microsphere. As the HF molecules break apart the SiO II molecules at the sphere surface, the WGMs shift due to the sub-nano-scale decrease in the size of the microsphere. These calculations show that the sensitivity of this microsphere resonator is on the order of 500 attomoles. Our results will lead to the utilization of optical microspheres for detection of trace quantities of small molecules for such applications as drug discovery, environmental monitoring, and enzyme detection using peptide cleavage.

  13. Comparison of polyvinyl alcohol and tris-acryl gelatin microsphere materials in embolization for symptomatic leiomyomas: a systematic review.

    PubMed

    Jiang, Wenxiao; Shen, Zhaojun; Luo, Hui; Hu, Xiaoli; Zhu, Xueqiong

    2016-12-01

    Use systematic reviews and meta-analyses to assess the effect of polyvinyl alcohol and tris-acryl gelatin microsphere materials in leiomyoma embolization for symptomatic leiomyomas. We included randomised controlled studies published before January 2015 comparing polyvinyl alcohol and tris-acryl gelatin microsphere materials in uterine leiomyoma embolization for women with symptomatic leiomyomas. The main outcome measures included change of overall quality of life, change of overall symptom severity, changes of uterine and leiomyoma volumes, leiomyoma infarction rate, treatment failure and complications. A total of six randomized controlled studies from 335 studies accounting for 351 women with leiomyomas were identified in this meta-analysis. Compared to polyvinyl alcohol, tris-acryl gelatin microsphere showed a significant benefit in improving the overall quality of life and in reducing uterine volume at three and six months, in reducing overall symptom severity at 6 and 12 months, and furthermore in reducing treatment failure. In addition, tris-acryl gelatin microsphere could significantly reduce leiomyoma volume and decrease <90% complete leiomyoma infarction rate at three months. There were no differences in pain severity, other post-procedural symptoms or medication use in the two groups. A better effect of tris-acryl gelatin microsphere in leiomyoma embolization for patients with symptomatic leiomyoma.

  14. Evaluation of the Thermosensitive Release Properties of Microspheres Containing an Agrochemical Compound.

    PubMed

    Terada, Takatoshi; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    The purpose of this study was to develop a deeper understanding of the key physicochemical parameters involved in the release profiles of microsphere-encapsulated agrochemicals at different temperatures. Microspheres consisting of different polyurethanes (PUs) were prepared using our previously reported solventless microencapsulation technique. Notably, these microspheres exhibited considerable differences in their thermodynamic characteristics, including their glass transition temperature (T g ), extrapolated onset temperature (T o ) and extrapolated end temperature (T e ). At test temperatures below the T o of the PU, only 5-10% of the agrochemical was rapidly released from the microspheres within 1 d, and none was released thereafter. However, at test temperatures above the T o of the PU, the rate of agrochemical release gradually increased with increasing temperatures, and the rate of release from the microspheres was dependent on the composition of the PU. Taken together, these results show that the release profiles of the microspheres were dependent on their thermodynamic characteristics and changes in their PU composition.

  15. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, Richard W.; Hrubesh, Lawrence W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  16. Formation of Yttrium Oxysulfide Phosphor at Room Temperature

    NASA Astrophysics Data System (ADS)

    Shoji, Masahiko; Sakurai, Kenji

    2005-12-01

    Europium-doped yttrium oxysulfide (Y2O2S:Eu) phosphor was successfully synthesized at room temperature from yttrium oxide, europium oxide, and sulfur. The method employs high-energy ball milling to enable a substitution reaction between oxygen and sulfur, unlike conventional methods, such as heating in a sulfurizing atmosphere. It was found that the material is fluorescent through X-ray irradiation, and the luminescence spectra exhibit four peaks in the wavelength region from 500 to 800 nm.

  17. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed Central

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-01-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns. Images Fig. 1 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8982822

  18. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  19. Composition and structure of calcium aluminosilicate microspheres

    NASA Astrophysics Data System (ADS)

    Sharonova, O. M.; Oreshkina, N. A.; Zhizhaev, A. M.

    2017-06-01

    The composition was studied of calcium aluminosilicate microspheres of three morphological types in high-calcium fly ash from combustion of brown coal from the Kansk-Achinsk basin in slag-tap boilers at temperatures from 1400 to 1500°C and sampled in the first field of electrostatic precipitators at the Krasnoyarsk Cogeneration Power Station no. 2 (TETs-2). Gross compositions and the composition of local areas were determined using a scanning electron microscopy technique and an energy-dispersive analysis with full mapping of globules. With a high content of basic oxides O ox (68 to 79 wt %) and a low content of acid oxides K ox (21 to 31 wt %), type 1 microspheres are formed. They consist of heterogeneous areas having a porous structure and crystalline components in which the content of CaO, SiO2, or Al2O3 differs by two to three times and the content of MgO differs by seven times. With a lower content of O ox (55 to 63 wt %) and an elevated content of K ox (37 to 45 wt %), type 2 microspheres are formed. They are more homogeneous in the composition and structure and consist of similar crystalline components. Having a close content of O ox (46 to 53 wt %) and K ox (47 to 54 wt %), type 3 microspheres, which are a dense matter consisting of amorphous substance with submicron- and nanostructure of crystalline components, are formed. The basic precursor in formation of high-calcium aluminosilicate microspheres is calcium from the organomineral matter of coals with various contribution of Mg, Fe, S, or Na from the coal organic matter and Al, Fe, S, or Si in the form of single mineral inclusions in a coal particle. On the basis of the available data, the effect was analyzed of the composition of a CaO-MgO-Al2O3-SiO2-FeO system on the melting and viscous properties of the matter in microspheres and formation of globules of different morphology. The results of this analysis will help to find a correlation with properties of microspheres in their use as functional

  20. Preparation of UC0.07-0.10N0.90-0.93 spheres for TRISO coated fuel particles

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Silva, C. M.; Lindemer, T. B.; Johnson, J. A.; Collins, J. L.

    2014-05-01

    The US Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with dense uranium nitride (UN) kernels with diameters of 650 or 800 μm. The objectives of this effort are to make uranium oxide microspheres with adequately dispersed carbon nanoparticles and to convert these microspheres into UN spheres, which could be then sintered into kernels. Recent improvements to the internal gelation process were successfully applied to the production of uranium gel spheres with different concentrations of carbon black. After the spheres were washed and dried, a simple two-step heat profile was used to produce porous microspheres with a chemical composition of UC0.07-0.10N0.90-0.93. The first step involved heating the microspheres to 2023 K in a vacuum, and in the second step, the microspheres were held at 1873 K for 6 h in flowing nitrogen.

  1. Fabrication of (U,Am)O2 pellet with controlled porosity from oxide microspheres

    NASA Astrophysics Data System (ADS)

    Ramond, Laure; Coste, Philippe; Picart, Sébastien; Gauthé, Aurélie; Bataillea, Marc

    2017-08-01

    U1-xAmxO2±δ mixed-oxides are considered as promising compounds for americium heterogeneous transmutation in Sodium Fast Neutron Reactor. Porous microstructure is envisaged in order to facilitate helium and fission gas release and to reduce pellet swelling during irradiation and under self-irradiation. In this study, the porosity is created by reducing (U,Am)3O8 microspheres into (U,Am)O2 during the sintering. This reduction is accompanied by a decrease of the lattice volume that leads to the creation of open porosity. Finally, an (U0.90Am0.10)O2 porous ceramic pellet (D∼89% of the theoretical density TD) with controlled porosity (≥8% open porosity) was obtained from mixed-oxide microspheres obtained by the Weak Acid Resin (WAR) process.

  2. Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying

    PubMed Central

    2017-01-01

    We describe the co-electrospraying of hollow microspheres from a polycaprolactone (PCL) shell solution and various core solutions including water, cyclohexane, poly(ethylene oxide) (PEO), and polyethylene glycol (PEG), using different collectors. The morphologies of the resultant microspheres were characterized by scanning electron microscopy (SEM), confocal microscopy, and nano-X-ray computed tomography (nano-XCT). The core/shell solution miscibility played an important role in the co-electrospraying process and the formation of microsphere structures. Spherical particles were more likely to be produced from miscible combinations of core/shell solutions than from immiscible ones. Hollow PCL microspheres with a single hole in their surfaces were produced when an ethanol bath was used as the collector. The mechanism by which the core/shell structure is transformed into single-hole hollow microspheres is proposed to be primarily based on the evaporation through the shell and extraction by ethanol of the core solution and is described in detail. Additionally, we present a 3D macroscopic tubular structure composed of hollow PCL microspheres, directly assembled on a copper wire collector during co-electrospraying. SEM and nano-XCT confirm that microspheres in the 3D bulk structure remain hollow. PMID:28901145

  3. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOEpatents

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  4. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOEpatents

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  5. Preparation and evaluation of sustained release loxoprofen loaded microspheres.

    PubMed

    Venkatesan, P; Manavalan, R; Valliappan, K

    2011-06-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours.

  6. BiOBr microspheres for photocatalytic degradation of an anionic dye

    NASA Astrophysics Data System (ADS)

    Mera, Adriana C.; Váldes, Héctor; Jamett, Fabiola J.; Meléndrez, M. F.

    2017-03-01

    BiOBr microspheres were obtained using a solvothermal synthesis route in the presence of ethylene glycol and KBr at 145 °C, for 18 h. BiOBr microspheres were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption-desorption isotherms analysis, diffuse reflectance spectroscopy (DRS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Additionally, the theoretical and experimental isoelectric points (IEP) of BiOBr nanostructured microspheres were determined, and pH's influence on the degradation of an anionic dye (methyl orange) under simulated solar radiation was analyzed. Results show that 97% of methyl orange is removed at pH 2 after 60 min of photocatalytic reaction. Finally, DRIFTS studies permit the proposal of a surface reaction mechanism of the photocatalytic oxidation of MO using BiOBr microspheres.

  7. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key

  8. Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2,4-dinitrophenol

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Liu, Yutang; Xia, Xinnian; Wang, Longlu

    2017-06-01

    In this paper, novel popcorn balls-like ZnFe2O4-ZrO2 composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe2O4-ZrO2 photocatalyst (mass ratio of ZnFe2O4/ZrO2 = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe2O4 and ZrO2. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  9. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    NASA Astrophysics Data System (ADS)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  11. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  12. Fabrication of Polymer Microspheres for Optical Resonator and Laser Applications.

    PubMed

    Yamamoto, Yohei; Okada, Daichi; Kushida, Soh; Ngara, Zakarias Seba; Oki, Osamu

    2017-06-02

    This paper describes three methods of preparing fluorescent microspheres comprising π-conjugated or non-conjugated polymers: vapor diffusion, interface precipitation, and mini-emulsion. In all methods, well-defined, micrometer-sized spheres are obtained from a self-assembling process in solution. The vapor diffusion method can result in spheres with the highest sphericity and surface smoothness, yet the types of the polymers able to form these spheres are limited. On the other hand, in the mini-emulsion method, microspheres can be made from various types of polymers, even from highly crystalline polymers with coplanar, π-conjugated backbones. The photoluminescent (PL) properties from single isolated microspheres are unusual: the PL is confined inside the spheres, propagates at the circumference of the spheres via the total internal reflection at the polymer/air interface, and self-interferes to show sharp and periodic resonant PL lines. These resonating modes are so-called "whispering gallery modes" (WGMs). This work demonstrates how to measure WGM PL from single isolated spheres using the micro-photoluminescence (µ-PL) technique. In this technique, a focused laser beam irradiates a single microsphere, and the luminescence is detected by a spectrometer. A micromanipulation technique is then used to connect the microspheres one by one and to demonstrate the intersphere PL propagation and color conversion from coupled microspheres upon excitation at the perimeter of one sphere and detection of PL from the other microsphere. These techniques, µ-PL and micromanipulation, are useful for experiments on micro-optic application using polymer materials.

  13. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    PubMed

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl

    PubMed Central

    2012-01-01

    Background The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. Methods With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. Results The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Conclusions Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics. PMID:23351176

  15. A new rat model of portal hypertension induced by intraportal injection of microspheres

    PubMed Central

    Li, Xiang-Nong; Benjamin, IS; Alexander, B

    1998-01-01

    AIM: To produce a new rat model of portal hypertension by intraportal injection of microspheres. METHODS: Measured aliquots of single or different-sized microspheres (15, 40, 80μm) were injected into the portal vein to block intrahepatic portal radicals. The resultant changes in arterial,portal,hepatic venous and splenic pulp pressures were monitored. The liver and lungs were excised for histological examination. RESULTS: Portal venous pressure was elevated from basal value of 0.89-1.02 kPa to a steady-state of 1.98-3.19 kPa following the sequential injections of single- or different-sized microspheres, with a markedly lowered mean arterial pressure. However, a small-dose injection of 80 μm microspheres (1.8 × 105) produced a steady-state portal venous pressure of 2.53 × 0.17 kPa, and all rats showed normal arterial pressures. In addition, numerous microspheres were found in the lungs in all experimental groups. CONCLUSION: Portal hypertension can be reproduced in rats by intraportal injection of microspheres at a small dose of 80 μm (1.8 × 105). Intrahepatic portal-systemic shunts probably exist in the normal rat liver. PMID:11819236

  16. Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics

    PubMed Central

    Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM

    2011-01-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354

  17. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    PubMed

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  18. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    PubMed

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Preparation and evaluation of sustained release loxoprofen loaded microspheres

    PubMed Central

    Venkatesan, P.; Manavalan, R.; Valliappan, K.

    2011-01-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours PMID:24826017

  20. Apparatus and process to enhance the uniform formation of hollow glass microspheres

    DOEpatents

    Schumacher, Ray F

    2013-10-01

    A process and apparatus is provided for enhancing the formation of a uniform population of hollow glass microspheres. A burner head is used which directs incoming glass particles away from the cooler perimeter of the flame cone of the gas burner and distributes the glass particles in a uniform manner throughout the more evenly heated portions of the flame zone. As a result, as the glass particles are softened and expand by a released nucleating gas so as to form a hollow glass microsphere, the resulting hollow glass microspheres have a more uniform size and property distribution as a result of experiencing a more homogenous heat treatment process.

  1. Magnetic poly(glycidyl methacrylate) microspheres for protein capture.

    PubMed

    Koubková, Jana; Müller, Petr; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, Bořivoj; Horák, Daniel

    2014-09-25

    The efficient isolation and concentration of protein antigens from complex biological samples is a critical step in several analytical methods, such as mass spectrometry, flow cytometry and immunochemistry. These techniques take advantage of magnetic microspheres as immunosorbents. The focus of this study was on the development of new superparamagnetic polymer microspheres for the specific isolation of the tumor suppressor protein p53. Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres measuring approximately 5 μm and containing carboxyl groups were prepared by multistep swelling polymerization of glycidyl methacrylate (GMA), 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) and ethylene dimethylacrylate (EDMA) as a crosslinker in the presence of cyclohexyl acetate as a porogen. To render the microspheres magnetic, iron oxide was precipitated within their pores; the Fe content in the particles received ∼18 wt%. Nonspecific interactions between the magnetic particles and biological media were minimized by coating the microspheres with poly(ethylene glycol) (PEG) terminated by carboxyl groups. The carboxyl groups of the magnetic PGMA microspheres were conjugated with primary amino groups of mouse monoclonal DO-1 antibody using conventional carbodiimide chemistry. The efficiency of protein p53 capture and the degree of nonspecific adsorption on neat and PEG-coated magnetic microspheres were determined by western blot analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Screening study on microsphere used in profile control under the environment of microbial oil recovery

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Xie, Gang; Gao, Shanshan; Wang, Zhiqiang; Wei, Junjie; Shi, Lei; Zheng, Ya; Gu, Yi; Lei, Xiaoyang; Wang, Ai

    2017-12-01

    The performance of four microspheres samples (MS-1, MS-2, MS-3, and MS-4) were evaluated and optimized by indoor experiments. Firstly, the basic physical and chemical properties of the four kinds of microspheres were evaluated by analyzing the solid contents and the solubility in the water. Results showed that the content of the precipitated solids in MS-1 was the lowest in the four kinds of microsphere samples. The contents of the other three microspheres were similar in the value of solid content. Besides, the three microspheres of the solubility in the simulated formation water were excellent. Secondly, the expansion properties of three kinds of microspheres (MS-2, MS-3, and MS-4) were investigated. Results revealed that the expansion performance of MS-3 was greatly affected by microbial metabolism. However, the other two samples had excellent expansion performance under the condition of microbial flooding. Finally, the sealing performance of MS-2 and MS-4 was evaluated by physical simulation Block test. Results showed that compared with MS-2, MS-4 was more suitable for Block B.

  3. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; ...

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep) 4]) compounds were developed as precursors to alkali yttrium oxide (AYO 2) nanomaterials. The reaction of yttrium amide ([Y(NR 2) 3] where R=Si(CH 3) 3) with four equivalents of H-ONep followed by addition of [A(NR 2)] (A=Li, Na, K) or A o (A o=Rb, Cs) led to the formation of a complex series of A nY(ONep) 3+n species, crystallographically identified as [Y 2Li 3(μ 3-ONep)(μ 3-HONep)(μ-ONep) 5(ONep) 3(HONep) 2] (1), [YNa 2(μ 3-ONep) 4(ONep)] 2 (2), {[Y 2K 3(μ 3-ONep) 3(μ-ONep) 4(ONep) 2(ηξ-tol) 2][Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep)more » 4]•η x-tol]} (3), [Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep) 4] (3a), [Y 2Rb 3(μ 4-ONep) 3(μ-ONep) 6] (4), and [Y 2Cs 4(μ 6-O)(μ 3-ONep) 6(μ 3-HONep) 2(ONep) 2(η x-tol) 4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing were found by powder X-ray diffraction experiments to be Y 2O 3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  4. Remediation of coal mining wastewaters using chitosan microspheres.

    PubMed

    Geremias, R; Pedrosa, R C; Benassi, J C; Fávere, V T; Stolberg, J; Menezes, C T B; Laranjeira, M C M

    2003-12-01

    This study aimed to evaluate the potential use of chitosan and chitosan/poly(vinylalcohol) microspheres incorporating with tetrasulphonated copper (II) phthalocyanine (CTS/PVA/TCP) in the remediation of coal mining wastewaters. The process was monitored by toxicity tests both before and after adsorption treatments with chitosan and microspheres. Physicochemical parameters, including pH and trace-metal concentration, as well as bioindicators of water pollution were used to that end. Wastewater samples colleted from drainage of underground coal mines, decantation pools, and contaminated rivers were scrutinized. Acute toxicity tests were performed using the Brine Shrimp Test (BST) in order to evaluate the remediation efficiency of different treatments. The results showed that the pH of treated wastewater samples were improved to values close to neutrality. Chitosan treatments were also effective in removing trace-metals. Pre-treatment with chitosan followed by microsphere treatment (CTS/PVA/TCP) was more effective in decreasing toxicity than the treatment using only chitosan. This was probably due to the elimination of pollutants other than trace-metals. Thus, the use of chitosan and microspheres is an adequate alternative towards remediation of water pollution from coal mining.

  5. Evaluation of BSA protein release from hollow hydroxyapatite microspheres into PEG hydrogel

    PubMed Central

    Fu, Hailuo; Rahaman, Mohamed N.; Brown, Roger F.; Day, Delbert E.

    2013-01-01

    Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a high surface area, mesoporous shell wall and studied the release of a model protein, bovine serum albumin (BSA), from the microspheres into phosphate-buffered saline (PBS). The present work is an extension of our previous work to study the release of BSA from similar HA microspheres into a biocompatible hydrogel, poly(ethylene glycol) (PEG). BSA-loaded HA microspheres were placed in a PEG solution which was rapidly gelled using ultraviolet radiation. The BSA release rate into the PEG hydrogel, measured using a spectrophotometric method, was slower than into PBS, and it was dependent on the initial BSA loading and on the microstructure of the microsphere shell wall. A total of 35–40% of the BSA initially loaded into the microspheres was released into PEG over ~14 days. The results indicate that these hollow HA microspheres have promising potential as an osteoconductive device for local drug or growth factor delivery in bone regeneration and in the treatment of bone diseases. PMID:23498254

  6. A short term quality control tool for biodegradable microspheres.

    PubMed

    D'Souza, Susan; Faraj, Jabar A; Dorati, Rossella; DeLuca, Patrick P

    2014-06-01

    Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C.

  7. Experimental study on microsphere assisted nanoscope in non-contact mode

    NASA Astrophysics Data System (ADS)

    Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui

    2018-07-01

    Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.

  8. Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization.

    PubMed

    Liu, Rongrong; Dai, Honglian; Zhou, Qian; Zhang, Qian; Zhang, Ping

    2016-08-01

    Two types of shape memory poly carbonate urethanes (PCUs) microspheres were synthesized by pre-polymerization and suspension polymerization, based on Polycarbonate diol (PCDL) as the soft segment, Isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) as the hard segments and 1,4-butanediol (BDO) as the chain expanding agent. The structure, crystallinity, and thermal property of the two synthesized PCUs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetery (DSC), respectively. The results showed that the two types of PCUs exhibited high thermal stability with phase separation and semi-crystallinity. Also, the results of the compression test displayed that the shape fixity and the shape recovery of two PCUs were more than 90% compared to the originals, indicating their similar bio-applicability and shape-memory properties. The tensile strength, elongation at break was enhanced by introducing and increasing content of HDI. The water contact angles of PCUs decreased and their surface tension increased by surface modified with Bovine serum albumin (BSA). Furthermore, the biological study results of two types of PCUs from the platelet adhesion test and the cell proliferation inhibition test indicated they had some biocompatibilites. Hence, the PCU microspheres might represent a smart and shape-memory embolic agent for vascular embolization.

  9. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Yu, Jimmy C.; Chan, Mui

    2009-05-01

    A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO 2 microspheres was developed. Formation of mesoporous TiO 2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO 2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO 2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.

  10. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1996-04-16

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  11. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1996-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  12. Microsphere coated substrate containing reactive aldehyde groups

    NASA Technical Reports Server (NTRS)

    Yen, Richard C. K. (Inventor); Rembaum, Alan (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  13. 21 CFR 870.1360 - Trace microsphere.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Trace microsphere. 870.1360 Section 870.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1360 Trace microsphere. (a...

  14. 21 CFR 870.1360 - Trace microsphere.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Trace microsphere. 870.1360 Section 870.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1360 Trace microsphere. (a...

  15. Control of silk microsphere formation using polyethylene glycol (PEG).

    PubMed

    Wu, Jianbing; Zheng, Zhaozhu; Li, Gang; Kaplan, David L; Wang, Xiaoqin

    2016-07-15

    A one step, rapid method to prepare silk microspheres was developed, with particle size controlled by the addition of polyethylene glycol (PEG). PEG molecular weight (4.0K-20.0KDa) and concentration (20-50wt%), as well as silk concentration (5-20wt%), were key factors that determined particle sizes varying in a range of 1-100μm. Addition of methanol to the PEG-silk combinations increased the content of crystalline β-sheet in the silk microspheres. To track the distribution and degradation of silk microspheres in vivo, 3-mercaptopropionic acid (MPA)-coated CdTe quantum dots (QDs) were physically entrapped in the silk microspheres. QDs tightly bound to the β-sheet domains of silk via hydrophobic interactions, with over 96% of the loaded QDs remaining in the silk microspheres after exhaustive extraction. The fluorescence of QDs-incorporated silk microspheres less stable in cell culture medium than in phosphate buffer solution (PBS) and water. After subcutaneous injection in mice, microspheres prepared from 20% silk (approx. 30μm diameter particles) still fluoresced at 24h, while those prepared from 8% silk (approx. 4μm diameter particles) and free QDs were not detectable, reflecting the QDs quenching and particle size effect on microsphere clearance in vivo. The larger microspheres were more resistant to cell internalization and degradation. Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. The work is of significance to the biomaterial and controlled release society because it provides a new option for fabricating silk microspheres in one simple step of mixing silk and polyethylene glycol (PEG), with the size and properties of microspheres controllable by PEG molecular weight as well as PEG and silk concentrations. Although fabrication of silk

  16. Microspheres in Plasma Display Panels

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Filling small bubbles of molten glass with gases is just as difficult as it sounds, but the technical staff at NASA is not known to shy away from a difficult task. When Microsphere Systems, Inc. (MSI), of Ypsilanti, Michigan, and Imaging Systems Technology, Inc. (IST), of Toledo, Ohio, were trying to push the limits of plasma displays but were having difficulty with the designs, NASA s Glenn Garrett Morgan Commercialization Initiative (GMCI) assembled key personnel at Glenn Research Center and Ohio State University for a brainstorming session to come up with a solution for the companies. They needed a system that could produce hollow, glass micro-sized spheres (microspheres) that could be filled with a variety of gasses. But the extremely high temperature required to force the micro-sized glass bubbles to form at the tip of a metal nozzle resulted in severe discoloration of the microspheres. After countless experiments on various glass-metal combinations, they had turned to the GMCI for help. NASA experts in advanced metals, ceramics, and glass concluded that a new design approach was necessary. The team determined that what was needed was a phosphate glass composition that would remain transparent, and they went to work on a solution. Six weeks later, using the design tips from the NASA team, Tim Henderson, president of MSI, had designed a new system in which all surfaces in contact with the molten glass would be ceramic instead of metal. Meanwhile, IST was able to complete a Phase I Small Business Innovation Research (SBIR) grant supported by the National Science Foundation (NSF) and supply a potential customer with samples of the microspheres for evaluation as filler materials for high-performance insulations.

  17. Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3-SrFe12O19 Composite

    NASA Astrophysics Data System (ADS)

    Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat

    2018-03-01

    The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.

  18. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Naltrexone-loaded poly[La-(Glc-Leu)] polymeric microspheres for the treatment of alcohol dependence: in vitro characterization and in vivo biocompatibility assessment.

    PubMed

    Pagar, Kunal P; Vavia, Pradeep R

    2014-06-01

    The poly[La-(Glc-Leu)] copolymer was applied in the present investigation as polymeric carrier to fabricate naltrexone (NTX)-loaded poly[La-(Glc-Leu)] microspheres in the single emulsion solvent evaporation technique for the long-term treatment of alcohol dependence. Newly synthesized poly[La-(Glc-Leu)] copolymer exhibited diminished crystallanity, good biocompatibility and favorable biodegradability to be explored for drug delivery application. Scanning Electron Microscopy study revealed smooth and spherical-shaped NTX-loaded polymeric microspheres with a mean size of 10-90 µm. Influence of various decisive formulation variables such as amount of polymer, stabilizer concentration, homogenization speed, homogenization time, drug loading and organic-to-aqueous phase ratio on particle size, and entrapment efficiency was studied. Differential scanning calorimeter and X-ray diffractometry study confirmed the drug entrapment within polymer matrix into the microsphere environment. In vitro drug release showed the sustained drug release of formulation for the period of 28 d giving biphasic release pattern. Histological examination of NTX-loaded poly[La-(Glc-Leu)] microspheres injected intramuscularly into the thigh muscle of Wistar rats showed minimal inflammatory reaction, demonstrating that NTX-loaded microspheres were biocompatible. Insignificant increase in the serum creatine phosphokinase level (p < 0.05) as compared with the normal value revealed good muscle compatibility of the poly[La-(Glc-Leu)] microsphere system. Biocompatible nature and sustained drug-release action of poly[La-(Glc-Leu)] microspheres may have potential application in depot therapy.

  20. In vitro inhibition of lipid accumulation induced by oleic acid and in vivo pharmacokinetics of chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS)

    PubMed Central

    Wu, Sihui; Pan, Haitao; Tan, Sirong; Ding, Chen; Huang, Guidong; Liu, Guihua; Guo, Jiao; Su, Zhengquan

    2017-01-01

    ABSTRACT Chitosan and capsaicin are compounds extracted from natural products and have been indicated to lower body weight and prevent fatty liver. However, their applications are limited by poor oral bioavailability, low compliance and some serious side effects. To solve these problems, we successfully prepared chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS) in previous study. Therefore, in the present study, we evaluated the ability of CTMS and CCMS to eliminate lipid accumulation in hepatocytesand also characterized their pharmacokinetic parameters after administration. The results showed that the two microspheres could significantly reduce intracellular lipid accumulation and dose-dependently improve the triglyceride (TG) content in HepG2 cells. A pharmacokinetic study indicated that CTMS and CCMS were distributed in almost all of the measured tissues, especially liver and kidney, and that their absorption was better than those of chitosan and capsaicin. Simultaneously, the prolonged circulating half-lives, the lower clearance and higher plasma concentration of CTMS and CCMS showed that their bioavailability was effectively enhanced. All of the results indicated that the lipid accumulation inhibition of CTMS and CCMS was better than that of chitosan and capsaicin, and that these microspheres can be developed as preventive agents for fatty liver or obesity. PMID:28659743

  1. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    PubMed

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  2. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  3. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    NASA Astrophysics Data System (ADS)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  4. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres.

    PubMed

    Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D

    2008-02-01

    Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.

  5. Super-focusing of center-covered engineered microsphere.

    PubMed

    Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui

    2016-08-16

    Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere.

  6. Photonuclear production of yttrium-88 - A high energy gamma emitter for hydrocarbon extraction applications.

    PubMed

    Dale, Daniel S; Starovoitova, Valeriia N; Forest, Tony A; Oliphant, Emily

    2018-05-05

    The use of fracing has risen over the past decade and revolutionized energy production in the US. However, there is still an impetus for further optimization of the extraction of oil and natural gas from vast shale reservoirs. In this work, we discuss photonuclear production of yttrium-88 as a promising radiotracer for fracing operations. Single neutron knock-out from natural monoisotopic yttrium-89 is an inexpensive process resulting in high activity of 88 Y with minimal impurities. MCNPX simulations were performed to estimate the 88 Y yield. Irradiations of natural yttrium using a 32 MeV electron linac equipped with a tungsten bremsstrahlung converter were done to benchmark the simulations. Activities of 88 Y, 87g Y, and 87m Y were measured and found to be in good agreement with the predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  8. A study of factors affecting properties of AM/AMPS/NVP terpolymeric microspheres prepared by inverse suspension polymerization

    NASA Astrophysics Data System (ADS)

    Jiang, J. F.; Zhao, Q.; Lin, M. Q.; Wang, Y. F.; Dang, S. M.; Sun, F. F.

    2015-12-01

    Terpolymeric microspheres were synthesized by the inverse suspension polymerization of functional monomers including AMPS, NVP, and AM. The morphology and size of the obtained microspheres were measured by scanning electron microscopy (SEM) and optical microscopy. Furthermore, the swelling performances of the obtained microspheres were measured with alaser particle analyzer (LPA), and the thermal stability of the microspheres obtained was measured by differential thermal analysis (DSC-TG) and high temperature experiments involving microsphere/water dispersion. The results revealed that the extreme value of the microsphere size distribution decreased from 280 μm to 20 μm as the stirring rate increased from 175 rpm to 500 rpm. At temperatures below 25°C, the maximum achieved swelling ratio of the microspheres was 21, and the thermal stability of the terpolymer microspheres was significantly higher than that of the dipolymer microspheres. The terpolymer/water dispersions were kept at 120°C for 19d before any damage was observed.

  9. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Gu, Yaohua; Su, Weiguang; Shuai, Huihui; Wang, Julan

    2016-01-01

    Magnetic hydrophilic porous microspheres were successfully one-pot synthesized for the first time via in situ inverse suspension polymerization of glycidyl methacrylate, N,N‧-methylene bisacrylamide and 2-hydroxyethyl methacrylate in the presence of Fe3+ and Fe2+ dispersed in formamide, which were denoted as magnetic Fe3O4-GMH microspheres. The morphology and properties of magnetic Fe3O4-GMH microspheres were characterized by SEM, VSM, XRD, FTIR, and so on. The formamide content had an important influence on the morphology of Fe3O4-GMH, and nearly perfectly spherical Fe3O4-GMH particles were formed when the amount of formamide was 15 ml. The diameters of the microspheres were in the range of 100-200 μm and Fe3O4-GMH exhibited superparamagnetic behavior with the saturation magnetization of 5.44 emu/g. The specific surface area of microspheres was 138.7 m2/g, the average pore diameter and pore volume were 15.1 nm and 0.60 cm3/g, respectively. The content of oxirane groups on Fe3O4-GMH was 0.40 mmol/g. After penicillin G acylase (PGA) was covalently immobilized on Fe3O4-GMH microspheres, the catalytic performance for amoxicillin synthesis by 6-aminopenicillanic acid and D-hydroxyphenylglycine methyl ester was largely improved. As a result, 90.1% amoxicillin yield and 1.18 of the synthesis/hydrolysis (S/H) ratio were achieved on PGA/Fe3O4-GMH with ethylene glycol as solvent, but only 62.6% amoxicillin yield and 0.37 of the S/H ratio were obtained on free PGA under the same reaction conditions. Furthermore, the amoxicillin yield and S/H ratio were still kept at 88.2% and 1.06, respectively after the immobilized PGA was magnetically separated and recycled for 10 times, indicating that PGA/Fe3O4-GMH had a very good reusability.

  10. Hydrothermal synthesis and photocatalytic performance of hierarchical Bi{sub 2}MoO{sub 6} microspheres using BiOI microspheres as self-sacrificing templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2015-07-15

    Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through phase transformation from BiOI microspheres with the assistance of sodium citrate under hydrothermal condition. The possible formation mechanism for the conversion of BiOI to Bi{sub 2}MoO{sub 6} is discussed here. After being annealed at 300 °C for 2 h, the obtained Bi{sub 2}MoO{sub 6} microspheres exhibited remarkably enhanced photocatalytic activity towards the degradation of rhodamine B and phenol. The superior catalytic performance can be attributed to its larger surface area and higher crystallinity. In addition, Bi{sub 2}MoO{sub 6} microspheres are stable during the degradation reaction and can be used repeatedly. -more » Graphical abstract: Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through a facile partial anion exchange strategy using BiOI microspheres as self-sacrificing templates. The Bi{sub 2}MoO{sub 6} microspheres show high visible light photocatalytic activity. - Highlights: • Bi{sub 2}MoO{sub 6} microspheres were prepared via self-sacrificing template anion exchange. • Sodium citrate-assisted anion exchange for preparation of Bi{sub 2}MoO{sub 6} photocatalyst. • Bi{sub 2}MoO{sub 6} catalysts show high visible light photocatalytic activity.« less

  11. Use of Microsphere Technology for Targeted Delivery of Rifampin to Mycobacterium tuberculosis-Infected Macrophages

    PubMed Central

    Barrow, Esther L. W.; Winchester, Gary A.; Staas, Jay K.; Quenelle, Debra C.; Barrow, William W.

    1998-01-01

    Microsphere technology was used to develop formulations of rifampin for targeted delivery to host macrophages. These formulations were prepared by using biocompatible polymeric excipients of lactide and glycolide copolymers. Release characteristics were examined in vitro and also in two monocytic cell lines, the murine J774 and the human Mono Mac 6 cell lines. Bioassay assessment of cell culture supernatants from monocyte cell lines showed release of bioactive rifampin during a 7-day experimental period. Treatment of Mycobacterium tuberculosis H37Rv-infected monocyte cell lines with rifampin-loaded microspheres resulted in a significant decrease in numbers of CFU at 7 days following initial infection, even though only 8% of the microsphere-loaded rifampin was released. The levels of rifampin released from microsphere formulations within monocytes were more effective at reducing M. tuberculosis intracellular growth than equivalent doses of rifampin given as a free drug. These results demonstrate that rifampin-loaded microspheres can be formulated for effective sustained and targeted delivery to host macrophages. PMID:9756777

  12. Albumin microspheres as an ocular delivery system for pilocarpine nitrate.

    PubMed

    Rathod, Sudha; Deshpande, S G

    2008-01-01

    Pilocarpine nitrate loaded egg albumin microspheres were prepared by thermal denaturation process in the size range of 1-12 mum. A series of batches were prepared to study factors, which may affect the size and entrapment efficiency of drug in microspheres and optimized the process. Drug loaded microspheres so obtained were evaluated for their size, entrapment efficiency, release rate and biological response. Electron photomicrographs were taken (8000X) to study the morphological characteristics of microspheres. The entrapment and encapsulation of pilocarpine after process optimization was found to be 82.63% and 62.5% respectively. In vitro dissolution rate studies revealed that the release of drug from the microspheres followed spherical matrix mechanism. Biological response of microspheric suspension was measured by reduction in intraocular pressure in albino rabbit eyes and compared with marketed eye drops. Various pharmacokinetic parameters viz. onset of action, duration of action, Tmax and AUC were studied. A measurable difference was found in the mean miotic response, duration and AUC of pilocarpine nitrate microspheric suspension.

  13. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.

    PubMed

    Yin, Di; Xu, Gangwei; Wang, Mengyuan; Shen, Mingwu; Xu, Tiegang; Zhu, Xiaoyue; Shi, Xiangyang

    2017-09-01

    We present a facile particle-based cell manipulation method using acoustic radiation forces. In this work, we selected several representative particles including poly(lactic-co-glycolic acid) (PLGA) microspheres, silica-coated magnetic microbeads, polydimethylsiloxane (PDMS) microspheres and investigated the responses of these particle systems to ultrasonic standing waves (USWs) in a microfluidic chip. We show that depending on the nature (positive or negative acoustic contrast factors) of the particles, these particle systems display different alignment behaviors along the microfluidic channel under USWs. Specifically, PLGA microspheres and silica-coated magnetic microbeads are able to be aligned in the middle of the microfluidic channel, while PDMS microspheres are translocated to the side walls of the channel, which is beneficial for cell trapping and manipulation. Further results demonstrate that the functional PDMS microspheres with a negative acoustic contrast factor can be used to trap cells to the pressure antinodes in the acoustofluidic chip. Cell viability tests reveal that the ultrasonic manipulation does not exert any harmful effect to the cells. This acoustic-based particle and cell manipulation technique may hold a great promise for the development of rapid, noninvasive, continuous assays for detecting of cells and separation of biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. PLGA microspheres encapsulating siRNA.

    PubMed

    De Rosa, Giuseppe; Salzano, Giuseppina

    2015-01-01

    The therapeutic use of small interfering RNA (siRNA) represents a new and powerful approach to suppress the expression of pathologically genes. However, biopharmaceutical drawbacks, such as short half-life, poor cellular uptake, and unspecific distribution into the body, hamper the development of siRNA-based therapeutics. Poly(lactide-co-glycolide), (PLGA) microspheres can be a useful tool to overcome these issues. siRNA can be encapsulated into the PLGA microspheres, which protects the loaded nucleic acid against the enzymatic degradation. Moreover, PLGA microspheres can be injected directly into the action site, where the siRNA can be released in controlled manner, thus avoiding the need of frequent invasive administrations. The complete biodegradability of PLGA to monomers easily metabolized by the body, and its approval by FDA and EMA for parenteral administration, assure the safety of this copolymer and do not require the removal of the device after the complete drug release. In chapter, a basic protocol for the preparation of PLGA microspheres encapsulating siRNA is described. This protocol is based on a double emulsion/solvent evaporation technique, a well known and easy to reproduce method. This specific protocol has been developed to encapsulate a siRNA anti-TNFα in PLGA microspheres, and it has been designed and optimized to achieve high siRNA encapsulation efficiency and slow siRNA release in vitro. However, it can be extended also to other siRNA as well as other RNA or DNA-based oligonucleotides (miRNA, antisense, decoy, etc.). Depending on the applications, chemical modifications of the backbone and site-specific modification within the siRNA sequences could be required.

  15. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.

    PubMed

    Wang, Shuai; Jiao, Shuqiang; Wang, Junxiang; Chen, Hao-Sen; Tian, Donghua; Lei, Haiping; Fang, Dai-Ning

    2017-01-24

    On the basis of low-cost, rich resources, and safety performance, aluminum-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in large-scale energy applications. A rechargeable aluminum-ion battery has been fabricated based on a 3D hierarchical copper sulfide (CuS) microsphere composed of nanoflakes as cathode material and room-temperature ionic liquid containing AlCl 3 and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) as electrolyte. The aluminum-ion battery with a microsphere electrode exhibits a high average discharge voltage of ∼1.0 V vs Al/AlCl 4 - , reversible specific capacity of about 90 mA h g -1 at 20 mA g -1 , and good cyclability of nearly 100% Coulombic efficiency after 100 cycles. Such remarkable electrochemical performance is attributed to the well-defined nanostructure of the cathode material facilitating the electron and ion transfer, especially for chloroaluminate ions with large size, which is desirable for aluminum-ion battery applications.

  16. Super-focusing of center-covered engineered microsphere

    PubMed Central

    Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui

    2016-01-01

    Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere. PMID:27528093

  17. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    PubMed

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using 90Yttrium and 177Lutetium labeled somatostatin analogs: toxicity, response and survival analysis

    PubMed Central

    Budiawan, Hendra; Salavati, Ali; Kulkarni, Harshad R; Baum, Richard P

    2014-01-01

    The overall survival rate of non-radioiodine avid differentiated (follicular, papillary, medullary) thyroid carcinoma is significantly lower than for patients with iodine-avid lesions. The purpose of this study was to evaluate toxicity and efficacy (response and survival) of peptide receptor radionuclide therapy (PRRT) in non-radioiodine-avid or radioiodine therapy refractory thyroid cancer patients. Sixteen non-radioiodine-avid and/or radioiodine therapy refractory thyroid cancer patients, including follicular thyroid carcinoma (n = 4), medullary thyroid carcinoma (n = 8), Hürthle cell thyroid carcinoma (n = 3), and mixed carcinoma (n = 1) were treated with PRRT by using 90Yttrium and/or 177Lutetium labeled somatostatin analogs. 68Ga somatostatin receptor PET/CT was used to determine the somatostatin receptor density in the residual tumor/metastatic lesions and to assess the treatment response. Hematological profiles and renal function were periodically examined after treatment. By using fractionated regimen, only mild, reversible hematological toxicity (grade 1) or nephrotoxicity (grade 1) were seen. Response assessment (using EORTC criteria) was performed in 11 patients treated with 2 or more (maximum 5) cycles of PRRT and showed disease stabilization in 4 (36.4%) patients. Two patients (18.2%) showed partial remission, in the remaining 5 patients (45.5%) disease remained progressive. Kaplan-Meier analysis resulted in a mean survival after the first PRRT of 4.2 years (95% CI, range 2.9-5.5) and median progression free survival of 25 months (inter-quartiles: 12-43). In non-radioiodine-avid/radioiodine therapy refractory thyroid cancer patients, PRRT is a promising therapeutic option with minimal toxicity, good response rate and excellent survival benefits. PMID:24380044

  19. Efficient delivery of recombinant human bone morphogenetic protein (rhBMP-2) with dextran sulfate-chitosan microspheres.

    PubMed

    Xia, Yuan-Jun; Xia, Hong; Chen, Ling; Ying, Qing-Shui; Yu, Xiang; Li, Li-Hua; Wang, Jian-Hua; Zhang, Ying

    2018-04-01

    Bone morphogenetic protein-2 (BMP-2) serves an important role in the development of bone and cartilage. However, administration of BMP-2 protein alone by intravenous delivery is not very effective. Sustained delivery of stabilized BMP-2 by carriers has been proven necessary to improve the osteogenesis effect of BMP-2. The present study constructed a novel drug delivery system using dextran sulfate (DS)-chitosan (CS) microspheres and investigated the efficiency of the delivery system on recombinant human bone morphogenetic protein (rhBMP-2). The microsphere morphology, optimal ratio of DS/CS/rhBMP-2, and drug loading rate and entrapment efficiency of rhBMP-2 CS nanoparticles were determined. L929 cells were used to evaluate the cytotoxicity and effect of DS/CS/rhBMP-2 microspheres on cell proliferation. Differentiation study was conducted using bone marrow mesenchymal stem cells (BMSCs-C57) cells treated with DS/CS/rhBMP-2 microspheres or the control microspheres. The DS/CS/rhBMP-2 microspheres delivery system was successfully established. Subsequent complexation of rhBMP-2-bound DS with polycations afforded well defined microspheres with a diameter of ~250 nm. High protein entrapment efficiency (85.6%) and loading ratio (47.245) µg/mg were achieved. Release of rhBMP-2 from resultant microspheres persisted for over 20 days as determined by ELISA assay. The bioactivity of rhBMP-2 encapsulated in the CS/DS microsphere was observed to be well preserved as evidenced by the alkaline phosphatase activity assay and calcium nodule formation of BMSCs-C57 incubated with rhBMP-2-loaded microspheres. The results demonstrated that microspheres based on CS-DS polyion complexes were a highly efficient vehicle for delivery of rhBMP-2 protein. The present study may provide novel orientation for bone tissue engineering for repairing and regenerating bone defects.

  20. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres.

    PubMed

    Andhariya, Janki V; Shen, Jie; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J

    2017-06-10

    Establishment of in vitro-in vivo correlations (IVIVCs) for parenteral polymeric microspheres has been very challenging, due to their complex multiphase release characteristics (which is affected by the nature of the drug) as well as the lack of compendial in vitro release testing methods. Previously, a Level A correlation has been established and validated for polymeric microspheres containing risperidone (a practically water insoluble small molecule drug). The objectives of the present study were: 1) to investigate whether a Level A IVIVC can be established for polymeric microspheres containing another small molecule drug with different solubility profiles compared to risperidone; and 2) to determine whether release characteristic differences (bi-phasic vs tri-phasic) between microspheres can affect the development and predictability of IVIVCs. Naltrexone was chosen as the model drug. Three compositionally equivalent formulations of naltrexone microspheres with different release characteristics were prepared using different manufacturing processes. The critical physicochemical properties (such as drug loading, particle size, porosity, and morphology) as well as the in vitro release characteristics of the prepared naltrexone microspheres and the reference-listed drug (Vivitrol®) were determined. The pharmacokinetics of the naltrexone microspheres were investigated using a rabbit model. The obtained pharmacokinetic profiles were deconvoluted using the Loo-Riegelman method, and compared with the in vitro release profiles of the naltrexone microspheres obtained using USP apparatus 4. Level A IVIVCs were established and validated for predictability. The results demonstrated that the developed USP 4 method was capable of detecting manufacturing process related performance changes, and most importantly, predicting the in vivo performance of naltrexone microspheres in the investigated animal model. A critical difference between naltrexone and risperidone loaded

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, M; Saboury, B

    Purpose: Selective-internal-radiation-therapy (SIRT) and transarterial-chemoembolization (TACE) are commonly used for treatment of liver tumors. The use of TACE, which is macroembolic, prior to SIRT may cause hemodynamic changes in tumor vasculature that impair yttrium-90 (90Y) microsphere delivery to the targeted lesions. This work aims to quantify dosimetric tumor coverage using 90Y positron emission tomography (PET) dosimetry after SIRT alone compared to TACE followed by SIRT. Methods: A total of 40 consecutive hepatocellular carcinoma (HCC) SIRT patients who had a post-SIRT 90Y PET/CT scan were evaluated. The patient-specific-3D-dose was reconstructed from the PET images. Patients were categorized into two groups: patientsmore » received TACE prior SIRT procedure (n=18) and patient received SIRT alone (n=22). The lesions and liver were delineated by a senior radiologist. We evaluated both the lesion-specific dose-volume-histogram (DVH) and the selectivity index (SI) defined as the ratio of the average dose inside the total lesion(s) and the average dose of the normal liver. The SI values of patients were compared based on whether TACE was previously used. Results: A wide spectrum was observed in the lesion-specific DVH-evaluation and SI appeared to be suitable of evaluating the quality of each SIRT infusion. The average SI of the entire patient group was 3.0, i.e. targeted lesion receiving three times higher dose than normal liver. The average SI was 1.8 for patients who had prior TACE and 3.9 for patients who did not have prior TACE (p=0.008). 85% of the patients with prior TACE demonstrated poor 90Y-microsphere delivery (SI <2) while none demonstrated excellent delivery (SI >4). On the other hand, the incidence SI >4 among patients with no prior TACE was 37%. Conclusion: 3D dose evaluation using post-SIRT PET suggests that 90Y microsphere delivery to liver tumors is impaired among patients who received prior TACE compared to those who receive SIRT alone.« less

  2. Neutron scattering study of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Shamoto, Shin-ichi; Ito, Takashi U.; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato; Akatsu, Mitsuhiro; Kodama, Katsuaki; Nakao, Akiko; Moyoshi, Taketo; Munakata, Koji; Ohhara, Takashi; Nakamura, Mitsutaka; Ohira-Kawamura, Seiko; Nemoto, Yuichi; Shibata, Kaoru

    2018-02-01

    The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y3Fe5O12 have been studied using neutron scattering. The refined nuclear structure is distorted to a trigonal space group of R 3 ¯ . The highest-energy dispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16 a (octahedral) and 24 d (tetrahedral) sites, Ja a, Ja d, and Jd d, which are estimated to be 0.00 ±0.05 , -2.90 ±0.07 , and -0.35 ±0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of q -integrated dynamical spin susceptibility χ″(E ) exhibits a square-root energy dependence at low energies. The magnon density of state is estimated from χ″(E ) obtained on an absolute scale. The value is consistent with the single chirality mode for the magnon branch expected theoretically.

  3. Recent advances in testing of microsphere drug delivery systems.

    PubMed

    Andhariya, Janki V; Burgess, Diane J

    2016-01-01

    This review discusses advances in the field of microsphere testing. In vitro release-testing methods such as sample and separate, dialysis membrane sacs and USP apparatus IV have been used for microspheres. Based on comparisons of these methods, USP apparatus IV is currently the method of choice. Accelerated in vitro release tests have been developed to shorten the testing time for quality control purposes. In vitro-in vivo correlations using real-time and accelerated release data have been developed, to minimize the need to conduct in vivo performance evaluation. Storage stability studies have been conducted to investigate the influence of various environmental factors on microsphere quality throughout the product shelf life. New tests such as the floating test and the in vitro wash-off test have been developed along with advancement in characterization techniques for other physico-chemical parameters such as particle size, drug content, and thermal properties. Although significant developments have been made in microsphere release testing, there is still a lack of guidance in this area. Microsphere storage stability studies should be extended to include microspheres containing large molecules. An agreement needs to be reached on the use of particle sizing techniques to avoid inconsistent data. An approach needs to be developed to determine total moisture content of microspheres.

  4. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  5. Preparation of Tea Tree Oil/Poly(styrene-butyl methacrylate) Microspheres with Sustained Release and Anti-Bacterial Properties

    PubMed Central

    Lin, Guanquan; Chen, Huayao; Zhou, Hongjun; Zhou, Xinhua; Xu, Hua

    2018-01-01

    Using butyl methacrylate (BMA) and styrene (St) as monomers and divinylbenzene (DVB) as a crosslinking agent, P(St-BMA) microspheres were prepared by suspension polymerization. Tea tree oil (TTO) microspheres were prepared by adsorbing TTO on P(St-BMA) microspheres. The structure and surface morphology of P(St-BMA) microspheres and TTO microspheres were characterized by Fourier transformed infrared spectroscopy (FTIR), optical microscopy, and Thermogravimetric analysis (TGA). In doing so, the structural effect of P(St-BMA) microspheres on oil absorption and sustained release properties could be investigated. The results show that the surface of the P(St-BMA) microspheres in the process of TTO microsphere formation changed from initially concave to convex. The TTO microspheres significantly improved the stability of TTO, which was found to completely decompose as the temperature of the TTO increased from about 110 °C to 150 °C. The oil absorption behavior, which was up to 3.85 g/g, could be controlled by adjusting the monomer ratio and the amount of crosslinking agent. Based on Fickian diffusion, the sustained release behavior of TTO microspheres was consistent with the Korsmeyer-Pappas kinetic model. After 13 h of natural release, the anti-bacterial effect of the TTO microspheres was found to be significantly improved compared to TTO. PMID:29723967

  6. 40 CFR 90.709 - Calculation and reporting of test results.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... results. 90.709 Section 90.709 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Manufacturer Production Line Testing Program § 90.709 Calculation and reporting of test results. (a) Initial test results are calculated following the applicable test procedure specified in § 90.707 (a). The...

  7. 40 CFR 90.709 - Calculation and reporting of test results.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... results. 90.709 Section 90.709 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Manufacturer Production Line Testing Program § 90.709 Calculation and reporting of test results. (a) Initial test results are calculated following the applicable test procedure specified in § 90.707 (a). The...

  8. 40 CFR 90.709 - Calculation and reporting of test results.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... results. 90.709 Section 90.709 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Manufacturer Production Line Testing Program § 90.709 Calculation and reporting of test results. (a) Initial test results are calculated following the applicable test procedure specified in § 90.707 (a). The...

  9. Functional magnetic microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Landel, Robert F. (Inventor); Yen, Shiao-Ping S. (Inventor)

    1981-01-01

    Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.

  10. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection.

    PubMed

    Hosseini, Samira; Aeinehvand, Mohammad M; Uddin, Shah M; Benzina, Abderazak; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Madou, Marc J; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-11-09

    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.

  11. Lipase immobilization on epoxy-activated poly(vinyl acetate-acrylamide) microspheres.

    PubMed

    Zhang, Dong-Hao; Peng, Li-Juan; Wang, Yun; Li, Ya-Qiong

    2015-05-01

    Poly(vinyl acetate-acrylamide) microspheres with an average diameter of 2-4μm were successfully prepared and characterized via SEM and FTIR. Then the microspheres were modified with epoxy groups through reacting with epichlorohydrin and used as carriers to covalently immobilize Candida rugosa lipase. The results revealed that agitation played an important role on epoxy activation and the immobilization ratio increased with the increase of the epoxy density. On the other hand, the specific activity of the immobilized lipase as well as the activity recovery declined gradually with the increase in the immobilization ratio from 72% to 93%, which were attributed to the steric hindrance effects caused by enzyme overloading. When epoxy density was 76μmol/g microsphere, the activity recovery reached the maximum at 47.5%, and the activity of the immobilized lipase was 261.3U/g microsphere. Moreover, the thermal stability of the immobilized lipase was much better than that of the free one, which indicated potential applications of the immobilized lipase. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microsphere morphology tuning and photo-luminescence properties of monoclinic Y2WO6

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Bai, Yulong; Zhang, Junying; Tang, Zilong

    2015-04-01

    Effects of the solution pH value and reaction time on the precursor morphology and photoluminescence properties are investigated for hydrothermally prepared monoclinic Y2WO6 phosphors. In the near-neutral environment, sodium dodecyl benzene sulfonate (SDBS) surfactant forms small microspheres micelles as template to synthesize microspherical precursor. H+ ions concentration affects the arrangement of negative ionic surfactant SDBS. As a result, jujube-liked and popcorn-like loose microspheres formed at low pH value. When the pH value is 5.2 and the hydrothermal reaction time reaches 24 h, respectively, the strongest luminescent intensity can be obtained. Under this condition, the precursor presented regular microsphere with diameter of 4.0 μm. After high-temperature heat treatment, the obtained phosphor particles still exhibit microsphere-like shape. Therefore, we provide an effective method to tune the morphology of Y2WO6 phosphors and study the relationship between morphology and luminescent performance.

  13. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  14. Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability.

    PubMed

    Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng

    2018-06-01

    Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Preclinical and Clinical In Vitro In Vivo Correlation of an hGH Dextran Microsphere Formulation

    PubMed Central

    de Vrueh, R.; Gresnigt, M. G.; Hoogerbrugge, C. M.; van Buul-Offers, S. C.; de Leede, L. G. J.; Sterkman, L. G. W.; Crommelin, D. J. A.; Hennink, W. E.; Verrijk, R.

    2007-01-01

    Purpose To investigate the in vitro in vivo correlation of a sustained release formulation for human growth hormone (hGH) based on hydroxyethyl methacrylated dextran (dex-HEMA) microspheres in Pit-1 deficient Snell dwarf mice and in healthy human volunteers. Materials and Methods A hGH-loaded microsphere formulation was developed and tested in Snell dwarf mice (pharmacodynamic study) and in healthy human volunteers (pharmacokinetic study). Results Single subcutaneous administration of the microspheres in mice resulted in a good correlation between hGH released in vitro and in vivo effects for the hGH-loaded microsphere formulation similar to daily injected hGH indicating a retained bioactivity. Testing the microspheres in healthy volunteers showed an increase (over 7–8 days) in hGH serum concentrations (peak concentrations: 1–2.5 ng/ml). A good in vitro in vivo correlation was obtained between the measured and calculated (from in vitro release data) hGH serum concentrations. Moreover, an increased serum concentration of biomarkers (insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3) was found again indicating that bioactive hGH was released from the microspheres. Conclusions Good in vitro in vivo correlations were obtained for hGH-loaded dex-HEMA microspheres, which is an important advantage in predicting the effect of the controlled drug delivery product in a clinical situations. PMID:17929148

  16. Method of detecting luminescent target ions with modified magnetic microspheres

    DOEpatents

    Shkrob, Ilya A; Kaminski, Michael D

    2014-05-13

    This invention provides methods of using modified magnetic microspheres to extract target ions from a sample in order to detect their presence in a microfluidic environment. In one or more embodiments, the microspheres are modified with molecules on the surface that allow the target ions in the sample to form complexes with specific ligand molecules on the microsphere surface. In one or more embodiments, the microspheres are modified with molecules that sequester the target ions from the sample, but specific ligand molecules in solution subsequently re-extract the target ions from the microspheres into the solution, where the complexes form independent of the microsphere surface. Once the complexes form, they are exposed to an excitation wavelength light source suitable for exciting the target ion to emit a luminescent signal pattern. Detection of the luminescent signal pattern allows for determination of the presence of the target ions in the sample.

  17. POROUS WALL, HOLLOW GLASS MICROSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, W.

    of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.« less

  18. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth.

    PubMed

    Wei, Dai-Xu; Dao, Jin-Wei; Liu, Hua-Wei; Chen, Guo-Qiang

    2018-04-13

    Different forms of biopolyester PHBVHHx microspheres were prepared so as to compare the mammalian cell behaviors in suspension cultivation system. Based on a microbial terpolyester PHBVHHx consisting of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV), and 3-hydroxyhexanoate (HHx), solid microspheres (SMSs), hollow microspheres (HMSs), and porous microspheres (PMS) were successfully prepared by a modified solvent evaporation method involving gas-in-oil-in-water (G1/O/W2) double emulsion, water-in-oil-in-water (W1/O/W2) double emulsion and oil-in-water (O/W) single emulsion, respectively. Generally, PMSs have diameters ranging from 330 to 400 μm with pore sizes of 10 to 60 μm. The pores inside the PMSs were found well interconnected compared with PHBVHHx prepared by the traditional solvent evaporation method, resulting in the highest water uptake ratio. When inoculated with human osteoblast-like cells lasting 6 days, PMS showed much better cell attachment and proliferation compared with other less porous microspheres due to its large inner space as a 3 D carrier. Cell migration towards surface and other interconnected inner pores was clearly observable. Dead or apoptotic cells were found more common among less porous SMSs or HMSs compared with highly porous PMSs. It is therefore concluded that porous PHBVHHx microspheres with larger surface open pores and interconnected inner pores can serve as a carrier or scaffold supporting more and better cell growth for either injectable purposes or simply supporting cell growth.

  19. Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr

    NASA Astrophysics Data System (ADS)

    Vereshchagina, Tatiana A.; Vereshchagin, Sergei N.; Shishkina, Nina N.; Vasilieva, Nataly G.; Solovyov, Leonid A.; Anshits, Alexander G.

    2013-06-01

    Hollow microsphere zeolite materials with a bilayered zeolite/glass crystalline shell bearing NaP1 zeolite were synthesized by the hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) in an alkaline medium. Cs+ and/or Sr2+ forms of zeolitized cenospheres with the different Cs+ and/or Sr2+ loading were prepared by the ion exchange from nitrate solutions. The resulted (Cs,Na)P1, (Sr,Na)P1 and (Cs,Sr,Na)P1 bearing microsphere zeolites were converted to glass ceramics by heating at 900-1000 °C. The differential scanning calorimetry and quantitative phase analysis were used to monitor the solid-phase transformation of the initial and ion exchanged zeolite materials. It was established that the final solidified forms of Cs+ and/or Sr2+ are glass-crystalline ceramic materials based on pollucite-nepheline, Sr-feldspar-nepheline and Sr-feldspar-pollucite composites including ˜60 wt.% of the major host phases (pollucite, Sr-feldspar) and 10-20 wt.% of glass. The 137Cs leaching rate of 4.1 × 10-7 g cm-2 day-1 was determined for the pollucite glass-ceramic according to Russian State Standard (GOST) No. 52126 P-2003 (7 day, 25 °C, distilled water).

  20. Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li

    2008-05-01

    CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.

  1. Preparation, characterization and evaluation of ranitidine hydrochloride-loaded mucoadhesive microspheres.

    PubMed

    Dhankar, Vandana; Garg, Garima; Dhamija, Koushal; Awasthi, Rajendra

    2014-01-01

    Mucoadhesion enables localization of drugs to a defined region of the gastrointestinal tract through attractive interactions between polymers composing the drug delivery devices and the mucin layer of the intestinal epithelium. Thus, this approach can be used for enhancement of the oral bioavailability of the drug. The current communication deals with the development of ranitidine hydrochloride-loaded chitosan-based mucoadhesive microspheres. Microspheres were prepared by water-in-oil emulsion technique, using glutaraldehyde as a cross-linking agent. The effect of independent variables like stirring speed and polymer-to-drug ratio on dependent variables, i.e. percentage mucoadhesion, percentage drug loading, particle size and swelling index, was examined using a 3(2); factorial design. The microspheres were discrete, spherical, free-flowing and also showed high percentage drug entrapment efficiency (43-70%). An in vitro mucoadhesion test showed that the microspheres adhered strongly to the mucous layer for an extended period of time. The RC 4 batch exhibited a high percentage of drug encapsulation (70%) and mucoadhesion (75%). The drug release was sustained for more than 12 h. The drug release kinetics were found to follow Peppas' kinetics for all the formulations and the drug release was diffusion controlled. The preliminary results of this study suggest that the developed microspheres containing ranitidine hydrochloride could enhance drug entrapment efficiency, reduce the initial burst release and modulate the drug release.

  2. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    NASA Astrophysics Data System (ADS)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-11-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.

  3. Development of alginate microspheres containing thyme essential oil using ionic gelation.

    PubMed

    Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy

    2016-08-01

    Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  5. The influence of implanted yttrium on the cyclic oxidation behaviour of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Riffard, F.; Buscail, H.; Caudron, E.; Cueff, R.; Issartel, C.; Perrier, S.

    2006-03-01

    High-temperature alloys are frequently used in power plants, gasification systems, petrochemical industry, combustion processes and in aerospace applications. Depending on the application, materials are subjected to corrosive atmospheres and thermal cycling. In the present work, thermal cycling was carried out in order to study the influence of implanted yttrium on the oxide scale adherence on 304 steel specimens oxidised in air at 1273 K. In situ X-ray diffraction indicates that the oxides formed at 1273 K are different on blank specimens compared to implanted specimens. Glancing angle XRD allows to analyse the oxide scale composition after cooling to room temperature. Experimental results show that yttrium implantation at a nominal dose of 10 17 ions cm -2 does not improve significantly the cyclic oxidation behaviour of the austenitic AISI 304 steel. However, it appears that yttrium implantation remarkably enhance the oxidation resistance during isothermal oxidation. It reduces the transient oxidation stage and the parabolic oxidation rate constant by one order of magnitude.

  6. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    NASA Astrophysics Data System (ADS)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  7. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    NASA Astrophysics Data System (ADS)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  8. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor); Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1995-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  9. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  10. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study.

    PubMed

    Efthimiadou, Eleni K; Tapeinos, Christos; Chatzipavlidis, Alexandros; Boukos, Nikos; Fragogeorgi, Eirini; Palamaris, Lazaros; Loudos, George; Kordas, George

    2014-01-30

    This paper deals with the synthesis, characterization and property evaluation of drug-loaded magnetic microspheres with pH-responsive cross-linked polymer shell. The synthetic procedure consists of 3 steps, of which the first two comprise the synthesis of a poly methyl methacrylate (PMMA) template and the synthesis of a shell by using acrylic acid (AA) and methyl methacrylate (MMA) as monomers, and divinyl benzene (DVB) as cross-linker. The third step of the procedure refers to the formation of magnetic nanoparticles on the microsphere's surface. AA that attaches pH-sensitivity in the microspheres and magnetic nanoparticles in the inner and the outer surface of the microspheres, enhance the efficacy of this intelligent drug delivery system (DDS), which constitutes a promising approach toward cancer therapy. A number of experimental techniques were used to characterize the resulting microspheres. In order to investigate the in vitro controlled release behavior of the synthesized microspheres, we studied the Dox release percentage under different pH conditions and under external magnetic field. Hyperthermia caused by an alternating magnetic field (AFM) is used in order to study the doxorubicin (Dox) release behavior from microspheres with pH functionality. The in vivo fate of these hybrid-microspheres was tracked by labeling them with the γ-emitting radioisotope (99m)Tc after being intravenously injected in normal mice. According to our results, microsphere present a pH depending and a magnetic heating, release behavior. As expected, labeled microspheres were mainly found in the mononuclear phagocyte system (MPS). The highlights of the current research are: (i) to illustrate the advantages of controlled release by combining hyperthermia and pH-sensitivity and (ii) to provide noninvasive, in vivo information on the spatiotemporal biodistribution of these microsphere by dynamic γ-imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Effect of palmitic acid on the characteristics and release profiles of rotigotine-loaded microspheres.

    PubMed

    Wang, Aiping; Liang, Rongcai; Liu, Wanhui; Sha, Chunjie; Li, Youxin; Sun, Kaoxiang

    2016-01-01

    The initial burst release is a major obstacle to the development of microsphere-formulated drug products. To investigate the influence of palmitic acid on the characteristics and release profiles of rotigotine-loaded poly(d,l-lactide-co-glycolide) microspheres. Rotigotine-loaded microspheres (RMS) were prepared using the oil-in-water emulsion solvent evaporation technique. The in vitro characteristics of the RMS were evaluated with scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and a particle size analyzer. The in vitro drug release and in vivo pharmacokinetics of the RMS were investigated. The SEM results showed that the addition of palmitic acid changed the surface morphology of the microspheres from smooth to dimpled and then to non-smooth as the palmitic acid content increased. DSC revealed the existence of molecularly dispersed forms of palmitic acid in the microspheres. The in vitro and in vivo release profiles indicated that the addition of 5% and 8% palmitic acid significantly decreased the burst release of rotigotine from the microspheres, and the late-stage release was delayed as the palmitic acid content increased across the investigated range (5-15%). The addition of palmitic acid to the microspheres significantly affects the release profile of rotigotine from RMS.

  12. FORMULATION AND EVALUATION OF MICROSPHERES CONTAINING LOSARTAN POTASSIUM BY SPRAY-DRYING TECHNIQUE.

    PubMed

    Balwierz, Radoslaw; Jankowski, Andrzej; Jasinska, Agata; Marciniak, Dominik; Pluta, Janusz

    2016-09-01

    Despite numerous applications of microspheres, few works devoted to the preparation of microspheres containing cardiac medications have been published. This study presents the potential of receiving microspheres containing losartan potassium, based on a matrix containing Eudragit L30D55. The study focuses on the possibilities of controlled release of losartan potassium from microspheres in order to reduce the dosage frequency, and also provides information on the effect of the addition of excipients to the quality of the microspheres. Microspheres are monolithic, porous or smooth microparticles ranging from 1 to 500 microns in size. For the preparation of microspheres containing losartan potassium, the spray-drying method was used. The performed study confirmed that the spray-drying technology used to obtain microspheres meets the criteria of size and morphology of the microparticles. The assessment of the kinetics of losartan potassium release from the examined microspheres demonstrated that the release profile followed the first- and/or zero-order kinetics. The use of spray-drying techniques as well as Eudragit L30D55 polymer matrix to obtain the microspheres containing losartan potassium makes it possible to obtain a product with the required particle morphology and particle size ensuring the release of the active substance up to 12 h.

  13. Controlled dexamethasone delivery via double-walled microspheres to enhance long-term adipose tissue retention

    PubMed Central

    Kelmendi-Doko, Arta; Rubin, J Peter; Klett, Katarina; Mahoney, Christopher; Wang, Sheri; Marra, Kacey G

    2017-01-01

    Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly

  14. Hierarchical Microspheres Constructed from Chitin Nanofibers Penetrated Hydroxyapatite Crystals for Bone Regeneration.

    PubMed

    Duan, Bo; Shou, Kangquan; Su, Xiaojuan; Niu, Yahui; Zheng, Guan; Huang, Yao; Yu, Aixi; Zhang, Yu; Xia, Hong; Zhang, Lina

    2017-07-10

    Chitin exists abundantly in crab and shrimp shells as the template of the minerals, which inspired us to mineralize it for fabricating bone grafting materials. In the present work, chitin nanofibrous microspheres were used as the matrix for in situ synthesis of hydroxyapatite (HA) crystals including microflakes, submicron-needles, and submicron-spheres, which were penetrated by long chitin nanofibers, leading to the hierarchical structure. The shape and size of the HA crystals could be controlled by changing the HA synthesis process. The tight interface adhesion between chitin and HA through the noncovanlent bonds occurred in the composite microspheres, and HAs were homogeneously dispersed and bounded to the chitin nanofibers. In our findings, the inherent biocompatibilities of the both chitin and HA contributed the bone cell adhesion and osteoconduction. Moreover, the chitin microsphere with submicron-needle and submicron-sphere HA crystals remarkably promoted in vitro cell adhesion and in vivo bone healing. It was demonstrated that rabbits with 1.5 cm radius defect were almost cured completely within three months in a growth factor- and cell-free state, as a result of the unique surface microstructure and biocompatibilities of the composite microspheres. The microsphere scaffold displayed excellent biofunctions and an appropriate biodegradability. This work opened up a new avenue to construct natural polymer-based organic-inorganic hybrid microspheres for bone regeneration.

  15. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  16. Progress in Preparation of Monodisperse Polymer Microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  17. 40 CFR 90.509 - Calculation and reporting of test results.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... results. 90.509 Section 90.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Selective Enforcement Auditing § 90.509 Calculation and reporting of test results. (a) Initial test results... manufacturer shall round these results, in accordance with ASTM E29-93a, to the number of decimal places...

  18. 40 CFR 90.509 - Calculation and reporting of test results.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... results. 90.509 Section 90.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Selective Enforcement Auditing § 90.509 Calculation and reporting of test results. (a) Initial test results... manufacturer shall round these results, in accordance with ASTM E29-93a, to the number of decimal places...

  19. 40 CFR 90.509 - Calculation and reporting of test results.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... results. 90.509 Section 90.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Selective Enforcement Auditing § 90.509 Calculation and reporting of test results. (a) Initial test results... manufacturer shall round these results, in accordance with ASTM E29-93a, to the number of decimal places...

  20. Synthesis and effect of modification on methacylate - acrylate microspheres for Trametes versicolor laccase enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Mazlan, Siti Zulaikha; Hanifah, Sharina Abu

    2014-09-01

    Immobilization of laccase on the modified copolymer methacrylate-acrylate microspheres was studied. A poly (glycidyl methacrylate-co-n-butyl acrylate) microsphere consists of epoxy groups were synthesized using suspension photocuring technique. The epoxy group in poly (GMA-nBA) microspheres were converted into amino groups with aldehyde group. Laccase immobilization is based on having the amino groups on the enzyme surface and aldehyde group on the microspheres via covalent binding. Fourier transform infrared spectroscopy (FT-IR) analysis proved the successful surface modification on microspheres. The FTIR spectrum shows the characteristic peaks at 1646 cm-1 assigned to the conformation of the polymerization that took place between monomer GMA and nBA respectively. In addition, after modification, FTIR peaks that assigned to the epoxy ring (844 cm-1 and 904 cm-1) were decreased. The results obtained from FTIR method signify good agreement with the epoxy content method. Hence, the activity of the laccase-immobilized microspheres increased upon increasing the epoxy content. Furthermore, poly (GMA-nBA) exhibited uniform microspheres with below 2 μm surface. Immobilized enzyme showed a broader pH profile and higher temperature compared native enzyme.

  1. A novel method for producing microspheres with semipermeable polymer membranes

    NASA Technical Reports Server (NTRS)

    Lin, K. C.; Wang, Taylor G.

    1992-01-01

    A new and systematic approach for producing polymer microspheres has been demonstrated. The membrane of the microsphere is formed by immersing the polyanionic droplet into a collapsing annular sheet, which is made of another polycation polymer solution. This method minimizes the impact force during the time when the chemical reaction takes place, hence eliminating the shortcomings of the current encapsulation techniques. The results of this study show the feasibility of this method for mass production of microcapsules.

  2. Evaluating the improvement of corrosion residual strength by adding 1.0 wt.% yttrium into an AZ91D magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiang; Liu Yaohui, E-mail: liuyaohui2005@yahoo.com; Fang Shijie

    2010-06-15

    The influence of yttrium on the corrosion residual strength of an AZ91D magnesium alloy was investigated detailedly. Scanning electron microscope was employed to analyze the microstructure and the fractography of the studied alloys. The microstructure of AZ91D magnesium alloy is remarkably refined due to the addition of yttrium. The electrochemical potentiodynamic polarization curve of the studied alloy was performed with a CHI 660b electrochemical station in the three-electrode system. The result reveals that yttrium significantly promotes the overall corrosion resistance of AZ91D magnesium alloy by suppressing the cathodic reaction in corrosion process. However, the nucleation and propagation of corrosion pitsmore » on the surface of the 1.0 wt.% Y modified AZ91D magnesium alloy indicate that pitting corrosion still emerges after the addition of yttrium. Furthermore, stress concentration caused by corrosion pits should be responsible for the drop of corrosion residual strength although the addition of yttrium remarkably weakens the effect of stress concentration at the tip of corrosion pits in loading process.« less

  3. Low-temperature solvothermal synthesis of EuS hollow microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yong; Wang, Hong; Li, Peng

    2014-09-15

    Graphical abstract: Synthesis of EuS hollow microspheres at low-temperature via solvothermal method for the first time. - Highlights: • We adopt an improved method to synthesise the (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in deionized water. • We have successfully synthesised the EuS hollow microsphere at 230 °C in acetonitrile. • The price of acetonitrile is more inexpensive, so the price of preparation was reduced. - Abstract: EuS crystals are synthesized by low-temperature solvothermal decomposition of the single source precursor complex (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in acetonitrile. X-ray powder diffraction, scanning electron microscopy, granulocyte diameter statistical analysis, surface energy-dispersive X-ray spectroscopy analysis,more » and UV–vis absorption spectroscopy are used to characterize the structure and properties of the obtained EuS crystals. The results show that the formed EuS crystals are uniform hollow microspheres with a typical cubic phase structure of rock salt and the average particle size of 2.01 μm. The mechanisms for the thermal decomposition of the precursor complex and the formation of the EuS hollow microspheres are postulated based on the experimental observations and previous reports.« less

  4. Treatment Planning and Volumetric Response Assessment for Yttrium-90 Radioembolization: Semiautomated Determination of Liver Volume and Volume of Tumor Necrosis in Patients with Hepatic Malignancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monsky, Wayne L., E-mail: wayne.monsky@ucdmc.ucdavis.edu; Garza, Armando S.; Kim, Isaac

    Purpose: The primary purpose of this study was to demonstrate intraobserver/interobserver reproducibility for novel semiautomated measurements of hepatic volume used for Yttrium-90 dose calculations as well as whole-liver and necrotic-liver (hypodense/nonenhancing) tumor volume after radioembolization. The secondary aim was to provide initial comparisons of tumor volumetric measurements with linear measurements, as defined by Response Evaluation Criteria in Solid Tumors criteria, and survival outcomes. Methods: Between 2006 and 2009, 23 consecutive radioembolization procedures were performed for 14 cases of hepatocellular carcinoma and 9 cases of hepatic metastases. Baseline and follow-up computed tomography obtained 1 month after treatment were retrospectively analyzed. Threemore » observers measured liver, whole-tumor, and tumor-necrosis volumes twice using semiautomated software. Results: Good intraobserver/interobserver reproducibility was demonstrated (intraclass correlation [ICC] > 0.9) for tumor and liver volumes. Semiautomated measurements of liver volumes were statistically similar to those obtained with manual tracing (ICC = 0.868), but they required significantly less time to perform (p < 0.0001, ICC = 0.088). There was a positive association between change in linear tumor measurements and whole-tumor volume (p < 0.0001). However, linear measurements did not correlate with volume of necrosis (p > 0.05). Dose, change in tumor diameters, tumor volume, and necrotic volume did not correlate with survival (p > 0.05 in all instances). However, Kaplan-Meier curves suggest that a >10% increase in necrotic volume correlated with survival (p = 0.0472). Conclusion: Semiautomated volumetric analysis of liver, whole-tumor, and tumor-necrosis volume can be performed with good intraobserver/interobserver reproducibility. In this small retrospective study, measurements of tumor necrosis were suggested to correlate with survival.« less

  5. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe

    2016-12-06

    Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.

  6. Glass microspheres for medical applications

    NASA Astrophysics Data System (ADS)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass

  7. Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing.

    PubMed

    Schrier, J A; Fink, B F; Rodgers, J B; Vasconez, H C; DeLuca, P P

    2001-10-07

    The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not elicit swelling. Microspheres were produced via a water-in-oil-in-water double-emulsion system and were loaded with rhBMP-2 by soaking them in a buffered solution of the protein at a concentration of 5.4 mg protein per gram of PLGA. Following recovery of the loaded microspheres by lyophilization, matrices for implantation were prepared by lyophilizing a suspension of the microspheres in 2% CMC in flat-bottom tissue culture plates. Similar matrices were made with 2% CMC and with 2% CMC containing blank microspheres. A full-thickness calvarial defect model in New Zealand white rabbits was used to assess bone growth. Implants fit the defect well, allowing for direct application. Six weeks postsurgery, defects were collected and processed for undecalcified histology. In vitro, 60% of the loaded rhBMP-2 released from devices or microspheres in 5 to 7 days, with the unembedded microspheres releasing faster than those embedded in CMC. In vivo, the rhBMP-2 microspheres greatly enhanced bone healing, whereas nonloaded PLGA microspheres in the CMC implants had little effect. The results showed that a lyophilized device of rhBMP-2/PLGA microspheres in CMC was an effective implantable protein-delivery system for use in bone repair.

  8. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    PubMed Central

    Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151

  9. Microspheres for the oral delivery of insulin: preparation, evaluation and hypoglycaemic effect in streptozotocin-induced diabetic rats.

    PubMed

    Zhang, Huan; Wang, Weimei; Li, Haoran; Peng, Yi; Zhang, Zhiqing

    2018-01-01

    Insulin-loaded microspheres were prepared by alternating deposition film layers that were composed of insulin and poly(vinyl sulfate) potassium on the surface of poly(lactic acid) (PLA) microspheres. The preparation of the insulin-loaded microspheres was optimized by an orthogonal test design, and the relationship between drug loading (DL) and film layers was studied. The particle size, DL and encapsulation efficiency of the obtained insulin-loaded microspheres with 10 films were 5.25 ± 0.15 µm, 111.33 ± 1.15 mg/g and 33.7 ± 0.19%, respectively. Following this, the physical characteristics of the insulin-loaded microspheres were investigated. The results from scanning electron microscopy and a laser particle size analyzer (LPSA) indicated the spherical morphology, rough surface and increasing particle sizes of the insulin-loaded microspheres, which were compared to those of PLA microspheres. An in vitro release study showed that the insulin-loaded microspheres were stable in HCl solution (pH 1.0) and released insulin slowly in phosphate-buffered solution (pH 6.8). Finally, the drug efficacy of the prepared insulin-loaded microspheres via oral administration was evaluated in rats with diabetes induced by streptozotocin, and an obvious dose-dependent hypoglycemic effect was observed. This preliminary data could illustrate the prospect of using microspheres for the oral delivery of insulin.

  10. Protein specific fluorescent microspheres for labelling a protein

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1982-01-01

    Highly fluorescent, stable and biocompatible microspheres are obtained by copolymerizing an acrylic monomer containing a covalent bonding group such as hydroxyl, amine or carboxyl, for example, hydroxyethylmethacrylate, with an addition polymerizable fluorescent comonomer such as dansyl allyl amine. A lectin or antibody is bound to the covalent site to provide cell specificity. When the microspheres are added to a cell suspension the marked microspheres will specifically label a cell membrane by binding to a specific receptor site thereon. The labeled membrane can then be detected by fluorescence of the fluorescent monomer.

  11. Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers.

    PubMed

    Villard, Linda; Romer, Anna; Marincek, Nicolas; Brunner, Philippe; Koller, Michael T; Schindler, Christian; Ng, Quinn K T; Mäcke, Helmut R; Müller-Brand, Jan; Rochlitz, Christoph; Briel, Matthias; Walter, Martin A

    2012-04-01

    Radiopeptide therapy is commonly performed with a single radioisotope. We aimed to compare the effectiveness of somatostatin-based radiopeptide therapy with a single versus a combination of radioisotopes. In a cohort study, patients with metastasized neuroendocrine cancer were treated with repeated cycles of (90)yttrium-labeled tetraazacyclododecane-tetraacetic acid modified Tyr-octreotide ([(90)Y-DOTA]-TOC) or with cycles alternating between [(90)Y-DOTA]-TOC and (177)lutetium-labeled DOTA-TOC ([(177)Lu-DOTA]-TOC) until tumor progression or permanent toxicity. Multivariable Cox regression and competing risk regression were used to study predictors of survival and renal toxicity in patients completing three or more treatment cycles. A total of 486 patients completed three or more treatment cycles; 237 patients received [(90)Y-DOTA]-TOC and 249 patients received [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC. Patients receiving [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC had a significantly longer survival than patients receiving [(90)Y-DOTA]-TOC alone (5.51 v 3.96 years; hazard ratio, 0.64; 95% CI, 0.47 to 0.88; P = .006). The rates of severe hematologic toxicities (6.3% v 4.4%; P = .25) and severe renal toxicity (8.9% v 11.2%; P = .47) were comparable in both groups. [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC was associated with improved overall survival compared with [(90)Y-DOTA]-TOC alone in patients completing three or more cycles of treatment. Contrary to the current practice in radiopeptide therapy, our results suggest an advantage of using a combination of radioisotopes.

  12. An Electrochemical DNA Microbiosensor Based on Succinimide-Modified Acrylic Microspheres

    PubMed Central

    Ulianas, Alizar; Heng, Lee Yook; Hanifah, Sharina Abu; Ling, Tan Ling

    2012-01-01

    An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10−16 and 1.0 × 10−8 M with a lower limit of detection (LOD) of 9.46 × 10−17 M (R2 = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices. PMID:22778594

  13. Synthesis and improved SERS performance of silver nanoparticles-decorated surface mesoporous silica microspheres

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Xiaolong; Zhang, Li; Zhou, Jun; Zhao, Ziqi

    2016-08-01

    This study reported the improved Raman enhancement ability of silver nanoparticles (Ag NPs) decorated on surface mesoporous silica microspheres (MSiO2@Ag) than that of Ag NPs on solid silica microspheres (SSiO2@Ag). These two kinds of hybrid structures were prepared by a facile single-step hydrothermal reaction with polyvinylpyrrolidone (PVP) serves as both a reductant and stabilizer. The as-synthesized MSiO2@Ag microspheres show more significant surface-enhanced Raman scattering (SERS) activity for 4-mercaptobenzoic acid (4MBA) than SSiO2@Ag microspheres with enhancement factors as 9.20 × 106 and 4.39 × 106, respectively. The proposed reason for the higher SERS activity is estimated to be the contribution of more Raman probe molecules at the mesoporous channels where an enhanced electromagnetic field exists. Such a field was identified by theoretical calculation result. The MSiO2@Ag microspheres were eventually demonstrated for the SERS detection of a typical chemical toxin namely methyl parathion with a detection limit as low as 1 × 10-3 ppm, showing its promising potential in biosensor application.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuelson, Shaun D.; Louie, John D.; Sze, Daniel Y., E-mail: dansze@stanford.edu

    Purpose. Avoidance of nontarget microsphere deposition via hepatoenteric anastomoses is essential to the safety of yttrium-90 radioembolization (RE). The hepatic hilar arterial network may remain partially patent after coil embolization of major arteries, resulting in persistent risk. We retrospectively reviewed cases where n-butyl cyanoacrylate (n-BCA) glue embolization was used to facilitate endovascular hepatic arterial skeletonization before RE. Methods. A total of 543 RE procedures performed between June 2004 and March 2012 were reviewed, and 10 were identified where n-BCA was used to embolize hepatoenteric anastomoses. Arterial anatomy, prior coil embolization, and technical details were recorded. Outcomes were reviewed to identifymore » subsequent complications of n-BCA embolization or nontarget RE. Results. The rate of complete technical success was 80 % and partial success 20 %, with one nontarget embolization complication resulting in a minor change in treatment plan. No evidence of gastrointestinal or biliary ischemia or infarction was identified, and no microsphere-related gastroduodenal ulcerations or other evidence of nontarget RE were seen. Median volume of n-BCA used was <0.1 ml. Conclusion. n-BCA glue embolization is useful to eliminate hepatoenteric networks that may result in nontarget RE, especially in those that persist after coil embolization of major vessels such as the gastroduodenal and right gastric arteries.« less

  15. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Histological methods to determine blood flow distribution with fluorescent microspheres.

    PubMed

    Luchtel, D L; Boykin, J C; Bernard, S L; Glenny, R W

    1998-11-01

    We evaluated several histological methods and determined their advantages and disadvantages for histological studies of tissues and organs perfused with fluorescent microspheres. Microspheres retained their fluorescence in 7-10 microm serial sections with a change in the antimedium from toluene when samples were fixed in formalin and embedded in paraffin. Several antimedia allowed both wax infiltration of tissue and preservation of microsphere fluorescence. Histoclear II was the best substitute for toluene. When samples were fixed in formalin and embedded in glycol methacrylate, thinner (3-5 microm) sections provided greater histological detail but had fewer microspheres per section. Air dried lung tissue followed by Vibratome sectioning provided thick sections (100 microm) that facilitated rapid survey of large volumes of tissue for microspheres but limited histological detail, and the air drying procedure was restricted to lung tissue. Samples fixed in formalin followed by Vibratome sectioning of unembedded tissue provided better histological detail of lung tissue and was also useful for other organs. These sections were more difficult to handle and to mount on slides compared to air dried tissue, whereas fixed tissue embedded in gelatin provided better tissue support for Vibratome sectioning. Rapid freezing followed by cryo-microtome sectioning resulted in frozen sections that were relatively difficult to handle compared to embedded or unembedded tissue; they also deteriorated relatively rapidly with time. Paraffin sections were stained with hematoxylin and eosin or with aqueous methyl green, although tissue autofluorescence by itself was usually sufficient to identify histological features. Methacrylate sections quenched tissue autofluorescence, and Lee's stain or Richardson's stain were used for staining sections. Toluene based mountants such as Cytoseal quenched fluorescence, particularly the red fluorescent microspheres. Aqueous based mountants such as

  17. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, C.D.; Koo, J.C.; Rosencwaig, A.

    A method is described for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500..mu.. with both thin walls (0.5 to 4/sub ..mu../) and thick walls (5 to 20/sub ..mu../) that contain various fill gases, such as Ar, Kr, Xe, Br, D, H/sub 2/, DT, He, N/sub 2/, Ne, CO/sub 2/, etc., in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-form-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace.

  18. Effect of pH on polyethylene glycol (PEG)-induced silk microsphere formation for drug delivery.

    PubMed

    Wu, Jianbing; Xie, Xusheng; Zheng, Zhaozhu; Li, Gang; Wang, Xiaoqin; Wang, Yansong

    2017-11-01

    The effects of changing solution pH in the range of 3.6-10.0 during a one-step silk microsphere preparation process, by mixing silk and polyethylene glycol (PEG), was assessed. The microspheres prepared at low pH (3.6) showed a more homogeneous size (1-3μm) and less porous texture than those prepared at neutral pH. High pH (10.0) inhibited microsphere formation, yielding small and inhomogeneous microspheres. Compared to neutral pH, low pH also increased the content of silk crystalline β-sheet structure from approx. 30% to above 40%. As a result, the microspheres produced at low pH were more thermally stable as well as resistant to chemical (8M urea) and enzymatic (protease XIV) degradation when compared to microspheres prepared at neutral pH. Doxorubicin hydrochloride (DOX) and curcumin (CUR) were successfully loaded in silk microspheres via control of solution pH. The loading efficiency of DOX was approx. 95% at pH7.0 and approx. 60% for CUR at pH3.6, attributed to charge-charge interactions and hydrophobic interactions between the silk and drug molecules, respectively. When PBS, pH7.4, was used as a medium for release studies, the pH3.6 microspheres released both drugs more slowly than the pH7.0 microspheres, likely due to the high content of crystalline β-sheet structure that enhanced drug-silk interactions as well as restricted drug molecule diffusion. Copyright © 2017. Published by Elsevier B.V.

  19. Diclofenac salts, part 6: release from lipid microspheres.

    PubMed

    Fini, Adamo; Cavallari, Cristina; Rabasco Alvarez, Antonio M; Rodriguez, Marisa Gonzalez

    2011-08-01

    The release of diclofenac (20%, w/w) was studied from lipidic solid dispersions using three different chemical forms (acid, sodium salt, and pyrrolidine ethanol salt) and two different lipid carriers (Compritol 888 ATO or Carnauba wax) either free or together with varying amounts (10%-30%, w/w) of stearic acid. Microspheres were prepared by ultrasound-assisted atomization of the molten dispersions and analyzed by scanning electron microscopy, differential scanning calorimetry, and hot stage microscopy. The effects of different formulations on the resulting drug release profiles as a function of pH were studied and the results were discussed. The formulation of the 18 systems and the chemical form of the drug were found to strongly affect the mode of the drug release. The solubility of the chemical forms in the lipid mixture is in the following order: pyrrolidine ethanol salt ≫ acid > sodium salt (according to the solubility parameters), and the nature of the systems thus obtained ranges from a matrix, for mutually soluble drug/carrier pairs, to a microcapsule, for pairs wherein mutual solubility is poor. Drug release from microspheres prepared by pure lipids was primarily controlled by diffusion, whereas the release from microspheres containing stearic acid was diffusion/erosion controlled at pH 7.4. Copyright © 2011 Wiley-Liss, Inc.

  20. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  1. Role of physical heterogeneity in the interpretation of small-scale laboratory and field observations of bacteria, microbial-sized microsphere, and bromide transport through aquifer sediments

    USGS Publications Warehouse

    Harvey, Ronald W.; Kinner, Nancy E.; MacDonald, Dan; Metge, David W.; Bunn, Amoret

    1993-01-01

    The effect of physical variability upon the relative transport behavior of microbial-sized microspheres, indigenous bacteria, and bromide was examined in field and flow-through column studies for a layered, but relatively well sorted, sandy glaciofluvial aquifer. These investigations involved repacked, sieved, and undisturbed aquifer sediments. In the field, peak abundance of labeled bacteria traveling laterally with groundwater flow 6 m downgradient from point of injection was coincident with the retarded peak of carboxylated microspheres (retardation factor, RF = 1.7) at the 8.8 m depth, but preceded the bromide peak and the retarded microsphere peak (RF = 1.5) at the 9.0 m depth. At the 9.5 m depth, the bacterial peak was coincident with both the bromide and the microsphere peaks. Although sorption appeared to be a predominant mechanism responsible for immobilization of microbial-sized microspheres in the aquifer, straining appeared to be primarily responsible for their removal in 0.6-m-long columns of repacked, unsieved aquifer sediments. The manner in which the columns were packed also affected optimal size for microsphere transport, which in one experiment was near the size of the small (∼2 μm) groundwater protozoa (flagellates). These data suggest that variability in aquifer sediment structure can be important in interpretation of both small-scale field and laboratory experiments examining microbial transport behavior.

  2. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 32 full factorial design

    PubMed Central

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-01-01

    Background: Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. Objective: The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. Materials and Methods: DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 32 full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Results: Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Conclusion: Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration. PMID:24167786

  3. Macroscopic fluorescence imaging: a novel technique to monitor retention and distribution of injected microspheres in an experimental model of ischemic heart failure.

    PubMed

    Martens, Andreas; Rojas, Sebastian V; Baraki, Hassina; Rathert, Christian; Schecker, Natalie; Hernandez, Sara Rojas; Schwanke, Kristin; Zweigerdt, Robert; Martin, Ulrich; Saito, Shunsuke; Haverich, Axel; Kutschka, Ingo

    2014-01-01

    The limited effectiveness of cardiac cell therapy has generated concern regarding its clinical relevance. Experimental studies show that cell retention and engraftment are low after injection into ischemic myocardium, which may restrict therapy effectiveness significantly. Surgical aspects and mechanical loss are suspected to be the main culprits behind this phenomenon. As current techniques of monitoring intramyocardial injections are complex and time-consuming, the aim of the study was to develop a fast and simple model to study cardiac retention and distribution following intramyocardial injections. For this purpose, our main hypothesis was that macroscopic fluorescence imaging could adequately serve as a detection method for intramyocardial injections. A total of 20 mice underwent ligation of the left anterior descending artery (LAD) for myocardial infarction. Fluorescent microspheres with cellular dimensions were used as cell surrogates. Particles (5 × 10(5)) were injected into the infarcted area of explanted resting hearts (Ex vivo myocardial injetions EVMI, n = 10) and in vivo into beating hearts (In vivo myocardial injections IVMI, n = 10). Microsphere quantification was performed by fluorescence imaging of explanted organs. Measurements were repeated after a reduction to homogenate dilutions. Cardiac microsphere retention was 2.78 × 10(5) ± 0.31 × 10(5) in the EVMI group. In the IVMI group, cardiac retention of microspheres was significantly lower (0.74 × 10(5) ± 0.18 × 10(5); p<0.05). Direct fluorescence imaging revealed venous drainage through the coronary sinus, resulting in a microsphere accumulation in the left (0.90 × 10(5) ± 0.20 × 10(5)) and the right (1.07 × 10(5) ± 0.17 × 10(5)) lung. Processing to homogenates involved further particle loss (p<0.05) in both groups. We developed a fast and simple direct fluorescence imaging method for biodistribution analysis which enabled the quantification of fluorescent microspheres after

  4. Observation of defect-assisted enhanced visible whispering gallery modes in ytterbium-doped ZnO microsphere

    NASA Astrophysics Data System (ADS)

    Khanum, Rizwana; Moirangthem, Rakesh S.; Das, Nayan Mani

    2017-06-01

    Smooth surfaced and crystalline undoped and ytterbium doped zinc oxide (ZnO) microspheres having an approximate size of 3-5 μm were synthesized by hydrothermal process. Out of these microspheres, a single microparticle was chosen and engaged as a whispering gallery wave microresonator. The defect induced luminescence from an individual ZnO microsphere was investigated with micro-photoluminescence measurement in the spectral range of 565 to 740 nm under the excitation of a green laser having a centered wavelength at 532 nm. The defects-related emissions from a single ZnO microsphere show optical resonance peaks so-called "whispering gallery modes" (WGMs) which are confirmed with the theoretical calculation. Further, ZnO microspheres were chemically doped with the different molar percentages of Ytterbium (Yb), and enhancement in their emission properties was investigated. Our experimental results show that ZnO microspheres with 0.5 mol. % doping of Yb gives the strongest optical emission and has highest Q-factor which can be employed in the development of WGM based optical biosensor or laser.

  5. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair.

    PubMed

    Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X

    2011-05-01

    To repair complexly shaped tissue defects, an injectable cell carrier is desirable to achieve an accurate fit and to minimize surgical intervention. However, the injectable carriers available at present have limitations, and are not used clinically for cartilage regeneration. Here, we report nanofibrous hollow microspheres self-assembled from star-shaped biodegradable polymers as an injectable cell carrier. The nanofibrous hollow microspheres, integrating the extracellular-matrix-mimicking architecture with a highly porous injectable form, were shown to efficiently accommodate cells and enhance cartilage regeneration, compared with control microspheres. The nanofibrous hollow microspheres also supported a significantly larger amount of, and higher-quality, cartilage regeneration than the chondrocytes-alone group in an ectopic implantation model. In a critical-size rabbit osteochondral defect-repair model, the nanofibrous hollow microspheres/chondrocytes group achieved substantially better cartilage repair than the chondrocytes-alone group that simulates the clinically available autologous chondrocyte implantation procedure. These results indicate that the nanofibrous hollow microspheres are an excellent injectable cell carrier for cartilage regeneration.

  6. Validation of a cage implant system for assessing in vivo performance of long-acting release microspheres.

    PubMed

    Doty, Amy C; Hirota, Keiji; Olsen, Karl F; Sakamoto, Naoya; Ackermann, Rose; Feng, Meihua R; Wang, Yan; Choi, Stephanie; Qu, Wen; Schwendeman, Anna; Schwendeman, Steven P

    2016-12-01

    Here we describe development of a silicone rubber/stainless steel mesh cage implant system, much like that used to assess biocompatibility of biomaterials [1], for easy removal of injectable polymer microspheres in vivo. The sterile cage has a type 316 stainless steel mesh size (38 μm) large enough for cell penetration and free fluid flow in vivo but small enough for microsphere retention, and a silicone rubber shell for injection of the microspheres. Two model drugs, the poorly soluble steroid, triamcinolone acetonide, and the highly water-soluble luteinizing hormone-releasing hormone (LHRH) peptide superagonist, leuprolide, were encapsulated in PLGA microspheres large enough (63-90 μm) to be restrained by the cage implant in vivo. The in vitro release from both formulations was followed by ultra-performance liquid chromatography (UPLC) with and without the cage in a standard release media, PBS pH 7.4 + 0.02% Tween 80 + 0.05% sodium azide, at 37 °C. Pharmacokinetics (PK) in rats was assessed after SC injection or SC in-cage implantation of microspheres with plasma analysis by LC-MS/MS or EIA. Tr-A and leuprolide in vitro release was largely unaffected after the initial burst irrespective of the cage or test tube incubation vessel and release was much slower than observed in vivo for both drugs. Moreover, Tr-A and leuprolide pharmacokinetics with and without the cage were highly similar during the 2-3 week release duration before a significant inflammatory response was caused by the cage implant. Hence, the PK-validated cage implant provides a simple means to recover and evaluate the microsphere drug carriers in vivo during a time window of at least a few weeks in order to characterize the polymer microsphere release and erosion behavior in vivo. This approach may facilitate development of mechanism-based in vitro/in vivo correlations and enable development of more accurate and useful in vitro release tests. Copyright © 2016 Elsevier Ltd. All

  7. Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chung, Sang-Kun (Inventor); Colvin, Michael S. (Inventor); Chang, Manchium (Inventor)

    1991-01-01

    Monodisperse, polymeric microspheres are formed by injecting uniformly shaped droplets of radiation polymerizable monomers, preferably a biocompatible monomer, having covalent binding sites such as hydroxyethylmethacrylate, into a zone, impressing a like charge on the droplet so that they mutually repel each other, spheroidizing the droplets within the zone and collecting the droplets in a pool of cryogenic liquid. As the droplets enter the liquid, they freeze into solid, glassy microspheres, which vaporizes a portion of the cryogenic liquid to form a layer. The like-charged microspheres, suspended within the layer, move to the edge of the vessel holding the pool, are discharged, fall and are collected. The collected microspheres are irradiated while frozen in the cryogenic liquid to form latent free radicals. The frozen microspheres are then slowly thawed to activate the free radicals which polymerize the monomer to form evenly-sized, evenly-shaped, monodisperse polymeric microspheres.

  8. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

    2014-12-16

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

  9. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres.

    PubMed

    Narayani, R; Rao, K P

    1994-01-01

    Biodegradable hydrophilic gelatin microspheres containing the anticancer drug methotrexate (MTX) of different mean particle sizes (1-5, 5-10, and 15-20 microns) were prepared by polymer dispersion technique and crosslinked with glutaraldehyde. The microspheres were uniform, smooth, solid and in the form of free-flowing powder. About 80 per cent of MTX was incorporated in gelatin microspheres of different sizes. The in vitro release of MTX was investigated in two different media, namely simulated gastric and intestinal fluids. The release profiles indicated that gelatin microspheres released MTX in a zero-order fashion for 4-6 days in simulated gastric fluid and for 5-8 days in simulated intestinal fluid. The rate of release of MTX decreased with increase in the particle size of the microspheres. MTX release was faster in gastric fluid when compared to intestinal fluid.

  10. Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants.

    PubMed

    Wang, Yan; Wang, Anqi; Wang, Chunxin; Cui, Bo; Sun, Changjiao; Zhao, Xiang; Zeng, Zhanghua; Shen, Yue; Gao, Fei; Liu, Guoqiang; Cui, Haixin

    2017-10-06

    Pesticide slow-release formulations provide a way to increase the efficiency of active components by reducing the amount of pesticide that needs to be applied. Slow-release formulations also increase the stability and prolong the control effect of photosensitive pesticides. Surfactants are an indispensable part of pesticide formulations, and the choice of surfactant can strongly affect formulation performance. In this study, emamectin-benzoate (EMB) slow-release microspheres were prepared by the microemulsion polymerization method. We explored the effect of different surfactants on the particle size and dispersity of EMB in slow-release microspheres. The results indicated that the samples had uniform spherical shapes with an average diameter of 320.5 ±5.24 nm and good dispersity in the optimal formulation with the polymeric stabilizer polyvinyl alcohol (PVA) and composite non-ionic surfactant polyoxyethylene castor oil (EL-40). The optimal EMB pesticide slow-release microspheres had excellent anti-photolysis performance, stability, controlled release properties, and good leaf distribution. These results demonstrated that EMB slow-release microspheres are an attractive candidate for improving pesticide efficacy and prolonging the control effect of EMB in the environment.

  11. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  12. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    PubMed

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from

  13. Magnetic propulsion of microspheres at liquid-glass interfaces

    NASA Astrophysics Data System (ADS)

    Helgesen, Geir

    2018-02-01

    Bio-coated, magnetic microspheres have many applications in biotechnology and medical technology as a tool to separate and extract cells or molecules in a water solution by applying external strong magnetic field gradients. However, magnetic microspheres with or without attached cargo can also be separated in the liquid solution if they are exposed to alternating or rotating, relatively weak magnetic fields. Microspheres that have a higher density than the liquid will approach the bottom surface of the sample cell, and then a combination of viscous and surface frictional forces can propel the magnetic microspheres along the surface in a direction perpendicular to the axis of field rotation. Experiments demonstrating this type of magnetic propulsion are shown, and the forces active in the process are discussed. The motion of particles inside sample cells that were tilted relative to the horizontal direction was studied, and the variation of propulsion velocity as a function of tilt angle was used to find the values of different viscous and mechanical parameters of motion. Propulsion speeds of up to 5 μm/s were observed and were found to be caused by a partly rolling and partly slipping motion of rotating microspheres with a slipping coefficient near 0.6.

  14. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, Zachary D.; Padilla Cintron, Cristina

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology createsmore » monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.« less

  15. Bioassay and biomolecular identification, sorting, and collection methods using magnetic microspheres

    DOEpatents

    Kraus, Jr., Robert H.; Zhou, Feng [Los Alamos, NM; Nolan, John P [Santa Fe, NM

    2007-06-19

    The present invention is directed to processes of separating, analyzing and/or collecting selected species within a target sample by use of magnetic microspheres including magnetic particles, the magnetic microspheres adapted for attachment to a receptor agent that can subsequently bind to selected species within the target sample. The magnetic microspheres can be sorted into a number of distinct populations, each population with a specific range of magnetic moments and different receptor agents can be attached to each distinct population of magnetic microsphere.

  16. Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity

    NASA Technical Reports Server (NTRS)

    Tokes, Z. A.; Rogers, K. E.; Rembaum, A.

    1982-01-01

    Adriamycin was coupled to polyglutaraldehyde microspheres having an average diameter of 4500 A. The coupled microspheres remained stable during incubation with cells. Full cytostatic activity was observed when the coupled adriamycin was tested with murine or human leukemia and murine sarcoma cell lines. A 10-fold increase in sensitivity was obtained with drug-resistant human leukemia cell lines. Repeated use of the coupled microspheres in the cytostatic assays did not decrease their activity, indicating that these complexes can be recycled. The results suggest that coupled adriamycin sufficiently perturbs the plasma membrane to lead to cytostatic activity. It is proposed that this mode of drug delivery provides multiple and repetitious sites for drug-cell interactions. In addition, the drug-polymer complexes may overcome those forms of resistance that are the result of decreased drug binding at the cell surface.

  17. Incidence and risk factors of early arterial blood flow stasis during first radioembolization of primary and secondary liver malignancy using resin microspheres: an initial single-center analysis.

    PubMed

    Pieper, Claus Christian; Willinek, Winfried A; Thomas, Daniel; Ahmadzadehfar, Hojjat; Essler, Markus; Nadal, Jennifer; Wilhelm, Kai E; Schild, Hans Heinz; Meyer, Carsten

    2016-08-01

    To retrospectively determine incidence of early arterial blood flow stasis and its influencing factors during resin-based radioembolization (RE) of liver tumours. Data of patients undergoing resin-based RE from 06/2006-12/2013 were reviewed. Second RE procedures of the same liver lobe were excluded. 90-yttrium dose was calculated according to the body surface area method. Data were categorized according to RE without full dose application because of early stasis and with full dose application. Clinical/procedural characteristics were recorded. Logistic regression was performed to identify associations between clinical/procedural characteristics and early stasis. 362 patients [220 male; mean age 62 years (range 26-90)] underwent 416 RE sessions with early stasis occurring in 103 REs (24.8 %). Highest incidence and degree of stasis were observed in breast cancer metastases [42.6 % (20/47); 55.8 % of mean intended dose administered]. Independent risk factors were: metastasized breast cancer (odds ratio [OR] 2.18, p = 0.02), liver tumour-burden <25 % and 25-50 % (ORs 5.33, 15.64; p < 0.0001), tumour hypovascularity (OR 2.70, p = 0.04), previous bevacizumab therapy (OR 2.79, p = 0.0009) and concurrent chemotherapy (OR 8.69, p < 0.0001). Early stasis was observed in 24.8 % of resin-based REs. In the presence of the identified risk factors, extra care should be taken during microsphere administration. • Early arterial blood flow stasis is a known problem of resin-based RE. • The study showed that early stasis occurs in 25 % of REs. • Several clinical and procedural factors are associated with early stasis. • In patients at risk extra care should be taken during RE.

  18. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    PubMed

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    USGS Publications Warehouse

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-01-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks

  20. Production of monodisperse, polymeric microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chang, Manchium (Inventor)

    1990-01-01

    Very small, individual polymeric microspheres with very precise size and a wide variation in monomer type and properties are produced by deploying a precisely formed liquid monomer droplet, suitably an acrylic compound such as hydroxyethyl methacrylate into a containerless environment. The droplet which assumes a spheroid shape is subjected to polymerizing radiation such as ultraviolet or gamma radiation as it travels through the environment. Polymeric microspheres having precise diameters varying no more than plus or minus 5 percent from an average size are recovered. Many types of fillers including magnetic fillers may be dispersed in the liquid droplet.

  1. Polymer-coated albumin microspheres as carriers for intravascular tumour targeting of cisplatin.

    PubMed

    Verrijk, R; Smolders, I J; McVie, J G; Begg, A C

    1991-01-01

    We used a poly-lactide-co-glycolide polymer (PLAGA 50:50) to formulate cisplatin (cDDP) into microspheres designed for intravascular administration. Two systems were developed. PLAGA-coated albumin microspheres and microspheres consisting of PLAGA only. PLAGA-coated microspheres displayed a mean diameter of 31.8 +/- 0.9 microns and a payload of 7.5% cDDP (w/w). Solid PLAGA microspheres exhibited a mean diameter of 19.4 +/- 0.6 microns and a payload of 20% cDDP. Release characteristics and in vitro effects on L1210 leukemia and B16 melanoma cell lines were investigated. Both types of microsphere overcame the initial rapid release of cDDP (burst effect), and PLAGA-coated albumin microspheres also showed a lag phase of approximately 30 min before cDDP release began. PLAGA-coated albumin microspheres released most of their payload through diffusion, and the coating eventually cracked after 7 days' incubation in saline supplemented with 0.1% Tween at 37 degrees C, enabling the release of any cDDP remaining. Effects of platinum, pre-released from PLAGA-coated albumin microspheres on the in vitro growth of L1210 cells were comparable with those of standard formulations (dissolved) of cDDP. Material released from non-drug-loaded PLAGA microspheres had no effect on L1210 cell growth, suggesting the absence of cytotoxic compounds in the matrix. The colony-forming ability of B16 cells was also equally inhibited by standard cDDP and pre-released drug. These studies show that formulation of cDDP in PLAGA-based microspheres prevents the rapid burst effect of cDDP seen in previous preparations and offers an improved system of administration for hepatic artery infusion or adjuvant therapy, enabling better clinical handling and the promise of a higher ratio of tumour tissue to normal tissue.

  2. Dosimetry by 90Y internal pair production PET imaging after liver radioembolization: How well can we quantify the absorbed dose to lesions?

    NASA Astrophysics Data System (ADS)

    D'Arienzo, M.

    2017-03-01

    Radioembolization is a catheter-based liver-directed therapy indicated mainly in a palliative setting for primary and secondary hepatic malignancies. It involves the administration of 90Y -loaded microspheres in the arterial vasculature of the liver by use of percutaneous transarterial techniques. Previous studies showed that the decay of 90Y has a minor branch to the 0+ first excited state of 90Zr at 1.76MeV, that is followed by a β+ / β- emission. In recent years, a number of authors have used the small positronic emission of 90Y , (3.186± 0.047)\\cdot 10^{-5} , to obtain high-resolution positron emission tomography (PET) images of 90Y biodistribution after liver radioembolization. At present, it is generally accepted that the possibility of detecting β+ emissions from 90Y by PET scanners may pave the way for an accurate patient-specific dosimetry. The present paper has a twofold purpose. Firstly, a brief overview of imaging modalities currently used to assess microsphere biodistribution after liver radioembolization is presented. Secondly, the paper focuses on 90Y -PET dosimetry. A benchmark between a number of dosimetric approaches for accurate dosimetry after liver radioembolization with 90Y -PET dosimetry is presented.

  3. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection

    PubMed Central

    Hosseini, Samira; Aeinehvand, Mohammad M.; Uddin, Shah M.; Benzina, Abderazak; Rothan, Hussin A.; Yusof, Rohana; Koole, Leo H.; Madou, Marc J.; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-01-01

    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres’ specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness. PMID:26548806

  4. Active Q switching of a fiber laser with a microsphere resonator

    NASA Astrophysics Data System (ADS)

    Kieu, Khanh; Mansuripur, Masud

    2006-12-01

    We propose and demonstrate an active Q-switched fiber laser using a high-Q microsphere resonator as the Q-switching element. The laser cavity consists of an Er-doped fiber as the gain medium, a glass microsphere reflector (coupled through a fiber taper) at one end of the cavity, and a fiber Bragg grating reflector at the other end. The reflectivity of the microsphere is modulated by changing the gap between the microsphere and the fiber taper. Active Q switching is realized by oscillating the microsphere in and out of contact with the taper. Using this novel technique, we have obtained giant pulses (maximum peak power ˜102W, duration ˜160ns) at a low pump-power threshold (˜3mW).

  5. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  6. Nanocarrier-Integrated Microspheres: Nanogel Tectonic Engineering for Advanced Drug-Delivery Systems.

    PubMed

    Tahara, Yoshiro; Mukai, Sada-Atsu; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2015-09-09

    A nanocarrier-integrated bottom-up method is a promising strategy for advanced drug-release systems. Self-assembled nanogels, which are one of the most beneficial nanocarriers for drug-delivery systems, are tectonically integrated to prepare nanogel-crosslinked (NanoClik) microspheres. NanoClik microspheres consisting of nanogel-derived structures (observed by STED microscopy) release "drug-loaded nanogels" after hydrolysis, resulting in successful sustained drug delivery in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices.

    PubMed

    Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong

    2017-11-29

    Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.

  8. Formulation optimization of gentamicin loaded Eudragit RS100 microspheres using factorial design study.

    PubMed

    Singh, Deependra; Saraf, Swarnlata; Dixit, Vinod Kumar; Saraf, Shailendra

    2008-04-01

    Gentamicin-Eudragit RS100 microspheres were prepared by modified double emulsion method. A 3(2) full factorial experiment was designed to study the effects of the composition of outer aqueous phase in terms of amount of glycerol (viscosity effect) and sodium chloride (osmotic pressure gradient effect) on the entrapment efficiency and % yield and microsphere size. The results of analysis of variance test for responses measured indicated that the test is significant (p>0.05). The contribution of sodium chloride concentration was found to be higher on entrapment efficiency and % yield, whereas glycerol produced significant effect on the mean diameter of microspheres. Microspheres demonstrated spherical particles in the size range of 33.24-60.43 microm. In vitro release profile of optimized formulation demonstrated sustained release for 24 h following Higuchi kinetics. Finally, drug bioactivity was found to remain intact after microencapsulation. Response surface graphs are presented to examine the effects of independent variables on the responses studied. Thus, by formulation design important parameters affecting formulation characteristics of gentamicin loaded Eudragit RS100 microspheres can be identified for controlled delivery with desirable characters in terms of maximum entrapment and yield.

  9. Preparation, characterization and catalytic property of CuO nano/microspheres via thermal decomposition of cathode-plasma generating Cu2(OH)3NO3 nano/microspheres.

    PubMed

    Zhang, Zhi-Kun; Guo, Deng-Zhu; Zhang, Geng-Min

    2011-05-01

    CuO nano/microspheres with a wide diametric distribution were prepared by thermal decomposition of Cu(2)(OH)(3)NO(3) nano/microspheres formed in a simple asymmetric-electrode based cathodic-plasma electrolysis. The morphological, componential, and structural information about the two kinds of spheres were characterized in detail by SEM, TEM, EDX, XPS and XRD, and the results revealed that the morphology of the spheres were well kept after the componential and structural transformation from Cu(2)(OH)(3)NO(3) into CuO. The TGA/DSC study showed that the CuO nano/microspheres could be explored to be a promising additive for accelerating the thermal decomposition of ammonium perchlorate (AP). Combining with the current curve and emission spectrum measured in the plasma electrolysis, formation mechanism of the Cu(2)(OH)(3)NO(3) spheres was also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Preclinical and clinical in vitro in vivo correlation of an hGH dextran microsphere formulation.

    PubMed

    Vlugt-Wensink, K D F; de Vrueh, R; Gresnigt, M G; Hoogerbrugge, C M; van Buul-Offers, S C; de Leede, L G J; Sterkman, L G W; Crommelin, D J A; Hennink, W E; Verrijk, R

    2007-12-01

    To investigate the in vitro in vivo correlation of a sustained release formulation for human growth hormone (hGH) based on hydroxyethyl methacrylated dextran (dex-HEMA) microspheres in Pit-1 deficient Snell dwarf mice and in healthy human volunteers. A hGH-loaded microsphere formulation was developed and tested in Snell dwarf mice (pharmacodynamic study) and in healthy human volunteers (pharmacokinetic study). Single subcutaneous administration of the microspheres in mice resulted in a good correlation between hGH released in vitro and in vivo effects for the hGH-loaded microsphere formulation similar to daily injected hGH indicating a retained bioactivity. Testing the microspheres in healthy volunteers showed an increase (over 7-8 days) in hGH serum concentrations (peak concentrations: 1-2.5 ng/ml). A good in vitro in vivo correlation was obtained between the measured and calculated (from in vitro release data) hGH serum concentrations. Moreover, an increased serum concentration of biomarkers (insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3) was found again indicating that bioactive hGH was released from the microspheres. Good in vitro in vivo correlations were obtained for hGH-loaded dex-HEMA microspheres, which is an important advantage in predicting the effect of the controlled drug delivery product in a clinical situations.

  11. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoliang; Yan, Zhengguang, E-mail: yanzg2004@gmail.com; Han, Xiaodong, E-mail: xdhan@bjut.edu.cn

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: Inmore » situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.« less

  12. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobir, S. A. M.; Nano-SciTech Centre,; Zainal, Z.

    2011-03-30

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheresmore » size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm{sup -1} for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.« less

  13. Experimental evaluation of the magnetic properties of commercially available magnetic microspheres.

    PubMed

    Connolly, Joan; St Pierre, Timothy G; Dobson, Jon

    2005-01-01

    The magnetic properties of 5 commercially available magnetic microsphere samples are tested and compared with those stated by their manufacturers. A suspension of magnetic, iron oxide nanoparticles is studied for comparison. Two of the microsphere samples have magnetic properties which do not support the manufacturer's claims of superparamagnetism. The remaining 3 microsphere samples as well as the nanoparticle suspension are superparamagnetic or ferromagnetic as claimed by the manufacturers. Field cooled and zero field cooled magnetisations indicate that the non-superparamagnetic microsphere samples contain blocked magnetic particles at room temperature. This observation is supported by the open hysteresis loops of the room temperature, field dependent magnetisation measurement. There is a significant paramagnetic component in the superparamagnetic microspheres. This is also present to a lesser extent in a nanoparticle suspension.

  14. Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia.

    PubMed

    Miyazaki, Toshiki; Anan, Shota; Ishida, Eiichi; Kawashita, Masakazu

    2013-05-01

    Recently, organic-inorganic hybrids composed of derivatives of dextran, a polysaccharide, and magnetite nanoparticles have attracted much attention as novel thermoseeds. If they can be fabricated into microspheres of size 20-30 μm, they are expected to show not only hyperthermia effects but also embolization effects in human liver and kidney cancers. In this study, we examined the fabrication of carboxymethyldextran/magnetite microspheres using a water/oil emulsion as the reaction medium. Improvement of the chemical stability of the microcapsules by coating with silica using a sol-gel process was also investigated. The obtained hollow microspheres contained particles of size 20-30 μm. Silica coating using an appropriate catalyst for hydrolysis and polycondensation of alkoxysilanes was found to be effective for preventing dissolution and collapse in simulated body environments.

  15. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague

    PubMed Central

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2014-01-01

    Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded

  16. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  17. Reflectance, Optical Properties, and Stability of Molybdenum/Strontium and Molybdenum/Yttrium Multilayer Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjornrattanawanich, Benjawan

    2002-09-01

    The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive indexmore » $$\\tilde{n}$$ = 1-δ + iβ of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part β was determined through transmittance measurements. The dispersive part δ was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their

  18. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres.

    PubMed

    Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava

    2013-10-15

    Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Development of reconstitutable suspensions containing diclofenac sodium-loaded microspheres for pediatric delivery.

    PubMed

    Oz, Umut Can; Devrim, Burcu; Bozkır, Asuman; Canefe, Kandemir

    2015-01-01

    Effective clinical utilisation of non-steroidal anti-inflammatory drugs, such as diclofenac sodium (DS) is significantly limited by their ulcerogenic potential and poor bioavailability after oral administration. The objective of this work was to develop reconstitutable pediatric suspensions of DS-loaded microspheres prepared with an acrylic polymer (Eudragit RS) for improved pediatric delivery of DS. The microspheres were prepared by the water-in-oil-in-water or solid-in-oil-in-water emulsion techniques. Enviromental scanning electron microscopy observations clearly showed that microspheres have spherical shape. The drug entrapment efficiency of these microspheres was found 47.96 ± 0.79% to 88.57 ± 0.59% and their average particle sizes were 23.94-60.78 µm, which are within the desired range for the development of suspension formulation. The in vitro dissolution indicated prolonged sustained release of DS over 8 h. The results of preliminary characterisation studies of suspensions show that a liquid pharmaceutical preparation for oral administration capable of providing a sustained release of DS was successfully obtained.

  20. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres.

    PubMed

    Sivakumar, M; Rao, K Panduranga

    2003-05-01

    In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns. Copyright 2003 Wiley Periodicals, Inc.

  1. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres.

    PubMed

    Sivakumar, M; Panduranga Rao, K

    2002-08-01

    Composite microspheres have been prepared from bioactive ceramics such as coralline hydroxyapatite [CHA, Ca10(PO4)6(OH)2] granules, a biodegradable polymer, gelatin and an antibiotic, gentamicin. In our earlier work, we have shown a gentamicin release from CHA granules--chitosan composite microspheres. In the present investigation, an attempt was made to prepare the composite microspheres containing coralline hydroxyapatite and gelatin (CHA-G), which were prepared by the dispersion polymerization technique and the gentamicin was incorporated by the absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. The Fourier transformed infrared spectrum clearly indicated the presence of amide and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs show that the composite microspheres are spherical in shape and porous in nature. The particle size of composite microspheres was analyzed and the average size was found to be 16 microm. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns.

  2. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  3. Eudragit® S100 coated calcium pectinate microspheres of curcumin for colon targeting.

    PubMed

    Zhang, Lin; Cao, Fengliang; Ding, Buyun; Li, Qilu; Xi, Yanwei; Zhai, Guangxi

    2011-01-01

    Currently, colon-specific drug delivery systems have been investigated for drugs that can exert their bioactivities in the colon. In this study, Eudragit® S100 coated calcium pectinate microsphere, a pH-dependent and enzyme-dependent system, as colon-specific delivery carrier for curcumin was investigated. Curcumin-loaded calcium pectinate microspheres were prepared by emulsification-linkage method, and the preparation technology was optimised by uniform experimental design. The morphology of microspheres was observed under scanning electron microscopy. Interactions between drug and polymers were investigated with differential scanning calorimetry (DSC) and X-ray diffraction. In vitro drug release studies were performed in simulated colonic fluid in the presence of Pectinex Ultra SP-L or 1% (w/v) rat caecal content, and the results indicated that the release of curcumin was significantly increased in the presence of 1% (w/v) rat caecal contents. It could be concluded that Eudragit® S100 coated calcium pectinate microsphere was a potential carrier for colon delivery of curcumin.

  4. Multimodality Imaging of Ethiodized Oil–loaded Radiopaque Microspheres during Transarterial Embolization of Rabbits with VX2 Liver Tumors

    PubMed Central

    Tacher, Vania; Duran, Rafael; Lin, MingDe; Sohn, Jae Ho; Sharma, Karun V.; Wang, Zhijun; Chapiro, Julius; Gacchina Johnson, Carmen; Bhagat, Nikhil; Dreher, Matthew R.; Schäfer, Dirk; Woods, David L.; Lewis, Andrew L.; Tang, Yiqing; Grass, Michael; Wood, Bradford J.

    2016-01-01

    Purpose To assess the visibility of radiopaque microspheres during transarterial embolization (TAE) in the VX2 rabbit liver tumor model by using multimodality imaging, including single-snapshot radiography, cone-beam computed tomography (CT), multidetector CT, and micro-CT. Materials and Methods The study was approved by the institutional animal care and use committee. Fifteen VX2-tumor-bearing rabbits were assigned to three groups depending on the type of embolic agent injected: 70–150-μm radiopaque microspheres in saline (radiopaque microsphere group), 70–150-μm radiopaque microspheres in contrast material (radiopaque microsphere plus contrast material group), and 70–150-μm radiolucent microspheres in contrast material (nonradiopaque microsphere plus contrast material group). Rabbits were imaged with single-snapshot radiography, cone-beam CT, and multidetector CT. Three to 5 weeks after sacrifice, excised livers were imaged with micro-CT and histologic analysis was performed. The visibility of the embolic agent was assessed with all modalities before and after embolization by using a qualitative three-point scale score reading study and a quantitative assessment of the signal-to-noise ratio (SNR) change in various regions of interest, including the tumor and its feeding arteries. The Kruskal-Wallis test was used to compare the rabbit characteristics across groups, and the Wilcoxon signed rank test was used to compare SNR measurements before and after embolization. Results Radiopaque microspheres were qualitatively visualized within tumor feeding arteries and targeted tissue with all imaging modalities (P < .05), and their presence was confirmed with histologic examination. SNRs of radiopaque microsphere deposition increased after TAE on multidetector CT, cone-beam CT, and micro-CT images (P < .05). Similar results were obtained when contrast material was added to radiopaque microspheres, except for additional image attenuation due to tumor enhancement

  5. THERAPY OF POLYCYTHEMIA VERA WITH RADIOYTTRIUM (Y-90)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenburg, J.; Sawitsky, A.; Dudley, H.C.

    1962-01-01

    BS>Nine patients with polycythemia vera were treated from 5-l7 months ago with a single intravenous injection of chelated radioactive yttrium (Y-90) in dosages ranging from 0.l0 to 0.25 mc/kg of body weight. An excellent response, both clinical and hematologic, was obtained in all the patients. This includes relief of symptoms, regression of organomegaly, and normalization of the hematologic picture. Two of these patients, treated l6 and 9 months ago, may possibly be going into relapse. The others are continuing in essentially complete remission. Toxicity was limtted to transient petechiosis and epistaxis, from which recovery was spontaneous. (auth)

  6. Development and evaluation of intestinal targeted mucoadhesive microspheres of Bacillus coagulans.

    PubMed

    Alli, Sk Md Athar; Ali, Sk Md Ajhar; Samanta, Amalesh

    2011-11-01

    Intestinal targeted mucoadhesive microsphere of probiotics may provide numerous associated health benefits. To develop mucoadhesive microspheres that will deliver viable probiotic cells into gut protectively against harsh environmental conditions of stomach for extended period. Core mucoadhesive microspheres of Bacillus coagulans were prepared using hypromellose, following coacervation and phase separation technique and were then coated with hypromellose phthalate to achieve their site-specific release. Microspheres were evaluated for percent yield, entrapment efficiency, surface morphology, particle size and size distribution, flow property, swelling property, mucoadhesion property by the in vitro wash-off and the ex vivo mucoadhesive strength tests, in vitro release profile and release kinetic, in vivo probiotic activity, and stability. The values for kinetic constant and regression coefficient of model-dependent approaches and the difference factor, the similarity factor, and the Rescigno index of model-independent approaches were determined for accessing and comparing in vitro performance. Microsphere formulation batches have percent yield value between 56.26% and 69.13% and entrapment efficiency value between 66.95% and 77.89%. Microspheres were coarser with spherical shape having mean particle size from 28.03 to 48.31 μm. In vitro B. coagulans release profile follows zero-order kinetics and depends on the grade of hypromellose and the B. coagulans-to-hypromellose ratio. Experimental microspheres rendered adequate stability to B. coagulans at room temperature. Microspheres had delivered B. coagulans in simulated intestinal condition following zero-order kinetics, protectively in simulated gastric condition, exhibiting appreciable mucoadhesion in intestinal condition, which could be useful to achieve site-specific delivery for extended period.

  7. Effect of medium-chain triglycerides on the release behavior of Endostar encapsulated PLGA microspheres.

    PubMed

    Meng, Boyu; Li, Ling; Hua, Su; Wang, Qingsong; Liu, Chunhui; Xu, Xiangyang; Yin, Xiaojin

    2010-09-15

    The incomplete release of Endostar from PLGA microspheres was observed in our previous study. In the present study, we focused on the effect of medium-chain triglycerides (MCT) on the in vitro/in vivo release behavior of Endostar encapsulated PLGA microspheres, which were prepared by a water-in-oil-in-water (W/O/W) double-emulsion method with or without MCT. The in vitro accumulated release of Endostar from microspheres co-encapsulated with 30% MCT was found to be 79.04% after a 30-day incubation period in PBS (pH 7.4) at 37 degrees C. However, the accumulated release of Endostar from MCT-free microspheres was found to be only 32.22%. Pouches containing Endostar encapsulated PLGA microspheres were implanted subcutaneously in rats. The effect of MCT on the in vivo release showed a similar trend to the in vitro release. After 30 days, only 9.87% of the total encapsulated Endostar was retained in microspheres co-encapsulated with 30% MCT, while 42.25% of Endostar was retained in MCT-free microspheres. The co-encapsulation of MCT provided the microspheres with a porous surface, which significantly improved the in vitro/in vivo release of Endostar from PLGA microspheres. In addition, in vitro experiments showed that MCT co-encapsulated PLGA microspheres had more inter-connected pores, faster degradation of PLGA, and faster swelling of microspheres, which helped to explain the mechanism of the effect of MCT on improving the release of Endostar from PLGA microspheres. Copyright 2010 Elsevier B.V. All rights reserved.

  8. The Influence of Yttrium on High Temperature Oxidation of Valve Steels

    NASA Astrophysics Data System (ADS)

    Grzesik, Z.; Migdalska, M.; Mrowec, S.

    2015-04-01

    The influence of small amounts of yttrium, electrochemically deposited on the surface of four steels utilized in the production of valves in car engines, on the protective properties of the oxide scale and its adherence to the surface of the oxidized materials has been studied under isothermal and thermal cycle conditions. Oxidation measurements have been carried out at 1173 K. It has been found that yttrium addition improves considerably the scale adherence to the substrate surface, increasing thereby corrosion resistance of the studied materials.

  9. EFFECTS OF THE GRAM STAIN ON MICROSPHERES FROM THERMAL POLYAMINO ACIDS1

    PubMed Central

    Fox, Sidney W.; Yuyama, Shuhei

    1963-01-01

    Fox, Sidney W. (The Florida State University, Tallahassee) and Shuhei Yuyama. Effects of the Gram stain on microspheres from thermal polyamino acids. J. Bacteriol. 85:279–283. 1963.—Microspheres produced from acid proteinoid accept the Gram stain. The stain is negative, but microspheres produced from mixtures containing a sufficient proportion of lysine proteinoid stain positive. Microspheres produced from mixtures containing the appropriate proportions contain individuals which stain positive and others which stain negative. Images PMID:13959050

  10. Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl.

    PubMed

    Shah, Sanjay; Madan, Sarika; Agrawal, Ss

    2012-09-03

    The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.

  11. Preparation of monodisperse PEG hydrogel composite microspheres via microfluidic chip with rounded channels

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi

    2013-09-01

    An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.

  12. Thermoresponsive wettability of photonic crystals fabricated by core-shell poly(styrene-acrylamide) nano/microspheres.

    PubMed

    Zhang, Yuqi; Gao, Loujun; Heng, Liping; Wei, Qingbo; Yang, Hua; Wang, Qiao

    2013-03-01

    The photonic crystals (PCs) films with tunable wettability were fabricated from self-assembly of an amphiphilic latex nano/microspheres poly(styrene-acrylamide) at different temperatures. The results demonstrate that the surface wettability of the PCs film can be tuned from high hydrophilic (CA, 17 degrees) to high hydrophobic (CA, 127.8 degrees) by controlling the assembly temperature from 30 degrees C to 90 degrees C, while the position of the photonic stopbands of the PCs films unchanged virtually. The obvious wettability transition is due to the change of the surface chemical component of the latex spheres, which mainly derives from the phase separation of polymer segments driven toward minimum interfacial energy. The facile method could open new application fields of PCs in diverse environments.

  13. Magnetocrystalline anisotropy of Fe2 + ion in silicon- or germanium-substituted yttrium iron garnet at zero temperature

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czeslaw

    1982-01-01

    The present work reports the theoretical considerations of the magnetocrystalline anisotropy of ferrous ions induced by tetravalent dopants in yttrium iron garnet. Using the spin Hamiltonian developed earlier by us and the molecular field (h) approximation we derive the cubic anisotropy constants K1 and K2 at zero temperature. We adopt the Alben's et al. model of twelve inequivalent Fe2+ sites in silicon-substituted yttrium iron garnet. Results are given for h = 400, 300, 200 and the spin Hamiltonian parameters with the trigonal Δ = 300, 400, 500, 600, 700 and the nontrigonal crystal field parameter Γ = 200, 300 cm-1. The agreement with the experimental K1 and K2 is quite good. The discussion reveals that the properties of the far and near sites in the two-center model can now be theoretically explained. The theoretical ratios of K1(far) to K1(near) agree well with experiment. Thus our results speak in favor of the orbital singlet rather than the doublet model assumed previously for Fe2+ in silicon- or germanium-substituted yttrium iron garnets.

  14. SU-E-T-02: 90Y Microspheres Dosimetry Calculation with Voxel-S-Value Method: A Simple Use in the Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneru, F; Gracia, M; Gallardo, N

    2015-06-15

    Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more

  15. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    PubMed Central

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-01-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer. PMID:27324595

  16. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    NASA Astrophysics Data System (ADS)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  17. High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir S.; Yao, X. Steve; Maleki, Lute

    2000-01-01

    With submillimeter size and optical Q up to approximately 10 (exp 10), microspheres with whispering-gallery (WG) modes are attractive new component for fiber-optics/photonics applications and a potential core in ultra-compact high-spectral-purity optical and microwave oscillators. In addition to earlier demonstrated optical locking of diode laser to WG mode in a microsphere, we report on microsphere application in the microwave optoelectronic oscillator, OEO. In OEO, a steady-state microwave modulation of optical carrier is obtained in a closed loop including electro-optical modulator, fiber-optic delay, detector and microwave amplifier. OEO demonstrates exceptionally low phase noise (-140 dBc/Hz at l0kHz from approximately 10GHz carrier) with a fiber length approximately 2km. Current technology allows to put all parts of the OEO, except the fiber, on the same chip. Microspheres, with their demonstrated Q equivalent to a kilometer fiber storage, can replace fiber delays in a truly integrated device. We have obtained microwave oscillation in microsphere-based OEO at 5 to 18 GHz, with 1310nm and 1550nm optical carrier, in two configurations: 1) with external DFB pump laser, and 2) with a ring laser including microsphere and a fiber optic amplifier. Also reported is a simple and efficient fiber coupler for microspheres facilitating their integration with existing fiber optics devices.

  18. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.

  19. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Kopacek, Bernd

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized themore » main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.« less

  20. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A novel microsphere with a three-layer structure for duodenum-specific drug delivery.

    PubMed

    Zhu, Xi; Zhou, Dan; Jin, Yun; Song, Yu-pin; Zhang, Zhi-rong; Huang, Yuan

    2011-07-15

    Owing to the quick elimination of drug from duodenum and the depth of Helicobacter pylori (H. pylori) colonized in mucus, antibiotic therapy often fails in the eradication of H. pylori infection for duodenal ulcer. A novel duodenum-specific microsphere (DSM) consisting of three-layer structure was developed to enhance the drug concentration and retention time in duodenal mucus layer. Firstly a core-shell mucoadhesive microsphere was prepared with a novel emulsification/coagulation coating method by introducing drug loaded Eudragit cores into a thiolated chitosan mucoadhesive layer. Then the obtained core-shell mucoadhesive microspheres were further coated with hydroxypropyl methylcellulose acetate maleate as the pH-sensitive layer for the trigger of mucoadhesion and drug release in duodenum. From the fluorescence microscopic and scanning electron microscopic images, the three-layer structure was successfully established. The microspheres exhibited a duodenum-specific trigger performance, good mucoadhesive property and pH-dependent drug release. In vivo study performed in rats demonstrated that DSM exhibited about 3-fold augmentation of AUC and about 5-fold augmentation of C(max) for duodenal mucus drug concentration compared with free drug suspension. These results suggest that the three-layer structure microspheres may provide a promising approach for duodenum-targeting drug delivery system. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma

    PubMed Central

    González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.

    2015-01-01

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  3. Investigation of Expandable Polymeric Microspheres for Packaging Applications

    DTIC Science & Technology

    2012-06-06

    FILMS COST REDUCTION OLEFIN POLYMERS COSTS PACKAGING MICROSPHERES WASTE DISPOSAL WEIGHT...MANAGEMENT THERMAL INSULATION DENSITY SOLID WASTES ENVIRONMENTAL IMPACT THERMOPLASTIC POLYMERS POLYMERS ...research. The purpose was to provide information on the incorporation of hollow, expandable  polymeric microspheres  into  thermoplastic   polymers   to

  4. Road to Silicon Microsphere Fabrication and Mode Coupling

    DTIC Science & Technology

    2014-07-01

    from optical fiber onto a microsphere in whispering gallery mode (courtesy of B. Butkus, Biophotonics International [2...Butkus, Biophotonics International [5]). 2 BACKGROUND SILICON MICROSPHERE FABRICATION METHODS Processes for forming spherical structures exist in...Sensitive DNA Detection.” October 2003. Biophotonics International. http://www.rowland.org/rjf/vollmer/images/biophotonics.pdf [6] James E. McDonald

  5. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  6. Optically Reconfigurable Chiral Microspheres of Self-Organized Helical Superstructures with Handedness Inversion.

    PubMed

    Wang, Ling; Chen, Dong; Gutierrez-Cuevas, Karla G; Bisoyi, Hari Krishna; Fan, Jing; Zola, Rafael S; Li, Guoqiang; Urbas, Augustine M; Bunning, Timothy J; Weitz, David A; Li, Quan

    2017-01-01

    Optically reconfigurable monodisperse chiral microspheres of self-organized helical superstructures with dynamic chirality were fabricated via a capillary-based microfluidic technique. Light-driven handedness-invertible transformations between different configurations of microspheres were vividly observed and optically tunable RGB photonic cross-communications among the microspheres were demonstrated.

  7. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier

    PubMed Central

    Tian, Shuangyan; Li, Juan; Tao, Qi; Zhao, Yawen; Lv, Zhufen; Yang, Fan; Duan, Haoyun; Chen, Yanzhong; Zhou, Qingjun; Hou, Dongzhi

    2018-01-01

    Background Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface. Materials and methods To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH). Montmorillonite/BH complex (Mt-BH) was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs]) by oil-in-oil emulsion–solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%. Results Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours, which is longer than both of the BH solution (2.5 hours) and the conventional BH microspheres (5 hours). Moreover, BMEM exhibited lower toxicity than that of BH solution as shown by the results of cytotoxicity tests, chorioallantoic membrane-trypan blue staining, and Draize rabbit eye test. In addition, both in vivo and in vitro preocular retention capacity study of BMEMs showed a prolonged retention time. The pharmacodynamics showed that BMEMs could extend the drug duration of action. Conclusion The developed BMEMs have the potential to be further applied as ocular drug delivery systems for the treatment of glaucoma. PMID:29391798

  8. Synthesis, characterization and evaluation of uniformly sized core-shell imprinted microspheres for the separation trans-resveratrol from giant knotweed

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohui; Liu, Li; Li, Hui; Yao, Shouzhuo

    2009-09-01

    A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO 2 microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.

  9. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the "external gelation" sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  10. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.

  11. Gelatin microspheres containing calcitonin gene-related peptide or substance P repair bone defects in osteoporotic rabbits.

    PubMed

    Chen, Jianghao; Liu, Wei; Zhao, Jinxiu; Sun, Cong; Chen, Jie; Hu, Kaijin; Zhang, Linlin; Ding, Yuxiang

    2017-03-01

    To investigate the therapeutic effect of gelatin microspheres containing different concentrations of calcitonin gene-related peptide (CGRP) or substance P on repairing bone defects in a rabbit osteoporosis model. Gelatin microspheres containing different concentrations of CGRP or substance P promoted osteogenesis after 3 months in a rabbit osteoporotic bone defective model. From micro-computed tomography imaging results, 10 nM CGRP was optimal for increasing the trabecular number and decreasing the trabecular bone separation degree; similar effects were observed with the microspheres containing 1 µM substance P. Histological analysis showed that the gelatin microspheres containing CGRP or substance P, regardless of the concentration, effectively promoted osteogenesis, and the highest effect was achieved in the groups containing 1 µM CGRP or 1 µM substance P. Gelatin microspheres containing CGRP or substance P effectively promoted osteogenesis in a rabbit osteoporotic bone defect model dose-dependently, though their effects in repairing human alveolar ridge defects still need further investigation.

  12. Integration of Microsphere Resonators with Bioassay Fluidics for Whispering Gallery Mode Imaging

    PubMed Central

    Kim, Daniel C.; Armendariz, Kevin P.

    2013-01-01

    Whispering gallery mode resonators are small, radially symmetric dielectrics that trap light through continuous total internal reflection. The resonant condition at which light is efficiently confined within the structure is linked with refractive index, which has led to the development of sensitive label-free sensing schemes based on whispering gallery mode resonators. One resonator design uses inexpensive high index glass microspheres that offer intrinsically superior optical characteristics, but have proven difficult to multiplex and integrate with the fluidics for sample delivery and fluid exchange necessary for assay development. Recently, we introduced a fluorescence imaging approach that enables large scale multiplexing with microsphere resonators, thus removing one obstacle for assay development. Here we report an approach for microsphere immobilization that overcomes limitations arising from their integration with fluidic delivery. The approach is an adaptation of a calcium-assisted glass bonding method originally developed for microfluidic glass chip fabrication. Microspheres bonded to glass using this technique are shown to be stable with respect to fluid flow and show no detectable loss in optical performance. Measured Q-factors, for example, remain unchanged following sphere bonding to the substrate. The stability of the immobilized resonators is further demonstrated by transferring lipid films onto the immobilized spheres using the Langmuir-Blodgett technique. Bilayers of DOPC doped with GM1 were transferred onto immobilized resonators to detect the binding of cholera toxin to GM1. Binding curves generated from shifts in the whispering gallery mode resonance result in a measured Kd of 1.5 × 10−11 with a limit of detection of 3.3 pM. These results are discussed in terms of future assay development using microsphere resonators. PMID:23615457

  13. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    PubMed

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism

    DOE PAGES

    Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; ...

    2014-01-01

    Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  15. Method for selecting hollow microspheres for use in laser fusion targets

    DOEpatents

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  16. OXIDATION-RESISTANT COATING ON ARTICLES OF YTTRIUM METAL

    DOEpatents

    Wilder, D.R.; Wirkus, C.D.

    1963-11-01

    A process for protecting yttrium metal from oxidation by applying thereto and firing thereon a liquid suspension of a fritted ground silicate or phosphate glass plus from 5 to 35% by weight of CeO/sub 2/ is presented. (AEC)

  17. Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage

    PubMed Central

    Gupta, Vineet; Tenny, Kevin M; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-01-01

    Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro. PMID:27358376

  18. Microsphere insulation systems

    NASA Technical Reports Server (NTRS)

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  19. The 400 microsphere per piece "rule" does not apply to all blood flow studies.

    PubMed

    Polissar, N L; Stanford, D C; Glenny, R W

    2000-01-01

    Microsphere experiments are useful in measuring regional organ perfusion as well as heterogeneity of blood flow within organs and correlation of perfusion between organ pieces at different time points. A 400 microspheres/piece "rule" is often used in planning experiments or to determine whether experiments are valid. This rule is based on the statement that 400 microspheres must lodge in a region for 95% confidence that the observed flow in the region is within 10% of the true flow. The 400 microspheres precision rule, however, only applies to measurements of perfusion to a single region or organ piece. Examples, simulations, and an animal experiment were carried out to show that good precision for measurements of heterogeneity and correlation can be obtained from many experiments with <400 microspheres/piece. Furthermore, methods were developed and tested for correcting the observed heterogeneity and correlation to remove the Poisson "noise" due to discrete microsphere measurements. The animal experiment shows adjusted values of heterogeneity and correlation that are in close agreement for measurements made with many or few microspheres/piece. Simulations demonstrate that the adjusted values are accurate for a variety of experiments with far fewer than 400 microspheres/piece. Thus the 400 microspheres rule does not apply to many experiments. A "rule of thumb" is that experiments with a total of at least 15,000 microspheres, for all pieces combined, are very likely to yield accurate estimates of heterogeneity. Experiments with a total of at least 25,000 microspheres are very likely to yield accurate estimates of correlation coefficients.

  20. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOEpatents

    Stinton, David P.

    1983-01-01

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  1. Hydrophilic microspheres from water-in-oil emulsions by the water diffusion technique.

    PubMed

    Trotta, Michele; Chirio, Daniela; Cavalli, Roberta; Peira, Elena

    2004-08-01

    In this study, we developed and evaluated a novel method to produce insulin-loaded hydrophilic microspheres allowing high encapsulation efficiency and the preservation of peptide stability during particle processing. The preparation method used the diffusion of water by an excess of solvent starting from a water-in-solvent emulsion. The water dispersed phase containing albumin or lactose, or albumin-lactose in different weight ratios, and insulin was emulsified in water-saturated triacetin with and without emulsifiers, producing a water-in-triacetin emulsion. An excess of triacetin was added to the emulsion so that water could be extracted into the continuous phase, allowing the insulin-loaded microsphere precipitation. Insulin stability within the microspheres after processing was evaluated by reverse-phase and size-exclusion high-performance liquid chromatography. The water diffusion extraction process provided spherical microparticles of albumin or albumin-lactose. The mean diameter of the microspheres prepared with or without emulsifiers ranged from 2 to 10 microm, and the encapsulation efficiency of insulin was between 60% and 75%, respectively. The analysis of microsphere content after processing showed that insulin did not undergo any chemical modification within microspheres. The use of lactose alone led to the formation of highly viscous droplets that coalesced during the purification step. The water extraction procedures successfully produced insulin-loaded hydrophilic microspheres allowing the preservation of peptide stability. The type of excipient and the size of the disperse phase of the primary w/o emulsion were crucial determinants of microsphere characteristics.

  2. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  3. Electrolytic Deposition and Diffusion of Lithium onto Magnesium-9 Wt Pct Yttrium Bulk Alloy in Low-Temperature Molten Salt of Lithium Chloride and Potassium Chloride

    NASA Astrophysics Data System (ADS)

    Dong, Hanwu; Wu, Yaoming; Wang, Lidong; Wang, Limin

    2009-10-01

    The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 μm is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A·cm-2. The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

  4. Two-dimensional microsphere quasi-crystal: fabrication and properties

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.

    1996-11-01

    2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.

  5. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  6. Vacuum injection of hydrogen micro-sphere beams

    NASA Astrophysics Data System (ADS)

    Trostell, Bertil

    1995-02-01

    The design, construction and operation of a facility producing hydrogen micro-sphere beams in vacuum are summarized. A scheme is utilized, where a liquid hydrogen jet is broken up into droplets, which are injected into vacuum through a capillary at continuum gas flow conditions. In a typical beam, 40 μm diameter micro-spheres, generated at a frequency of 70 kHz, travel at free flight speeds of 60 m/s. The angular divergence of the beam amounts to ±0.04°. The intention is to use the micro-sphere beams as high luminosity internal targets in the WASA experimental station at the CELSIUS cooler storage ring in Uppsala. A time averaged target density profile, having a FWHM and peak density of 3.5 mm and 5 × 10 16 atoms/cm 2, respectively, is obtained 2.5 m downstream of the capillary exit.

  7. Porous-wall hollow glass microspheres as carriers for biomolecules

    DOEpatents

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  8. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  9. Injectable hydrogels embedded with alginate microspheres for controlled delivery of bone morphogenetic protein-2.

    PubMed

    Zhu, Youjia; Wang, Jiulong; Wu, Jingjing; Zhang, Jun; Wan, Ying; Wu, Hua

    2016-03-23

    Some delivery carriers with injectable characteristics were built using the thermosensitive chitosan/dextran-polylactide/glycerophosphate hydrogel and selected alginate microspheres for the controllable release of bone morphogenetic protein-2 (BMP-2). BMP-2 was first loaded into the microspheres with an average size of around 20 μm and the resulting microspheres were then embedded into the gel in order to achieve well-controlled BMP-2 release. The microsphere-embedded gels show their incipient gelation temperature at around 32 °C and pH at about 7.1. Some gels had their elastic modulus close to 1400 Pa and the ratio of elastic modulus to viscous modulus at around 34, revealing that they behaved like mechanically strong gels. Optimized microsphere-embedded gels were found to be able to administer the BMP-2 release without significant initial burst release in an approximately linear manner over a period of time longer than four weeks. The release rate and the released amount of BMP-2 from these gels could be regulated individually or cooperatively by the initial BMP-2 load and the dextran-polylactide content in the gels. Measurements of the BMP-2 induced alkaline phosphatase activity in C2C12 cells confirmed that C2C12 cells responded to BMP-2 in a dose-dependent way and the released BMP-2 from the microsphere-embedded gels well retained their bioactivity. In vivo assessment of some gels revealed that the released BMP-2 maintained its osteogenesis functions.

  10. Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.

    PubMed

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2012-05-01

    The conversion of 45S5 glass and glass-ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically <3 months). In this paper, we report for the first time on the long-term conversion of 45S5 glass-ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75-150 μm) were immersed for 10 years at room temperature (~25 °C) in K(2)HPO(4) solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25-45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K(2)HPO(4) concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K(2)HPO(4) solution but a calcium pyrophosphate product, Ca(10)K(4)(P(2)O(7))(6).9H(2)O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass-ceramics in biomedical applications are discussed.

  11. Microsphere-Based Immunoassay for the Detection of Azaspiracids

    PubMed Central

    Rodríguez, Laura P.; Vilariño, Natalia; Louzao, M. Carmen; Dickerson, Tobin J.; Nicolaou, K. C.; Frederick, Michael O.; Botana, Luis M.

    2014-01-01

    Azaspiracids (AZAs) are a group of lipophilic toxins discovered in mussels from Ireland in 1995 following a human poisoning incident. Nowadays the regulatory limit for AZAs in many countries is set at 160 Fg of azaspiracid equivalents per kg of shellfish meat. In this work a microsphere-based immunoassay has been developed for the detection of AZAs using a Luminex system. This method is based on the competition between AZA-2 immobilized onto the surface of microspheres and free AZAs for the interaction with a monoclonal anti-azaspiracid antibody (mAb 8F4). In this inhibition immunoassay the amount of mAb 8F4 bound to AZA-2-microspheres was quantified using a phycoerythrin-labeled anti-mouse antibody, and the fluorescence was measured with a Luminex analyzer. Simple acetate/methanol or methanol extractions yielded final extracts with no matrix interferences and adequate recovery rates of 86.5% and 75.8%, respectively. In summary, this work presents, a sensitive and easily performed screening method capable of detecting AZAs at concentrations below the range of the European regulatory limit using a microsphere/flow cytometry system. PMID:24215909

  12. In Vitro-In Vivo Relationship of Amorphous Insoluble API (Progesterone) in PLGA Microspheres.

    PubMed

    Pu, Chenguang; Wang, Qiao; Zhang, Hongjuan; Gou, Jingxin; Guo, Yuting; Tan, Xinyi; Xie, Bin; Yin, Na; He, Haibing; Zhang, Yu; Wang, Yanjiao; Yin, Tian; Tang, Xing

    2017-12-01

    The mechanism of PRG release from PLGA microspheres was studied and the correlation of in vitro and in vivo analyses was assessed. PRG-loaded microspheres were prepared by the emulsion-evaporate method. The physical state of PRG and microstructure changings during the drug release period were evaluated by powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) respectively. Pharmacokinetic studies were performed in male Sprague-Dawley rats, and the in vivo-in vitro correlation (IVIVC) was established by linear fitting of the cumulative release (%) in vitro and fraction of absorption (%) in vivo. PXRD results indicated recrystallization of PRG during release. The changes of microstructure of PRG-loaded microspheres during the release period could be observed in SEM micrographs. Pharmacokinetics results performed low burst-release followed a steady-released manner. The IVIVC assessment exhibited a good correlation between vitro and in vivo. The burst release phase was caused by diffusion of amorphous PRG near the surface, while the second release stage was impacted by PRG-dissolution from crystal depots formed in microspheres. The IVIVC assessment suggests that the in vitro test method used in this study could predict the real situation in vivo and is helpful to study the release mechanism in vivo.

  13. Tretinoin microsphere gel in younger acne patients.

    PubMed

    Jorizzo, Joseph; Grossman, Rachel; Nighland, Marge

    2008-08-01

    Facial acne is common in adolescents and can have a significant psychosocial impact. Treatments prescribed should not add stress by causing excessive localized irritation. To determine whether the lowest concentration of tretinoin microsphere gel (TMG) currently available (0.04%) provides an acceptable balance of efficacy and tolerability for adolescents with moderate facial acne. The findings of 2 multicenter, randomized, double-blind, vehicle-controlled trials of TMG 0.04% applied once nightly for 12 weeks in 245 adolescents ages 11 to 16 years with moderate facial acne were combined. Patients were evaluated via changes in acne lesion counts and the occurrence of cutaneous and other adverse effects. Tretinoin microsphere gel 0.04% reduced total, noninflammatory, and inflammatory lesion counts to a significantly greater extent than the vehicle gel at 12 weeks (P<.000005). The mean percentage reductions in noninflammatory and inflammatory lesion counts at 12 weeks in females were 45.0% and 51.4%, respectively; and in males, 20.5% and 36.7%, respectively. Tretinoin microsphere gel 0.04% was tolerated well, with over 70% of patients experiencing no cutaneous adverse events (AEs). Tretinoin microsphere gel 0.04% is effective in significantly reducing all types of acne lesions in adolescents with moderate facial acne ages 11 to 16 years, and has a low incidence of cutaneous AEs.

  14. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  15. Proton trapping in yttrium-doped barium zirconate.

    PubMed

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C; Grey, Clare P; Haile, Sossina M

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol(-1), as well as the general activation energy, 16 kJ mol(-1), to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  16. Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: A comparative Raman microscopy study

    PubMed Central

    van Manen, Henk-Jan; van Apeldoorn, Aart A; Verrijk, Ruud; van Blitterswijk, Clemens A; Otto, Cees

    2007-01-01

    Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering. PMID:17722552

  17. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  18. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1979-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  19. Cephradin-plaga microspheres for sustained delivery to cattle.

    PubMed

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were

  20. Development of starch-gelatin complex microspheres as sustained release delivery system

    PubMed Central

    Hari, B. N. Vedha; Praneetha, T.; Prathyusha, T.; Mounika, K.; Devi, D. Ramya

    2012-01-01

    The starch was isolated from jackfruit seeds and evaluated for its preformulation properties, like tapped density, bulk density, and particle size. The fourier transform infrared (FTIR) analysis was done and compared with that of the commercially available starch which confirmed the properties. Using the various concentrations of jackfruit seed starch, the microspheres were prepared, combining with gelatin by ionotropic gelation technique. The developed microspheres were subjected to analysis of particle size, drug content, entrapment efficiency, and percentage yield. The spectral analysis confirmed the presence of drug and absence of interactions. Scanning electron microscope image showed that the particles were in spherical shape with a rough surface. The in vitro drug release in water for 12 hours proved to be in the range of 89 to 100%. The various kinetic models were applied using release data to confirm the mechanism of drug. It was concluded that the jackfruit starch-gelatin microspheres gave satisfactory results and met pharmacopieal limits. PMID:23057005

  1. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  2. A facile in-situ hydrothermal synthesis of SrTiO3/TiO2 microsphere composite

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Zhao, Wei; Zhang, Yubo; Zhang, Shimeng; Wang, Zihao; Zhao, Dan

    2016-06-01

    TiO2 was successfully used as sacrificed template to synthesise SrTiO3/TiO2 microsphere composite via an in-situ hydrothermal process. The diameter of SrTiO3/TiO2 microsphere was about 700 nm with the same size of the template, and all of the microspheres were in good dispersity. The optimized reaction parameters for the phase and morphology of the as-synthesized samples were investigated. The results showed the SrTiO3/TiO2 microsphere can be synthesized at 170 °C when the concentration of sodium hydroxide was 0.1 M. Lower hydrothermal temperature hampered the formation of the SrTiO3/TiO2 composite, the higher alkali concentration, however, will destroy the morphology of products. The formation mechanism of SrTiO3/TiO2 microsphere composite was proposed and the photocatalytic properties of the samples were characterized using methylene blue solution as the pollutant under the UV light irradiation. The results indicated the proper OH- concentration will provide a channel for Sr2+ to react with Ti4+ located in the template and form the SrTiO3/TiO2 composite, and those with micro-scaled spherical morphology exhibited good photocatalytic activities.

  3. Temperature and refractive index measurement based on a coating-enhanced dual-microspheric fiber sensor

    NASA Astrophysics Data System (ADS)

    Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and  ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.

  4. Resolution enhancement of 2-photon microscopy using high-refractive index microspheres

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan Forouhesh; Darafsheh, Arash; Phang, Sendy; Mortensen, Luke J.

    2018-02-01

    Intravital microscopy using multiphoton processes is the standard tool for deep tissue imaging inside of biological specimens. Usually, near-infrared and infrared light is used to excite the sample, which enables imaging several mean free path inside a scattering tissues. Using longer wavelengths, however, increases the width of the effective multiphoton Point Spread Function (PSF). Many features inside of cells and tissues are smaller than the diffraction limit, and therefore not possible to distinguish using a large PSF. Microscopy using high refractive index microspheres has shown promise to increase the numerical aperture of an imaging system and enhance the resolution. It has been shown that microspheres can image features λ/7 using single photon process fluorescence. In this work, we investigate resolution enhancement for Second Harmonic Generation (SHG) and 2-photon fluorescence microscopy. We used Barium Titanate glass microspheres with diameters ˜20-30 μm and refractive index ˜1.9-2.1. We show microsphere-assisted SHG imaging in bone collagen fibers. Since bone is a very dense tissue constructed of bundles of collagen fibers, it is nontrivial to image individual fibers. We placed microspheres on a dense area of the mouse cranial bone, and achieved imaging of individual fibers. We found that microsphere assisted SHG imaging resolves features of the bone fibers that are not readily visible in conventional SHG imaging. We extended this work to 2-photon microscopy of mitochondria in mouse soleus muscle, and with the help of microsphere resolving power, we were able to trace individual mitochondrion from their ensemble.

  5. Synthesis of phase-pure U 2N 3 microspheres and its decomposition into UN

    DOE PAGES

    Silva, Chinthaka M.; Hunt, Rodney Dale; Snead, Lance Lewis; ...

    2014-12-12

    Uranium mononitride (UN) is important as a nuclear fuel. Fabrication of UN in its microspherical form also has its own merits since the advent of the concept of accident-tolerant fuel, where UN is being considered as a potential fuel in the form of TRISO particles. But, not many processes have been well established to synthesize kernels of UN. Therefore, a process for synthesis of microspherical UN with a minimum amount of carbon is discussed herein. First, a series of single-phased microspheres of uranium sesquinitride (U 2N 3) were synthesized by nitridation of UO 2+C microspheres at a few different temperatures.more » Resulting microspheres were of low-density U 2N 3 and decomposed into low-density UN. The variation of density of the synthesized sesquinitrides as a function of its chemical composition indicated the presence of extra (interstitial) nitrogen atoms corresponding to its hyperstoichiometry, which is normally indicated as α-U 2N 3. Average grain sizes of both U 2N 3 and UN varied in a range of 1–2.5 μm. In addition, these had a considerably large amount of pore spacing, indicating the potential sinterability of UN toward its use as a nuclear fuel.« less

  6. Assessment of the binding performance of histamine-imprinted microspheres by frontal analysis capillary electrophoresis.

    PubMed

    Romano, Edwin F; Quirino, Joselito P; Holdsworth, John L; So, Regina C; Holdsworth, Clovia I

    2017-05-01

    Frontal analysis capillary electrophoresis was used to evaluate the binding performance of molecularly imprinted microspheres (MIM) toward its template histamine and analogs at pH 7, and compared to the high performance liquid chromatographic method. In both methods, batch binding was employed and the binding parameters were calculated from the measured concentration of unbound amine analytes and afforded comparable histamine equilibrium dissociation constants (K d ∼ 0.4 mM). FACE was easily carried out at shorter binding equilibration time (i.e. 30 min) and without the need to separate the microspheres, circumventing laborious and, in the case of the system under study, inefficient sample filtration. It also allowed for competitive binding studies by virtue of its ability to distinctly separate intact microspheres and all tested amines which could not be resolved in HPLC. K d 's for nonimprinted (control) microspheres (NIM) from FACE and HPLC were also comparable (∼ 0.6 mM) but at higher histamine concentrations, HPLC gave lower histamine binding. This discrepancy was attributed to inefficient filtration of the batch binding samples prior to HPLC analysis resulting in an over-estimation of the concentration of free histamine brought about by the presence of unfiltered histamine-bound microspheres. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi

    2018-02-01

    In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.

  8. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-11-01

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of

  9. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    NASA Astrophysics Data System (ADS)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  10. Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Chen, Chen; Liang, C. Y.; Liu, Z. W.; Li, Y. S.; Che, Renchao

    2015-10-01

    Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed.Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its

  11. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    PubMed

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  12. Solvent/Non-Solvent Sintering: A Novel Route to Create Porous Microsphere Scaffolds For Tissue Regeneration

    PubMed Central

    Brown, Justin L.; Nair, Lakshmi S.; Laurencin, Cato T.

    2009-01-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from −8°C to 41oC and poly(lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1µm respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. PMID:18161819

  13. An Accelerated Release Method of Risperidone Loaded PLGA Microspheres with Good IVIVC.

    PubMed

    Hu, Xiaoqin; Zhang, Jianwei; Tang, Xuemei; Li, Mingyuan; Ma, Siyu; Liu, Cheng; Gao, Yue; Zhang, Yue; Liu, Yan; Yu, Fanglin; Yang, Yang; Guo, Jia; Li, Zhiping; Mei, Xingguo

    2018-01-01

    A long release period lasting several days or several weeks is always needed and thereby it is tedious and time consuming to screen formulations of such microspheres with so long release period and evaluate their release profiles in vitro with conventional long-term or "real-time" release method. So, an accelerated release testing of such system is necessary for formulation design as well as quality control purpose. The purpose of this study is to obtain an accelerated release method of risperidone loaded poly(lactic-co-glycolic acid) (PLGA) microspheres with good in vitro/in vivo correlation (IVIVC). Two formulations of risperidone loaded PLGA microspheres used for evaluating IVIVC were prepared by O/W method. The accelerated release condition was optimized by investigating the effect of pH, osmotic pressure, temperature and ethanol concentration on the release of risperidone from microspheres and the in vitro accelerated release profiles of risperidone from PLGA microspheres were obtained under this optimized accelerated release condition. The plasma concentration of risperidone were also detected after subcutaneous injection of risperidone loaded microspheres to rats. The in vivo cumulative absorption profiles were then calculated using Wagner-Nelson model, Loo- Riegelman model and numerical convolution model, respectively. The correlation between in vitro accelerated release and in vivo cumulative absorption were finally evaluated with Least Square Method. It was shown that temperature and ethanol concentration significantly affected the release of risperidone from the microspheres while pH and osmotic pressure of release media slightly affected the release behavior of risperidone. The in vitro release of risperidone from microspheres were finally undergone in PBS (pH7.0, 300mosm) with 20% (V/V) ethanol at 45°C. The sustained and complete release of risperidone was observed in both formulations under the accelerated release condition although these two release

  14. Effects of formulation variables and characterization of guaifenesin wax microspheres for controlled release.

    PubMed

    Mani, Narasimhan; Park, M O; Jun, H W

    2005-01-01

    Sustained-release wax microspheres of guaifenesin, a highly water-soluble drug, were prepared by the hydrophobic congealable disperse method using a salting-out procedure. The effects of formulation variables on the loading efficiency, particle properties, and in-vitro drug release from the microspheres were determined. The type of dispersant, the amount of wetting agent, and initial stirring time used affected the loading efficiency, while the volume of external phase and emulsification speed affected the particle size of the microspheres to a greater extent. The crystal properties of the drug in the wax matrix and the morphology of the microspheres were studied by differential scanning calorimetry (DSC), powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). The DSC thermograms of the microspheres showed that the drug lost its crystallinity during the microencapsulation process, which was further confirmed by the XRD data. The electron micrographs of the drug-loaded microspheres showed well-formed spherical particles with a rough exterior.

  15. CO2 Biofixation of Actinobacillus succinogenes Through Novel Amine-Functionalized Polystyrene Microsphere Materials.

    PubMed

    Zhu, Wenhao; Li, Qiang; Dai, Ning

    2017-02-01

    CO 2 -derived succinate production was enhanced by Actinobacillus succinogenes through polystyrene (PSt) microsphere materials for CO 2 adsorption in bioreactor, and the adhesion forces between A. succinogenes bacteria and PSt materials were characterized. Synthesized uniformly sized and highly cross-linked PSt microspheres had high specific surface areas. After modification with amine functional groups, the novel amine-functionalized PSt microspheres exhibited a high adsorption capacity of 25.3 mg CO 2 /g materials. After addition with the functionalized microspheres into the culture broth, CO 2 supply to the cells increased. Succinate production by A. succinogenes can be enhanced from 29.6 to 48.1 g L -1 . Moreover, the characterization of interaction forces between A. succinogenes cells and the microspheres indicated that the maximal adhesive force was about 250 pN. The amine-functionalized PSt microspheres can adsorb a large amount of CO 2 and be employed for A. succinogenes anaerobic cultivation in bioreactor for high-efficiency production of CO 2 -derived succinate.

  16. Onion-like microspheres with tricomponent from gelable triblock copolymers.

    PubMed

    Zhang, Ke; Gao, Lei; Chen, Yongming; Yang, Zhenzhong

    2010-06-01

    Onion-like functional microspheres with three alternate layers were obtained by aerosol-assisted self-assembly of a functional block copolymer, poly(3-(triethoxysilyl)propyl methacrylate)-block-polystyrene-block-poly(2-vinylpyridine) (PTEPM-b-PS-b-P2VP). Through self-gelation reaction occurred in the PTEPM layers, organic/inorganic hybrid functional spheres with highly ordered concentric curved lamellar structure were prepared. Using these hybrid onion-like microspheres as templates, gold ions were entrapped into the P2VP layers and then gold nanoparticles located in each P2VP layers were formed by a reduction. By dispersing in acidic water, the onion-like polymeric spheres were broken and, as a result, sandwich-like nanoplates with curved morphology were obtained. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice

    PubMed Central

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion–evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0−t): 12.53±1.65 mg/L*h vs 7.80±0.83 and 5.82±0.83 mg/L*h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU. PMID:27042001

  18. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice.

    PubMed

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion-evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0-t): 12.53±1.65 mg/L(*)h vs 7.80±0.83 and 5.82±0.83 mg/L(*)h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU.

  19. In-vitro studies of enteric coated diclofenac sodium-carboxymethylcellulose microspheres.

    PubMed

    Arica, B; Arica, M Y; Kaş, H S; Hincal, A A; Hasirci, V

    1996-01-01

    MIcrospheres containing diclofenac sodium (DS) were prepared using carboxymethylcellulose (CMC) as the main support material (1.0, 2.0, 3.0% (w/v)) and aluminum chloride as the crosslinker. Drug to polymer ratios of 1:1, 1:2 and 1:4 were used to obtain a range of microspheres. The microspheres were then coated with an enteric coating material, Eudragit S-100, efficiency, % yield value, particle sizes an in-vitro dissolution behaviour were investigated. The surface of the enteric coated microspheres seemed to be all covered with Eudragit S-100 from scanning electron microscopy observation. It was also observed that increasing the CMC concentration led to an increase in the encapsulation efficiency, % yield value and particle size and decreased the release rate. Eudragit S-100 coating did not significantly alter the size but the release rate was significantly lower even when the lower concentration solution was used.

  20. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.